JISC (draft) Software Quality Assurance Policy D1

[image: image1.png]

JISC (draft) Software Quality Assurance Policy

This document is a draft version of JISC policy and guidelines for software quality assurance in JISC funded projects. It is intended that the policy and guidelines outlined in this document be piloted with the Distributed eLearning Programme’s eTools projects allowing the refinement of the policy/guidance. The document will also be circulated within the JISC development team to elicit opinions and further refine the policy/guidance prior to final review and acceptance by JISC.

1. Project Quality Plan

1.1 Projects that are delivering bespoke software, package software, or integration of existing software/systems must develop and implement a project quality plan that addresses software quality assurance.

1.2 The project quality plan and any associated budgetary cost should form part of any response to a circular or ITT. The ability for a bidder to ensure quality would form part of the bid evaluation and selection criteria.

1.3 Each project should complete the JISC project quality plan template and referenced it in section 15 of the JISC project plan template.

2. Project Quality Plan Template

2.1 The project quality plan is defined for each project using project quality plan template. The project quality plan is not an isolated activity and should be part of wider project planning to ensure project quality activities are budgeted for, resourced and built into the project plan.

2.1.1 Quality Expectations

The JISC programme manager and/or sponsor completes this section defining the standards and level of quality expect from the project. The expectations will differ from project to project but may include specifying standards compliancy tests or interoperability testing.
2.1.2 Acceptance Criteria

For each of the main project deliverables acceptance criteria are defined based upon the quality expectations set. For example this could be a report of an external evaluator or a set of interoperability testing results.

2.1.3 Quality Responsibilities

The project manager defines who will be responsible for monitoring and ensuring differing aspects of quality. For example the Project Manager will be responsible for the quality of project documentation / change control, the programmer for unit testing quality, the lead programmer for system testing quality / configuration management and the senior academic advisory for usability quality.

2.1.4 Standards and Technologies

A referenced list of standards and technologies to be used by the project.

This list should cover as applicable: coding standards, languages, interoperability standards, open source standards, ISO standards, protocols, development methodology, testing, services, and packages.

2.1.5 Quality Control and Audit Processes

A definition of or a reference to, the quality control procedures / techniques to be used by the project. The quality control process should identify:

· When or at what stage software testing take place?

· How will it be carried out?

· How will results/faults recorded?

· At what level is software being tested?

· Are any testing tools being used?

The quality control process can be viewed as a high level testing strategy. The audit process is the ability to trace back the test / checks that have been preformed as part for quality control. This is useful for tracing software faults and may be required as part of the projects acceptance criteria to allow JISC or an external evaluator to review the rigour to which the software was constructed.

2.1.6 Change Control and Configuration Management Processes

A definition of or reference to, the change control and configuration management processes used by the project.

Change control is the process by which a project controls any changes to the project plan, scope, budget, specifications, requirements, deliverables, standard of quality, timescale are assessed and agreed/rejected. This can be as simple as a weekly project meeting where changes are discussed, documented in meeting minutes and actioned. It is important to define who has authority to accept or reject changes to the project. Any change that to the original project plan, software specification, user requirements should be traceable via audit and the reasoning for that change clearly recorded. A useful technique for documenting and managing change control is the use of an issue log which records all issues, requests for change and software faults / off-specification (e.g. test failures, over due software components). Held in the form of a spreadsheet this can be use to provide an agenda for the weekly project meetings, record actions/decisions and provide an audit trail.

Configuration management is the control of any thing produced by the project (e.g. documents and software) providing the mechanism for managing, tracking and keeping control of all the projects deliverables. For software this will take the form of a software storage system (e.g. CVS, Subversion, Source Safe or http://sourceforge.net) that safely stores, versions, controls access to and records status of the software.

2.1.7 Quality Control Tools

List of the quality control tools to be used by the project when testing or making quality checks. For example: SourceSafe for software configuration management, JavaScript Assertion Unit (jsAsserUnit) for unit testing, or XMLUnit for XML open source standard compliancy testing.

2. Development Process/Methodology

2.1 Any software development should follow a defined development process / methodology that is suitable for the type of development beginning undertaken. JISC does not stipulate a single methodology but does require a project to define the process or methodology it will follow. The development process / methodology should be clearly stated in the response to any circulars or ITTs and form part of the project quality plan.

2.1.1 Requirements

· Requirements that are not stated in detail in a circular or an ITT should be specified at the earliest opportunity in the project life cycle.

· UML use cases, scenarios, and class diagrams should be used to express requirement / functional specification. This may be supported by other methods of capturing and expressing requirements.

· Requirements should be base lined through the configuration management process to scope exactly what the software will do by within each release. Changes to requirements must follow the change control process defined by the project.

· Requirements should be reused in developing test plans and user documentation.

· Well-defined requirements should describe a software’s externally-perceived functionality and properties. Requirements should be clear, complete, reasonably detailed, cohesive, attainable, and testable. A non-testable requirement would be, for example, 'user-friendly' (too subjective).

· Where rapid development and agile development methods are used requirements are refined through close interaction and cooperation between programmers and users.

2.1.2 Design

· Design of the logical/functional and physical/internal system should be express using UML.

· Good internal design is indicated by software code whose overall structure is clear, understandable, easily modifiable, and maintainable; is robust with sufficient error-handling and status logging capability; and works correctly when implemented.

2.1.3 Coding

· Coding of software should follow the stated design.

· Coding and annotation standards must be consistently applied.

2.1.4 Testing

· Testing plans and cases should be produced during design based on requirements and design specifications.

· Testing should cover unit, module, system, integration, load and user testing.

· A range of testing methods/techniques may be used e.g. automated testing.

· Testing procedures should be auditable. I.e. results, faults and fixes are recorded and traceable.

· Testing forms part of the configuration management process as only after software has been tested/quality checked can it be versioned and stored/released.

· Consideration should be given to the relevant standards compliancy and Interoperability test that need to be undertaken especially when developing standards based and open source software.

2.2 Projects should stage development to release incremental working but incomplete versions of software.

3. Documentation

3.1 Projects are expected to produce user, requirements, design and system documentation.

3.2 Projects are must provide requirements, design and system documentation in UML version 1.4, and submit documentation in the source format (e.g. Word, Excel, Visio) and the open source format PDF unless otherwise agreed with JISC.

3.3 Documentation should be produced throughout the life of a project, in line with the software development acting as an audit trail. The production of documentation is not to be left until the end of a project.

3.4 Documentation must be in PDF and its original source format.

3.5 Criteria for the acceptance of documentation will be defined by the JISC programme manager.

4. Coding Standards and Practice

4.1 The project should apply the standard for coding and annotation consistently as defined in the project quality plan.

4.2 Code should be modular, tidy and well documented internally (annotated).

5. Quality Control and Auditing

5.1 A project should define and implement an issue management process as part of the project quality plan ensuring that issues with software quality are:

· recorded.

· addressed and decisions/actions documented.

· auditable.

The process can be as simple as using an excel spreadsheet to record and manage issues.

6. Change Control and Configuration Management

6.1 A project should defined and implement a Change Control and Configuration Management process to ensure:

· Software and documentation is base-lined and version controlled.

· Software and documentation is securely stored (e.g. CVS, Subversion, Source Safe or www.sourceforge.net).

· Intermediate versions of software are retained.

· Changes to software and documentation are controlled, authorised and auditable.

· Releases of software and documentation have been quality assured (i.e. tested, versioned, and documented).

7. Open Standards

7.1 Open standards are written descriptions of formats or processes, which are maintained by a public body (such as the ISO www.iso.org, the W3C www.w3.org, or IETF www.ietf.org) in the public interest. XML www.w3.org/XML is an open standard issued by the W3C and implemented for example by Apache Xerces xml.apache.org, Microsoft XML Parser msdn.Microsoft.com/xml and IBM XML4J www.alphaworks.ibm.com/tech/xml4j. The microsoft word format is not an open standard because it is maintained by Microsoft which is free to change it for commercial reasons to the detriment of compatibility and interoperability.

7.2 Any software developed by JISC funded projects should use open standards.

7.3 Software in fields with widely used or ubiquitous open standards must use those standards as they apply to the project unless an explicit argument is made in a project bid as to why this is unsuitable and an alternative proposed.

7.4 Documentation, graphics, sound and data and other files should use open standards.

7.5 All project deliverables/outputs must be released in a form free from DRM (Digitial Rights Management) restrictions.

7.6 All project deliverables/outputs should be realised in a form that compiles with usability guidelines where appropriate.

8. Open Source

8.1 A project will conform to JISC’s (draft) Open Source Policy.

8.2 Open Source Definition:

8.2.1 Free Redistribution

The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license shall not require a royalty or other fee for such sale.

8.3.2 Source Code

The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a reasonable reproduction cost–preferably, downloading via the Internet without charge. The source code must be the preferred form in which a programmer would modify the program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a pre-processor or translator are not allowed.

8.3.3 Derived Works

The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software.

8.3.4 Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software.

8.3.5 No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

8.3.6 No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research.

8.3.7 Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties.

8.3.8 License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a particular software distribution. If the program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the original software distribution.

8.3.9 License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be open-source software.

References

	American National Standards Institute http://www.ansi.org/
The American National Standards Institute (ANSI) is a private, non-profit organization (501(c)3) that administers and coordinates the U.S. voluntary standardization and conformity assessment system.

	CETIS http://www.cetis.ac.uk/
CETIS represents UK higher-education and further-education institutions on international learning technology standards initiatives.

	Institute of Electrical and Electronics Engineers http://www.ieee.org/portal/index.jsp
'IEEE Standard for Software Test Documentation' (IEEE/ANSI Standard 829),

'IEEE Standard of Software Unit Testing (IEEE/ANSI Standard 1008),

'IEEE Standard for Software Quality Assurance Plans' (IEEE/ANSI Standard ANSI/IEEE 730-2002).

	ISO = 'International Organisation for Standardization' - The ISO 9001:2000

	Open Group http://www.opengroup.org/
The Open Group is an international vendor and technology-neutral consortium.

	Open Source Initiative http://opensource.org/
Open Source Initiative (OSI) is a non-profit corporation dedicated to managing and promoting the Open Source Definition for the good of the community, specifically through the OSI Certified Open Source Software certification mark and program.

	Open Source Testing Centre http://www.opensourcetesting.org/
Opensourcetesting.org aims to boost the profile of open source testing tools within the testing industry, principally by giving users easy access from one central location to the wide range of open source testing tools available.

	OSS Watch http://www.oss-watch.ac.uk/
OSS Watch provides the UK further and higher education community with neutral and authoritative guidance about free and open source software, and about related open standards

	Software QA/Test Resource Center http://www.softwareqatest.com/index.html

� Reference: � HYPERLINK "http://www.softwareqatest.com/qattls1.html" ��http://www.softwareqatest.com/qattls1.html� or � HYPERLINK "http://www.opensourcetesting.org/" ��http://www.opensourcetesting.org/�

Richard McKenna

2
JISC Development Team

27th August 2004

