

Free/Open Source Software in Education

 Tan Wooi Tong

Pre-publication Copy

Asia-Pacific Development Information Programme
e-Primers on Free/Open Source Software

 I nternational
O pen
S ource
N etwork
An Initiative of the
UNDP’s Asia-Pacific
Development Information
Programme

Published by
the United Nations Development Programme’s

Asia-Pacific Development Information Programme (UNDP-APDIP)
Kuala Lumpur, Malaysia

Web: http://www.apdip.net/
Email: info@apdip.net

© UNDP-APDIP 2004

The material in this book may be reproduced, republished and
incorporated into further works provided acknowledgement is
given to UNDP-APDIP. This publication is released under the

Creative Commons Attribution 1.0 license.
For full details of the license, please refer to the following:

http://creativecommons.org/licenses/by/1.0/legalcode

2

Table of Contents

PREFACE... 5

1 INTRODUCTION...6
WHY FOSS FOR EDUCATION?...6

Lower Costs... 6
Reliability, Performance, Security... 7
Build Long-term Capacity..7
Open Philosophy..8
Encourage Innovations.. 8
Alternative to Piracy.. 8
Possibility of Localization... 8
Learning from Open Source Code... 9

2 INFRASTRUCTURE..10
REQUIREMENTS OF EDUCATIONAL INSTITUTIONS..10
SERVER SOFTWARE... 10

Email.. 11
File and Print Services...11
Network services.. 11
Web Server... 11
Other Server Software..12
Linux Terminal Server Project (LTSP).. 12

WORKSTATION SOFTWARE... 13
Productivity Suite...14
Web Browser.. 15
Multimedia... 16
Other Educational Software.. 17

COST SAVINGS... 18

3 ADMINISTRATION.. 21
LIBRARY MANAGEMENT SYSTEMS...21

Koha...21
LEARNING MANAGEMENT SYSTEMS ..23

Standards... 23
Stanford’s Coursework.. 24
Moodle... 25
ATutor.. 27

OTHERS...28

4 TEACHING IT WITH FOSS...29
COMPUTER LITERACY..29
SCHOOLS... 31
HIGHER EDUCATION..32

Programming... 32
Software Engineering...33

5 OPEN CONTENT .. 35
MIT OpenCourseWare ..35

3

Wikipedia... 36
Public Library of Science...37

6 RESEARCH USING FOSS.. 38
BIOINFORMATICS...38
HIGH-END COMPUTING.. 39

7 TRAINING IN FOSS.. 40
CERTIFICATION... 40

8 POLICY ISSUES...42
Software procurement..42
Migration... 42
Curricula in Schools.. 43
Curricula in Tertiary Institutions.. 43
Development of FOSS for education ...44
Research grants... 44
Training..44

GLOSSARY..45

REFERENCES... 49

FURTHER READINGS.. 51

ABOUT THE AUTHOR..53

ACKNOWLEDGEMENT... 54

4

Preface

Free and Open Source Software (FOSS) is a recent phenomenon that has the
potential of revolutionizing the software industry. It has already gained a strong
foothold in the server software segment, with leading market share worldwide in
some software categories. It is also gaining ground in desktop applications and it has
been predicted that its use on the desktop will become significant in the near future.

Interest in FOSS is growing globally particularly in developing countries.
Governments are considering policies to promote its use, businesses are
recognizing its potential, and various sectors are giving increasing attention to the
opportunity for localization that it presents.

The impact of FOSS will be felt in many areas. In this primer we focus on FOSS in
education and the role it can play in schools, colleges and universities.

Information and communication technologies (ICTs) have the potential to improve
the quality of education. However, educational institutions are often faced with
financial constraints. Competing demands for resources and the high costs of ICTs
can be a major obstacle to providing ICT facilities in educational institutions. FOSS
has the potential to help lower the cost barrier by reducing the cost of software,
which is an important component of ICT facilities. Besides the cost benefits, there
are numerous other advantages in using FOSS in education, including pedagogical
benefits.

This primer is intended to help policy- and decision-makers understand the potential
use of FOSS in education—where and how it can be used, why it should be used,
and what issues are involved. In particular, officials in ministries of education, school
and university administrators, academic staff and researchers should find this primer
useful.

This primer is part of a series of primers on Free/Open Source Software brought to
you by the International Open Source Network (IOSN), an initiative of the UNDP’s
Asia-Pacific Development Information Programme (APDIP). We would like to thank
all those who have been involved in the creation of this primer. We would also like to
thank the International Development Research Centre (IDRC) of Canada for their
generous financial support without which this primer would not have been written.

5

1 Introduction

Free/Open Source Software is software that is made freely available with the
distribution of the source code as a distinctive feature. It is often available at no cost.
Users can use and distribute the software. And if they so wish, they can study the
source code and modify it to suit their needs. The modified version of the software
can also be redistributed. In contrast, proprietary software is licensed to users for a
fee and the source code is usually closely guarded and not made available to users.
It is illegal to make copies and distribute proprietary software without paying
additional licensing fees.

There is a fine distinction between Free Software and Open Source Software. The
Free Software movement focuses on moral and ethical issues relating to the
freedom of users to use, study, modify and redistribute software. Open Source
advocates take a more pragmatic approach, focusing on the advantages of the Open
Source software development method. For most purposes, Free Software and Open
Source Software can be considered to be the same and we refer to it as Free/Open
Source Software (FOSS). For more information on the general aspects of FOSS,
please refer to the companion primer “Free/Open Source Software–A General
Introduction”1 which is available at http://www.iosn.net/.

FOSS can play an important role in education, especially in developing countries.
The reasons for this are listed below. In Chapter 2, we go into more detail on how
FOSS can be used in setting up the ICT infrastructure in educational institutions, the
server software and desktop applications available, and the potential cost savings
resulting from the use of FOSS. Chapter 3 focuses on FOSS for the administration
of academic institutions, in particular the Library Management Systems and Learning
Management Systems available. Chapter 4 looks at how FOSS can be used in the
teaching of Information Technology in schools and universities. Open Content is
described in Chapter 5. Although Open Content is not directly related to FOSS, it
results from the application of similar principles in the publication of content and is
important in education. The role of FOSS in research is covered in Chapter 6.
Training and certification in FOSS is not normally part of formal education but due to
its importance in building human resource capacity in FOSS, it is covered in Chapter
7. In the last chapter, we list policy issues for decision-makers to consider in
implementing FOSS in education.

Why FOSS for Education?

Lower Costs

One of the main issues that policy-makers have to contend with in making decisions
on the use of ICTs in education is the cost. The cost of providing communication
infrastructure, computing and networking hardware and the necessary software can
be daunting not only for developing countries but also for underprivileged sectors in
developed countries.

FOSS can lower the barriers to access to ICTs by reducing the cost of software. The
initial acquisition cost of FOSS is negligible. Indeed, it is usually possible to
download FOSS without any cost. If there is limited bandwidth, it may be more

6

convenient to get the software in a CDROM for a nominal fee. But there is no
licensing fee for each user or computer and it can be freely distributed once a copy
is downloaded or made available on a CDROM. Hence, the initial cost of acquiring
FOSS is much lower than the cost of acquiring proprietary software for which license
fees have to be paid for each user or computer. Upgrades of FOSS can usually be
obtained in a similar way, making the upgrade costs negligible as well. In contrast,
proprietary software upgrades normally have to be paid even though the upgrade
costs may be lower than the initial cost.

Reliability, Performance, Security

Lower cost is not the only reason why the use of FOSS for servers is prevalent.
FOSS is considered to have better reliability, performance and security. The
administrators of educational institutions should take these into account when
making decisions on the IT infrastructure of their institutions. This is especially
important in the larger institutions.

The development methodology of FOSS tends to assure high quality of the software.
Bugs are rapidly removed with the help of large numbers of developers, and the
resulting software is more reliable. This is especially true of the more mature FOSS
for servers. For example, in a quantitative analysis of database software carried out
by Reasoning Inc., it was found that the FOSS database MySQL has six times fewer
defects than proprietary databases2.

Some studies also suggest that FOSS perform better than their proprietary
counterparts. For example, performance tests for file servers were carried out by PC
Magazine in 2001 and 2002 to compare Samba running on Linux and Windows 2000
(Samba is a FOSS file server that can run on the Linux platform and work
seamlessly with workstations running Windows). It was found that Samba
significantly outperforms Windows 20003 by about 100% in the 2002 tests. Tests
carried out by IT Week Labs in 2003 indicate that the later version of Samba has
widened the performance gap when compared to Windows4. More information on
other performance comparison studies is available in the paper by Wheeler3.

It is very difficult to make comparisons between the security of FOSS and that of
proprietary software. However, there have been a number of attempts to do so and
these are summarized by Wheeler3. Many of the comparisons suggest that FOSS is
often superior to proprietary software in terms of security. One of the reasons cited is
the availability of the source code, which allows vulnerabilities to be identified and
resolved by third parties. An independent audit of code is possible only with FOSS
and not with proprietary software.

Build Long-term Capacity

There are clear indications that the use of FOSS in government, industry and other
institutions is growing and that there will be a need for graduates who are familiar
with FOSS. Hence, concerted efforts should be made to ensure the use of FOSS in
the IT curriculum wherever possible. It is important that students are not only
exposed to the predominant proprietary software but also have the opportunity to
use a wider array of software, including FOSS.

Companies recognize the importance of the education market because the students
of today are tomorrow's employees in the ICT sector. They will also be the users of
technologies either on a personal basis or in the workplace. Hence, if they are
exposed to certain products during their education, they will tend to continue to use

7

them in the future. For this reason, companies will go out of their way to provide
incentives, such as hefty discounts, to capture the education market.

Open Philosophy

The open philosophy of FOSS is consistent with academic freedom and the open
dissemination of knowledge and information common in academia. “The advances in
all of the arts and sciences, indeed the sum total of human knowledge, is the result
of the open sharing of ideas, theories, studies and research. Yet throughout many
school systems, the software in use on computers is closed and locked, making
educators partners in the censorship of the foundational information of this new
age.”5

Computer software is often used in research work and the use of proprietary
software and operating systems in such work is inconsistent with the principle of
verifiability as the computation of results by closed-source software is not open to
scrutiny. Because the workings of open source software can be examined, the
validity of research results arrived at using such software can be verified.

Encourage Innovations

Much innovation originates from universities and many of the FOSS were initially
developed in an academic environment. For example, in 1984 Richard Stallman
started developing a free operating system called GNU in the Artificial Intelligence
Laboratory at the Massachusetts Institute of Technology (MIT). Linus Torvalds
started the work that resulted in Linux in the University of Helsinki in Finland.

An academic environment where FOSS is prevalent will encourage academic staff
and students to tinker and experiment with and to participate in the development of
FOSS that may eventually lead to innovative solutions.

Alternative to Piracy

Educational institutions that cannot afford to pay for licensing fees may resort to
using unlicensed copies of the proprietary software. With FOSS, educational
institutions can use as many copies of the software as required regardless of
whether it is for academic or administrative purposes.

The use of FOSS also discourages piracy by students, many of whom can ill-afford
the purchase of licensed copies of proprietary software. If proprietary software were
used as the basis for teaching, students would have no choice but to use pirated
copies of the software to allow them to do homework and assignments at home or
on their laptop computers. In contrast, there is no restriction against making copies
of FOSS for use outside institutions.

Possibility of Localization

Educational institutions in non-English speaking countries may not be able to benefit
from the use of FOSS as most of the original software is developed in English.
However, the open nature of FOSS is such that it can be localized. Such localization
need not involve the original developer. With proprietary products, localization is
constrained by commercial interests. When the size of the market is too small, there
is no incentive for localizing proprietary products for that market.

8

Learning from Open Source Code

One of the main characteristics of FOSS is that the source code is available for
users to examine and to modify. This gives students the opportunity to learn from
studying high quality real-life programs. In contrast, proprietary software is normally
provided in binary form and the source code is seldom released for users to study.

9

2 Infrastructure

Requirements of educational institutions

Different educational institutions have different ICT infrastructure requirements
depending on the level of education, the nature of the courses they offer, and the
funding available. Invariably, however, there is a need for computer laboratories in
educational institutions for conducting basic computer classes, allowing students to
do their assignments, conducting specialized IT classes, providing access to the
library system, giving access to learning management systems, and email
communications. The number of computers required depends on the student
population and the student-computer ratio that the institution considers as desirable
taking into account various factors.

Networking
Computers within laboratories are normally connected via a Local Area Network
(LAN). In an education environment most of the student users are “nomadic” and do
not have designated computers. Hence, the set-up must be such that they are able
to work from any of the computers on the network.

Internet Connectivity
Ability to connect to the Internet is a basic requirement that educational institutions
should strive to provide as it allows both students and academic staff to access the
numerous digital resources available on the Web. It also enables the use of email,
which has become an important means of communication. For educational
institutions, the Internet is a service that facilitates effective administration of the
institution and provides a channel of communication between educators and
students that can lead to more effective learning. It is also necessary for the
implementation of elearning and distance learning.

Security
With Internet connectivity, an institution’s network is accessible from the Internet.
Thus it is essential to have a firewall to protect against intrusion by unauthorized
users. This is especially so if there is high-speed 24-hour Internet access. User
authentication is required to ensure that only authorized users can access the
network.

Web Publishing
There are often requirements in an academic setting for publishing information and
providing access to materials via the Web. These include teachers and lecturers
providing course materials online, students putting up Web pages, administrators
publishing information on the intranet, and the institution maintaining a public
website. All these require appropriate Web server hardware and software.

Server Software

A main component of the IT infrastructure of an organization is the servers that
provide various services such as email, file and print services. Appropriate software
is required to provide these services. FOSS have been found to be appropriate for

10

this purpose. They compare favourably with the proprietary equivalent in terms of
features and in certain cases have a higher market share in specific categories3.

Email

The provision of email services requires setting up an email server that controls the
sending and delivery of emails. Once such a server is set up, it is expected to run
continuously without any problems. An interruption will affect communications and
the work of many in the organization. Hence, reliability is a major concern for email
server software. Other concerns are security and performance. Several robust FOSS
email servers such as Sendmail (http://www.sendmail.org/) and Postfix
(http://www.postfix.org/) are available and are being deployed successfully in many
organizations, including educational institutions. They compare favourably with
proprietary email servers such as Microsoft Exchange, are simpler to deploy, and
require fewer computing resources.

File and Print Services

One characteristic of IT usage in an educational institution is the category of
“nomadic” users—i.e., students who use the network services from different
computers. This requires a file server that would allow them to save their work and
configurations in a central server instead of in the local workstations. The possible
need to print from any workstation they are working on also requires server software
that allows this. Samba (http://www.samba.org/) is a FOSS file server that runs on
Linux and works seamlessly with workstations running Windows at the same time.

Network services

The Domain Name System (DNS) is needed to translate domain names to Internet
Protocol (IP) addresses. The most widely used DNS server is BIND (Berkeley
Internet Name Domain), which is Free Software.

Every computer connected to a network needs to be assigned an IP address. This
can be done manually but it is most common to have the IP address assigned
dynamically by a DHCP (Dynamic Host Configuration Protocol) server. Most Linux
distributions include a DHCP server.

Linux has a utility called iptables that can be used to implement firewalls to protect
against security intrusion. Some ready-made FOSS firewalls are also available, such
as Shorewall (http://www.shorewall.net/). Intrusion detection tools are used to detect
any security breach and one such FOSS is a program called Snort
http://www.snort.org/).

Web Server

The most popular Web server is Apache (http://www.apache.org/), which is an Open
Source Software. It is reputed to have a 67% share (April, 2004) of the total Web
server market worldwide
(http://news.netcraft.com/archives/web_server_survey.html). It can be used to host
public websites for educational institutions and to host intranets within institutions. It
is often used with Linux as the operating system, MySQL as the database server and
PHP as the scripting language. All of these are FOSS. Their combination is often
referred to as LAMP–Linux, Apache, MySQL and PHP (or Perl or Python).

11

Other Server Software

There are numerous other Free/Open Source server software that can be useful in
an education environment, such as database management systems, content
management systems and mailing list servers.

The most well known FOSS database management systems are MySQL
(http://www.mysql.com) and PostgreSQL (http://www.postgresql.org/). As mentioned
earlier, MySQL is often used for building dynamic websites. It is suitable as a
database management system for many other applications and is used in business-
critical enterprise applications and packaged software. Various educational
applications such as Learning Management Systems and Library Management
Systems also use MySQL.

A Content Management System (CMS) facilitates the creation, publishing and
management of Web content by providing a platform that can be used by individuals
without their having to be skilled in the underlying technologies. Examples of FOSS
Content Management Systems are PostNuke (http://www.postnuke.com/) and Plone
(http://plone.org/). PostNuke is based on PHP and MySQL while Plone is based on
the Zope application server which is written using the Python programming
language. In an educational institution, the availability of such FOSS CMSs enables
staff and students to develop Internet and Intranet websites for various purposes
with relative ease.

The mailing list is an older application that enables online discussions and
collaboration to take place. When an email is addressed to a mailing list, it is
broadcast to the individuals subscribed to the list by email. Although newsgroups and
Web-based discussion forums serve a similar function, the mailing list may still be
useful in the education environment especially where Internet connectivity is still
rudimentary. The more popular FOSS mailing list servers are Majordomo
(http://www.greatcircle.com/majordomo/) and Mailman (http://www.list.org/).

These FOSS server applications make possible the development of a collaborative
environment in educational institutions at minimal cost. They allow academic staff,
students, parents and administrators to interact in a way that was not possible earlier
due to technological and cost constraints.

Linux Terminal Server Project (LTSP)

Desktop applications such as a browser, an email client and a productivity suite are
basic requirements in education settings. Even a small computer laboratory will
require these applications to be installed in all computers. Instead of installing these
applications on every workstation, it may be easier and less expensive to use “thin
clients”. These are computers with a network card, graphics card, monitor, keyboard
and mouse, and without a hard disk, CDROM drive, and operating system. The
server handles all of the computing tasks, including the running of applications,
provision of storage space and management of files. This means that cheaper
hardware (or old and donated hardware) can be used for the clients. Only the server
needs to be installed with the necessary peripherals and software, which means
maintenance will be easier.

The Linux Terminal Server Project (LTSP - http://www.ltsp.org/) started in 1999
provides the necessary software to set up such a network of diskless workstations. It
supports various Linux distributions and over 100,000 sites are using LTSP. During

12

boot up, the diskless workstation obtains the necessary network information from the
server and the operating system is downloaded from the server. Any program
supported by the server can be run from the workstation. It should be noted that a
network setup using LTSP will be a Linux-only network and is primarily suited for a
new installation.

Workstation Software

Although there has been increasing adoption of FOSS for desktops, its penetration is
still relatively shallow. Microsoft Windows still dominates the desktop environment,
with an estimated 90% market share. However, it is believed that the desktop based
on Linux is now good enough for many users6. The increasing availability of
applications on the Linux desktop with features comparable to proprietary software
will only encourage more widespread adoption. A long list of FOSS desktop
applications that are equivalent to the applications running on Windows is available
at the following URL: http://linuxshop.ru/linuxbegin/win-lin-soft-en/table.shtml.

However, it should be noted that in order to use FOSS on the desktop it is not
necessary to discard the proprietary desktop operating systems. For example,
programs such as OpenOffice, Mozilla, and GIMP are available for the Windows
platform. Hence, FOSS programs can be easily downloaded, installed and

13

Example: Kerala, India

In 2002, a project to introduce computer facilities in schools in Kannur, Kerala was
initiated by the local Member of Parliament and the district administrators. To cut cost it
was decided that a Linux Terminal Server Project (LTSP) solution would be used to set
up the facilities.

The hardware was supplied by a state-owned enterprise and the LTSP solution was
implemented by a private company. Since the project involved the installation of new
hardware, it was possible to use identical computing components (computers, video
cards, network cards, hubs, and other accessories), which simplified the whole setup.
The LTSP server was a Pentium IV machine with CDROM drive and hard disk. The
disk-less workstations were Celeron machines without any hard drive or CDROM drive.
All of the computers were configured and tested off site before they were sent to the
schools. Each school initially received one server and 3-5 workstations.

The server ran a customized Red Hat distribution and LTSP. The other FOSS software
installed to run from the server were OpenOffice suite, multimedia and Internet
applications, programming tools and other educational software.

Using the LTSP to set up the computer facilities resulted in substantial savings as more
computer facilities could be set up in more schools. Forty-three government schools
now have access to their own computer facilities running GNU/Linux with numerous
FOSS. The teachers were given basic training on GNU/Linux systems and the
computer facilities have been well received by both teachers and students.

(More information about this project is available at the following URL:
http://s2s2net.netfirms.com/project.html)

experimented with without having to replace the existing proprietary operating
system.

In fact, there are various options when considering the introduction of FOSS on the
desktop, namely:

 retain the use of Windows and run FOSS applications for this platform;
 replace Windows with Linux;
 set up dual boot systems, which allows users to choose between Windows or

Linux during startup; or
 run Windows within Linux or run Linux within Windows using appropriate

software.

Productivity Suite

In educational institutions, both staff (administrative and academic) and students
require the use of a suite of office productivity software consisting of a word
processor, spreadsheet and presentation software. Microsoft Office is currently the
most widely used productivity suite. However, the FOSS productivity suite,
OpenOffice (http://www.openoffice.org/), is gaining popularity as its features are
becoming comparable to the proprietary Office suite. As noted earlier, OpenOffice
can run on various platforms and a complete migration to Linux before it can be used
is not necessary. In fact, it can be run on Windows side-by-side with Microsoft Office.
A prominent feature of the latest version of OpenOffice is the ability to export
documents directly to pdf format. This feature is not available in its proprietary
counterpart.

Although interoperability with the existing proprietary productivity suite is not perfect,
OpenOffice is an attractive option for educational institutions. The look and feel are
similar to that of Microsoft Office. In most cases, only the basic features of the
productivity suite are utilized by students and staff and these are available in the
OpenOffice suite.

14

Figure 1. Word processor in OpenOffice

There are other FOSS productivity suites available but they are not as complete as
OpenOffice. KOffice is the productivity suite running on the KDE desktop and
GNOME Office is the suite running on the competing desktop GNOME. The word
processor (Abiword) and spreadsheet (Gnumeric) components in Gnome Office are
considered to be of high quality.

AbiWord (http://www.abiword.com/) works on most major operating systems,
including Windows, and it supports many languages. It can read and write most
documents in Word format and has the same look and feel as Word. AbiWord's
native document format uses Extensible Markup Language (XML), which is an open
standard. This means that an AbiWord document can be read by any other software
using an appropriate XML parser.

Gnumeric (http://www.gnome.org/projects/gnumeric/) is a fast and complete
spreadsheet program that is being actively developed. It can support various
spreadsheet file formats and has good support for Excel files. Many of the worksheet
functions available in Excel are supported in Gnumeric. However, it currently does
not run on Windows. Work is being carried out to make this possible.

Web Browser

There are a number of Open Source browsers available such as Mozilla, Galeon and
Konqueror. Mozilla (http://www.mozilla.org/) is a popular browser that is based on
source code released by Netscape. Apart from a browser it also contains an email
client, a Web authoring tool and other utilities. It is cross-platform and a version for
Windows is available that can be downloaded and installed without affecting existing
Internet Explorer installation. Unlike Mozilla, Galeon (http://galeon.sourceforge.net/)
is purely a Web browser. It runs on the GNOME desktop. Konqueror
(http://konqueror.kde.org/) is a Web browser that runs on the KDE desktop.

15

Figure 2. Mozilla, a FOSS Web browser

Multimedia

A wide range of multimedia FOSS is available, including graphics editors and video
players that can serve as tools for enhancing educational content and its delivery.

GIMP (GNU Image Manipulation Program - http://www.gimp.org/) is the most well
known FOSS for image editing and graphic design. It is a desktop application that
can be used for various purposes by both academic staff and students. It is available
for Linux and other Unix systems as well as Windows. As it supports various image
file formats, interoperability with other programs should not be an issue. GIMP is
considered to be the FOSS equivalent of the proprietary Photoshop software.

A program that allows the drawing of diagrams will find good use in an education
setting. There are some good proprietary software that serve this purpose, such as
Visio and Smartdraw. A FOSS equivalent called Dia
(http://www.lysator.liu.se/~alla/dia/) has been designed to provide similar functions.
It can be used to draw many different kinds of diagrams and has special objects to
facilitate the drawing of flowcharts, network diagrams and simple circuits. The
program is available for the Windows platform in addition to FOSS operating
systems.

Audacity (http://audacity.sourceforge.net/) is a FOSS audio editor through which you
can record sounds, play sounds, and import and export files in various formats. It
can be used to edit your audio, mix tracks together, or apply effects to your
recordings. This software will be useful when there is a need to digitize audio or
make recordings for incorporation into multimedia educational content. It runs on
most Unix systems (including Linux) and Windows.

16

A media player for workstations is necessary for playback of videos and other
multimedia content. This is commonly available on proprietary platforms. On FOSS
platforms, Mplayer (http://www.mplayerhq.hu/) is a program that provides similar
functionalities. It is available for Linux and many other Unices and it supports many
video and audio formats.

For a listing of other multimedia FOSS available, please refer to the following URL:
http://linuxshop.ru/linuxbegin/win-lin-soft-en/table.shtml.

Other Educational Software

Aside from FOSS desktop applications for general use, there are a lot of Free/Open
Source educational software that can be used for teaching specific subjects or
courses in schools, colleges and universities. These range from drawing programs
for young students (e.g., Tux Paint -http://www.newbreedsoftware.com/tuxpaint/) to
programs for learning geometry (e.g., Kig - http://edu.kde.org/kig/), chemistry (e.g.,
Ghemical - http://bioinformatics.org/ghemical/) and physics (e.g., Open-Source
Physics Education project - http://www.opensourcephysics.org/). For higher
education, there is QCAD (http://www.ribbonsoft.com/qcad.html), a program for
Computer-Aided Drafting that may be used in technical drawing classes. Scilab
(http://scilabsoft.inria.fr/) is a full-featured scientific software package that may be
used in numerical analysis or engineering courses at the university level.

These represent only a very small sample of FOSS available for education. There
are various useful online resources available for locating other educational software
some of which are mentioned below.

Schoolforge (http://www.schoolforge.net/) is a website for projects that use Free and
Open Source solutions in education. It is conceived as a site where resources are
made available that can help schools to develop affordable and dependable software
and educational content.

SEUL/edu (http://richtech.ca/seul/) is an education portal of Simple End-User Linux
promoting the use of Linux and other open resources in education. It covers various
aspects of educational uses of Linux by teachers, parents and students. It has a
directory of school-related Open Source software.

The Organization for Free Software in Education and Teaching (OFSET) has
developed Freeduc (http://www.ofset.org/freeduc/), which provides a catalog of
educational software. It has also created a live CD-ROM of FOSS for schools. The
idea behind a live Freeduc system on CD-ROM is that no installation is required for it
to be used and students and teachers can easily use the applications made
available.

The KDE Edutainment Project (http://edu.kde.org/) aims to develop educational
software for the KDE desktop. Its main focus is young schoolchildren but there are
also programs that cater for university students and teachers.

17

Cost Savings

As shown earlier, FOSS in backend servers is mature and is equivalent or better
than the proprietary counterpart. Applications for the desktop are increasingly
available and some of them are suitable for production use. Given that this is the
case, it is imperative for administrators of educational institutions, especially those
that are publicly funded, to give due consideration to the use of FOSS in their
institutions. Even though it is not uncommon for heavy discounting of proprietary
software to be available for academic institutions, consideration should still be given
to use of FOSS. In the long run the choice to use FOSS instead of proprietary
software can result in bigger cost savings.

Proprietary software designed specifically for the education market is generally very
expensive since vendors must recoup their development costs from very small
markets. These may be administrative software such as Library Management
Systems or Learning Management Systems. However, even for such specialized
applications, high quality Open Source equivalents are now becoming available. In
other areas such as Student Information Systems, Human Resource Management
and Financial Management Systems the FOSS alternatives are not mature enough
for production use. But it is likely that FOSS for these and other education-specific
applications will become available in the future.

As mentioned earlier, the initial cost of FOSS is negligible. The cost of upgrades of
FOSS is also insignificant. However, it has been argued that Total Cost of
Ownership (TCO) should be used in making comparisons between FOSS and

18

Survey of OSS Use in Tertiary Institutions7

To gauge the extent of the use of Open Source Software (OSS) in tertiary institutions,
staff of the School of Computer Science and Software Engineering of the University of
Western Australia conducted a survey and reported the results in February 2004. Thirty-
four tertiary institutions in Australia, New Zealand and the U.K. provided feedback for
the survey. The number of systems that the respondents were responsible for ranged
from 10 to 18,000.

Seventy-eight percent of the respondents reported having staff with skills in OSS. All of
the institutions surveyed had deployed OSS in servers, 50% of the institutions had
deployed OSS in administration, 53% of the institutions are using OSS in teaching, 56%
are using it in laboratories, and 50% are using it in research.

Eighty-seven percent of the respondents said there is equivalent or better support
available for OSS. Sixty-eight said that the support requirements of OSS are not higher
than that for proprietary software and that OSS is sometimes easier to support.

The main benefit (84%) cited for the adoption of OSS is the lower Total Cost of
Ownership (TCO) although this may not be supported by a thorough assessment of the
TCO in the institution. Seventy-eight percent said the benefit of using OSS is less
reliance on a specific vendor.

This survey shows that OSS has already made significant inroads into tertiary
institutions in Australia, New Zealand and the U.K., with 94% of the respondents
indicating that they are already using OSS.

proprietary software. TCO also includes maintenance, support and training costs and
these may be higher for FOSS. However, in various comparisons, the TCO for FOSS
is still lower than that for proprietary software.

In countries where labour costs are lower, the cost of maintenance, support and
training will be a smaller percentage of the TCO, in which case the TCO of FOSS will
be much more favourable. The availability of the source code also results in more
companies being able to provide maintenance and support, which will drive down the
maintenance or support costs. In an academic setting, there is often the possibility of
getting assistance from the FOSS community without any cost involved.

Figure 3 is a comparison between the TCO of FOSS and the TCO of proprietary
software.

In some situations, the availability of funds or lack of it is such that it is not a choice
between proprietary software and FOSS but a choice between FOSS and nothing.
By using inexpensive or donated hardware with FOSS, some institutions may be
able to provide computing facilities to their students that would otherwise be
impossible.

Even if funds are available for purchasing proprietary software, the savings resulting
from using FOSS alternatives can be used for better purposes such as buying more
computers, providing training for administrative and academic staff, or developing
non-ICT related infrastructure for the institution.

Figure 3. Comparison between TCO of FOSS and proprietary software (not based on
actual figures)

19

20

Example: Goa, India

Another example of the use of FOSS technology in setting up computer facilities in
schools is the Goa Schools Computer Project (GSCP). Starting from 2000, the GSCP
helped to deploy 425 used computers shipped from the United States in 125 schools in
Goa. The Linux Terminal Server Project (LTSP) solution was used to network the
computers in the school laboratories. A cost analysis was made to estimate the cost
savings resulting from the use of recycled computers and FOSS software8. It was found
that there was a cost savings of 77% when compared to the use of new equipment and
proprietary software. The cost of maintenance was taken into account in the analysis.
Even if new equipment were used, there was still a savings of 64% because the new
equipment was of lower specifications when used with the FOSS software.

One of the issues that arose was the need to train the computer teachers to facilitate
the move to the Linux environment. But once this barrier was overcome, it was not
difficult to use the FOSS desktop applications as they are quite similar to their
proprietary counterparts. Another issue was lack of technical support provided by firms
locally, pointing to the need for in-house staff that can provide the support internally.
More details of this case study are provided by Martyris.8

3 Administration

Proprietary software tailored for education administration has been dominated by a
small group of companies. They usually have a niche market for specialized systems
such as a Library Management System or a student information system. The costs
of these types of software are often very high because of the small market. Usually
only the well-endowed universities or schools can afford such systems. Many
schools even in developed countries are not able to afford these. Needless to say,
they are beyond the reach of most educational institutions in developing countries.

In recent years, FOSS catering to this segment has appeared and in some
categories like Library Management Systems and Learning Management Systems,
good systems have been developed and are available for use by academic
institutions.

Library Management Systems

For any school, college or university with a decent-sized library, a computerized
system to automate the management of the library is essential. The most well-known
FOSS Library Management System is Koha. There are other systems being
developed that are not as mature as Koha, such as PhpMyLibrary
(http://phpmylibrary.sourceforge.net/) and OpenBiblio
(http://obiblio.sourceforge.net/). These are at various stages of development. Anctil
provides a comparison of the various systems.9

Koha

Koha (http://www.koha.org/) was developed in 1999 in New Zealand by Katipo
Communications Ltd with funding from the Horowhenua Library Trust. It is available
under the GNU General Public License. It is now supported by a growing developer
community from various countries and has been ported to several languages. It runs
on Linux and uses the Apache Web server and MySQL database and was
developed in Perl. It is also possible to use other Web servers or databases to run
the program. Koha is used by the Horowhenua Library Trust for their three library
branches, which have a total of 80,000 books and 25,000 patrons. Another library
that is using Koha is in Coast Mountain School District, British Columbia, Canada; it
has eight branches with 2,000-8,000 books per branch and 1,000 patrons.

Koha is full-featured and has modules for cataloguing, reserves, Online Public
Access Catalogue (OPAC), circulation, patron management and acquisitions. The
circulation component includes issues, renewals, returns and fines, and it can be set
up to use bar code scanners. The acquisitions module includes budgets, pricing and
supplier information.

Koha is a Web-based system where both library patrons and staff access the system
using a Web browser. It provides a simple and clear interface to allow searches to
be done easily via OPAC over the Internet.

The earlier version of Koha lacks some features such as support for international
cataloguing standards. However, the latest version supports the international
cataloguing standards MAchine Readable Cataloging (MARC). There are also plans
to implement a serials module in future releases.

21

Koha: Key Features

 Circulation module includes issues, renewals, returns, fines, use of
barcode scanners, generation of overdue list

 Full acquisitions including budgeting, pricing and supplier information and
tracking of items ordered and received

 Simplified acquisitions features for smaller libraries

 Patron (membership) management

 Reserves with possibility of self-service reservation in the library or via the
Internet

 Online Public Access Catalogue (OPAC) in the library or via the Internet

 Simple and clear interface for librarians and members

 Customizable search by keyword, author, title, subject, class number or
combinations

 Ability to catalogue websites

 Support for MAchine Readable Cataloging (MARC)

 Stock rotation through branch libraries

(source: http://www.koha.org/)

In May 2002, Koha was awarded the prize in the category for “Software for Public
Administration” in an international competition organized in France. The competition
was established to highlight Open Source Software that has the potential to benefit
consumers and business.

22

Figure 4. FOSS Library Management System - Koha

Learning Management Systems

A Learning Management System is a software application or a Web-based system
that provides an instructor with a way to create and deliver online content, monitor
student participation and assess student performance. A Learning Management
System may also support collaboration and provide features such as chat facilities
and discussion forums. Learning Management Systems are sometimes referred to
as Course Management Systems.

The availability of such a system in a school or university will help to achieve the
pedagogical improvements that ICTs are envisaged to bring to education. Its
availability is also essential for implementing elearning. However, the existing
proprietary systems such as WebCT and Blackboard are too expensive and beyond
the reach of many academic institutions especially in developing countries.
Fortunately, several FOSS Learning Management Systems are now available. In a
report published by the Commonwealth of Learning in June 2003, 35 Open Source
Learning Management Systems were identified and evaluated10. Ranked highest was
ATutor, which will be described later in this primer.

Standards

To facilitate the interoperability of different Learning Management Systems, the
content created should conform to a standard. There are a number of initiatives to
establish standards for Learning Management Systems.

23

The Open Knowledge Initiative (OKI) was initiated at Massachusetts Institute of
Technology (MIT) in 2001. It is a collaboration among a number of leading
universities, with MIT and Stanford leading the initiative. This initiative has resulted in
two Learning Management Systems—Stellar, developed at MIT, and CourseWork,
developed at Stanford University. CourseWork was released as Open Source in
June 2003.

The objective of OKI is to define an open and extensible architecture for learning
technology. It is targeted specifically to the needs of the higher education
community. It provides specifications for interfaces among components within a
learning management system and facilitates communication with other systems,
including existing enterprise systems. Commercial and non-commercial developers
of products for the higher education market can use the OKI architecture which is
fundamentally Open Source.

IMS (Instructional Management Systems) Global Learning Consortium is a non-profit
organization supported by a worldwide consortium that includes educational
institutions, software companies and publishers. It develops open technical
specifications to support distributed learning. Several of these specifications are
being adopted internationally as standards for learning technology. The goal of these
specifications is to allow different course management systems and content from
different authors to work together or interoperate. For example, content produced
using a proprietary course management system such as Blackboard can be made
accessible to another system such as WebCT and used in content authored in the
latter system.

A specific implementation of IMS is the Sharable Content Object Reference Model
(SCORM) developed by Advanced Distributed Learning (ADL). It incorporates
elements from IMS and other specifications to provide elearning capabilities that
allow interoperability, accessibility and reusability of Web-based learning content.

Both IMS and SCORM use XML as a common language to enable communication
between disparate systems.

Stanford’s Coursework

Stanford University developed its own Learning Management System called
CourseWork (http://aboutcoursework.stanford.edu/) that has been used on its
campus to provide instructional websites since January 2002. It has been rapidly
adopted by its faculty in various academic disciplines, supporting over 400 courses
with more than 12,000 users by spring of 2003.

CourseWork has been released as Open Source software, providing academic
institutions non-proprietary, open access to a flexible, scalable Learning
Management System. It allows institutions to integrate their course websites with
other systems such as a student information system, library management system,
and other education-specific infrastructure systems. The tools in CourseWork can be
customized to suit the needs of a particular institution and the interface can be
modified to be consistent with the institution’s websites.

CourseWork is designed to be user-friendly so that academic staff can set up a
course website without having to be skilled in the underlying technologies. But it has
features that allow faculty with greater expertise in Web technologies to build a more
complex course website.

24

Using CourseWork academic staff can put up announcements, syllabi and course
schedules. Course materials can be uploaded to the server and managed by
Coursework. Students can easily access these by following the appropriate links.
Links to appropriate external resources can also be added as part of the online
course readings. A discussion forum can be set up for a course to facilitate online
discussions among students and with the course instructor.

Tools are available for instructors to create homework sets, assignments and
quizzes. Students can submit their completed assignments online directly over the
Web. Multiple-choice quizzes can be automatically graded. CourseWork manages
the distribution of assignments, collection of student work and provision of feedback
to students. Student grades for online work can be displayed and final grades can be
computed.

Moodle

Moodle (http://moodle.org/) was first developed by an Australian, Martin Dougiamas.
Moodle is an acronym for Modular Object-Oriented Dynamic Learning Environment.
It is released under the terms of the GNU General Public License and currently has a
very active group of developers working on it. Developed using PHP, Moodle is
cross-platform: it runs without modification on Linux, Windows, Mac OS X and any
other system that supports PHP. It supports the FOSS databases MySQL and
PostgreSQL and can also be used with other databases. Moodle is multilingual and
is currently available in 34 languages, including Chinese, Indonesian, Japanese and
Thai.

Moodle has numerous features for site management, user management and course
management. It has modules for assignment, quiz, discussion forum and chat.
Instructors can put up assignments with due date and maximum grade, allow
students to upload completed assignments, and provide feedback to students on
their assignments. Various types of quiz questions can be created using Moodle—
multiple choice, short answers, true/false and fill-in-blanks. The quiz can be graded
automatically and feedback can be given to explain the answers. The questions can
be shuffled to make it more difficult for students to cheat, and the maximum number
of times students can take the quiz can be specified. All grades for assignments and
quizzes can be viewed and downloaded for further processing if necessary.

Discussion forums can be set up using Moodle to facilitate student interaction in a
particular course, with the option to email copies to the students. Moodle also has a
chat function for live discussions. Chat sessions can be logged for later viewing by
both staff and students.

25

Moodle: Key Features

Overall design

 Suitable for courses conducted entirely online as well as for supplementing classroom

learning

 Uses a simple browser interface

 Easy to install on almost any platform that supports PHP and requires only one
database

 Full database abstraction supporting all major database systems

 Emphasis on strong security

Site management

 Plug-in "themes" allow the site to be customized

 Plug-in activity modules can be added to existing Moodle installations

 Plug-in language packs allow full localization to any language

 The code is written in PHP under a GPL license which allows modifications to suit
particular needs

User management

 Supports a range of authentication mechanisms allowing easy integration with existing

systems

 Each person requires only one account for the whole server

 Teachers may have editing privileges removed so that they cannot modify the course
(e.g., for part-time tutors)

 As a security feature teachers can add an "enrolment key" to their courses to keep out
non-students

Course management

 Choice of course formats such as by week, by topic or a discussion-focused format

 Flexible array of course activities available via various modules--Forums, Journals,
Quizzes, Resources, Choices, Surveys, Assignments, Chats, Workshops

 All grades for Forums, Journals, Quizzes and Assignments can be viewed and
downloaded as a spreadsheet file

 Full user logging and tracking with activity reports for each student

 Teachers can define their own scales to be used for grading

(source: http://moodle.org/)

26

Figure 5. Moodle, a FOSS Learning Management System

ATutor

The Commonwealth of Learning report10 evaluates Open Source Learning
Management Systems and recommends two products. The criteria used for
evaluation include features and functionality, cost of ownership, maintainability,
usability, standards compliance and scalability. The report’s top recommendation is
ATutor.

ATutor (http://www.atutor.ca) has a variety of tools to allow the instructor to manage
the online content, such as a built-in content editor, a resources database, a forum
manager, course statistics and assessment support. It has good collaborative
support with standalone modules for collaboration and chatting. It provides good
documentation and online help with a tutorial for new users. However, the user
interface may not be very intuitive.

ATutor supports IMS/SCORM specifications, allowing content to be imported from
and exported to other Learning Management Systems that also conform to
IMS/SCORM specifications. However, it is relatively new and does not have a large
installed base. ATutor is released under the GNU General Public License.

27

Figure 6. ATutor, another FOSS Learning Management System

Others

Among the other requirements for the administration of educational institutions is a
Student Information System for the management of student records and subject
offerings, timetabling, registration, management of academic and financial records,
and so on. As Student Information Systems are often customized to the needs of
particular institutions, there are not many proprietary systems available. So far, there
is no production quality Open Source student information system available. However,
there are some initiatives in developing such a system.

The SchoolTool (http://www.schooltool.org) project is one such initiative. The
objective of SchoolTool is to develop a system for school administration that can be
used globally and which is suitable both for schools and for higher educational
institutions. It would incorporate best practices in school administration and would be
easily customized for local needs. The system will be made available under an Open
Source license. This project was started in South Africa in 2000 with funding from
the Shuttleworth Foundation. The project was temporarily suspended in 2002 but
was restarted in 2003. It is still in the early stages of development and the software is
not yet available for use.

28

4 Teaching IT with FOSS

In the earlier sections we looked at the use of FOSS in the setting up of the IT
infrastructure of educational institutions and its use in administrative functions. In this
section, we examine the role of FOSS in the teaching of Information Technology (IT).
Most software currently used in teaching IT, including basic productivity software for
teaching computer literacy, compilers for programming courses and relational
database management systems, are proprietary. However, there are FOSS
equivalents available that can be suitable replacements. In addition to the cost
savings, there are other advantages to using FOSS in the teaching of IT.

Computer Literacy

At the very basic level, teaching IT involves teaching computer literacy. Computer
literacy means having acquired the skills to make use of the computer for common
tasks. It usually implies competency in using common desktop applications such as
a word processor, spreadsheet, email client and Web browser. The skills in Table 1
are considered essential. The order of the skills in the list is not indicative of their
relative importance and will change with time as technologies change; the relative

importance of skills also varies depending on individuals.

Computer literacy should be taught not only to students in schools but also to
university students who may not have acquired the skills associated with computer
literacy in their earlier schooling. It is a common assumption that university students
today should be computer literate and have the skills to use desktop applications for
their academic work regardless of the field of study they are in. In some universities
computer literacy courses are offered to ensure that the students have these skills.
In some cases, there may not even be formal courses and students are simply
expected to learn on their own. Whatever the case, computer literacy programmes

29

Table 1. IT Skills

1. Setting up a personal computer
2. Using basic operating system features
3. Using a word processor
4. Using a graphics and/or artwork

package
5. Connecting a computer to a network
6. Using the Internet
7. Using a computer to communicate with

others
8. Using a spreadsheet
9. Using a database system
10. Using instructional materials for new

applications

(source: U.S. National Research Council’s
Committee on Information Technology report11)

usually use the dominant proprietary software. Even at the lower education levels it
is not uncommon to find students being taught to use Microsoft Windows and Office
as part of computer literacy courses.

There are some problems with this method of teaching computer literacy. The first is
that skill in the use of a particular version of proprietary software is usually short
lived. Even though it will be easier to learn how to use a new version of the software
from the same vendor (relative to learning an entirely new software), re-training will
still be necessary unless the user has the ability to self-learn. A different approach to
teaching computer literacy should be used in order to equip students with the ability
to learn, unlearn and relearn. The emphasis should be on generic skills that should
not be dependent on software from a specific vendor.

The second problem with using specific proprietary software in the computer literacy
curriculum is that it encourages illegal copying of licensed software. While the
students are studying, the need to use the same software as that which is available
in their schools or universities for doing their homework and assignments would lead
many of them to use pirated copies at home or on their laptop computers. Schools
and institutions that have financial constraints may even go to the extent of using
unlicensed copies of proprietary software in their enthusiasm to provide computer
literacy training to their students.

In teaching computer literacy it is not important which operating system, word
processor, email client, Web browser and spreadsheet are used. Linux, together
with the appropriate Graphical User Interface (GUI) such as GNOME or KDE, is a
FOSS operating system that can be used to teach the basics of operating system
features.

OpenOffice has word processor, spreadsheet, presentation and drawing programs
that can replace the proprietary equivalents. These software should be sufficient for
teaching the basic features available in office productivity software. Other FOSS
software such as the Abiword word processor or the Gnumeric spreadsheet can also
be used in a computer literacy curriculum if necessary.

To teach students how to access the Web or to use email, the FOSS Web browser
and email client that is part of Mozilla can be used. Again, the features of Mozilla are
comparable to the browser and email client that come together with Windows and
should be sufficient for use in a computer literacy curriculum.

The FOSS database systems MySQL and PostgreSQL are full-feature systems that
can certainly be used to teach the basics of database systems. The GUI available for
these databases may not be as user-friendly as the proprietary equivalent but it
should not be an obstacle to learning the basic principles that should be taught.

Michael Surran, a Computer Science teacher in the US states the following12:

People sometimes ask me, ``Is teaching our students Linux preparing them
for the workplace?'' This question is based on the fact that Microsoft is the
current dominating presence in operating systems and office software. It is a
question I have thought over a long time, and the answer I always come up
with is, ``Yes, most definitely.'' The basic principles of any type of operating
system, office application or other similarly grouped software are the same. A
student who becomes proficient in Linux will not find themselves (sic) lost in a
Windows environment. I have found Linux to be the more advanced of the
two operating systems, yet our students are very quickly and easily learning

30

it. The process of copying a file or formatting a paragraph is not so different
between one operating system and the other.

Using FOSS software as the basis of the computer literacy curriculum also results in
cost savings for the school or university. It obviates the need to ensure that sufficient
licenses are purchased as FOSS software can be legally installed in as many
computers as necessary. Students can also install the FOSS software in their own
computers without restrictions, and piracy of proprietary software is not necessary to
ensure access to software for their academic work outside the school or university’s
premises. More importantly, it would encourage placing emphasis on the teaching of
the basic principles and concepts and avoid narrow exposure to only proprietary
software from specific vendors.

However, it may be necessary to train teachers and lecturers in the use of Linux and
FOSS before they can be competent enough to conduct classes using these
software. Modification of the curriculum is necessary and some effort will have to be
put into developing suitable teaching materials.

Schools

Computer literacy is usually the main focus of teaching IT to students in schools.
This would equip them with the ability to use computers to enhance their learning,
access the Internet, use email, and so on.

But as emphasized earlier, this should not be confined to teaching students to use
specific proprietary software. Students who have not been exposed to computers are
likely to be more receptive to Linux and FOSS and it would be desirable to start
using FOSS as early as possible.

For example, for pedagogical reasons FOSS was introduced into some non-
governmental schools in Australia. The students in these schools developed the
ability to use IT without assuming that computing can be based only on one
predominant computing platform. Teachers at the Sydney Church of England Girls
Grammar School (SCEGGS) deliberately expose students to more than one suite of
office applications, giving them the opportunity to use both FOSS and proprietary
software and increase their understanding of the principles of these applications13.

Apart from using FOSS for teaching IT, there is a lot of FOSS available that can be
used to teach non-IT subjects in schools. Some of these have been mentioned in
Chapter 2 and the online resources where more information on such educational
software can be found are also given.

31

Higher Education

Programming

Learning how to write computer programs is invariably a part of Computer Science or
Information Technology programmes. It is often taught to students in other
disciplines as well since it may be necessary for them to develop some computer
programs for their projects or research work.

At a fundamental level, the choice of programming language to be used as the basis
for teaching programming concepts is not important. There are numerous computer
languages available on the Linux platform that can be used for this purpose. The
GNU Compiler Collection (GCC) is a collection of programming language compilers
that is included in most Linux distributions. It currently supports computer languages
such as C, C++ and Java. Work is in progress to include other languages such as
Pascal and Cobol. There are also other computer language compilers available such
as for dialects of BASIC.

Many educational institutions currently base their programming courses on the
Windows platform, resulting in a dependence on proprietary programming tools.
These tools are usually in the form of an Integrated Development Environment (IDE)
that simplifies some of the tasks involved in programming. However, there are IDEs
available for the FOSS platforms such as KDevelop (http://www.kdevelop.org/), and
if it is necessary to expose students to the use of IDE for programming these can be
used instead of the proprietary tools.

Availability of Source Code
At the more advanced level, the teaching of programming will be facilitated by the
availability of source code of FOSS. The best way to learn how to write good
computer programs is to study what has been written by others, especially real-life
high quality programs. Take writing a novel: a writer cannot be expected to write a
good novel if he/she has not read numerous works of others. In contrast,
programmers are expected to write programs by just mastering the syntax and
construction of a particular computer language without having much opportunity to
study good code written by others.

In the past there has been a lack of real-life high quality source code available for all
to look at and to study. The source code of proprietary software is protected as a
trade secret and is seldom released publicly. FOSS has made available the source
code of thousands of programs, some of which are market leaders in their particular
market segment. The importance of the availability of source code of FOSS and its
role in building capacity in software development is still not widely recognized.

Most users of FOSS do not have an interest in looking at the source code and
neither is it necessary for them to do so. However, where students are being taught
programming, the availability of the source code should be utilized to enhance
teaching and learning. This is analogous to the sudden availability of great novels
for reading to students in a writing class where there was none previously. For
example, in programming projects undertaken for IT courses students can be
encouraged to study the available source code and to build on it by adding features
or making improvements. If they are sufficiently prepared, they can even participate

32

in various FOSS projects such as those hosted in Sourceforge.net by submitting
their code contributions.

Programming Languages Used in FOSS
Although at the basic level it is not important which programming language is used
as the basis of teaching, at the more advanced level institutions should equip
students with competency in the use of programming languages relevant to their
future work. If there is a likelihood that students who take up a career in software
development in the future will be involved in FOSS projects, then the curriculum
should be designed to take this into consideration.

Table 2 lists the computer languages used in open source projects included in the
SourceForge (http://sourceforge.net) repository as of December 2003.

Table 2. Computer languages used in Open Source projects

Programming
Language

Number of
projects

Percentage
of projects

C 12,329 19.3
C++ 12,173 19.0
Java 10,594 16.5
PHP 8,023 12.5
Perl 5,141 8.0
Python 2,873 4.5

(Source: http://sourceforge.net)

There are many more languages being used to develop Open Source software. We
have included only the top few in the list above. C and C++ are predominantly used
in Open Source projects. However, the use of Java, PHP, Perl and Python is
growing. C and C++ are already commonly taught in the traditional Computer
Science curriculum. With the growing importance of Java, PHP, Perl and Python,
there should be an increased effort to include these in the IT curriculum.

Software Engineering

FOSS Development Methodology
With the increased importance of FOSS, the teaching of software engineering
should be modified to take into account the processes and methodology used in
developing FOSS.

In his essay "The Cathedral and the Bazaar", Eric Raymond describes the
characteristics of FOSS development and explains the metaphors he used to
compare the methodologies used in traditional software development (cathedral
model) and FOSS development (bazaar model) as follows:14

I believed that the most important software (operating systems and really large
tools like the Emacs programming editor) needed to be built like cathedrals,
carefully crafted by individual wizards or small bands of mages working in
splendid isolation, with no beta to be released before its time.

33

Linus Torvalds 's style of development—release early and often, delegate
everything you can, be open to the point of promiscuity—came as a surprise. No
quiet, reverent cathedral-building here—rather, the Linux community seemed to
resemble a great babbling bazaar of differing agendas and approaches (aptly
symbolized by the Linux archive sites, who'd take submissions from anyone) out
of which a coherent and stable system could seemingly emerge only by a
succession of miracles.

A FOSS project tends to be initiated as a result of the needs of the developer or
developers. They will then develop the software to a stage where it is usable with the
basic functionalities before releasing it to the community as an Open Source project.
The program can be bug-ridden, incomplete and poorly documented. But it must at
least run and convince potential contributors that it has the promise of evolving into a
good piece of software in the near future. This will attract other developers interested
in solving the same problem to contribute to the project. However, it is not always the
case that the development starts from scratch. In fact, many of the successful
projects such as Apache are built on existing partial solutions. It should be noted that
a project cannot be initiated from scratch in a bazaar mode.

Unlike a proprietary software project, a FOSS project is released as soon as it is
usable and updated versions are released whenever there are modifications to the
software. "Release early, release often" is an important characteristic of a FOSS
project. By doing so, many more users can participate in the testing of the software
under varying conditions. If there are any bugs in the software, they will be quickly
discovered and fixed. The availability of the source code allows the users to be co-
developers in the sense that they can fix the bugs instead of only reporting them. In
contrast, for proprietary software it takes much longer for the small group of paid
developers to fix the reported bugs through a beta-testing process.

This model of development is not entirely without structure especially for the larger
projects. For example, Linux has a hierarchical structure based on the delegation of
responsibilities by Linus Torvalds to different people. They each have responsibility
and authority for different parts of Linux although Linus Torvalds will always have the
last word. The high degree of modularity of FOSS projects has given rise to a
specific organizational and decision-making process. Generally the FOSS
development model tends to be more informal since the developers perform their
tasks voluntarily and for no direct financial gain.

It is now quite common for FOSS projects to rely on tools for issue tracking, source
code management, design, automated testing, and packaging and deployment. The
concurrent versions system (CVS) is the most widely used version control system in
open source projects. Its features include a central server containing the latest
versions of the software that makes them accessible to anyone over the Internet.
The CVS can be configured to send email notifications to project developers
whenever changes are made so that the new source code can be tested and
reviewed. Bugzilla was developed for use in the Mozilla project for issue tracking
and technical support. It is now used in many FOSS projects.

The FOSS development methodology is different from traditional software
engineering in many ways. Some researchers who are studying it are finding that
FOSS development methodology “can be faster, better and cheaper than the
textbook software engineering often used in corporate settings.”15 However, they are
not concluding that very large and complex software applications customized for a
small market such as the aviation industry can be developed using the open source
model; for these traditional software engineering approaches are still required.

34

5 Open Content

The success of the Open Source phenomenon has prompted efforts to apply similar
principles in publication of content. The idea behind publishing Open Content is that
anyone can use the content, distribute it freely, modify it and redistribute it. In this
way, the content can be improved upon and knowledge is made freely available for
the common good. The term “Open Content” was coined by Dr. David Wiley who
launched the OpenContent project in 1998 and provided the Open Content License.
The Open Content License is now superseded by the Creative Commons licenses.

Creative Commons (http://creativecommons.org), which is based at the Stanford
Law School, provides various options for licensing Open Content. It should be noted
that publishing content using one of these licenses does not mean that the author is
giving up copyright to the work. Rather, some rights are offered to users of the work
under certain conditions. The various Creative Commons options are summarized
below:

1. Attribution – Gives permission to copy, distribute, display, and perform work
and derivative works based upon it but only if credit is given.

2. Noncommercial – Gives permission to copy, distribute, display, and perform
work and derivative works based upon it but for noncommercial purposes
only.

3. No Derivative Works – Gives permission to copy, distribute, display, and
perform only verbatim copies of work but not derivative works based upon it.

4. Share Alike – Gives permission to distribute derivative works only under a
license identical to the license that governs the original work.

These license options include a common set of other rights and restrictions.

Open Content is particularly important to education and there are a number of
initiatives to provide Open Content for educational use, the most notable of which is
the OpenCourseWare initiative by MIT.

MIT OpenCourseWare

In April 2001, MIT announced the OpenCourseWare (OCW) project through which it
will make available course material used in 2,000 of the courses taught at MIT.
These will be available online and educators, students and self-learners from
anywhere in the world can access the material without any restrictions. In May 2004,
materials for 700 courses from virtually all academic disciplines were published on
the OCW website (http://ocw.mit.edu).

35

Figure 7. One of the courses offered by MIT OpenCourseWare

Educators from all over the world can use the materials as a basis for curriculum
development in their own institutions. Students can use the materials for self-study or
as supplementary materials for the courses they are undertaking in other institutions.
The availability of such a repository of educational materials can stimulate
innovations in teaching and can lead to other collaborative efforts.

OCW is not about providing an MIT education. Neither is it a distance education
initiative. According to Phillip Long, “OpenCourseWare is not an online teaching
environment; it is the opportunity to have faculty at MIT present their view of good
teaching material, the sequencing of teaching material, good problem sets, and
appropriate types of activities. It is a representation of content and sequencing and
thoughtful selection and juxtaposition of materials. It is an exposure to a public
audience of the decisions and processes that faculty members go through to come
to the point of having a collection of resources and materials to use when teaching a
particular course.”16

OpenCourseWare materials are licensed under a Creative Commons License with
the attribution, noncommercial and share alike options mentioned earlier.

Wikipedia

Wikipedia (http://www.wikipedia.org/) is a free Web-based encyclopedia that is
available under the GNU Free Documentation License. The encyclopedia’s contents
are written collaboratively by readers and are not subjected to any formal peer
review. Readers can also edit the articles written by someone else.

Wikipedia was founded by Jimmy Wales and Larry Sanger who initially started
another free Web-based encyclopedia called Nupedia where the articles were peer
reviewed. Progress for Nupedia was slow and the number of articles available is
limited. With Wikipedia, contributors make edits and create new articles rapidly. In
December 2003 it had 185,785 articles listed, covering a wide range of subjects. It is
also multilingual, with articles in various other languages. The founders of Wikipedia

36

believe that the continuous process of editing articles will improve the content until a
stable state with high quality content is reached.

Public Library of Science

The Public Library of Science (PloS – http://www.plos.org/) is a non-profit
organization founded in October 2000 with the aim of making the world's scientific
and medical literature a freely available public resource. Over 30,000 scientists from
over 180 countries, including 13 Nobel Laureates, endorsed the setting up of PloS,
which is based in San Francisco. The rationale for PLoS is that unrestricted and
open access to scientific ideas, methods, results and conclusions will speed up the
progress of science and medicine.

With the help of grants from the Gordon & Betty Moore Foundation and the Irving A.
Hansen Foundation, PLoS launched in October 2003 the first open access journal,
called PLoS Biology. The journal is available online and full-text articles can be freely
accessed, downloaded, printed and distributed. Although it is an open access
journal, PLoS Biology still follows a process of rigorous peer review and selection
similar to the current practice for conventional journals. The Public Library of Science
plans to launch a medical journal, PLoS Medicine, in 2004 using the same open
access model.

Figure 8. PLoS Biology, an open access journal

37

6 Research using FOSS

Traditionally, academic research is carried out in an open manner where publication
of research findings is first subjected to a peer review process. All of the
assumptions, calculations and experiments that lead to the results are scrutinized
before the findings are accepted by journals for publication. The researchers do not
usually acquire ownership of their findings and discoveries and they are expected to
publish these.

Computer software is often used not only in Computer Science and ICT research but
also in research in many other fields. “However, scientists rarely make their software
available to other scientists for scrutiny—and even if they did, they often used
closed-source programs in which the underlying source code is protected by
copyright and trade secrecy claims. But this practice strikes at the heart of science,
namely, the notion of verifiability. To be accepted as valid, all calculations and
assumptions that go into a given scientific assumption must be open to public
scrutiny. Yet closed-source software makes such scrutiny impossible.”17

In contrast, the open philosophy of FOSS is entirely consistent with the process of
academic research since the source code of the software is also available for
examination, if necessary. Researchers should use FOSS as a tool in their work as
far as possible. Bryan Pfaffenberger goes further to argue that, “It’s not enough for
scientists to use open-source software; they must also use an open-source operating
system.”17

As mentioned earlier, Free/Open Source programming languages, database
systems, spreadsheet software and other applications that can be used for
computations and data analysis in research are available. More specialized FOSS is
also available. For example, Scilab (http://scilabsoft.inria.fr/) is a FOSS package for
numerical computations that has features equivalent to that of proprietary packages.
Scilab is a full-featured scientific package, with hundreds of built-in functions for
matrix manipulation, signal processing, Fourier transforms, graphics, and the like. It
can be used as a research tool in a broad range of science and engineering
disciplines. Another example is the GNU Scientific Library (GSL), a FOSS generic
mathematical library with a rich set of functions that is available for use under the
GPL. The use of these library modules facilitates development of computer
programs for research purposes.

Bioinformatics

Bioinformatics, in general, is the use of computers to handle biological information. It
is the use of computers to characterize the molecular components of living things
(computational molecular biology). The most prominent achievement of
bioinformatics is the Human Genome Project, an attempt to map the complete set of
human genes. A tremendous amount of data needs to be handled in molecular
biology and this is clearly possible only with the aid of computers and software.

Open source software features prominently in Bioinformatics. Ewan18 argues that
“open source makes sense because it follows good and well-known scientific
principles. Traditionally, scientific practice has involved openly sharing and
discussing results, and providing enough information to allow third-party confirmation
of results. Clearly open source software fits well into this model.” The second reason

38

for using Open Source software is that the “actual data matters much more than the
tools used to process it.” Sharing the software used to conduct research reduces
duplication of effort to develop the software.

The Bioinformatics Organization, Inc. (http://bioinformatics.org/) was founded in 1999
to facilitate worldwide communications and collaborations in bioinformatics research
and to provide free and open access to methods and materials in such work. Its
website hosts extensive resources, including software and databases, and provides
a forum for activities that facilitate the development of such resources

High-end Computing

Linux and Open Source software have been used in projects to provide affordable
high-end computing capabilities. This is done by combining the processing power of
multiple low-cost servers and workstations into a system that can deliver
supercomputer power. According to Cook, “The reason these systems are so
effective is that there are a great many very big, very complicated problems that
naturally break down into a bunch of iterations of the same, much simpler, problem.
That describes everything from forecasting the weather to doing computer
animation.”19

Beowulf is the name of the architecture used for building a massively parallel system
constructed out of commercially available PCs. The computers used for building the
system can be 486 systems, Pentium systems and Alpha computers; the computers
need not be homogeneous. Even old PCs that would otherwise be discarded can be
used to build such a system. In Oak Ridge National Laboratory in the US, the Stone
SouperComputer was built using a combination of old PCs connected together using
a standard Ethernet network and was used to solve a mapping problem20. The
system has a theoretical peak performance of 1.2 gigaflops1

Another example is the supercomputer launched by the State University of New York
(SUNY) which consists of over 2,000 computers running Linux to conduct drug
research to combat cancer, Alzheimer’s disease and AIDS.

1 FLOPS stands for floating point operations per second. It is used as an approximate measure of
computing speed. A gigaflops is one billion FLOPS.

39

7 Training in FOSS

Although training in FOSS is not normally part of formal education, educational
institutions can play a role in providing this service as part of a professional training
or adult education program.

One of the ways to promote the adoption of Linux and FOSS in government,
educational institutions, organizations and the corporate sector is to ensure that
suitable human resource capacity is available. A short-term measure for building
human resource capacity in FOSS is to provide a path for current IT professionals to
acquire the necessary skills and certification. Although many system administrators,
network engineers and other IT professionals should be able to learn on their own, a
more structured training program will ensure systematic and adequate coverage of
the various topics. A certification process will assess the competence of Linux and
FOSS professionals and will give confidence to employers and facilitate the hiring
process in an organization.

Training in Linux and FOSS is primarily to enhance job-related skills. Since FOSS is
now predominantly used in back office servers, the areas for training would be in
operating systems, servers, security and Web application development.

Since desktop applications are beginning to mature, there is also a growing need to
train users to use these applications. Some governments and corporations are
already implementing policies to migrate to FOSS desktop applications either on a
mandatory or voluntary basis. However, such policies can succeed only if they are
accompanied by a concerted effort to train the users who are affected by the move
to use FOSS.

Certification

Lack of technical support is often cited as one of the reasons for not considering the
adoption of FOSS. There is, of course, support provided informally through various
newsgroups and mailing lists and vendors like Red Hat also provide support options
that can be purchased by institutions. However, the existence of a pool of Linux-
certified professionals will go a long way to allay the fears of organizations that are
considering the adoption of Linux and FOSS.

A certification programme also helps training centers in deciding on the training
curriculum. Instead of having to develop its own curriculum, a training center can
adopt a widely recognized certification programme. There are other advantages of
certification, such as industry recognition of Linux and provision of a path of study for
professionals desiring to acquire skills in Linux.

A certification programme should have some form of examination to assess
students. Examinations should be designed in such a way as to reliably assess the
competencies of students. The training centers should be certified and the
instructors themselves should also be certified to be suitable to conduct the
training.21

40

Linux Professional Institute (LPI)
The Linux Professional Institute (LPI - http://www.lpi.org/) is a non-profit organization
established in 1999. It is vendor-independent and through its activities it aims to
promote the use of Linux and FOSS.

The LPI certification programme consists of three levels and is designed to certify
the competency of system administrators, system engineers and other IT
professionals in the use of Linux and other associated servers and utilities. It is not
based on any particular Linux distribution although inputs to the programme are
provided by major hardware and Linux distribution vendors.

LPI tests for well-rounded skills that are usable on any Linux distribution and to
ensure validity, reliability and high quality. LPI does not provide the training directly;
neither does it provide the training materials. A wide range of preparation options are
supported and training and testing centers for LPI certification are available in many
countries.

Red Hat Certified Engineer (RHCE)
Red Hat (http://www.redhat.com/training/) has two certification examinations—the
Red Hat Certified Engineer (RHCE) and the Red Hat Certified Technician (RHCT).
The training and testing emphasize practical skills and the exams measure
competence with live equipment. The RHCE is aimed at two groups of IT
professionals. The first group consists of system administrators, network engineers
and other IT staff who already possess experience and knowledge in UNIX or Linux.
The second group includes IT professionals who have little or no prior experience
with UNIX or Linux.

The RHCE and RHCT certifications are meant to assess competencies in installing
and configuring Red Hat Linux, configuring basic networking and file systems,
essential system administration and configuring basic security. The RHCT is
certification to a technician level and focuses more on client-side services and
supporting Red Hat Linux systems on an existing network. RHCE focuses on server
services and assesses competence in managing Red Hat Linux servers.

CompTIA Linux+
Computing Technology Industry Association (CompTIA) Linux+
(http://www.comptia.org/certification/linux/default.asp) certification is another vendor-
neutral programme that validates the knowledge and abilities of technicians with at
least six months of practical Linux experience. The CompTIA Linux+ certification
exam measures competencies in planning and implementation, installation,
configuration, administration, maintenance and troubleshooting of Linux systems.
This is considered to be an entry-level certification on Linux.

41

8 Policy Issues

As the earlier chapters have shown, FOSS has an important role to play in
education. We have seen how it can be used in the setting up and running of the ICT
infrastructure of academic institutions. It can be used to meet some of the
specialized administrative needs of these institutions, such as the management of
libraries and the setting up of learning management systems. Its use can potentially
lower the costs of providing ICT facilities to educational institutions. The use of
FOSS also makes possible improvements in the teaching of computer literacy,
programming, software engineering and other non-IT subjects. FOSS has a role to
play in academic research and it has influenced and contributed to a more open
dissemination of academic and research content.

Nevertheless, in considering the adoption of FOSS in education, policy- and
decision-makers should be aware of the various issues that may arise.

Software procurement

Since there are numerous advantages to using FOSS in educational institutions,
including lower costs, reliability, better performance and, arguably, better security,
strategic plans or policies for education at the national or institutional level should
have guidelines for procurement of software that give due consideration to FOSS.
These guidelines should also apply to decisions on software acquired for use in
various curricula.

The different approaches that can be taken for developing guidelines for the
procurement of software are:

 Making it mandatory to use FOSS unless no suitable FOSS that is equivalent
to the proprietary software is available;

 Recommending that FOSS be used whenever possible; and
 Ensuring that FOSS is given due consideration and not excluded in favour of

proprietary software.

Migration

In many situations, educational institution may already be using proprietary software
for both backend servers and desktops. In these cases, a strategy should be
developed to migrate to the use of FOSS. The first place to start is usually the
backend servers since the migration will be transparent to users and a wide range of
high-quality FOSS is already available for servers. The exception will be certain
applications such as financial management systems where good FOSS equivalents
are not yet available. In such cases, servers running proprietary operating systems in
support of such applications can be maintained and can coexist with other servers
based on FOSS platforms on the same network.

For desktop applications, the adoption of FOSS can potentially result in greater cost
savings. However, a migration policy will have to take into account the existing use of
proprietary software and the need to maintain the use of some proprietary
applications for academic requirements. A gradual approach can be taken, for
example by first introducing and supporting FOSS applications that run on Windows,
followed by the introduction of Linux as part of a dual boot system. There may be a
transitional period where dual or multiple operating systems have to be maintained,
which may result in additional support costs.

42

The available FOSS expertise within the institution will determine the training
requirements for system administrators and other IT support staff. User training may
also be required for other administrative users.

Curricula in Schools

More and more schools are being equipped with computer facilities and many have
already implemented curricula to teach computer literacy to their students. These
curricula should be examined to ensure that they are not based on specific
proprietary software. If necessary, modifications should be made to the curricula so
that the emphasis is on teaching concepts and generic skills. As we saw earlier,
FOSS that is suitable for use as the basis of teaching computer literacy is available
and it should be used wherever possible. It has cost advantages; discourages
software piracy; raises the awareness of the students regarding the availability of
FOSS solutions; and avoids over-dependence on one proprietary platform. This does
not necessarily mean that proprietary software should be excluded entirely. If the
resources are available, proprietary software can be used to demonstrate the range
of software available to accomplish certain tasks.

We have seen that a lot of FOSS educational software for specific subjects are
available and teachers should be encouraged to use these to enhance teaching and
learning. If they have the skills, the teachers should also be encouraged to develop
appropriate software for their classes and make these available as FOSS.

To introduce FOSS in the curricula of schools, appropriate training for teachers is
likewise required. The emphasis in this case will be on training the teachers to use
the appropriate desktop FOSS, such as OpenOffice, Mozilla and GIMP.

Curricula in Tertiary Institutions

At the tertiary level, the policies of institutions with respect to curricula for Computer
Science or Information Technology programmes should encourage the incorporation
of FOSS. Academic staff should examine course syllabi and modify them where
necessary. Student projects that leverage on the availability of source code of FOSS
and encourage participation and contribution to ongoing FOSS development
efforts,should be introduced. Consideration should also be given to the introduction
of computer languages that are increasingly being used in FOSS development such
as PHP, Perl, Python and Java, in addition to the traditional languages. FOSS
development methodology and the tools commonly used in developing FOSS should
be incorporated in software engineering courses.

Non-IT students should be taught computer literacy using curricula that is FOSS-
enabled, with emphasis on acquisition of generic skills. It may be useful to expose
students to a wide selection of software, including both FOSS and proprietary
software if the resources are available. FOSS for teaching specific subjects should
be identified and used wherever possible. Academic staff who have the skills should
be encouraged to develop software for enhancing the teaching of courses and to
release these as FOSS.

43

Development of FOSS for education

The numerous FOSS available for educational use range from Learning
Management Systems to software that can be used to teach specific subjects in
schools or universities. However, in order for academic institutions in a particular
country to use these software, it may be necessary to modify them to suit local
educational requirements. In countries where English is not used as the medium of
instruction, there is also a need to localize the software so that they can be used in
the local language. Where there are no suitable FOSS available such as a Student
Information System or software applications for specific academic subjects, then
there may also be a need to develop new applications.

To encourage the customization, localization and development of FOSS for
education, the relevant government agencies should consider establishing incentive
schemes for the private sector and academic institutions to undertake these
activities. This can be in the form of grants that would help to alleviate the risks
involved in investing in the development of educational FOSS that may not have
direct commercial returns for the private sector.

Research grants

Earlier we gave some examples of the use of FOSS in research and the reason why
it should be used instead of proprietary software where possible. To promote the use
of FOSS in research activities, agencies providing research grants can consider
making the use of FOSS one of the criteria for the award of the grants. They can
also consider specifying that any software developed as part of research activities
should be released as FOSS. These conditions should apply regardless of whether
the research is related to ICTs, since computer software are very often used as
research tools in many other areas of research.

Training

Immediate measures need to be taken to build the human resource capacity
required to implement and support FOSS. This will require the setting up of training
centers that conduct programmes preferably leading to certification such as the LPI
or the RHCE certification. The training centers may be government-run, set up by
the private sector or set up in partnership with universities or colleges. To act as a
catalyst and to ensure the availability of sufficient trainers to run the training
programmes, “training the trainers” programmes can be established.

44

Glossary

BIND
BIND is the acronym for Berkeley Internet Name Domain. It is a computer program
developed to facilitate the resolution of domain names to Internet Protocol (IP)
addresses on the Internet. It is the most widely used DNS server software.

DHCP
DHCP is the acronym for Dynamic Host Configuration Protocol. Every computer
connected to a network needs to be assigned an IP address. This can be done
manually but it is most common to have the IP address assigned dynamically by a
DHCP server.

DNS
An abbreviation for Domain Name System, an Internet service that translates domain
names into Internet Protocol (IP) addresses. Domain names (e.g., www.sample.com)
are easier to remember and to use but the Internet is actually based on cryptic IP
addresses (e.g., 198.101.208.15). Hence, a translation between the two is required.

Free Software
The word “free” in Free Software refers to the users' freedom to run, copy, distribute,
study, change and improve the software. It does not refer to the price of the
software. More precisely, a program is Free Software if users have the four
freedoms:

 The freedom to run the program, for any purpose.
 The freedom to study how the program works, and adapt it to your needs.

Access to the source code is a precondition for this.
 The freedom to redistribute copies so you can help your neighbor.
 The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits. Access to the source code is a
precondition for this.

The definition of Free Software and a more detail explanation is available at
http://www.fsf.org/philosophy/free-sw.html.

GCC
The GNU Compiler Collection (GCC) is a collection of front ends for programming
languages that is included in most Linux distributions. It currently supports computer
languages such as C, C++, Objective-C, Fortran, Java and Ada and contains
libraries for these languages. Work is in progress to include other languages such as
Pascal and Cobol.

GIMP
GIMP (GNU Image Manipulation Program) is the most well known FOSS for image
editing. It is available for various operating systems and many languages. It
supports various image file formats and is considered to be the FOSS equivalent of
the proprietary Photoshop software.

GNOME
GNOME (GNU Network Object Model Environment) is one of the two main desktop
environments with a graphical user interface for the Linux operating system. It is
intended to make the Linux operating system easy to use.

45

GNU
There are many references to GNU in this paper and other materials on FOSS. It is
a recursive acronym for “GNU’s Not Unix”. In 1984, a project was started by Richard
Stallman to develop a complete UNIX style operating system that is available as
Free Software. This is called the GNU operating system.

GPL
The General Public License (GPL) was originally used as the license for “Free
Software” distributed by the Free Software Foundation (FSF). Under the GPL, users
may run, copy and modify the software, and distribute the modified software.
However, users are not allowed to add their own restrictions and the modified
software must be released under the same licensing terms.

IDE
An acronym for Integrated Development Environment. It refers to an integrated
computer programming environment that usually has a user-friendly graphical user
interface and that provides the necessary tools for developing computer
programmes.

IMS
IMS originally stood for Instructional Management Systems but it is now used to refer
to the organization IMS Global Learning Consortium, a non-profit organization
supported by a worldwide consortium that includes educational institutions, software
companies and publishers. It develops open technical specifications to support
distributed learning. Several of these specifications are being adopted internationally
as standards for learning technology. The goal of these specifications is to allow
different course management systems and content from different authors to work
together or interoperate.

KDE
K Desktop Environment (KDE) is one of two main desktop environments with a
graphical user interface for the Linux operating system. It is intended to make the
Linux operating system easy to use.

LAN
A Local Area Network (LAN) is a local computer network for communication between
computers, typically covering a small area such as an office building or a group of
buildings like a campus. A LAN may be connected to the Internet or it may be a
separate distinct network. LAN is commonly used for sharing of resources such as
files, printers and disk storage.

Localization
In the context of software, localization is the process of adapting, translating and
customizing a product for a specific market. This means the modification of the
interface so that it is meaningful and comprehensible to the local user of the product.
Apart from the linguistic issues, localization also needs to address content and
cultural issues as well as technical issues.

LTSP
The Linux Terminal Server Project (LTSP) provides the necessary software to set up
a network of diskless workstations or thin clients to connect to a Linux server. It
supports various Linux distributions and many sites are using LTSP. During boot up,
the diskless workstation obtains the necessary network information from the server

46

and the operating system is downloaded from the server. Any program supported by
the server can be run from the workstation.

OCW
In 2001, MIT announced the OpenCourseWare (OCW) project through which it
would make available course material used in the courses taught at MIT. These
would be available online for use by educators, students and self-learners from
anywhere in the world. Materials for 700 courses from virtually all the academic
disciplines are currently available on the OCW website (http://ocw.mit.edu).

OKI
The Open Knowledge Initiative (OKI) was initiated at MIT in 2001. It is a
collaboration among some leading universities with MIT and Stanford leading the
initiative. The objective of OKI is to define an open and extensible architecture for
learning technology and it is targeted specifically to the needs of the higher
education community. It provides specifications for interfaces among components
within a learning management system and facilitates communication with other
systems, including existing enterprise systems.

Open Source
Open Source software does not only mean access to the source code. To qualify as
Open Source software, the distribution terms of the software must comply with the
following criteria:

 Free Redistribution
 Availability of Source Code
 Possibility of Derived Works
 Integrity of The Author's Source Code
 No Discrimination Against Persons or Groups
 No Discrimination Against Fields of Endeavor
 Distribution of License
 License Must Not Be Specific to a Product
 License Must Not Restrict Other Software
 License Must Be Technology-Neutral

For further explanation of the definition of Open Source please refer to:
http://www.opensource.org/docs/definition.php

Operating System
The Operating System (OS) is the collection of software that controls the hardware
and software applications on a computer. The OS manages and allocates the
physical resources (CPU processing time, hard disk space, inputs from the
keyboard, etc.) among the different applications that run on it. Examples of an OS
are Microsoft Windows, GNU/Linux, Solaris and Mac OS X.

Perl
Perl is an acronym for Practical Extraction and Report Language. It is an interpretive
programming language designed to process text and is typically used for CGI
scripts. Perl has been developed as an open source project and was started in 1987
by Larry Wall. Developed originally for UNIX it is now available for different operating
systems.

PHP
PHP originally stood for “Personal Home Page”. Today it is a recursive acronym for
"PHP: Hypertext Preprocessor". PHP is an Open Source server-side scripting

47

language for Web programming. You can use it to add dynamic features to HTML
pages or to create entire sites that generate HTML dynamically. PHP is executed on
the server and the client cannot view the PHP code. PHP is compatible with many
types of databases.

Python
Python is an interpreted, interactive and object-oriented programming language
developed by Guido van Rossum in 1991. Python is portable and runs on most
operating systems. It is suitable for rapid prototyping and as an extension language
for applications that need a programmable interface. Although Python is copyrighted,
the source code is freely available and distributable even for commercial use.

SCORM
An acronym for Shareable Content Object Reference Model, SCORM is an XML-
based framework that allows interoperability, accessibility and reusability of learning
content. Learning content created using SCORM can be easily shared among
different learning management systems.

Source Code
The source code of the software is the set of programming instructions that is written
by the programmer using a particular computer language. In order for the computer
to understand and run the software, the source code must be compiled or
"translated" into machine code (also referred to as binary code, executable code or
object code). To modify the software, the source code must be available for
modifications, as the machine code is not human-readable.

TCO
TCO stands for Total Cost of Ownership. This includes all of the costs involved in a
technology or business solution. In addition to the initial investment cost, such costs
include maintenance, support, replacement costs, and the like. In the case of
software, the TCO should include the initial cost of the software; upgrade cost; and
maintenance, support and training costs.

48

References

1. Wong, Kenneth and Sayo, Phet, ““Free/Open Source Software–A General
Introduction”, UNDP-APDIP, 2003; available from http://www.iosn.net.

2. “How Open Source and Commercial Software Compare: MySQL 4.0.16”,
Reasoning Inc. Whitepaper, 2003; available from
http://www.reasoning.com/downloads.html.

3. Wheeler, David A., “Why Open Source Software / Free Software (OSS/FS)?
Look at the Numbers!”, December 2003; available from
http://www.dwheeler.com/oss_fs_why.html.

4. Howorth, Roger, “Samba 3 extends lead over Win 2003”, Oct 2003, IT Week;
available from http://www.itweek.co.uk/News/1144312.

5. Vessels, Terry, “Why should open source software be used in schools?”,
2001; available from http://edge-op.org/grouch/schools.html.

6. Decrem, Bart, “Desktop Linux Technology & Market Overview”, Open Source
Applications Foundation (OSAF), July 2003; available from
http://www.osafoundation.org/desktop-linux-overview.pdf.

7. Glance, David, Kerr, Jeremy, Reid, Alex, “Factors affecting the use of open
source software in tertiary education institutions”, First Monday, Volume 9,
No. 2, Feb 2004; available from
http://firstmonday.org/issues/issue9_2/glance/index.html.

8. Martyris, Daryl, “Community–government partnerships and open source
technology for low cost IT access in India–A case study”, Harvard University,
July 2003; available from
http://www.developmentgateway.com/node/133831/sdm/blob?pid=5474.

9. Anctil, Eric, “The Open Source Integrated Library System: An Overview”,
2003; available from http://www.anctil.org/users/eric/oss4ils.html.

10. “COL LMS Open Source”, Commonwealth of Learning, 25 June 2003;
available from http://www.col.org/Consultancies/03LMSOpenSource.pdf.

11. “Being Fluent with Information Technology”, U.S. National Research Council,
Committee on Information Technology, National Academy of Sciences, 1999.

12. Surran, Michael, “Linux from Kindergarten to High School”, Linux Journal,
February 2003; available from
http://www.linuxjournal.com/article.php?sid=6349.

13. Moyle, Kathryn, "Open source software and Australian school education",
August 2003; available from
http://www.educationau.edu.au/papers/open_source.pdf.

14. Raymond, Eric, “The Cathedral and the Bazaar”, 2000; available from
http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/.

49

15. Hart, David, “Faster, Better, Cheaper: Open-Source Practices May Help
Improve Software Engineering”, NSF press release, NSF PR 03-132,
December 2003.

16. Long, Phillip D., "OpenCourseWare: Simple Idea, Profound Implications",
Syllabus Magazine, Jan 2002; available from
http://www.syllabus.com/article.asp?id=5913.

17. Pfaffenberger, Bryan, “Linux in Higher Education: Open Source, Open Minds,
Social Justice”, Linux Journal, March 02 2000; available from
http://www.linuxjournal.com/article.php?sid=5071.

18. Stewart, Bruce, “Ewan Birney’s Keynote: A Case for Open Source
Bioinformatics”, O’Reilly Network, 2002; available from
http://www.oreillynet.com/lpt/a/1511/.

19. Cook, Rick, “Supercomputers on the cheap”, April 2000; available from
http://www.cnn.com/2000/TECH/computing/04/13/cheap.super.idg/.

20. Hargrove, William W., Hoffman, Forrest M. and Sterling, Thomas, "The Do-It-
Yourself Supercomputer", Scientific American.com, August 16, 2001;
available from http://www.sciam.com/article.cfm?articleID=000E238B-33EC-
1C6F-84A9809EC588EF21.

21. York, Dan, “Creating a Linux Certification and Training Program”, Linux
Gazette, Issue 33, Oct 1998; available from
http://www.linuxgazette.com/issue33/york.html.

50

Further Readings

1. Moody, Glyn, “Rebel Code–Linux and the Open Source Revolution”, Penguin
Books, 2002.

2. St. Onge, Peter D., “Linux in Education: Two Years Later”, August 17 2002;
available from http://freshmeat.net/articles/view/533/.

3. Kegel, Dan, “The Case for Linux in Universities”, Oct 2002; available from
http://www.kegel.com/linux/edu/case.html.

4. Kegel, Dan, “The Undergrad CS Program, Linux, and Open Source”, Mar
2003; available from http://www.kegel.com/linux/edu/curriculum.html.

5. Howland, John E., “Software Freedom, Open Software and the
Undergraduate Computer Science Curriculum”, Department of Computer
Science, Trinity University, April 14 2000; available from
http://www.cs.trinity.edu/~jhowland/ccsc2000/ccsc2000/ccsc2000.html.

6. Massey, Bart, “Open Source Software Development in the Unix
Environment”, course in Portland State University; available from
http://www.cs.pdx.edu/course.php?cid=110.

7. Cesarini, Paul, “A Monocultural Alternative: The OpenCD”, Fall 2003,
Computers and Composition Online; available from
http://www.bgsu.edu/cconline/reviews/cesarini_review.htm.

8. Hart, Timothy D., “Open Source in Education”, May 2003, University of
Maine; available from http://portfolio.umaine.edu/~hartt/OS in Education.pdf.

9. Lineweaver, Rob, “Cost savings of open source software in the server room
—An informal case study in K-12 education”, 2002; available from
http://staff.harrisonburg.k12.va.us/~rlineweaver/.

10. Carmichael, Patrick and Honour, Leslie, "Open Source as Appropriate
Technology for Global Education", School of Education, University of
Reading, UK; available from
http://www.google.com.my/url?sa=U&start=1&q=http://www.ellak.gr/pub/osdo
cs/education/carmichael.pdf&e=7413.

11. Robbins, Jason E., “Adopting OSS Methods by Adopting OSS Tools”,
CollabNet, Inc.; available from
http://opensource.ucc.ie/icse2002/Robbins.pdf.

12. González-Barahona, Jesús M. and Robles, Gregorio, "Free Software
Engineering: A Field to Explore", UPGRADE - European Journal for the
Informatics Professional, Vol. IV, No. 4, August 2003; available from
http://www.upgrade-cepis.org/issues/2003/4/up4-4Gonzalez.pdf.

13. Gilbert, Steven W. and Long, Phillip, "Open Knowledge and Open
CourseWare Initiatives: An Interview with MIT's Phil Long", The Technology

51

Source, March/April 2002; available from
http://ts.mivu.org/default.asp?show=article&id=979.

14. Siemens, George, “Free and Open Source Movements: Part 1 - History and
Philosophies”, March 2003; available from
http://www.xplana.com/whitepapers/archives/open_source_part1/.

15. Siemens, George, “Open Source Content in Education: Part 2 - Developing,
sharing, expanding resources”, March 2003; available from
http://www.xplana.com/whitepapers/archives/open_source_part2/.

16. Bretthauer, David, “Open Source Software: A History”, Information
Technology and Libraries, Vol. 21, No. 1; available from
http://www.lita.org/Content/NavigationMenu/LITA/LITA_Publications4/ITAL__I
nformation_Technology_and_Libraries/2101_Bretthauer.htm.

17. Lakhani, Karim R. and Wolf, Robert G., "Why Hackers Do What They Do:
Understanding Motivation Effort in Free/Open Source Software Projects", MIT
Sloan School of Management, September 2003; available from
http://freesoftware.mit.edu/papers/lakhaniwolf.pdf.

52

About the Author

Tan Wooi Tong is Programme Specialist for the International Open Source Network
(IOSN) at UNDP’s Asia-Pacific Development Information Programme (APDIP). He
obtained his Bachelor and Master degrees from the Massachusetts Institute of
Technology, USA. He has more than 20 years of working experience in the
Information Technology field, academic institutions and engineering firms.

53

Acknowledgement

The author would like to thank the reviewers of this primer, Dr. M. Sasikumar (India),
Dr. Nah Soo Hoe (Malaysia) and Dr. Onno Purbo (Indonesia), for their valuable
comments and suggestions that have contributed to the improvement of the primer.
Many thanks also go to colleagues at UNDP-APDIP—Shahid Akhtar and Kenneth
Wong, for their valuable input, and all the others for their efforts that have made the
creation of this primer possible.

54

55

APDIP

The Asia-Pacific Development Information
Programme (APDIP) is an initiative of the
United Nations Development Programme
(UNDP) that aims to promote the development
and application of new Information and
Communication Techno-logies (ICT) for poverty
alleviation and sustainable human development
in the Asia-Pacific region. It does so through
three core programme areas, namely, Policy
Deve-lopment and Dialogue; Access; and
Content Development and Knowledge
Management.

In collaboration with National Governments,
APDIP seeks to assist national and regional
institutions in the Asia-Pacific through activities
that involve awareness-raising and advocacy,
building capacities, promoting ICT policies and
dialogue, promoting equitable access to tools
and technologies, knowledge sharing, and
networking. Strategic public-private sector
partnerships and opportunities for technical
cooperation among developing countries
(TCDC) are APDIP's key building blocks in
implementing each programme activity.

http://www.apdip.net

IOSN

The International Open Source Network (IOSN)
is an initiative of UNDP's Asia-Pacific
Development Information Programme (APDIP).
Its overall objective is to serve as a Center of
Excellence and a Clearinghouse for Information
on Free and Open Source Software (FOSS) in
the Asia-Pacific region. IOSN seeks to raise
awareness of FOSS, facilitate networking of
people involved in FOSS, strengthen capacities
in FOSS, and conduct R&D on FOSS.

The beneficiaries of IOSN are governments, IT
professionals, software developers, the FOSS
R&D community, academics and the NGO
community. IOSN serves as a resource center
to help policy- and decision-makers in the public
sector, educational institutions, businesses and
others develop policies and plans for the use of
FOSS in their respective organizations. Much of
IOSN’s activities are undertaken online and the
IOSN portal (www.iosn.net) has been developed
for this purpose and to serve as a
comprehensive online resource center on
FOSS. The IOSN portal also provides a means
for the FOSS community in the region to
contribute to its efforts and to interact.

http://www.iosn.net

	Free/Open Source Software in Education
	9 Jun 2004 Tan Wooi Tong International Open Source Network
	Table of Contents
	Preface
	1 Introduction
	Why FOSS for Education?

	2 Infrastructure
	Requirements of educational institutions
	Server Software
	Workstation Software
	Cost Savings

	3 Administration
	Library Management Systems
	Learning Management Systems
	Others

	4 Teaching IT with FOSS
	Computer Literacy
	Schools
	Higher Education

	5 Open Content
	6 Research using FOSS
	Bioinformatics
	High-end Computing

	7 Training in FOSS
	Certification

	8 Policy Issues
	Glossary
	References
	Further Readings
	About the Author
	Acknowledgement

	
	IOSN Title Page

