
www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

The OpenEAI Message Protocol
Version 1.0

January, 2003

by

Tod Jackson (tod@openeai.org)

Steve Wheat (steve@openeai.org)

Copyright © 2003, OpenEAI Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
the Invariant Section being the first section entitled “Introduction”, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in the section entitled "Appendix 1: GNU Free
Documentation License".

Page 1 of 50

mailto:tod@openeai.org
mailto:steve@openeai.org

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Contents

Introduction
The Root Concept: Authoritative Source
The OpenEAI Message Protocol

Message Naming
Message Categories
Message Objects
Message Actions
Message Types
Message Structure
Basic Messaging Behavior

*.Query-Request and *.Provide-Reply
*.Create-Request and org.openeai.CoreMessaging.Generic.Response-Reply
*.Update-Request and org.openeai.CoreMessaging.Generic.Response-Reply
*.Delete-Request and org.openeai.CoreMessaging.Generic.Response-Reply
*.Generate-Request and *.Response-Reply
Synchronization Messages
org.openeai.CoreMessaging.Sync.Error-Sync
*.Create-Sync
*.Update-Sync
*.Delete-Sync

Common Error Messages
Enterprise Data Values

Implementing Message Support

Introduction

Work on the OpenEAI Message Protocol began in December 2000 as a collaborative effort between the
University of Illinois and SCT Corp. The intent of this collaboration was to provide a format for quantifying
enterprise data objects and to prescribe a protocol to communicate or request changes in the state of
these enterprise data objects at their authoritative source. The work of the Open Application Group
(http://www.OpenApplications.org) provided initial inspiration for early message structure, and that
influence is evident in OpenEAI message structure and message definition practices. The OpenEAI
Message Protocol strives to express all actions that can be performed on or for enterprise data objects in
both request/reply and publish/subscribe messaging models. This protocol is maintained by the OpenEAI
Project (info@OpenEAI.org). The original draft of this document was written by Tod Jackson
(tod@openeai.org) and Steve Wheat (steve@openeai.org) in 2002 and published January, 2003.

If you are familiar with the Simple Object Access Protocol (SOAP) and related web services technologies,
much of what you read here will be familiar—up to a point, particularly the concepts of defining enterprise
data as XML objects (what OpenEAI calls “enterprise message objects”), putting them into messages,
and transporting them via your preferred transport mechanism. From there, OpenEAI goes on to specify
a general protocol for what you can do with any message object within a message, based on the
OpenEAI Project’s documented theories of enterprise application integration and the experience of many
messaging implementations by the projects participants.

Page 2 of 50

http://www.openapplications.org/
http://www.openeai.org/
http://www.openeai.org/
mailto:info@OpenEAI.org
mailto:tod@OpenEAI.org
mailto:steve@openeai.org

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

The message format specified by the OpenEAI Message Protocol includes administrative information
required to successfully support many complex request/reply and publish/subscribe interfaces that have
special performance, security, routing, logging, and auditing requirements. While the OpenEAI Message
Protocol can be used for linking two or three applications (and it is easy to use for that purpose), it is
important to keep in mind that many of the details of OpenEAI address integration requirements within
large enterprises that are complex, with many applications to integrate.

You may be familiar with the concept of foundational APIs that help developers by implementing much of
the lower-level mechanics of, for example, building XML messages from data objects. OpenEAI employs
this concept. In fact, developing foundational APIs has been the primary focus of the project to date. EAI
can involve heavy lifting, such as content-based message routing and data value and format translations.
Having a foundation to do this grunt work for you, driven by clear configuration artifacts, makes EAI
technology practical to use.

A word of encouragement…if you look at the sample messages and other artifacts below and find
yourself thinking, “This is complex!” or, “Gee, do I need all this stuff?”…we advise you to suspend your
concern: there are solid foundational APIs to much of the work. For example, one of the message objects
described in subsequent sections is BasicPerson. Here is how you would query a remote application for
a BasicPerson, and receive the reply:

import org.openeai.jms.producer.PointToPointProducer;
import com.any_erp_vendor.moa.jmsobjects.person.v1_0.BasicPerson;
import com.any_erp_vendor.moa.jmsobjects.person.v1_0.LightweightPerson;

// Get a preconfigured LightweightPerson out AppConfig (an OpenEAI
// application foundation component you can read about in the API
// Introduction document). LightweightPerson is the object we must
// use to query for a BasicPerson according to the definition of
// the message com.any-erp-vendor.Person.BasicPerson.Query-Request.

LightweightPerson lPerson =
 (LightweightPerson)getAppConfig().getObject(“LightweightPerson.v1_0”);

// Set the InstitutionalId, which is an identification number, on the
// LightweightPerson to be that of the BasicPerson we’re querying for.
// If the data we’re passing is not valid, enterprise-quality data
// as prescribed by the enterprise object documents we’ve completed
// an exception will be thrown. You can read more about using enterprise
// object documents to specify valid values, translations, and rules in
// the API Introduction document.
try {
 lPerson.setInstitutionalId(“123456789”);
}
catch (Exception e) {
 // perform appropriate exception handling…
}

// Get a preconfigured BasicPerson object from AppConfig.
BasicPerson bPerson =
 (BasicPerson)getAppConfig().getObject(“BasicPerson.v1_0”);

// Get a preconfigured, started PointToPointProducer object from AppConfig
// with which to perform the query action via JMS.
PointToPointProducer p2p =
 (PointToPointProducer)getAppConfig().getObject(“PointToPoint”);

Page 3 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

// Perform the query. The query will return a List of BasicPerson
// objects if any are found that match the LightweightPerson we used
// in the query. If any errors occur during the query, an
// exception will be thrown. This includes errors that occur in the
// application that handles the request we are sending.
Java.util.List personList = null;
try {
 personList = bPerson.query(lPerson, p2p);
}
catch (Exception e) {
 // perform appropriate exception handling…
}

// Log the name associated with each BasicPerson object returned, so
// we can se something about the results we got back from the remote
// application we queried.
For (int i=0; i<personList.size(); i++) {
 (BasicPerson)aBasicPerson = (BasicPerson)personList.get(i);
 logger.info(“Name: “ + aBasicPerson.getName().getLastName() + “, “ +
aBasicPerson.getName().getFirstName());
}

This sends a request and receives the following reply over your message transport.

Request

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE com.any-erp-vendor.Person.BasicPerson.Query SYSTEM
"http://xml.openeai.org/message/releases/com/any-erp-vendor/Person/BasicPerson/1.0/dtd/Query-Request.dtd">
<com.any-erp-vendor.Person.BasicPerson.Query>
 <ControlAreaRequest messageCategory="com.any-erp-vendor.Person" messageObject="BasicPerson"
messageAction="Query" messageRelease="1.0" messagePriority="9" messageType="Request">
 <Sender>
 <MessageId>
 <SenderAppId>edu.uillinois.uihr.NessieApplication</SenderAppId>
 <ProducerId>33b054ea-33a2-4fc0-923b-c62fe2837963</ProducerId>
 <MessageSeq>86</MessageSeq>
 </MessageId>
 <Authentication>
 <AuthUserId>nessie</AuthUserId>
 </Authentication>
 </Sender>
 <Datetime>
 <Year>2001</Year>
 <Month>03</Month>
 <Day>23</Day>
 <Hour>13</Hour>
 <Minute>47</Minute>
 <Second>30</Second>
 <SubSecond>472</SubSecond>
 <Timezone>6:00-GMT</Timezone>
 </Datetime>
 <ExpectedReplyFormat messageCategory="com.any-erp-vendor.Person"
messageObject="BasicPerson" messageRelease="1.0" messageAction="Provide" messageType="Reply"/>
 </ControlAreaRequest>
 <DataArea>
 <LightweightPerson>
 <InstitutionalId>123456789</InstitutionalId>

Page 4 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 </LightweightPerson>
 </DataArea>
</com.any-erp-vendor.Person.BasicPerson.Query>

Reply

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE com.any-erp-vendor.Person.BasicPerson.Provide SYSTEM
"http://xml.openeai.org/message/releases/com/any-erp-vendor/Person/BasicPerson/1.0/dtd/Provide-Reply.dtd">
<com.any-erp-vendor.Person.BasicPerson.Provide>
 <ControlAreaReply messageCategory="com.any-erp-vendor.Person" messageObject="BasicPerson"
messageAction="Provide" messageRelease="1.0" messagePriority="9" messageType="Reply">
 <Sender>
 <MessageId>
 <SenderAppId>edu.uillinois.aits.Paymaster</SenderAppId>
 <ProducerId/>
 <MessageSeq/>
 </MessageId>
 <Authentication>
 <AuthUserId>paymaster</AuthUserId>
 </Authentication>
 </Sender>
 <Datetime>
 <Year>2001</Year>
 <Month>03</Month>
 <Day>23</Day>
 <Hour>13</Hour>
 <Minute>47</Minute>
 <Second>30</Second>
 <SubSecond>673</SubSecond>
 <Timezone>6:00-GMT</Timezone>
 </Datetime>
 <Result action="Query" status="success">
 <ProcessedMessageId>
 <SenderAppId>edu.uillinois.uihr.NessieApplication</SenderAppId>
 <ProducerId>33b054ea-33a2-4fc0-923b-c62fe2837963</ProducerId>
 <MessageSeq>86</MessageSeq>
 </ProcessedMessageId>
 </Result>
 </ControlAreaReply>
 <DataArea>
 <BasicPerson citizen="Yes" citizenshipType="Citizen" deceased="No" disabledVeteran="No"
maritalStatus="Unmarried" vietnamService="No">
 <InstitutionalId>123456789</InstitutionalId>
 <Name>
 <LastName>Thoreau</LastName>
 <FirstName>Henry</FirstName>
 <MiddleName>David</MiddleName>
 </Name>
 <BirthDate>
 <Month>7</Month>
 <Day>12</Day>
 <Year>1817</Year>
 </BirthDate>
 <Gender>Male</Gender>
 <DeceasedDate>
 <Month>5</Month>
 <Day>6</Day>
 <Year>1862</Year>
 </DeceasedDate>

Page 5 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <Ethnicity>Caucasian</Ethnicity>
 <Address type="Campus Primary">
 <Street1>50 Gerty Drive</Street1>
 <CityOrLocality>Champaign</CityOrLocality>
 <StateOrProvince>Illinois</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>61820</ZipOrPostalCode>
 <EffectiveDate>
 <Month>8</Month>
 <Day>17</Day>
 <Year>1835</Year>
 </EffectiveDate>
 </Address>
 <Address type="Permanent">
 <Street1>5 Transcendental Pike</Street1>
 <CityOrLocality>Concord</CityOrLocality>
 <StateOrProvince>Massachusetts</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>01742</ZipOrPostalCode>
 <EffectiveDate>
 <Month>2</Month>
 <Day>14</Day>
 <Year>1835</Year>
 </EffectiveDate>
 </Address>
 <Phone type="Campus Phone">
 <CountryCode>1</CountryCode>
 <PhoneArea>217</PhoneArea>
 <PhoneNumber>555-1212</PhoneNumber>
 <PhoneExtension>1234</PhoneExtension>
 </Phone>
 <Email type="UI" status="Active" preferred="Yes">
 <EmailAddress>dead-transcendentalist@uiuc.edu</EmailAddress>
 </Email>
 </BasicPerson>
 </DataArea>
</com.any-erp-vendor.Person.BasicPerson.Provide>

You can move on to the OpenEAI API Introduction Document after reading this document for details on
the foundational APIs and developing OpenEAI integrations using them. Don’t stress about how to
actually implement what you see in this document. That’s addressed in detail in the API Introduction
document. Think about how the administrative information that you see in these messages could help
you. Think about having all of these messages or messages for highly-sensitive transactions sitting in a
message log, viewable and searchable from a web application to meet the requirements of those pesky
auditors that always seem to pop up when you least expect them. Think about being able to route a
publish/subscribe message differently based on which application published it and when it was sent.
Think about being able to allow or deny requests to an application based on which application is making
the request, which message object or action is being requested, which user is using the application that is
making the request, or any other piece of data in the message or that can be queried for using data within
the message.

A general understanding of EAI concepts is required in order to understand the mechanics of the
OpenEAI Protocol. The following section is a brief primer on EAI concepts. Then we will talk about some
basic naming and jargon used by the OpenEAI Message Protocol. Finally, we’ll talk about the messaging
behavior prescribed by the protocol. It can be helpful to read this document iteratively. You may wish to
read it once, and then read the concepts and naming sections again. It may bring them into sharper

Page 6 of 50

http://xml.openeai.org/site/doc/ApiIntroduction.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

focus after you have read about the messaging behavior. They are presented first because an
introduction to the concepts and the language are required in order to discuss the messaging behavior.

The Root Concept: Authoritative Source

An authoritative source is the definitive or master source for some unit of quantifiable data in the
enterprise. This source is usually implemented as an application or as a database. The following are
statements that apply this concept:

1. The Paymaster system is the authoritative source for BasicPerson information for
employees.

2. The SCT Banner system is the authoritative source for EmergencyContact data.

3. Icard (the identity card) system is the authoritative source for InstitutionalIdentity data.

This concept of authoritative source raises four questions. Answering these questions is the key practice
of Enterprise Application Integration.

The OpenEAI Project provides a concrete methodology, strategies, foundation, and deployment patterns
to use as organizations strive to answer these questions.

1. How do you quantify data for which applications are authoritative?
2. How do you expose this quantified data to the rest of the enterprise?
3. How do you transport these messages?
4. How do you produce and consume messages?

For a deeper discussion of the concept of authoritative source, see the OpenEAI Methodology Document.
Although the concept of authoritative source is central to OpenEAI, it is important to keep in mind that it is
a concept to help organize integrations efficiently. It is not a constraint or a limitation. Use it to your
benefit. For example, it is easiest, most clear, and overwhelmingly most common to be able to declare
one application in an enterprise to be the authoritative source for a message object (like BasicPerson
information) or a qualified message object (like BasicPerson information for employees). Other non-
authoritative applications can send request messages to the authoritative application to make changes for
objects of that type at the authoritative application. The authoritative application can publish
synchronization messages that are routed to non-authoritative applications that just need to know about
the state of objects for which the application is authoritative.

However, it is possible that some enterprises may believe that they have two or more applications that
are authoritative for the exact same data. In reality, all of these applications may be authoritative for that
data, but not all at the exact same moment for the exact same data. In this way, the concept of
authoritative source can be used to discover the need for an entirely new messaging infrastructure
application—an authoritative source service—and to drive the creation of convergence rules for the rare,
but real cases in which multiple applications may need to operate on exactly the same data independently
of each other, without messaging with each other, and converging the changes through messaging. For
thorough examples of how an enterprise of authoritative sources can be organized, see the OpenEAI
Implementation Strategies Document.

For now, let’s look briefly at how OpenEAI attempts to answer these four key questions.

Page 7 of 50

http://xml.openeai.org/site/doc/Methodology.htm
http://xml.openeai.org/site/doc/ImplementationStrategies.htm
http://xml.openeai.org/site/doc/ImplementationStrategies.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

1. How do you quantify data for which applications are authoritative?

OpenEAI quantifies data as XML Enterprise Objects. From the examples above BasicPerson,
EmergencyContact, and InstitutionalIdentity are examples of these quanta. Actually, these three
objects have more precise, fully-qualified names, but we will refer to them simply as BasicPerson,
EmergencyContact, and InstitutionalIdentity for now. Here are some examples:

BasicPerson

<BasicPerson citizen="Yes" citizenshipType="Citizen" deceased="No" disabledVeteran="No"
maritalStatus="Unmarried" vietnamService="No">
 <InstitutionalId>123456789</InstitutionalId>
 <Name>
 <LastName>Thoreau</LastName>
 <FirstName>Henry</FirstName>
 <MiddleName>David</MiddleName>
 </Name>
 <BirthDate>
 <Month>7</Month>
 <Day>12</Day>
 <Year>1817</Year>
 </BirthDate>
 <Gender>Male</Gender>
 <DeceasedDate>
 <Month>5</Month>
 <Day>6</Day>
 <Year>1862</Year>
 </DeceasedDate>
 <Ethnicity>Caucasian</Ethnicity>
 <Address type="Campus Primary">
 <Street1>50 Gerty Drive</Street1>
 <CityOrLocality>Champaign</CityOrLocality>
 <StateOrProvince>Illinois</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>61820</ZipOrPostalCode>
 <EffectiveDate>
 <Month>8</Month>
 <Day>17</Day>
 <Year>1835</Year>
 </EffectiveDate>
 </Address>
 <Address type="Permanent">
 <Street1>5 Transcendental Pike</Street1>
 <CityOrLocality>Concord</CityOrLocality>
 <StateOrProvince>Massachusetts</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>01742</ZipOrPostalCode>
 <EffectiveDate>
 <Month>2</Month>
 <Day>14</Day>
 <Year>1835</Year>
 </EffectiveDate>
 </Address>
 <Phone type="Campus Phone">
 <CountryCode>1</CountryCode>
 <PhoneArea>217</PhoneArea>
 <PhoneNumber>555-1212</PhoneNumber>
 <PhoneExtension>1234</PhoneExtension>
 </Phone>
 <Email type="UI" status="Active" preferred="Yes">

Page 8 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <EmailAddress>dead-transcendentalist@uiuc.edu</EmailAddress>
 </Email>
</BasicPerson>

EmergencyContact

<EmergencyContact ownerId="123456789" priority="1">
 <Name>
 <LastName>Emerson</LastName>
 <FirstName>Ralph</FirstName>
 <MiddleName>Waldo</MiddleName>
 </Name>
 <Phone type="Home">
 <PhoneArea>217</PhoneArea>
 <PhoneNumber>555-1317</PhoneNumber>
 </Phone>
 <Address type="Home">
 <Street1>7 Transcendental Pike</Street1>
 <CityOrLocality>Concord</CityOrLocality>
 <StateOrProvince>Massachusetts</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>01742</ZipOrPostalCode>
 <EffectiveDate>
 <Month>6</Month>
 <Day>11</Day>
 <Year>1821</Year>
 </EffectiveDate>
 </Address>
</EmergencyContact>

InstitutionalIdentity

<InstitutionalIdentity>
 <InstitutionalId>987654321</InstitutionalId>
 <UnknownPerson>
 <Name current="Yes">
 <LastName>Mozart</LastName>
 <FirstName>Wolfgang</FirstName>
 <MiddleName>Amadeus</MiddleName>
 </Name>
 <BirthDate>
 <Month>1</Month>
 <Day>27</Day>
 <Year>1756</Year>
 </BirthDate>
 <Gender>Male</Gender>
 </UnknownPerson>
</InstitutionalIdentity>

2. How do you expose this quantified data to the rest of the enterprise?

OpenEAI exposes this quantified data to the rest of an enterprise with messages in XML format
using the OpenEAI Message Protocol. OpenEAI XML messages are constrained with XML
Document Type Definitions (DTDs). The OpenEAI Project is in the process of providing support

Page 9 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

for compatible XML Schema constraints for messages given the wide adoption of this new
constraint. Subsequent releases of the OpenEAI APIs will support the use of XML Schema as a
constraint. See the OpenEAI Message Definitions Document for complete details.

The OpenEAI Message Protocol consists, at its highest level, of three message types: requests,
replies, and synchronization messages. Requests are made by non-authoritative applications
of an authoritative application, replies are provided by authoritative applications to non-
authoritative applications, and synchronization messages are broadcast by authoritative
applications to all non-authoritative applications in the enterprise that are interested in changes in
state of various objects. The details of this protocol are the subject of this document. The
integration capabilities of OpenEAI are not limited to applications that use the OpenEAI Message
Protocol natively. Consult the OpenEAI Implementation Strategies document for strategies for
integrating applications that use other standards-based or proprietary EAI protocols with an
OpenEAI enterprise. There you will find details about using message transformation, data value
translation, and layout management facilities built into the OpenEAI Message Object API.

3. How do you transport these messages?

The OpenEAI Project, along with progressive segments of the IT industry, opted to implement
message transport services with a Java Message Service (JMS) provider. This allows flexibility in
that the message transport can be any transport which implements JMS, ranging in features from
very basic to feature-rich and ranging in cost from free-of-charge to very expensive. This allows
an organization to experiment or begin implementation work with a free- or low-cost solution and
replace the message transport layer with a more expensive and feature-rich product as needs
grow. Usually, the experience an organization gains in working with a free- or low-cost message
transport will help crystallize its understanding of what functionality and administration features a
message service should provide and what value-added features it would really like. Most
organizations have a difficult time producing a meaningful list of message service requirements
without cultivating some experience with these products. When the time comes to replace one
JMS provider with another, it is a straightforward and fast undertaking to switch providers.

Another benefit of using JMS providers is the ability to accept upgrades to message transport
software. This is far more common than an organization deciding to switch providers entirely.
The same JMS specification (and the care that JMS providers take to implement it) that allows an
organization to switch providers also allows an organization to very quickly accept upgrades from
the same provider. See the OpenEAI Deployment Patterns Document for information on
deploying with different JMS providers. The preferred OpenEAI deployment patterns outline how
to deploy messaging applications to leverage the portability potential of JMS most fully.

The OpenEAI Application Foundation and OpenEAI Message Object API for making applications
message-aware are built on the assumption that a JMS provider is the native transport of the
enterprise. However, the integration capabilities of OpenEAI are by no means limited to
enterprises and partners committed exclusively to JMS. Consult the OpenEAI Implementation
Strategies document for strategies on bridging a JMS enterprise with other message transports
where necessary, using messaging infrastructure that is available from the OpenEAI Project or
infrastructure that can be readily built using the OpenEAI Application Foundation and OpenEAI
Message Object APIs.

4. How do you produce and consume messages?

Making information systems and applications natively message-aware, gating them with a
message gateway, or bridging transports and/or protocols with a message relay is the day-to-day

Page 10 of 50

http://xml.openeai.org/site/doc/MessageDefinitions.htm
http://xml.openeai.org/site/doc/ImplementationStrategies.htm
http://java.sun.com/products/jms
http://xml.openeai.org/site/doc/DeploymentPatterns.htm
http://xml.openeai.org/site/doc/ImplementationStrategies.htm
http://xml.openeai.org/site/doc/ImplementationStrategies.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

work of implementing integrations. The OpenEAI methodology suggests a concrete strategy for
performing integration analysis and defining any new XML Enterprise Objects, and identifies the
types of messaging applications required to implement an integration. The OpenEAI Project also
provides foundation (or software development kit) along with implementation strategies that can
be used to make existing applications message-aware or to build completely new message-
aware applications. This foundation is the OpenEAI Application Foundation API and the
OpenEAI Message Object API.

The OpenEAI Project chose to implement this core foundation in Java because of the wide
acceptance and adoption of Java technology and the broad flexibility the platform provides.
Consult the OpenEAI API Introduction document for details on what the OpenEAI APIs are and
how they are used.

In a nutshell, the OpenEAI methodology defines a process for:

• defining XML Enterprise Objects;
• generating a Message Object API from these XML definitions that give developers a clear

business-object-oriented API;
• using OpenEAI application foundation and patterns for gating existing applications using

these business objects;
• writing new Java applications using these business objects;
• embedding these business objects in other technologies or bridging to applications that

use these objects from other technologies; and
• providing extensive documentation artifacts for enterprise data objects and their

movement throughout the enterprise and between trading partners.

The OpenEAI Message Protocol
Message Naming

Messages in the OpenEAI protocol are named by messageCategory, messageObject,
messageAction, and messageType. For example,

com.any-erp-vendor.Person.BasicPerson.Create-Request

category object action type

com.any-erp-vendor.Person.EmergencyContact.Provide-Reply

category object action type

org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Create-Sync

category object action type

Page 11 of 50

http://xml.openeai.org/site/doc/Methodology.htm
http://xml.openeai.org/site/doc/ApiIntroduction.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Let’s take a closer look at the first message name above. Here, com.any-erp-vendor.Person is
the message category, BasicPerson is the message object, Create is the message action, and
Request is the message type. The message category is qualified with the reverse domain name
of the organization that defined the message and ends in a category name that describes a
logical grouping of objects. For example, this message name indicates that it is in the category
com.any-erp-vendor.Person, which means that it was authored by the fictitious ERP vendor who
operates in the internet domain any-erp-vendor.com and that this vendor has chosen to
categorize some set of messages into the area of Person. Presumably, messages in the Person
category contain data about people. The message object is BasicPerson. The name of this
object clearly indicates that it contains basic information about a person (see the sample XML for
a BasicPerson in the preceding section). The message action is Create and the message type is
Request. As we will discuss in more detail below, this indicates that this message is an
instruction to create the BasicPerson contained in the message in the application that consumes
this request. There are several different ways you can verbalize this name. Most correctly, one
would say something like, “this is an Any ERP Vendor person basic person create request.”
Speaking the name in this way indicates who defined the message, its logical category, object,
action, and type. Whenever these message names are written, it is helpful to write them in the
format specified above to ensure consistency, clarity, and precision.

The second message named above is also in the com.any-erp-vendor.Person category.
However, its message object is EmergencyContact (see the sample XML for an
EmergencyContact in the preceding section). The name of this object and its context within the
Person category indicates that it contains contact information for a person in case of an
emergency. Its message action is Provide and its message type is reply. One would speak this
name as an “Any ERP Vendor person emergency contact provide reply.” We will discuss in more
detail below how the OpenEAI Message Protocol specifies that this is an appropriate reply to a
request for emergency contact information (com.any-erp-
vendor.Person.EmergencyContact.Query-Request).

The third message listed above is in the package org.any-openeai-enterprise.CoreApplication.
This category indicates that it was authored by the fictitious enterprise that operates in the
internet domain any-openeai-enterprise.org and that this organization has established a logical
category of messages called CoreApplication, which contains messages that are common (or
core) to many applications. The message object is InstitutionalIdentity (see the sample XML for
an InstitutionalIdentity in the preceding section). The message action is Create and the message
type is Sync. The OpenEAI Message Protocol specifies that a generate sync is used to notify
other applications about the creation of a new object instance through generation by broadcasting
that object’s initial state.

Message Categories

In an enterprise, there can be an infinite number of message categories. Categories are
indicative of subject areas or areas of operation within an enterprise or within a line of business.
Categories are qualified with the reverse domain name of the organization that authored them to
distinguish that organization’s original message definitions from those of another organization.
The concept and value of using domain names to create a global hierarchy is probably familiar
and clear from its widespread use in identifying hosts on the internet. The use of reverse domain
names to create a clear, global package hierarchy for Java classes is directly parallel to the
prescribed use of this convention in the OpenEAI message naming recommendations. This
practice allows practitioners of OpenEAI to build a global tree of message definitions, sample

Page 12 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

messages, and enterprise object documents to facilitate the sharing of messages and the
deployment of messaging artifacts. See the OpenEAI Message Definitions document for more
details on the concept of a global message definition tree, sharing and using message definitions
within and between organizations, and translating between different message definitions.

Message Objects

Message objects comprise the business payload of messages. In the examples above,
BasicPerson, EmergencyContact, and InstitutionalIdentity are message objects. A message will
contain zero or more message objects depending on the type and action of the message as
prescribed by the OpenEAI message protocol (see the section on message structure below).

Message objects within the same category should be somehow more related to each other than
they are to message objects within another category. The following diagram shows examples of
some categories and the message objects within them:

message
└───releases
 ├───com
 │ ├───any-erp-vendor
 │ │ ├───Employee
 │ │ │ └───BasicEmployee
 │ │ ├───Person
 │ │ │ ├───BasicPerson
 │ │ │ ├───EmergencyContact
 │ │ │ └───InstitutionalIdentity
 │ │ └───Resources
 │ └───sct
 │ ├───Employee
 │ │ └───BasicEmployee
 │ ├───Person
 │ │ ├───BasicPerson
 │ │ ├───Communication
 │ │ ├───DriversLicense
 │ │ ├───Education
 │ │ ├───EmergencyContact
 │ │ ├───ForeignNational
 │ │ ├───HonorAward
 │ │ ├───InstitutionalIdentity
 │ │ ├───Language
 │ │ ├───LicenseCertification
 │ │ ├───Publication
 │ │ ├───SpecialInterest
 │ │ ├───Visa
 │ │ └───WorkHistory
 │ ├───Resources
 │ ├───Student
 │ │ ├───AdmissionsApplication
 │ │ ├───Guardian
 │ │ ├───HighSchool
 │ │ └───TestScore
 │ └───Validation
 │ ├───DegreeList
 │ ├───InstitutionList
 │ ├───LicenseCertificationList
 │ ├───List
 │ ├───MajorList
 │ └───MinorList
 ├───edu

Page 13 of 50

http://xml.openeai.org/site/doc/MessageDefinitions.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 │ └───uillinois
 │ ├───Person
 │ │ ├───EnterpriseUser
 │ │ ├───InstitutionalIdentity
 │ │ ├───NetId
 │ │ └───TemporarySsn
 │ ├───Resources
 │ └───Utility
 │ └───TransferFile
 └───org
 ├───any-openeai-enterprise
 │ ├───CoreApplication
 │ │ ├───ApplicationSession
 │ │ ├───EnterpriseLogEntry
 │ │ ├───EnterpriseSession
 │ │ ├───EnterpriseUserPermission
 │ │ ├───InstitutionalIdentity
 │ │ ├───NetId
 │ │ ├───NetIdAssignment
 │ │ └───NetIdHold
 │ └───Resources
 └───openeai
 ├───CoreMessaging
 │ ├───Generic
 │ └───Sync
 └───Resources

Again, the relevance of OpenEAI to you has absolutely nothing to do with the specific messages
that have already been defined by the OpenEAI Project or any other organization or company.
These are some examples of message categories and message objects. OpenEAI prescribes a
methodology, message protocol, and foundation with which to implement any integration for any
XML Enterprise Object an enterprise can conceive and design. However, one by-product of a
clear and uniform process for specifying and organizing XML Enterprise Objects is that is
becomes easier for organizations to discuss and when appropriate share and use each other’s
definitions. This benefit will continue to accrue to all users of OpenEAI concepts and technology
over time—a gift that keeps on giving.

Message Actions

There are seven message actions specified for use within the protocol:

1. Create
2. Delete
3. Update
4. Query
5. Provide
6. Generate
7. Error

Unlike message categories and message objects, there is a small, finite number of message
actions, because these actions describe fundamental operations that applications can perform
with any message object. It is possible that more message actions will be introduced over time;
however, such additions would be few and seldom, since these fundamental actions of the
protocol have proven adequate for the implementation of many integrations.

Page 14 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Message Types

There are three message types: request, reply, and synchronization (sync). There will
probably always only be three message types, because these three types of messages
completely cover the two models of messaging that the protocol is intended to address—point-to-
point (or request/reply) messaging and publish/subscribe (synchronization) messaging.

While all messaging with a JMS provider or probably any messaging service is technically
asynchronous at the transport level, the request/reply messaging specified in the OpenEAI
protocol as implemented in its foundation are synchronous. That is, a request is made by a non-
authoritative system to an authoritative system, and the thread (or user session) making the
request in the non-authoritative system blocks and waits for a reply from the authoritative system.
Messages of type request/reply are used to implement synchronous integrations in cases where
immediate, confirmed processing is required.

Synchronization messages are used to implement asynchronous, publish/subscribe integrations.
Synchronization messages are broadcast from an authoritative system to the rest of the
enterprise and consumed by systems that are not authoritative for that data, but need that data
(and need to keep it current) to operate. An enterprise can use proprietary or open middleware
with varying strategies to route messages from authoritative sources to all interested non-
authoritative applications. This process can be very simple or very complex, depending upon the
routing, filtering, and security requirements of the enterprise. Consult the OpenEAI
Implementation Strategies document for details on how enterprise sync message routing can be
performed with OpenEAI messaging infrastructure applications and by other means.

Message Structure

Each message implemented in the OpenEAI Message Protocol has a root element named
according to the message category, message object, and message action of the message. For
example, the message com.any-erp-vendor.Person.BasicPerson.Create-Request has a root
element named com.any-erp-vendor.Person.BasicPerson.Create. This root element has two
children: a control area with information about the message required by the OpenEAI Protocol
and a data area with the message object data as prescribed by the OpenEAI Message Protocol.
Specifically, the root element will have a child control area that is a ControlAreaRequest,
ControlAreaReply, or a ControlAreaSync, depending on the type of the message.

For example, a com.any-erp-vendor.Person.BasicPerson.Create-Request message has a root
element of com.sct.Person.BasicPerson.Create. That root element has two child elements,
ControlAreaRequest and DataArea. A com.any-erp-vendor.Person.EmergencyContact.Provide-
Reply has a root element of com.any-erp-vendor.Person.EmergencyContact.Provide. That root
element has two child elements, ControlAreaReply and DataArea. An org.any-openeai-
enterprise.CoreApplication.InstitutionalIdentity.Create-Sync has a root element named org.any-
openeai-enterprise.CoreApplication.InstitutionalIdentity.Create. That root element has two child
elements, ControlAreaSync and DataArea.

The control area of each message (either a ControlAreaRequest, ControlAreaReply, or
ControlAreaSync) contains detailed administrative information about the message that is used by
message-aware applications, message gateways, or messaging infrastructure applications in
processing messages. This information is also used by integration administrators to resolve
problems or errors in a production environment.

Page 15 of 50

http://xml.openeai.org/site/doc/ImplementationStrategies.htm
http://xml.openeai.org/site/doc/ImplementationStrategies.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

The following are complete samples of the messages listed above in the message naming
section:

com.any-erp-vendor.Person.BasicPerson.Create-Request

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE com.any-erp-vendor.Person.BasicPerson.Create SYSTEM
"http://xml.openeai.org/message/releases/com/any-erp-vendor/Person/BasicPerson/1.0/dtd/Create-Request.dtd">
<com.any-erp-vendor.Person.BasicPerson.Create>
 <ControlAreaRequest messageCategory="com.any-erp-vendor.Person" messageObject="BasicPerson"
messageAction="Create" messageRelease="1.0" messagePriority="9" messageType="Request">
 <Sender>
 <MessageId>
 <SenderAppId>edu.uillinois.uihr.NessieApplication</SenderAppId>
 <ProducerId>4860446b-1e16-4bc0-8d0a-af7675956591</ProducerId>
 <MessageSeq>1024</MessageSeq>
 </MessageId>
 <Authentication>
 <AuthUserId>nessie</AuthUserId>
 </Authentication>
 </Sender>
 <Datetime>
 <Year>2001</Year>
 <Month>3</Month>
 <Day>23</Day>
 <Hour>13</Hour>
 <Minute>47</Minute>
 <Second>30</Second>
 <SubSecond>842</SubSecond>
 <Timezone>6:00-GMT</Timezone>
 </Datetime>
 <ExpectedReplyFormat messageCategory="org.openeai.CoreMessaging" messageObject="Generic"
messageAction="Response" messageRelease="1.0" messageType="Reply"/>
 </ControlAreaRequest>
 <DataArea>
 <NewData>
 <BasicPerson citizen="Yes" citizenshipType="Citizen" deceased="No" disabledVeteran="No"
maritalStatus="Unmarried" vietnamService="No">
 <InstitutionalId>123456789</InstitutionalId>
 <Name>
 <LastName>Thoreau</LastName>
 <FirstName>Henry</FirstName>
 <MiddleName>David</MiddleName>
 </Name>
 <BirthDate>
 <Month>7</Month>
 <Day>12</Day>
 <Year>1817</Year>
 </BirthDate>
 <Gender>Male</Gender>
 <DeceasedDate>
 <Month>5</Month>
 <Day>6</Day>
 <Year>1862</Year>
 </DeceasedDate>
 <Ethnicity>Caucasian</Ethnicity>
 <Address type="Campus Primary">
 <Street1>50 Gerty Drive</Street1>
 <CityOrLocality>Champaign</CityOrLocality>

Page 16 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <StateOrProvince>Illinois</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>61820</ZipOrPostalCode>
 <EffectiveDate>
 <Month>8</Month>
 <Day>17</Day>
 <Year>1835</Year>
 </EffectiveDate>
 </Address>
 <Address type="Permanent">
 <Street1>5 Transcendental Pike</Street1>
 <CityOrLocality>Concord</CityOrLocality>
 <StateOrProvince>Massachusetts</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>01742</ZipOrPostalCode>
 <EffectiveDate>
 <Month>2</Month>
 <Day>14</Day>
 <Year>1835</Year>
 </EffectiveDate>
 </Address>
 <Phone type="Campus Phone">
 <CountryCode>1</CountryCode>
 <PhoneArea>217</PhoneArea>
 <PhoneNumber>555-1212</PhoneNumber>
 <PhoneExtension>1234</PhoneExtension>
 </Phone>
 <Email type="UI" status="Active" preferred="Yes">
 <EmailAddress>dead-transcendentalist@uiuc.edu</EmailAddress>
 </Email>
 </BasicPerson>
 </NewData>
 </DataArea>
</com.any-erp-vendor.Person.BasicPerson.Create>

com.any-erp-vendor.Person.EmergencyContact.Provide-Reply

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE com.any-erp-vendor.Person.EmergencyContact.Provide SYSTEM
"http://xml.openeai.org/message/releases/com/any-erp-vendor/Person/EmergencyContact/1.0/dtd/Provide-Reply.dtd">
<com.any-erp-vendor.Person.EmergencyContact.Provide>
 <ControlAreaReply messageCategory="com.any-erp-vendor.Person" messageObject="EmergencyContact"
messageAction="Provide" messageRelease="1.0" messagePriority="9" messageType="Reply">
 <Sender>
 <MessageId>
 <SenderAppId>edu.uillinois.aits.Banner</SenderAppId>
 <ProducerId/>
 <MessageSeq/>
 </MessageId>
 <Authentication>
 <AuthUserId>banner</AuthUserId>
 </Authentication>
 </Sender>
 <Datetime>
 <Year>2001</Year>
 <Month>3</Month>
 <Day>22</Day>
 <Hour>09</Hour>
 <Minute>34</Minute>

Page 17 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <Second>30</Second>
 <SubSecond/>
 <Timezone/>
 </Datetime>
 <Result action="Query" status="success">
 <ProcessedMessageId>
 <SenderAppId>edu.uillinois.uihr.NessieGateway</SenderAppId>
 <ProducerId>35cce9e8-f941-4199-89ac-514ea1284597</ProducerId>
 <MessageSeq>27</MessageSeq>
 </ProcessedMessageId>
 </Result>
 </ControlAreaReply>
 <DataArea>
 <EmergencyContact ownerId="123456789" priority="1">
 <Name>
 <LastName>Emerson</LastName>
 <FirstName>Ralph</FirstName>
 <MiddleName>Waldo</MiddleName>
 </Name>
 <Phone type="Home">
 <PhoneArea>217</PhoneArea>
 <PhoneNumber>555-1317</PhoneNumber>
 </Phone>
 <Address type="Home">
 <Street1>7 Transcendental Pike</Street1>
 <CityOrLocality>Concord</CityOrLocality>
 <StateOrProvince>Massachusetts</StateOrProvince>
 <Nation>USA</Nation>
 <ZipOrPostalCode>01742</ZipOrPostalCode>
 <EffectiveDate>
 <Month>6</Month>
 <Day>11</Day>
 <Year>1821</Year>
 </EffectiveDate>
 </Address>
 </EmergencyContact>
 </DataArea>
</com.any-erp-vendor.Person.EmergencyContact.Provide>

org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Create-Sync

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Create SYSTEM
"http://xml.openeai.org/message/releases/org/any-openeai-
enterprise/CoreApplication/InstitutionalIdentity/1.0/dtd/Create-Sync.dtd">
<org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Create>
 <ControlAreaSync messageCategory="org.any-openeai-enterprise.CoreApplication"
messageObject="InstitutionalIdentity" messageAction="Create" messageRelease="1.0" messagePriority="9"
messageType="Sync">
 <Sender>
 <MessageId>
 <SenderAppId>edu.uillinois.aits.InstitutionalIdentityService</SenderAppId>
 <ProducerId>94c1b2db-121e-4fca-bb23-31f56697c24d</ProducerId>
 <MessageSeq>927</MessageSeq>
 </MessageId>
 <Authentication>
 <AuthUserId>i2s</AuthUserId>
 </Authentication>
 </Sender>
 <Datetime>

Page 18 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <Year>2001</Year>
 <Month>3</Month>
 <Day>21</Day>
 <Hour>10</Hour>
 <Minute>34</Minute>
 <Second>45</Second>
 <SubSecond>342</SubSecond>
 <Timezone>GMT -6:00</Timezone>
 </Datetime>
 </ControlAreaSync>
 <DataArea>
 <NewData>
 <InstitutionalIdentity>
 <InstitutionalId>987654321</InstitutionalId>
 <UnknownPerson>
 <Name current="Yes">
 <LastName>Mozart</LastName>
 <FirstName>Wolfgang</FirstName>
 <MiddleName>Amadeus</MiddleName>
 </Name>
 <BirthDate>
 <Month>1</Month>
 <Day>27</Day>
 <Year>1756</Year>
 </BirthDate>
 <Gender>Male</Gender>
 </UnknownPerson>
 </InstitutionalIdentity>
 </NewData>
 </DataArea>
</org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Create>

The ControlAreaRequest, ControlAreaReply, and ControlAreaSync have the following definitions
and usage (from org/openeai/Resources/Segments.dtd). It may be helpful to study these while
looking at the sample messages above as concrete examples.

<!-- $Revision: 1.5 $
 $Date: 2003/01/06 21:32:44 $
 $Source: /cvs/repositories/openeai/project/message/releases/org/openeai/Resources/1.0/Segments.dtd,v $
 -->
<!-- This file is part of the OpenEAI Application Foundation or
 OpenEAI Message Object API created by Tod Jackson
 (tod@openeai.org) and Steve Wheat (steve@openeai.org).

 Copyright (C) 2002 The OpenEAI Software Foundation

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Page 19 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 For specific licensing details and examples of how this software
 can be used to build commercial integration software or to implement
 integrations for your enterprise, visit http://www.OpenEai.org/licensing.
 -->
<!-- Segments.dtd is the file where definitions of all elements with
 children appear.

 The OpenEAI Deployment Patterns suggest that, when using DTDs,
 an enterprise should separate its definitions into four slices
 to improve the management of definitions and to promote the use
 of common object definitions. The four slices are:

 Resources - a file for including definitions from external
 organizations. For example, in their own
 Resources.dtd, an enterprise will reference
 the OpenEAI definitions, which give them the
 ControlArea* definitions required by the OpenEAI
 Message Protocol.

 Segments - a file where definitions of all elements with
 children appear

 Fields - a file where all elements without children appear

 Domains - a file in which any custom data types are defined

 This approach was learned by observing constraint practices of the
 Open Application Group, and these same practices have served the
 practitioners of OpenEAI well.
 -->
<!-- Release History:

 2002/07/01 1.0 (tod@openeai.org, steve@openeai.org)
 -->
<!-- Include OpenEAI Fields -->
<!ENTITY % ORG.OPENEAI.RESOURCES.FIELDS SYSTEM "Fields.dtd">
%ORG.OPENEAI.RESOURCES.FIELDS;
<!-- Authentication added 01/09/2001 for */ControlArea/Sender/Authentication

 The Authentication element includes authentication information from the
 application that produced the message.

 The AuthUserId element should contain a security principal of the online
 user whose session activity caused the production of the message, if
 appropriate. Alternately, this element may contain a security principal
 indicative of the trusted application itself that produced the message.

 The optional AuthUserSignature element may contain a digital signature
 or certificate for a user or application indicated in the AuthUserId
 element, if the applications engaged in messaging can support this type
 of authentication, and if such authentication is at all meaningful to
 an enterprise.
 -->
<!ELEMENT Authentication (AuthUserId, AuthUserSignature?)>
<!-- ControlAreaReply added 04/02/2001 for */ControlAreaReply

 The ControlAreaReply element contains metadata for reply messages.
 Here, the message is named with its fully-qualified name in the
 messageCategory, messageObject, messageAction, and messageType
 attributes. The messageRelease attribute identifies the release

Page 20 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 level of the message object named in the messageObject attribute.
 The messagePriority attribute should contain the priority of the
 message from 0-9, where 0 is the lowest priority and 9 is the
 highest priority. Messaging foundation and applications may use
 the value of this attribute to set the priority of the message
 with the message transport when the message is sent.

 The optional SourceInfo element, if present, contains information
 about the original source of the message, including the SourceId
 element, which is the name of the source application, as well as
 the original and appropriate ControlArea* element. In the case
 of a reply, this may be used when a reply is proxied by a messaging
 infrastructure application or another messaging application. An
 example of such an application is the OpenEAI EnterpriseRequestProxy.

 The optional TargetInfo element, if present, consists of a TargetId
 element, which identifies the target application by name. This has
 not been used for request/reply messaging in the past, but it is used
 by messaging infrastructure applications that route synchronization
 messages. The optional TargetInfo element is present in the
 ControlAreaReply to maintain parallelism with the three ControlArea*
 elements and because some scenarios for using the TargetInfo element
 in request/reply messaging can be easily conceived.

 The required Sender element consists of a required MessageId and
 Authentication element. The MessageId element uniquely identifies
 the message. See the description of the MessageId element for
 details. The Authentication element provides authentication
 information for the application producing the message or for the
 online user of the session of the application producing the message,
 whichever is more relevant or supported by the applications involved
 in the integration.

 The required Datetime element expresses the precise date and time
 the message was produced with millisecond precision. See the
 description of the Datetime element for more details.

 The required Result element includes a ProcessedMessageId, which
 is the MessageId of the processed request to which this is a reply.
 The ProcessedMessageId can be used to correlate a reply to a request
 for message transports that may not provide a mechanism to do
 this more readily. The Result element also includes zero or
 more Error elements that must contain precise information about
 any errors encountered in processing the request for which this
 message is a reply. See the description of the Error element
 for details.
 -->
<!ELEMENT ControlAreaReply (SourceInfo?, TargetInfo?, Sender, Datetime, Result)>
<!ATTLIST ControlAreaReply
 messageCategory CDATA #REQUIRED
 messageObject CDATA #REQUIRED
 messageAction (Provide | Response) #REQUIRED
 messageRelease CDATA #REQUIRED
 messagePriority (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) #REQUIRED
 messageType (Reply) #REQUIRED
>
<!-- ControlAreaRequest added 04/02/2001 for */ControlAreaRequest

 See the description of ControlAreaReply for a description of the
 purpose and usage of ControlAreaRequest. These elements are
 very similar. ControlAreaRequest has the following differences:

Page 21 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 The attribute ControlAreaRequest/@messageAction is constrained
 to the list of valid request actions, where
 ControlAreaReply/@messageAction is constrained to the valid list
 of reply actions.

 ControlAreaRequest contains no Result element. Instead, it
 contains a required ExpectedReplyFormat element. The
 ExpectedReplyFormat element is an empty element with attributes
 that specify the fully-qualified name of the reply that the
 requesting application expects in response to this request.
-->
<!ELEMENT ControlAreaRequest (SourceInfo?, TargetInfo?, Sender, Datetime, ExpectedReplyFormat)>
<!ATTLIST ControlAreaRequest
 messageCategory CDATA #REQUIRED
 messageObject CDATA #REQUIRED
 messageAction (Assign | Query | Create | Delete | Generate | Update) #REQUIRED
 messageRelease CDATA #REQUIRED
 messagePriority (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) #REQUIRED
 messageType (Request) #REQUIRED
>
<!-- ControlAreaSync added 04/02/2001 for */ControlArea

 See the description of ControlAreaReply for a description of the
 purpose and usage of ControlAreaSync. These elements are very
 similar. ControlAreaSync has the following differences:

 The optional SourceInfo element is used frequently in
 synchronization messages by messaging infrastructure applications.
 For example, when a synchronization message is routed or transformed
 by a messaging infrastructure application, that application in
 effect consumes a synchronization message from an authoritative
 source and republishes one or more synchronization messages to
 one or more subscribing applications. The messaging infrastructure
 application must populate the ControlAreaSync element of the
 SourceInfo element to identify the original source of the message
 and preserve the original ControlAreaSync information from the
 original message, particularly the Datetime of the business event,
 for use in the consumption of the message by the ultimate target
 application. This information is essential to properly order the
 processing of synchronization messages. An example of such a
 messaging infrastructure application is the OpenEAI
 EnterpriseTransRouter application for routing enterprise
 messages and translating their values.

 The optional TargetInfo element is similarly used by messaging
 infrastructure applications. In cases where a messaging infrastructure
 application routes a synchronization message to a specific target
 application, the infrastructure application should populate the
 TargetInfo/TargetId element with the official name of the application
 to which the message is being routed. This allows other messaging
 infrastructure applications that log all synchronization messages
 to record the target to which each message was published. An example
 of such a messaging infrastructure application is the OpenEAI
 EnterpriseSyncLogger.

 The required Datetime element must contain the precise date and time
 of the business event that triggered the production of the
 synchronization message. This is an important distinction between the
 Datetime element in the ControlAreaRequest and the ControlAreaReply
 versus the Datetime in the ControlAreaSync. This distinction must

Page 22 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 be made given the variety of ways that applications can be made to
 publish synchronization messages. Many application can be made to
 publish synchronization messages within the bounds of the transaction
 that actually changes the data of the message object at the
 authoritative source. In these cases the Datetime in the
 ControlAreaSync is effectively the precise date and time the sync
 message was published. However, many applications may record changes
 to enterprise data in the form of business events, which are read
 at some interval to trigger the publication of sync messages. This is
 a polling strategy. In these cases, the staged business events MUST
 contain the precise date and time of the business event, so that
 date and time can be used to populate the ControlAreaSync/Datetime
 element. This information is ABSOLUTELY REQUIRED for applications
 that consume sync messages or for messaging infrastructure applications
 to properly order the processing of synchronization messages.

 The optional Result element is used in a special synchronization message
 in the org.openeai.CoreMessaging category called

org.openeai.CoreMessaging.Sync.Error-Sync. As described in the message
processing behavior specified by the OpenEAI Message Protocol, whenever
a sync-consuming application encounters a fatal error processing a
synchronization message, that application MUST publish an
org.openeai.CoreMessaging.Sync.Error-Sync message that can be consumed

 by messaging infrastructure applications to record the error and alert
 integration administrators. An example of such a messaging infrastructure
 application is the OpenEAI EnterpriseSyncErrorLogger. The Result element
 includes the ProcessedMessageId, which is the MessageId of the sync message
 that was being processed when an error or errors were encountered. The
 optional Result element also contains zero or more Error elements with
 details on the errors encountered consuming the synchronization message.
 See the description of the Error element for more details.
 -->
<!ELEMENT ControlAreaSync (SourceInfo?, TargetInfo?, Sender, Datetime, Result?)>
<!ATTLIST ControlAreaSync
 messageCategory CDATA #REQUIRED
 messageObject CDATA #REQUIRED
 messageAction (Assign | Create | Delete | Generate | Update | Error) #REQUIRED
 messageRelease CDATA #REQUIRED
 messagePriority (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9) #REQUIRED
 messageType (Sync) #REQUIRED
>
<!-- Datetime added 12/15/2000 for */ControlArea/Datetime

 Within ControlAreaRequest and ControlAreaReply, Datetime is the precise
 date and time the message is produced. Within a ControlAreaSync,
 Datetime is the precise date and time of the change in state of the message
 object or, in other words, the precise date and time of the business
 event that triggers the sync message. See the descriptions of
 ControlAreaRequest, ControlAreaReply, and ControlAreaSync for details.

 The prescribed format for Year, Month, Day, Hour, Minute, Second, and
 SubSecond are unpadded numeric values within their appropriate ranges.
 These should be evident for all values except SubSecond, which should
 presently be implemented as a millisecond value between 0 and 999. The
 value of Timezone should be in the format of offset from universal time.
 These formatting rules are illustrated by the following example.

 <Datetime>
 <Year>2002</Year>
 <Month>1</Month>
 <Day>9</Day>

Page 23 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <Hour>9</Hour>
 <Minute>11</Minute>
 <Second>0</Second>
 <SubSecond>475</SubSecond>
 <Timezone>GMT-06:00</Timezone>
 </Datetime>
 -->
<!ELEMENT Datetime (Year, Month, Day, Hour, Minute, Second, SubSecond, Timezone)>
<!-- Error added 12/15/2000 for */ControlArea/Result

 The Error element consists of a type attribute, which identifies
 the error as either a system or application level error. System
 level errors are more technical or mechanical in nature such as
 an exception as reported by the JDBC driver in connecting to or
 communicating with a database. An application level error is a
 business logic error of some kind. The Error element also contains
 an ErrorNumber element with an error number or other appropriate,
 short-form identifier as well as an ErrorDescription element, which
 is a clear, plain-language description of the error in the case of
 and application level error, so that it can be displayed to end users,
 and they will find it meaningful. In the case of system level errors,
 the description may be more technical such as a Java stack trace or
 other technical trace information.
 -->
<!-- DeleteAction added 01/11/2001 for DataArea/DeleteData

 The DeleteAction element presently contains one attribute called
 'type', which specifies the type of the delete action. The OpenEAI
 Message Protocol specifies that a consuming application treat a
 delete action of type 'delete' as a standard business transaction,
 applying all appropriate business rules of the application. In
 other words, a delete action of type 'delete' is a standard delete.
 A delete action of type 'purge' indicates that the object of the
 message be removed completely from the application or truly
 purged. Support for delete action of type 'purge' can be very
 helpful in support of integration testing.

 -->
<!ELEMENT DeleteAction EMPTY>
<!ATTLIST DeleteAction
 type (Delete | Purge) #REQUIRED
>
<!ELEMENT Error (ErrorNumber, ErrorDescription)>
<!ATTLIST Error
 type (system | application) #REQUIRED
>
<!-- ExpectedReplyFormat added 04/02/2001 for */ControlAreaRequest

 The ExpectedReplyFormat element is an empty element, which consists of
 attributes to specify the fully-qualified name and release number of the
 message object for the reply that the requesting application expects in
 response to its request.
 -->
<!ELEMENT ExpectedReplyFormat EMPTY>
<!ATTLIST ExpectedReplyFormat
 messageCategory CDATA #REQUIRED
 messageObject CDATA #REQUIRED
 messageAction (Provide | Response) #REQUIRED
 messageRelease CDATA #REQUIRED
 messageType (Reply) #REQUIRED
>

Page 24 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

<!-- MessageId added 12/15/2000 for */ControlArea/Sender/MessageId

 The MessageId element uniquely identifies the message. MessageIds must
 be unique within an enterprise, and it is suggested they be absolutely
 unique (world-wide, forever) to facilitate direct messaging using this
 protocol between trading partners. Precisely how the MessageId is
 guaranteed to be unique is up to the implementer. However, as with all
 aspects of the OpenEAI Protocol, the OpenEAI Project provides a concrete
 deployment pattern and foundation that implements this uniqueness that
 implementers may choose to use.

 The MessageId element consists of the SenderAppId, ProducerId, and MessageSeq
 elements. The SenderAppId element is intended to represent the official name of the
 application that produced the message. This name should be fully qualified
 with the reverse domain name of your enterprise to help ensure global
 uniqueness of the MessageId. The ProducerId element is the identifier of the
 component of the application that produced the message. This could be static
 or dynamic. For example, the OpenEAI Application Foundation message producers
 can invoke a servlet-exposed UUID generation servlet when they start to generate
 a UUID that is used as the ProducerId. These message producers can also
 generate this UUID locally. See the OpenEAI API Introduction document for more
 details on the precise behavior of OpenEAI message producers. The MessageSeq
 element is the message sequence. This is usually implemented as a count of
 the number of messages produced by the producer. Alternately,
 if ProducerId is static, MessageSeq could be implemented as a total count of all
 messages produced by an application.

 The following is an example of a MessageId element from a message published by
 the University of Illinois' Paymaster system:

 <MessageId>
 <SenderAppId>edu.uillinois.aits.Paymaster</SenderAppId>
 <ProducerId>34ce9c65-29f3-4944-ad5b-d77cb356ccbe</ProducerId>
 <MessageSeq>1</MessageSeq>
 </MessageId>
 -->
<!ELEMENT MessageId (SenderAppId, ProducerId, MessageSeq)>
<!-- ProcessedMessageId added 01/12/2001 for PersonEmergencyContactProvide/DataArea/Result

 The ProcessedMessageId is merely a MessageId that appears in
 the Result element of a ControlAreaReply or ControlAreaSync.
 This is only named differently than the MessageId element,
 because experience teaches that administrators frequently confuse
 the MessageId of the processed request or sync with the real MessageId
 of the reply or of the org.openeai.CoreMessaging.Sync.Error-Sync if two

occurrences of a MessageId element appear as children of different elements in
 a control area. Therefore, when a MessageId is used in this way,
 it is expressly called a ProcessedMessageId. See the description
 of the MessageId element for details on what comprises a MessageId.
 -->
<!ELEMENT ProcessedMessageId (SenderAppId, ProducerId, MessageSeq)>
<!-- Result added for PersonEmergencyContactResponse/DataArea/Result on 01/09/2001

 The Result element is used to report errors encountered in processing
 request and sync messages. The Result element consists of a
 ProcessedMessageId, which identifies the message that was being processed
 when errors were encountered. See the description of the
 ProcessedMessageId element for details. The Result element also
 consists of zero or more Error elements. Each of these consist of an
 ErrorNumber and ErrorDescription element. See the description of the
 Error element for details.

Page 25 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 -->
<!ELEMENT Result (ProcessedMessageId, Error*)>
<!ATTLIST Result
 action (Assign | Query | Create | Delete | Generate | Update) #REQUIRED
 status (success | failure) #REQUIRED
>
<!-- Sender added 12/15/2000 for */ControlArea/Sender

 The Sender element consists of a required MessageId element and a
 required Authentication element, which identify the sending application
 and provide authentication context from the sending application as well as
 uniquely identify the message. See the description of the MessageId and
 Authentication elements for more details.
 -->
<!ELEMENT Sender (MessageId, Authentication)>
<!-- SourceInfo added 12/15/2000 for */ControlArea/SourceInfo

 The SourceInfo element consists of a required ControlAreaSync,
 ControlAreaRequest, or a ControlAreaReply. This element is
 used by messaging infrastructure applications, which may route,
 transform, or proxy messages but that still need to retain
 some control information from the application that produced the
 message originally.
 -->
<!ELEMENT SourceInfo (ControlAreaSync | ControlAreaRequest | ControlAreaReply)>
<!-- TargetInfo added 12/15/2000 for */ControlArea/TargetInfo

 The TargetInfo element consists of a required TargetAppName element.
 The TargetAppName element is used by messaging infrastructure applications,
 which may route, transform, or proxy messages to specific target
 applications. When these specific targets are known, such
 infrastructure applications name the target by using the
 TargetAppName element.
 -->
<!ELEMENT TargetInfo (TargetAppName)>
<!-- TestId added 1/21/2003 for */ControlAreaRequest/Sender/TestId

 The TestId element is used to correlate data specified in a TestSuite with
 message published by a gateway when requests are sent to that gateway
 to perform some action. The gateway can pull the TestId element out of the
 ControlArea of the request message it consumes and put it on any sync
 messages it publishes. Then, the OpenEAI Test Suite Application can
 correlate that sync message to a TestSuite-TestSeries-TestCase-TestStep
 listed in the TestSuite document associated to the gateway being tested.
-->
<!ELEMENT TestId (TestSuiteName, TestSeriesNumber, TestCaseNumber, TestStepNumber)>

Basic Messaging Behavior

Now let’s explore the messaging behavior prescribed by the OpenEAI Message Protocol. You
were acquainted with the basic naming, jargon, and message structure in the preceding sections
to prepare you for this treatment. The preceding sections are a good reference for understanding
the message names and the concept of an authoritative source used here. You may also find it
helpful to re-read the preceding sections after you’ve read this section about the core messaging
behavior prescribed by the OpenEAI Message Protocol. This section may bring that preliminary

Page 26 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

information into sharper focus. Iteration is not only a good tactic for software development; it
works for reading as well.

In the following discussion, and asterisk (*) is used as a wildcard to indicate any such message
for any message object in any message category. For example, *.Query-Request means any
query request message such as…

• an org.any-openeai-enterprise.CoreMessaging.EnterpriseSession.Query-Request,
• a com.sct.Person.BasicPerson.Query-Request,
• an edu.uillinois.Person.InstitutionalIdentity.Query-Request.

*.Query-Request and *.Provide-Reply

A Query-Request requests that the state of a message object or objects be looked up in a remote
application and provided back to the requestor in the form of a Provide-Reply. According to the
OpenEAI methodology, you can think of this exchange as a non-authoritative application
requesting the state of a message object from the application that is authoritative for this data. A
Query-Request contains a query object in its DataArea that is used by the application processing
the Query-Request to identify the data that is being requested. The reply for a Query-Request is
a Provide-Reply that contains the message object or objects requested in the Query-Request in
its DataArea element as prescribed by the definitions of the specific Provide-Reply. If no
matching message objects can be identified by the application processing the Query-Request
based on the query object contained in the Query-Request, then the Provide-Reply returned to
the requesting application will contain an empty DataArea element. This is explicitly not an error
condition. This is analogous to a database query returning no matching rows. It is not an error,
there is simply no data that matches the specifications of the query. This is reflected in the
definition of the Provide-Reply messages. Their definitions specify either “zero or more” or “zero
or one” message object elements are expected in the DataArea of a Provide-Reply.

In the event that errors are encountered by the application processing the Query-Request, then
that application should return the appropriate Provide-Reply to the requesting application with a
status of “failure” in the status attribute of the Result element in the ControlAreaReply along with
one or more appropriate errors. Errors can be of type “system” or “application”, representing
system level and application level errors. System level errors are more technical in nature and
are usually sent with more technical descriptions. For example, the database server used by the
authoritative application may be unavailable. When it begins to process a Query-Request, it
discovers this, cannot re-establish its database connections, and must reply to the requesting
application with an error stating that there was a failure processing the Query-Request. The
application processing the Query-Request should probably respond with at least one system level
error and one application level error. The Result element in the Provide-Reply that might look like
the following:

<Result action="Query" status="failure">
 <ProcessedMessageId>
 <SenderAppId>edu.uillinois.NessieApplication</SenderAppId>
 <ProducerId>dc336eca-89c6-4205-9911-e74e5e4df790 </ProducerId>
 <MessageSeq>2</MessageSeq>
 </ProcessedMessageId>
 <Error type="application">
 <ErrorNumber>SCT-1001</ErrorNumber>
 <ErrorDescription>Banner unavailable: unable to connect to Banner
database</ErrorDescription>
 </Error>

Page 27 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 <Error type="system">
 <ErrorNumber>10</ErrorNumber>
 <ErrorDescription>
 SQL Exception: ORA-01017: invalid username/password; logon denied
 java.sql.SQLException: ORA-01017: invalid username/password; logon denied

 at java.lang.Throwable.fillInStackTrace(Native Method)
 at java.lang.Throwable.fillInStackTrace(Compiled Code)
 at java.lang.Throwable.<init>(Compiled Code)
 at java.lang.Exception.<init>(Exception.java:42)
 at java.sql.SQLException.<init>(SQLException.java:43)
 at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:114)
 at oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:208)
 at oracle.jdbc.ttc7.O3log.receive2nd(Compiled Code)
 at oracle.jdbc.ttc7.TTC7Protocol.logon(TTC7Protocol.java:230)
 at oracle.jdbc.driver.OracleConnection.<init>(OracleConnection.java:198)
 at oracle.jdbc.driver.OracleDriver.getConnectionInstance(OracleDriver.java:251)
 at oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:224)
 at java.sql.DriverManager.getConnection(Compiled Code)
 at java.sql.DriverManager.getConnection(DriverManager.java:137)
 at JDBCTest.main(Compiled Code)
 </ErrorDescription>
 </Error>
</Result>

The system level error states that the database is unavailable and contains a Java stack trace
generated by the application that originates from the JDBC driver. This is an example of how
system level errors are usually more technical. These errors and descriptions are invaluable to
administrators and applications that monitor other messaging applications. However, these
errors are frequently of little use to users, so it is always good practice to include at least one
application-level error that has a more human-usable error code and message, such as the error
stating that the Banner database is unavailable in the example above.

There is always a chance that an application consuming a message will encounter an error
before it knows exactly what type of request it is processing. This would occur, for example,
when an application has difficulty parsing the message. In these cases, the application
processing the request must still respond, because application must make every attempt to reply
to all requests. In these cases, the org.openeai.CoreMessaging.Generic.Response-Reply is used
as a generic reply message that can contain the status of failure and any appropriate system or
application level errors.

Examples (follow links for message text)

Query-Requests and successful replies:

 com.any-erp-vendor.Person.BasicPerson.Query-Request
 com.any-erp-vendor.Person.BasicPerson.Provide-Reply

 org.any-erp-vendor.Person.EmergencyContact.Query-Request
 org.any-erp-vendor.Person.EmergencyContact.Provide-Reply

 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Query-Request
 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Provide-Reply

Query-Requests and failure replies:

 org.any-erp-vendor.Employee.BasicEmployee.Query-Request

Page 28 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/2.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/3.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/4.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/5.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/6.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/7.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 org.any-erp-vendor.Employee.BasicEmployee.Provide-Reply

 org.any-erp-vendor.Employee.BasicEmployee.Query-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

*.Create-Request and org.openeai.CoreMessaging.Generic.Response-Reply

A Create-Request requests that a new object be created in a remote application with the state of
the object as indicated in the message. According to the OpenEAI methodology, you can think of
this exchange as a non-authoritative application requesting that a new object be created at an
authoritative application, with the reply from the authoritative application to the non-authoritative
application indicating the success or failure of the create action as the authoritative application
attempted to create the object, applying all of its business rules.

A Create-Request contains an object in its DataArea element for the consuming application to
attempt to create. The reply to all Create-Request messages is an
org.openeai.CoreMessaging.Generic.Response-Reply. This generic message confirms the
success or reports the failure of the requested create along with any errors.

In the event that errors are encountered by the application processing the Create-Request, then
that application should return an org.openeai.CoreMessaging.Generic.Response-Reply to the
requesting application with a status of “failure” in the status attribute of the Result element in the
ControlAreaReply along with one or more appropriate errors. Errors can be of type “system” or
“application”, representing system level and application level errors. System level errors are
more technical in nature and are usually sent with more technical descriptions.

Examples (follow links for message text)

Create-Request and successful reply:

 com.any-erp-vendor.Person.BasicPerson.Create-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

Create-Requests and failure replies:

 org.any-erp-vendor.Person.BasicPerson.Create-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

 org.any-erp-vendor.Person.EmergencyContact.Create-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

*.Update-Request and org.openeai.CoreMessaging.Generic.Response-Reply

An Update-Request requests that the state of a message object or objects be changed in a
remote application. According to the OpenEAI methodology, you can think of this exchange as a
non-authoritative application requesting that the state of an object be changed at an authoritative
application and the reply from the authoritative application to the non-authoritative application
indicating the success or failure of the update action as the authoritative application attempted to
update the state of the object, applying all of its business rules.

Page 29 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/8.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/9.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Query-Request/10.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Request/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Request/2.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Request/3.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Request/4.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Request/5.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Request/6.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

An Update-Request contains a BaselineData element and a NewData element in its DataArea
element. The BaselineData element contains the state of the object for which an update is being
requested prior to the requested change. The NewData element contains the state of the object
for which an update is being requested after the requested change. When the consuming
application processes an Update-Request, it must use the state of the object found in the
BaselineData element to both locate the object to modify and to perform a baseline comparison.
If the object for which an update is requested is found and its state matches the state of the
object in the BaselineData element of the Update-Request, the consuming application can safely
attempt to process the update. However, if the object for which an update is requested is found
and its state does not match the state of the object in the BaselineData element, this means that
the state of the object in the consuming, authoritative application has changed since the non-
authoritative application queried for the state of the object. In this event, there are two options:

1. The Common Case

The consuming application may not attempt to apply the update, because the baseline is
stale. Accepting the Update-Request and successfully applying it would result in the loss
of the current, valid state of the object, which the user of the requesting application or the
requesting application itself has never seen or considered in making new changes. The
consuming application should reply with a “baseline stale” (OpenEAI-1014) error in the
org.openeai.CoreMessaging.Generic.Response-Reply. The requesting application can
process this error and send a Query-Request to get the current baseline and then
continue processing successfully. You may recognize this phenomenon from end-user
applications you have used. If you are prompted that the data you are trying to update
has been changed and are presented with the new data and an interface that either
merges in your changes and asks you to re-approve your changes or an interface that
asks you make your changes again, then you’ve seen this type of optimistic locking
strategy in practice.

2. The Uncommon Case

The consuming application may employ convergence rules to merge the requested
changes into the current baseline state even though the baseline state of the object in the
message is stale. This is a rare case, because organizations’ business rules rarely allow
for changes to data when the previous state has not been considered. However, if, for
example, an organization has defined an unusually coarse-grained business object with
only loosely related data in the same object and that object has a high propensity to be
updated by multiple people or automated applications at exactly the same moment, it
may be worth implementing some basic convergence rules. If these rules do not
succeed in acceptably converging the current state and new state of the object, then
even in this case the consuming application should be prepared to reply with a “baseline
stale” (OpenEAI-1014) error in the org.openeai.CoreMessaging.Generic.Response-Reply
as described in the common case above.

Examples (follow links for message text)

Update-Request and successful reply:

 com.any-erp-vendor.Person.BasicPerson.Update-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

Page 30 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Request/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Request/2.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Update-Requests and failure replies:

 org.any-erp-vendor.Person.BasicPerson.Update-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

 org.any-erp-vendor.Person.EmergencyContact.Update-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

*.Delete-Request and org.openeai.CoreMessaging.Generic.Response-Reply

A Delete-Request contains an object in its DataArea element for a remote application to attempt
to delete. According to the OpenEAI methodology, you can think of this exchange as a non-
authoritative application requesting that an object be deleted at an authoritative application, with
the reply from the authoritative application to the non-authoritative application indicating the
success or failure of the delete action as the authoritative application attempted to delete the
object, applying all of its business rules.

The DataArea element of a Delete-Request contains a DeleteData element that consists of a
DeleteAction element and a message object to be deleted. The type attribute of the DeleteAction
element specifies whether the requested delete is of type ‘delete’ or ‘purge.’ A DeleteAction of
type ‘delete’ indicates that the application processing this request should attempt to perform a
standard delete, applying all of its business rules. Many applications never actually remove
objects or records from their stores. They inactivate them or perform some other appropriate
business logic. A DeleteAction of type ‘purge’ is a special case, which directs the application
processing the request to actually purge or remove the object or records that comprise it from its
store entirely. When implementing message support, you may chose to support or not support
Delete-Requests with a DeleteAction of type ‘purge’. It may be totally inappropriate for some
applications. However, it is very useful for automated setup and tear-down of test cases when
testing messaging implementations with automated testing tools such as the OpenEAI
TestSuiteApplication or other appropriate tools your organization may have. It is common to
implement support for DeleteAction of type ‘purge’ and make that support configurable, so that it
may be toggled on when used in development and test environments where testing may occur
and toggled off in a production environment where sensitive records should never be completely
purged from a system. If a DeleteAction of type ‘purge’ is not supported, the consuming
application should reply with an “invalid delete action” error (OpenEAI-1008) in the
org.openeai.CoreMessaging.Generic.Response-Reply if a Delete-Request with a DeleteAction of
type ‘purge’ is received. If a DeleteAction of type ‘purge’ is supported, but toggled off, the
consuming application should reply with a “purge disabled” error (OpenEAI-1009) in the
org.openeai.CoreMessaging.Generic.Response-Reply.

When the consuming application processes a Delete-Request, it must use the state of the object
found in the DeleteData element to both locate the object to delete and to perform a baseline
comparison. If the object for which a delete is requested is found and its state matches the state
of the object in the DeleteData element of the Delete-Request, the consuming application can
safely attempt to process the delete. However, if the object for which a delete is requested is
found and its state does not match the state of the object in the DeleteData element, this means
that the state of the object in the consuming, authoritative application has changed since the non-
authoritative application queried for the state of the object. In this event, there are two options:

1. The Common Case

Page 31 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Request/3.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Request/4.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Request/5.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Request/6.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

The consuming application may not attempt to perform the delete, because the baseline
is stale. Accepting the Delete-Request and successfully performing it would result in the
loss of the current, valid state of the object, which the user of the requesting application
or the requesting application itself has never seen or considered when requesting the
delete. The consuming application should reply with a “baseline stale” (OpenEAI-1014)
error in the org.openeai.CoreMessaging.Generic.Response-Reply. The requesting
application can process this error and send a Query-Request to get the current baseline
and then continue processing successfully. You may recognize this phenomenon from
end-user applications you have used. If you are prompted that the data you are trying to
delete has been changed and are presented with the new data and an interface that asks
you to re-approve your delete, then you’ve seen this type of optimistic locking strategy in
practice.

2. The Uncommon Case

The consuming application may employ delete rules to determine if the difference
between the current state of the object and the state of the object in the DeleteData
element of the Delete-Request is immaterial to the business decision to perform the
delete. This is even rarer than the uncommon case outlined above for an Update-
Request, because organization’s business rules almost never allow for deleting data
when its current state has not been considered. If these rules do not succeed in
determining that the object may be deleted, then even in this case the consuming
application should be prepared to reply with a “baseline stale” (OpenEAI-1014) error in
the org.openeai.CoreMessaging.Generic.Response-Reply as described in the common
case above.

Examples (follow links for message text)

Delete-Request and successful reply:

 com.any-erp-vendor.Person.BasicPerson.Delete-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

Delete-Requests and failure replies:

 org.any-erp-vendor.Person.BasicPerson.Delete-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

 org.any-erp-vendor.Person.EmergencyContact.Delete-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

*.Generate-Request and *.Response-Reply

A Generate-Request contains an object in its DataArea element for a remote application to use
as input for a generation operation. According to the OpenEAI methodology, you can think of this
exchange as a non-authoritative application requesting that an object be generated by an
authoritative application, using an input object. The reply from the authoritative application to the
non-authoritative application should indicate the success or failure of the generate action as the
authoritative application attempted to generate the object, applying all of its business rules. The

Page 32 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Request/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Request/2.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Request/3.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Request/4.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Request/5.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Request/6.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

reply should also contain the object that was generated by processing the request. For this
reason, the reply to a Generate-Request is a specific Response-Reply for the message object in
question and not a generic reply.

There is always a chance that an application consuming a message will encounter an error
before it knows exactly what type of request it is processing. This would occur, for example,
when an application had difficulty parsing the message. In these cases, the application
processing the request must still respond, because application must make every attempt to reply
to all requests. In these cases, the org.openeai.CoreMessaging.Generic.Response-Reply is used
as a generic reply message that can contain the status of failure and any appropriate system or
application level errors.

This type of exchange is common in a service-oriented architecture. For example, many
organizations have an identity card application, directory service, or identification features of its
ERP system that serve as the master source for identifying individuals by issuing identification
numbers. Applications may message with this ID service to determine what the ID number for an
individual or vendor is and request that ID numbers be issues if the person or vendors is new to
the organization.

Examples (follow links for message text)

Generate-Request and successful reply:

 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Generate-Request
 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Response-Reply

Generate-Requests and failure replies:

 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Generate-Request
 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Response-Reply

 org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Generate-Request
 org.openeai.CoreMessaging.Generic.Response-Reply

Synchronization Messages

Synchronization messages are used to broadcast the state of objects from applications that are
authoritative for an object to non-authoritative applications which need to be informed of the
change in state of that object. Whenever an authoritative application publishes a sync message,
the complete message must be logged in its entirety. Whenever a non-authoritative application
processes a sync message, there is the possibility that it will encounter an error that prevents it
from taking the action prescribed by the sync message. In these cases, a log that contains the
message that was unsuccessfully processed is required to remedy the error. This practical
reason for maintaining a log of all sync messages published also conforms to the general auditing
requirements of many real-world enterprises.

A Practical Note on Enterprise Synchronization Message Logs

Strategies for maintaining an enterprise sync message log and applications for

Page 33 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Generate-Request/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Generate-Request/2.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Generate-Request/3.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Generate-Request/4.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Generate-Request/5.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Generate-Request/6.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

messaging administrators to view and search sync messages are discussed in the
OpenEAI Implementation Strategies Document. Whenever you enable an application to
publish a sync message, it must also be capable of publishing an exact copy of that
message to a central sync message logging service. There are other strategies for
maintaining an enterprise sync message log for small enterprises, such as having a
central logging service subscribe to and consume messages from the same end points
as each of the applications consuming sync messages. However, once you are beyond
a couple dozen applications consuming sync messages, you will likely appreciate the
capability to have all applications that publish sync message simply publish a copy to a
central enterprise sync logging service that never has to be reconfigured to consume
additional messages every time a new application is deployed. So whenever you
implement synchronization message support, it should include the ability to publish a
copy of each sync message to an enterprise sync log destination. If you use the
OpenEAI foundational APIs to implement your sync message publication, the ability to
publish a copy of each message to a logging destination is implicitly supported. You
just need to configure at runtime whether you would like these log copies published and,
if so, to which destination. See the OpenEAI API Introduction Document for more
details on this feature.

In order to guarantee the integrity of the synchronized data and the consistency of the non-
authoritative applications’ data stores with an authoritative application’s store, sync messages
must be processed and applied to non-authoritative applications in the proper order. The proper
order is determined by the time the relevant business transaction occurred in the authoritative
application. As discussed in the detailed description of the elements of the OpenEAI control
areas, this time is found in the Datetime element of the ControlAreaSync.

Frequently, synchronization messages are processed by intermediary, messaging infrastructure
applications such as message routers and relays that route messages or bridge transports prior
to being delivered to subscribing applications. In these cases, the OpenEAI Message Protocol
prescribes that the original ControlAreaSync must always be preserved intact in the SourceInfo
element of the ControlAreaSync so consuming applications are informed of the time of the actual
business event that precipitated the synchronization message. In other words, the precise
Datetime to be used for ordering the processing of sync messages can be found in each sync
message, either in the [root element]/ControlAreaSync/SourceInfo/ControlAreaSync element, if it
exists, or in the [root element]/ControlAreaSync element, if the former does not exist in a given
message.

The following is an example of a sync message from an authoritative application and how it is
multiplexed by a message routing application into multiple messages that are delivered to non-
authoritative applications.

Examples (follow links for message text)

Sync message published from an ERP system and consumed by a routing application like the
OpenEAI Message Router.

 com.any-erp-vendor.Person.BasicPerson.Update-Sync

In a sample enterprise, three applications need to consume BasicPerson sync messages to keep
themselves up to date with the authoritative ERP system: a directory service, an identity card
application, and a legacy payroll system.

Page 34 of 50

http://xml.openeai.org/site/doc/ImplementationStrategies.htm
http://xml.openeai.org/site/doc/ApiIntroduction.htm
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Sync/1.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

 com.any-erp-vendor.Person.BasicPerson.Update-Sync (routed to the directory service)
 com.any-erp-vendor.Person.BasicPerson.Update-Sync (routed to the ID card application)
 com.any-erp-vendor.Person.BasicPerson.Update-Sync (routed to the payroll system)

org.openeai.CoreMessaging.Sync.Error-Sync

As outlined above in the discussion of the enterprise synchronization message log, whenever a
non-authoritative application processes a sync message, there is a chance that it will encounter
an error that prevents it from taking the action prescribed by the sync message. When this
occurs, the application processing the sync message should publish an
org.openeai.CoreMessaging.Sync.Error-Sync message. These messages are defined to contain
errors that describe the problem that the application encountered when processing the sync
message. Error-Syncs also contain the message identifier of the sync message that was
unsuccessfully processed, so that administrators can correlate the Sync-Error message to a sync
message logged in the enterprise synchronization message log.

A Note on Messaging Administration Applications

Sites that presently practice OpenEAI perform routine sync error detection and
remediation by running regular queries of their enterprise synchronization error logs and
synchronization logs. When necessary, they use the message publication tools of their
JMS provider to republish the message they have retrieved from their enterprise
synchronization logs.

Clearly, with all of these artifacts in place, very cool messaging administration
applications can be developed to present messaging administrators with a list of errors
(built from the synchronization error log), allowing them to drill down to the message that
was unsuccessfully processed (from the synchronization message log), edit the
unsuccessfully processed message (if necessary and appropriate), and republish it to
the target application. Such applications and many others are presently the subject of
work in the OpenEAI Reference Implementations Department.

Examples (follow links for message text)

Sync message published from a message routing application and consumed by an identification
card application.

 com.any-erp-vendor.Person.BasicPerson.Update-Sync (routed to the ID card application)

Unfortunately, the identification card application encountered errors processing the message, so
it published the following Error-Sync message to an enterprise sync error logging service for
administrator review and remediation.

 org.openeai.CoreMessaging.Sync.Error-Sync

Page 35 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Sync/2.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Sync/3.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Sync/4.xml
http://www.openeai.org/openeai.xml?document=ReferenceImplementationDepartment.xml&focus=N2500
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Error-Sync/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Error-Sync/2.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

*.Create-Sync

A Create-Sync broadcasts the initial state of an object after it has been created in an authoritative
application. The DataArea element of a Create-Sync contains a NewData element with the initial
state of an object after it has been successfully created at the authoritative application, applying
all of the application’s business rules. As outlined in detail above, synchronization messages
must be applied to non-authoritative applications in the proper chronological order and if a non-
authoritative application encounters an error processing a Create-Sync, it must publish an
org.openeai.CoreMessaging.Sync.Error-Sync message with appropriate errors. Errors can be of
type “system” or “application”, representing system level and application level errors. System
level errors are more technical in nature and are usually sent with more technical descriptions.

Examples (follow links for message text)

Create-Syncs:

 com.any-erp-vendor.Person.BasicPerson.Create-Sync

org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Create-Sync

*.Update-Sync

An Update-Sync broadcasts the changed state of an object after it has been updated in an
authoritative application. The DataArea of an Update-Sync contains a BaselineData element with
the state of an object prior to modification and a NewData element with the state of an object after
it has been successfully modified at the authoritative application, applying all of the application’s
business rules.

When processing an Update-Sync message, a non-authoritative application may use the pre-
modification state of the object in the BaselineData element to locate the appropriate object or
records in the non-authoritative application to update to reflect the new state of the object
contained in the NewData element of the message. Note that when processing an Update-Sync,
a comparison of the current state of the object in the non-authoritative application with the state of
the object in the BaselineData element of the message is technically not required in order to
determine whether the Update-Sync message may be processed by the non-authoritative
application. This is the case, because only non-authoritative applications should be consuming
an Update-Sync, which means that the state of the object could not have been modified locally.
However, although such a comparison is unnecessary if the integration has been implemented
respecting the concept of authoritative source, such a comparison could be performed if desired,
and appropriate error messages published as Error-Sync messages if there were a mismatch
between the current state of the object in the non-authoritative application and the state of the
object in the BaselineData element of the message. Additionally, the less-common process of
merging the current version of the data in the non-authoritative system with the NewData
provided by the authoritative source could be performed if desired.

As outlined in detail above, synchronization messages must be applied to non-authoritative
applications in the proper chronological order, and if a non-authoritative application encounters an
error processing an Update-Sync, it must publish an org.openeai.CoreMessaging.Sync.Error-
Sync message with appropriate errors. Errors can be of type “system” or “application”,

Page 36 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Sync/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Create-Sync/2.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

representing system level and application level errors. System level errors are more technical in
nature and are usually sent with more technical descriptions.

Examples (follow links for message text)

Update-Syncs:

 com.any-erp-vendor.Person.BasicPerson.Update-Sync

org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Update-Sync

*.Delete-Sync

A Delete-Sync instructs non-authoritative applications to delete an object locally that has been
deleted from an authoritative application. The DataArea element of a Delete-Sync contains a
DeleteData element that consists of a DeleteAction element and the current state of a message
object to be deleted. The type attribute of the DeleteAction element specifies whether the
requested delete is of type ‘delete’ or ‘purge.’ A DeleteAction of type ‘delete’ indicates that the
application processing this request should attempt to perform a standard delete, applying all of its
business rules. Many applications never actually remove objects or records from their stores.
They inactivate them or perform some other appropriate business logic. A DeleteAction of type
‘purge’ is a special case, which directs the application processing the sync to actually purge or
remove the object or records that comprise it from its store entirely. When implementing
message support, you may chose to support or not support Delete-Syncs with a DeleteAction of
type ‘purge’. It may be totally inappropriate for some applications. However, it is very useful for
automated setup and tear-down of test cases when testing messaging implementations with
automated testing tools such as the OpenEAI TestSuiteApplication or other appropriate tools your
organization may have. It is common to implement support for DeleteAction of type ‘purge’ and
make that support configurable, so that it may be toggled on when used in development and test
environments where testing may occur and toggled off in a production environment where
sensitive records should never be completely purged from a system. If a DeleteAction of type
‘purge’ is not supported, the consuming application should publish an Error-Sync with an invalid
delete action error (OpenEAI-1008) if a Delete-Sync with a DeleteAction of type ‘purge’ is
received. If a DeleteAction of type ‘purge’ is supported, but toggled off, the consuming
application should publish an Error-Sync with a purge disabled error (OpenEAI-1009).

When processing a Delete-Sync message, a non-authoritative application may use the state of
the message object in the DeleteData element to locate the appropriate object or records in the
non-authoritative application to delete. Note that when processing a Delete-Sync, a comparison
of the current state of the object in the non-authoritative application with the state of the message
object in the DeleteData element of the message is technically not required in order to determine
whether the Delete-Sync message may be processed by the non-authoritative application. This
is the case, because only non-authoritative applications should be consuming a Delete-Sync,
which means that the state of the object could not have been modified locally. However, although
such a comparison is unnecessary if the integration has been implemented respecting the
concept of authoritative source, such a comparison could be performed if desired and appropriate
errors published as Error-Sync messages if there were a mismatch between the current state of
the object in the non-authoritative application and the state of the object in the DeleteData
element of the message.

Page 37 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Sync/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Update-Sync/5.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

As outlined in detail above, synchronization messages must be applied to non-authoritative
applications in the proper chronological order, and if a non-authoritative application encounters an
error processing a Delete-Sync, it must publish an org.openeai.CoreMessaging.Sync.Error-Sync
message with appropriate errors. Errors can be of type “system” or “application”, representing
system level and application level errors. System level errors are more technical in nature and
are usually sent with more technical descriptions.

Examples (follow links for message text)

Delete-Syncs:

 com.any-erp-vendor.Person.BasicPerson.Delete-Sync

org.any-openeai-enterprise.CoreApplication.InstitutionalIdentity.Delete-Sync

Common Error Messages

The following are error messages which arise from the OpenEAI Message Protocol and can be
used when implementing message support. Many applications will also require their own special
error messages to indicate error conditions that are specific to their purpose or business logic.
The Reference Implementations department of the OpenEAI Project is beginning to maintain a list
of all error messages which arise from the OpenEAI Message Protocol. In the future, the
OpenEAI Project will post suggestions about which common error messages should be supported
by every message application, gateway, and service that uses the OpenEAI Message Protocol
and which are optional. The following are examples of error messages that have been used to
date.

Code Type Description Explanation
OpenEAI-1001 application Unsupported message object:

[unsupported message object
name]. This application
expects ‘[supported message
object names]’.

Somehow the wrong message object
name is getting placed into the
message by the sending application,
it is sending the wrong message, or
the message is being sent to the
wrong destination entirely.

OpenEAI-1002 application Unsupported message action:
[unsupported message action
name]. This application only
supports '[supported message
action name(s)]' for message
object ‘[relevant message
object name]’.

Somehow the wrong message action
name is getting placed into the
message by the sending application,
it is sending the wrong message, or
the message is being sent to the
wrong destination entirely.

OpenEAI-1003 application Invalid query element found in
the Query-Request message.
This command expects '[name
of the expected query
object(s)]'.

A null or inappropriate query object is
being placed into the message by
the sending application or it is
sending the wrong message entirely.

OpenEAI-1004 application Inauthentic request message. The request message does not
appear to come from an application
that is authorized to make the
request.

OpenEAI-1005 application Error authenticating request Some type of error occurred while

Page 38 of 50

http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Sync/1.xml
http://xml.openeai.org/site/doc/Examples/MessageProtocol/Delete-Sync/2.xml

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

message. [provide error
details].

attempting to authenticate the
request message or sending
application, so the message could
not be proxied or processed.

OpenEAI-1006 application Invalid identifier type found in
the Identifier element of the
Query-Request message. This
application expects a type of
‘[Identifier type(s)]’.

When querying for certain types of
objects, the query object used is a
generic Identifier element with an
appropriate type attribute. An
incorrect identifier type appears in
the message or the entirely wrong
message was sent.

OpenEAI-1007 application Null identifier value found in the
Identifier element of the Query-
Request message. This
command expects that a value
actually be present.

For some reason, no value is being
placed in the Identifier element of the
Query-Request message being sent.

OpenEAI-1008 application Invalid delete action type. Only
delete actions of type 'delete'
and 'purge' are allowed.

Somehow an invalid delete action
type is being set. Check the sending
application or the appropriate
Enterprise Objects document to
figure out how this could be and
prevent it from happening.

OpenEAI-1009 application Purge disabled. The delete
action type of purge is
supported by this
implementation, but it is
presently disabled.

The application apparently supports
a delete action of type ‘purge’, but
this support is configurable, because
there are conditions under which a
purge should be allowed (such as
test and development use) and
should not be allowed (such as
production use). Presently, this
purge support is toggled off,
presumably by an appropriate
runtime configuration property.

OpenEAI-1010 application Invalid delete element found in
the Delete-Request message.
This command expects an
‘[delete element name(s)]’.

Somehow there is an unsupported
delete element in the message
processed by this application. Verify
that the sending application is
sending the appropriate message
and that it contains the appropriate
delete element.

OpenEAI-1011 application Invalid update element found in
the NewData element of the
Update-Request message. This
command expects an ‘[update
element name(s)]’.

Somehow there is an unsupported
update element in the NewData
element of the message processed
by this command. Verify that the
sending application is sending the
appropriate message and that it
contains the appropriate update
elements in the NewData and
Baseline data elements.

OpenEAI-1012 application Invalid update element found in
the BaselineData element of

Somehow there is an unsupported
update element in the BaselineData

Page 39 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

the Update-Request message.
This command expects an
‘[update element name(s)]’.

element of the message processed
by this command. Verify that the
sending application is sending the
appropriate message and that it
contains the appropriate update
elements in the NewData and
Baseline data elements.

OpenEAI-1013 application Invalid create element found in
the Create-Request message.

Somehow there is an unsupported
create element in the message
processed by this application. Verify
that the sending application is
sending the appropriate message
and that it contains the appropriate
create element.

OpenEAI-1014 application Baseline is stale. The baseline state of the message
object in the message does not
match the current state in the
consuming application.

Enterprise Data Values

Now that you have taken an extensive look at the OpenEAI Message Protocol and the XML
message format that it specifies, you may be wondering what data values actually go into the
elements and attributes of these XML messages. In the answer to this question lies one of the
most challenging and interesting aspects of practicing EAI—data value translations and data
format transformations. The problem you probably face is that many applications in your
enterprise and many of your trading partners have different valid values for data that is essentially
supposed to be the same. For example, just think of how many different ways you have seen
gender data represented over the years. F, M, N, U, male, female, neutered, unknown, not
available, not reported, FE, ML, UK, NA, Male, Female, Unknown, 1, 2, 3, 5, 01, 02, 03. While
we are sure that we have seen more valid values for gender in applications, the authors are
definitely certain that we have seen all of the specific values listed here…and, no, we do not know
why there were four possibilities for gender in a system, and the number 4 was apparently not an
acceptable value, but 5 was!

Any EAI approach that you use must provide concepts, tools, and implementations to address
this reality of divergent values and formats for essentially the same data. It would be helpful if
you did not have to program these data translations and format transformations for each and
every integration you build. Ideally, if you are taking the trouble to define your enterprise data
objects, it would be great if you could define valid values to go with each and every field of those
objects. Valid values are not really appropriate for some fields, formatting rules or masks are
more appropriate. For example, your enterprise may have a preferred way to capitalize proper
names using a simple or very complex set of rules, and you may have a preferred way to
represent telephone numbers with hyphens and parentheses. Even though you may have
preferred valid values and formatting rules, a number of your own legacy and purchased
applications (as well as trading partners with whom you exchange data) have values and
formatting rules that deviate from your preferred rules. So in addition to specifying your preferred
valid values, formatting rules, and masks for each and every field of your enterprise data objects,
you would like to specify valid values, rules, and masks for each of these fields in each and every

Page 40 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

application with which you must integrate—and let some data translation and transformation
foundation or infrastructure implement these configured translations and transformations for you.
While we could dream about even more, this is a realistic nirvana: to be able to program
application interfaces with the data values of the local application we are working on, knowing
that the translations and transformations we configured or specified with our enterprise object
definitions will simply be applied by foundation components or infrastructure applications. This is
exactly what OpenEAI strives to provide with its enterprise object configuration documents and
enterprise field foundation components.

The OpenEAI methodology recommends that you select and maintain a set of enterprise values
for each field of every message object that you define. Keeping with the XML precepts of
transparency and clarity, these enterprise values should be as obvious in their meaning as
possible. Alternately, you might choose to take the values native to your most important
enterprise applications—such as your ERP system—and dub them as your enterprise values.
These will be the values that should appear in messages as they move about your enterprise, as
these messages are serialized to enterprise messaging logs, and as these messages are used to
present clear and usable information to end users in all of your new web applications without
decoding or translating values. In other words, your enterprise values should be the clear and
understandable values that human beings actually understand and use—values that have
business meaning. Configurable software transforms alternate, archaic, or foreign values to your
enterprise values as messages are built or as messages are applied to target applications.

The OpenEAI Methodology Document introduces the details of specifying enterprise values and
translations using OpenEAI enterprise object configuration documents. The OpenEAI API
Introduction Document presents the detailed structure of enterprise object configuration
documents and the foundation components that use these documents to implement translations,
transformations, scrubbing, and formatting.

Implementing Messaging Support

You probably already understand the interdependencies and general implications of
implementing message support using the OpenEAI Message Protocol from reading the detailed
behavioral descriptions for each message action and message type above. However, some of
the implications may not be immediately clear, so this section serves as a summary and checklist
for which message support to implement for authoritative and non-authoritative applications. For
detailed information on how to implement message support according to the OpenEAI Message
Protocol, you may move on to other documents in the OpenEAI Core Documentation Suite. Be
sure to read the Getting Started with OpenEAI Document and then follow up with the OpenEAI
API Introduction Document, the OpenEAI Methodology Document, and the OpenEAI
Implementation Strategies Document in whichever order you think is helpful.

Message Support for Authoritative Applications

When an application is deemed authoritative for a message object, typically it must be prepared
to handle and reply to the following messages of the OpenEAI Message Protocol for that object:

Query-Request
Create-Request and/or Generate-Request (if appropriate)

Page 41 of 50

http://xml.openeai.org/site/doc/Methodology.htm
http://xml.openeai.org/site/doc/ApiIntroduction.htm
http://xml.openeai.org/site/doc/ApiIntroduction.htm
http://www.openeai.org/openeai.xml?document=Documentation.xml&focus=N3010

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Update-Request
Delete-Request

The authoritative application must also be prepared to publish the following messages for that
object:

Create-Sync
Update-Sync
Delete-Sync

Query-Request is implemented so that non-authoritative applications may query for the current
state of an object. Create-Request is implemented so non-authoritative applications may create a
new object in the authoritative application. Generate-Request is implemented if appropriate for
the message object in question; that is, if the object in question can be generated by the
authoritative application given some other object as input. Update-Request is implemented so
non-authoritative applications may modify the state of objects at the authoritative source. Delete-
Request is implemented so non-authoritative applications may delete objects at the authoritative
source.

Some non-authoritative applications have no need to modify data objects of certain types, but
they do need to know that these objects exist and may even need to maintain the states of these
objects locally in order to operate. These are the applications that consume sync messages. For
example, an ID card system may not allow a user to change his/her name, but this application
need to know about this data and be updated with any changes in name that are made through
the enterprise’s ERP system.

Create-Sync is implemented so non-authoritative applications are informed of the creation of a
new object and its initial state. Update-Sync is implemented so non-authoritative applications are
informed of changes to an existing object’s state. Delete-Sync is implemented to instruct non-
authoritative applications to delete objects that have been deleted at the authoritative application.
These sync messages must be published by an authoritative application regardless of how an
object is created, updated, or deleted in the authoritative application, through messaging or
through any other means of creating, modifying, or deleting data in the authoritative application.

Any given application can definitely be authoritative for some message objects and not
authoritative for others. Clearly, more or less of this message support can be implemented based
on the nature of the application and the needs of the enterprise. However, it is important to note
that the OpenEAI methodology recommends fully implementing the OpenEAI Message Protocol
for each message object whenever appropriate and feasible. Complete implementation provides
the most flexibility for the future. This practice positions an enterprise to perform more complex
integrations more quickly later. After all, that flexibility is largely what a solid EAI strategy is all
about—increasing the agility of organizations, allowing them to do more and do it more quickly.

Message Support for a Non-Authoritative Application

Depending on the needs of the non-authoritative application, it may be required to send the
following requests and handle the replies that are returned:

Query-Request
Create-Request and/or Generate-Request (if appropriate)
Update-Request

Page 42 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Delete-Request

Sending these requests and handling their replies is required only if the non-authoritative
application needs to modify the state of objects for which another application is authoritative. If
the non-authoritative application does not have a need to modify the state of objects for which
another application is authoritative, but rather it just needs to know the state of these objects at
their authoritative source, then it only needs to be prepared to consumer and process the
following sync messages:

Create-Sync
Update-Sync
Delete-Sync

Again, more or less of this message support can be implemented based on the nature of the
application and the needs of the enterprise. However, implementation of support for all actions is
recommended to afford the highest level of flexibility.

Page 43 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Appendix 1: The GNU Free Documentation License

 GNU Free Documentation License
 Version 1.1, March 2000

 Copyright (C) 2000 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly

Page 44 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further

Page 45 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy

Page 46 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to
 it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications",
 preserve the section's title, and preserve in the section all the
 substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"
 or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.

Page 47 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in

Page 48 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

Page 49 of 50

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Message Protocol 1.0 January, 2003

$Revision: 1.28$
$Date: 3/11/2003 2:07:40 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/MessageProtocol.doc$

Page 50 of 50

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

	The OpenEAI Message Protocol Version 1.0
	Jan 2003 Tod Jackson and Steve Wheat, OpenEAI Software Foundation
	Contents
	Introduction
	The Root Concept: Authoritative Source
	The OpenEAI Message Protocol
	Message Naming
	Message Categories
	Message Objects
	Message Actions
	Message Types
	Message Structure
	Basic Messaging Behavior
	*.Query-Request and *.Provide-Reply
	*.Create-Request and org.openeai.CoreMessaging.Generic.Response-Reply
	*.Update-Request and org.openeai.CoreMessaging.Generic.Response-Reply
	*.Delete-Request and org.openeai.CoreMessaging.Generic.Response-Reply
	*.Generate-Request and *.Response-Reply
	Synchronization Messages
	org.openeai.CoreMessaging.Sync.Error-Sync
	*.Create-Sync
	*.Update-Sync
	*.Delete-Sync
	Common Error Messages
	Enterprise Data Values

	Implementing Messaging Support
	Message Support for Authoritative Applications
	Message Support for a Non-Authoritative Application

	Appendix 1: The GNU Free Documentation License

	
	OpenEAI Title Page

