

Icodeon Ltd, Studio 471, 48 Regent Street, Cambridge CB2 1SB
Registered in England and Wales No: 5068195

Page 1 of 4

ICODEON SOFTWARE

Sequencing Engine

The following white paper describes the steps required to integrate the Icodeon
Sequencing Engine into existing learning technology systems.

The sequencing engine is a pure Java software component and integrates
seamlessly into J2EE environments, typically web application frameworks or Java
clients.

� Read in an IMS Content Package manifest file. If the manifest file contains
no sequencing information, default sequencing behaviours are
instantiated.

� Create an activity tree from the manifest file.

� Pass the tree to an instance of the sequencing engine.

� Issue a Start, Continue, Previous, Choice or Exit navigation request to the

sequencing engine to trigger the overall sequencing process.

� Access the current activity identified by the sequencing engine.

� Render the current activity resources to the user.

� Place the activity tree in session state to maintain sequencing state
between discrete user requests.

These steps are described in more detail on the following pages, with exemplar
code that uses the high level sequencing API from Icodeon.

Visit: Icodeon Ltd, www.icodeon.com

Icodeon Ltd, Studio 471, 48 Regent Street, Cambridge CB2 1SB
Registered in England and Wales No: 5068195

Page 2 of 4

Integrating the Icodeon Sequencing Engine

The following description explains the addition of the Icodeon Sequencing Engine
to a software application. Implementers should be familiar with the following
concepts, particularly from the IMS Simple Sequencing Specification:

• Navigation Requests
• Activities
• Activity Tree
• Local and Global Objectives
• Overall Sequencing Process and Loop
• IMS Content Package manifest file, imsmanifest.xml
• Assessment items (QTI Items or SCOs)

Sequencing state is maintained between navigation requests by keeping a
unique instance of the sequencing activity tree for each user in session state.

1. Import the sequencing APIs into the Java class. Only the APIs and their
associated factory methods are required. Implementation classes are
specified as String representations of their class names passed as
arguments to factory methods:

import com.icodeon.ims.ss.info.state.api.*;
import com.icodeon.ims.ss.engine.api.*;
import com.icodeon.ims.ss.persistence.api.*;
import com.icodeon.shared.api.*;

2. Use the StateModelFactory to create an instance of the sequencing

activity tree for each user based on the imsmanifest .xml file in the root
of a IMS Content Package. A class name for an implementation of a global
objective reader and global objective writer is also passed to the activity
tree to allow local objectives to read from and write to sequencing
global objectives.

 ActivityTree activityTree =
 stateModelfactory.createActivityTree(
 imsManifest,
 userID,
 readerClassName,
 writerClassName);

3. Use the EngineFactory to create an instance of a sequencing engine.

Each sequencing engine is a JavaBean that is created, used and then
disposed during each navigation request:

 EngineFactory engineFactory =
 (EngineFactory) FactoryManager.newInstance(
 factoryImplClassName);
 SequencingEngine sequencingEngine =
 engineFactory.createSequencingEngine();

Icodeon Ltd, Studio 471, 48 Regent Street, Cambridge CB2 1SB
Registered in England and Wales No: 5068195

Page 3 of 4

4. Pass the activity tree as an argument of a mutator method to the

sequencing engine:

sequencingEngine.setActivityTree(activityTree);

5. Issue a navigation request to trigger the overall sequencing process.
Two arguments are required. First, the navigation request type, such as
start, previous, continue, choice and exit all. The second argument is the
activity identifier if a choice request is specified. The identifier is the item
identifier in the IMS Content Package manifest:

 sequencingEngine.setNavigationRequestType(
 RequestType.START,
 null);

6. Get the current activity discovered by the overall sequencing

process:

Activity currentActivity =
sequencingEngine.getCurrentActivity();

7. Get the required (usually relative) URL from the activity:

 Resource resource = currentActivity.getResource();
 String href = resource.getHref();

8. Put the activity tree into session state:

 session.setAttribute(
 SessionKeys.ACTIVITY_TREE_SESSION_KEY,
 activityTree);

9. Get any error messages from the sequencing engine:

lastException = sequencingEngine.getLastException();

10. Dispose the transient instance of the sequencing engine bean:

sequencingEngine = null;

11. Wait for next navigation request:

Icodeon Ltd, Studio 471, 48 Regent Street, Cambridge CB2 1SB
Registered in England and Wales No: 5068195

Page 4 of 4

If the activity is a test item, then the result of the test will need to be passed to
the appropriate activity to update the objective progress information. For QTI
(Question and Test Interoperability) items, a QTI response processor will be
required. For SCOs (Shareable Content Objects), the run time environment will
provide the key/value pairs from the CMI datamodel.

Updating Objective Progress Information:

 Objectives objectives =
currentActivity.getSequencing().getObjectives();
 Objective objective = objectives.getPrimaryObjective();
 objective.setProgressStatus(true);
 objective.setSatisfiedStatus(true);

The learning technology system into which the sequencing engine is integrated
may also update the activity and attempt progress information.

Updating Activity Progress Information:

currentActivity.setActivityAbsoluteDuration(231.4)

	Icodeon Software Sequencing Engine
	16 Jun 2004 Warwick Bailey, Icodeon Ltd.
	Integrating the Icodeon Sequencing Engine

	
	Icodeon Title Page

