
www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

OpenEAI API Introduction
Version 1.0

January, 2003

by

Tod Jackson (tod@openeai.org)

Steve Wheat (steve@openeai.org)

Copyright © 2002, 2003 OpenEAI Software Foundation.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Section being the first section entitled “Introduction”, with no Front-
Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section
entitled "Appendix 1: GNU Free Documentation License".

 Page 1 of 71

mailto:tod@openeai.org
mailto:steve@openeai.org

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

Contents

Introduction
Helpful Definitions

Application
Scheduled Application
Message Gateway
Message Relay
Messaging Enterprise
Analysis Template
Deployment Descriptor
Enterprise Object Document

Integration Process Overview
Perform Analysis
Define Messages
Generate Java Message Objects
Develop, Document, and Test Messaging Applications
Update Enterprise Documentation Artifacts
Deploy in Production

OpenEAI Foundation Components
JMS Foundation
Enterprise Messages
Java Message Objects
Other Foundation Components

Java Message Object Details
XML Enterprise Objects
JMS Enterprise Objects
Performing Request Message Actions
Performing Synchronization Message Actions
Building Messages

Developing Messaging Applications
AppConfig
Scheduled Applications
Message Gateways

OpenEAI Deployment Descriptor
OpenEAI Enterprise Object Document

Introduction

Work on the OpenEAI API began in March 2001 at the University of Illinois. The purpose of this
work was to provide foundation components with which to implement integrations using the
OpenEAI Message Protocol. While the benefits of describing data using XML are widely
understood and generally accepted today, the fact remains that building and manipulating XML
documents is programmatically challenging for many developers, and gets really boring very fast
for nearly all developers. For these reasons, the work is highly prone to error.

It would be ideal if developers did not have to use their knowledge of XML to programmatically
build or manipulate every XML message at the document level. It would be ideal if developers
did not have to use their knowledge of and the Java Message Service (or any other transport an

 Page 2 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

organization may need to employ in interfacing specific applications) to send, receive, or
consume messages. If developers had a business-object-oriented API, with objects that looked
like the enterprise data objects defined by an organization in its messages (such as BasicPerson,
BasicEmployee, InstitutionalIdentity, DriversLicense, EmergencyContact, HonorAward,
LicenseCertification, WorkHistory, AdmissionApplication, TestScore, or whatever else), they
could simply focus on implementing the business logic provided to them by analysts (or that they
came up with by working with the design team, depending upon how the organization performs
analysis and development).

At its heart, the OpenEAI API is this business-object-oriented API for building integrations.
Specifically, this business-object-oriented API is the OpenEAI Message Object API, referred to as
the MOA. OpenEAI Java Message Objects know how to build themselves from XML and
serialize themselves to XML. They know how to build all the messages specified by the OpenEAI
Message Protocol and send them using a JMS provider. They know how to translate the
application-specific values for data fields for application X and translate them to enterprise values.
They know how to take enterprise values and translate them to appropriate application-specific
values for application Y. They know how to enforce the presence of required fields. They know
how to enforce formatting masks. They know how to execute scrubbers on data to address
complex transformation and formatting that may not be so easily generalized. And they know
how to do a lot more.

Since business objects are most often specific to an organization, each organization is going to
have its own message object definitions and Java Message Objects or MOA. Sure, some
organizations and industries will standardize and agree to use common definitions for some
business objects, and some already have. However, for the vast majority of data that
organizations need to pass between their own systems, there are no standard definitions, and
organizations need to work quickly to meet their own requirements and internal deadlines. It
would be great if all the complex EAI and JMS capabilities of message objects could be inherited
from OpenEAI foundation objects, making OpenEAI Java Message Objects easy to implement,
matching each organization’s message object structures.

Well, this is exactly how it works! As it turns out, it’s even better. All of the JMS and EAI behavior
of Java Message Objects is implemented in ancestor classes provided in the OpenEAI
foundation. The Java Message Objects that must be developed for an organization’s own MOA
are so straightforward that they can be programmatically generated from XML message
definitions by an MOA generation application provided by the OpenEAI Project. So, the
development of a business-object-oriented API becomes a non-step in the integration project
lifecycle. It’s simply a byproduct of defining enterprise data objects in XML.

The rest of the OpenEAI foundation components were developed over time to facilitate the use of
these business objects in one way or another. Layout managers were developed to implement
serialization of these objects to and from various formats such as XML, flat files, and stored
procedure calls. Enterprise field foundation was implemented to allow analysts to specify
enterprise values and application-specific values and to perform translations to and from these
values. Scheduled application and message consumer client foundation was implemented to
provide generic, runnable applications that serve as containers for specialized commands. These
commands are where the business logic of integrations is implemented using the XML-, JMS-,
and EAI-aware business objects. Application configuration foundation and a common
deployment descriptor were developed to allow developers and deployers to configure messaging
applications systematically, and to enable contemporary deployment patterns, such as storing the
configuration files for distributed applications that may run in many instances on many servers in
a central directory server or web server and retrieving them via a secure protocol at runtime.

 Page 3 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

The OpenEAI API is an especially critical aspect of the OpenEAI Project. The OpenEAI Message
Protocol, Methodology, and Implementation Strategies could be used by themselves. They are
concepts that have proven useful in a number of ways for thinking about the dynamics of
integration applications, for performing integration analysis, and for organizing an enterprise that
is integrated using messaging. However, the fact that the OpenEAI Project takes these ideas and
provides a set of APIs to implement them makes the protocol, methodology, and implementation
strategies so effective. We can learn much from actually implementing these concepts and
building real integrations to run our organizations, and what we learn can be used to refine and
extend the underlying theory.

The OpenEAI API for implementing enterprise integrations is based on several other
architectures, concepts, and foundation. These include:

• Java 2 Platform Enterprise Edition, specifically core Java itself and specifications
within the J2EE platform such as the Java Naming and Directory Interface (JNDI) and
the Java Message Service (JMS).

• The Extensible Markup Language (XML) and specific XML parsing and manipulation

foundation such as Xerces, Xalan, and JDOM.

Throughout this document, there are both code examples and XML examples. The OpenEAI
Project also maintains reference implementations of real-world messaging applications that are
used by one or more organizations to integrate production enterprises, as well as a complete
sample messaging enterprise. The sample messaging enterprise is intended to serve as a
leaning tool and pattern reference. It is intended for use in conjunction with the Getting Started
with OpenEAI document. If you have not already read this document and followed through the
example enterprise, you may want to peruse it quickly. It will help you focus in on the area of
OpenEAI you want to explore first, depending on your role in your organization. The Getting
Started document also serves as a guide to the OpenEAI Core Documentation Suite. You
probably need to have a general understanding of the OpenEAI Message Protocol and OpenEAI
methodology to best understand OpenEAI API.

The OpenEAI API can be classified into ten general areas of foundation. These are the areas
and their corresponding package names.

1. Application foundation (org.openeai.afa)
2. Application configuration (org.openeai.config)
3. Enterprise Message Object API foundation (org.openeai.moa)
4. JMS Foundation (org.openeai.jms)
5. Enterprise Layout Manager foundation (org.openeai.layouts)
6. Enterprise Scrubber foundation (org.openeai.scrubbers)
7. Enterprise Database Connection pool foundation (org.openeai.dbpool)
8. ThreadPool foundation (org.openeai.threadpool)
9. XML Utilities (org.openeai.xml)
10. Reference implementations (org.openeai.implementations)

The official API documentation (javadoc) is available for download and online browsing. This
document describes how components from these packages are used, and provides examples.

As we write, the current release of the OpenEAI API is 3.0 beta 2. The precursor of the OpenEAI
API, the University of Illinois EAI API, was released internally at the University of Illinois in

 Page 4 of 71

http://java.sun.com/j2ee/
http://java.sun.com/products/jndi/
http://java.sun.com/products/jms/
http://www.w3.org/XML/
http://xml.apache.org/xerces2-j/index.html
http://xml.apache.org/xalan-j/index.html
http://www.jdom.org/
http://www.openeai.org/openeai.xml?document=ReferenceImplementationDepartment.xml&focus=N2500
http://xml.openeai.org/site/doc/GettingStarted.htm
http://xml.openeai.org/site/doc/GettingStarted.htm
http://www.openeai.org/openeai.xml?document=Documentation.xml&focus=N3010
http://www.openeai.org/openeai.xml?document=ApiDocumentation.xml&focus=N3020

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

December 2001 (release 1.0) and again in June 2002 (release 2.0), and is currently used in
production at the University of Illinois. Both the University of Illinois and SCT Corp. are testing the
3.0 beta release of OpenEAI. As soon as a site that practices OpenEAI uses the 3.0 release
satisfactorily in production, the project will provide a final 3.0 release. The OpenEAI Project
promotes software from ‘beta’ to an official release only after it has both completed rigorous
testing by the OpenEAI project and been successfully used in production by at least one site that
practices OpenEAI.

The OpenEAI API is maintained by the OpenEAI Project (info@OpenEAI.org). This document
was originally written by Tod Jackson (tod@openeai.org) and Steve Wheat (steve@openeai.org)
in 2001 and 2002 and published in January 2003.

Helpful Definitions

This section provides brief definitions of some key terms that will be used throughout this
document. Each of these will be described in more detail later on.

Application

An application will be involved in the production and/or consumption of enterprise
messages. It will typically be the initiator of a messaging conversation. For example, an
employee self-service application that requests emergency contact information from the
enterprise’s ERP system.

Scheduled Application

A scheduled application can start, execute some logic and exit, or can run as a daemon
application that runs continuously and executes business logic on a configurable
schedule. This is a common requirement for integration applications. For example, you
may be familiar with requirements to check a directory for a URI for a file at a specified
interval to see if a mainframe extract file has been dropped off. You may need to check a
database table for changes or pending transactions every so often. When it comes to
integration tasks, there are about a million things you could have to do on an interval-
based schedule. After doing quite a few, it becomes clear that some integrations become
much more efficient (and less latent) if you do not have to rely upon scheduling things
every minute or every second. Optimally, you need the flexibility to schedule some things
to happen within the bounds of a single second. The OpenEAI Scheduled Application
foundation provides the ability to encapsulate business logic in individual components
(commands). These commands can be executed according to a defined schedule
associated with the application. This serves several purposes:

• Allows a generic “main” class for all applications that need to run in this fashion.
This generalizes some of the standard application startup code, but more
importantly, it allows a generalized startup mechanism for all applications, such
as a common start script, service deployer, or administration console. This is an
important consideration when deploying applications. It can become very
confusing to support a different startup mechanism for each application if they all
have a unique way to be configured and started.

 Page 5 of 71

http://www.openeai.org/
mailto:info@OpenEAI.org
mailto:tod@OpenEAI.org
mailto:steve@openeai.org

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

• Execute immediately and exit (type=Application). This means the application will

execute just like any “normal” application one might think of. The application will
start, it will execute the business logic associated to it immediately, and it will
exit. This is similar to a normal Java class with a “main” routine.

• Execute immediately and go back to sleep (type=Triggered). This means the

application will start, execute the business logic associated to it immediately, and
then wait for a signal to tell it to stop. This is useful if you want the business logic
itself to have more control over the life of the application.

• Execute on a given day(s) at a given time(s) (type=Daemon). This means the

application will start, then utilize a flexible scheduling facility (which is part of the
OpenEAI API) to determine when business logic should be executed. After it has
executed that business logic, it will wait until the next scheduled initiation to
execute the business logic again. This is useful for long-running applications that
need to execute the same, or different, business logic over and over again on a
regular interval.

Message Gateway

A message gateway is a daemon application that consumes messages in the
publish/subscribe model, point-to-point model, or both. It is used to expose an existing
application that is authoritative for some data to the rest of a messaging enterprise
through request/reply messages or to consume synchronization messages from
authoritative application to keep itself up to date.

Specifically, a message gateway may consume a request message, execute or invoke
appropriate business logic to process the request message, and return the reply
appropriate to the request it consumed. It may also need to publish a sync message
appropriate to the action of the request. Alternately or in addition, it may consume
synchronization messages, execute or invoke the appropriate business logic to process
each sync message, and publish an Error-Sync message if it encounters errors
processing a sync message it consumed.

See the section entitled “Implementing Message Support” in the OpenEAI Message
Protocol Document for details on which messages a gateway may need to support,
depending on whether it is or is not the application authoritative for one or more
enterprise message objects.

Similar to the scheduled application foundation, the message gateway foundation
provides the ability to encapsulate business logic, or the invocation of application
business logic, in individual components (commands). Then, when messages are
consumed, the appropriate command is executed to process each message, and it
replies in the case of requests or publishes a Sync-Error message if a sync message is
unsuccessfully processed.

 Page 6 of 71

http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

Message Relay

A message relay is a useful infrastructure component for making applications message-
aware that are JMS-unaware and/or XML-unaware. A message relay is typically a
daemon application or servlet that serves as an intermediary between a JMS-unaware
application and the rest of a JMS-aware messaging enterprise. It can relay messages
between applications that are JMS-aware and those that may only be able to send or
receive messages with other, more traditional transport protocols such as TCP, HTTP,
and HTTPS. In addition to transport bridging, a relay can also be useful in bridging
message protocols. Some technologies that cannot easily be made JMS-aware also
cannot easily be made XML-aware. For more details on the concept and implementation
of message relaying, see the OpenEAI Implementation Strategies Document.

Messaging Enterprise

The messaging enterprise is the combination of all messaging applications, gateways,
relays, proxies, and other messaging infrastructure applications that are deployed to
integrate and manage messaging within an organization.

Analysis Template

The analysis template is used to document integration analysis and define the enterprise
messages needed for a particular integration. Additionally, it defines the production and
consumption logic for those messages. This document must be completed before any
serious development work can begin. See the OpenEAI Methodology Document for
more details on the OpenEAI analysis template.

Deployment Descriptor

This is an XML document structure used to configure all messaging applications and
gateways that use OpenEAI foundation components. This document is constrained
according to the configuration options of the OpenEAI foundation components to provide
a clear and uniform way to configure applications.

Enterprise Object Document

This is another XML document structure that OpenEAI Java Message Objects use to
apply business rules to their data in their member fields. The rules are specified in
enterprise object documents and implemented by the message objects when data is put
into the member fields via setter methods.

Integration Process Overview

Details of the recommended OpenEAI integration process are covered in the OpenEAI
Methodology Document. The following brief overview is intended to help place the use of the

 Page 7 of 71

http://xml.openeai.org/site/doc/ImplementationStrategies.htm
http://xml.openeai.org/site/doc/Methodology.htm
http://xml.openeai.org/site/doc/Methodology.htm
http://xml.openeai.org/site/doc/Methodology.htm

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

OpenEAI foundation components in the context of the development, documentation, and testing
phases of the integration process.

Perform Analysis

Once the systems that need to be integrated are identified, an analysis group or team
comprised of business, functional and technical integration analysts complete the
OpenEAI analysis template, or their organization’s customized version of the template,
for each application that must be interfaced. Among other things, the template
documents general integration requirements, specifies which existing message objects
will be used and which new message objects will be required, defines new message
objects, specifies which message actions of the OpenEAI Message Protocol will be
required for each message object, enumerates the messaging applications, gateways,
and infrastructure that must be developed to implement the integrations, and enumerates
detailed message production and consumption logic.

Define Messages

Once any new enterprise message objects and the message actions for them have been
defined through the process of completing the OpenEAI analysis template, technical
integration analysts create the XML message definitions for the new messages in the
organization’s message hierarchy and provide one sample message for each definition.

Generate Java Message Objects

Next, the message definitions are implemented as Java objects. A Java object must be
created for every complex enterprise business object defined. These Java objects are
automatically generated using the OpenEAI MoaGenApplication; message definitions are
prepared by integration analysts.

Develop, Document, and Test Messaging Applications

The details of this phase will vary from organization to organization: many organizations
already have application development and testing practices established. However an
organization chooses to implement them, the following guidelines should be considered.

1. Developers and analysts prepare detailed, technical stories for each messaging

application and gateway listed in the completed analysis. These stories will draw
heavily on the message production and consumption logic prepared by the functional
staff and analysts and included in the analysis template.

2. Developers implement the appropriate messaging applications and gateways listed in

the template using OpenEAI foundation components, the message object API that
was generated for the organizations enterprise message objects, and the enterprise
object documents completed by the functional staff and analysts. When developing

 Page 8 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

an OpenEAI based application or gateway, this means developing the commands
needed to support the processes defined in the analysis.

3. While steps one and two above are proceeding, integration analysis staff can prepare

OpenEAI TestSuiteApplication test suite documents for testing the message
gateways that are to be developed. Test suite documents are XML documents
comprised of messaging test cases. The OpenEAI TestSuiteApplication can take a
test suite document and execute all its test cases very rapidly: it sends test
messages to a target application and compares the replies received and sync
messages published by the target application with expected results, produces a
detailed report, and can even tear-down any messaging artifacts or database entries
created as a result of the TestSuite execution. Functional staff and analysts are
typically the best equipped to prepare these test suite documents, because they are
the people who specified the integration requirements and message production and
consumption logic to begin with. Developers can perform this work, but if they do the
functional staff and analysts should review and approve the test cases as being
representative of the requirements.

It’s useful for developers to have these test cases available to them during the
development process: as they implement message support they can iteratively
execute the test suite using the OpenEAI TestSuiteApplication to check their
progress and to verify that changes they make do not break anything.

At this time, functional staff and analysts also prepare real-world online and batch
scenarios to test the new messaging applications and gateways in integration with
the rest of the messaging enterprise in a test environment.

4. All messaging applications and gateways pass both informal developer testing and

all of the formal test suites executed by the TestSuiteApplication.

5. The new messaging applications and gateways are promoted from a development
environment to a test environment for integration testing, and the real-world online
and batch scenarios are executed until the functional staff and analysts are
convinced the new applications are performing appropriately. Note that although the
practice of preparing test suites and unit testing messaging applications can be very
effective at ensuring that messaging applications perform as designed, it may not
help validate that the design is correct. From time to time, integration testing with the
rest of the messaging enterprise turns up new requirements, such as identifying
additional applications that need to know about data from a new authoritative source.
For this reason, integration testing is a critical part of the process. It is also the part
of the testing process that gives management a tangible level of confidence that it is
appropriate to proceed with a production implementation.

Update Enterprise Documentation Artifacts

Practicing the OpenEAI methodology produces a number of documentation artifacts,
including an analysis template for each application that interfaces with other applications,
enterprise data object definitions, message definitions, and javadoc for commands that
implement support for each message object. These artifacts should be posted in a web-
accessible format. For example, message definitions and enterprise object documents

 Page 9 of 71

http://xml.openeai.org/docs/current/api/org/openeai/implementations/applications/testsuite/TestSuiteScheduledCommand.html

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

should be posted on a web server so that messages can be validated when necessary
and so that field-level business rules and translations can be applied by Java Message
Objects at runtime. This practice allows you to build a web page to nicely document each
messaging application or gateway, linking to and leveraging each of these artifacts that
must be created anyway.

The OpenEAI Methodology Document recommends a format for these web pages. Just
as your organization may customize the analysis template or the OpenEAI methodology
itself, you will likely choose to customize the web documentation template as well. This
web page can be posted on your organizational web site or intranet. Posting this
documentation helps managers, functional analysts, and technical analysts plan and
prepare for new integrations. Additionally, many organizations have auditing or best-
practice requirements that mandate the preparation of some type of formal
documentation for each integration. Posting this documentation as a web page makes
this information available to those who need it. In some cases, it can even be helpful to
complete and post most of this template prior to or during the development phase.

Deploy in Production

There’s not much to say about this step from an overview perspective, since if you get to
this point, most of the work has already been done. If you follow the recommended
OpenEAI practices for testing in pre-production environments, deploying in production
should be anticlimactic. The OpenEAI Deployment Patterns Document provides details
on the minimum number of recommended environments you should set up for a
messaging enterprise and how and when to promote messaging application and
gateways from one environment to the next.

OpenEAI Foundation Components

JMS Foundation

This includes four types of messaging components specifically designed for JMS
messaging. They include:

• PointToPoint producers for producing requests to JMS queues and handling
a reply

• PubSub producers for publishing messages to JMS topics
• PointToPoint consumers for consuming requests from JMS queues and

returning a reply
• PubSub consumers for consuming messages from JMS topics

These components will be used by applications and gateways to produce or publish to
other applications in a messaging enterprise and to consume enterprise messages from
other applications in a messaging enterprise. These components simplify the process of
making an application JMS-aware. They can be used in Java and non-Java applications

 Page 10 of 71

http://xml.openeai.org/site/doc/Methodology.htm
http://xml.openeai.org/docs/current/api/org/openeai/jms/producer/PointToPointProducer.html
http://xml.openeai.org/docs/current/api/org/openeai/jms/producer/PubSubProducer.html
http://xml.openeai.org/docs/current/api/org/openeai/jms/consumer/PointToPointConsumer.html
http://xml.openeai.org/docs/current/api/org/openeai/jms/consumer/PubSubConsumer.html

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

alike. By using these objects, consistency and simplicity is ensured in the development
of JMS-aware applications without requiring all developers become JMS experts.

Enterprise Messages

Enterprise messages are the definitions of enterprise business objects that will be used in
integrations as well as the actions that will be performed on those objects. These are defined
during integration analysis and are implemented as constrained XML. They constitute the
"contract" with any application or gateway involved in an organization’s messaging enterprise.
Refer to the OpenEAI Message Definitions Document and the OpenEAI Message Protocol
Document for more details regarding the definition of enterprise messages and the protocol.

Java Message Objects

These are Java objects that "wrap" the enterprise message objects defined using XML. This
exposes an API (the Message Object API, or “MOA”) to developers of messaging
applications and gateways. The MOA simplifies the implementation of these applications.
With an MOA, application developers can function effectively even without a great deal of
knowledge of JMS and XML. Instead, they just need to be familiar with the Java API. This
also opens the door for development languages like ColdFusion, PERL, and any other
language that can instantiate and call methods on Java objects to use this same API without
have to use a specialized set of XML libraries and more rudimentary communications
protocols like TCP, HTTP, HTTPS, etc. In essence, Java message objects summarize
enterprise messages into a common, re-usable set of objects that can be used consistently in
many different application development environments.

Other Foundation Components

The following are peripheral OpenEAI foundation components:

• database connection pools (org.openeai.dbpool package)
• thread pools (org.openeai.threadpool package)
• producer pools (org.openeai.jms.producer package)
• scheduled application foundation (org.openeai.afa package)
• XML utilities (org.openeai.xml)

Additional information regarding these APIs may be included in this document at some point
in the future.

Java Message Object Details

All examples listed in this section are for a fictitious system called the AnyERP system. Its
domain is any-erp-vendor.com. The artifacts mentioned in the examples can be found in the
OpenEAI CVS repository for additional reference information. The official API documentation
(javadoc) is also available for download and online browsing.

 Page 11 of 71

http://xml.openeai.org/site/doc/MessageDefinitions.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/site/doc/MessageProtocol.htm
http://xml.openeai.org/docs/current/api/org/openeai/dbpool/package-summary.html
http://xml.openeai.org/docs/current/api/org/openeai/threadpool/package-summary.html
http://xml.openeai.org/docs/current/api/org/openeai/jms/producer/package-summary.html
http://xml.openeai.org/docs/current/api/org/openeai/afa/package-summary.html
http://xml.openeai.org/docs/current/api/org/openeai/xml/package-summary.html
http://www.openeai.org/openeai.xml?document=CvsRepository.xml&focus=N5000
http://www.openeai.org/openeai.xml?document=ApiDocumentation.xml&focus=N3020

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

Important note: all of these objects can be automatically generated using the OpenEAI
MoaGenerationApplication reference implementation application. This application also takes care
of generating the appropriate build…Message methods in the case of an object requiring a
different buildQueryMessage or buildGenerateMessage implementation. Additionally, if
the object doesn’t support a particular action, it will add the code necessary to throw the
appropriate exception. It can do this because all of the information required to make these
programming decisions is available in the message definitions and sample messages that an
organization prepares during the analysis process. If your organization follows the directory
structure recommendations for organizing these artifacts included in the OpenEAI Message
Definitions Document, the MoaGenerationApplication can read that structure and generate your
entire MOA code for you. The detailed descriptions provided in this section are solely
provided to clarify what is going on under the covers. They can be particularly helpful for
developers and architects who are looking to build their own implementation of this functionality.
Users of the OpenEAI API can remain largely unaware of these mechanics if they desire.

As mentioned above, message objects can be of two types: XML-aware or both XML- and JMS-
aware.

XML Enterprise Objects

Objects that are only XML-aware implement an interface called
XmlEnterpriseObject and extend a class called XmlEnterpriseObjectImpl.
XmlEnterpriseObjectImpl is the class that provides most of the implementation that
makes the Java Message Objects XML-aware. Examples of these objects include:
Address, Phone, and Name. These are complex child elements within enterprise
message objects like BasicPerson, EmergencyContact, and InstitutionalIdentity. The
definition of these enterprise message objects can be found in the appropriate segments
file for the organization that defined them. For more information on the segments file and
the practice of defining enterprise message objects and maintaining enterprise message
definitions, see the OpenEAI Message Definitions Document.

The following hierarchy shows the relationship between these objects:

- org.openeai.moa.EnterpriseObject
 - org.openeai.moa.XmlEnterpriseObjectImpl
 - com.any_erp_vendor.moa.objects.resources.v1_0.Address

JMS Enterprise Objects

Objects that are both JMS- and XML-aware implement an interface called
JmsEnterpriseObject and extend an abstract class called
JmsEnterpriseObjectBase, which extends XmlEnterpriseObjectImpl and
provides most of the implementation for JMS objects. JmsEnterpriseObjectBase
adds JMS awareness to an object in addition to the XML awareness it inherits from
XmlEnterpriseObjectImpl. Examples of these objects are BasicPerson,
EmergencyContact, and InstitutionalIdentity. These are objects that have enterprise

 Page 12 of 71

http://xml.openeai.org/docs/current/api/org/openeai/implementations/applications/moagen/MoaGenScheduledCommand.html
http://xml.openeai.org/site/doc/MessageDefinitions.htm
http://xml.openeai.org/site/doc/MessageDefinitions.htm
http://xml.openeai.org/docs/current/api/org/openeai/implementations/applications/moagen/MoaGenScheduledCommand.html
http://xml.openeai.org/site/doc/MessageDefinitions.htm

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

messages defined for them and can perform actions such as com.any-erp-
vendor.Person.BasicPerson.Query-Request.

The following hierarchy shows the relationship between these objects:

- org.openeai.moa.EnterpriseObject
 - org.openeai.moa.XmlEnterpriseObjectImpl
 - org.openeai.moa.jmsobjects.JmsEnterpriseObjectBase
 - com.any_erp_vendor.moa.jmsobjects.person.v1_0.BasicPerson

In their simplest form, these objects contain getter and setter methods that correspond to
elements and attributes contained in the XML definition of the enterprise object. For
example, the Address Java object has a private instance variable called m_type that
corresponds to the XML “type” attribute in the Address element, which is defined in the
Segments.dtd file of the AnyERP Vendor. Data is retrieved from this variable via the
public getType() method and is set via the setType(String type) method.

Simple fields (elements that do not have child elements and attributes) are always
specified in the Java object as variables of type String. If the field is complex (an
element with children) the variable specified in the Java object has a type corresponding
to that object. For example, the BasicPerson element includes a child element called
Name, which is a complex element consisting of simple fields like FirstName, LastName
and MiddleInitial. Therefore, the BasicPerson Java object has a private instance
variable called m_name that is an object of type Name, which is another Java object that
implements XmlEnterpriseObject and extends XmlEnterpriseObjectImpl. The
BasicPerson object then contains a getName() method which returns a Name object
associated to the BasicPerson object and a setName(Name aName) method that
accepts a Name object in its signature, allowing a developer to set the Name object of the
BasicPerson object. This is true for all “exactly one” or “zero or one” complex fields
that are children of other fields.

If the definition of a field specifies that it is “zero or more” or “one or more” (that is, it’s a
repeating field) then the parent object contains a java.util.List of those types of
fields. If the repeating field is a simple field then this list will include a list of strings;
otherwise, it will include a list of objects of the appropriate type.

For example, the BasicPerson message object in the org.any-erp-vendor.Person
category is defined as having “zero or more” Address objects in it. Therefore, the
BasicPerson Java object includes a private instance variable called m_address which
is of type java.util.List. The contents of this List will be a list of Address Java
objects when populated via the methods of the BasicPerson object. Another example
is the AdmissionsApplication message object in the com.sct.Student category. This
object has a repeating field called “Cohort”. However, the definition of the Cohort
element in the segments file says that the Cohort element is just a simple field
(PCDATA). Therefore, the private m_cohort instance variable in the
AdmissionsApplication Java object is a List of String objects. Each String
object represents a Cohort associated with the AdmissionsApplication.

 Page 13 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

If the field is a simple field (PCDATA), the getter method returns a String and the setter
method accepts a String as a parameter. For example, the following six methods must
be implemented for a repeating, simple field (using Cohort as an example):

public int getCohortLength()
public String getCohort(int index)
public java.util.List getCohort()
public void setCohort(int index, String cohort) throws EnterpriseFieldException
public void setCohort(Vector cohort)
public void addCohort(String cohort) throws EnterpriseFieldException

If the field is a complex field, the getter method returns an object and the setter method
accepts an object as a parameter. For example, the following seven methods must be
implemented for a “repeating, complex” field (using Address as an example):

public int getAddressLength()
public Address getAddress(int index)
public java.util.List getAddress()
public void setAddress(int index, Address anAddressObject) throws
 EnterpriseFieldException
public void setAddress(Vector addresses)
public void addAddress(Address anAddressObject) throws EnterpriseFieldException
public Address newAddress()

The reason for many of these methods is simply convenience. However, they can
become very important to an organization trying to integrate non-Java applications.
Many non-Java technologies can instantiate and call methods on Java objects (for
example, ColdFusion and PERL). Developers of applications using these technologies
may not understand Java well enough to know exactly how a typical Java developer
might use a java.util.List. Additionally, depending on the language, it may be very
cumbersome for them to do things that Java developers may take for granted, because of
the style imposed upon them by the language they are using.

For all non-repeating fields, only the getter and setter methods need to be implemented.
If the field is a simple field (PCDATA), the getter method returns a String and the setter
method accepts a String as a parameter. Using Gender as an example:

public String getGender()
public void setGender(String theGenderValue) throws
 EnterpriseFieldException

Notice that the setGender method throws an EnterpriseFieldException. When
the setter method is called, the data being passed has to be validated against the
Enterprise Object document, which defines the business rules associated with the
Gender field such as length, translations, scrubbers, etc.

To accomplish this enterprise object validation, all setter methods for simple fields
execute the getEnterpriseValue method, which is inherited by all Java message
objects and is implemented in the XmlEnterpriseObjectImpl class. This method
takes the data being passed to the setter method and makes sure it is valid enterprise-
quality data. If it is not valid enterprise-quality data and if it cannot be scrubbed,
translated, or otherwise converted into valid enterprise data by executing the business
rules specified in the enterprise object document for that object, it throws the
EnterpriseFieldException to indicate that the field value that has been passed to

 Page 14 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

the setter method is invalid enterprise data. The following is an example of how the
setGender method is actually implemented in a
com.any_erp_vendor.moa.jmsobjects.person.v1_0.BasicPerson object:

m_gender = getEnterpriseValue("Gender", theGenderValue);

This call uses the information found in the org/any-erp-
vendor/Person/1.0/BasicPersonEO.xml document (BasicPersonEO stands for
BasicPerson Enterprise Object) to validate the data for the BasicPerson/Gender element.
This is how consistent business rules can be applied to all enterprise objects at the field
level.

If the field is a complex field, the getter method returns an object and the setter method
accepts an object as a parameter. Additionally, there is a convenience method that
returns a newly initialized object of that type. This is so the child objects don’t have to be
listed in the Deployment Descriptor for the application. Instead, the parent object has the
information and ability to create an object of the desired type and initialize it with the
appropriate configuration information so developers can use that child object and the
rules that have been specified for that object in its EO document. The OpenEAI
Deployment Descriptor section of this document discusses how the parent object is made
aware of the child object’s configuration information. For example:

public Name getName()
public void setName(Name aNameObject)
public Name newName()

Performing Request Message Actions

When a message action, such as create, is called on a JmsEnterpriseObject, such
as BasicPerson, the data contained in the BasicPerson object is used to build a
com.an-erp-vendor.Person.BasicPerson.Create-Request XML message. That message
is sent to a destination (a JMS queue) by the PointToPointProducer passed to the
BasicPerson object’s create method. A gateway then consumes that message and
executes the business logic associated with the create action specified in the com.any-
erp-vendor.Person.BasicPerson.Create/ControlAreaRequest/@messageAction attribute
of the message. The com.any-erp-vendor.Person.BasicPerson.Create
/DataArea/BasicPerson element supplied in the Create-Request message is the data with
which to perform the action.

All of the logic needed to build the com.any-erp-vendor.Person.BasicPerson.Create-
Request XML message, as well as sending that message to the destination and
consuming the reply from the gateway, is implemented in either the
JmsEnterpriseObjectBase class or in the Java message object itself, if necessary,
which extends JmsEnterpriseObjectBase and implements
JmsEnterpriseObject. In this example, it is implemented specifically in the create
method of the JmsEnterpriseObjectBase class. If any errors occur during this
process, the create method throws an exception indicating the nature of the problem.
Additionally, if the gateway that consumed the create message has problems actually
creating a record in its repository with the data sent to it, the create method in the
JmsEnterpriseObject class will inspect the result returned from the gateway, and if

 Page 15 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

errors exist it will throw an exception containing the error that occurred in the gateway.
The calling application will catch this exception and either use the information provided in
the exception or call the getLastErrors method of the JmsEnterpriseObjectBase
class to get the actual Error objects that were created when the error occurred. With
these objects, the calling application will have more information at its disposal regarding
the error(s) that occurred. The error information will be retrieved from the reply document
returned from the gateway and Error Java objects will be built from the contents of the
reply document. The message actions update and delete work the same way as the
create action described here.

There are two other request actions that work a little differently, query and generate.
These actions differ in that they accept an additional parameter in their signature. That
parameter is the “key object” with which to query or generate. For example, the com.any-
erp-vendor.Person.BasicPerson.Query-Request.dtd specifies that a LightweightPerson
element should be included in the DataArea of the query message. Therefore, to perform
a BasicPerson query action using the Message Object API, you call the query method of
a BasicPerson object passing a LightwieghtPerson object that has been populated
with values corresponding to the person you are querying for. The query method will
return a List of objects returned from the gateway that processed the request. These
will be Java objects of the type specified in the query; in this case they will be
BasicPerson objects. These objects will have been built from the contents of the reply
document sent back from the gateway and are ready to be used by the developer as
Java objects.

The generate method works much the same way except the key object being sent is
generally some sort of seed or source data that the gateway’s generation algorithm uses
to generate a composite object. For example, the org.any-openeai-
enterprise.CoreApplication.InstitutionalIdentity.Generate-Request.dtd specifies that an
UnknownPerson object is required to generate an InstitutionalIdentity. To implement this
case, the application developer retrieves an UnknownPerson object from the
application’s AppConfig or creates a new object via the newUnknownPerson()
method in the InstitutionalIdentity object, populates it with the appropriate data,
and passes it to the InstitutionalIdentity.generate method, which builds the
org.any-openeai-enterprise.CoreApplication.Generate-Request message and sends it to
the destination that will perform the generation and return the generated
InstitutionalIdentity. Again, if any errors occur in the process of building the
outbound message or if errors are sent back from the gateway that performed the
generation, it will throw an exception indicating the nature of the problem.

Performing Synchronization Message Actions

For every request action that causes data to be created, generated, updated, or deleted
at an authoritative application, there is a corresponding synchronization message that
must be published by that authoritative application, which indicates that the action has
occurred. Gateways that “gate” authoritative applications or message-aware applications
that are authoritative sources can also use the Message Object API to publish these sync
messages when these actions occur. These sync methods are also specified in the
JmsEnterpriseObject interface and implemented in JmsEnterpriseObjectBase.
They are createSync, updateSync, deleteSync and generateSync. They behave

 Page 16 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

similarly to the request action methods, except they accept a PubSubProducer object
instead of a PointToPointProducer in their signatures, because a sync message
does not expect a reply.

Building Messages

When an action is performed on a Java Message Object, the contents of that object and
key object (in the case of query and generate actions) are used to build an XML
document corresponding to the action being performed. This is a two-part process. The
first part involves building the XML message corresponding to the action. The second
part of the process actually sends that message to a destination via a
PointToPointProducer or a PubSubProducer.

This process is broken into two parts to provide flexible support for various actions of the
protocol for each message object. For example, many objects related to person
information may use a LightweightPerson object as a key object for queries. In other
words, the DataArea element of their Query-Request message is defined to contain a
LightweightPerson element. However, other objects, such as InstitutionalIdentity, require
a different key object, such as UnknownPerson, in the DataArea of their query document.
Still other message objects are totally unrelated to person data and require other objects
in Query-Request messages. One common case (for example, the building of Query-
Requests with a LightweightPerson) can be implemented the
JmsEnterpriseObjectBase class; this common case is implemented there. However,
if an individual Java Message Object requires different processing than this common
case (and many will), it must override the method and build the appropriate document for
the action being performed.

These methods all correspond to the action being performed. For example, one of the
first things the query method of a Java Message Object does is call the
buildQueryMessage method to build the Query-Request document for the object. If an
object such as InstitutionalIdentity requires a different type of key object it must
override the buildQueryMessage method it inherits from
JmsEnterpriseObjectBase and build the document appropriately for itself, casting
the XmlEnterpriseObject object to an UnknownPerson (or whatever is appropriate
according to the message definition) instead of a LightweightPerson, which is what
the buildQueryMessage method in JmsEnterpriseObjectBase does because it is
a fairly common case.

For every action, there is a corresponding build…Message method. Five actions
specified by the OpenEAI Message Protocol can actually be performed on a message
object: query, create, update, delete, and generate. So the following build…Message
methods are defined in JmsEnterpriseObjectBase: buildQueryMessage,
buildCreateMessage, buildUpdateMessage, buildDeleteMessage and
buildGenerateMessage. Since the DataArea portion of the sync messages look
exactly the same as their corresponding request messages, they use the same
build…Message methods to build the XML document for the corresponding sync
actions.

 Page 17 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

Additionally, if an object doesn’t support a certain type of message action, it should throw
an exception in the build…Message method that it implements to inform users that they
have attempted to use the object incorrectly—that it doesn’t support that method. For
example, relatively few objects will need to support the generate action. Therefore, all
objects that don’t support that action must implement a buildGenerateMessage
method that simply throws an exception saying the action is not supported by that object.
In fact, the buildGenerateMessage method is defined as an abstract method in
JmsEnterpriseObjectBase, meaning that all objects that extend
JmsEnterpriseObjectBase must implement that method. The reason for this design
is that generation of an object is usually very specific to that object. For example, the
seed or key object is very specific to the object being generated. Most objects, however,
will simply throw an exception stating that they don’t support the
buildGenerateMessage method.

Important note: As mentioned above, all of these objects can be automatically
generated using the OpenEAI MoaGenerationApplication reference implementation
application. This application also takes care of generating the appropriate
build…Message methods in the case of an object requiring a different
buildQueryMessage or buildGenerateMessage implementation. Additionally, if the
object doesn’t support a particular action it will add the code necessary to throw the
appropriate exception. It can do this, because all of the information required to make
these programming decisions is available in the message definitions and sample
messages that an organization prepares. If your organization follows the directory
structure recommendations for organizing these artifacts included in the OpenEAI
Message Definitions Document, the MoaGenrationApplication can read that structure and
generate your entire MOA code for you. The detailed descriptions provided in this
section are solely provided to clarify what is going on under the covers. They can
be particularly helpful for developers and architects who are looking to build their own
implementation of this functionality. Users of the OpenEAI API can remain largely
unaware of these mechanics if they desire.

Developing Messaging Applications

When a message-aware application is developed using the OpenEAI foundation components,
everything starts with a specialized object called an AppConfig object. This object is an XML-
aware object that knows how to configure itself from an XML file stored in a directory server, on a
web server, or on the file system. This object works in conjunction with an XML configuration
document called the OpenEAI Deployment Descriptor. These documents describe, in technical
terms, the integrations that will be performed among applications in an organization by specifying
all OpenEAI components that will be used by the messaging application or gateway.

AppConfig (org.openeai.config.AppConfig)

Simply put, the AppConfig object reads the deployment descriptor and loads itself with
all the objects that will be needed for this application based on what it finds in that file.
The types of objects that it may load include: message objects, producers, consumers,
logging objects, thread pools, database connection pools and general application
properties. So, in essence, AppConfig is a container that holds pre-configured and, in
some cases, started objects that can be retrieved by an application developer when the
objects are needed.

 Page 18 of 71

http://xml.openeai.org/docs/current/api/org/openeai/implementations/applications/moagen/MoaGenScheduledCommand.html
http://xml.openeai.org/site/doc/MessageDefinitions.htm
http://xml.openeai.org/site/doc/MessageDefinitions.htm
http://xml.openeai.org/docs/current/api/org/openeai/config/AppConfig.html

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

It should be noted that all applications that use OpenEAI foundation components do this
same thing one way or another. If a developer chooses to develop a standalone
application with a “main” method, it will configure an AppConfig. Likewise, the
org.openeai.afa.GenericAppRunner and the
org.openeai.jms.consumer.MessageConsumerClient classes both instantiate
and initialize an AppConfig in the same manner.

For example, let’s assume we’ve been given a completed analysis template, enterprise
object documents, and a generated MOA for exposing a legacy mainframe system that
runs in batch and is authoritative for person and employee information. Let’s refer to this
system affectionately as the BarneySystem, meaning the big purple dinosaur. We
prepare our technical stories, which basically outline what we need to develop a
scheduled application. Let’s call it the BarneyScheduledApplication. The
BarneyScheduledApplication will read the mainframe extract files that are created at the
end of each batch run of the BarneySystem and build BasicPerson and BasicEmployee
objects from the mainframe extract files. The building of these message objects from the
extract lines will be handled for us by the OpenEAI layout manager foundation and
extract layout implementation. It will use the extract file-to-object mappings and the
BarneySystem values-to-enterprise-values translations provided by the analysis team in
the enterprise object documents for BasicPerson and BasicEmployee. The scheduled
application will then publish messages to inform other applications in the messaging
enterprise about new people and employees and changes in person and employee state.

There’s just one interesting twist, though. The BarneySystem does not know about ID
numbers. Years ago when the BarneySystem was implemented, the organization did not
issue ID numbers. The BarneyApplication only knows about social security number. So
we see in the analysis that our scheduled application is going to have to perform some
Query-Requests and Generate-Requests for InstitutionalIdentity with the organization’s
ID card system to get ID numbers for known people and generate them for new people.
So our application needs to read extract file lines, build message objects from the extract
lines, query for or generate ID numbers through messages, set the ID number (the
InsitutionalId) on the BasicPerson and BasicEmployee objects that were either returned
from the query or generated to complete these objects, and then publish sync messages
for the appropriate actions.

So, this technical story helps us determine that the BarneyScheduledApplication is going
to need the following configurations in its deployment descriptor:

1. Message Objects
- BasicPerson
- BasicEmployee

2. A PointToPointProducer to perform request/reply messaging with the ID card

systems to get those ID numbers

3. A PubSubProducer to publish the sync messages for BasicPerson and

BasicEmployee

Once these objects are loaded into the AppConfig object and initialized with information
obtained from the deployment descriptor, the application can retrieve the objects out of
the AppConfig object whenever they are needed. This gives the developer the ability to

 Page 19 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

configure these objects once, and then the application has them at its disposal for use
while it’s running. This is important because some of these objects require valuable
resources that may be expensive to initialize. It also allows us to specify in one place all
the configuration information for an application in its entirety.

Very little information has to be stored in a deployment on the target hosts where the
application will run. The only information needed with the application jar files and a start
script is information used to locate and read the deployment descriptor. This will include
some sort of URI specifying the location of the document and may include security
credentials necessary to read the document from a directory server or secured web
server. Finally, it contains information that tells the AppConfig which messaging
component it should configure (an application/gateway name). This also gives us the
opportunity to develop highly customizable applications using consistent methods.
Consistent methods improve an organization’s ability to quickly develop and deploy
sophisticated applications and administer them efficiently.

There are three places in which deployment descriptors are typically stored: on a file
system with the deployed application, on a web server, or in a directory server. For
security and deployment management reasons, many organizations are starting to
experiment with storing configuration files such as these deployment descriptors in a
directory server. Access to all configurations can then be restricted to application
administrators, these application administrators do not necessarily have to have access
to the servers on which these applications are deployed to administer them, and
configuration files do not have to be synchronized between servers when many instances
of the same application are run on multiple servers in a clustered deployment. The
OpenEAI deployment patterns recommended that deployment descriptors be stored in a
directory server. However, that is an organizational choice. Even if your organization
does use a directory server for this purpose, during development phases you may find it
convenient to use the local file system or a web server at times.

To switch between these storage locations, simply change the providerUrl property
shown below to be the desired URI. The AppConfig object takes care of the rest.

All applications, gateways, and servlets can be started with a simple properties file that
contains the following properties (obviously, the values assigned to the properties will
differ depending on the application, gateway, or servlet). The following are examples of
properties files that point the AppConfig object of a starting application to its deployment
descriptor. Note that in some cases, lines have been broken to fit them on this page in
this document.

A properties file pointing to the deployment descriptor in a directory server:

providerUrl=ldaps://ldap.any-openeai-enterprise.org:636/ou=Development,
 ou=Configurations,ou=Messaging,dc=openerp,dc=org
initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
securityPrincipal=uid=SampleApplication,ou=Development,ou=Users,
 ou=Messaging,dc=openerp,dc=org
securityCredentials=secretpassword
configDocName=configxmlname=SampleApplication
messageComponentName=SampleApplication

A properties file pointing to the deployment descriptor on a web server:

 Page 20 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

providerUrl= http://xml.openeai.org/xml/message/uillinois
 /xml/1.0/Configuration/SampleApplication.xml
messageComponentName=SampleApplication

A properties file pointing to the deployment descriptor on a local file system:

providerUrl= file://configs/SampleApplication.xml
messageComponentName=SampleApplication

The following is an example of how a standalone application can load the properties
object:

String propFileName = args[0];
Properties props = new Properties();
InputStream in = new FileInputStream(propFileName);
props.load(in);
in.close();

aConfig = new AppConfig(props);

After the properties file is loaded it is passed to the AppConfig constructor, which will
bind to the directory server (in this case), search for and read the deployment descriptor,
and initialize itself with contents found in that file. This is the same processing that occurs
when the document is stored on a web server or file system, except with a directory
server, stricter access controls can be put in place regarding who has access to the
deployment descriptor. So, as it turns out, there is a very small set of external properties
that must be stored with the application. Once the application has this information, it can
obtain the contents of the configuration document and initialize itself.

Scheduled applications and message gateways all use a common component to start
themselves, called GenericAppRunner or MessageConsumerClient respectively,
that use this same approach. Therefore, it is unlikely that very many developers even
need to code this AppConfig initialization. The only time it would be necessary is if they
are developing a standalone application that is not a scheduled application or a message
gateway. Decisions to do this should be weighed carefully, because foundation
components are already in place to do this initialization and ensure that these
applications and gateways can be started and stopped in a uniform fashion.

Once AppConfig has been loaded with pre-configured, instantiated, and initialized
objects, developers can use a couple different methods of the AppConfig object to
retrieve those objects from AppConfig and use them in the normal course of
development. These methods are:

getObject(String name)
getObjectByType(String fullyQualifiedClassName)

For example, the following example demonstrates getting a PubSubProducer from
AppConfig named “SyncProducer,” which it instantiated and initialized based on
information found in the application section of the deployment descriptor.

PubSubProducer pubSub1 = (PubSubProducer)aConfig .getObject("Sync

 Page 21 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

The next example asks the AppConfig object to locate and return the first object it finds
that has a class name equal to the class name of the PubSubProducer which it
instantiated and initialized based on information found in the deployment descriptor.
Note that this will return the first object of this type. If multiple PubSubProducers are
listed in the deployment descriptor, and the developer wishes to retrieve a specific one,
s/he should use the getObject method instead.

PubSubProducer pubSub2 = null;
PubSub2 = (PubSubProducer)aConfig
 .getObjectByType(pubSub2.getClass().getName());

Scheduled Applications

A scheduled application is an application that executes certain business logic at a
configurable interval. That interval can be immediate or it can be based on a flexible,
built-in scheduling facility that allows developers to specify certain business logic be
executed at a given interval or on specified days at specified times.

Scheduled Applications can be of four types:

1. Application. The application starts, the business logic executes immediately, and the

application ends. This type of scheduled application is referred to as simply an
"application". That is, it executes the specified business logic once then it exits.
Therefore, it’s a “scheduled” application that just runs once and then ends.

2. Triggered application. The application starts, the business logic executes immediately

and the application waits to be manually stopped. This type of scheduled application
is referred to as a "triggered application". That is, it executes the specified business
logic once then it waits for manual intervention before it ends.

3. Daemon with immediate execution. The application starts, it sleeps for a given

period of time, it wakes up and executes the business logic, then goes back to sleep.
This process is repeated indefinitely. This type of scheduled application is referred to
as a "daemon" scheduled application with "immediate" execution.

4. Daemon with scheduled execution. The application starts, it sleeps for a given period

of time, it wakes up, and if it is supposed to run based on its configuration, it executes
the business logic, then goes back to sleep. This process is also repeated
indefinitely. This type of scheduled application is referred to as a "daemon"
scheduled application with "scheduled" execution.

All scheduled applications are instances of the
org.openeai.afa.GenericAppRunner class. This is the only runnable class that
needs to exist for these types of applications. Scheduled applications are an
implementation of the command pattern. The business logic executed according to the
application’s schedule is implemented in commands (Java classes) that perform the
desired business logic.

 Page 22 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

Really, the only difference between a scheduled application and a gateway is what
triggers the execution of the business logic. Where a gateway executes commands
when it one of its consumers consumes a message, a scheduled application executes
commands when a schedule is met.

Refer to the OpenEAI API javadoc in the org.openeai.afa package for more details
information on scheduled application foundation.

Message Gateways

All message gateways are an instance of the
org.openeai.jms.consumer.MessageConsumerClient class. This is the only
runnable class that exists for OpenEAI based message gateways.
MessageConsumerClient instantiates an AppConfig object with the appropriate
deployment descriptor, and the consumers associated with the gateway are started.
Message gateways developed with the OpenEAI foundation may use
PointToPointConsumers to handle and reply to incoming request messages and
PubSubConsumers to consume and process incoming sync messages. The
configurations for these objects are included in the deployment descriptor for the
message gateway. When a message gateway is started, it builds its AppConfig object,
which instantiates and configures the appropriate consumer(s) for the message gateway.
Once the consumers are started, the application is ready to consume messages.

Consumers behave differently when they consume different messages. This behavior is
implemented with the command pattern, a common object-oriented design pattern. The
JMS message that is consumed by the consumer has in it information that tells the
consumer what business function to perform, in other words, which command to execute.
Commands are Java classes that implement at least one method, the execute method.
When the consumer receives a message, it looks at the message and calls the execute
method on the appropriate command associated with that message. All of these
commands are loaded and initialized when the consumer is started up. If a message
doesn’t have a command associated with it, a default command is executed, if one has
been specified. These commands are all specified in the consumer configuration in the
deployment descriptor.

ConsumerCommand objects themselves contain an AppConfig object that they use to
pre-configure objects needed by the command when it executes. This is specified in the
command configuration portion of the deployment descriptor. The configuration of a
command is identical to the configuration of an application. Basically, commands can be
thought of as “mini-applications” that get executed when a consumer consumes a
message. Note that this same principal is used for scheduled applications. The only
difference is that gateways execute commands as a result of consuming a message and
scheduled applications execute commands as a result of a schedule being met. The
instantiation and initialization of the command’s AppConfig object is automatically
performed when the consumer is configured and the commands the consumer might
execute are instantiated.

The AppConfig object for a message gateway will always include at least one
consumer, and the consumer(s) will include at least one command to execute when the
consumer receives a message. Additionally, the command configuration section of the

 Page 23 of 71

http://xml.openeai.org/docs/3.0/api/org/openeai/afa/package-summary.html

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

deployment descriptor may include message objects, producers, thread pools, database
connection pools, and general commad properties, just like an application’s configuration.

From an OpenEAI foundation component perspective, a message gateway can be
summed up as follows: A Gateway contains one or more Consumers that execute
one or more Commands. These commands are what developers write to make a
gateway perform the business logic specified in the analysis templates.

For more information regarding the OpenEAI JMS consumer foundation, please refer to
the OpenEAI API javadoc in the org.openeai.jms.consumer and
org.openeai.jms.consumer.commands packages.

OpenEAI Deployment Descriptor

The OpenEAI deployment descriptor is an XML document used to configure applications
developed using the OpenEAI foundation components. This section includes the document type
definition, which constrains the descriptor. The definition includes detailed descriptions of each
section of the definition. For additional information regarding the OpenEAI configuration
foundation, please refer to the OpenEAI API javadoc in the org.openeai.config package.

Begin Deployment.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- $Revision: 1.14 $
 $Date: 2003/01/29 00:33:07 $
 $Source: /cvs/repositories/openeai/project/xml/dtd/1.0/Deployment.dtd,v $
-->
<!-- This file is part of the OpenEAI Application Foundation or
 OpenEAI Message Object API created by Tod Jackson
 (tod@openeai.org) and Steve Wheat (steve@openeai.org) at
 the University of Illinois Urbana-Champaign.

 Copyright (C) 2003 The OpenEAI Software Foundation

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 For specific licensing details and examples of how this software
 can be used to build commercial integration software or to implement
 integrations for your enterprise, visit http://www.OpenEai.org/licensing.
 -->
<!--Release History
 1/26/2003 tod@openeai.org Original release.

 Page 24 of 71

http://xml.openeai.org/docs/current/api/org/openeai/jms/consumer/package-summary.html
http://xml.openeai.org/docs/current/api/org/openeai/jms/consumer/commands/package-summary.html
http://openeaixml1.aiss.uic.edu/docs/current/api/org/openeai/config/package-summary.html

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 steve@openeai.org
-->
<!--
 A Deployment represents one or more applications, message gateways, or
 servlets. The document that conforms to this definition most frequently
 serves as the deployment descriptor for one application, message
 gateway, or servlet. However, the deployment descriptor is constrained
 to describe multiple applications, message gateways, or servlets, so
 many configurations could be rolled into one deployment descriptor, if that
 is beneficial to an organization's deployment practices. In fact, all
 configurations for a messaging enterprise could be rolled into a
 single deployment descriptor for documentation purposes only. For
 example, in the future the OpenEAI Methodology department may provide
 an application to take all deployment documents, roll them into large
 Deployment document that is representative of your entire messaging
 enterprise, and then generate messaging enterprise schematics and
 skeleton enterprise messaging documentation for your enterprise from
 the these combined deployment descriptors.

 The name of the deployment should be descriptive of the
 applications in the deployment. The type and status should indicate
 whether this deployment is for a production, demo, test, or development
 environment. The status should indicate whether the deployment is
 planned or whether it has already been deployed. Planned indicates
 that the configuration has never been used to run an application.
 Deployed means that an application or applications have been run
 with the configuration contained in the descriptor.-->
<!ELEMENT Deployment (Application*, MessageGateway*, Servlet*)>
<!ATTLIST Deployment
 name CDATA #REQUIRED
 type (production | demo | test | development) #REQUIRED
 status (planned | deployed) #REQUIRED
 baseURI CDATA #REQUIRED
>
<!ELEMENT MessagingComponents (Applications?, MessageGateways?, Servlets?)>
<!ELEMENT Applications (Application*)>
<!--
 An application consists of a full name, an optional short name, a description,
 and a configuration. It also has an "id" attribute that should uniquely
 identify the application in the messaging enterprise. This id attribute
 contains the value that corresponds to the "messageComponentName"
 property in the application's properties file. These
 elements identify and document that application. The names should be
 clear, and the description should be comprehensive enough to provide
 some background about the purpose and function of the application. This
 information may be used to generate enterprise schematics in the future,
 so it is recommended that this information be filled out accurately with
 meaningful data.-->
<!ELEMENT Application (FullName, ShortName?, Description, Configuration)>
<!ATTLIST Application
 id CDATA #REQUIRED
>
<!--
 A Configuration element is comprised of container elements for different types
 of specific and tightly constrained configuration elements. For example,
 the LoggerConfigs element will contain a LoggerConfig element.
 ScheduledAppConfigs will contain a ScheduledAppConfig element.
 ProducerConfigs will contain one or more ProducerConfig elements.

 Page 25 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 This layer of container elements helps organize the deployment
 descriptor, particularly in the case of large and complex applications.
 This layer of container elements ensures that developers and
 administrators will always place and find configurations for objects
 of a certain type in the same section of the descriptor.

 Additionally, most container-level elements allow the developers to specify
 default values for some relevant child elements of the configuration
 elements they contain. For example, at the ProducerConfigs level you may
 specify ConnectionFactoryName, InitialContextFactory, ProviderURL,
 SecurityPrincipal, SecurityCredentials, ProducerIdURL, and ConfigClass
 element values and numberOfProducers, tempQueuePoolSize,
 startOnInitialization, acknowledgementMode, transacted, and deliveryMode
 attribute values. These elements and attributes are also children of
 each ProducerConfig element that the ProducerConfigs element may
 contain. If the deployer specifies values for these elements at the
 container (ProducerConfigs) level, then these values will be applied to
 all ProducerConfig child elements of that container by the OpenEAI
 configuration foundation at runtime, unless the individual ProducerConfig
 elements contained in ProducerConfigs override these default values
 by specifying different values. This ability to specify default values at
 the container level helps eliminate redundancy in the deployment
 descriptor. It is common for different configuration elements within a
 container to be very similar, differing only in one or two element or
 attribute values.

 Each of the configuration elements are wrapped as Java objects in the
 OpenEAI configuration foundation, and these OpenEAI Java configuration
 objects are used to configure the rest of the OpenEAI foundation
 components throughout the OpenEAI API. The XML configuration
 elements are wrapped as Java configuration objects, so the foundation
 components that we want to configure, initialize, and use do not have to
 be XML aware. The constructors of foundation components expect an
 appropriate Java configuration object from the OpenEAI configuration
 foundation. In this way, we isolate the more complex foundation
 components from the mechanics of reading and parsing configuration
 parameters. This allows us to more quickly and efficiently respond to
 change and enhance the configuration of foundation components. If we
 want to configure foundation components from simple properties files,
 from some completely different text file format, from a database structure,
 or from a directory server schema, the reading and parsing of these
 configuration parameters must be implemented in the configuration objects
 or in their ancestors and not in the functional foundation components
 (such as producers, consumers, and connection pools) themselves.

 As you will see these Java configuration objects are named for the
 object being configured which allows us to use different Java
 configuration objects in the future if desired.

 So when an application starts, it instantiates an AppConfig object, which
 reads the deployment descriptor that conforms to this definition.
 AppConfig then instantiates Java configuration objects that wrap the
 configuration elements it has found in the deployment descriptor and
 then uses these Java configuration objects to instantiate the foundation
 components that these Java configuration objects are intended to
 configure. Finally, depending upon the properties of the configurations
 themselves, AppConfig will initialize and may start or otherwise prepare
 foundation components for use.-->

 Page 26 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

<!ELEMENT Configuration (LoggerConfigs?, ScheduledAppConfigs?, ProducerConfigs?,
ConsumerConfigs?, MessageObjectConfigs?, ThreadPoolConfigs?, DbConnectionPoolConfigs?,
PropertyConfigs?)>
<!ATTLIST Configuration
 initializeUsingThreads (true | false) #IMPLIED
>
<!--
 The ScheduledAppConfigs element contains one ScheduledAppConfig
 element. Like all container elements ScheduledAppConfigs allows
 the deployer to specify default values at the container level. However,
 in this case, these default values are only applied to the one
 ScheduledAppConfig that may appear in this container. At this time it is
 only appropriate for there to be one ScheduledAppConfig element in this
 container.-->
<!ELEMENT ScheduledAppConfigs (ConfigClass, ObjectClass, ThreadPoolConfig, ScheduledAppConfig)>
<!ATTLIST ScheduledAppConfigs
 type (daemon | application | triggered) #REQUIRED
 scheduleCheckInterval CDATA #REQUIRED
>
<!--
 The ScheduledAppConfig element contains all of the information needed to
 configure a scheduled application using OpenEAI foundation components.
 The following is a description of each of the elements and attributes of
 ScheduledAppConfig:

 name

 This is the unique name by which this Scheduled Application is known to
 the AppConfig object.

 type

 The type of scheduled application being started. The choices are "daemon",
 "application" and "triggered". Type 'daemon' means the application will
 start and continue running indefinitely, checking the schedules that it
 supports on a configurable interval. Type 'application' means the
 application will start, execute the commands associated with all schedules
 that it supports and then exit. Applications of type 'triggered' start,
 execute the commands associated with all schedules that it supports and
 then wait for a signal (like a kill) to exit.

 scheduleCheckInterval

 The interval in milliseconds at which the scheduled application should check
 whether it is time to execute any of its schedules.

 ConfigClass

 The ConfigClass is the fully-qualified class name of the enterprise
 configuration object that will wrap all this configuration information
 and which will be passed to the constructor of the ScheduledApp class
 to initialize the ScheduledApp. For scheduled applications, this class
 name will always be org.openeai.config.ScheduledAppConfig.

 ObjectClass

 The ObjectClass element should contain the fully-qualified class name of
 the object to instantiate and start. For scheduled applications this should

 Page 27 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 always be org.openeai.afa.ScheduledApp.

 ThreadPoolConfig

 The ThreadPoolConfig element configures the main thread pool used by the
 scheduled application to add transactions to for command execution when a
 schedule is met. This is where the commands are executed. Since the
 scheduled application uses a thread pool, it doesn't have to wait for the
 command to finish execution before checking the next schedule. Instead, it
 just checks the schedule listed, and if the schedule is supposed to run,
 it executes the command(s) associated with the schedule by adding them as
 jobs in the thread pool. Thread pools used as main thread pools in a
 scheduled application should be configured to check their status prior to
 adding a command to execute to the pool by setting the checkBeforeProcessing
 attribute to 'true'. This ensures that if the thread pool is totally
 busy (that is, if the maximum number of threads allocated to this pool are
 already busy processing transaction) the scheduled application will stop
 checking schedules and wait until some threads in the pool are idle and
 the pool can accept more transactions. This setting reduces the risk of
 business logic not being executed if the scheduled application should
 terminate abnormally. A detailed description of the elements and attributes
 of the ThreadPoolConfig can be found with the ThreadPoolConfig element in
 this document definition.

 The following is an example of a ScheduledAppConfig element from a sample
 deployment descriptor:

 <ScheduledAppConfigs scheduleCheckInterval="50000" type="daemon">
 <ConfigClass>org.openeai.config.ScheduledAppConfig</ConfigClass>
 <ObjectClass>org.openeai.afa.ScheduledApp</ObjectClass>
 <ThreadPoolConfig name="Standard" maxThreads="150" minThreads="0" maxIdleTime="1">
 <ConfigClass>org.openeai.config.ThreadPoolConfig</ConfigClass>
 <ObjectClass>org.openeai.threadpool.ThreadPoolImpl</ObjectClass>
 </ThreadPoolConfig>
 <ScheduledAppConfig name="SampleScheduledApp">
 <Schedules isImmediate="false" runMechanism="Thread">
 <ObjectClass>org.openeai.afa.Schedule</ObjectClass>
 <Schedule name="CheckForPendingTransactions">
 <RunTime>
 <Day name="Daily"/>
 <Times>
 <Time>
 <Hour>06</Hour>
 <Minute>05</Minute>
 </Time>
 <Time>
 <Hour>08</Hour>
 <Minute>05</Minute>
 </Time>
 </Times>
 </RunTime>

 *** see ConsumerConfig for descriptions of Commands because these are the same ***
 <Commands inboundXmlValidation="false" outboundXmlValidation="false"
writeToFile="false">
 <Command type="scheduled" isDefault="false">
 </Command>
 </Commands>

 Page 28 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 </Schedule>
 </Schedules>
 </ScheduledAppConfig>
 </ScheduledAppConfigs>

 Simply put, this configuration says...wake up every 5 minutes and check to see
 if the "CheckForPendingTransactions" schedule should run. If so, execute the
 command associated with that schedule in a thread. Therefore, in this case,
 whichever command(s) were specified in the Commands element would be
 executed by the ScheduledApp foundation every day at 6:05 AM and 8:05 AM.-->
<!ELEMENT ScheduledAppConfig (ConfigClass?, ObjectClass?, ThreadPoolConfig?, Schedules)>
<!ATTLIST ScheduledAppConfig
 name CDATA #REQUIRED
 type (daemon | application | triggered) #IMPLIED
 scheduleCheckInterval CDATA #IMPLIED
>
<!ELEMENT Schedules (ObjectClass, RunTime*, Schedule+)>
<!ATTLIST Schedules
 isImmediate (false | true) #REQUIRED
 runMechanism (Thread | SubProcess) #REQUIRED
>
<!ELEMENT Schedule (ObjectClass?, RunTime*, Commands)>
<!ATTLIST Schedule
 name CDATA #REQUIRED
 isImmediate (false | true) #IMPLIED
 runMechanism (Thread | SubProcess) #IMPLIED
>
<!ELEMENT RunTime (Day, Times)>
<!ELEMENT Day EMPTY>
<!ATTLIST Day
 name (Daily | Weekdays | Weekends | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday |
Saturday) #REQUIRED
>
<!ELEMENT Times (Time+)>
<!ELEMENT Time (Hour, Minute)>
<!ELEMENT Hour (#PCDATA)>
<!ELEMENT Minute (#PCDATA)>
<!--
 The ProducerConfigs element contains one or more ProducerConfig
 elements. Like all container elements ProducerConfigs allows the
 deployer to specify default values at the container level that are
 applied to the elements and attributes of each ProducerConfig contained
 within it unless these default values are overridden by specifying different
 values within an individual ProducerConfig.-->
<!ELEMENT ProducerConfigs (ConnectionFactoryName, InitialContextFactory, ProviderURL,
SecurityPrincipal, SecurityCredentials, ProducerIdURL, ConfigClass, ProducerConfig+)>
<!ATTLIST ProducerConfigs
 numberOfProducers CDATA #IMPLIED
 tempQueuePoolSize CDATA #IMPLIED
 startOnInitialization (true | false) #REQUIRED
 acknowledgementMode (AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
DUPS_OK_ACKNOWLEDGE) #IMPLIED
 transacted (true | false) #IMPLIED
 deliveryMode (NON-PERSISTENT | PERSISTENT) #IMPLIED
>
<!--
 The ProducerConfig element contains all of the information needed to
 configure and start (if specified) OpenEAI JMS producer foundation objects

 Page 29 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 (PointToPointProducer or PubSubProducer). The following is a description
 of each of the elements and attributes of ProducerConfig:

 LoggingProducer

 This is a PubSubProducer that is associated with a PubSub producer, which
 can be used to log every sync message that is published by a PubSubProducer
 producer to a JMS topic. These logged sync messages can then be consumed and
 processed by a logging service. See the OpenEAI Implementation Strategies
 Document for details on enterprise synchronization message logging
 strategies. Since the LoggingProducer is just another producer, it has the
 same definition as ProducerConfig itself. In order to avoid a less clear,
 recursive definition, this LoggingProducer element is named differently than
 its parent element ProducerConfig. Presently, only PubSubProducers will use a
 LoggingProducer. When the PubSubProducer is asked to publish a message via
 the publishMessage method, in addition to publishing a sync message to the
 primary destination associated with the PubSunProducer, it will check to see
 if the LoggingProducer associated with the PubSubProducer is started. If it
 is, it will use the LoggingProducer to publish a copy of the sync message
 to the destination specified in the LoggingProducer configuration. If the
 LoggingProducer is not started, it will not be used. Therefore, to turn
 the sync message logging production off for a PubSubProducer, you set its
 LoggingProducer's 'startOnInitialization' attribute to 'false'.

 ConnectionFactoryName

 This specifies the lookup name for the JMS ConnectionFactory that will be
 used by this producer. This can be either a TopicConnectionFactory or a
 QueueConnectionFactory, depending on the type of producer you are
 configuring. A JMS connection factory contains JMS provider-specific
 information about how to connect to the JMS provider. Connection factories
 are 'administered objects' and are stored in a directory server or other
 JNDI store whose location is specified in the ProviderURL element.

 DestinationName

 This is the name of the JMS queue or topic to which this producer will
 produce or publish messages. This is also an 'administered object' stored
 in the directory server or other JNDI store whose location is specified in
 the ProviderURL element.

 InitialContextFactory

 This is the fully-qualified class name of the InitialContectFactory the
 producer will use to obtain an initial context with the directory server or
 other JNDI store where the administered objects reside. When an
 organization uses an LDAP repository for JMS administered objects, this
 will almost always be com.sun.jndi.ldap.LdapCtxFactory. This value will
 vary based on the repository being used to store JMS administered
 objects.

 ProviderURL

 This is the location in the directory server or other JNDI store where the
 connection factories and destinations (administered objects) reside.

 SecurityPrincipal

 Page 30 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 This element specifies the distinguished name of the directory user allowed
 to access the administered objects in the directory server or other JNDI
 store at the location specified by ProviderURL.

 SecurityCredentials

 This element specifies the password associated with the SecurityPrincipal.

 Username

 This is the JMS Provider username allowed to publish or produce messages to
 the desired destination. If you are following JMS and OpenEAI preferred
 deployment patterns, you will leave this element blank, because this username
 should be specified in the ConnectionFactory maintained in the JNDI
 administered object store.

 Password

 This is the password corresponding to the JMS Provider username allowed to
 publish or produce messages to the desired destination. If you are following
 JMS and OpenEAI preferred deployment patterns, you will leave this element
 blank, because the username and password should be specified in the
 ConnectionFactory maintained in the JNDI administered object store.

 ProducerIdUrl

 This is the URI to the UuidGen servlet or other web service used by your
 organization to generate producer ID numbers. If your organization's central
 producer ID number generations service cannot be reached at runtime, the
 OpenEAI producer foundation with generate an ID number locally using a UUID
 generation algorithm. For more information on the significance and
 requirements for producer ID services, see the comments for the definition
 of the MessageId element in the OpenEAI segments file
 (http://xml.openeai.org/message/releases/org/openeai/Resources/1.0/Segments.dtd).

 ConfigClass

 The ConfigClass is the fully-qualified class name of the enterprise
 configuration object that will wrap all this configuration information
 and which will be passed to the constructor of the Producer class
 to initialize the Producer. For producers, this class
 name will always be org.openeai.config.ProducerConfig.

 ObjectClass

 The ObjectClass element should contain the fully-qualified class name of
 the object to instantiate and start. This should only be one of the
 following classes: org.openeai.jms.producer.PointToPointProducer for
 point-to-point message production or
 org.openeai.jms.producer.PubSubProducer for publish/subscribe message
 production.

 DefaultCommandName

 This is the default command name that should be associated with each message
 produced by this producer in its JMS properties, if that message does not
 already have a COMMAND_NAME property with a value. This is the mechanism by
 which the OpenEAI message consumer foundation determines, which business

 Page 31 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 logic command to execute when a message is consumed.

 name

 The name attribute contains the unique name by which this producer is known
 to the AppConfig object. When the developer of application wants to retrieve
 the producer from the AppConfig object, it may do so by specifying this name
 in the getObject(String name) method of the AppConfig object.

 numberOfProducers

 This attribute specifies how many producers with this configuration should be
 initialized and started. Specifying a number greater than one effectively
 creates a pool of identically configured producers. This technique of
 producer pooling can improve the performance of message production in high-
 volume messaging applications. There will be this number of producers in
 AppConfig that all start with the same name but have a sequence number
 appended to their name. Additionally, AppConfig will contain a ProducerPool
 object with this producer's base name that can be retrieved by the
 application developer just like any other object. For example, if a producer
 configuration contained a name of 'P2PProducer' and a numberOfProducers of
 '3', then a developer could get a reference to a producer pool and get a
 producer from the pool as follows:

 /* retrieve the ProducerPool from AppConfig */
 ProducerPool p2pProducerPool = (ProducerPool)m_appConfig.getObject("P2PProducer"));

 /* retrieve a PointToPointProducer from the producer pool */
 PointToPointProducer p2pn = PointToPointProducer)p2pProducerPool.getProducer();

 The preferred programming practice is for developers to code to use producer
 pools even if they are only using one producer for each purpose initially.
 Doing so gives deployers an additional lever to push when tuning a messaging
 application. If during testing or in production bottlenecks are detected and
 attributed to a heavy need for concurrent message production, the developer
 can simply increase the number of producers in each producer pool, which
 will increase the application's capacity for concurrent message production.

 tempQueuePoolSize

 This number specifies how many TemporaryQueue and QueueReceiver objects
 should be created upon initialization. This is another performance
 enhancement that allows multithreaded applications to produce messages
 using pre-established TemporaryQueues instead of creating them at message
 production time.

 startOnInitialization

 This attribute tells the producer whether or not to start itself when it is
 initialized. If this is 'false', it will be the responsibility of the
 application to start the producer. In most cases, this should always be set
 to 'true' so the expense of starting the producer is paid only once at the
 time the application is initialized.

 acknowledgementMode

 This attribute specifies the JMS acknowledgement mode to use at the JMS
 session level. Because of the lack of value this JMS property provides at

 Page 32 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 this time, it is defaulted to AUTO_ACKNOWLEDGE for all producers.

 transacted

 This specifies whether the JMS session sending these messages is to be
 transacted or not. This JMS property also has limited value at this point,
 because when you commit a transaction at the consuming end, you're
 committing everything that has been sent on that session and not on a
 message-by-message basis.

 deliveryMode

 This is defaulted to PERSISTENT for PointToPointProducers and is not used
 for PubSubProducers, because all OpenEAI PubSubConsumers subscribe durably.

 The following is an example specifying configuration information for a set
 of producers (one PubSubProducer and one PointToPointProducer)
 from a sample deployment descriptor:

 <ProducerConfigs startOnInitialization="true">
 <ConnectionFactoryName>cn=TCF.PaymasterBatchApplication</ConnectionFactoryName>
 <InitialContextFactory>com.sun.jndi.ldap.LdapCtxFactory</InitialContextFactory>
 <ProviderURL>ldaps://ldap.any-openeai-
enterprise.org:636/ou=PubSub,ou=Development,ou=AdministeredObjects,ou=Version3.5,ou=SonicMQ,ou=
Providers,ou=Messaging,dc=any-openeai-enterprise,dc=org</ProviderURL>
 <SecurityPrincipal>uid=PaymasterBatchApplication,ou=Development,ou=Users,ou=Messaging,dc=any-
openeai-enterprise,dc=org</SecurityPrincipal>
 <SecurityCredentials>secretpassword</SecurityCredentials>
 <ProducerIdURL>http://www.any-openeai-
enterprise.org/uuidgen/servlet/UuidGen</ProducerIdURL>
 <ConfigClass>org.openeai.config.ProducerConfig</ConfigClass>
 <ProducerConfig name="BasicEmployeeSyncProducer">
 <LoggingProducer name="PaymasterSyncLoggingProducer" startOnInitialization="false">
 <ConnectionFactoryName>cn=TCF.EnterpriseSyncLogger</ConnectionFactoryName>
 <DestinationName>cn=org.any-
openeai.enterprise.topic.EnterpriseSyncLogger</DestinationName>
 <InitialContextFactory>com.sun.jndi.ldap.LdapCtxFactory</InitialContextFactory>
 <ProviderURL>ldaps://ldap.any-openeai-
enterprise.org:636/ou=PubSub,ou=Development,ou=AdministeredObjects,ou=Version3.5,ou=SonicMQ,ou=
Providers,ou=Messaging,dc=any-openeai-enterprise,dc=org</ProviderURL>
 <SecurityPrincipal>uid=PaymasterBatchApplication,ou=Development,ou=Users,ou=Messaging,dc=any-
openeai-enterprise,dc=org</SecurityPrincipal>
 <SecurityCredentials>secretpassword</SecurityCredentials>
 <ProducerIdURL>http://www.any-openeai-
enterprise.org/uuidgen/servlet/UuidGen</ProducerIdURL>
 <ConfigClass>org.openeai.config.ProducerConfig</ConfigClass>
 <ObjectClass>org.openeai.jms.producer.PubSubProducer</ObjectClass>
 <DefaultCommandName>EnterpriseSyncLogger</DefaultCommandName>
 </LoggingProducer>
 <ConnectionFactoryName>cn=TCF.PaymasterBatchApplication</ConnectionFactoryName>
 <DestinationName>cn=org.any-openeai-
enterprise.topic.EnterpriseTransRouter</DestinationName>
 <ObjectClass>org.openeai.jms.producer.PubSubProducer</ObjectClass>
 </ProducerConfig>
 <ProducerConfig name="P2PPaymasterGateway" tempQueuePoolSize="12">
 <ConnectionFactoryName>cn=QCF.PaymasterBatchApplication.producer
</ConnectionFactoryName>

 Page 33 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 <DestinationName>cn=org.any-openeai-
enterprise.queue.PaymasterGateway</DestinationName>
 <ProviderURL>ldaps://ldap.any-openeai-
enterprise.org:636/ou=PointToPoint,ou=Development,ou=AdministeredObjects,ou=Version3.5,ou=SonicMQ
,ou=Providers,ou=Messaging,dc=any-openeai-enterprise,dc=org</ProviderURL>
 <ObjectClass>org.openeai.jms.producer.PointToPointProducer</ObjectClass>
 <ThreadPoolConfig name="P2P1 ThreadPool" maxThreads="10" minThreads="0"
maxIdleTime="1"/>
 </ProducerConfig>
 <ProducerConfig name="P2PICardGateway" tempQueuePoolSize="3"
numberOfProducers="1">
 <ConnectionFactoryName>cn=QCF.PaymasterBatchApplication.producer
</ConnectionFactoryName>
 <DestinationName>cn=org.any-openeai-
enterprise.icard.queue.IcardGateway</DestinationName>
 <ProviderURL>ldaps://ldap.any-openeai-
enterprise.org:636/ou=PointToPoint,ou=Development,ou=AdministeredObjects,ou=Version3.5,ou=SonicMQ
,ou=Providers,ou=Messaging,dc=any-openeai-enterprise,dc=org</ProviderURL>
 <ObjectClass>org.openeai.jms.producer.PointToPointProducer</ObjectClass>
 <ThreadPoolConfig name="P2P2 ThreadPool" maxThreads="10" minThreads="0"
maxIdleTime="1"/>
 </ProducerConfig>
 </ProducerConfigs>

 The following example demonstrates the retrieval of a Producer from the
 AppConfig object:

 PointToPointProducer p2p1 =
(PointToPointProducer)aConfig.getObject("PaymasterP2PProducer");
 PointToPointProducer p2p1 =
(PointToPointProducer)aConfig.getObjectByType("org.openeai.jms.producer.PointToPointProducer");

 Note that the second example would only make sense if there were only one
 PointToPointProducer stored in the AppConfig object.-->
<!ELEMENT ProducerConfig (LoggingProducer?, ConnectionFactoryName?, DestinationName,
InitialContextFactory?, ProviderURL?, SecurityPrincipal?, SecurityCredentials?, Username?, Password?,
ProducerIdURL?, ConfigClass?, ObjectClass, DefaultCommandName?)>
<!ELEMENT ObjectClass (#PCDATA)>
<!ATTLIST ProducerConfig
 name CDATA #REQUIRED
 numberOfProducers CDATA #IMPLIED
 tempQueuePoolSize CDATA #IMPLIED
 startOnInitialization (true | false) #IMPLIED
 acknowledgementMode (AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
DUPS_OK_ACKNOWLEDGE) #IMPLIED
 transacted (true | false) #IMPLIED
 deliveryMode (NON-PERSISTENT | PERSISTENT) #IMPLIED
>
<!ELEMENT LoggingProducer (ConnectionFactoryName, DestinationName, InitialContextFactory,
ProviderURL, SecurityPrincipal, SecurityCredentials, Username?, Password?, ProducerIdURL, ConfigClass,
ObjectClass, DefaultCommandName?)>
<!ATTLIST LoggingProducer
 name CDATA #REQUIRED
 startOnInitialization (true | false) #REQUIRED
>
<!ELEMENT ConnectionFactoryName (#PCDATA)>
<!ELEMENT DestinationName (#PCDATA)>

 Page 34 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

<!ELEMENT DefaultCommandName (#PCDATA)>
<!ELEMENT InitialContextFactory (#PCDATA)>
<!ELEMENT ProviderURL (#PCDATA)>
<!ELEMENT SecurityPrincipal (#PCDATA)>
<!ELEMENT SecurityCredentials (#PCDATA)>
<!ELEMENT Username (#PCDATA)>
<!ELEMENT Password (#PCDATA)>
<!ELEMENT ProducerIdURL (#PCDATA)>
<!--
 The ConsumerConfigs element contains one or more ConsumerConfig
 elements. Like all container elements ConsumerConfigs allows the
 deployer to specify default values at the container level that are
 applied to the elements and attributes of each ConsumerConfig contained
 within it unless these default values are overridden by specifying different
 values within an individual ConsumerConfig.-->
<!ELEMENT ConsumerConfigs (ConnectionFactoryName, InitialContextFactory, ProviderURL,
SecurityPrincipal, SecurityCredentials, ConfigClass, GenericResponse, ThreadPoolConfig,
ConsumerConfig+)>
<!ATTLIST ConsumerConfigs
 startOnInitialization (true | false) #REQUIRED
 transacted (true | false) #IMPLIED
>
<!--
 The ConsumerConfig element contains all of the information needed to
 configure and start (if specified) OpenEAI JMS consumer foundation objects
 (PointToPointConsumer or PubSubConsumer). The following is a description
 of each of the elements and attributes of ConsumerConfig:

 ConnectionFactoryName

 This specifies the lookup name for the JMS ConnectionFactory that will be
 used by this consumer. This can be either a TopicConnectionFactory or a
 QueueConnectionFactory, depending on the type of consumer you are
 configuring. A JMS connection factory contains JMS provider-specific
 information about how to connect to the JMS provider. Connection factories
 are 'administered objects' and are stored in a directory server or other
 JNDI store whose location is specified in the ProviderURL element.

 DestinationName

 This is the name of the JMS queue or topic from which this consumer will
 consumer messages. This is also an 'administered object' stored in the
 directory server or other JNDI store whose location is specified in
 the ProviderURL element.

 InitialContextFactory

 This is the fully-qualified class name of the InitialContectFactory the
 consumer will use to obtain an initial context with the directory server or
 other JNDI store where the administered objects reside. When an
 organization uses an LDAP repository for JMS administered objects, this
 will almost always be com.sun.jndi.ldap.LdapCtxFactory. This value will
 vary based on the repository being used to store JMS administered
 objects.

 ProviderURL

 This is the location in the directory server or other JNDI store where the

 Page 35 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 connection factories and destinations (administered objects) reside.

 SecurityPrincipal

 This element specifies the distinguished name of the directory user allowed
 to access the administered objects in the directory server or other JNDI
 store at the location specified by ProviderURL.

 SecurityCredentials

 This element specifies the password associated with the SecurityPrincipal.

 Username

 This is the JMS Provider username allowed to consume messages from
 the desired destination. If you are following JMS and OpenEAI preferred
 deployment patterns, you will leave this element blank, because this username
 should be specified in the ConnectionFactory maintained in the JNDI
 administered object store.

 Password

 This is the password corresponding to the JMS Provider username allowed to
 consume messages from the desired destination. If you are following
 JMS and OpenEAI preferred deployment patterns, you will leave this element
 blank, because the username and password should be specified in the
 ConnectionFactory maintained in the JNDI administered object store.

 ConfigClass

 The ConfigClass is the fully-qualified class name of the enterprise
 configuration object that will wrap all this configuration information
 and which will be passed to the constructor of the Consumer class
 to initialize the consumer. For consumers, this class
 name will always be org.openeai.config.ConsumerConfig.

 ObjectClass

 The ObjectClass element should contain the fully-qualified class name of
 the object to instantiate and start. This should only be one of the
 following classes: org.openeai.jms.consumer.PointToPointConsumer for
 point-to-point message consumption or
 org.openeai.jms.consumer.PubSubConsumer for publish/subscribe message
 consumption.

 Commands

 See the comments included with the Commands container and command element
 in this definition for details.

 GenericResponse

 This element is used to specify the 'primed' xml document that will be used in
 case the consumer encounters errors consuming a message and determining which
 command to execute for the message. This is only relevant if errors occur in
 the consumer prior to successfully executing the appropriate command for the
 message. If errors occur during the execution of a command, the command is
 responsible for either logging those errors (via

 Page 36 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 org.openeai.CoreMessaging.Sync.Error-Sync messages) or returning an error.

 ThreadPoolConfig

 This is the main thread pool to which the consumer adds command execution
 transactions. Since we use a thread pool, the onMessage method in the
 consumer's MessageListener does not have to wait for the command to complete
 execution before consuming the next message. Instead the consumer consumes a
 message and adds the incoming message to the thread pool where command
 execution takes place. These thread pools should be configured to check their
 status prior to adding the command execution as a job to the pool by setting
 the checkBeforeProcessing attribute of the thread pool to 'true'. In this
 way, the consumer will attempt to add the command execution to the thread
 pool, and if the thread pool is busy, it will stop consuming messages and
 wait until the thread pool can accept more command execution transaction.
 This reduces the risk of command executions being missed if the gateway
 should terminate abnormally. See the comments with the ThreadPoolConfig
 element in this definition for details on thread pool configuration.

 DbConnectionPoolConfig

 This element contains the configuration for the database connection pool
 used by the MessageBalancer in PubSubConsumers to ensure that only one
 consumer per publish/subscribe destination actually processes a message.
 The MessageBalancer is an infrastructure component that PubSubConsumers use
 to determine if another consumer is already processing the message. If so,
 the consumer will not process the message. Currently, the message balancer
 uses a database to store the MessageId of the message that is consumed to
 make this determination. This database connection pool is a pool of
 connections to that repository.

 If this database connection pool is not specified, the consumer will log a
 warning message and all messages consumed by this consumer will be processed.
 If an organization runs multiple instances of gateways that consume sync
 messages (which should be the case to ensure high availability) this will
 lead to issues, because multiple consumers will be consuming and processing
 the same message. In essence, the same message will be processed more than
 once. Obviously, this would not be desirable. For example, in the case of
 Create-Sync messages, multiple instance of the same gateway would be
 attempting to create same record. This would lead to unnecessary errors
 on account of duplicate key violations or, even worse, duplicate data
 actually being stored in the application consuming the sync messages,
 depending on the underlying data structure into which the data is being
 inserted.

 name

 The name attribute contains the unique name by which this consumer is known
 to the AppConfig object. When a developer or an application wants to retrieve
 the consumer from the AppConfig object, it may do so by specifying this name
 in the getObject(String name) method of the AppConfig object.

 startOnInitialization

 This attribute tells the consumer whether or not to start itself when it is
 initialized. If this is 'false', it will be the responsibility of the
 application to start the consumer. In most cases, this should always be set
 to 'true' so the expense of starting the producer is paid only once at the

 Page 37 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 time the application is initialized.

 The following is an example from a sample deployment descriptor:

 <ConsumerConfig name="LoggingConsumer1">
 <DestinationName>cn=org.any-openeai-
enterprise.topic.EnterpriseSyncLogger</DestinationName>
 <Commands inboundXmlValidation="false" outboundXmlValidation="false"
writeToFile="false">
 <Command type="syncMessage" isAbsolute="true">
 <CommandName>EnterpriseSyncLogger</CommandName>
 <CommandClass>
org.openeai.implementations.gateways.enterprisesynclogger.EnterpriseSyncLoggerCommand</CommandC
lass>
 <Configuration>
 <ProducerConfigs startOnInitialization="true">
 <ConnectionFactoryName>cn=TCF.EnterpriseSyncLogger
</ConnectionFactoryName>
 <InitialContextFactory>com.sun.jndi.ldap.LdapCtxFactory
</InitialContextFactory>
 <ProviderURL>
ldaps://ldap.openerp.org:636/ou=PubSub,ou=Development,ou=AdministeredObjects,ou=Version3.5,ou=Son
icMQ,ou=Providers,ou=Messaging,dc=any-openeai-enterprise,dc=org</ProviderURL>
 <SecurityPrincipal>
uid=EnterpriseSyncLogger,ou=Development,ou=users,ou=messaging,dc=any-openeai-
enterprise,dc=org</SecurityPrincipal>
 <SecurityCredentials>EnterpriseSyncLogger22</SecurityCredentials>
 <ProducerIdURL>localhost</ProducerIdURL>
 <ConfigClass>org.openeai.config.ProducerConfig</ConfigClass>
 <ProducerConfig name="SyncErrorPublisher">
 <DestinationName>cn=org.any-openeai-
enterprise.topic.EnterpriseSyncErrorLogger</DestinationName>
 <ObjectClass>org.openeai.jms.producer.PubSubProducer</ObjectClass>
 <DefaultCommandName>EnterpriseSyncErrorLogger
</DefaultCommandName>
 </ProducerConfig>
 </ProducerConfigs>
 <DbConnectionPoolConfigs>
 <ConfigClass>org.openeai.config.DbConnectionPoolConfig</ConfigClass>
 <ObjectClass>org.openeai.dbpool.EnterpriseConnectionPool</ObjectClass>
 <DbConnectionPoolConfig name="SyncLoggerDbPool"
dbDriverName="oracle.jdbc.driver.OracleDriver"
dbConnectString="jdbc:oracle:thin:@oradev.openerp.org:1521:MSGDEV" dbConnectUserId="synclog"
dbConnectPassword="synclog22" dbPoolSize="5"/>
 </DbConnectionPoolConfigs>
 <PropertyConfigs>
 <ConfigClass>org.openeai.config.PropertyConfig</ConfigClass>
 <PropertyConfig name="SyncErrorSyncProperties">
 <ConfigClass>org.openeai.config.PropertyConfig</ConfigClass>
 <Property>
 <PropertyName>SyncErrorSyncPrimedDocumentUri</PropertyName>
 <PropertyValue>http://xml.openeai.org/message/releases/com/any-
erp-vendor/CoreMessaging/Sync/1.0/xml/Error-Sync.xml</PropertyValue>
 </Property>
 </PropertyConfig>
 <PropertyConfig name="SyncLoggerProperties">
 <ConfigClass>org.openeai.config.PropertyConfig</ConfigClass>
 <Property>

 Page 38 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 <PropertyName>SyncErrorSyncPrimedDocumentUri</PropertyName>
 <PropertyValue>http://xml.openeai.org/message/releases/com/any-
erp-vendor/CoreMessaging/Sync/1.0/xml/Error-Sync.xml</PropertyValue>
 </Property>
 <Property>
 <PropertyName>xmlFileSpec</PropertyName>
 <PropertyValue>./message-store</PropertyValue>
 </Property>
 </PropertyConfig>
 </PropertyConfigs>
 </Configuration>
 </Command>
 </Commands>
 <ObjectClass>org.openeai.jms.consumer.PubSubConsumer</ObjectClass>
 <DbConnectionPoolConfig name="PubSubMessageBalancer1"
dbDriverName="oracle.jdbc.driver.OracleDriver"
dbConnectString="jdbc:oracle:thin:@oradev.openerp.org:1521:MSGDEV" dbConnectUserId="synclog"
dbConnectPassword="synclog22" dbPoolSize="3"/>
 </ConsumerConfig>

 Since consumers all use the OpenEAI Consumer Pattern (an implementation of
 the command pattern) there is really only one Java client ever needed to
 implement any consumer. These consumers are simply configured, and possibly
 started based on the AppConfig object that gets built. The commands that a
 consumer is configured to invoke distinguishes the functionality of the
 consumer.-->
<!ELEMENT ConsumerConfig (ConnectionFactoryName?, DestinationName, InitialContextFactory?,
ProviderURL?, SecurityPrincipal?, SecurityCredentials?, Username?, Password?, Commands,
ConfigClass?, ObjectClass, GenericResponse?, ThreadPoolConfig?, DbConnectionPoolConfig?)>
<!ATTLIST ConsumerConfig
 name CDATA #REQUIRED
 startOnInitialization (true | false) #IMPLIED
 transacted (true | false) #IMPLIED
>
<!ELEMENT GenericResponse (DocumentURI)>
<!ATTLIST GenericResponse
 validate (true | false) #REQUIRED
>
<!ELEMENT DocumentURI (#PCDATA)>
<!--
 The Commands container specifies the functionality that this Consumer
 supports. Like all container elements Commands allows the deployer to
 specify default values at the container level that are applied to the
 elements and attributes of each Command contained within it unless
 these default values are overridden by specifying different values
 within an individual Command.

 Each Command listed in this collection maps to Java objects that
 inherit from the ConsumerCommand super class. If a developer wishes to add
 common functionality to all commands supported by a consumer, they can also
 extend ConsumerCommand and inherit from that new level as well.

 When the Consumer receives a message, it looks at that message and calls the
 execute method on the Command (Java object) associated with it in the JMS
 property called COMMAND_NAME. These Java objects should all implement either
 the SyncCommand or the RequestCommand interfaces. If command produces a reply
 to a request, it should implement the RequestCommand interface. If no reply
 is expected, the command should implement the SyncCommand interface. Each of

 Page 39 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 these interfaces define one method that must be implemented. RequestCommand
 defines an execute method that must return a JMS Message while SyncCommand
 defines an execute method that returns nothing.

 The consumer knows which command to execute by looking at the user-defined
 JMS property called COMMAND_NAME. It knows if the message coming in expects
 a reply by looking at the 'reply-to' queue specified in the message. If there
 is no 'reply-to' queue in the JMS message, the consumer knows no reply is
 needed. If it detects a 'reply-to' queue, then it knows it must execute the
 command and return the reply. If there is no COMMAND_NAME present, the
 consumer will execute a 'Default' command associated with the consumer.
 This allows you to have one consumer that supports multiple business functions.

 The COMMAND_NAME is set by the OpenEAI message-aware business objects as
 specified in the CommandName element of MessageObjectConfig when a
 message action is performed on the object (query, create, update, delete,
 or generate).
-->
<!ELEMENT Commands (Command+)>
<!ATTLIST Commands
 inboundXmlValidation (false | true) #REQUIRED
 outboundXmlValidation (false | true) #REQUIRED
 writeToFile (false | true) #REQUIRED
 messageDumpDirectory CDATA #IMPLIED
>
<!--
 The Command element contains all of the information needed to configure
 OpenEAI consumer command foundation objects. The following is a description
 of each of the elements and attributes of a Command:

 CommandName

 This element is the name of the command. If the consumer finds a COMMAND_NAME
 JMS property on the message it consumed that matches this, it will execute this
 command.

 CommandClass

 This is the fully-qualified class name of the command class that implements
 SyncCommand or RequestCommand. This is the class on which the execute method
 will be called when a message with a COMMAND_NAME of CommandName is consumed
 by the consumer.

 Configuration

 Since commands are considered "mini" applications, they also have an AppConfig
 object associated to them. This Configuration element provides that AppConfig object
 with the appropriate runtime objects that the command will need. The Command can then
 retrieve this AppConfig to access the objects it needs. This approach is used for both
 ConsumerCommands and ScheduledCommands.

 MessagingComponents

 A command can take many different forms. They can be very simple or very
 complex. For this reason, they are given the ability to perform any of the
 functions that any of our other message components can perform. Generally,
 the MessagingComponents element won't be used except when developing commands
 to implement messaging infrastructure processing such as when developing

 Page 40 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 message routers or proxies. This is an advanced topic.

 type

 This attribute specifies the type of the command: either 'scheduled',
 'requestMessage' or 'syncMessage'.

 All commands of type 'scheduled' implement the
 org.openeai.afa.ScheduledCommand
 interface and must implement the execute method specified
 by that interface.

 All commands of type 'requestMessage' implement the
 org.openeai.jms.consumer.commands.RequestCommand interface and
 must implement an execute method that returns a JMS Message.

 All commands of type 'syncMessage' implement the
 org.openeai.jms.consumer.commands.RequestCommand
 interface and must implement an execute method. Additionally, the
 configuration for a command of type 'syncMessage' must include a
 SyncErrorPublisher in its configuration that will be used by the command to
 publish org.openeai.CoreMessaging.Sync.Error-Sync messages if errors occur
 during the processing of a sync message. The consumer will not initialize
 if this SyncErrorPublisher is not specified.

 isDefault

 This attribute specifies whether the command is the default command the
 consumer should execute if there is no COMMAND_NAME JMS property
 associated with a message received.

 isAbsolute

 This attribute specifies whether the command is the ONLY command this
 consumer will ever execute. That is, no matter what COMMAND_NAME property
 is associated with the message consumed, it will execute this command
 always.

 inboundXmlValidation

 This attribute tells the ConsumerCommand whether or not it should validate the
 contents of the message being passed to the command. This will be executed
 in the initializeInput method found in the Command super class or it can also
 be performed by the command itself if the initializeInput method is not used.

 outboundXmlValidation

 This attribute tells the ConsumerCommand whether or not is should validate the
 contents of a reply message document (or a message document it is routing
 as in the case of messaging infrastructure applications like TransRoute.
 For example, a reply message can be validated before sending the reply in
 response to a request.

 writeToFile

 This attribute tells the ConsumerCommands whether or not it should
 write the incoming message to a file. This parameter is checked and
 acted upon by the initializeInput method in the ConsumerCommand

 Page 41 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 super class.

 messageDumpDirectory

 This specifies the directory to which messages should be written if the value
 of the writeToFile attribute is 'true'.-->
<!ELEMENT Command (CommandName, CommandClass, Configuration?, MessagingComponents?)>
<!ATTLIST Command
 type (requestMessage | syncMessage | scheduled) #REQUIRED
 isDefault (true | false) "false"
 isAbsolute (true | false) "false"
 inboundXmlValidation (true | false) "false"
 outboundXmlValidation (true | false) "false"
 writeToFile (true | false) "false"
 messageDumpDirectory CDATA #IMPLIED
>
<!ELEMENT CommandName (#PCDATA)>
<!ELEMENT CommandClass (#PCDATA)>
<!--

 The LoggerConfigs element consists of one LoggerConfig element. It is
 a container in which you can configure a Logger for use within an
 application. Once this Logger is instantiated and initialized by AppConfig,
 all OpenEAI foundation components and your objects that extend them
 inherit the same logging configuration, because the Logger object is a
 static variable in OpenEaiObject, the ancestor from which all OpenEAI
 objects inherit.-->
<!ELEMENT LoggerConfigs (LoggerConfig)>
<!--
 The LoggerConfig Element

 When the AppConfig object sees a LoggerConfig element, it instantiates the
 object specified by the ConfigClass element and then calls the initialization
 method for the Logger object inherited by all objects running in the current
 JVM. Therefore, there is never any need for an application to attempt to
 retrieve the LoggerConfig from the AppConfig object. That is all handled
 automatically because the Logger object that all objects running in the JVM
 will use is configured once, by the AppConfig object.

 The ConfigClass element tells the AppConfig object which Java object to use
 to store the configuration properties defined in the Property elements. An
 example in this case would be:

 <ConfigClass>org.openeai.config.LoggerConfig</ConfigClass>

 The LoggerConfig object is an OpenEAI foundation component that takes the
 information found in this XML element and configures the Logger object.

 The Property elements are property values that get used to configure the
 Logger. They are specified in a name/value pair and are ultimately turned
 into a Java Properties object. These properties happen to be specific to
 Log4J because that's the logging API that the OpenEAI project has been using
 currently. Log4J is excellent. If you use a different logging API, these
 values would be different. Here's a complete example of a LoggerConfig
 entry from the sample deployment descriptor:

 <LoggerConfig name="XmlBasicPersonLogger">
 <ConfigClass>org.openeai.config.LoggerConfig</ConfigClass>

 Page 42 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 <Property>
 <PropertyName>log4j.rootCategory</PropertyName>
 <PropertyValue>INFO, stdout</PropertyValue>
 </Property>
 <Property>
 <PropertyName>log4j.appender.stdout</PropertyName>
 <PropertyValue>org.apache.log4j.FileAppender</PropertyValue>
 </Property>
 <Property>
 <PropertyName>log4j.appender.stdout.File</PropertyName>
 <PropertyValue>System.out</PropertyValue>
 </Property>
 <Property>
 <PropertyName>log4j.appender.stdout.layout</PropertyName>
 <PropertyValue>org.apache.log4j.PatternLayout</PropertyValue>
 </Property>
 <Property>
 <PropertyName>log4j.appender.stdout.layout.ConversionPattern</PropertyName>
 <PropertyValue>%-4d{ISO8601} %-5p [%t] %37c %3x - %m%n</PropertyValue>
 </Property>
 </LoggerConfig>-->
<!ELEMENT LoggerConfig (ConfigClass, Property+)>
<!ATTLIST LoggerConfig
 name CDATA #REQUIRED
>
<!--
 This is a container for specifying application specific properties for an application,
 RequestCommand, SyncCommand or ScheduledCommand.-->
<!ELEMENT PropertyConfigs (ConfigClass, PropertyConfig+)>
<!--
 The AppConfig object builds the PropertyConfig Java object from the
 PropertyConfig element. The PropertyConfig object stores the
 PropertyName/PropertyValue elements in a standard Java Properties object.
 This Properties object is available to the application via AppConfig by name.
 Therefore, an application can have many "properties" distinguished by name.
 This allows us to group properties and document the application further
 using the deployment descriptor.

 The following is an example PropertyConfig from a sample deployment
 descriptor:

 <PropertyConfig name="PaymasterGateway">
 <ConfigClass>org.openeai.config.PropertyConfig</ConfigClass>
 <Property>
 <PropertyName>extractFileName</PropertyName>
 <PropertyValue>/export/home/EnterpriseConsumer/extract/Big-
PaymasterExtract.test.txt</PropertyValue>
 </Property>
 <Property>
 <PropertyName>maxLinesToRead</PropertyName>
 <PropertyValue>2000</PropertyValue>
 </Property>
 <Property>
 <PropertyName>maxProducers</PropertyName>
 <PropertyValue>5</PropertyValue>
 </Property>
 <Property>
 <PropertyName>useThreads</PropertyName>

 Page 43 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 <PropertyValue>true</PropertyValue>
 </Property>
 <Property>
 <PropertyName>startingId</PropertyName>
 <PropertyValue>400000107</PropertyValue>
 </Property>
 <Property>
 <PropertyName>action</PropertyName>
 <PropertyValue>create</PropertyValue>
 </Property>
 </PropertyConfig>

 The following example demonstrates the retrieval of a property from the
 AppConfig object:

 PropertyConfig propConfig = (PropertyConfig)aConfig.getObject("PaymasterGateway");
 Properties props = propConfig.getProperties();
 m_extractFileName = props.getProperty("extractFileName","");

 PropertyConfig pConfig2 = new PropertyConfig();
 pConfig2 = (PropertyConfig)m_appConfig.getObject("OtherProperties");
 logger.info("Environment: " + pConfig2.getProperties().getProperty("environment","Not found"));-->
<!ELEMENT PropertyConfig (ConfigClass?, Property+)>
<!ATTLIST PropertyConfig
 name CDATA #REQUIRED
>
<!ELEMENT Property (PropertyName, PropertyValue)>
<!ELEMENT PropertyName (#PCDATA)>
<!ELEMENT PropertyValue (#PCDATA)>
<!--
 The MessageObjectConfigs container specifies MessageObjectConfig elements
 for the message-aware Java objects that the application or gateway will
 use within its runtime. Like all container elements, MessageObjectConfigs
 allows the deployer to specify default values at the container level that
 are applied to the elements and attributes of each MessageObjectConfig
 contained within it unless these default values are overridden by specifying
 different values within an individual MessageObjectConfig.-->
<!ELEMENT MessageObjectConfigs (SenderAppId, Authentication, ConfigClass,
EnterpriseObjectDocument?, LayoutManager?, MessageObjectConfig+)>
<!ATTLIST MessageObjectConfigs
 deferInitialization (true | false) #IMPLIED
 xmlDocumentValidation (true | false) #REQUIRED
 translationType (all | application) #REQUIRED
>
<!--
 The MessageObjectConfig element contains all of the information needed to
 configure a message-aware Java object. The following is a description of
 each of the elements and attributes of a MessageObjectConfig:

 SenderAppId

 This value will be used in any messages produced by the message object to
 indicate the name of the application sending the message. Therefore, this
 should typically be the same value as the application name that uses these
 message objects. It is a part of the ControlArea in the message. This will
 be automatically applied to the message when it is produced using this
 message object. See the description of the SenderAppId element in the OpenEAI
 segments file for more details.

 Page 44 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 Authentication

 This is the value for the Authentication element that is placed into the
 messages that this Java message object is used to produce. It is part of
 the ControlArea of the message. This will be automatically applied to the
 message when it is produced using this message object.

 CommandName

 This tells a consuming application what command to execute when it receives
 a message that was produced using this message object. See the description
 of the consumer and the command configurations in this definition. This value
 corresponds a Command's "CommandName" element and is the value placed
 on the COMMAND_NAME JMS property when an action is performed with the
 message object (query, create, delete, update, generate etc.).

 PrimedXmlDocuments

 These documents are used to specify static information about the messages
 that will be produced. This way, we don't have to rebuild the message we're
 producing from scratch. These documents contain information in their
 ControlArea elements that will exist for all messages that get produced of a
 Certain action type. Any dynamic information (like SenderAppId,
 Authentication, Datetime, etc.) will be automatically changed in the message
 when it gets produced. This information is retrieved from the object as it
 builds the document it is producing/publishing.

 ConfigClass

 The ConfigClass is the fully-qualified class name of the enterprise
 configuration object that will wrap all this configuration information.
 For message objects, this class name will always be
 org.openeai.config.MessageObjectConfig.

 ObjectClass

 The ObjectClass element should contain the fully-qualified class name of
 the object to instantiate. For example,
 edu.uillinois.aits.eai.moa.jmsobjects.person.v1_0.BasicPerson.

 EnterpriseObjectDocument

 This element includes the attributes docUri, ignoreMissingFields, and
 ignoreValidation a URI to the enterprise object (EO) document that will be
 used to by the message object to set its field formatting, translation,
 scrubbing and other rules.

 docUri

 This specifies the location of the enterprise objects (EO) document to be
 used by this Java message object. These are typically stored on a web server,
 a local file system, or a remote file system that is exported and mounted
 locally.

 ignoreMissingFields

 This attribute specifies whether the Java message object should ignore fields

 Page 45 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 that do not appear in the enterprise object (EO) document or not. This attribute
 will be removed in the future since EO documents are automatically generated
 and there will most likely never be a reason for an EO document to be incomplete.

 ignoreValidation

 This attribute toggles enterprise object (EO) validation on or off. When this
 is turned on (value is 'true'), no formatting, translations or scrubbing will
 be performed on the data as it is put into the Java message object via the
 setter methods. Note that this validation is completely different from XML
 document validation. This validation occurs when the setter methods are
 called on the Java message objects.

 LayoutManager

 In some cases other methods of building and serializing objects will be
 necessary. This is accomplished with a layout manager. The LayoutManager
 element specifies the specialized classes that perform the real work of
 the build and serialization methods like building the object from records
 in an extract file or serializing the object as line(s) in an extract file.
 As more requirements are identified, the OpenEAI Project will add more
 generalized layout managers...like the XML, extract file, and stored
 procedure call layout managers that exist today. However, layout managers
 do not have to be as universally applicable and general as these. You may
 need to build a really strange thing with your message object data, and you
 can develop your own layout manager to do exactly what you need as well.

 When the application configures the Java message objects via the AppConfig
 object, it tells those objects which LayoutManager to use by default. Since
 all objects must be able to serialize themselves from and to XML, they all
 must specify at least an XML layout manager. See the comments with the
 LayoutManager element in this definition for details on configuring a
 layout manager.

 name

 This is the name of the object as it will be known to the AppConfig object.
 Generally, this should be just be a short version of the Java object name
 such as "BasicPerson" or "EmergencyContact", but this is not a requirement.
 The name can be anything the developer wishes it to be. For example, if you
 needed to have two BasicPerson objects pre-configured differently by
 AppConfig, you would want to name them differently because you are going to
 retrieve them from AppConfig by name. If you named them the same, the second
 one in the list would overwrite the first!

 xmlDocumentValidation

 This element specifies whether or not to perform XML document validation with
 a validating XML parser as messages are produced with this message object.
 Generally, this should only be true during development and testing, because
 of the performance implications of XML validation.

 translationType

 This indicates the type of translations that will be performed on values being
 set on the object. The value "all" indicates that we wish to allow any input
 values found in the enterprise object (EO) document to be mapped to the
 enterprise value for a given field within this object. The value

 Page 46 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 "application" says we only want to accept input values associated with a
 specific application and translate them to enterprise values. In this case
 any other input values will result in an exception being thrown during the
 building of an object. See the detailed comments within enterprise object (EO)
 document time definition for more details on translations.

 The following is an example of the configuration for a Java message object
 within its MessageObjectConfigs container element from a sample deployment
 descriptor:

 <MessageObjectConfigs xmlDocumentValidation="false" translationType="application">
 <SenderAppId>org.openeai.TestSuiteApplication</SenderAppId>
 <Authentication>
 <UserId>TestSuiteApplication</UserId>
 </Authentication>
 <ConfigClass>org.openeai.config.MessageObjectConfig</ConfigClass>
 <EnterpriseObjectDocument
docUri="http://xml.openeai.org/xml/configs/messaging/environments/development/enterpriseobjects/1.0/Ent
erpriseObjects.xml" ignoreMissingFields="true" ignoreValidation="false"/>
 <LayoutManager>
 <InputLayout type="xml">
 <ObjectClass>org.openeai.layouts.XmlLayout</ObjectClass>
 </InputLayout>
 <OutputLayout type="xml">
 <ObjectClass>org.openeai.layouts.XmlLayout</ObjectClass>
 </OutputLayout>
 </LayoutManager>
 <MessageObjectConfig name="BasicPerson.v1_0">
 <CommandName>BasicPerson</CommandName>
 <PrimedXmlDocuments>
 <PrimedXmlDocument
type="query">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Query-Request.xml</PrimedXmlDocument>
 <PrimedXmlDocument
type="create">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Create-Request.xml</PrimedXmlDocument>
 <PrimedXmlDocument
type="delete">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Delete-Request.xml</PrimedXmlDocument>
 <PrimedXmlDocument
type="update">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Update-Request.xml</PrimedXmlDocument>
 <PrimedXmlDocument
type="createSync">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Create-Sync.xml</PrimedXmlDocument>
 <PrimedXmlDocument
type="updateSync">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Update-Sync.xml</PrimedXmlDocument>
 <PrimedXmlDocument
type="deleteSync">file://localhost/checkout/openeai/project/message/releases/com/any-erp-
vendor/Person/BasicPerson/1.0/xml/Delete-Sync.xml</PrimedXmlDocument>
 </PrimedXmlDocuments>
 <ObjectClass>com.any_erp_vendor.moa.jmsobjects.person.v1_0.BasicPerson</ObjectClass>
 <EnterpriseObjectDocument
docUri="file://localhost/checkout/openeai/project/configs/messaging/environments/examples/EnterpriseObje
cts/com/any-erp-vendor/Person/1.0/BasicPersonEO.xml" ignoreMissingFields="true"
ignoreValidation="false"/>
 </MessageObjectConfig>

 Page 47 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 </MessageObjectConfigs>

 The following is an example of retrieving a Java message object by type from
 AppConfig:

 BasicPerson bPerson = null;
 bPerson = (BasicPerson)aConfig.getObject("BasicPerson");

 BasicPerson bPerson = (BasicPerson)aConfig
 .getObjectByType("com.any_erp_vendor.moa.jmsobjects.person.v1_0.BasicPerson");-->
<!ELEMENT MessageObjectConfig (SenderAppId?, Authentication?, CommandName,
PrimedXmlDocuments*, ConfigClass?, ObjectClass, EnterpriseObjectDocument?, LayoutManager?)>
<!ATTLIST MessageObjectConfig
 name CDATA #REQUIRED
 deferInitialization (true | false) #IMPLIED
 xmlDocumentValidation (true | false) #IMPLIED
 translationType (all | application) #IMPLIED
>
<!ELEMENT EnterpriseObjectDocument EMPTY>
<!ATTLIST EnterpriseObjectDocument
 docUri CDATA #REQUIRED
 ignoreMissingFields (false | true) #REQUIRED
 ignoreValidation (false | true) #REQUIRED
>
<!ELEMENT ConfigClass (#PCDATA)>
<!ELEMENT SenderAppId (#PCDATA)>
<!ELEMENT Authentication (UserId, Signature?)>
<!ELEMENT UserId (#PCDATA)>
<!ELEMENT Signature (#PCDATA)>
<!ELEMENT PrimedXmlDocuments (PrimedXmlDocument+)>
<!ELEMENT PrimedXmlDocument (#PCDATA)>
<!ATTLIST PrimedXmlDocument
 type (query | generate | generateSync | create | createSync | update | updateSync | delete | deleteSync |
provide | response) #REQUIRED
>
<!--
 The LayoutManager element is comprised of one or more InputLayout and
 one or more OutputLayout elements. These are specified so the object knows
 how to build itself via the buildObjectFromInput(Object) method and how to
 serialize itself via the buildOutputFromObject() method. When the AppConfig
 object is initialized, it looks at information in this location of the document
 and stores all LayoutManagers associated with the object. The LayoutManager
 that's listed first in the list is the "Default" LayoutManager to be used.
 All objects must have an XML LayoutManager. During the runtime of the
 application, it can switch between layout managers as needed.
 They both contain the following elements and attributes:

 ObjectClass

 This element contains the fully-qualified class name of the class that
 implements the LayoutManager functionality.

 type

 This attribute specifies the type of layout that is being used. This will be
 stored in the Java object along with the layout manager implementation so
 developers can specify the layout manager to use on the object when building

 Page 48 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 the object from an input (buildObjectFromInput method) or serializing the
 object to an output (buildOutputFromObject method).

 name

 The name of the layout manager that will be searched for during
 initialization. If this value is left blank, the name of the message object
 (such as BasicPerson) will be used as the layout manager name. The name
 attribute is only needed if an object will need layout managers in addition
 to the XML layout managers.-->
<!ELEMENT LayoutManager (InputLayout+, OutputLayout+)>
<!ELEMENT InputLayout (ObjectClass)>
<!ATTLIST InputLayout
 type (xml | other | extract) #REQUIRED
 name CDATA #IMPLIED
>
<!ELEMENT OutputLayout (ObjectClass)>
<!ATTLIST OutputLayout
 type (xml | other | extract | spcalls) #REQUIRED
 name CDATA #IMPLIED
>
<!--
 The ThreadPoolConfigs container specifies ThreadPoolConfig elements
 for use in configuring and initializing individual thread pools at
 runtime. Applications and commands may use several different ThreadPools
 during their execution. This allows the deployer to pre-configure these
 ThreadPools and retrieve them from AppConfig just like all other foundation
 objects. Like all container elements, ThreadPoolConfigs allows the deployer
 to specify some default values at the container level that are applied to the
 elements and attributes of each ThreadPoolConfig contained within it unless
 these default values are overridden by specifying different values within an
 individual ThreadPoolConfig.-->
<!ELEMENT ThreadPoolConfigs (ConfigClass, ObjectClass, ThreadPoolConfig+)>
<!--
 The ThreadPoolConfig element contains all of the information needed to
 configure a ThreadPool object. The following is a description of each
 of the elements and attributes of a ThreadPoolConfig:

 ConfigClass

 The ConfigClass is the fully-qualified class name of the enterprise
 configuration object that will wrap all this configuration information.
 For thread pools, this class name will always be
 org.openeai.config.ThreadPoolConfig.

 ObjectClass

 The ObjectClass element should contain the fully-qualified class name of
 the object to instantiate. For thread pools, this class name will always
 be org.openeai.threadpool.ThreadPoolImpl.

 name

 The name of the ThreadPool as it will be known to AppConfig. This is what the
 developer uses to retrieve this specific thread pool from AppConfig.

 maxThreads

 Page 49 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 The maximum number of threads to allocate to the thread pool. This is the
 maximum number of threads that will ever be in progress at the same time.

 minThreads

 The minimum number of threads that can be allocated to the thread pool.

 maxIdleTime

 The maximum amount of time the thread pool will wait for a thread to complete
 before allocating another thread to the pool.

 checkBeforeProcessing

 This tells the thread pool whether or not it should check the number of
 threads currently in use before attempting to add any more jobs to the pool.
 If the number of threads in use (jobs in progress) is equal to the
 maxThreads, it will throw a ThreadPoolException indicating that no more
 threads can be allocated until some of the jobs currently in progress have
 finished. If this is false, the thread pool will continue to accept incoming
 jobs, but will not be able to process them until some have finished. In some
 cases, this can lead to a risky situation in which there are pending jobs
 waiting for a thread to become available in which to execute. In this case,
 if the process dies for some reason, those pending jobs are lost. For
 example, OpenEAI consumers should initialize their thread pools with this flag
 set to 'true' and only add jobs to the thread pool if the pool is ready to
 accept and process those jobs. Otherwise, the consumer stops consuming
 messages and waits for some threads to free up in the pool.

 The following is an example ThreadPoolConfig from a sample deployment
 descriptor:

 <ThreadPoolConfigs>
 <ThreadPoolConfig name="ProcessLine" maxThreads="150" minThreads="0"
maxIdleTime="1">
 <ConfigClass>org.openeai.config.ThreadPoolConfig</ConfigClass>
 <ObjectClass>org.openeai.threadpool.ThreadPoolImpl</ObjectClass>
 </ThreadPoolConfig>
 <ThreadPoolConfig name="ProcessEmployee" maxThreads="30" minThreads="0"
maxIdleTime="1">
 <ConfigClass>org.openeai.config.ThreadPoolConfig</ConfigClass>
 <ObjectClass>org.openeai.threadpool.ThreadPoolImpl</ObjectClass>
 </ThreadPoolConfig>
 <ThreadPoolConfig name="ProcessPerson" maxThreads="15" minThreads="0"
maxIdleTime="1">
 <ConfigClass>org.openeai.config.ThreadPoolConfig</ConfigClass>
 <ObjectClass>org.openeai.threadpool.ThreadPoolImpl</ObjectClass>
 </ThreadPoolConfig>
 </ThreadPoolConfigs>

 The following is an example of retrieving a ThreadPool from AppConfig:

 ThreadPool tPool = (ThreadPool)m_appConfig.getObject("ProcessLine");-->
<!ELEMENT ThreadPoolConfig (ConfigClass?, ObjectClass?)>
<!ATTLIST ThreadPoolConfig
 name CDATA #REQUIRED
 maxThreads CDATA #REQUIRED
 minThreads CDATA #REQUIRED

 Page 50 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 maxIdleTime CDATA #REQUIRED
 checkBeforeProcessing (true | false) "false"
>
<!--
 The DbConnectionPoolConfigs container specifies DbConnectionPoolConfig
 elements for use in configuring and initializing individual database
 connection pools at runtime. Applications and commands may use several
 different database connection pools during their execution. This allows
 the deployer to pre-configure these connection pools and retrieve them
 from AppConfig just like all other foundation objects. When AppConfig
 initializes these pools, they are "ready-to-use" database connections.
 Like all container elements, DbConnectionPoolConfigs allows the deployer
 to specify some default values at the container level that are applied to the
 elements and attributes of each DbConnectionPoolConfig contained within it
 unless these default values are overridden by specifying different values
 within an individual DbConnectionPoolConfig.
-->
<!ELEMENT DbConnectionPoolConfigs (ConfigClass, ObjectClass, DbConnectionPoolConfig+)>
<!--
 The DbConnectionPoolConfig element contains all of the information needed
 to configure an EnterpriseConnectionPool object. The following is a
 description of each of the elements and attributes of a
 DbConnectionPoolConfig:

 ConfigClass

 The ConfigClass is the fully-qualified class name of the enterprise
 configuration object that will wrap all this configuration information.
 For database connection pools, this class name will always be
 org.openeai.config.DbConnectionPoolConfig.

 ObjectClass

 The ObjectClass element should contain the fully-qualified class name of
 the object to instantiate. For database connection pools, this class name
 will always be org.openeai.enterprise.dbpool.EnterpriseConnectionPool.

 name

 The name of the database connection pool. This is what the developer uses
 to retrieve this specific connection pool from AppConfig.

 dbDriverName

 This is the name of the JDBC implementation to use for the connections in
 this pool; for example, oracle.jdbc.driver.OracleDriver.

 dbConnectString

 This is the name of the target database to which the connections in this pool
 should connect; for example, jdbc:oracle:thin:@dbserver.openeai.org:0989:MSGDEV.
 This will be a JDBC provider-specific connect string.

 dbConnectUserId

 This is the name of the user as which to connect to the database.

 dbConnectPassword

 Page 51 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 This is the password to use for the user.

 dbPoolSize

 This is the initial number of connections to allocate to the pool.

 dbPoolMaxSize

 If specified, this is the maximum number of connections to allocate to the
 pool. If dbPoolMaxSize is not specified and additional available connections
 are needed, the pool will create additional connections dynamically indefinitely.
 If specified, the pool will only create additional connections dynamically
 until this maximum number of connections is reached.

 dbVerificationString

 This is a string used to externalize the verification of database connections
 as they are retrieved from the pool. Not all vendors who provide a JDBC
 implementation support the isClosed() method that JDBC specifies. There are
 cases where additional verification is required. For example, for Microsoft
 SQLServer the string that is typically used is "select getDate()". If this
 value is not specified, and the dbDriver is an Oracle implementation, the
 connection pool will attempt to use a default verification string. Currently,
 this value is set to "declare x number; begin x:=1; end;" for all Oracle
 drivers. This will attempt to declare a stored procedure which will fail if
 the db connection has been lost. You may be wondering why we didn't use the
 old Oracle standby like "select * from DUAL". Well, it turns out that those
 operations are pretty resource intensive for Oracle; it is not something that
 you want to do regularly every time you want to verify that status of a
 connection. If the value of dbVerificationString is not specified and the
 dbDriver is not Oracle, the connection pool will simply use the isClosed()
 method that JDBC specifies, which as mentioned above is not implemented by
 some JDBC providers. You will want to consult your JDBC provider's
 documentation to determine if your provider implements the isClosed() method
 adequately or to figure out what a good connection verification string would
 be to use for your database server.

 The following is an example of two DbConnectionPoolConfig elements
 within their DbConnectionPoolConfigs container element from a aample
 deployment descriptor:

 <DbConnectionPoolConfigs>
 <ConfigClass>org.openeai.config.DbConnectionPoolConfig</ConfigClass>
 <ObjectClass>org.openeai.enterprise.dbpool.EnterpriseConnectionPool</ObjectClass>

 <DbConnectionPoolConfig name="InstIdServiceDbPool"
dbDriverName="oracle.jdbc.driver.OracleDriver"
dbConnectString="jdbc:oracle:thin:@dbdev.openeai.org:3987:MSGDEVP1" dbConnectUserId="idservice"
dbConnectPassword="secretpw" dbPoolSize="2"/>

 <DbConnectionPoolConfig name="IcardDbPool"
dbDriverName="com.microsoft.jdbc.sqlserver.SQLServerDriver"
dbConnectString="jdbc:microsoft:sqlserver://dbdev.openeai.org:1111" dbConnectUserId="uid"
dbConnectPassword="secretpw" dbPoolSize="2" dbVerificationString="select getdate()"/>
 </DbConnectionPoolConfigs>

 Page 52 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 The following is an example of retrieving these database connection pools
 from AppConfig:

 EnterpriseConnectionPool connPool1 =
 (EnterpriseConnectionPool)m_appConfig.getObject("InstIdServiceDbPool");
 EnterpriseConnectionPool connPool2 =
 (EnterpriseConnectionPool)m_appConfig.getObject("IcardDbPool");
 try {
 java.sql.Connection conn = connPool1.getConnection();
 if (conn != null) {
 logger.info("Phase2ModAppl, Got a connection from the InstIdService DB Pool...");
 }
 conn = connPool2.getConnection();
 if (conn != null) {
 logger.info("Phase2ModAppl, Got a connection from the IcardDbPool DB Pool...");
 }
 }
 catch (SQLException e) {
 logger.fatal(e.getMessage(), e);
 }

 Note: these examples do not show the use of the
 getExclusiveConnection method which should be used if the connection
 being retrieved is to be used for multiple database actions within a single
 transaction. See the org.openeai.dbpool package Javadoc for more information.-->
<!ELEMENT DbConnectionPoolConfig (ConfigClass?, ObjectClass?)>
<!ATTLIST DbConnectionPoolConfig
 name CDATA #REQUIRED
 dbDriverName CDATA #REQUIRED
 dbConnectString CDATA #REQUIRED
 dbConnectUserId CDATA #REQUIRED
 dbConnectPassword CDATA #REQUIRED
 dbPoolSize CDATA #REQUIRED
 dbPoolMaxSize CDATA #IMPLIED
 dbVerificationString CDATA #IMPLIED
>
<!ELEMENT FullName (#PCDATA)>
<!ELEMENT ShortName (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT MessageGateways (MessageGateway*)>
<!ELEMENT MessageGateway (FullName, ShortName?, Description, Configuration)>
<!ATTLIST MessageGateway
 id CDATA #REQUIRED
 type (daemon | scheduled) #REQUIRED
>
<!ELEMENT Servlets (Servlet*)>
<!ELEMENT Servlet (FullName, ShortName?, Description, Configuration)>
<!ATTLIST Servlet
 id CDATA #REQUIRED
>

End Deployment.dtd

 Page 53 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

OpenEAI Enterprise Object Document

The OpenEAI Enterprise Object Document (EO documents) is an XML document that describes
an organization’s enterprise message objects from a business perspective. Structurally, it
matches the definition of the object in the DTD. However, it goes much further than the object’s
definition by way of a DTD or Schema. These documents allow an organization to specify very
specific business rules on each field within an enterprise message object. These rules are
implemented by the EnterpriseFields OpenEAI foundation object
(org.openeai.config.EnterpriseFields). Each object within an organization’s MOA contains a
reference to this object and the rules specified in these EO documents. Each complex object
within an MOA has a corresponding EO document generated for it.

The EO documents themselves are generated when an organization’s MOA is generated by way
of the OpenEAI MOAGenerationApplication. However, the EO document that gets generated
does not contain all rules for that object and its fields. Some of those rules are impossible to
generate automatically. However, the auto-generated EO document provides a consistent,
properly formatted starting place.

The EO documents provide the full definition, including business rules, for an enterprise message
object within an organization. This means it includes the structure of the object as well as any
business rules that should be applied to fields within that object.

Following is the document type definition for EO documents. The definition includes a detailed
description of each section of an EO document.

Begin EnterpriseObjects.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v3.5 NT (http://www.xmlspy.com) by Tod Jackson (Administrative Information
Technology Services) -->
<!-- $Revision: 1.6 $
 $Date: 2003/01/29 00:00:37 $
 $Source: /cvs/repositories/openeai/project/xml/dtd/1.0/EnterpriseObjects.dtd,v $
-->
<!-- This file is part of the OpenEAI Application Foundation or
 OpenEAI Message Object API created by Tod Jackson
 (tod@openeai.org) and Steve Wheat (steve@openeai.org).

 Copyright (C) 2003 The OpenEAI Software Foundation

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 Page 54 of 71

http://xml.openeai.org/docs/current/api/org/openeai/config/EnterpriseFields.html

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 For specific licensing details and examples of how this software
 can be used to build commercial integration software or to implement
 integrations for your enterprise, visit http://www.OpenEai.org/licensing.
 -->
<!--Release History
 1/28/2003 tod@openeai.org Original release.
 steve@openeai.org
-->
<!ENTITY % DEPLOYMENT SYSTEM "Deployment.dtd">
%DEPLOYMENT;
<!ELEMENT EnterpriseObjects (ExternalFieldMapping?, IncludeList?, ObjectDefinition+)>
<!--
 IncludeList includes zero or more child elements called DocumentUri. All
 complex objects must have an EO document associated with them. If an object
 includes within its definition another complex object, it must include that
 complex child object's definition in order to make itself complete at
 runtime. The IncludeList allows a parent object to include as many child
 object EO document references as it must to make its definition complete at
 runtime. This is a recursive include. This means that if an object includes
 another object and that object includes another (and so on),
 all object definitions will be available at runtime.-->
<!ELEMENT IncludeList (DocumentUri+)>
<!ELEMENT DocumentUri (#PCDATA)>
<!--
 The ExternalFieldMapping element is a future enhancement that will
 allow organizations to specify field mappings in an external source.
 This might include things like databases or other services that are
 authoritative for field mapping information. This element is not
 used by the OpenEAI APIs at the time of this writing.-->
<!ELEMENT ExternalFieldMapping (Configuration)>
<!--
 ObjectDefinition is the main component within the EO document. It defines
 the data structure of the message object and provides the framework for
 specifying the field-level rules that can be enforced by the OpenEAI
 enterprise field and message object foundation components. The following
 are the direct child elements and attributes of an ObjectDefinition:

 name

 The name attribute should contain the name of the object that is defined in
 this object definition. This should exactly match the information contained
 in the XML constraint that defines this object's XML structure as well as match
 the Java object that implements it. For example, names of message objects may
 be BasicPerson, EmergencyContact, InstitutionalIdentity, etc.

 Description

 The description element should contain some information about the purpose and
 nature of the object from a business perspective. Clearly, good descriptive
 information is not required for the OpenEAI foundation components to
 effectively implement the functionality of the constraints and rules
 contained in the EO document. However, it is good practice to include some
 helpful, official, and comprehensive information here to help analysts and
 developers. The OpenEAI methodology recommends including links to EO
 documents in the online documentation of messaging applications and gateways,
 so providing useful information here is part of the practice of OpenEAI and
 can be generally helpful. Additionally, in the future, the OpenEAI Project
 may provide applications that generate enterprise documentation from EO

 Page 55 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 documents just as it may provide applications to generate enterprise
 documentation templates from deployment descriptors. So it is generally
 a good idea to get into the habit of providing this documentation.

 ClassName

 The ClassName element contains the fully-qualified class name of the object
 being described by this object definition. For example, class names of
 message objects (these come from the example implementations) might be:

 com.any_erp_vendor.moa.jmsobjects.Person.BasicPerson.v1_0.BasicPerson
 com.any_erp_vendor.moa.jmsobjects.Person.EmergencyContact.v1_0.EmergencyContact
 org.any_openeai_enterprise.moa.jmsobjects.coreapplication.v1_0.InstitutionalIdentity

 Field

 The Field element is the structure used to specify the rules for each field in
 an object. See the comments with the Field element in this definition for
 more details.-->
<!ELEMENT ObjectDefinition (Description, ClassName, Field+)>
<!ATTLIST ObjectDefinition
 name CDATA #REQUIRED
>
<!ELEMENT ClassName (#PCDATA)>
<!--
 The Field element is the structure used to specify the rules for each
 field in an object. There will be one Field element for each field of the
 object. The combination of all these fields within an object definition
 provides the XML structure of the object; therefore, fields that are of type
 'Element' must be listed in the same order as specified in the XML constraint
 (DTD) for the object. However, the sequencing of fields of type 'Attribute'
 isn't important as long as they are listed prior to fields of type 'Element'.
 The OpenEAI MoaGenerationApplication generates these object definitions for
 you when it generates the EO document skeleton into which you can add your
 own desired valid values, transformations, and scrubber specifications, so
 you don't have to worry too much about the details of how to prepare
 properly structured object definitions. The following are descriptions of the
 child elements and attributes of the Field element:

 name

 The name attribute contains the name of the field as it is specified in the
 DTD that defines this object. All Field names should match the name of the
 Element or Attribute as specified in the Segments file. However, Attribute
 names should match the same structure as Element names. That is, they
 should be mixed case with the first letter of the name being upper case.
 This is slightly different than the way attributes are typically named in the
 Segments file. However, since this file is automatically generated, you
 shouldn't have to worry about this too much.

 type

 The type attribute specifies the type of the field from an XML perspective.
 This information is used by the generic XML layout manager to determine what
 type of entity it should expect as input or what type of entity to build as
 output when the object is built from an input or serialized to output. The
 valid types are 'Attribute', 'Element', and 'Object'.

 Page 56 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 isKey

 The isKey attribute indicates whether or not this field is considered a part
 of this object's unique key. Many objects have one key field or several
 fields which together comprise a composite key. The value of a key field or
 values of key fields (in the case of objects with composite keys) uniquely
 identify an object instance. Key values are typically used to determine which
 instance of a repeatable field has changed when an application or gateway
 consumes a message with an action of Update. The OpenEAI
 MoaGenerationApplication attempts to determine these keys based on
 field requiredness as specified in the Segments file. However, you may
 need to change this information as application-specific requirements are
 determined.

 Description

 The description element should contain some information about the purpose and
 nature of the field from a business perspective. Clearly, good descriptive
 information is not required for the OpenEAI foundation components to
 effectively implement the functionality of the constraints and rules
 contained in the EO document. However, it is good practice to include some
 helpful, official, and comprehensive information here to help analysts and
 developers. The OpenEAI methodology recommends including links to EO
 documents in the online documentation of messaging applications and gateways,
 so providing useful information here is part of the practice of OpenEAI and
 can be generally helpful. Additionally, in the future, the OpenEAI Project
 may provide applications that generate enterprise documentation from EO
 documents just as it may provide applications to generate enterprise
 documentation templates from deployment descriptors. So it is generally
 a good idea to get into the habit of providing this documentation.

 The OpenEAI MoaGeneration Application provides a starting point for
 this description.

 Format

 The Format element is used to specify field-specific business rules. The
 information contained within the EO document is implemented by the
 org.openeai.config.EnterpriseFormatter Java object. These business rules
 include translations that should occur when data is placed into the field via
 the setter methods that exist in the Java message object, the allowable
 length of data that can be put into the field, the datatype of that data, and
 the requiredness of the field.

 Layouts

 Object Definition

 The Field element can contain another ObjectDefinition element. Generally,
 this element will never be used. However, the purpose of this element is to
 override the definition for an object that may be included through the
 object definition import mechanism implemented by the include list. This
 ability to override an object definition would only be used in very specific
 situations such as if you want to specify additional scrubbers or layout
 managers for an object that are not included in the EO document for that
 object that you are including in the include list.-->
<!ELEMENT Field (Description, Format, Layouts?, ObjectDefinition?)>
<!ATTLIST Field

 Page 57 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 information contained within the EO document is implemented by the

 name CDATA #REQUIRED
 type (Attribute | Element | Object) #REQUIRED
 isKey (false | true) #REQUIRED
>
<!--
 The Format element is used to specify field-specific business rules. The

 org.openeai.config.EnterpriseFormatter Java object. These business rules
 include translations that should occur when data is placed into the field via
 the setter methods that exist in the Java message object, the allowable
 length of data that can be put into the field, the datatype of that data, and
 the requiredness of the field.-->
<!ELEMENT Format (Translation?, Length?, Mask?, Scrubber*)>
<!ATTLIST Format
 datatype (char | numeric | alphanumeric | any) #IMPLIED
 required (true | false) #REQUIRED
>
<!--
 The Translation element is a container for configurations for various
 implementations of translations. Presently, the only type of
 configurable translation implemented here is a crosswalk or mapping.
 See the comments with the Mapping element in this definition for
 more details on mappings.

 Other types of configurable translations (such as crosswalks that use
 database tables or web services) may be configured here in the future.
 Presently, such externalizable translations are implemented using
 scrubbers.-->
<!ELEMENT Translation (Mapping+)>
<!--
 The Mapping element provides the ability to map application-specific
 values to enterprise values and vice-versa. These translations occur when
 the setter and getter methods for this field are called. This is typically
 useful when an application has its own version of values for a particular field,
 but needs that data translated to an enterprise value when it is made
 available to the enterprise in a message. Additionally, this translation
 facility is useful when an application that has its own specific values for a
 field wants to consume and process a message with enterprise values. Many
 mappings can be listed here and are distinguished by application name. This
 applicationName must match the "id" of the application/gateway that is using
 this enterprise message object. The following is a description of the child
 elements and attributes of the Mapping element:

 EnterpriseValue

 The OpenEAI methodology recommends that you select and maintain a set of
 enterprise values or enterprise formatting rules for each field of every
 message object that you define. Valid values are not really appropriate for
 some fields, formatting rules or masks are more appropriate. Keeping with the
 XML precepts of transparency and clarity, these enterprise values and formats
 should be as obvious in their meaning as possible. Alternately, you might
 choose to take the values native to your most important enterprise
 applications, such as your ERP system, and dub them as your enterprise
 values. These will be the values that should appear in messages as they move
 about your enterprise, as these messages are serialized to enterprise
 messaging logs, and as these messages are used to present clear and usable
 information to end users in all of your new web applications without decoding
 or translating values. In other words, your enterprise values should be the

 Page 58 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 clear and understandable values that human beings actually understand and
 use. These are values that have business meaning.

 The EnterpriseValue element contains one valid enterprise value for the field
 to which this mapping belongs.

 ApplicationValue

 The ApplicationValue element or elements of a mapping contain application-
 specific values that map to the enterprise value for this field contained in
 the EnterpriseValue element. Application values are application-specific.
 The application to which the values belong are indicated by the value of
 the applicationName attribute of the ApplicationValue. Many applications,
 especially legacy applications, can have more than one value that translates
 to the same enterprise value. For example, a legacy payroll system may have
 two values to represent the gender concept of 'female'. These values may be
 '1' and 'F', because coding schemes can change over time and many
 organizations never clean this data up properly. Keeping with precepts of
 clarity and transparency, you may have declared the valid enterprise values
 for gender to be 'Female', 'Male', and 'Unknown'. So, in this case, there will
 be two application-specific values belonging to the legacy payroll system
 that map to the one enterprise value of 'Female'. This example can also help
 illustrate the usage of the 'preferred' attribute of the ApplicationValue
 element. In cases like this, where multiple application-specific values map
 to the same enterprise value, it is necessary to specify which of these
 multiple application-specific values is preferred when performing a reverse
 translation from enterprise values to this application's application-
 specific values. In this payroll example, '1' is and older, less preferred
 value meaning female and 'F' is a more current and preferred value meaning
 female. So the preferred attribute for the payroll systems application-specific
 value of 'F' will be set to 'true'. This indicates that whenever a
 translation is performed from the enterprise value of 'Female' to an
 application-specific value for the payroll system, the resulting value will
 be an 'F' and not a '1', because the 'F' is preferred.

 applicationName

 The name of the application to which this application specific value
 belongs.

 Note, the application name of 'Default' listed in the example below is a
 special application that can be used if you know more than one
 application uses the same application value for a particular field.
 For example, many systems use 'F' for an application value for
 the enterprise value 'Female'. Therefore, 'F' is associated to the
 'Default' application so any application using this definition can
 translate an 'F' to 'Female' in addition to any other application-
 specific translation it may require.

 preferred

 This attribute is used when converting enterprise values to application-
 specific values. The OpenEAI API allows you to convert values from
 application-specific values to enterprise values and vice versa. While
 there can be multiple application values that translate to the same
 enterprise value, there can only be one target application value for a
 particular enterprise value. This attribute is used to make that
 determination.

 Page 59 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 The following is an example Mapping element within its Translation container
 element from a sample EO document:

 <Translation>
 <Mapping>
 <EnterpriseValue>Female</EnterpriseValue>
 <ApplicationValue applicationName="Default" preferred="true">
 <Value>F</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="PaymasterBatchApplication" preferred="true">
 <Value>2</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="FileTrackerGateway" preferred="true">
 <Value>2</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="Isis3Gateway" preferred="true">
 <Value>F</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="PreCollegeGateway" preferred="true">
 <Value>2</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="TransferMasterFileGateway" preferred="true">
 <Value>2</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="UIDirectGateway" preferred="true">
 <Value>2</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="VsamGateway" preferred="true">
 <Value>2</Value>
 </ApplicationValue>
 </Mapping>
 <Mapping>
 <EnterpriseValue>Male</EnterpriseValue>
 <ApplicationValue applicationName="Default" preferred="true">
 <Value>M</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="PaymasterBatchApplication" preferred="true">
 <Value>1</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="FileTrackerGateway" preferred="true">
 <Value>1</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="Isis3Gateway" preferred="true">
 <Value>M</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="PreCollegeGateway" preferred="true">
 <Value>1</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="TransferMasterFileGateway" preferred="true">
 <Value>1</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="UIDirectGateway" preferred="true">
 <Value>1</Value>
 </ApplicationValue>
 <ApplicationValue applicationName="VsamGateway" preferred="true">
 <Value>1</Value>
 </ApplicationValue>

 Page 60 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 </Mapping>
 <Mapping>
 <EnterpriseValue>Not Available</EnterpriseValue>
 <ApplicationValue applicationName="PaymasterBatchApplication" preferred="true">
 <Value/>
 </ApplicationValue>
 </Mapping>
 <Mapping>
 <EnterpriseValue>Not Given</EnterpriseValue>
 <ApplicationValue applicationName="FileTrackerGateway" preferred="true">
 <Value/>
 </ApplicationValue>
 <ApplicationValue applicationName="Isis3Gateway" preferred="true">
 <Value/>
 </ApplicationValue>
 <ApplicationValue applicationName="PreCollegeGateway" preferred="true">
 <Value/>
 </ApplicationValue>
 <ApplicationValue applicationName="TransferMasterFileGateway" preferred="true">
 <Value/>
 </ApplicationValue>
 <ApplicationValue applicationName="UIDirectGateway" preferred="true">
 <Value/>
 </ApplicationValue>
 <ApplicationValue applicationName="VsamGateway" preferred="true">
 <Value/>
 </ApplicationValue>
 </Mapping>
 </Translation>-->
<!ELEMENT Mapping (EnterpriseValue, ApplicationValue+)>
<!ELEMENT EnterpriseValue (#PCDATA)>
<!ELEMENT ApplicationValue (Value)>
<!ELEMENT Value (#PCDATA)>
<!ATTLIST ApplicationValue
 applicationName CDATA #REQUIRED
 preferred (true | false) #REQUIRED
>
<!--
 The Mask element has been added for future functionality.
 In the future, users will be able to specify a mask that should
 be applied to data being stored in a field. This way,
 developers won't have to code this logic themselves, it
 would simply be applied automatically. The Mask element
 is not currently used by the OpenEAI APIs.-->
<!ELEMENT Mask (Value)>
<!--
 The Length element provides the ability to specify a precise length for
 a particular field. The length of data being passed to a setter method is
 verified against this value if specified. The type attribute of the Length
 element provides the ability to specify either that a field's length be
 exactly a certain length or may be up to a maximum length. Examples of data
 that might use the 'exact' length type are SocialSecurityNumber fields or
 anything else that expects that data going into this field to be an exact
 length.

 The following is an example Length element from a sample EO document:

 <Format datatype="numeric" required="true">

 Page 61 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 <Length type="maximum" value="2"/>
 </Format>-->
<!ELEMENT Length EMPTY>
<!ATTLIST Length
 value CDATA #REQUIRED
 type (exact | maximum) #REQUIRED
>
<!--
 The Scrubber element provides the ability to specify that an
 EnterpriseScrubber implementation be used to process the data being passed to
 a field's setter method. This is typically used for things like case
 conversion, special character removal, etc. However, this component can allow
 any number of special rules to be run on data being placed into an enterprise
 message object. The sequence attribute allows multiple scrubber
 implementations to be specified. They will be executed in the order specified
 by the sequence number (1, 2, 3, etc.).

 The following is an example Scrubber element from a sample EO document:

 <Scrubber sequence="1">
 <ClassName>org.openeai.scrubbers.CaseConverter</ClassName>
 </Scrubber>
 <Scrubber sequence="2">
 <ClassName>org.any_openeai_enterprise.scrubbers.NameScrubber</ClassName>
 </Scrubber>-->
<!ELEMENT Scrubber (ClassName)>
<!ATTLIST Scrubber
 sequence CDATA #REQUIRED
>
<!--
 EnterpriseLayoutManagers are one of the more powerful features of the
 OpenEAI foundation API. The EnterpriseLayoutManager interface specifies the
 methods that must be implemented by an implementation. Then, in the
 deployment descriptor for the application or gateway being configured, the
 Java message objects are told which layout manager implementation to use.
 This includes the name of the layout manager as specified in this EO document
 as well as the Java implementation that uses the information found in this
 document.

 These layout manager implementations are the components that allow developers
 to build objects from a variety of inputs and serialize them to a variety of
 outputs. Currently, there are three types of layouts specified here (in
 addition to XML which is a by-product of these EO documents). These are extract
 layouts, stored procedure call layouts, and result set layouts. Additional
 layouts may be specified in this document. Alternatively, references to other
 XML documents (or any other type of specification document) could be included
 here that point the layout manager implementation to the appropriate layout
 specification. This is one of the concepts that will continue to evolve over
 the life of the OpenEAI project.-->
<!ELEMENT Layouts (Layout*)>
<!ELEMENT Layout (Extract?, SpCall*, ResultSet*)>
<!ATTLIST Layout
 name CDATA #REQUIRED
 type (extract | xml | spcalls | resultset | other) #REQUIRED
>
<!--
 The Extract layout allows an organization to specify the format of a file from
 which an object should be built. This basically involves specifying the position

 Page 62 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 in the file from which to populate the current field.

 OpenEAI provides an Extract layout manager implementation in the
 org.openeai.implementations.layouts.ExtractLayout class.

 The following is an example extract layout from a sample EO document. This
 layout is specified on the Address@type field. The application using this sample
 EO document will read a line from an extract and build enterprise
 Java objects from the contents of that line. This information provides the
 ExtractLayout class with what it needs to go to the appropriate location in that
 file and pull the information out before applying it to the type field on the Address
 object. In this case, there will be four addresses in the extract file that need to
 be built so the ExtractLayout class will be used to build four Address objects:

 <Layouts>
 <Layout name="InputFeed" type="extract">
 <Extract>
 <Position>
 <Start>210</Start>
 <End>211</End>
 </Position>
 <Position>
 <Start>368</Start>
 <End>369</End>
 </Position>
 <Position>
 <Start>526</Start>
 <End>527</End>
 </Position>
 <Position>
 <Start>684</Start>
 <End>685</End>
 </Position>
 </Extract>
 </Layout>
 </Layouts>-->
<!ELEMENT Extract (Position+)>
<!ELEMENT Position (Start, End)>
<!ELEMENT Start (#PCDATA)>
<!ELEMENT End (#PCDATA)>
<!--
 The SpCall (stored procedure call) layout is an implementation that takes
 the current contents of an object and builds the appropriate Stored Procedure
 call(s) for that object. That is, when the gateway storing the object calls
 'buildOutputFromObject' a List of stored procedure calls will be returned that
 the gateway can then execute. This implementation is provided in the
 org.openeai.implmementations.layouts.SpCallsLayout class.

 For example, to create a BasicPerson object in a database, several stored
 procedures must be called. One to create the 'core' BasicPerson information,
 one to create each Address associated with the BasicPerson, one to create
 each Phone associated with the BasicPerson etc.

 Note, this implementation has NOT been used in a production environment and
 is provided for example purposes only at this point.

 The following is an example stored procedure call layout from a sample EO
 document:

 Page 63 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

-->
<!ELEMENT SpCall (PackageName, ProcedureName, ProcedurePosition, ProcedureParameters,
FieldPosition)>
<!ATTLIST SpCall
 action (Create | Delete | DeleteOne | Update | Query) #REQUIRED
 dataType (VARCHAR2 | TIMESTAMP) "VARCHAR2"
>
<!ELEMENT PackageName (#PCDATA)>
<!ELEMENT ProcedureName (#PCDATA)>
<!ELEMENT ProcedurePosition (#PCDATA)>
<!ELEMENT ProcedureParameters (#PCDATA)>
<!ELEMENT FieldPosition (#PCDATA)>
<!--
 The ResultSet layout builds an object from a ResultSet returned from a database.
 It allows you to map columns existing in a ResultSet to a Java message object.
 This implementation is provided in the
 org.openeai.implementations.layouts.ResultSetLayout class.

 Note, this implementation has NOT been used in a production environment and
 is provided for example purposes only at this point.

 The following is an example result set layout from a sample EO
 document:
-->
<!ELEMENT ResultSet (MessageObject, FieldPosition, ColumnName?)>
<!ATTLIST ResultSet
 dataType (VARCHAR2 | TIMESTAMP) "VARCHAR2"
>
<!ELEMENT MessageObject (#PCDATA)>
<!ELEMENT ColumnName (#PCDATA)>

End EnterpriseObjects.dtd

 Page 64 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

Appendix 1: The GNU Free Documentation License

 GNU Free Documentation License
 Version 1.1, March 2000

 Copyright (C) 2000 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a

 Page 65 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept

 Page 66 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

 Page 67 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to
 it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications",
 preserve the section's title, and preserve in the section all the
 substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"
 or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

 Page 68 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for

 Page 69 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

 Page 70 of 71

www.OpenEAI.org Copyright  2003, OpenEAI Software Foundation

OpenEAI API Introduction January, 2003

$Revision: 1.21$
$Date: 3/11/2003 2:01:40 PM $
$Source: /cvs/repositories/openeai/project/documentation/core/ApiIntroduction.doc$

 Page 71 of 71

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

	OpenEAI API Introduction
	Jan 2003, Tod Jackson and Steve Wheat, OpenEAI Software Foundation
	Contents
	Introduction
	Helpful Definitions
	Application
	Scheduled Application
	Message Gateway
	Message Relay
	Messaging Enterprise
	Analysis Template
	Deployment Descriptor
	Enterprise Object Document

	Integration Process Overview
	Perform Analysis
	Define Messages
	Generate Java Message Objects
	Develop, Document, and Test Messaging Applications
	Update Enterprise Documentation Artifacts
	Deploy in Production

	OpenEAI Foundation Components
	JMS Foundation
	Enterprise Messages
	Java Message Objects
	Other Foundation Components

	Java Message Object Details
	XML Enterprise Objects
	JMS Enterprise Objects
	Performing Request Message Actions
	Performing Synchronization Message Actions
	Building Messages
	When an action is performed on a Java Message Object, the contents of that object and key object (in the case of query and generate actions) are used to build an XML document corresponding to the action being performed. This is a two-part process. Th

	Developing Messaging Applications
	AppConfig (org.openeai.config.AppConfig)
	Scheduled Applications
	Message Gateways

	OpenEAI Deployment Descriptor
	OpenEAI Enterprise Object Document
	Appendix 1: The GNU Free Documentation License

	
	OpenEAI Title Page

