
www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Open EAI Implementation Strategies
Version 1.0

January, 2003

by

Tod Jackson (tod@openeai.org)

Steve Wheat (steve@openeai.org)

Copyright © 2003, OpenEAI Software Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Section being the first section entitled “Introduction”, with no Front-
Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section
entitled "Appendix 1: GNU Free Documentation License".

 Page 1 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Contents

Introduction
Scenarios

Java Application
Java-Aware Application
Gating Strategies
Proprietary Products that are not Java- or XML-Aware
Routing Strategies
Proxy Strategies
Mainframe Applications
Polling Strategies
Synchronization Message Logging
Synchronization Error Message Logging
Callout Strategies

Appendix 1: The GNU Free Documentation License

Introduction

Enterprise Application Integration (EAI) using the OpenEAI Message Protocol and its supporting
APIs can be achieved in a variety of ways. This document describes several different
implementation strategies that have been used in real-world integration scenarios.

Here, we present descriptions of eleven different scenarios and the details regarding how each
scenario has been implemented utilizing the OpenEAI Message Protocol and supporting APIs.

We describe only strategies which have been implemented using this foundation. This is not
abstract theory. However, it is also not a definitive description of everything that might be
accomplished using OpenEAI concepts, techniques, and supporting foundation components.
New techniques and strategies are uncovered all the time; typically it’s just a matter of
understanding the concepts core to the OpenEAI Protocol and having requirements that drive the
need for new techniques. This document’s purpose is to provide a high-level overview of some of
these strategies to help get thinking about how OpenEAI has been used to perform common
integration tasks and how you might use OpenEAI.

For more details on EAI concepts, the OpenEAI protocol, the OpenEAI methodology, or the
OpenEAI API, refer to the corresponding documents in the OpenEAI Core Documentation Suite.

Scenarios

An important thing to consider when determining how two applications will be integrated is how
invasive the strategy can be. Depending on resources available to perform the work, the lifecycle
of the applications being integrated and the complexity involved, it may not be appropriate in all
cases to actually change a system in order to integrate it into an enterprise. However, that
doesn’t mean it can’t be integrated. Here are some key items to consider:

• Is the application being integrated developed on a platform (or in a language) that is
a strategic direction of your organization? If it is, it may be worth the time and effort

 Page 2 of 25

http://www.openeai.org/openeai.xml?document=Documentation.xml&focus=N3010

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

to figure out how to make that application message-aware, and use the same
technique for all other applications developed with that technology. If it isn’t, you
might not want to invest the time to make it message-aware. Instead, you might look
at some less-invasive ways to integrate it into the enterprise.

• What types of resources (staff) are available to perform the work?

• Does the application have the ability to use Java? This could be natively or through

third-party tools that make the application “Java-aware”. If it has the ability to use
Java, then you should be in a good position to make the application message-aware
using the OpenEAI foundation APIs.

• What is the cost associated with making an application “message-aware” vs. using

another less-invasive OpenEAI technique to integrate it into the enterprise?
Depending on the answers to the questions above, this cost may be too much to
support actually changing the application to make it message-aware.

All of these questions should be answered when determining how an application will be
integrated into an enterprise. Using the OpenEAI methodology and supporting APIs, they can all
be addressed. Based on the answers to the questions, the most useful integration strategy will
become increasingly obvious. This document covers several strategies used to answer to these
questions.

These are the high-level integration scenarios we will discuss:

Java application
Java-aware application (ColdFusion, PERL, etc.)
Gating strategies (authoritative and non-authoritative)
Proprietary product (PowerBuilder) that is not Java- or XML-aware (message relay)
Routing strategies
Proxy strategies
Mainframe application (flat files)
Polling strategies (how to get information out of an authoritative system that can’t be
made message-aware)
Synchronization message logging
Synchronization error message logging
Callout methods from databases (RMI, Java in the Database)

Java Application

If an existing application that needs to be integrated into an enterprise or an application
being developed is a Java application, there is very little cost associated to making the
application message-aware. Utilizing the OpenEAI APIs and an organization’s message
object API (MOA), making a Java application message-aware is very simple. Refer to
the OpenEAI API Introduction Document for more information regarding the Java
application development process.

 Page 3 of 25

http://xml.openeai.org/site/doc/ApiIntroduction.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Java-Aware Application

Any application that can instantiate Java objects can use the OpenEAI APIs and an
organization’s MOA. This has been successfully demonstrated by message-enabling
ColdFusion, PERL, and Oracle applications. Since these applications can instantiate
Java objects, they really become very similar to any normal Java application. Of course,
the syntax specific to one of these applications may not look exactly like a Java
application. However, the API that is exposed to these applications is the same as the
API exposed to typical Java applications. That is, they use the same JAR files that the
Java application does. Therefore, configuration of these applications is identical to
configuration for a Java application.

The benefit of this approach where it is possible is that even those unfamiliar with these
applications will be able to understand what they are doing. This not only includes how
the applications are configured, but how they are developed. When a person that has
never looked at a ColdFusion application, but knows how to use the OpenEAI API in a
Java application, looks at the ColdFusion application code, they are immediately able to
discern what the application is doing because its code looks very similar to that of the
Java applications they’re used to developing. They can see references to the same
objects and method calls they use in the Java applications they develop. Additionally,
they are able to look at the deployment descriptor for the ColdFusion application and
determine exactly what types of OpenEAI foundation it uses and what enterprise
message objects (MOA objects) are used by the application. Based on these two pieces
of information alone, they are able to understand what the application does very quickly.

This concept is one of the core concepts related to application architecture. The goal is
to develop foundation that is ubiquitous and can be used by as many people as possible.
By doing this, you’re guiding your organization to a place where everyone has the
knowledge and tools they need to do their jobs. Then, they can make choices on how to
actually get the job done. They, however, are not choosing their own, possibly unique,
application integration strategy, they are simply given the tools that can be used in
whatever development environment they are most familiar with. This is a very important
enterprise architecture goal in large organizations that have heterogeneous
environments.

Gating Strategies

As discussed in the OpenEAI API Introduction Document, MessageGateways are Java
applications that are intended to run for extended periods of time as a daemon process.
These gateways are configured with an OpenEAI deployment descriptor that includes
PubSubConsumer and/or PointToPointConsumer foundation objects. These consumer
objects are Java components that serve as JMS MessageListeners. Additionally, these
consumers employ the Command Pattern to execute appropriate business logic
associated with a message delivered to the consumer (SyncCommands and
RequestCommands). Finally, they provide many features intended to make the
gateways robust and reliable. For more information on the OpenEAI PubSub and/or
PointToPoint consumer foundation objects, or any other OpenEAI foundation component,
you may wish to review the official API documentation (Javadoc). These gateways are
intended to either provide functionality and/or services on behalf of an authoritative

 Page 4 of 25

http://xml.openeai.org/site/doc/ApiIntroduction.htm
http://xml.openeai.org/site/doc/ApiIntroduction.htm
http://xml.openeai.org/docs/current/api/org/openeai/jms/consumer/PubSubConsumer.html
http://xml.openeai.org/docs/current/api/org/openeai/jms/consumer/PointToPointConsumer.html
http://xml.openeai.org/docs/3.0/api/org/openeai/jms/consumer/commands/SyncCommand.html
http://xml.openeai.org/docs/3.0/api/org/openeai/jms/consumer/commands/RequestCommand.html
http://www.openeai.org/openeai.xml?document=ApiDocumentation.xml&focus=N3020

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

application, or they are intended to keep a non-authoritative system up-to-date with
activities performed in an authoritative system.

The two types of gating strategies using the OpenEAI foundation APIs and methodology
that will be discussed here are: gating an authoritative application, and gating a non-
authoritative application.

One of the root concepts surrounding the OpenEAI Methodology is that of an
“authoritative source”. Systems that are not authoritative will request that data be
changed in the authoritative application and will keep themselves up-to-date when data
changes in that authoritative application.

If a system is considered the authoritative source for a message object or qualified
message object, there are a few rules that it must follow according to the OpenEAI
Message Protocol. The authoritative system must provide an interface that supports all
actions of request/reply messaging for a particular enterprise message object for which it
is authoritative. According to the OpenEAI Message Protocol, these actions are query,
create, update, delete, and, if appropriate for the object, generate. Non-authoritative
applications can then send request messages with these actions to request that these
actions be performed on that message object in the authoritative application.
Additionally, when an application requests that an action be performed on an enterprise
message object in an authoritative application, it is the authoritative application's
responsibility to publish a synchronization message to the rest of the enterprise,
informing all interested parties of that action. Finally, that authoritative application must
publish synchronization messages for any data changed within the system itself through
its own native user interfaces that involves any enterprise message object for which it is
authoritative.

For example, if a system is considered authoritative for all com.any-erp-
vendor.Person.BasicPerson message objects within a particular organization, it must
expose an interface (i.e., implement a gateway) that handles the following requests
appropriately according to the OpenEAI Message Protocol...

com.any-erp-vendor.Person.BasicPerson.Query-Request
com.any-erp-vendor.Person.BasicPerson.Create-Request
com.any-erp-vendor.Person.BasicPerson.Update-Request
com.any-erp-vendor.Person.BasicPerson.Delete-Request

...to allow non-authoritative applications to request a BasicPerson message object be
created in the authoritative system and to maintain it and delete it in the authoritative
application. Additionally, the authoritative application must publish the following sync
messages to keep non-authoritative applications that store data about these BasicPerson
objects in their own data stores up to date:

com.any-erp-vendor.Person.BasicPerson.Create-Sync
com.any-erp-vendor.Person.BasicPerson.Update-Sync
com.any-erp-vendor.Person.BasicPerson.Delete-Sync

For general a general discussion of the message support that must be implemented for
authoritative and non-authoritative applications, see the OpenEAI Message Protocol
Document.

 Page 5 of 25

http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

To gate an authoritative system, typically a gateway is deployed that consists of at least
one PointToPointConsumer which consumes messages from a JMS queue and executes
specific RequestCommand implementations based on the type of message it consumes.
There are many choices that can be made regarding how to deploy gateways and
develop the commands that make up a gateway: this discussion will assume that this one
gateway is responsible for all request/reply message support for this authoritative system.
See the OpenEAI Deployment Patterns Document for more information regarding this
and other deployment considerations.

When a gateway for an authoritative system consumes a request to perform an action on
an enterprise message object, it will execute the appropriate RequestCommand
implementation, which will typically use whatever lower-level mechanism it has available
to it to perform that action against whatever repository it is gating, and then return the
appropriate response to the requesting application. This may mean calling stored
procedures in a database, invoking inline SQL statements against a database,
performing simple file system I/O operations, binding to a directory server and updating
or retrieving information from it, or any number of other forms of lower-level business
functions necessary to perform the action. The key point is: it doesn’t matter to the
requesting application. All that application has to do is send a message to the
authoritative source requesting that some action be performed. The gateway is the only
thing responsible for knowing what that lower-level business logic really looks like or for
having access to call the lower-level business logic. Since most organizations are
heterogeneous, this allows many flexible integrations to occur among a variety of
systems using the same Message Protocol and invoking many different forms of
business logic (without even knowing it).

This business logic is contained within the commands executed by the
PointToPointConsumer(s) that make up the gateway. These commands are executed
according to the message consumed by the consumer, and it is in these commands that
these lower-level mechanisms are invoked. OpenEAI provides this framework for gating
these authoritative systems by way of PointToPointConsumers, RequestCommands and
many other foundation components. Refer to the OpenEAI API Introduction Document
for more details regarding these components.

 Page 6 of 25

http://xml.openeai.org/site/doc/DeploymentPatterns.htm
http://xml.openeai.org/site/doc/ApiIntroduction.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Requesting Application
consisting of OpenEAI
PointToPointProducers
and an organization’s

MOA

JMS Queue

JMS TemporaryQueue

JMS Provider

XML
Enterprise
Message

XML
Enterprise
Message

Repository
The Authoritative

System

JMS Message

JMS Message
Low-level API

invocation

JMS Message

JMS Message

RequestCommand
implementation

Command
Execution

JMS Topic

JMS Message

Gating an Authoritative
Source Step 1

Step 2

Step 3

Step 6

Step 4Step 5

Step 1 - Requesting application requests that an action be performed on an Enterprise Message Object in an authoritative system through the use of OpenEAI APIs.
Step 2 - Gateway for authoritative source consumes request
Step 3 - Gateway executes RequestCommand implementation which invokes lower-level business APIs to perform the action.
Step 4 - Gateway returns a response to the requesting application.
Step 5 - Requesting application consumes response (via action method called on Enterprise Message Object through use of OpenEAI APIs)
Step 6 - If the action was create, update, delete or generate, the authoritative system publishes a synchronization message informing the rest of the enterprise that the
action occurred.

Gateway consisting
of OpenEAI

PointToPointConsumers
and an organization’s MOA

Figure 1 – Gating an Authoritative Source (note, this figure does not depict the Router or Request Proxy components,
which are discussed later).

Some non-authoritative applications need to persist data for which they are not
authoritative in their own data stores. For example, a directory service that is used to
present your organization’s phone book information on your intranet and some key
contact information on your web site may need to persist some person and job data, so
that it can be retrieved from the directory to display name, department affiliation, and
contact information. However, the authoritative source for this information may be your
organization’s ERP system, where HR staff and the people themselves (through self-
service applications) maintain this information.

Like a gateway for an authoritative source, a gateway for a non-authoritative application
that must actually persist data consumes messages. However, the messages consumed
by a gateway for non-authoritative systems are called synchronization messages, not
request messages. When actions are performed at an authoritative source, the
authoritative application must publish synchronization messages to a JMS topic indicative
of the actions performed. All non-authoritative systems that are interested in these
business events must consume these synchronization messages to keep themselves up-
to-date with the authoritative system.

To gate a non-authoritative system, one typically deploys a gateway that consists of at
least one PubSubConsumer that consumes messages from a JMS Topic. This
consumer is responsible for consuming synchronization messages from authoritative
applications and invoking the appropriate lower-level APIs for that system to take the
appropriate actions indicated in the messages.

The process of implementing this gateway is almost identical to the process of
implementing a gateway for an authoritative system. The only differences are the fact
that instead of consuming messages from a JMS queue with an OpenEAI
PointToPointConsumer, the gateway consumes messages from a JMS topic with an

 Page 7 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

OpenEAI PubSubConsumer. Additionally, the business logic is implemented in
SyncCommands as opposed to RequestCommands. Finally, there are several
differences in the rules that must be followed when consuming a synchronization
message as opposed to when consuming a request message. See the OpenEAI
Protocol Document for more information regarding the precise messaging behavior for
consuming request messages and synchronization messages.

Authoritative source
consisting of OpenEAI

PubSubProducers
and an organization’s

MOA

JMS Topic

JMS Provider

XML
Enterprise
Message

Repository for the
non-authoritative

System

JMS Message JMS Message
Low-level API

invocation

SyncCommand
implementation

Command
Execution

Gating a non-authoritative
Source

Step 1 Step 2 Step 3

Step 1 - A business event occurs in an authoritative system causing a synchronization message to be published.
Step 2 - Gateway for non-authoritative system consumes synchronization message
Step 3 - Gateway for non-authoritative system executes the appropriate SyncCommand implementation based on the message
consumed which invokes lower-level APIs to update the non-authoritative system to keep it up-to-date with the authoritative source.

Gateway consisting
of OpenEAI

PubSubConsumers
and an organization’s MOA

Figure 2 – Gating a Non-Authoritative Application (note, this figure does not depict the Router component, which is
discussed later in this document).

Proprietary Products that are not Java- or XML-Aware

Many products used within an organization might not have the ability to use Java and/or
XML natively. Additionally, it might be too costly to make them Java- and/or XML-aware.
There are other approaches. One involves developing an API for the proprietary
environment and implementing a MessageRelay that allows it to message with the rest of
the enterprise.

This technique has been used successfully at the University of Illinois to integrate
administrative applications developed in PowerBuilder. PowerBuilder is no longer a
strategic development tool for the enterprise. For this reason, it was determined that it
would be inappropriate to spend the time and effort to make the PowerBuilder
applications Java- and XML-aware. Instead, a PowerBuilder API was developed that
allows PowerBuilder developers to work in that environment in a familiar way. A foreign
message format was developed (a name/value delimited format which is not the native
OpenEAI message format) that would be sent via HTTPS (which is not the native
OpenEAI transport) to a MessageRelay. This MessageRelay (a servlet) takes the foreign
message format and builds an enterprise message object (a Java business object, for
instance, BasicPerson) from the data provided in the foreign message format. It then
uses that enterprise message object to perform the action specified in the data passed in
(query, create, delete, update) via the OpenEAI foundation APIs, XML, and the JavaTM
Message Service (JMS). Finally, it receives a response from the target application to

 Page 8 of 25

http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

which it sent the request, converts the reply back into the foreign format and returns it to
the PowerBuilder application as a reply to the original HTTPS request from the
PowerBuilder application. PowerBuilder doesn’t have to know anything about Java, JMS,
or XML. With the PowerBuilder API and the MessageRelay, we are able to successfully
integrate any PowerBuilder application into the enterprise. See figure 3.

Non Java/XML
aware application

JMS Relay
Servlet

JMS Queue

JMS TemporaryQueue

JMS Provider

Gateway

HTTPS Request
“raw” data

HTTPS Response
“raw” data

XML
Enterprise
Message

JMS Message

RequestCommand
implementation

JMS Message

XML
Enterprise
Message

Step 2

Step 3

Step 4

Step 5Step 6

Step 1

Step 7

Implementing a JMS
Message Relay as a
Servlet

Step 1 - Non Java/XML aware application sends a foreign message format to the JMS Relay Servlet via its own proprietary mechnisms (HTTPS in this case).
Step 2 - JMS Relay Servlet takes foreign message format and builds an Enterprise Message Object using the OpenEAI APIs and an organization’s MOA.
Step 3 - JMS Relay Servlet produces the request on behalf of the application to the authoritative source.
Step 4 - Gateway for authoritative source consumes the request and executes the appropriate RequestCommand implementation based on the message
consumed.
Step 5 - Gateway for authoritative source returns a response to the JMS Relay Servlet.
Step 6 - JMS Relay Servlet consumes response from authoritative source and converts it back into the foreign message format appropriate for the requesting
application.
Step 7 - Non Java/XML aware application receives the HTTP Response from the JMS relay and populates its user interfaces with that data using its native
APIs.

Repository
The Authoritative

System

Figure 3 – Implementing a JMS Message Relay as a Servlet.

If PowerBuilder were a strategic direction for the University of Illinois, the OpenEAI API
would have been “wrapped” in such a way that the API could have been used directly
from the PowerBuilder applications. This would have involved turning the Java objects
into COM/ActiveX components for use by the PowerBuilder applications.

OpenEAI provides a MessageRelay reference implementation called the
JmsRelayServlet. To learn more about the JmsRelayServlet see the Javadoc.

Routing strategies

All examples listed in this section are for a fictitious system called the AnyERP system.
Its domain is any-erp-vendor.com. The artifacts mentioned in the examples can be found
in the OpenEAI CVS repository for additional reference information.

When data changes at an authoritative source, the enterprise must be notified of that
change according to the OpenEAI Message Protocol. In technical terms, this means a
synchronization message must be published by the authoritative source indicating what
enterprise message object has changed and what those changes were. Then any non-
authoritative system that wants to be informed of those changes can consume that sync
message and keep themselves up-to-date with the authoritative source. With OpenEAI

 Page 9 of 25

http://xml.openeai.org/docs/current/api/org/openeai/implementations/servlets/jmsrelay/JmsRelayServlet.html
http://www.openeai.org/openeai.xml?document=CvsRepository.xml&focus=N5000

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

this means that sync messages will be published to a JMS topic and everyone that
subscribes to that topic will get the message.

While JMS does provide mechanisms to filter message delivery, it is up to the client
application to set that filter. When data is being published from an authoritative source to
the entire enterprise, some of that data may not be relevant, or even worse, may not be
appropriate for one of those target systems. Therefore, OpenEAI recommends that these
situations be handled centrally via special infrastructure gateways called Routers. This
component consumes all sync messages published by all authoritative sources and
routes them to the appropriate target application based on what target systems are
interested in, the content of the message, or several other factors. Those factors are
completely determined by the implementation of the router. This way, an organization
doesn’t have to give all gateways access to all topics to which authoritative sources
publish messages. Those targets are simply given access to their own delivery topic and
the router delivers messages to them after it’s done its work. The centrally-managed
router is the only component that has subscription access to the topics to which
authoritative applications publish messages.

OpenEAI provides a reference implementation gateway called the EnterpriseTransRouter
that performs this function based on the type of message that was published, who’s
interested in that message, and what content within a message a non-authoritative
application is allowed to see. Additionally, it provides routing based on the content of the
message. This means that a message will be routed to an endpoint if the message
published is of a certain message category and message type and if it contains content
that makes it appropriate for that endpoint. See the OpenEAI Message Protocol
Document for a detailed description of message category, message type, and other
important elements of message structure.

There are several layers to this messaging infrastructure gateway. The first layer relates
to the type of message published. This includes the message category, message object,
and message action that was performed at the authoritative source. For example, a non-
authoritative application may only be interested in knowing when a new person is created
in an enterprise and not when their data is updated. In this case, it would be interested in
com.any-erp-vendor.Person.BasicPerson.Create-Sync messages but not com.any-erp-
vendor.Person.BasicPerson.Update-Sync messages. Another target may be interested
in all com.any-erp-vendor.Person.BasicPerson sync messages. This is all handled by
the main EnterpriseTransRouter SyncCommand implementation. These routing “rules”
are specified entirely within the configuration of the router. If a new target needs to be
routed to, there are no programming changes necessary in the router. That target is
simply added to the appropriate section of the router’s configuration in the deployment
descriptor of the router.

The next layer provides very specific content-based routing. The configuration of the
EnterpriseTransRouter allows an organization to specify routines that should be executed
prior to routing to a target, based on the content of the message consumed by the router.
These routines are simply Java classes that are invoked by the main
EnterpriseTransRouter SyncCommand implementation after it determines (based on the
category, type and action associated to the Sync message) that the target is interested in
the message. The RoutingCriteria classes look at specific message content and only
allow the message to be routed if that content is appropriate for the target. For example,
the gateway that was interested in all com.any-erp-vendor.Person.BasicPerson.Create-
Sync messages is only interested in com.any-erp-vendor.Person.BasicPerson.Create-

 Page 10 of 25

http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Syncs if the BasicPerson object in that message is of a certain “type”, otherwise, the
message shouldn’t be routed to the target application. These criteria can also be
incorporated into the router’s process with no code changes to the main routine itself. It’s
simply a matter of developing the RoutingCriteria class and referring to it in the
deployment descriptor for the router.

Authoritative source
consisting of OpenEAI

PubSubProducers
and an organization’s

MOA

JMS Topic

JMS Provider

XML
Enterprise
Message

Repository for the
non-authoritative

System

JMS Message JMS Message

Low-level API
invocation

Router
SyncCommand
implementation

Command
Execution

Business specific
SyncCommand
implementation

Business specific
SyncCommand
implementation

JMS Topic

JMS Topic

Repository for the
non-authoritative

System

Low-level API
invocation

Command
Execution

Command
Execution

JMS Message

JMS Message

Step 1 Step 2

Step 3

Step 4

Step 4

Step 5

Step 5

Step 1 - A business event occurs in the authoritative system and a synchronization message is published.
Step 2 - The enterprise router consumes the message.
Step 3 - Based on the configuration of the router, the message is routed to all other interested non-authoritative systems.
Step 4 - Non-authoritative systems consume sync message.
Step 5 - Business specific logic is executed by the gateway gating the non-authoritative systems to keep themselves up-to-date.

Routing Gateway consisting
of OpenEAI

PubSubConsumers, PubSubProducers
and an organization’s MOA

Gateway consisting
of OpenEAI

PubSubConsumers
and an organization’s MOA

Gateway consisting
of OpenEAI

PubSubConsumers
and an organization’s MOA

Routing Strategies

 Figure 4 – Routing from an Authoritative Source to Non-authoritative systems

It is important to note that this messaging infrastructure gateway is configured, deployed
and developed just like any other OpenEAI gateway. It uses all the same OpenEAI
foundation components that all other gateways use. The difference is that the
command(s) for this gateway are not intended for a specific business purpose or a
specific application or department in an organization. They are intended for a much more
general purpose. This is why this type of gateway is referred to as an “infrastructure”
gateway.

Refer to the OpenEAI API Introduction Document for more information regarding what
gateways are and how they’re developed. To learn more about the OpenEAI
EnterpriseTransRouter reference implementation, see the Javadoc for that reference
implementation.

 Page 11 of 25

http://xml.openeai.org/site/doc/ApiIntroduction.htm
http://xml.openeai.org/docs/current/api/org/openeai/implementations/gateways/transroutergateway/TransRouterCommand.html

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Proxy strategies

All examples listed in this section are for a fictitious system called the AnyERP system.
Its domain is any-erp-vendor.com. The artifacts mentioned in the examples can be found
in the OpenEAI CVS repository for additional reference information.

Routers control which sync messages get delivered from an authoritative source to
target gateways throughout an enterprise. Request proxies control which request
messages an application may send to an authoritative source. For example, the AnyERP
system is authoritative source for com.any-erp-vendor.Person.BasicPerson as it is
deployed within the fictitious enterprise, Any OpenEAI Enterprise. The AnyERP system
supports all the message actions for com.any-erp-vendor.Person.BasicPerson (create,
update, delete and query). However, it would be very impractical and complicated to
make the gateway for the AnyERP system know which message actions to allow based
on which application is sending the request. That is where messaging middleware
should come in…enter the Request Proxy.

A request proxy sits between a requesting application and an authoritative source (or, in
reality, between many applications and many authoritative sources—one deployment of
this infrastructure gateway should provide proxy services for many applications). The
requesting application sends a request to the proxy and the proxy determines, based on
the application making the request, the contents of the message, and potentially on other
supporting data that’s not included in the message, whether the requesting application is
allowed to send that request to its intended destination. If it is permissible, the request
proxy forwards the request to the destination on behalf of the requesting application and
returns the response from the authoritative source (the destination) to the requesting
application.

 Page 12 of 25

http://www.openeai.org/openeai.xml?document=CvsRepository.xml&focus=N5000

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Requesting Application
consisting of OpenEAI
PointToPointProducers
and an organization’s

MOA

JMS Queue

JMS TemporaryQueue

JMS Provider

XML
Enterprise
Message

XML
Enterprise
Message

Repository
The Authoritative

System

JMS Message

JMS Message

Command
Execution

JMS MessageJMS Message

Proxy
RequestCommand

implementation

Command
Execution

JMS Queue

JMS Message

JMS TemporaryQueue

JMS Message

JMS MessageBusiness specific
RequestCommand

implementation

Low Level
API Invocation

Step 1

Step 2

Step 3

Step 6

Step 4

Step 5

Step 7Step 8

Step 1 - Requesting application sends request
Step 2 - Request proxy consumes request
Step 3 - Request proxy forwards request to the authoritative source if the requesting application is authorized.
Step 4 - Authoritative source consumes request and executes appropriate business logic
Step 5 - Lower level business API is invoked by authoritative source gateway
Step 6 - Authoritative source returns response to request proxy
Step 7 - Request proxy returns response to requesting application
Step 8 - Requesting application consumes response from authoritative source by way of the request proxy.

Gateway consisting
of OpenEAI

PointToPointConsumers
and an organization’s MOA

Request Proxy consisting
of OpenEAI

PointToPointConsumers
and an organization’s MOA

Proxy Strategies

 Figure 5 – Proxying requests from un-trusted applications.

OpenEAI provides a reference implementation gateway called the
EnterpriseRequestProxy that serves this purpose. Like the EnterpriseTransRouter
mentioned above, there are several layers to this component. Also, like the
EnterpriseTransRouter, this gateway is an infrastructure gateway that provides general
EAI services implicit in general EAI requirements.

The first layer of the EnterpriseRequestProxy determines if the application sending the
request is authorized to send that request based on the sending application’s name, the
message category, message object, and message action of the request message. These
qualifiers are specified in the deployment descriptor of the request proxy. This function is
performed by the main RequestCommand implementation of the EnterpriseRequestProxy
gateway.

For example, say you want a web application to be able to query for any com.any-erp-
vendor.Person.BasicPerson object stored in the AnyERP system, but not be able to
create any new people. If the web application sends a com.any-erp-
vendor.Person.BasicPerson.Create-Request to the AnyERP system, the request proxy
will determine that the application is not authorized to send such a message to the
AnyERP system and it will return an appropriate error reply message (stating that the
application is not authorized to make such a request) to the requesting application.

 Page 13 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

The second layer to the Request Proxy includes a sort of content-based proxying. This
means, the request proxy will use specialized proxy classes associated with a requesting
application to ensure the data being sent is appropriate.

For example, a web application application can query the AnyERP system for all
com.any-erp-vendor.Employee.BasicEmployee objects, but it may only create a com.any-
erp-vendor.Employee.BasicEmployee if the content of a BasicEmployee indicates that
the employee is in one specific class (such as ‘full-time’) and if the employee already has
BasicPerson data in the AnyERP system. After the request proxy determines that the
application can create a BasicEmployee by the first layer of the proxy, it is instructed via
its deployment document to execute a special proxy class that will look at the actual
content of the message being sent and determine if it’s appropriate. Additionally, this
class will query the AnyERP system to determine if that particular employee that the web
application would like to create already has person data in the AnyERP system. If all this
turns out to be copasetic, then the request proxy will actually proxy the request for the
web application and return the reply from the AnyERP system to the web application. If
the employee is of the wrong class or if the employee does not yet have person
information in the AnyERP system, the request proxy will refuse to proxy the request and
send the appropriate error reply to the web application stating that it is not authorized to
perform the action it is requesting.

It is important to note that both the EnterpriseRequestProxy and the
EnterpriseTransRouter use facilities already available to them to make many of these
determinations. They use the same type of deployment descriptor that all OpenEAI
based gateways used. They both use the standard PointToPointConsumer and
PubSubConsumer foundation objects as well. The functionality of the gateways is
entirely encapsulated within their RequestCommand and SyncCommand implementation.
They simply use the bi-products of the deployment descriptor to make their initial decision
and other properties associated to the command implementations that tell them the other
actions they may need to perform.

To learn more about the OpenEAI EnterpriseRequestProxy reference implementation see
the Javadoc for the EnterpriseRequestProxy.

Mainframe applications

Although it is possible to message Java-enable mainframe applications natively in
organizations that keep their mainframe system software current (that is, where you can
deploy Java and other current software), this appears to be rather uncommon. In the
organizations we have worked in or worked with so far, most are migrating away from
mainframes or, those that are continuing to operate them are running somewhat dated
configurations that do not allow for the use of Java and other current technologies. The
OpenEAI Project would really like to work with an organization that is interested in
making mainframe applications message-aware and running Java on their mainframe.
We realize that there are many enterprises that use the mainframe as a modern
enterprise application server and database server. In this section, however, when we say
“mainframe applications” we are generalizing to mean mostly legacy COBOL and IMS
applications.

In the integration scenarios OpenEAI Project participants have worked with so far,
mainframe applications are integrated through more traditional methods, such as the use

 Page 14 of 25

http://xml.openeai.org/docs/current/api/org/openeai/implementations/gateways/requestproxy/EnterpriseRequestProxyCommand.html

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

of flat files. Generally, a number of flat files are already produced or used by mainframe
application batch processes that can be used as feed or extract points. In some cases,
the capability and knowledge exists in organizations to write new programs for mainframe
applications to process new file formats as input or to extract new file formats as output.
However, this capability and knowledge may be almost as rare as the willingness of IT
management to sanction modifying a legacy mainframe application.

The most common strategies we have employed so far involve developing scheduled
applications that iterate through mainframe extract files and turn extract records into
enterprise messages, or developing gateways that consume enterprise messages and
create flat files that can be processed by the mainframe application. Both of these
techniques will be discussed here.

The first scenario involves the following basic steps:

1. Create the flat files using some mainframe job. The layout of these files will vary
based on the types of transactions and the data. They will typically be fixed-
length record files that follow a specified record layout.

2. Iterate through the records of the file or files with a Java application that is

message enabled using the OpenEAI foundation components.

3. Turn the transactions in those files into enterprise messages using a specialized
input layout manager. See the OpenEAI API Introduction Document for more
details on layout managers and how they are used.

4. Execute the transactions via request or synchronization messages, depending on

whether or not the mainframe system is considered the authoritative system.

The mainframe job will create the flat files. The Java application will take the contents of
the flat file and turn each transaction into an enterprise message using the specialized
input layout manager. Then the application will use the organization’s MOA and either
PubSub or PointToPoint producers to either publish a sync message or send a request
message.

The second scenario involves the following steps:

1. Develop a gateway to consume synchronization messages from authoritative
applications. This involves developing SyncCommand implementations that will
be executed by the PubSubConsumer whenever a message is delivered. These
commands will take the enterprise messages and use a specialized output layout
manager that will create flat files that correspond to the format that can be
processed by a mainframe job.

2. Develop (or use an existing) mainframe job that will take the flat file created by

the gateway and persist these transactions.

When the gateway for this integration consumes a synchronization message from an
authoritative system, it will take that message and convert it into a flat file record or
records using the specialized output layout manager. This process produces a flat file
that can be processed by the mainframe job to reflect these transactions in the
mainframe application.

 Page 15 of 25

http://xml.openeai.org/site/doc/ApiIntroduction.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Polling Strategies

When data changes in an authoritative system, it must publish synchronization messages
so that other systems can keep themselves up-to-date as data changes in the
authoritative system. These synchronization messages must be published when data
changes both through request/reply messaging activity and through any other online or
batch activity in the system through its own user or batch interfaces. However,
sometimes it is too costly to make an authoritative system natively message-aware. In
these cases, OpenEAI recommends the implementation of another type of application
that detects changes in an authoritative system and publishes the synchronization
messages on behalf of that system without making any changes to the authoritative
system itself. These applications are called polling applications.

Polling applications leverage another OpenEAI foundation component called a scheduled
application. These applications are configured very similarly to a message gateway or a
message-aware application. The OpenEAI Application Foundation APIs (AFA) provide a
mechanism that allows specific business logic (ScheduledCommands) to be executed
according to flexible schedule. See the OpenEAI API Introduction Document for details
on the scheduled application foundation.

A polling application checks for business transactions that have occurred in an
authoritative system on a regular interval and publishes these transactions to the rest of
the enterprise when they are detected. Typically, they will use low-level APIs to retrieve
information from the authoritative system and compare it to the last known state of the
enterprise objects that may have been involved in business events. Based on that
comparison, the polling application publishes synchronization messages on behalf of the
authoritative system indicating the nature of any changes to the rest of the enterprise.

Synchronization Message Logging

When a message-aware application requests that an action be performed at an
authoritative source, there is someone or something waiting for a response to that
request. This may be a person using a message-aware application (such as a servlet or
a client/server application) or a batch application running during the late night hours.
Regardless of the type of application making the request, with request/reply messaging,
there is an opportunity to handle any errors that may occur in the target application
immediately. When a request is produced, a reply must be returned.

When synchronization messages are published, they are delivered to endpoints that
process these messages without any person or system waiting on a response saying that
everything was processed successfully, or that there were errors. Because of the
asynchronous modality of this communication, it is necessary to be able to keep a record
of all these synchronization messages. Since a person isn’t waiting on a response, there
must be a way to review messages published after the fact if a consuming gateway
encounters problems when processing the message. These logged messages can be
used later when debugging problems or to send the message through again as it was
originally published. Of course, this must be performed cautiously since other changes
may have come through for the object in question and those changes cannot be lost.

 Page 16 of 25

http://xml.openeai.org/site/doc/ApiIntroduction.htm

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

This type of infrastructure gateway is called a synchronization message logger. The
reference implementation for this function provided by the OpenEAI Project is
implemented in the EnterpriseLoggingService. Specifically, it is implemented by the
EnterpriseSyncLoggerCommand. This EnterpriseLoggingService is another
infrastructure gateway, which consumes all messages delivered to an organization’s
“synchronization logging topic” and persists these messages in their entirety. The
repository is a very simple structure that allows the entire message to be stored and
correlated to a message id associated to the message when it was published. Generally,
one “synchronization logging topic” should be sufficient for most organizations (multiple
gateways will subscribe to that one topic of course).

All OpenEAI PubSubProducer objects can be configured to publish messages not only to
an intended JMS topic but also to the logging topic. The configuration item that provides
this facility is the LoggingProducer associated with a ProducerConfig object in an
application’s OpenEAI deployment descriptor. This LoggingProducer will be used by the
producer being configured to publish the message to the organization’s logging topic at
the same time it publishes the message to the intended topic from which business
applications (or maybe a sync message router) will consume messages. This effectively
makes a copy of the message. This way, an organization can keep a history of every
synchronization message published. This is important for synchronization messages
because typically they are published and processed when no one is looking.

To learn more about the OpenEAI sync message logging reference implementation see
the Javadoc for the EnterpriseSyncLoggerCommand.

Synchronization Error Message Logging

When a request is sent to an authoritative system, errors that occur while performing the
request are returned immediately by the gateway of the authoritative system. When a
non-authoritative system consumes a synchronization message, any errors that occur
while processing the message must be published to the “synchronization error topic.”
Another infrastructure gateway, called the sync error message logger, consumes these
error messages and persists them for later analysis.

All SyncCommand implementations must have a PubSubProducer named
“SyncErrorPublisher” associated with them. Additionally, they must have a
PropertyConfig object named “SyncErrorSyncProperties” which contains a property
named “SyncErrorSyncPrimedDocumentUri” which points to a “primed”
org.openeai.CoreMessaging.Sync.Error-Sync message document. These objects are
used to publish the error message when an error occurs processing the message
consumed by the non-authoritative system. These errors can then be correlated to the
message that was originally published (and logged). With these two pieces of data,
integration administrators and/or support analysts can make decisions about what
caused a sync message consumption error and how to rectify it.

The reference implementation for this function provided by the OpenEAI Project is
implemented in the EnterpriseLoggingService. Specifically, it is implemented by the
EnterpriseSyncErrorLogger command. To learn more about the OpenEAI sync message
logging reference implementation see the Javadoc for the EnterpriseSyncErrorLogger
command.

 Page 17 of 25

http://xml.openeai.org/docs/current/api/org/openeai/implementations/services/els/commands/EnterpriseSyncLoggerCommand.html
http://xml.openeai.org/docs/3.0/api/org/openeai/implementations/services/els/commands/EnterpriseSyncErrorLogger.html

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Callout Strategies

When an organization determines that it is acceptable to make changes to an application
to make it message-aware, there are several strategies that can be employed. Most
business systems are based on some sort of data repository. This section discusses
strategies that have been employed to message-enable database applications. Again, it
is not intended to be a full treatment of this topic; it is only intended to provide some
background on techniques that have been employed using the OpenEAI supporting APIs
to date and serve as a starting point for you to start thinking more about how OpenEAI
could be incorporated into your own applications. Database management systems
(DBMS) have varying potential when it comes to making them message-aware.
Examples include the ability to run Java within the database, invoking other callout
techniques like RMI, TCP, or even calling servlets.

For example, applications based on an Oracle database have the ability to invoke
Oracle’s Java Stored Procedures. These are simply Java classes that are exposed as
stored procedures to the database runtime system. Then, as the application is used,
these stored procedures can be invoked. The stored procedures can then use an
AppConfig object just like any other OpenEAI-based application to store and retrieve pre-
initialized foundation components and MOA objects to make the application message-
aware. When activities are performed within the database, these pre-configured objects
can be used to notify the rest of the enterprise of the activities through synchronization
message publication.

Another example for Oracle-based systems uses RMI (Remote Method Invocation) to
invoke logic in a RMI server process that is an OpenEAI Scheduled Application (daemon
application) that marshals objects created in the database into enterprise message
objects and notifies the enterprise of the actions performed within the database.

Other databases may have the ability to invoke other external applications, such as
servlets, or to perform simple TCP/IP communication. In these cases, the technique is
similar to a message relay strategy, because the data associated with the database
action must be converted into an enterprise message object and the state of that object
must be made known to the rest of the enterprise.

 Page 18 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

Appendix 1: The GNU Free Documentation License

 GNU Free Documentation License
 Version 1.1, March 2000

 Copyright (C) 2000 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a

 Page 19 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept

 Page 20 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

 Page 21 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to
 it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications",
 preserve the section's title, and preserve in the section all the
 substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"
 or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

 Page 22 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for

 Page 23 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

 Page 24 of 25

www.OpenEAI.org Copyright 2003, OpenEAI Software Foundation

OpenEAI Implementation Strategies 1.0 January, 2003

$Revision: 1.15$
$Date: 3/11/2003 2:05:36 PM$
$Source: /cvs/repositories/openeai/project/documentation/core/ImplementationStrategies.doc$

 Page 25 of 25

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

	Open EAI Implementation Strategies Version 1.0
	Jan 2003 Tod Jackson and Steve Wheat, OpenEAI Software Foundation
	Contents
	Introduction
	Scenarios
	Java Application
	Java-Aware Application
	Gating Strategies
	Proprietary Products that are not Java- or XML-Aware
	Routing strategies
	Proxy strategies
	Mainframe applications
	Polling Strategies
	Synchronization Message Logging
	Synchronization Error Message Logging
	Callout Strategies

	Appendix 1: The GNU Free Documentation License

	
	OpenEAI Title Page

