XML Schema Part 1: Structures

W3C Working Draft 6-May-1999

This version

http://www.w3.0rg/1999/05/06-xmlschema-1/
(in XML and HTML, with accompanying schema and DTD)

Latest version:

http://www.w3.org/ TR/xmlschema-1/

Editors:

David Beech (Oracle) Kdbeech@us.oracle.com>
Scott Lawrence (Agranat Systems) Klawrence@agranat.com>
Murray Maoney (Commerce One) Kmurray @muzmo.com>

Noah Mendelsohn (Lotus) Knoah_mendelsohn@lotus.com>
Henry S. Thompson (University of Edinburgh) Kht@cogsci.ed.ac.uky

© 1999 (MTT), INRTA,), All Rights Reserved. W3C [iability|, frademark, document usg and goftwareTicensing rules apply.

Status of this Document

ThisisaW3C Working Draft for review by members of the W3C and other interested parties in the general public.

It has been reviewed by the XML Schema Working Group and the Working Group has agreed to its publication. Note that not
that all sections of the draft represent the current consensus of the WG. Different sections of the specification may well
command different levels of consensus in the WG. Public comments on this draft will be instrumental in the WG's deliberations.

Please review and send comments to www-xmil-schema-comments@w3.ord (archive)

The facilities described herein are in a preliminary state of design. The Working Group anticipates substantial changes, both in
the mechanisms described herein, and in additional functions yet to be described. The present version should not be
implemented except as a check on the design and to allow experimentation with alternative designs. The Schema WG will not
allow early implementation to constrain its ability to make changes to this specification prior to final release.

A list of current W3C working drafts can be found at http://www.w3.0rg/TR. They may be updated, replaced, or obsoleted by

other documents at any time. It isinappropriate to use W3C Working Drafts as reference material or to cite them as other than
"work in progress".

Abstract

XML Schema: Structuresis part one of atwo part draft of the specification for the XML Schema definition language. This
document proposes facilities for describing the structure and constraining the contents of XML 1.0 documents. The schema
language, which isitself represented in XML 1.0, provides a superset of the capabilities found in XML 1.0 document type
definitions (DTDs.)

http://www.w3.org/
http://www.w3.org/1999/05/06-xmlschema-1/
http://www.w3.org/1999/05/06-xmlschema-1/structures.xml
http://www.w3.org/1999/05/06-xmlschema-1/structures.html
http://www.w3.org/1999/05/06-xmlschema-1/structures.xsd
http://www.w3.org/1999/05/06-xmlschema-1/structures.dtd
mailto:dbeech@us.oracle.com
mailto:lawrence@agranat.com
mailto:murray@muzmo.com
mailto:noah_mendelsohn@lotus.com
mailto:ht@cogsci.ed.ac.uk
http://www.w3.org/Consortium/Legal/ipr-notice.html#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
mailto:www-xml-schema-comments@w3.org
http://lists.w3.org/Archives/Public/www-xml-schema-comments/
http://www.w3.org/TR

Table of Contents

1
1.1 Documentation Conventions
1.2
13
1.4 [eminology

2. Conceptua FrameworK

2.1 Kinds of XML Documents

2.2 [On schemas, consfraints and coniributions
23

2.4 [Schemas and their component parts

2.5 Names and Symbol Spaces
2.6 Abstract and Concrete Syntax

3. [Schema Definitions and Declarations

31
3.2 [The Document and its Rool
3.3 References to Schema Constructs
3.4 Types, Elements and Attributes
3.4.1 Datatype Definition
3.4.2 Archetype Detfinition
3.4.3 Attribute Declarafior]
3.4.4 Attribute Group Definition
3.4.5 Element Content Mode]
346

3.4.7 Element-Only Conteni
3.4.8 Named Model Groud

3.4.9 Element Type Declaration
3.5 Archetype Refinement
3.6 Entities and Notations
3.6.1 Internal Parsed Entity Declaration

3.6.2 External Parsed Entity Declaration
3.6.3 Unparsed Entity Declaration
3.6.4 Notation Declaration
4. [Schema Composition and Namespaces
4.1 Associating Instance Document Constructs with Corresponding Schemaid
4.2 Exporting Schema Constructs
4.3 Facllities for Schema Composition
44
4.5 Using Abbreviations to Reference Imported Schemas
4.6 [mport Restrictions
4.7 schemaInclusion
4.8 Accessto Schemaia
5. Documenting schemas
6.
6.1 Schema Validity

6.2 Responsibilities of Schema-aware processors

6.3 Lexical representation
6.4 [nformetion se{

Appendices

A. [normative) Schemafor Schemas
B. (normative) DTD for Schemas

C. Glossary (normative)

D. Reterences (normative)

E. Grateful Acknowledgments (non-normative)
F. Sample Schema (non-normative)

G. Dpen Tssued
1. Introduction

This structural part (XML Schema: Structures) of the XML Schema definition language is a distillation of eight months of work
by the W3C XML Schema Working Group, including four weeks of intensive work by a group of five editors. This Working
Draft draws heavily on the work of [DCD], [DDML], [SOX], [XDR] and [XML-Data]. Requirements for XML Schema:
Structures can be found in [XML Schema Requirements].

Chapter 2 presents a Conceptual FrameworK for XML Schema: Srructures, including an introduction to schema constraints,

types, schema composition, and symbol spaces. The abstract and concrete syntax of XML Schema: Structures are introduced,
along with other terminology used throughout the specification.

Chapter 3 [Schema Definitions and Declarations reconstructs the core functionality of XML 1.0, plus anumber of extensions, in
line with our stated requirements [XML Schema Requirements]. This chapter discusses the declaration and use of datatypes,
archetypes, element types, content models, attributes, attribute groups, model groups, refinement, entities and notations.

Chapter 4 presents Schema Composition and Namespaces, including the validation of namespace qualified instance documents,
import, inclusion and export of declarations and definitions, schema paths, access to schemas, and related rules for schema-based
validity.

Chapter 5 is a placeholder for Documenting schemas, which will eventually provide a standardized means for including
documentation in the definition of a schema.

Chapter 6 discusses Conformance, including the rules by which instance documents are validated, and responsibilities of
schema-aware processors.

The normative addendainclude a[[normative) DTD for Schemas and a[[normative) Schemafor Schemas, whichisan XML
Schema schema for XML Schema: Structures, aGlossary (normafive) and References (normative). Non-normative appendixes
include aSample Schema (non-normative) and acknowledgments [[Grateful Acknowledgments (non-normative)].

1.1 Documentation Conventions

This Working Draft document was produced using an [XML] DTD and an [XSLT] stylesheet.
The following highlighting is used to present technical material in this document:

[Definition:] A term is something we use alot.

Sample Abstract Syntax Production

left::=rightl right2

Example
A non-normative example illustrating use of the schemalanguage, or arelated instance.

<schema nane='http://ww. nuzno. com XM_Schema/ 1. 0/ nySchema. xsd' >

And an explanation of the example.

The following highlighting is used for non-normative commentary in this document:
I ssue (dummy): A recorded issue.

Ed. Note: Notes shared among the editorial team.
NOTE: General comments directed to all readers.

1.2 Purpose

The purpose of XML Schema: Structuresis to provide an inventory of XML markup constructs with which to write schemas.

The purpose of an XML Schema: Structures schemais to define and describe a class of XML documents by using these
constructs to constrain and document the meaning, usage and relationships of their constituent parts. datatypes, elements and
their content, attributes and their values, entities and their contents and notations. Schema constructs may also provide for the
specification of implicit information such as default values. Schemas are intended to document their own meaning, usage, and
function through a common documentation vocabulary.

Thus, XML Schema: Structures can be used to define, describe and catalogue XML vocabularies for classes of XML documents.

Any application that consumes well-formed XML can use the XML Schema: Sructures formalism to express syntactic,
structural and value constraints applicable to its document instances. The XML Schema: Structures formalism will allow a useful
level of congtraint checking to be described and validated for a wide spectrum of XML applications.

The language defined by this specification does not attempt to provide all the facilities that might be needed by any application.
Some applications may require constraint capabilities not expressible in this language, and so may need to perform their own
additional validations.

1.3 Relationship To Other Work

The definition of XML Schema: Sructuresis a part of the W3C XML Aclivity. It isin various ways related to other ongoing
parts of that Activity and other W3C WGs

XML Datatype Language
XML Schema: Structures has a dependency on the data typing mechanisms defined in its companion
Datatypes], published simultaneously with this recommendation.
Document Object Model
XML Schema: Structures has not yet identified requirements or dependencies.
HTML
XML Schema: Structures has a requirement to support modularization of HTML.
Internationalization Working Group
See http:/www.w3.0rg/ XML/Group/I999/03/xml-schema-118n-notes
RDF Schema
XML Schema: Structures has not yet documented requirements or dependencies.
WAI
XML Schema: Structures has a requirement to support accessibility.
XML Information Set
XML Schema: Structures has significant dependencies on [XML-Infosef].
XML Schema: Srructures defines its own [nformation Set Contributions.
XML Schema: Structures will have requirements for subsequent Information Set Working Drafts .
XML Linking WG
XML Schema: Structures has not yet identified requirements or dependencies.
XML Syntax
XML Schema: Structures must interoperate with XML 1.0 and subsequent revisions.
XSL WG
XML Schema: Structures has a requirement to support dimensions and aggregate datatypes.

http://www.w3.org/XML/Activity.html
http://www.w3.org/XML/Group/1999/03/xml-schema-i18n-notes

1.4 Terminology

The terminology used to describe XML Schema: Structuresis defined in the body of this specification. The terms defined in the
following list are used in building those definitions and in describing the actions of XML Schema: Structures processors:

[Definition:] may
Conforming documents and processors are permitted to but need not behave as described.
[Definition:] must
Conforming documents and processors are required to behave as described; otherwise they are in rror.
[Definition:] error
A violation of the rules of this specification; results are undefined. Conforming software may detect and report an error
and may recover from it.

[Definition;] fatal error

An which a conforming processor must detect and report to the application.
[Definition:] match

(Of strings or names:) Two strings or names being compared must be character for character the same.
[Definition:] identical

(Of URIs or schemaNameés:) identical, according to the rules for identity in [XML-Namespaces|.

2. Conceptual Framework

This specification uses a number of terms that are common to many of the fields of endeavor that have influenced the
development of XML Schema. Unfortunately, it is often the case that these terms do not have the same definitionsin al of those
fields. This section attempts to provide definitions of terms as they are used to describe the conceptual framework, and the
remainder of the specification.

2.1 Kinds of XML Documents

Since XML schemas are themselves specified as XML documents, it is useful to clarify the relationships between certain kinds
of XML documents:

[Definition:] Instance
An XML document whose structure conforms to some schema. See JAssociating Instance Document Constructs with
Corresponding Schematd for the means by which an instance identifies the schema(s) to which it conforms.

[Definition;] Schema
A set of rulesfor constraining the structure and articulating the information set of XML documents.

[Definition;] Schema Definition
An XML document that defines a schema. See [Access to Schematd for the means by which schema definition documents
are accessed during processing. The term "Schema Definition™ may also be abbreviated to "schema' where no confusion
islikely.

Note that it is possible to specify a schema definition to which schema definitions themselves must conform, and thisisgivenin

(normative) Schemafor Schemas. An XML 1.0 DTD to which schema definitions must conform is also provided in
or Schem

Any schema definition is therefore also an instance. The editors will make an attempt to always use the most precise of these
terms, but the reader should note that rules specified herein for instances do apply to all of the following kinds of XML
document:

« Documents that are not schema definitions;
« Schema definitions applicable to documents that are not schema definitions;
« The schema definition applicable to schema definitions.
Likewise, rules for schemas do apply to the schema definition for schema definitions, which is an instance of itself.

2.2 On schemas, constraints and contributions

The [XML] specification describes two kinds of constraints on XML documents: well-formedness and validity constraints.
Informally, the well-formedness constraints are those imposed by the definition of XML itself (such as the rules for the use of
the < and > characters and the rules for proper nesting of elements), while validity constraints are the further constraints on
document structure provided by a particular DTD.

Three kinds of normative statements about the impact of XML Schema: Structures components on instances are distinguished in
this specification:
[Definition:] Constraint on Schemas

Constraints on the form and content of schemas themselves, above and beyond those expressed in [normative) Schema for

Schemas;
[Definition:] Schema-Validity Constraint
Constraints on the form of instances which they must satisfy to be schema-valid;

[Definition:] Schema Information Set Contribution
Augmentations to the information sets of instances which follow as a conseguence of schema-validation.

NOTE: Schema Information Set Contributions are not as new as might at first appear: XML 1.0 validation

augments the XML 1.0 information set in similar ways, e.g. by providing values for attributes not present in
instances, and by implicitly exploiting type information for normalization or access, e.g. consider the effect of
NMTCOKENS on attribute whitespace, and the semantics of | Dand | DREF. By including [SchemaTnformation Sel

Contributiors, we are trying to make explicit something XML 1.0 left implicit.

XML Schema: Structures not only reconstructs the DTD constraints of XML 1.0 using XML instance syntax, it also adds the
ability to define new kinds of constraints. For example, although the author of an XML 1.0 DTD may declare an element type as
containing character data, elements, or mixed content, there is no mechanism with which to constrain the contents of elementsto
only character data of a particular form, such as only integersin a specified range.

This specification supports the expression of just such constraints by including in the mechanism for the declaration of element
types the option of specifying that its contents must consist of avalid string expression of a particular datatype. A number of
other mechanisms are added which improve the expressive power, usability and maintainability of schemas as a means to
defining the structure of XML documents.

2.3 On 'types’

The use of the word 'type' has caused confusion in earlier discussions of schema technologies. Here, the word is used in severa
different contexts for a constraint on the form of (parts of) an element or attribute in an instance document. So, there are types
that are suitable for constraining individual attributes, others that apply to entire elements (of which attributes may be a part),
and so on. We use the words 'define’ and 'definition” when speaking of types, and the words 'declare’ and 'declaration’ when
specifying for an attribute or element type the type which constrainsits form in instance documents.

2.4 Schemas and their component parts

The next chapter Schema Definitions and Declarations sets out the XML Schema: Structures approach to schemas and formal

definitions of their component parts. Here we informally summarize the key constructs used in defining schemas. An asterisk (*)
in the 'Named? column indicates that the name will appear in instances -- other names are for schema use only.

XML Schema: Structures Feature | Purpose Named?

A wrapper containing all the definitions and declarations Yes
comprising a schema document.

Datatype Definition A type (content constraint), such as 'integer', that applies to Yes
character datain an instance document, whether it appears as an
attribute value or the contents of an element. The mechanisms
for defining datatypes are set out elsewhere, in XML Schemas:
Datatypes.

Archetype Definitior]

A complete set of constraints for elementsin instance
documents, applying to both contents and attributes.

Yes

Element Type Declaraiion

An association between aname for an element and an
archetype. An element type declaration for ‘A’ is comparable to
aDTD declaration <! ELEMENT A >,

Yes* (local or global)

Attribute Declaration]

An association between aaname for an attribute and a datatype,
together with occurrence constraints such as ‘required' or
‘default’. The association islocal to its surrounding archetype.

Yes* (loca)

Content type

Either adatatype or a content model. A content type appliesto
the contents of elementsin an instance document (but not their
attribute values). It provides a unifying abstraction for the
constraints which apply to the contents of elements, but
introduces no additional features.

No

Element Content Model

A type (content constraint) that applies to the contents of
elements in an instance document. Content models do not
include attribute declarations.

No

Element-Only Conteni

Components for constructing content models which allow only
element content. Includes facilities for grouping, sequencing, as
well asfor declaration of and reference to element types.

No (but see below)

Attribute Group Definition

An association between a name and a reusabl e collection of
attribute declarations.

Yes

Named Model Groug

Model groups are part of the content model building block
abstraction, but are unnamed and cannot be referenced for
reuse. A named model group is an association between a name
and amodel group, allowing for reuse.

Yes

Archetype Refinement

One archetype may be defined as refining one or more other
archetypes, acquiring content type and/or attributes therefrom.

Yes

Extends the current schemawith definitions and/or declarations
from an external schema, retaining the association with the
origina schema.

No

ichema Inclusion

Integrates definitions and/or declarations from an external
schema into the schema being defined, asif they had been
defined locally.

No

2.5 Names and Symbol Spaces

Asindicated in the third column of the tables above, most of the components listed are given names, which provide for
references within the schema, and sometimes from one schema to another. For example, an attribute definition can refer to a
named datatype, such as'integer'. A content model can refer to an element type, and so on.

If al such names were assigned from the same 'pool’, then it would be impossible to have e.g. a datatype named 'integer' and an
element type with the name 'integer’ in the same schema. [Definition:] Accordingly we introduce the idea of a symbol space
(avoiding 'name space' to avoid confusion with 'Namespacesin XML' [XML-Namespaces]).

There isasingle distinct symbol space within a given schema for each of the abstractions named above other than "Attribute’ and
'Element type': within a given symbol space, names are unique, but the same name may appear in more than one symbol space
without conflict. In particular note that the same name can refer to both an archetype and an element type, without conflict or

necessary relation between the two.

Attributes and local element type declarations are special, in that every archetype defines its own attribute and local element type

symbol spaces.

2.6 Abstract and Concrete Syntax

XML Schema: Structuresis presented here primarily in the form of an [Definition:] abstract syntax, which provides aformal
specification of the information provided for each declaration and definition in the schema language. The abstract syntax is
presented using a simplified BNF. Defined terms are to the left. Their components are to the right, with a small amount of
meta-syntax: ()s for grouping, | to separate alternatives, ? for optionality, * and + for iteration. Termsin italics are primitives, not
expanded here, either because they are defined elsewhere (e.g. URI, defined by [URI])) or because they can only be grounded
once a concrete syntax is decided on (e.g. choice).

An abstract syntax production prefixed with a number in brackets (e.g. [3]) is normative; other abstract syntax is either for
purposes of explanation, or isaduplicate (for convenience) of a normative definition to be found elsewhere.

The abstract syntax illustrates the expressive power of the language, and the relationships among its component parts. The
abstract syntax can be used to eval uate the expressive power of XML Schema: Structures, but not itslook and feel. In particular,
please note that neither ordering within or between productions or choice of namesis significant, and that any particular concrete
syntax is not constrained by these.

The [Definition:] concr ete syntax of XML Schema: Structures, the exact element and attribute names used in a schema, are a
key feature of its proposed design. The concrete syntax is the form in which the schema language is used by schema authors.
Though its elements and attributes are often different from the terms of the abstract syntax bnf, the features and expressive
power of the two are congruent. The concrete syntax profoundly affects the convenience and usahility of the schema language.

We include a preliminary concrete syntax in this draft, via examples and in (normative) Schema for Schemas and (normative)
DTD for Schemas. The emphasisin this version has been to stay quite close to the abstract syntax.

3. Schema Definitions and Declarations

The principal purpose of XML Schema: Structuresisto provide a means for defining schemas that constrain the contents of
instance documents and augment the information sets thereof.

3.1 The Schema

A schema contains some preambl e information and a set of definitions and declarations.

Schema top level

[1] schema: : =preanbl € dds/*
[2] dds :: =dat at ypeDefn | mrchetypeDefn |

el enent TypeDecl]| | gattrG oupDefn |
imdel G oupDefn | hotationDecl] |

E Do

[3] preanbl e: : =kni SchenaRef| schemal dentity]
schemaVer si on nodel]| exportl? [nportf?
[nclude?

[4] xm SchermaRef ::=URI

[5] schermal dentity::=URI

[6] schemaVersion::=string-val ue

[7] nodel ::=open | refinable | closed

consists of an specifying the URI for XML Schema: Structures, the specifying the URI
by which this schemaisto be identified; and aschemaVersior specification for private version documentation purposes and
version management.

|Examp|e

<! DOCTYPE schena
PUBLIC '-//WBC// DTD XM. Schenma Version 1.0//EN
SYSTEM ' htt p: // waww. w3. or g/ 1999/ 05/ 06- xm schema- 1/ structures. dtd' >

<schema nane='fil e:/usr/schemas/xm schema/ nySchema. xsd'

version="Mn'
xm ns=" http://ww. w3. or g/ 1999/ 05/ 06- xnml schema- 1/ st ruct ur es. xsd' >

</ schemn>

Note that the abstract syntax isrealised via a default namespace declaration in the concrete syntax.

The schemals property is discussed in Archetype Refinement. The schema's expori, impor{ and [nclude properties are
discussed in [Schema Composition and Namespaces.

The schema's declarations and definitions, discussed in detail in [Schema Definitions and Declarations, provide for the creation
of new schema components:

Summary of Definitions and Declar ations

dat at ypeDef n: : = NCNanme dat at ypeSpec|
ar chet ypeDef n:: =NCNane @archet ypeSpec|
el enment TypeDecl : : =NCNane el enent TypeSpec|
nodel GroupDef n:: =NCNarme model G oupSpec|
attr G oupDefn::=NCNane attrG oupSpec
entityDecl ::=NCNane entitySpec

not ati onDecl : : =NCNane hot ati onSpec|

Example
The following illustrates the basic model for declaring all XML Schema: Structures components:

<dat at ype nane=' nyDat at ype' >

</ dat at ype>

<ar chet ype name=' myAr chet ype' >

<} ar chet ype>

<el enent Type nane=' nmyEl enent Type' >
<) eI ement Type>

<attr G oup name=' nyAttr G oup' >

<} ;';ﬁtrGroup>

<nodel G oup nane=' nyModel G oup' >

<} ﬁbdel G oup>

<not ati on name='nyNotation' ... />

<textEntity name='nmyTextEntity'>

</textEntity>

<external Entity nanme='nyExternal Entity' ... />
<unparsedEntity nanme=' myUnparsedEntity' ... />
</ schema>

When creating a new component, we declare that its name is associated with the specification for that component.
Each new component definition creates a new entry in the symbol space for that kind of component.

Constraint on Schemas: Unique Definition
The same must not appear in two definitions or declarations of the same type.

I ssue (no-evolution): This draft does not deal with the requirement "for addressing the evolution of schemata" (see
[XML Schema Requirementsy).

3.2 The Document and its Root

NOTE: We have not so far seen any need to reconstruct the XML 1.0 notion of root. For the connection from
document instances to schemas, see [Schema Validityl.

3.3 References to Schema Constructs

Uniform means are provided for reference to abroad variety of schema constructs, both within a single schema and to features
imported (Schemalmpori) from external schemas. The name used to reference any component of XML Schema: Structures from

within a schema consists of an and an optional schemaRed|, a reference to an external schema definitior]. In afew
cases, some qualification may be added to areference: thisis made clear as the individua reference forms are introduced below.

Example: Component Names and Refer ences

[8] schemaRef : : =(schenmaAbbrevi | schemaNane)
[9] schemaAbbr ev : : = NCNane
[10] schemaNane : : = URI

dat at ypeRef : : =[dat at ypeNane dat at ypeQuall
dat at ypeNane : : = NCNane schenaRef]?
ar chet ypeRef : : =frchet ypeNang
ar chet ypeNane : : = NCNane schemaRef|?
el enent TypeRef : : =l enent TypeNane|
el ement TypeNane : : = NCNane gchenmaRef]?
attr G oupRef :: =@attrGoupNang attrG oupQuall]
attr G oupNane : : = NCNane schemaRef|?
nodel G oupRef : : =jodel G oupNane
model G oupNane : : = NCNane gschenmaRef]?
entityRef :: = Nanme
entityNane:: =NCNane schemaRef]?
not ati onRef :: =phot ati onNang
not at i onName : : = NCNane gschenmaRef|?

The BNF above illustrates the reference mechanisms used in this specification.

Example

<ar chet ypeRef nane=' Address'/>
<el enent TypeRef nanme=' BLOCKQUOTE' schemaAbbrev="HTM.'/>

<dat at ypeRef nanme='quantityi' schenmaNane='http://ww. w3. org/ xsl . xsd' />

Thefirst of theseis alocal reference, the ather two refer to schemas elsewhere. The ElementTypeRel example
assumes the schemaAbbrev] HTML has been declared for import; the datatypeRef] example similarly assumes that
the given (imaginary as of thiswriting) URL has been declared for import. See Schema Imporifor a discussion of
importing.

Constraint on Schemas: Consistent Import
A chemaAbbrey or schemaName in aschemaRel must be declared in an of the current schema, and the

qualified by that must be an import (Import Restrictions) of the appropriate type per that declaration.

Constraint on Schemas: One Reference Only
The concrete syntax uses schemaAbbr ev and schenmaNane attributes to realise schemaName. It isan error for both these

attributes to appear on the same element in a schema.

[Definition:] A ...Ref identifies a...Spec provided thereis adefinition or declaration of that ...Spec in the appropriate schema
whose matches the of the ...Ref's ...Name. If thereisno in the ...Name, the appropriate schema
isthe current schema or a schemait eventually includes; if there is ajschemaRei|, the URI contained in or abbreviated by it must
resolve successfullyl to a schema, which is then the appropriate schema. The Preorder Priority for Tncluded Definitions
Constraint on Schemas may also obtain.

3.4 Types, Elements and Attributes

Like XML 1.0 DTDs, XML Schema: Structures provides facilities for constraining the contents of elements and the values of
attributes, and for augmenting the information set of instances, e.g. with defaulted values and type information. [Definition:]
We refer hereafter to the combination of schema constraints and information set contributions with the abbreviation SC.
Compared to DTDs, XML Schema: Structures provides for aricher set of S0s, and improved capabilities for sharing S0s across

sets of elements and attributes.
3.4.1 Datatype Definition

We start with [Definition: | the simple datatypes whose expression in XML documents consists entirely of character data. Asin
the current draft of XML Schemas. Datatypes, wherever we speak of datatypesin this draft, we shall mean these simple
datatypes. The treatment of aggregate datatypes (collections and structures) has not yet been resolved.

Datatypes

[11] dat at ypeDef n:: =NCNanme dat at ypeSpec|

[12] dat at ypeSpec : : =[defined by XM. Schenas: Dat atypes]
expor t Control]?

[13] dat at ypeQual : : =kpecialize? pal ueConstrai nt|?
[14] speci al i ze: : =facet|+
[15] facet ::=is defined by XML Schenmas: Dat at ypes.

It might be a range restriction,
m n/ max constraint, etc.

[16] val ueConstraint ::=default | fixed
[17] dat at ypeRef : : =dat at ypeNan¥ dat at ypeQual]
[18] dat at ypeNane : : = NCNane schenaRef]?
schemaRef : : =(schemaAbbrevi | schemaNane)

schemaAbbr ev : : = NCNane
schemaNane : : = URl

XML Schema: Structures incorporates the datatype definition mechanisms specified by [XML Schemas. Datatypes] in order to
express SCs on attribute values and the character data contents of elements.

Thefirst production above is for defining datatypes; serves to indicate where this chapter connects with XML
Schemas: Datatypes. is defined in Exporting Schema Constructs.

The other productions provide for using datatypes once they have been defined, see below under contentType and gitrDecl.

We assume that it is appropriate to alow for some local specialization of datatypes at the point of use, and provide for that here

Q c
SP a).

As explained in References to Schema Constructs, ajschemaRef, if included allows for the referenced definition to be located in
some other schema.

|Examp|e

<dat at ype nane=' nyDat at ype' >
<baset ype nane="..."/>
[... TBD
</ dat at ype>

<dat at ypeRef nane=' nmyDat at ype' />
<dat at ypeRef name='integer'/>
<dat at ypeRef name='quantity' schemaName='http://ww. w3. or g/ xsl . xsd' >

<fi xed>12pt </ fi xed>
</ dat at ypeRef >

The first example awaits the XML Schemas: Datatypes concrete syntax to be filled in. The first

exampl e references the definition above it. The second references a datatype pre-defined by XML Schemas:
Datatypes. The third references a datatype in an (imaginary) XSL schema and fixes its value.

Constraint on Schemas: Avoid Built-ins
The must not be the same as the name of any of the built-in datatypes (see [XML Schemas. Datatypes]).

[Definition:] A string (possibly empty) dt-satisfies a datafypeSped and an optional if

« Thestring isavalid instance of the datatype defined by that dafatypeSped, as specialized by the fatatypeQuall's specialize
(if present) (see [XML Schemas: Datatypes] for a definition of when astring is avalid instance of a (possibly speciaized)

REE eI

and
« If thereis adatatypeQual and it includes afixed, the string matches that fixed value.

Schema Information Set Contribution: Datatype I nfo
When a string [di-satisfies a datatypeSped and an optional datatypeQuall, the containing attribute or element information item will

be augmented to indicate the datatypeSped and the specializg (if any) which it satisfied.
NOTE: Timing constraints were such that this text may not align completely with XML Schemas. Datatypes

3.4.2 Archetype Definition

[Definition:] Archetype definitions gather together all SOs pertinent to elementsin instance documents, their attributes and
their contents. They are called archetypes because there may be more than one element type which shares the same [SCs (see
Element Type Declaration), and which therefore can be constrained by a common archetype.

Archetypes

[19] archet ypeDef n:: =NCNane Rarchet ypeSpec|

[20] archet ypeSpec:: =frefinenent]* contentType (mattrDecl] |
attr G oupRef|) * podel]| export Control]

[21] content Type::=(datatypeRef| | [content Mbdel] |
imdel G oupRef]

nodel ::=open | refinable | closed
[22] archetypeRef ::=j@archet ypeNang
[23] ar chet ypeNane : : = NCNane schenmaRef|?

The first three productions above provide the basic structure of the definition, the last two provide for reference to the things
defined. But note that the name of an archetype is not ipso facto the name of elements whose appearance in instances will be
associated with the S0s of that type. The connection between an element type name and an archetype is made by an

ElementTypeDecl, see below.

Alongside Attribute Declaratior] for permitted attributes, SOs for contents are defined in an archetype (contentType). For
elements which may contain only character data, content type [SCs are specified by reference to a Datatype Definitiori. Note that
doing this by way of means that the character data[SCOs may provide for specialization and even defaulting in a
manner similar to attribute values. For other kinds of eements, a Element Content Model is required.

I ssue (elt-default): The extension of defaulting to element content is tentative.

|Examp|e

<ar chet ype nanme=' nyArchetype' >
<dat at ypeRef name=' nmyDat at ype' />
<attrDecl ...> . .<l/attrDecl>
</ ar chet ype>

A simple archetype with character data content constrained by reference to a datatype defined in the same schema
and one attribute.

Constraint on Schemas: Attr Group Unique
The same pttrGroupDefri must not be referenced by two or more gitrGroupRefis in the same farchety peSped.

Constraint on Schemas: AttrGroup Identified
Every in ajrchetypeSped must identify an ptirGroupSpeg.

[Definition:] The attribute declar ation set of an consists of al itsffective gitrDecls together with all the
contained in the ttrGroupSpecs identified by any gtirGroupRefg it contains.

[Definition:] The full name of an gffrDec] in an Eitribute declaration s isits NCNamé plus its sEchemaNameé, i.e. if it appeared
directly in the prchetypeSped, the empty string, if it was acquired by or if it came from an [etirGroupSped, then the
from the schemaRef] which jdentified the relevant prchet or gttrGroupSpeqd respectively, if any, otherwise
the empty string.

Constraint on Schemas: Attribute Locally Unique
The same full_ name must not appear more than once in any archetypeSped's gitribute declaration sef.

[Definition:] An element item a-satisfies an if the element item's attribute items taken together as a set
ettrs-safisfy| the prchetypeSped's ettribute declaration sef, and either

« The @rchetypeSped's contentType is a datatypeRef], the datatypeRed [dentifies a datatypeSped, the element item contains
only comment, processing instruction and character information items and the string formed by concatenating the
characters of each of the character information item children, if any, or else the empty string, dt-satisfies that datatypeSped
as qualified by the datatypeRefi's datatypeQual if any;

or

« thelontentType is afcontentModel, and the sequence of character and element items contained by the element item
imodel-satisfies its effective contentModel.

I ssue (sic-elt-default): The above definitions do not provide for handling a default on an archetype's datatypeRef.
Preferred solution: empty element itemsipso facto satisfy datatypeRefs with defaults and are augmented with the
default value. This would have the consequence that you cannot provide the empty string as the explicit value of an
element itemif it's governed by a datatypeRef with a default.

Schema Information Set Contribution: Archetype Info

When an element item -satisfies afprchetypeSped, that element information item will be augmented to indicate the
archetypeSped which it satisfied.
|Examp|e

Why is the separation of element type and archetype provided for? In certain XML instance documents, the same
attribute and content SCs are appropriate for more than one named element. Consider the following instance

fragment:

<Shi ppi ngAddr ess i d='a32' sal eabl e=' yes' >
<Street>1 Main Street</Street>
<Ci ty>New Yor k</City>
<Zip N neDigit="FALSE >12345</ Zi p>

</ Shi ppi ngAddr ess>

<Bi | | i ngAddr ess id='a29' sal eabl e=' no' >
<Street >2 Rose Lane</ Street>
<Ci ty>Anyt own</Ci ty>
<Zip N neDigit="TRUE >12345-6789</ Zi p>
</ BillingAddress>

This fragment contains two elements, Shi ppi ngAddr ess and Bi | | i ngAddr ess, that have similar attributes
and content. By defining a single appropriate archetype and declaring two element types which reference it, that
commonality can be precisely expressed.

NOTE: This draft does not provide any mechanism for applying any SCs to element items whose namespace does
not aschema. This may be addressed in alater draft: in the meantime aworkaround is possible as follows:

Suppose we wish to use some Dublin Core termsin a schema, but all we know isthe URI for the Dublin Core
document. Perhaps we want to schema-validate

<nybook><dc: creator xm ns:dc='...'>Raf ael
Sabat ti ni </ dc: cr eat or ></ mybook>

where nybook isaready known to be covered by my schema. The workaround isto replace the real Dublin Core
URI with alocal URL for atiny schemawhich simply definescr eat or , and references the real URI for
documentation.

3.4.3 Attribute Declaration

Attribute declarations associate a name (which will appear as an attribute in start tags in instances) with SCs for the presence and
value thereof.

Attributes

[24] attrDecl ::=NCNane datatypeRef|? required
export Control]
dat at ypeRef : : =dat at ypeNane dat at ypeQuall
dat at ypeQual :: =gpecialize? pal ueConstrai nt|?
val ueConstraint ::=default | fixed
dat at ypeNane : : = NCNane schenaRef]?
schemaRef : : =(schenmaAbbrevi | schemaNane)

NOTE: Note that the datatypeRefl productions are repeated here for easy reference.

Attribute declarations provide for:
« Requiring instances to have attributes;
« Constraining attribute values to express a datatype;

Example

<attrDecl name='nyAttribute'/>

<attrDecl nanme='anotherAttribute' >
<dat at ypeRef name='i nt eger' >
<def aul t >42</ def aul t >
</ dat at ypeRef >
</ attrDecl >

<attrDecl nane='yet Anot her Attribute' required="true' >
<dat at ypeRef name='i nteger'/>
</ attrDecl >

<attrDecl name='still AnotherAttribute' >
<dat at ypeRef nane='string' >
<fixed>Hel |l o worl d! </fi xed>
</ dat at ypeRef >
</ attrDecl >

Four attributes are declared: one with no explicit SCs at all; two defined by reference to a built-in type, one with a
default and one required to be present in instances; and one with afixed value.

When attribute declarations are used in an archetype specification, each archetype provides its own symbol space for attribute
names. E.g. an attribute named t i t | e within one archetype need not have the same dataty peRef| as one declared within another
archetype.

[Definition:] An attribute item attr -satisfies an if

« ThefttrDec] contains no and the attribute item's value string the default for
attributes
or

« thefttrDecl's dataty peRef [dentifies a datatypeSped and the attribute item's val ue string di-satisfies that dataty peSpeg as
qualified by the datatypeRel|'s datatypeQuad] if any

where the attribute item'’s value consists of only character information items and by its "value string" is meant the string formed
by concatenating the characters of each of those character information item children, if any, or else the empty string.

I ssue (default-attr-datatype): What is the default attribute datatypeSped?

[Definition:] The attribute items of an element item attr s-satisfy an gttribute declaration sef if
« 1) for each attribute item either

o 1a) thereis an tirDec] in the gitribute declaraiion sel whose consists of an which matches the
attribute item’'s name and either

= 1al) the attribute item has no namespace and the gtfrDec]'s full name has no
or

» 1a2) the attribute item's namespace and the ttrDecl's full namé's schemaName are jdentical
and the attribute item the declaration

or
o 1b) the farchetypeSpeqd being g-satisfied by the attribute item’s parent element item is open

and

o 2) every gitirDec] in the Bitribute declaration sef which is required is used to an attribute item in the context of
(1a) above

Schema I nformation Set Contribution: Attribute Value Default

For every in the ttribute declarafion se{ not used to an attribute item in the context of (1a) above which has a
which has a default, an attribute item with the default value is added to the parent element item.

I ssue (namespace-declare): We've got a problem with namespace declarations: they're not attributes at the infoset
level, so they can appear without compromising validity, EXCEPT if thereis afixed or required declaration, and
defaults should have the apparently desired effect.

3.4.4 Attribute Group Definition

XML Schema: Structures can name a group of attributes so that they may be incorporated as awhole into archetype definitions:

Attribute groups

[25] attr G oupDefn::=NCNane gttrG oupSpec|

[26] attr G oupSpec::=@attrDecll* exportControl]
[27] attrGoupRef ::=@attrG oupNang attrG oupQuall
[28] attr G- oupNane : : = NCNane cchenmaRef]?

[29] attr G oupQual :: = De

Attribute group definitions:
« provide a construct to replace some uses of parameter entities.
« allow for the definition of S0s that relate values of one attribute to others within the group.

Example

<attrGoup name='nyAttrG oup' >
<attrDecl .../>

</attrG oup>

<ar chet ype name=' nyEl ement Type' >
<enpty/ >
<attr G oupRef nanme='nyAttrG oup'/>
</ ar chet ype>

Define and refer to an attribute group. The effect is asif the attribute declarationsin the group were present in the
archetype definition.

NOTE: There needs to be a Constraint on Schema which constrains the attrDecls which appear with an

attrGroupRef: the name is the same as one of the attrDecls in the group, datatype and defaulting preserves
substitutability, etc.

3.4.5 Element Content Model

When content of elementsis not constrained by reference to a datatype (Datatype Definition), it can have any, empty,
element-only or mixed content. In the latter cases, the form of the content is specified in more detail.

Content model

[30] content Mbdel ::=any | enpty | mxed | eltOnlyl

A content model constrains the content of an archetype or an element type: it says nothing about attributes.

|Examp|e

<any/ >
<enpty/ >
<m xed>. .. </ m xed>

[El ement only content -- see el enent-only bel ow

Content models do not have names, but appear as a part of the definition of an archetype, which does have a name. Model
groups can be named and used by name, see below.

[Definition:] A sequence of character and element items (call this CESeq) model-satisfies an gffective contentM odel if
« the sequenceis empty and the gffective contentModel is empty;

« theEffectivée contentMode] is any and every element item in CESeq is[ndependently valid, and for every element item in
CESeq such that the schema which its namespace item resolves to is not the current schemathereis an whose
schemaName isdentical to that element item's namespace item's URI and that must either be allElementTypes or
contain an glement TypeRel whose NCName matches that element item's name;

« thegffective contentMode]| ismixed and every element item in CESeq mixed-safisfies the gffective imixed

or

« thefeffective contentModel is eltOnly and the only character items in CESeq are whitespace character items and the
sub-sequence of CESeq consisting of all the element items therein o-satisfies the gffective gltOnly.

3.4.6 Mixed Content

A content model for mixed content provides for mixing elements with character datain document instances. The alowed
element types are named, but neither their order or their number of occurrences are constrainted.

Mixed content

[31] mi xed::=(elenentTypeRef]| | elenentTypeDecl])*

The ElementTypeRefis and Element TypeDec]s determine the element types which may appear as children along with character
data.

Example

<m xed>
<el ement TypeRef nane=' nanel'/>
<el enent TypeRef nane=' nane2'/>
<el ement TypeRef name=' name3'/>
</ m xed>

Allows character data mixed with any number of nanmel, nane2 and nane3 elements.

NOTE: The fact that alows for there to be no glementTypeReis or flementTypeDecls makes it similar to
XML 1.0'sMixed production. Indeed an empty isthe only way a schema can allow character data content
with no datatype constraint at all.

Constraint on Schemas: Element Type Uniquein Mixed
A given must not appear two or more times among the glementTypeDec]s and gflementTypeRefs with no schemaRéf's;
agiven glementTypeNameg must not appear two or more times among the glementTypeRefs.

See Element Type Declaration for discussion and examples of the appearance of elementTypeDec] above.

[Definition:] An element item mixed-satisfies ajmixed if
o themixed contains an which the element item
or

 the contains an glementTypeDec| whose NCName matches the element item's name, in which case the element
item must e-satisfy that glementTypeDec]

or
« therchetypeSped which Effectively] contains the is open and the element item is ndependently valid.

I ssue (mixed-change-current-schema): There's an implicit change in current schemain the definition of
satisfy-mixed above which should be made explicit.

3.4.7 Element-Only Content
A content model for element-only content specifies only child elements (no immediate character data content other than white

space is alowed). The content model consists of asimple grammar governing the allowed types of child elements and the order
in which they must appear.

Element-only content

[32] el tOnly:: =fodel EL{|
[33] model El t : : =pccur| (hodel G oup | hodel G oupRef] |
el enent TypeRef| | el enent TypeDecl])

[34] occur ::=mn nax?
[35] nodel Group::=fconpositor| hodel El't] podel El t Seq
[36] conpositor ::=sequence | choice | all

[37] nodel El t Seq: : =hodel El t] hodel El t Seq?

The grammar for element-only content is built on mode! elements and model groups (nodelEl{ and above). A
model element provides for some number of occurrences in an instance of either a single element (via glementTypeRef or
elementTypeDecl)) or a group of elements (viamodelGroug or modelGroupRef)). A model group is two or more model elements
plus aEOMpOSITOY,

A for amodel group specifies for a given group whether it is a sequence of its model el ements, a choice between its
model elements or a set of its model elements which must appear in instances. These options reconstruct the XML 1.0,
connector, the XML 1.0 | connector and the SGML & connector respectively. In the first case (sequence) all the model elements
must appear in the order given in the group; in the second case (choice), exactly one of the model elements must appear in the

element content; and in the third case (all), all the model elements must appear in the element content, but may appear in any
order.

The [pccul] specification governs how many times the instance material allowed by amodelEll may occur at that point in the
grammar. The absence of a max specification means that no upper bound is placed on the number of occurrences.

See Element Type Declaratior] for further discussion and examples of the appearance of glementTypeDec] within
above.

|Examp|e |

http://www.w3.org/TR/REC-xml#NT-Mixed

<el ement TypeRef nane=' paragraph'/>

<sequence>

<el enent TypeRef nane=' nanel'/>

<el ement TypeRef nanme=' nane2' prefix="HIM'/>
</ sequence>

<choi ce m nCccur="3" maxCccur='9"' >
<el ement TypeRef name=' nanmel' />
<el enment TypeRef nane=' nane2'/>

</ choi ce>

<all m nCccur=" 3>
<el ement TypeRef nane=' nanel'/>
<el enent TypeRef nane=' nane2'/>

</fall>
<choi ce>
<al |l >

<el ement TypeRef nane=' nanel'/>
<el ement TypeRef nane=' nane2'/>
</all>
<al | >
<el ement TypeRef nane=' nane3'/>
<el enent TypeRef nane=' nane4'/>
</all>
</ choi ce>

A minimal model which simply requiresapar agr aph (the default isnmi nCccur =maxCccur =1; a sequence of
two elements (one from another schema); between 3 and 9 elements, each a choi ce between two; at least three
pairs, in any order; one of two pairs, the elementsin the chosen pair in any order.

[Definition:] A sequence of element items eltOnly-satisfies an gffective EltOnly if

« itispossibleto trace out a path through the content model, obeying the compositor and pccul specifications and accepting
each element item in the sequence with an [ellementTypeRel or ElementTypeDec] in the content model. Accepting an
element item from the sequence with an requires that it fef-satishy that glementTypeRef]; accepting an
element item with an glementTypeDec] requires that the glementTypeDecl's matches the element item's name,
in which case the element item must e-satisfy| that ElementTypeDecl.

NOTE: The above definition of eltOnly-satisfy does not explicitly incorporate the modifications required when the
containing archetype is open, as set out at the end of Archetype Refinement, but it should be understood as doing
0.

Constraint on Schemas: Element Consistency
A given must not appear both among the glementTypeDecls and among the elementTypeReiis with no schemaReiis, or
more than once among the glementTypeDecs.

NOTE: Note that the above permits repeated use of the same glementTypeRef, analogousto DTD usage.

Constraint on Schemas: Unambiguous Content M odel
For compatibility, it isan error if acontent model is such that there exist element item sequences within which some item can
match more than one occurrence of an glementTypeRel or ElementTypeDec] in the content model.

I ssue (still-unambig): Should this compatibility constraint be preserved?

3.4.8 Named Model Group

This reconstructs another common use of parameter entities.

Named model groups

[38] nodel GroupDef n::=NCNanme podel G oupSpec]

[39] nodel GroupSpec::=(pmdel G oup | hodel G oupRef]|)
export Control]

[40] nodel G oupRef :: =hbdel G oupNan¥
[41] nodel GroupNane : : = NCNane schenmaRef]?

|Examp|e

<nodel G oup nane=' nyMdel G oup' >
<el ement TypeRef nanme=' nyEl enent Type' />
</ nodel G oup>

<el enent Type nane=' nyEl ement Type' >
<nodel G oupRef nanme=' myModel G oup' />
<attrDecl ...> . .<lattrDecl>

</ el enent Type>

<el ement Type name=' anot her El enent Type' >
<choi ce>
<el ement TypeRef name='yet Anot her El enent Type' / >
<nmodel GroupRef nane=' myModel Group' />
</ choi ce>
<attrDecl ...>. . .</attrDecl>
</ el enent Type>

A minimal model group is defined and used by reference, first as the whole content model, then as one alternative
inachoice.

3.4.9 Element Type Declaration

An [Definition:] element type declares the association of an element type name with an archetype, either by reference or by
incorporation.

Element type declaration

[42] el enent TypeDecl :: =NCNane El enent TypeSpec|

[43] el enent TypeSpec :: =(mrchetypeRef| | archetypeSpec|)
export Control| gl obal ?

[44] el enent TypeRef :: =l enent TypeNane
[45] el enent TypeNane : : = NCNane schemaRef]|?

An element type declaration associates a name with an [Archetype Definition. This name will appear in tagsin instance
documents; the archetype definition providesSCs on the form of elements tagged with the specified name. An element type
declaration is comparableto an <! ELEMENT . . . > declarationinan XML 1.0 DTD.

The last two productions above provide for element types to be referenced by name from content models.

As noted above element type names are in a separate Symbol space from the symbol space for the names of archetypes, so there
can (but need not be) an archetype with the same name as atop-level element type.

[Definition:] The full name of atop-level ElementTypeDec] is its NCName plus its schemaName, i.e. if it appeared directly in
the current schema or an [nclude, the empty string, if it was jmported, then the of that fmporf, which must
Buccessfully resolved to its containing schema.

An ElementTypeDecl| may also appear within amodelE. See above (Element-Only Conten{ and Mixed Content) for where this
isallowed. This declares alocally-scoped association between an element type name and an archetype. As with attribute names,
locally-scoped element type names reside in symbol spaces local to the archetype that defines them. Note however that
archetype names are always top-level names within a schema, even when associated with locally-scoped element type names.

NOTE: Itisnat yet clear whether an archetype defined implicitly by the appearance of an directly

within an glementTypeSped will have an implicit name, or if so what that name would be, or if not how, if at all, it

might be referred to.

Example

<el ement Type nane=' nmyEl enent Type' >
<dat at ypeRef nanme=' nmyDat at ype' />
</ el enent Type>

<el ement Type nanme='et0' >
<ar chet ypeRef nane=' nyAr chetype'/>
</ el enent Type>

<el ement Type nanme='et1l' >

<all> . .</all>

<attrDecl ...> . .</attrDecl>
</ el enent Type>

<el enent Type nane='et2'>
<any/ >
</ el enent Type>

<el enent Type nane='et 3' >
<enpty/ >
<attrDecl ...> . .<lattrDecl>
</ el enent Type>

<el ement Type nane='et4' >

<choi ce>. . .</choice>
<attrDecl ...>. . .</attrDecl>
</ el enent Type>

<el enent Type nane='et5' >
<sequence>. . .</sequence>
<attrDecl ...> . .</attrDecl>
</ el enent Type>

<el ement Type nanme='et6' nodel =' open’' >
<m xed/ >
</ el enent Type>

A pretty complete set of alternatives. Note the last one isintended to be equivalent to the idea sometimes called
WEXML, for Well-Formed XML it allows any content at all, whether defined in the current schemaor not, and
any attributes.

<el enent Type nane=' cont ext One' >
<seguence>
<el ement Type nane=' nyLocal El enent Type'
<ar chet ypeRef name=' nyFir st Archetype' />
</ el enent Type>
<el ement TypeRef name=' gl obal El emrent Type' />
</ sequence>
</ el enent Type>

<el enent Type nane=' cont ext Two'
<sequence>
<el ement Type name=' nyLocal El enent Type'
<ar chet ypeRef nane=' nySecondArchetype' />
</ el enent Type>
<el ement TypeRef name=' gl obal El ement Type' / >
</ sequence>
</ el enent Type>

Instances of myLocal El enent Type within cont ext One will be constrained by nyFi r st Ar chet ype,
while those within cont ext Two will be constrained by my SecondAr chet ype.

NOTE: The possihility that differing attribute definitions and/or content models would apply to elements with the
same name in different contextsis an extension beyond the expressive power of aDTD in XML 1.0.

Constraint on Schemas: Nested May Not Be Global
An glementTypeSpeqd in a nested ElementTypeDec]| must not be global.

Constraint on Schemas: Cannot Shadow Global
If atop-level ElementTypeSped is global, then the NCName of its flementTypeDec] must not be redeclared by any nested

ElementTypeDec] in the same schema or any schema it gventually includes.
[Definition:] An element item e-satisfies an glementTypeDed] if the elementTypeDecl:
« containsan directly, and the element item frch-satisfies that archetypeSped;

or

« the archetypeRef| alternative is used in that ElementTypeDecl and it [dentifies an prchefypeSped and the element item
grsatisfies that arehetypeSped.

[Definition:] An element item isindependently valid if there is atop-level glementTypeDecl whose NCName matches its name
in the schema its namespace item resolves to (or a schema that schema ncludes, in which case see the definition of for
details on which declaration is used if there is more than one), and the element item must e-safishy| that flementTypeDedl.

[Definition:] An element item r ef-satisfies an Eflement TypeRef if
« the @ementTypeRel [dentifies an ElementTypeDec] whose NCNameé matches the e ement item's name and either

o the ElementTypeDed]'s Full nameé has no chemaName, in which case the el ement item's namespace must be the
same as its parent's namespace

or

o the element item's namespace and the glementTypeDecl's full namé's schemaName are jdentical
in which case the element item must also g-safisfy| the glementTypeDecl.

or

« the glementTypeRef| [dentifies an ElementTypeDecl whose NCNameé matches the element item's name (call thisETD1 and
there is atop-level flementTypeDec] (call this ETD2) which contains or jdentifies an prchetypeSped which has an

which isitself by ETD1, in which case EDT1 must be e-satisfied by the element item.

NOTE: Thelast clause above is much too complex, it needs to be split apart and built up in stages. It is thiswhich
allows elements based on refining archetypes to appear in place of those based on their ancestors.

3.5 Archetype Refinement

NOTE: This section articulates what has only been hinted at above, namely a considerable increase in the power
and expressiveness of schema declarations, by explaining what was provided for in the abstract syntax in the
previous section, but not explained much if at all at that point.

We provide for the refinement of archetypes declared in a schema. An archetype definition may identify one or more other
archetypes from which it specifies the creation of a (joint) refinement.
We provide for interpreting archetypes as imposing constraints on instance elements in either a closed, refinable or open fashion.

» Theclosed interpretationis as per XML 1.0, where content type and attribute declarations specify all and only what must
be present in instances.

« The open interpretation removes the 'and only', i.e. it interprets the content type and attribute declarations as requiring
(non-optional) items to be present, but not as excluding others.

« Therefinable interpretation requires the declared (non-optional) items to be present, and also admits such others as have
been explicitly declared in refinements.

The relevant abstract syntax productions are as follows:

Refinement

preanbl e : : =km SchemaRef| schenmaNane schemaVer si onl
imodel| export|? [nport]|? [nclude?
archet ypeSpec : : =fefinenentl* contentType (attrDecl] |
attr G oupRef|) * phodel] export Controll
nodel ::=open | refinable | closed
[46] refi nement : : =@archet ypeRef]|

Example

<ar chet ype name='chair' nodel =" refinabl e' >
<refines>
<ar chet ypeRef nane='furniture'/>
</refines>
<attrDecl name='noOf Seats'>. . .</attrDecl>
</ ar chet ype>

An archetype which not only refines another by adding an attribute, but also isitself (further) refinable. The
f ur ni t ur e archetype must have been declared refinable(or open).

We distinguish between explicit, acquired and effective validation constraints for any archetype. [Definition: | Explicit
constraints are those explicitly present, via gitrDecls or contentType, in the definition of the archetype. [Definition:] Acquired
constraints come from the ancestors of an archetype, if it has any fefinemenis. [Definition:] The effective constraints are the
union of the explicit and the acquired. The constraints are what actually constrain any element type declared with
reference to arefining archetype.

Constraint on Schemas: Allowed Refinements
An archetype must not refine one or more other archetypes unless al of the latter have been declared with either open or
refinable (explicitly or by default: the default for on any archetype which does not explicitly specify oneis provided by

the mode] of the schema itself, which in turn defaults to closed for compatibility). The same archetype must not be referenced
more than once in the fefinements list.

I ssue (default-model): Should the default model be open, refinable or closed?

For the present, the permitted refinements and the resulting constraints are as follows:

« For attribute declarations, any attribute name defined in the explicit constraints must not also be defined in any of the
acquired constraints, and any attribute name defined in a constraint acquired from one ancestor must not also be defined in
aconstraint acquired from another, unless they both acquired it from a common ancestor. The attribute

declarations are defined by the simple set union of the explicit and the acquired attribute definitions.
« For content models, either

or

or

[Definiti

o all the explicit and acquired content models are vacuous in which case the gffectivé model! isvacuous;

o all but one of the explicit and the acquired content models are vacuous, in which case that one becomes the
mod!;

o No element typeis referenced by more than one of the explicit and acquired content models (unless two or more
acquired models share modelElis acquired from a common ancestor, in which case such modelElis shall be ignored

in all but thefirst for the purpose of constructing the gffectivg model), in which case if the non-vacuous explicit and

acquired models are all the gffectivé model is a sequence of all the non-yacuous acquired models, in the
order in which they are specified in the fefinements list, followed by the explicit mode! (if it is non-vacuous), or
elseif the non-vacuous explicit and acquired models are all mixed, the gffective model is amixed whose
elementTypeRefs and glementTypeDecls are the union of the glementTypeRefs and glementTypeDecls of all the
non-yvacuous explicit and acquired models.

on:] A refinable or open content model is called vacuousif it has no declared lementTypeReiis or

ElementTypeDecls within it. Thisis because any archetype is substitutable for an archetype with a vacuous content model and no

declared

[Definiti
(recursively) some archetype that refines AT2. [Definition:] AT2 isthen said to be an ancestor of AT1.

attributes.
on:] Anarchetype ATl issaid torefine an archetype AT2 if and only if AT1 isdeclared to refine either AT2 or

NOTE: Refinements are by definition substitutable for any of their ancestors.

[Definiti

One archetype is substitutable for another if any schema-valid instance of the former is necessarily a schema-valid instance of
the latter.

on:] We define a substitutability relation between two archetypes as follows:

Some simple cases.

« Any archetype with no attributes is substitutable for an archetype with no attributes and acontentMode] of any;

« Any archetype which differs from another only by the specialization of one or more of its attributes (and/or of its datatype

if

its content is character data) is substitutable for that archetype;

« Any archetype which differs from another only by allowing only character data content (i.e. whose contentType is
datatypeRef)) where the other has mixed content is substitutable for that archetype.

Example

Refinement by definition creates substitutable archetypes:

<ar chet ype nanme=' Address' nodel =' refi nabl e' >
<sequence>
<el ement TypeRef nanme='street'/>
<el ement TypeRef name='city'/>
</ sequence>
</ ar chet ype>

<ar chet ype nanme=' USAddr ess' >
<refines>
<ar chet ypeRef nane=' Address'/>
</refines>
<sequence>
<el enent TypeRef nane='state'/>
<el ement TypeRef name='zip'/>
</ sequence>
</ ar chet ype>

USAddr ess issubstitutable for Addr ess: the content mode! (simplifying in the obviously legitmate
way) is

<sequence>
<el ement TypeRef name='street'/>
<el ement TypeRef name='city'/>
<el ement TypeRef nane='state'/>
<el enent TypeRef nanme='zip'/>

</ sequence>

Hereisaricher example:

<ar chet ype nane='transcl ude' nodel ='refinable'>
<m xed/ >
<attrDecl name='xm:Ilink'>
<fi xed>si npl e</fi xed>
</ attrDecl >
<attrDecl nanme='actuate'>
<fi xed>aut o</ fi xed>
</ attrDecl >
<attrDecl nane='href' required=
<dat at ypeRef nanme='uri'/>
</ attrDecl >
</ ar chet ype>

true' >

<ar chet ype nanme=' anchor' i nterp='open' >
<m xed/ >
<attrDecl nanme='id' >
<dat at ypeRef name='1D />
</ attrDecl >
</ ar chet ype>

<ar chet ype nanme=' nest Here' >
<r efi nes>
<ar chet ypeRef nane='transcl ude' />
<ar chet ypeRef nane='anchor'/>
</refines>
<enpty/ >
<attrDecl nanme='show >
<fi xed>enbed</fi xed>
</ attrDecl >
</ ar chet ype>

<el ement Type nane=' nest Here' archetype=' nestHere'/>

<nestHere href="http://ww.|tg. ed. ac. uk/ ~ht/ password. xm ' id="npw />

The final instance element satisfies all the Effective constraints associated with the nest Her e archetype: its

xm :1ink,actuat e andhref attributes are constrained by constraints acquired fromt r anscl ude, itsi d
attribute is constrained by a constraint acquired from anchor and its show attribute is constrained by its own
explicit constraint. The content model for nest Her e is empty, under the second clause of the discussion
above: only the explicit content model isthere at all, so it gets to be the gffective one. Note that because they are
refinable and open respectively, botht r anscl ude and anchor are satisfied by the nest Her e instance, i.e.
the substitutability requirement on refining archetypesis satisfied.

Example

Here's a case which merges content models and specializes an attribute definition:

<ar chet ype nane='pol ygon' nodel ='refinabl e' >
<el ement TypeRef nanme=' bbox' />
<attrDecl nane='n' required='yes'/>
<attrDecl nane='regul ar'>
<dat at ypeRef nane=' enuner at edSynbol ' >
<enurmer at i on>
<literal >yes</literal >
<literal >no</literal >
</ enuner at i on>
</ dat at ypeRef >
</ attrDecl >
</ ar chet ype>

<el enent Type nane='r egul ar Pol ygon' >
<refi nes>

<ar chet ypeRef name=' pol ygon'/>
</refines>

<el ement TypeRef nanme='side'/>
<attrDecl name='regul ar'>

<fi xed>yes</fi xed>

</ attrDecl >
</ el enent Type>

Here we see not only the merging of two content models, with the two glementTypeRef$ being concatenated to
produce the sequence model for the refined archetype, but also the provision in an explicit constraint of a
fixed value for an attribute consistent with its acquired constraint. (Strictly speaking, this goes beyond the
constraints on refinement set out above, but it obviously preserves substitutability, and will be allowed as soon as
more detailed constraints are drafted.)

<r egul ar Pol ygon n='3'>
<bbox>. .. </ bbox>
<si de | ength="3cm />
</ regul ar Pol ygon>

NOTE: Theintention of the formal validity definition is that element item should be valid with respect

toan that isrefinableif it is valid with respect to that itself or any that
refinesit. It might them be possible for validating parser to begin by checking daughters with respect to the
declared archetypeSpec if it is element only, since any refinement can only add to the end of a sequence of
daughters.

There follows a semi-formal definition of validity with respect to an open content model.

To parse against an open content model:
informal statement

ignore all daughters which are NOT mentioned explicitly anywhere in the content model: what's left must match the
model in the old, deterministic, XML 1.0 way.

formal statement

Consider the edge-labelled FSM for recognizing the declared content model under a'closed’ (i.e. deterministic, XML 1.0)
interpretation.

Call the set of all transition labels anywhere in the FSM (i.e. the tags mentioned anywhere anywhere in the model) T.
For each state sin the FSM, call the set of tags which label transitions from that state T[5] .
Then to turn the FSM into one which interprets the content model as open, for each state s

1. add atransition to failure for every label in T-T[9];

2. add atransition to s for the complement of T, i.e. adefault loopback.

I ssue (formal-refinement-FSM): Does refinement need this, or isit covered aready?

3.6 Entities and Notations

Entities and notations

[47] entityDecl ::=NCNane EentitySpec
[48] entitySpec::=([EextEnfitySpec |
ext ernal EntitySpec| |
unpar sedEnti tySpec|) EexportControl]?
[49] textEntitySpec::=string-val ue
[50] external EntitySpec::=pgystenlD publiclD? export Control ?
[51] unparsedEntitySpec::=gysteni D nhot ati onRef]| publiclD?
export Control]?

[52] entityRef ::=E y Nare

[53] entityNane::=NCNane schenaRef]|?

[54] not ati onDecl ::=NCNane hotati onSpecl

[55] not at i onSpec : : =gystem D hot ati onRef]| publiclD?
expor t Control]?

[56] system D:: =URI

[57] publiclD::=see [XM]]

[58] not at i onRef : : =pot at i onNane|

[59] not ati onName : : = NCName schemaRef]|?

3.6.1 Internal Parsed Entity Declaration

Internal parsed entities are afeature of XML that enables reuse of text fragments by direct reference in an instance document.

In XML Schema: Structures documents, internal parsed entities are declared by using the fextEntitySpeg production.

Example

<textEntity nanme='flavor' >Fresh mnt</textEntity' >

f | avor can now be used in an entity reference in instances of the containing schema.

See [Schema Validity for SOs covering entities and entity references.

3.6.2 External Parsed Entity Declaration

External parsed entities are a feature of XML that offers a method for including well-formed XML document fragments,
including text and markup, by direct reference to the storage object of the parsed entity.

In schemas, external parsed entities are declared by using the externalEntity Sped production.

Example

<external Entity nanme='Front Matter'

systen¥' Front Matter.xm ' />
<external Entity name=' Chapterl'

systenr' chapterl.xm ' />
<external Entity name=' Chapter 2’

systen¥' Chapter2.xm' />
<external Entity name='BackMatter'

system=' BackMatter.xm "' />

These four external entities represent the supposed contents of a book:

<book>
&Front Matter;
&Chapt er 1
&Chapt er 2;
&BackMat t er ;
</ book>

In an instance, the external entities take their familiar XML form. The processor expands the entities for their
content.

Again, See Schema Validity for SCs covering entities and entity references.

3.6.3 Unparsed Entity Declaration

External unparsed entities are afeature of XML that offers a baroque method for including binary data by indirect reference to
both the storage object and the the notation type of the unparsed entity. In schemas, external parsed entities may be declared by
using the unparsedEntitySped production.

Example

<unpar sedEntity nanme=' SKU-5782- pi c'
systen¥' http://ww. vendor. com SKU-5782. j pg'
not ati on="' JPEG />

<pi cture | ocation="SKU-5782-pic'/>

The picture element carries an attribute which is (presumably) governed by the unparsed entity declaration.

Schema-validity Constraint: Attributeis Entity

When an attribute value is interpreted as a reference to an unparsed entity [How?!], the attribute value must an
unparsedEntitySpeg (note that no can be specified in this case); the of the potationRef of that
unparsedEntitySped must fdentity a hotationSped; the resource specified by the systemlD and publiclD attribute must be
available.

I ssue (unpar sed-entity-gaps): There are lots of gaps and little problems in this design for unparsed entities.
3.6.4 Notation Declaration

A notation may be declared by specifying a name and an identifier for the notation. A notation may be referenced by namein a
schema as part of an external entity declaration.

Example

<not ati on nanme='j peg'
public="image/j peg' systen¥ viewer.exe' [>

<el ement Type name=' pi ct ur e>
<attrDecl nane='entity'>
<dat at ypeRef nanme=' NOTATI ON />
</ attrDecl >
</ el enenttype>

<pi cture entity="SKU 5782-pic'/>

The notation need not ever be mentioned in the instance document.

I ssue (unpar sed-entity-attributes): We need to synchronise with XML Schemas. Datatypes regarding how we
declare attributes as unparsed entities!

4. Schema Composition and Namespaces

This chapter describes facilities to provide for validation of namespace-qualified instance document elements and attributes, and
potentially (subject to enhancements to the Namespaces recommendation), entities and notations.
NOTE: 'Namespacesin XML' [XML-Namespaces] provides an enabling framework for modular composition of
schemas. From that document:
We envision applications of Extensible Markup Language (XML) where a single XML document may contain
elements and attributes (here referred to as a 'markup vocabulary') that are defined for and used by multiple
software modules. One mativation for thisis modularity; if such a markup vocabulary exists which is
well-understood and for which there is useful software available, it is better to re-use this markup rather than
re-invent it.
Such documents, containing multiple markup vocabularies, pose problems of recognition and collision. Software
modules need to be able to recognize the tags and attributes which they are designed to process, even in the face of
‘collisions occurring when markup intended for some other software package uses the same element type or
attribute name.
These considerations require that document constructs should have universal names, whose scope extends beyond
their containing document. This specification describes a mechanism, XML Schema namespaces, which
accomplishesthis.

XML Schema: Structures provides facilities to enable declaration and modular composition of schemas.

« Each schemaisidentified by a schema name, which is a namespace-compatible [URI].

« A schema can identify archetypes, datatypes, element types, attribute definitions, attribute groups, named model groups,
entities, and notations to be exported for usein other schemas.

« A schema can import declarations and definitions exported from other schemas. Means are provided for using the
imported features in the importing schema.

« Namespace-compatible validation rules are defined for instance documents using imported elements and attributes.

« Conventions are proposed for use of namespace-qualified entities and notations in instance documents. Standardized
implementation of these features will depend on corresponding enhancements to the [XML -Namespaces
recommendation. (To be supplied in a future draft of this specification.)

« As specified herein, namespace-qualified attribute definitions are validated only in the context of a corresponding
validated elementType. A non-normative appendix proposes changes to the [XML -Namespaces| recommendation that
would support more generalized export of attributes. (To be supplied in a future draft of this specification.)

As described in Conformance, full validation is supported in the case where the transitive closure of all schemas referenced by
an instance document is available to the validating processor. Furthermore, the schema language is compatible with partial
validation, in which validation is done only with respect to a subset of the schemas applicable to a document, or in which awell

formed document (l.e. one for which no overall schemais provided) makes selective use of features imported from schemas
which are available.

4.1 Associating Instance Document Constructs with Corresponding Schemata

During validation, the standard mechanisms of [XML-Namespaces] are interpreted to create associations between instance
document prefixes and schema definitions. Thus, thereisin each valid instance document a namespace associated with each
schemato which the instance conforms. Each namespace qualified element (or eventually entity or notation), its attributes and
its content, is validated against its declaration in the corresponding URI-named schema. In that sense, each schema defines and

is coextensive with a namespace. The means by which schemas are located during processing is discussed below in
Comprehensive rules for validation are discussed in [Conformance.
|Examp|e

For example (refer to schema definitions in the previous example):

<SoneDocunent xml ns='http://cool bits. com soneschena. xsd'
xm ns: o="http://xyzcorp. com ot her schema. xsd'
xm ns: p="http://xyzcorp. com yet anot her schena. xsd' >

<soneel enent >

<nanel/ >

<0: nanme2 p:soneattr='123"'/>
</ soneel enent >

</ SoneDocument >

‘'somelement’ and 'namel’ (which happens to be empty) are validated against their definitionsin
'http://coolbits.com/someschema.xsd'. Similarly, 'name2' is validated against its definition in
'http://xyzcorp.com/otherschema.xsd'. The existence of 'namel’ and 'name2' as content of 'somelement’, and
specifically their URI qualification, is validated against the corresponding content model declaration for
'someel ement’ in 'http://cool bits.com/someschema.xsd'. Validation definition determines whether
'p:somesttr’ is correctly namespace qualified according to the content model definition for ‘'name2'.

4.2 Exporting Schema Constructs

NOTE: Experience with programming languages and similar schema definition systems suggests that there is value
in distinguishing the internal implementation of a module from the features or interfaces that it provides for reuse
by others. For example, a schema defined to describe an automobile might intend that its definitions for
‘automobile’ and 'engine’ be building blocks for use in other schemas, but that other constructs such as 'screw' or
'bolt' be reserved for internal use.

XML Schema: Structures constructs must be exported for external use. By default, all datatypes, archetypes, elementTypes,
attribute definitions, model groups, attribute groups, entities and notations are exported. The export declaration can be used
within a schema declaration to override the default behavior for each such class of declaration or definition:

Export

[60] export ::=pll Datatypes|? al [Archetypes|?
al [El enent Types|? all Model G oups|?
alTAttributeG oups|? alTEntitiesl?
al I Not at 1 ons|?

[61] al | Dat at ypes : : =bool ean

[62] al | Archet ypes :: =bool ean

[63] al | El enent Types : : =bool ean

[64] al | Model G- oups : : =bool ean

[65] al | Attri but eG oups ::=bool ean

[66] all Entities::=bool ean

[67] al I Not ati ons : : =bool ean

[Example

/>

</ schema>

<schema nanme=' http://cool bits.conl someschena. xsd' >
<export datatypes='false'
ar chet ypes='f al se'
el enent Types="true' <!-- redundant: default

[... scherra. .b;)dy here. . .]

is '"true' >

This declaration restricts export of datatypes and archetypes and explicitly, although redundantly, enables export

of element types.

The default for all attributes of the export declaration is 'true’. Therefore, al constructions are exported by default if ‘export’ is
not specified, and only the constructions that are not specifically disabled are exported if 'export’ is specified. If aschema A
imports some other schema B, then by default, all definitions imported from B are exported from A. See [Schema Impor{ below.

Export can also be controlled individually for each particular elementType, archetype, model group, attribute group, datatype,
entity or notation. Attribute definitions are implicitly exported (or not) along with the elementTypesin which they appear. An
export declaration appearing on an individual elementType, archetype, or other declaration or definition overrides any default

export behavior established at the schemalevel.

The following abstract syntax is repeated from elsewhere in this document:

Export control

not at i onDecl : :
exportControl ::

dat at ypeDefn: : =

ar chet ypeSpec: : =

el enent TypeSpec: : =
nodel G oupDefn:: =
attr G oupDefn::=

entityDecl ::

bool ean

export Control]|?
export Control]?
expor t Control]?
export Control|?
expor t Control]?
export Control]?
export Control]|?

Example

<el enment Type nanme=' nyEl enent Type' export='true' >
<sequence>
<el enent TypeRef nane='el'/>
<el ement TypeRef nanme='e2'/>
</ sequence>
<attr G oupRef nanme='attrgrpnane'/>
</ el enent Type>

This element type declares that export is enabled.

Aswith any other construct, an elementType or attribute which is not exported cannot be imported for use in the declaration of a
content model in an importing schema. However, an instance document providing a namespace qualified element is required to
conform with the full archetype of that element, including attributes and €l ements which might not have been explicitly exported
or imported; validating processors are required to check for conformance with the full archetype as declared in the exporting
schema.

Similarly, an exported archetype applied to an elementType definition in an importing schema confersits full content type and
attribute definitions, including references to elements, content models and attributes which may not have been explicitly
exported.

NOTE: For example, if schemaB exports ‘'myElement’, which relies on unexported constructs from schema B,
instances of myElement must conform to its declared content model, including to elements and attributes which
might themselves not be overtly exported.

4.3 Facilities for Schema Composition

Section Exporting Schema Constructs describes the means by which one schema can offer constructs for use in other schemas.
Here we contrast two facilities which are provided for combining two or more schemas into a single schema definition. These
facilities are referred to as [Schema Impori and [Schema Inclusior respectively.

Schema import provides for schemavalidation of content models for instance documents that refer to two or more namespaces.
Schema inclusion supports modular development and composition of a schemathat is ultimately indistinguishable from an
equivalent schema developed as a monolithic unit. Stated another way, imported schema components retain their original URI
schema name association; included components are effectively re-declared in the including schema, and are thus
indistinguishable from similar constructions declared locally.

NOTE: As described below, import and include operations are effected by declarations at the head of the schema.
Therefore, it is possible to discover all of a schema's external dependencies by inspection of itsimport and include
declarations.

4.4 Schema Import

An external schema must be explicitly imported for use viaa declaration at the head of the importing schema document.

Import

[68] i mport :: =schenmaAbbr ev|] schemaNang | nportRestrictions|?

As explained in References fo Schema Consfructs, imported features can be accessed through an explict URI or
through a shorthand abbreviation (schemaAbbrev).

|Examp|e

<schema nane=' http://cool bits.conl soneschena. xsd' >
<I-- Establish 'other' abbrev for use in schema -->
<i mport schenaAbbrev='ot her' schemaNanme=' http://cool bits. com ot herschema. xsd' / >
<l-- can use 'other' anywhere in schema body -->
<el ement Type name=' myNewEl enent ' >
<choi ce>
<el ement TypeRef schenaAbbrev='ot her' nanme='nyEl enent'/>
<el ement TypeRef schenaAbbrev='ot her' nanme='ot herEl enent'/>
</ choi ce>
</ el enent Type>

</ schema>

A valid instance would look like the following, delta any namespace prefix changes:

<nyNewEl emrent xm ns='"http://cool bits. com soneschena. xsd'
xm ns: pref 1="http://cool bits. coni ot herschema. xsd' >
<pref 1l: nyEl enent/ >
<pref 1: ot her El enent / >
</ myNewEl enent >

The default namespace establishes that my NewEl enent isan element name in the default namespace, and the two
subordinate elements are from the namespace associated with the pr ef 1 prefix.

Use of schema abbreviationsis explained in detail below.
4.5 Using Abbreviations to Reference Imported Schemas

Asdescribed in the schema's schemaName property supplies a[URI] to name the schema being declared. When
multiple schemas are composed, a schemaReif (which is either the full URI or the shorthand schemaAbbrev) is
used to reference definitions and declarations from imported schemas. schemaADbbrevs are introduced viathe
mechanism.

Example
The following exampleillustrates the general role of abbreviations in qualifying references to composed schemas:

<schema nane='http://cool bits.con soneschema. xsd' >

<i nport schenmaAbbrev="'schena?2'
schemaNanme="' htt p://cool bits. com ot her scherma. xsd' / >

<el ement Type nane=' soneel enent ' >
<sequence>
<el ement TypeRef nane=' nanel'/>
<el enent TypeRef nane=' nanme2' schemaAbbrev='schema2' />
</ sequence>
</ el enent Type>

</ schemn>

The example illustrates the use of references, in asingle content model, to an unqualified and a

abbreviation-qualified element type. A schema named with the URI 'http://coolbits.com/someschemaxsd' is
shown importing features from another schema named 'http://cool bits.com/otherschemaxsd'. No abbreviation is
used in the content model for element 'someelement’, to indicate that 'namel’ is a reference to an e ement defined
locally. In contrast, 'name2’ is qualified by the 'schema2’ abbreviation and is therefore defined in
‘otherschema.xsd'.

Further details of schema composition are spelled out formally in the sections bel ow.

4.6 Import Restrictions

Import can be restricted to categories such as datatypes, archetypes, element types, and so on:

Import restrictions

[69] i nport Restrictions::=@glIlDatatypes|? al [Archetypes|?
al [El enent Types|? all Model G oups|?
alTAttributeGoups|? alTEntities|?
al [Not at i ons|? (dat at ypeRef] |
el ement TypeRef| | [|rchetypeRef] |
hodel G oupRef]| | attrG oupRef] |
entityRef| | potationRef]|)*

al | Dat at ypes : : =bool ean

al | Archet ypes :: =bool ean

al | El enent Types : : =bool ean

al | Model G- oups : : =bool ean

all AttributeG oups::=bool ean

all Entities::=bool ean

al I Not ati ons : : =bool ean
Example

The following exampleillustrates control of schemaimport by category:

<schema nane=' http://cool bits.conl someschena. xsd' >
<l-- Establish abbrevl abbrev for use in schema -->

<i mport schenaAbbr ev="abbrevl'
schemaNane="' htt p://cool bits. conf ot her schenma. xsd'
ar chet ypes='true'
dat at ypes='true' >

<el enment TypeRef name=' nyEl enent' />
<el ement TypeRef name=' ot her El ement' />

<i nmport >
<choi ce>
<el ement Ref schemaAbbr ev='abbrevl1l' nanme='nyEl enent' />
<el enent Ref schemaAbbr ev=' abbrev1l' nane='otherEl enent'/>
</ choi ce>

</ schema>

In the example, all datatypes and achetypes that are exported from ‘otherschemal, as well as the elements named
'myElement’ and 'otherElement’ are imported.

Constraint on Schemas: Refer to Schema
The URI associated with ajschemaRef| in any of the productions above must guccessfully resolve to a schema.

Constraint on Schemas: Name Consistently Defined
The in each of the above productions must identify a declaration or definition of the corresponding class

(elementType, archetype, etc.)

Schema-validity Constraint: Use Only Exported Defns
It isnot an error for a schemato explicitly import a construct which has not been exported. However, it is an error for a schema
to attempt to use such construct.

NOTE: A guestion arises as to whether imported definitions are re-exported for use by yet athird schema. Because
of the difficulties in managing abbrev associations, the answer is'no', at least in this draft of the specification.

Imported constructs are not implicitly and cannot explicitly be re-exported. However, any element or archetype isimported with
its full content model, even when that content model depends on recursively imported elements or attributes. Similarly, an
attribute definition can carry a datatype from an external schema, and so on. In other words, myElement in the example above
might have a content model! that draws on many schemas. Element1 itself is usable as shown above, but its constituent
components are only available for use in new content modelsif explicitly imported.

Furthermore, if some schema B includes features of schema A, and if schema C includes features of B, then C can also explicitly
include the same features of schema A directly.

4.7 Schema Inclusion

Although the declarations for schema inclusion resemble those for importation, the purpose is quite different. Element types,
attributes, model groups, etc. are effectively redeclared when included in a schema. Specifically, the resulting construct is named
in alsymbol space of the including schema. As seen by authors of instance documents and other schemas, the result is
indistinguishable from a definition or declaration made in the including schema.

Include

[70] i ncl ude: : =gschemaRef| al I Dat at ypes|? al T Ar chet ypes|?
al [El enent Types|? al I Model G oups|?
alTAttributeG oups? alT Entities|? allNotations?
(datatypeRef| | element TypeRef| | archetypeRef] |
imodel G oupRef| | RttrG oupRef] | entityRef] |

ROt ati onRet]) *

An include specification is equivalent to alocal definition of the corresponding elementTypes, archetypes, datatypes, attributes,
model groups, entities, notations, and attribute groups.

Example
The following example illustrates inclusion:

<schema nane='http://cool bits.con soneschenma. xsd' >

<i ncl ude schemaName="' http://cool bits. com ot her scherma. xsd' >
<el enent Ref nane=' nyEl enent' />
<el ement Ref nane=' ot her El enent' / >

<i ncl ude>

<I-- Note unqualified references bel ow -->
<choi ce>
<el ement TypeRef name=' nyEl enent' />
<el enent TypeRef nanme=' ot her El enent' />
</ choi ce>

</ schema>

[|
The two elements, myElement and otherElement, are deemed to part of the overall schema's namespace. Barring
accidental name collision, these two foreign element types can be treated just as though they were defined in the
current schema. The definitions of their datatypes, achetypes, elements and attributes, are also implicitly included.

Because the intention is to hide the inclusion hierarchy from users, any declarations or definitions on which the inclusion
depends, and which are themselves declared locally in or included by the included schema, are similarly redeclared in the
including schema. Conversely, definitions or declarations imported by an included schema are effectively imported when used in
an including schema.

NOTE: Thereis some question as to whether all such features should be implicitly imported, or whether features

should be imported only when needed to complete the specification of some explicitly included feature (e.g. an

imported attribute needed on an included element type.)

Aninclusion istreated asalocal definition, so naming collisions are possible with other locally defined or included constructs.
[Definition:] All include declarations encountered in a schema form a schema path in the order encountered. When two or
more includes would cause the definition or declaration of identically named elements (I.e. the same in the same

Symboal space), the first one encountered in the schema path (1.e. the first included) is used and any others are ignored. A local
definition or declaration in an including schema supersedes any definition or declaration from any included schema.

[Definition:] A schemadirectly includes another schemaiif the first schema has an and the URI contained in or
abbreviated by the schemaRel of that includé fesolves successtully to the second schema.

[Definition:] A schema eventually includes another schemaif the first schema directly includes the second, or if the first
schema directly includes some other schema which itself pventually includes the second.

Constraint on Schemas: Preorder Priority for Included Definitions
When using a...Ref to a...Spec, if there is no appropriate matching declaration or definition in the current schema, but

there is more than one gventualy included schema which contains an appropriate matching declaration or definition, the ...Spec
whose declaration or definition occurs first in a preorder traversal of the pventually included schemas is the one [dentified.

4.8 Access to Schemata

Validation requires that one or more schemas be available to the validating processor. As specified above, schemas are named by
URI's, which can but need not resemble in form a[URL].

The means used by some particular processor to access a schema, based on its URI, are beyond the scope of this specification,
and are expected to vary from processor to processor. Whether a URI that resembles a URL isindeed usable as a URL during
validation is application- and processor-dependent. This specification requires that the transitive closure of all schemas required
for validation must be accessible to the processor, through whatever means, based on the URI name of each schema.

NOTE: Why this choice? Severa reasons, including:

« URL'sare not appropriate to all the storage environments in which schema accessis required.

« We cannot assume that a schema which was once accessible via URL will remain so for al time. Companies fail,
organizations reorganize, but the schemas they have written and named should remain usable without modification. We
cannot require afixed website in perpetuity to host each schema.

« For widely used schemas (e.g. [HTML-4], or the schemafor XML schemas), access to asingle copy or even to acentrally
managed replica can result in scaleability and availability problems.

« URN'sareintended as at least a partial solution, but they are not yet widely deployed, and their effectiveness has yet to be

proven on alarge scale. Should they prove successful, this design is fully compatible with and will require no
modification for URN-based naming of schemas.

5. Documenting schemas

NOTE: Documentation facilities have purposely been left out of this draft of the XML Schema Definition
Language specification. The editors chose to concentrate on other topics. It is anticipated that explanation elements
will be provided for within any of the Schema elements. Their purpose is to encapsul ate documentation for the
elements within which they are contained. Elements for narrative exposition at the top level of a schema have also
been proposed.

Proposals for XML Schema documentation include defining a custom set of elements, allowing any content at al, allowing al
or part of [HTML-4], DocBook or TEI. There are good arguments for each of these proposals.

The Working Group must identify its requirements and constraints.

6. Conformance

I ssue (error-behavior): This draft includes extensive discussion of conformance and validity checking, but rules
for dealing with errors are missing. In future, we must distinguish erroris from fatal errors, and clarify rules for
dealing with both.

6.1 Schema Validity

We approach the definition of schema validity one step at atime. In the definitions below we deal primarily in terms of
information sets, rather than the documents which give rise to them: see [XML-Infosef] for definitions of item, RUE and
information set.) Please note that the formal definitions below are explicitly not couched in processing terms:. they describe
properties of an information set, but do not tell you how to check an information set to seeif it has those properties.

First we have to get to the schema(s) involved. Thisis dightly tricky, as not all namespace declarations will resolve to schemas,
and not everything that purports to be a schemawill be one.

[Definition:] A URI issaid to nominate a schemaif it resolves to an element item in the information set of awell-formed XML
1.0 document whose local name is schena and whose namespace item's URI identifies either

« this specification or one of its successors,

o the XML Schema 1.0 DTD (or the equivalent DTD from a successor to this specification)
or

» The XML Schema 1.0 schema (or the equivaent schema from a successor to this specification).

[Definition:] A URI is said to resolve successfully to a schemaif it hominates a schema, and the element item it resolves to
represents an XML schema, that is:

« If it were the document element item of an information set corresponding to an XML document whose DOCTY PE
identified the XML Schema 1.0 DTD (or the equivalent DTD from a successor to this specification) asits DTD, that
document would be valid per XML 1.0;

« it and its descendants satisfy all Constraints on Schemas stated in this specification.

[Definition:] An element item is schema-ready if the URI of any of its namespace declaration items which aschema
resolves successfully to a schema.

| ssue (namespace-declar ation-items): Namespace items associated with namespace declarations have disappeared
from the most recent version [XML-Infosef]. Several WGs need them, we expect they'll be back, otherwise we can

reconstruct what we need from element and attribute namespace items alone with some effort.
[Definition:] A document is schema-ready if every element item anywhere in itsinformation set is schema-readyl.

Note that this means that documents with no namespace declarations, or only namespace declarations which do not
schemas are none-the-less schema-ready.

[Definition:] We say an element item is schema-governed if its nameisin anamespace, and the URI of the information item
for that namespace resolves successfully to a schema.

[Definition:] We use the name schema r oot for any element item which isjschema-governed and which is either

« the document element
or
« the daughter of an element which is not schema-governed.

The provision within XML Schema: Structures of a mechanism for defining presents problems for the relationship
between schema-validity and XML 1.0 well-formedness, since references to entities defined only in a schema are undefined

from the XML 1.0 perspective. Strictly speaking, awell-formed XML document may contain references to undefined entities
only if itisdeclared asst andal one=' no' and contains either an external subset or one or more references to external
parameter entitiesin their internal subset. We get around this by [Definition:] defining a nearly well-formed XML document to
be one which either is well-formed per XML 1.0, or which failsto be well-formed only because of undefined general entity
references, but which would be well-formed if it werest andal one=' no' and identified an external subset. We consider this
justified on the grounds that the use of a namespace declaration which refers to a schema functions rather as an external subset,
and from the XML 1.0 perspective such areference ailmost of necessity renders the document non-standal one when
schema-validation is applied.

[Definition:] We use the name string-infoset-in-context for the XML 1.0 information set items arising from the interpretation
of astring in the context of a particular point in an XML 1.0 information set.
[Definition;] The effective element item of an element item (call this OEI) is an element item whose
« hame and namespace items (if any) are the same as those of OEl;
« attribute item names and namespace items (if any) are the same as those of OEl;
« altribute value items are the respective value items of OEl's attribute items with the Siring-infoset-in-contexi of the
declared expansion of every in those val ues replacing those RUES;
« children based on the children of OEI asfollows:
o Character, Pl and comment child items carried over unchanged;
o Element child items replaced with their respective gffective element items;

0 child items replaced by the String-infoset-in-contexi of their declared expansions, with any or element
item in that Efring-infoset-in-contex itself being recursively replaced per this or the above definition respectively.

Schema-validity Constraint: Expansions Schema-Ready
Any element item anywhere within the string-infoset-in-contex{ replacing an RUE child per the above must be schema-ready.

Schema-validity Constraint: Ungoverned RUE
RUES must not appear in element items which are not schema-governed, that isin the values of attributes of or as children of

such elements.

Schema-validity Constraint: RUE Entity Declared
For every appearing in agchema-governed element, there must be a parsed entity declaration in the referenced schema
whose name matches the name of the RUE.

Note that the above constraints and definition mean that in error-free documents, all element items, even ones which are not
schema-governed, have well-defined gffective e ement items.

[Definition:] A document is schema-valid if and only if:
1. Itishearly-well-formed;

2. Itis EEhemarTeady;

3. Every element item in the set of element items consisting of the gffective element iten] of the document
element item in the document's information set and al the element items anywhere inside that effective element iten, is
independently valid.

NOTE: The validity of al other schema-governed element items follows from (3) above by the recursive nature of
the Schema-validity Consfraini referenced there.

NOTE: Itisintentional that the above definition labels as a document with no namespace
declarations or with only namespace declarations which do not schemeas.

Note that there is no requirement that the mentioned above be the root of its document, or that schemas be the roots
of their documents, or that schema and be in different documents. Accordingly, it is possible for asingle
document to contain both a schemaand the material which it validates.

The interaction between XML 1.0 DTDs and XML Schemasis complex but clear:
« A document may be well-formed, (DTD) invalid and schema-valid all at the same time;
« If document has a DTD which includes parsed entity declarations, the schema-validation process may well apply to

material whose original home was in those entities (interna or external);

« Where or not adocument hasaDTD, the (XML 1.0) infoset we're schema-validating may well include 'RUE items, that
is, references to unknown entities, unknown, that is, as far as the definitions of XML 1.0 are concerned. Aslong asthe
document's schema provides schema definitions for these 'undefined’ entities, it still may be schema-valid.

NOTE: The aboveissilent on whether schema-valid documents must be Namespace-conforming.
[Definition:] The augmented information set of ajschema-valid document is the information set rooted in the gffective element

of its document element, augmented by all the information items described in any SchemaTnformation Set Contributions
which apply to any information items anywhere within it.

6.2 Responsibilities of Schema-aware processors

NOTE: This section has fallen out of alignment with the rest of the specification, but is included none-the-less to
give afeding for how this section will eventually look: the details should not be taken too serioudly.

Each step in the following presupposes the successful outcome of the previous step.

A conforming XML Schema processor must:
1. Test for XML 1.0 well-formedness,

2. Construct the XML 1.0 information set. Thiswill include identifying and distinguishing all namespace declarations and
uses, and expanding any entity references whose XML 1.0 declarations are accessible;

3. Starting from the root, traverse the information set in pre-order until an element information item with a namespace
declaration which refers to an accessible schemais found;

4. Schemarvalidate the information set subtree rooted at that element information item using that schema, i.e.
o Expand the information set by replacing the remaining entity references as described in [Schema Validity;
o Schema-validate the resulting information set, as described in Schema Validity;
o Expand the information set per al Schema Information Set Contributioris encountered

= for each namespace: its prefixes and URI, and access to a schema corresponding to that URI.

= for each element: its name (URI+GlI), its content, its datatype or archetype, its attributes

= for each attribute: its name, its value(s), its datatype, and whether its presence is required on an element.
» for each datatype: its names, its heritage (or type lattice), its value space, its refinable facets.

» for data: itstype (and type lattice), whether it's presence is required, and its lexical constraints.

= for each archetype: its name, its content model or datatype, its heritage (or type lattice), its attributes, and
whether it is open/closed or can be refined.

= for each element type: its name, its datatype or archetype or content model, its attributes, and whether it is
open/closed or can be refined.

= for each model: whether it is any, empty, mixed, or agroup of one or more element types -- in which case,
the grammar of the group, and whether it is open/closed or can be refined.

5. Go back to (3) above and continue traversing, starting with the successor in document order to the item just
schema-validated, unless there is no successor;

6. Provide for an external processing system to have access to the combined information set: document instance plus schema
information.

NOTE: Note that the schema contribution to the information set above is meant to be suggestive only at this point,
until we've articulated all the [Schema Information Set Contributioris in the preceding sections.

6.3 Lexical representation
NOTE: The editors did not get to this.
6.4 Information set

NOTE: The editors did not get to this.

Appendices

A. (normative) Schema for Schemas

The XML Schemadefinition for XML Schema: Structuresitself is presented here as normative part of the specification, and as
an illustrative example of the XML Schema in defining itself with the very constructs that it defines. The names of XML
Schema language archetypes, e ement types, attributes and groups defined here are evocative of their purpose, but are
occasionally verbose.

There is some annotation in comments, but a fuller annotation will require the use of embedded documentation facilities or a
hyperlinked external annotation for which tools are not yet readily available.

<?xm version="1.0"?>
<! DOCTYPE schema PUBLIC '-//WBC// DTD XMLSCHEMA 19990506/ / EN
"http://ww. w3. org/ 1999/ 05/ 06- xm schema- 1/ structures. dtd' >

<schema xm ns='http://ww. w3. or g/ 1999/ 05/ 06- xm schena- 1/ st ruct ur es. xsd'
nanme=" htt p: //ww. wW3. or g/ 1999/ 05/ 06- xm schema- 1/ st ruct ur es. xsd'
version='0.4" >

Since an XML Schema: Structuresis an XML document, it has optional XML and doctype declarations that are provided here
for completeness. Theroot schema element defines anew schema. Since thisis a schemafor XML Schema: Structures, the
xmlSchemaRef references the schema name itself. and specifiesthat thisisversion "0.4".

In the following definition of the schena element type, the is reproduced with attributes corresponding to
schemaName, schemaVersior and model, and a sequence of nested elements for fmpor, export and [nclude. The xmins attribute
corresponds to kmISchemaRef. The schema's definitions and declarations are represented by dat at ype, ar chet ype,

el enment Type,attrDecl ,attr G oup, nodel G oup,textEntity,external Entity,unParsedEntity and
not ati on.

<! - - BHHAHHAHHBHHHH BB H R - - >
<! - - BHHAHHAHHBHH T - - >
<I-- The datatype elenment type, and all of its nenbers are defined
in XML Schenma: Part 2: Datatypes -->
<i ncl ude schemaNanme="htt p://ww. W3. or g/ 1999/ 05/ 06- xnml schema- 2/ dat at ypes. xsd" >

<l-- The NCNanme datatype is w dely used for names of conponents -->
<dat at ype nane="NCNane" ><baset ype nane="NMIOKEN'/ ></ dat at ype>
<l-- The public datatype is used for entities and notations -->

<dat at ype name="publ i c"><baset ype name="string"/></dat at ype>

<| - - HAHHHHHHBHHHBHA R HHHRHH TR HA R R R AR - - >
<| - - BHHGHHBHHBHHBHHBHHBHRBH A HARHARH AR AR HARHARHARHAR - - >
<l-- schema el enent type -->

<el ement Type nanme="schema" >
<sequence>
<el enment TypeRef nanme="inport" m nCccur="0"/>
<el ement TypeRef name="export" m nCccur="0"/>
<el enent TypeRef nanme="i ncl ude" m nCccur="0"/>
<choi ce mi nCccur="0">
<el ement TypeRef nanme="dat at ype"/>
<el enent TypeRef nane="archetype"/>

<el enent TypeRef nane="el enent Type"/ >
<el enent TypeRef nanme="attrDecl"/>
<el enment TypeRef nanme="attr G oup"/>
<el enent TypeRef nanme="nodel G oup"/>
<el enent TypeRef nanme="textEntity"/>
<el enent TypeRef nane="external Entity"/>
<el enment TypeRef nanme="unpar sedEntity"/>
<el enent TypeRef nanme="notation"/>
</ choi ce>
</ sequence>
<attrDecl name="name">
<dat at ypeRef name="uri">
</ dat at ypeRef >
</ attrDecl >
<attrDecl name="version">
<dat at ypeRef name="string">
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="xm ns">
<dat at ypeRef name="uri">
<def aul t >http://wwv. W3. or g/ 1999/ 05/ 06- xm schena- 1/ st ruct ur es. xsd
</ defaul t >
</ dat at ypeRef >
</ attrDecl >
<attr G oupRef nanme="nodel"/>
</ el enment Type>

<attr G oup name="nodel ">
<attrDecl nane="nodel ">
<dat at ypeRef name="NCNane" >
<def aul t >cl osed</ def aul t >
</ dat at ypeRef >
</attrDecl >
</attr G oup>

<! - - BHHAHHAHHHH BT R - - >
<l-- inport, export and include -->
<I-- The inport, export and include elenents all include the
restrictions attribute group, whose attributes can be used
to enabl e or disable inport and export restrictions.
Wthin inmport and include el enents, references to the
conmponents of foreign schemas control their inportation

or inclusion, respectively. -->
<| - - BHHHHHHHHHHHHEHH PR H R R R AR - - >
<I-- inport element type -->

<el ement Type nanme="i nport">

<choi ce>
<el enent TypeRef name="dat at ypeRef "/ >
<el enment TypeRef nanme="ar chet ypeRef"/>
<el enent TypeRef nane="el enent TypeRef"/ >
<el enent TypeRef nane="attr G oupRef"/ >
<el ement TypeRef nanme="nodel G oupRef "/ >
<el enment TypeRef nanme="entityRef"/>
<el enent TypeRef nanme="not ati onRef"/>

</ choi ce>

<attrDecl nane="schemaAbbrev" required="true">
<dat at ypeRef name="NCNane" >

</ dat at ypeRef >

</ attrDecl>

<attrDecl nane="schemaNane" required="true">
<dat at ypeRef name="uri">
</ dat at ypeRef >

</ attrDecl >

<attr G oupRef name="restrictions"/>

</ el enment Type>

<l-- export element type -->
<el enent Type nanme="export">
<empty/ >

<attr G oupRef name="restrictions"/>
</ el ement Type>

<I-- include el enent type -->
<el ement Type name="i ncl ude" >
<choi ce>

<el enent TypeRef nanme="dat at ypeRef"/ >
<el ement TypeRef name="archet ypeRef"/>
<el ement TypeRef name="el enent TypeRef "/ >
<el enment TypeRef nanme="attr G oupRef"/>
<el enent TypeRef nanme="nodel G oupRef "/ >
<el ement TypeRef nanme="entityRef"/>
<el enment TypeRef nanme="notati onRef"/>

</ choi ce>

<attr G oupRef name="restrictions"/>

</ el ement Type>

<attr G oup nane="restrictions">
<attrDecl nane="dat atypes">
<dat at ypeRef name="bool ean">
<def aul t >t rue</ def aul t >
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="archetypes">
<dat at ypeRef name="bool ean" >
<def aul t >t rue</ def aul t >
</ dat at ypeRef >
</attrDecl >
<attrDecl nane="el enent Types" >
<dat at ypeRef name="bool ean">
<def aul t >t rue</ def aul t >
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="attrG oups">
<dat at ypeRef name="bool ean" >
<def aul t >t rue</ def aul t >
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="npdel G oups">
<dat at ypeRef name="bool ean">
<def aul t >t rue</ def aul t >
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="entities">
<dat at ypeRef name="bool ean">
<def aul t >t rue</ def aul t >

</ dat at ypeRef >
</ attrDecl >
<attrDecl name="notations">
<dat at ypeRef name="bool ean">
<def aul t >t rue</ def aul t >
</ dat at ypeRef >
</ attrDecl >
</attr G oup>

<| - - HHHBHAHBHBHHHHBHBHBHBH B BB HBHBH BB HAHBH AR - - >

<l -- Fundanental archetypes needed to build the schema -->
<I-- Two fundanental archetypes (conmponents and references)

are used hereafter to build the schema. -->

<l-- A component specifies its own name and its export control

<| - - HAHHHBHHEHHHHAHAH B HEH AR AR AR R AR - - >
<! -- conponent archetype -->

<ar chet ype nanme="conponent" nodel ="refi nabl e">
<enpty/ >
<attrDecl name="name">
<dat at ypeRef name="NCNane" >
</ dat at ypeRef >
</attrDecl>
<attrDecl nane="export">
<dat at ypeRef name="bool ean">
</ dat at ypeRef >
</ attrDecl >
</ ar chet ype>

<I-- A reference specifies the nanme of a conponent, and
optionally a schemaAbbrev or schemaNane attribute. -->
<I-- reference archetype -->
<ar chetype name="ref erence" nodel ="refi nabl e">
<enmpty/ >

<attrDecl nane="nanme" required="true">
<dat at ypeRef name="NCNane" >
</ dat at ypeRef >

</ attrDecl >

<attrDecl nane="schemaAbbrev">
<dat at ypeRef nanme="NCNane" >
</ dat at ypeRef >

</ attrDecl >

<attrDecl nane="schermaNang" >
<dat at ypeRef name="uri">
</ dat at ypeRef >

</attrDecl >

</ ar chet ype>

<| - - HHHHHBHBHBHHHHEHBHBHBH BB BB H B R AR - - >
<I - - ####H#HAH COVPONENTS #HAHBHHHHBHBHAHBHBHHHHBHBHAR - - >
<| - - HHHBHAHAHBHBHHHHBHBHBHBH BB HBHBH BB HAHAHAR - - >

<I-- A datatypeRef elenent type is based on the reference archetype.

It provides for specification of datatype qualification
t hrough the ordered and unordered facets and through the
optional default and fixed el ements. The content nodel

is tentative, pending future coordinati on work between the
is tentative, pending further coordi nati on between the
schema definition and datatype definition specifications. -->
<l-- datatypeRef elenent type -->
<ar chet ype nane="dat at ypeRef " >
<refines> <archet ypeRef nane="reference"/> </refines>
<al | >
<al | >
<nmodel G oupRef nane="ordered"/>
<nodel G oupRef name="unor dered"/>
</all>
<choi ce m nCccur="0" nmaxCccur="1">
<el enent TypeRef nane="default"/>
<el enent TypeRef nane="fi xed"/>
</ choi ce>
</all>
</ ar chet ype>

<l-- datatypeRef elenent type -->
<el ement Type nanme="dat at ypeRef " >
<ar chet ypeRef nanme="dat at ypeRef"/>
</ el enment Type>

<I-- default elenent type -->
<el ement Type nanme="defaul t">
<dat at ypeRef name="string">
</ dat at ypeRef >
</ el ement Type>

<I-- fixed el enent type -->
<el ement Type name="fi xed">
<dat at ypeRef name="string">
</ dat at ypeRef >
</ el enent Type>

<l-- The archetype el enent type is based on the conponent archetype.
It may include a refines el enent that specifies the archetype
that is is based on, and either a datatypeRef or a nodel,
foll owed by any nunber of attrDecl and attr G oupRef el enments. -->
<! - - BHHHHHHHHEHHHHH TR R R R AR - - >
<| - - HAHHHHHHHHHHBHAHRHA R HH R R R R RH R - - >
<l-- archetype el enent type -->
<el ement Type nanme="ar chet ype">
<refines> <archet ypeRef nane="conponent"/> </refines>
<sequence>
<el enment TypeRef nanme="refines"/>
<choi ce>
<el ement TypeRef nanme="dat at ypeRef "/ >
<nmodel G oupRef nane="nodel "/>
</ choi ce>
<el enent TypeRef nane="attrDecl "/ >
<el enment TypeRef nanme="attr G oupRef"/>
</ sequence>
<attr G oupRef nane="nodel"/>
</ el ement Type>

<l-- The nodel nodel group, and the nodel EIt nobdel group that

it references, are reusable content nodel fragnents.
The nodel nodel group is used in the definition of the
archetype, el enent Type and nodel G oup el ement types.
Its nmenbers are defined later. -->

<nodel G oup nane="nodel ">
<choi ce>
<el enment TypeRef nanme="any"/ >
<el enent TypeRef nanme="enpty"/>
<el ement TypeRef nane="m xed"/ >
<nodel G oupRef nanme="nodel EIt"/>
</ choi ce>
</ nodel Gr oup>

<nodel G oup nane="nodel El t">
<choi ce>
<el ement TypeRef nane="all"/>
<el ement TypeRef nanme="choice"/>
<el enent TypeRef nanme="el enent Type"/ >
<el ement TypeRef name="el ement TypeRef "/ >
<el ement TypeRef nanme="sequence"/>
<el enment TypeRef nanme="nodel G oupRef "/ >
</ choi ce>
</ model G oup>

<l-- The archetypeRef elenent type is based on the reference archetype.

<I-- archetypeRef elenent type -->
<el ement Type nanme="ar chet ypeRef ">

<ar chet ypeRef nanme="reference"/>
</ el ement Type>

<l-- The el enent Type el enent type is based in the conponent archetype.
It is alnost identical to the archetype el enment type except
that it additionally provides for inmedi ate specification of
an archetypeRef upon which its definition is based. -->

<l-- The el enent TypeRef is based upon the reference archetype.
It additionally provides for specification of nminCccurs
and maxQOccurs attributes used when defining a content nodel. -->
<| - - HHHHHHHHHHAH B HAH R HH R TR RA R R R RH AR AR - - >
<! - - BHHAHHBHHHH BT R R - - >
<I-- el enent Type el enent type -->
<el enent Type name="el enment Type" >
<refi nes> <archet ypeRef name="conponent"/> </refines>
<sequence>
<el enent TypeRef nane="refines"/>
<choi ce>
<el enent TypeRef nane="dat at ypeRef"/ >
<el enent TypeRef nane="archet ypeRef"/>
<nodel G oupRef name="nodel "/ >
</ choi ce>
<el enment TypeRef nanme="attrDecl"/>
<el enent TypeRef nane="attr G oupRef"/>
</ sequence>
<attr G oupRef nane="nodel"/>
</ el enent Type>

<I-- el enent TypeRef el enent type -->
<el enment Type nanme="el enent TypeRef " >
<ar chet ypeRef nanme="reference"/>
<attr G oupRef name="occurrence"/>
</ el ement Type>

<attr G oup nanme="occurrence">
<attrDecl nane="m nCccur">
<dat at ypeRef name="i nt eger" >
<def aul t >1</ def aul t >
</ dat at ypeRef >
</attrDecl>
<attrDecl name="maxCccur" >
<dat at ypeRef name="i nt eger" >
<def aul t >1</ def aul t >
</ dat at ypeRef >
</attrDecl >
</attr G oup>

<l-- The nodel G oup el enent type is based on the conponent archetype.
It must contain elenents of the nodel nodel group, and it
may specify its nodel and occurrence attributes. -->
<I-- The nodel G oupRef elenment type is based on the reference archetype. -->
<l - - BHAGHHEBHBRARH SRR AR AR R A H AR AR HAS AR E - - >
<! - - BHHAHHHH T R - - >
<I-- nodel G oup el enent type -->
<el enent Type nanme="nodel G oup" >
<r ef i nes> <archet ypeRef nane="conponent"/> </refines>
<nodel G oupRef nane="nodel />
<attr G oupRef nanme="nodel"/>
<attr G oupRef nane="occurrence"/>
</ el enent Type>
<l-- nodel G oupRef elenment type -->
<el ement Type nane="nodel G oupRef " >
<ar chet ypeRef nane="reference"/>
<attr G oupRef nane="occurrence"/>
</ el enment Type>
<l-- The nodel G oup el enent type is based in the conponent archetype.
It provides for one or nore attrDecl and attr G oupRef el enments. -->
<lI-- The attrGoupRef elenent type is based on the reference archetype. -->

<| - - HAHHHHHHBHHHBHAHHHH R TR HA R AR R R AR - - >
<! - - BHHAHHAHHHH B R - - >
<I-- attrGoup elenent type -->
<el ement Type name="attr G oup" >
<ref i nes> <archet ypeRef nanme="conponent"/> </refines>
<choi ce nmi nCccur="1" maxCccur="*">
<el enent TypeRef nanme="attrDecl "/ >
<el ement TypeRef nanme="attr G oupRef"/>
</ choi ce>
<attr G oupRef nane="nodel"/>
</ el enent Type>

<I-- attrGoupRef elenent type -->

<el ement Type nanme="attr G oupRef ">
<ar chet ypeRef nane="reference"/>
</ el ement Type>

<

-- The textEntity element type is based on the conponent archetype.
It provides for string content to specify the entity value. -->
<\ - - HUHAHHHARHHHAR AR R R AR R R AR R - - >
<! - - HHH#RHHHAHHHHB S HARE AR AR R R AR - - >
<I-- entities -->
<I-- textEntity elenent type -->
<el ement Type name="textEntity">
<dat at ypeRef name="string">
</ dat at ypeRef >
</ el enment Type>

<l-- The external Entity and unparsedEntity el ement types are
based on the conponent archetype. They provide for specification
of a URI, an optional public identifier, and a notation attri bute. -->
<l-- external Entity el enent type -->
<el ement Type nanme="external Entity">
<ref i nes> <archet ypeRef nanme="conponent"/> </refines>
<empty/ >
<attr G oupRef nane="external "/>
</ el enment Type>

<

-- unparsedEntity el ement type -->

<el ement Type name="unparsedEntity">
<r ef i nes> <archet ypeRef nanme="conponent"/> </refines>
<enpty/ >
<attr G oupRef nane="external "/>

</ el enment Type>

<attr G oup nane="external ">
<attrDecl nane="systen! required="true">
<dat at ypeRef nanme="uri">
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="public">
<dat at ypeRef name="public">
</ dat at ypeRef >
</ attrDecl >
<attrDecl nane="notation" required="true">
<dat at ypeRef name="not ati on">
<def aul t >XM_</ def aul t >
</ dat at ypeRef >
</ attrDecl >
</attr G oup>

<

-- The entityRef elenmentType is based on the reference archetype.
-->
<I-- entityRef elenent type -->
<el ement Type nanme="entityRef">
<ar chet ypeRef nanme="reference"/>
</ el enent Type>

<l-- The notation elenent type is based on the conponent archetype.

<

<!

<

The notati onRef el enment type is based in the reference archetype.

<I-- notation elenment type -->
<el ement Type nanme="not ati on">
<ref i nes> <archet ypeRef nanme="conponent"/> </refines>
<enpty/ >
<attr G oupRef name="external"/>
</ el enment Type>

-- notationRef elenment type -->
<el ement Type name="not ati onRef ">

<ar chet ypeRef nanme="reference"/>
</ el enment Type>

<| - - HHHHHHHHHH R R R R R R R R - - >
<| - - HHHHHHHHHHTHHHH BB HHHEH R HPH T R T H T R R - - >
-- Content npdel atons -->

<el ement Type name="any" >
<enmpty/ >
</ el enment Type>

<el ement Type name="enpty">
<enmpty/ >
</ el enment Type>

<el ement Type name="ni xed" >
<choi ce m nCccur="0" maxQOccur="*">
<el enent TypeRef nane="el enent TypeRef"/ >
<el ement TypeRef nane="el enent Type"/ >
</ choi ce>
</ el enment Type>

<| - - #H#H#HAHAHAHBHHBHHBHBH AR AR H TR AH A AR H AR RS - - >
<| - - HHHHHAHBHBHBHHHHBHBHBHBH B HEH BB R - - >
-- El enment groups -->

<ar chet ype nane="conpositor">
<choi ce m nCccur="2" maxOccur="*">
<nmodel G oupRef nanme="nodel EIt"/>
<el enent TypeRef nanme="el enent Type"/ >
</ choi ce>
<attr G oupRef nane="occurrence"/>
</ ar chet ype>
<el enent Type name="al | ">
<ar chet ypeRef nane="conpositor"/>
</ el ement Type>

<el enent Type name="choi ce" >
<ar chet ypeRef nane="conpositor"/>
</ el enent Type>

<el ement Type nanme="sequence">
<ar chet ypeRef nane="conpositor"/>
</ el enment Type>

<l--
<l--
<l-- npotations for
<not ati on nane=" XM."
</ schema>

HUBHEHHHHAHHHH R R R R H R R R - - >

HHH R R R R R R R R - - >
use within XM. Schemn: Structures
<not ati on nane="XM.SchemaSt r uct ur es"

-->

public="structures"
system="http://ww. wW3. or g/ 1999/ 05/ 06- xnml schema- 1/ struct ur es. xsd"/ >
publ i c=" REC- xnmi - 19980210"
systen¥"http://ww. wW3. or g/ TR/ 1998/ REC- xml - 19980210"/ >

NOTE: And that isthe end of the schemafor XML Schema: Structures.

B. (normative) DTD for Schemas

The following isthe DTD for XML Schema: Structures:

<! ATTLI ST i nport

<! ELEMENT export
<I ATTLI ST export

<I ELEMENT schenma ((inport?*,

<! ATTLI ST schenma

i ncl ude*, export?,
(comrent | datatype | archetype | el ement Type
| attrGoup | nodel Goup | notation
| textEntity | external Entity | unparsedEntity)*))>
name CDATA #1 MPLI ED
ver si on CDATA #1 MPLI ED
xm ns CDATA

nodel

<I ELEMENT i nmport ((el enent TypeRef
| nodel G oupRef

| archetypeRef |
| attrG oupRef |

| notationRef)*) >

schemaAbbr ev
schemaNane
dat at ypes

ar chet ypes
el enent Types
attr G oups
nodel Gr oups
entities
not at i ons

EMPTY >

dat at ypes

ar chet ypes
el enment Types
attr G oups
nodel Gr oups
entities

not ati ons

<! ELEMENT i ncl ude ((el ement TypeRef |
| nodel G oupRef

NMTOKEN
CDATA
(true| fal se)
(true| fal se)
(true| fal se)
(true| fal se)
(true| fal se)
(true| fal se)
(true| fal se)

(true| fal se)
(true| fal se)
(true| fal se)
(true| fal se)
(true| fal se)
(true|fal se)
(true| fal se)

| notationRef)*) >

ar chet ypeRef |
| attrG oupRef |

"http://ww. w3. org/ 1999/ 05/ 06- xm schema- 1/ st ruct ur es. xsd"
(open]| refi nabl e| cl osed)

"cl osed" >

dat at ypeRef
entityRef

#REQUI RED
#REQUI RED
"true"
"true"
"true"
"true"
"true"
"true"
"true" >

"true"
"true"
"true"
"true"
"true"
"true"
"true" >

dat at ypeRef
entityRef

<! ATTLI ST i ncl ude

schemaName CDATA #REQUI RED
dat at ypes (true|fal se) "true"
ar chet ypes (true|fal se) "true"
el enent Types (true|fal se) "true"
attr G oups (true|false) "true"
nodel Gr oups (true|fal se) "true"
entities (true|fal se) "true"
not at i ons (true|false) "true" >

<l-- -->

<!-- comments contain text -->

<l-- -->

<! ELEMENT comment (#PCDATA) >

<teo -->

<l-- The datatype elenent is defined in XM. Schema: Part 2: Datatypes -->
<l-- -->

<IENTITY % xs-dat at ypes PUBLI C "dat at ypes"
"http://ww. w3. org/ 1999/ 05/ 06- xm schema- 2/ dat at ypes. dt d" >
% s- dat at ypes;

<I ELEMENT dat at ypeRef ((%ordered; | %unordered)*, (default]fixed)*) >
<l ATTLI ST dat at ypeRef

name NMTOKEN #REQUI RED
schemaAbbr ev NMTOKEN #| MPLI ED
schemaNanme CDATA #| MPLI ED >

<! ELEMENT default (#PCDATA) >
<! ELEMENT fixed (#PCDATA) >

<IENTITY % nodel EIt "all| choi ce| el ement TypeRef | el ement Type| sequence” >

<IENTI TY % nodel "any| enpt y| %odel El t ;| m xed" >

<l-- -->

<l-- an archetype is a named content type specification -->
<l-- -->

<I ELEMENT archetype (refines?,
(dat at ypeRef |
(%model ; | nodel G oupRef))?,
(attrDecl | attrGoupRef)*) >
<I ATTLI ST archetype

name NMTOKEN #REQUI RED
export (true|false) "true"
nodel (open| refi nabl e| cl osed) #l MPLI ED >

<! ELEMENT refines (archetypeRef)* >

<! ELEMENT archet ypeRef EMPTY >
<I ATTLI ST ar chet ypeRef

name NMTOKEN #REQUI RED
schemaAbbr ev NMTOKEN #| MPLI ED
schemaNane CDATA #| MPLI ED >

<l-- -->
<I-- an elenentType is a naned elenent and its content type -->

<l-- -->

<I ELEMENT el enent Type (refines?,
(datatypeRef | archetypeRef |
(%odel ; | nodel G oupRef)) ?,
(attrDecl | attrGoupRef)*) >

<I ATTLI ST el enent Type

name NMTOKEN #REQUI RED
export (true|fal se) "true"
nodel (open| refi nabl e| cl osed) #l MPLI ED >

<! ELEMENT el enent TypeRef EMPTY >
<I ATTLI ST el enent TypeRef

nane NMTOKEN #REQUI RED
schemaAbbr ev NMIOKEN #| MPLI ED
schemaNanme CDATA #| MPLI ED
m nCccur CDATA "1
maxQccur CDATA #| MPLI ED >
<l-- -->
<!-- a nodel is a naned content nodel (without attributes) -->
<l-- -->

<!l ELEMENT nodel Group (%odel EIt;) >

<I ATTLI ST nodel Gr oup
name NMTOKEN #REQUI RED
export (true|false) "true" >

<! ELEMENT nodel GroupRef EMPTY >
<I ATTLI ST nodel G oupRef

nane NMTOKEN #REQUI RED
schemaAbbr ev NMTOKEN #| MPLI ED
schemaNanme CDATA #| MPLI ED

m nOccur CDATA "1

maxQOccur CDATA #| MPLI ED >

<! ELEMENT any EMPTY >
<! ELEMENT enpty EMPTY >
<I ELEMENT ni xed (el enment TypeRef| el enment Type) * >

<I ELEMENT sequence (nmodel GoupRef | sequence | choice | al
| el ement Type | el enent TypeRef)+ >
<! ATTLI ST sequence
m nCccur CDATA "t
maxCccur CDATA #1 MPLI ED >

<I ELEMENT choi ce (nmodel G oupRef | sequence | choice | all
| el ement Type | el enent TypeRef)+ >
<I' ATTLI ST choi ce
m nCccur CDATA "l
maxCccur CDATA #| MPLI ED >

<I ELEMENT all (nodel G oupRef | sequence | choice | all
| el ement Type | el enent TypeRef)+ >
<! ATTLI ST al |
m nCccur CDATA "1t
maxQccur CDATA #| MPLI ED >

<l-- -->
<lI-- an attrDecl names an attribute specification -->

<I-- the datatypeRef default is "string" -->
<I-- the attrValue allows * for NMIOKEN |ists -->
<l-- -->
<I ELEMENT attrDecl (datatypeRef?) >
<! ATTLI ST attr Decl
name NMT OKEN #REQUI RED
required (true|false) "false" >

<I-- an attrGoup is a naned collection of attrDecls -->
<IELEMENT attrGoup (attrDecl | attrG oupRef)+ >
<I ATTLI ST attr G oup
name NMT OKEN #REQUI RED
export (true|fal se) "true" >

<I ELEMENT attr G oupRef EMPTY >
<I ATTLI ST attr G oupRef

name NMTIOKEN #REQUI RED
schemaAbbr ev NMTOKEN #| MPLI ED
schemaNanme CDATA #| MPLI ED >

<l-- -->

<l-- Entities and notations in XM. Schema -->

<l -- -->

<l-- the three kinds of entities share a synbol space -->

<I ELEMENT entityRef EMPTY >
<I ATTLI ST entityRef

name NMTOKEN #REQUI RED
schemaAbbr ev NMTOKEN #1 MPLI ED
schemaNane CDATA #| MPLI ED >
<I-- a textEntity can be referenced in docunents of this type -->

<l ELEMENT textEntity (#PCDATA) >
<I ATTLI ST textEntity

name NMTOKEN #REQUI RED
export (true|fal se) #FIXED "true" >
<l-- an external Entity can be referenced in docunents of this type -->

<! ELEMENT external Entity EMPTY >
<I ATTLI ST external Entity

name NMTOKEN #REQUI RED
export (true|fal se) #FIXED "true"
public CDATA #1 MPLI ED
system CDATA #REQUI RED
not ati on NMTOKEN #FI XED " XM." >
<l-- declares notation to be a 1st class elenment or entity content types -->

<! ELEMENT not ati on EMPTY >
<I ATTLI ST not ati on

name NMTOKEN #REQUI RED
export (true|fal se) #FIXED "true"
public CDATA #REQUI RED
system CDATA #| MPLI ED>

<! ELEMENT not ati onRef EMPTY >

<! ATTLI ST not ati onRef
namne NMT OKEN #REQUI RED
schemaAbbr ev NMIOKEN #| MPLI ED

schemaNanme CDATA #| MPLI ED >

<l-- an unparsedEntity can be referenced in docunents of this type -->
<!l ELEMENT unparsedEntity EMPTY >
<I ATTLI ST unparsedEntity

name NMTOKEN #REQUI RED
export (true|fal se) #FIXED "true"
public CDATA #1 MPLI ED

syst em CDATA #REQUI RED

not ati on NMTOKEN #REQUI RED >

<! NOTATI ON XM_SchemaSt ruct ures PUBLI C "struct ures"
"http://ww. w3. org/ 1999/ 05/ 06- xm schema- 1/ struct ures. xsd" >
<! NOTATI ON XM_. PUBLI C "REC-xm " "http://ww. w3. or g/ TR/ 1998/ REC- xmi - 19980210" >

C. Glossary (normative)

Ed. Note: The Glossary has barely been started. An XSL macro will be used to collect definitions from throughout
the spec and gather them here for easy reference.

abstract syntax

[Definition:] theabstract syntax of the XML Schema Definition Languageis ...
aggregate datatype

[Definition:] an aggr egate datatypeis
archetype

[Definition:] an archetypeis
archetype reference

[Definition:] an archetypereferenceis
‘al' content model group

[Definition:] the'all' content model group is
‘any' content

[Definition:] the 'any' content specification ...
atomic datatype

[Definition:] an atomic datatypeis
attribute

[Definition:] an attributeis
attribute group

[Definition:] an attributegroup is
‘choice’ content model group

[Definition:] the 'choice' content model group is
composition

[Definition:] composition is
concrete syntax

[Definition:] the concrete syntax is
constraint

[Definition:] aconstraint is
content

[Definition:] content is
context

[Definition:] acontext is

datatype

[Definition:] an datatypeis
datatype reference

[Definition:] an datatype referenceis
default value

[Definition:] adefault valueis
document

[Definition:] adocument is
element

[Definition:] an element is
element content

[Definition:] element content is
element type

[Definition:] an element typeis
element type reference

[Definition:] an element typereferenceis
'empty' content

[Definition:] the 'empty' content specification ...
export

[Definition:] to export is
export control

[Definition:] an export control
external entity

[Definition:] an external entity is
facet

[Definition:] afacet is
fixed value

[Definition:] afixed value
fragment

[Definition:] afragment is
import

[Definition:] toimport is
include

[Definition:] toincludeis
information set

[Definition:] an information set is
instance

[Definition:] an instanceis
markup

[Definition:] markup is
'mixed' content

[Definition:] the 'mixed' content specification ...
model

[Definition:] amode is
model group

[Definition:] amodel group is
model group reference

[Definition:] amodel group referenceis
RUE
[Definition:] RUE is short for reference to undefined entity information item as defined in
NCName
[Definition:] an NCName is a name with no namespace qualification, as defined in [XML-Namespaces]|. Appearsin all
the definition and declaration productions of this specification.
namespace
[Definition:] anamespaceis
notation
[Definition:] anotation is
object model
[Definition:] an object model is
occurrence
[Definition:] occurrenceis
parameter entity
[Definition:] aparameter entity is
preamble
[Definition:] apreambleis
presence
[Definition:] presenceis
refinement
[Definition: | refinement is
document root
[Definition:] the document root is...
scope
[Definition:] scopeis
'sequence’ content model group
[Definition:] the 'sequence’ content model group is

structure

[Definition:] structureis
symbol space

[Definition:] asymbol spaceis
text entity

[Definition: | aparsed entity is
unparsed entity

[Definition:] an unpar sed entity is
validation

[Definition:] validation is
vocabulary

[Definition:] avocabulary is
well-formedness
[Definition:] well-formednessis

D. References (normative)

Austin-FTF

Fourth Meeting of the W3C XML Schema Working Group. See
http:/iwww.w3.org/XML/Group/1999/04/xml-schema-ftf.html|

DCD
Document Content Description for XML (DCD), Tim Bray et al. W3C, 10 August 1998. See
http://www.w3.org/ TR/INOTE-dcd
DDML
Document Definition Markup Language. See http://www.w3.0org/ TR/NOTE-ddm
HTML-4
HTML 4.0 Specification, Dave Raggett et al. W3C, 1998. See http://www.w3.org/ TR/IREC-himl4Q
1S0O-11404

SO 11404 -- Information Technology -- Programming Languages, their environments and system software interfaces --
Language-independent datatypes, | SO/IEC 11404:1996(E).

RFC-1808

RFC 1808, Relative Uniform Resource Locators. Internet Engineering Task Force. See
http://ds.internic.net/rfc/rfc1808.tx1

SOX
Schema for Object-oriented XML, Matt Fuchs, et al. W3C, 1998. See hitp://www.w3.0rg/Submission/1998/15]

SOX-1.1
Schema for Object-oriented XML, Version 1.1, Matt Fuchs, et al. W3C, 1999. See 77?

URI

Uniform Resource Identifiers (URI): Generic Syntax and Semantics. See
http://www.ics.uci.edu/pub/ietf/uri/draft-fielding-uri-Syntax-0L.ix{

URL
RFC 1738,Uniform Resource Locators (URL). Internet Engineering Task Force. See http://ds.internic.net/rfc/rfc1738.tx1

URN
RFC 2141,URN Syntax. Internet Engineering Task Force. See http://ds.internic.net/rfc/rfc21471.tx{

WAI-PAGEAUTH
WAI Accessibility Guidelines: Page Authoring, Gregg Vanderheiden et al. W3C, 14-Apr-1998. See
http://www.w3.org/ TRIWD-WAT-PAGEAUTH

WEBARCH-EXTLANG

Web Architecture: Extensible Languages, Tim Berners-Lee and Dan Connolly. W3C, 10 Feb 1998. See
http://www.w3.0org/ TR/INOTE-webarch-extland

WEBSGML
Proposed TC for WebSGML Adaptations for SGML, C. F. Goldfarb, ed., 14 June 1997. See
ttp://www.sgmlsource.com revin ht
XDR

XML-Data Reduced, Frankston, Charles, and Henry S. Thompson, ed. See
http://lwww.ltg.ed.ac.uk/~ht/ XML Data-Reduced.htn

XLink

XML Linking Language (XLink), Eve Maer and Steve DeRose, W3C, 3 March 1998. See
http:/iwww.w3.org/ TR/IWD-xIinK

XML Schema Requirements

http://www.w3.org/XML/Group/1999/04/xml-schema-ftf.html
http://www.w3.org/TR/NOTE-dcd
http://www.w3.org/TR/NOTE-ddml
http://www.w3.org/TR/REC-html40
http://ds.internic.net/rfc/rfc1808.txt
http://www.w3.org/Submission/1998/15/
http://www.ics.uci.edu/pub/ietf/uri/draft-fielding-uri-syntax-01.txt
http://ds.internic.net/rfc/rfc1738.txt
http://ds.internic.net/rfc/rfc2141.txt
http://www.w3.org/TR/WD-WAI-PAGEAUTH
http://www.w3.org/TR/NOTE-webarch-extlang
http://www.sgmlsource.com/8879rev/n1929.htm
http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm
http://www.w3.org/TR/WD-xlink

XML Schema Requirements, Ashok Malhotraand Murray Maloney, ed., W3C, 15 February 1999. See
http://www.w3.org/ TR/INOTE-xml-schema-red
XML Schemas: Datatypes

XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds. See
http://www.w3.0rg/1999/05/06-xmlschema-2/dataty pes

XML
Extensible Markup Language (XML) 1.0, Tim Bray, et al. W3C, 10 February 1998. See http://www.w3.0org/ TR/REC-xml|
XML-Data
XML-Data, Andrew Layman, et al. W3C, 05 January 1998. See http://www.w3.org/TR/T998/NOTE-XML -data-0105
XML-Infoset
XML Information Set (first public WD), David Megginson et a., W3C, 1999. See
ttp://Www.w3.0rg roup. -xml-infoset- htm

XML-Namespaces
Namespacesin XML, Tim Bray et a., W3C, 1998. See http://www.w3.0org/ TR/WD-xml-names

XPointer
XML Pointer Language (XPointer), Eve Maer and Steve DeRose, W3C, 3 March 1998. See
ttp://www.w3.0rg -Xpt
X Schema

XSchema Specification, Simon St. Laurent, Ronald Bourret, John Cowan, et al., Version 1.0, Draft, 18 October 1998. See
http://www.simonstl.com/xschema/spec/xscspecv4.htni

For more general information, consult http://purl.oclc.org/NET/xschema

XSLT

Extensible Stylesheet Language Transformations, James Clark, W3C, 21 April 1999. See
http://www.w3.0org/ TR/1999/WD-xdt-19990421

E. Grateful Acknowledgments (non-normative)

The editors the acknowledge the members of the W3C XML Schema Working Group, the members of other W3C Working
Groups, and industry expertsin other forums who have contributed directly or indirectly to the process or content of creating this
document. The editors are particularly grateful to Lotus Development Corp. for providing teleconferencing facilities.

F. Sample Schema (non-normative)

NOTE: The editors did not get to this.

Example
An example of afull blown schema:

<schema nane='http://ww. myOrg. conf bob/ schemal. xsd' >

Explanation...

http://www.w3.org/TR/NOTE-xml-schema-req
http://www.w3.org/1999/05/06-xmlschema-2/datatypes
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/1998/NOTE-XML-data-0105
http://www.w3.org/XML/Group/1999/04/WD-xml-infoset-19990428.html
http://www.w3.org/TR/WD-xml-names
http://www.w3.org/TR/WD-xptr
http://www.simonstl.com/xschema/spec/xscspecv4.htm
http://purl.oclc.org/NET/xschema
http://www.w3.org/TR/1999/WD-xslt-19990421

[0

</ schenmn>

Explanation...

G. Open Issues

A tabulation of open issues flagged above follows:

yl
0-evolutio
default

)

F

9p)

S-de
getault-attr-datatype
namespace-declare

! ni xed-change-current-schemg

9

rormal-refinement-FSVI|
Engarsed-entltz-gig
unparsed-entity-attributes
= DE

hamespace-declaration-1tems

XML Schema Part 2: Datatypes

World Wide Web Consortium Working Draft 06-May-1999

This version

http://www.w3.0rg/T1999/05/06-xmlschema-2/
(with accompanying and DTD)

Latest version:

http://www.w3.org/ TR/xmlschema-2/

Editors:

Paul V. Biron (Kaiser Permanente, for Health Level Seven) KPaul.V.Biron@Kkp.org>
Ashok Malhotra (IBM) Epetsa@us.ibm.com>

© 1999 (MTT], INRTA,), All Rights Reserved. W3C [iabilityJfrademarK, document usg and EoftwareTicensing rules apply.

Status of this Document

ThisisaW3C Working Draft for review by members of the W3C and other interested parties in the general public.

It has been reviewed by the XML Schema Working Group and the Working Group has agreed to its publication. Note that not
that all sections of the draft represent the current consensus of the WG. Different sections of the specification may well
command different levels of consensus in the WG. Public comments on this draft will be instrumental in the WG's deliberations.

Please review and send comments to www-xml-schema-comments@wa3.ord ([archive).

The facilities described herein arein a preliminary state of design. The Working Group anticipates substantial changes, both in
the mechanisms described herein, and in additional functions yet to be described. The present version should not be
implemented except as a check on the design and to allow experimentation with alternative designs. The Schema WG will not
allow early implementation to constrain its ability to make changes to this specification prior to final release.

A list of current W3C working drafts can be found at http://www.w3.0rg/TR. They may be updated, replaced, or obsoleted by

other documents at any time. It isinappropriate to use W3C Working Drafts as reference material or to cite them as other than
"work in progress'.

Ed. Note: Severa "note types' are used throughout this draft:
issue [Issue (issue-name): |

something on which the editors are seeking comment
editorial note [Ed. Note:]

something the editors wish to call to the attention of the reader. To be removed prior to the recommendation
becoming final.

note [Note:]
something the editors wish to call to the attention of the reader. To remain in the final recommendation.

http://www.w3.org/
http://www.w3.org/1999/05/06-xmlschema-2/
mailto:Paul.V.Biron@kp.org
mailto:petsa@us.ibm.com
http://www.w3.org/Consortium/Legal/ipr-notice.html#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
mailto:www-xml-schema-comments@w3.org
http://lists.w3.org/Archives/Public/www-xml-schema-comments/
http://www.w3.org/TR

Abstract

This document specifies alanguage for defining datatypes to be used in XML Schemas and, possibly, elsewhere.

Table of Contents

1
11
1.2
13
14
15
2
21
2.2
23
2.4 Characterizing operations
24.1
25
2.5.1 Fundamental facets
2.5.2 [Constraining or Non-fundamental facets
2.6 Datatype dichotomies
2.6.1 Atomic vs. aggregate datatypes
2.6.2 Primitive vs. generated datatypes
2.6.3 Built-in vs. user-generated datatypes
3. Built-in datatypes
3.1 Namespace considerations
3.2 Primitive datatypes
321
3.2.2[DREH
3.2.3[DREFS
3.24ENTITY|
3.25ENTITIES
3.2.6 NMTOKEN
327 NMTOKENS
3.2.8 NOTATION
329
3.2.10
3211
3.212
3.2.13
3214
3.3 Generated datatypes
331
332
3.33fed
334
335
336
4. User-generated datatypes
5.

Appendices

A.[Schemaftor Datatype Definitions (normative)
B. DTD for Datatype Definitions (normative)
C. Built-in Generated Datatype Definitions (normative)

D. Pictures

E. Regular Expressions
F

G. Open Tssue

1. Introduction

1.1 Purpose

The [XML] specification defines alimited array of facilities for applying datatypes to document content in that documents may
contain or refer to DTDs that assign types to e ements and attributes. However, document authors, including authors of

traditional documents and those transporting data in XML, often require a high degree of type checking to ensure robustnessin
document understanding and data interchange.

The table below offers two typical examples of XML instances in which datatypes are implicit: the instance on the | eft
represents a billing invoice, the instance on the right a memo or perhaps an email message in XML.

Data oriented Document oriented
<i nvoi ce> <meno i nportance="hi gh"
<or der Dat e>Jan 21, 1999</ or der Dat e> dat e=" 03/ 23/ 1999" >
<shi pDat e>Jan 25, 1999</shi pDat e> <fronrPaul V. Biron</frone
<bi | I i ngAddr ess> <t 0>Ashok Mal hotra</t o>
<nane>Ashok Mal hotra</ nane> <subj ect >Lat est draft </ subj ect >
<street>123 | BM Ave. </ street > <body>
<ci t y>Hawt hor ne</ ci ty> W need to discuss the | atest
<st at e>NY</ st at e> draft <enph>i mredi at el y</ enph>.
<zi p>10532- 0000</ zi p> Either email nme at <enail >
</ billingAddress> mai | t o: paul . v. bi ron@p. or g</ enai | >
<voi ce>555-1234</ voi ce> or call <phone>555-9876</ phone>
<f ax>555-4321</ f ax> </ body>
</invoi ce> </ meno>

The invoice contains several dates and telephone numbers, a state (which comes from an enumerated list of values), and azip
code (which has a definable regularity of expression). The memo contains many of the same types of information: adate, a
telephone number, an email address and an "importance” value (which undoubtedly comes from an enumerated list, such as

"low", "medium" or "high"). Applications which process invoices and memos need to raise exceptions if something that was
supposed to be a date or a telephone number does not conform to the rules for valid dates or telephone numbers.

In both cases, validity constraints exist on the content of the instances that are not expressiblein XML DTDs. The limited
datatyping facilitiesin XML have prevented validating XML processors from supplying the rigorous type checking required in
these situations. The result has been that application writers have had to implement type checking in an ad hoc manner. This
specification addresses the needs of both document authors and applications writers for a robust, extensible datatype system for
XML which could be incorporated into XML processors. As discussed below, these datatypes can be used in other XML-related
standards as well.

1.2 Requirements

The [XML Schema Requirements] document spells out concrete requirements to be fulfilled by this specification. This states
that the XML Schema Language must:

1. provide for primitive data typing, including byte, date, integer, sequence, SQL & Java primitive data types, etc.;

2. define atype system that is adequate for import/export from database systems (e.g., relational, object, OLAP);
3. digtinguish requirements relating to lexical data representation vs. those governing an underlying information set;

4. alow creation of user-defined datatypes, such as datatypes that are derived from existing datatypes and which may
constrain certain of its properties (e.g., range, precision, length, mask).

1.3 Scope

This portion of the XML Schema Language discusses datatypes that can be used in a XML Schema. These datatypes can be
specified for element content that would be specified as FPCDATA and attribute values of varioustypesinaDTD. Itisthe
intension of this specification that it be usable outside of the context of XML Schemas for awide range of other XM L-related

activities such as[XSL] and [RDF Schema].

For the most part, this specification discusses what are sometimes referred to as scalar datatypes in that they constrain the
lexical representation of asingle literal. In some cases, as for example in [[DREFS], [ENTTTTES] and [NMTOKENS], the
value may consist of alist or set of literals separated by spaces. Thisis an example of what is called an aggregate datatype.
Future versions of this specification will contain a more general mechanism for defining and using aggregate (collection)
datatypes such as sets, bags and records.

1.4 Terminology
Ed. Note: if necessary, insert aterminology list (e.g., may, must, datatype valid, etc.)
1.5 Organization

Following this introduction, the remainder of this specification is organized into three main sections: describes
the conceptual framework upon which the datatype system is constructed; [Built-in datatypes] details the complete list of
datatypes which all conforming processors must implement; [User -gener ated datatypes] discusses how to define specialized
types from the built-in types and specifies the general rules concerning conforming processors.

2. Type System

This section describes the conceptual framework behind the type system defined in this specification. The framework has been
influenced by the [TSO 11404] standard on language-independent datatypes as well as the datatypes for and for

programming languages such as Java.

The datatypes discussed in this specification are computer representations of well known abstract concepts such as integer and
date. It is not the place of this specification to define these concepts. Many other publications provide excellent definitions.

Two concepts are essential for an understanding of datatypes as they are discussed here: avalue space is an abstract collection
of permitted values for the datatype. Each datatype also has a space of valid lexical representations or literals. A single valuein
the value space may map to several valid literals.

2.1 Datatype

[Definition:] In this specification, a datatype has a set of distinct values, called its value space, and is characterized by facets
and/or properties of those values and by operations on or resulting in those values. Further, each datatype is characterized by a
space consisting of valid lexical representations for each value in the value space.

2.2 Value space

A value space is a abstract collection of permitted values for the datatype. Value spaces have certain properties. For example,
they always have the concept of cardinality and equality and may have the concept of order by which individual values within
the value space can be compared to one another. Value spaces may also support operations on values such as addition.

[Definition:] A value spaceis the collection of permitted values for a given datatype. The value space of a given datatype can
be defined in one of the following ways.

« enumerated outright, sometimes referred to as an extensional definition

http://www.w3.org/TR/REC-xml#dt-chardata
http://www.w3.org/TR/REC-xml#sec-attribute-types

« defined axiomatically from fundamental notions, sometimes referred to as an intensional definition
« defined as the subset of values from an already defined value space with a given set of properties
« defined as a combination of values from some already defined value space by a specific construction procedure

2.3 Lexical Space

In addition to its value space, each datatype has alexical representation space. [Definition:] The lexical space for a datatype
consists of aset of valid literals. Each value in the datatype's val ue space maps to one or more valid literalsin itslexical space.
For example, "100.0" and "1.0E2" are two different representations for the same value. Depending on the situation, either or
both of these representations might be acceptable. The type system defined in this specification provides a mechanism for
schema designersto control the value set as well as the acceptable lexical representations of the values in the value space of a
datatype. Each [Primitive datatypes] definition includes a detailed description of the default lexical space.

2.4 Characterizing operations

Many different datatypes may share the same value space. As aresult, adatatypeis only partially defined by its value space.
[Definition:] The characterizing oper ations for a datatype are those operations (such as "add" or "append") on or resulting in
values of the datatype which distinguish this datatype from other datatypes having value spaces which are identical except
possibly for substitution of literals.

Characterizing operations can be useful in choosing the appropriate datatype for particular purposes, such as mapping to or from
common programming languages or database environments.

Ed. Note: Currently, no characterizing operations are defined on the built-in datatypes provided by this
specification; additionally, there is no means to specify characterizing operations on user-generated datatypes. This
will be addressed in a future draft.

This discussion of characterizing operations in the definition of datatypeisfor pedagogical purposes only and does not imply
that conforming processors must implement those operations, nor doesit imply that expressions (containing operators) which
evaluate to a given datatype will be accepted by conforming XML processors.

2.4.1 Equal

Every value space supports the notion of equality, with the following rules:

« for any two instances of values from the value space (a, b), either ais equal to b, denoted a=b, or aisnot equal to b,
denoted a ≠ b;

« thereisno pair of instances (a, b) of values from the value space such that both a=b and a≠ b;
« for every value afrom the value space, a= &;

« for any two instances (a, b) of values from the value space, a=bif and only if b = g

« for any threeinstances (a, b, ¢) of values from the value space, if a=bandb=c, thena=c.

On every datatype, the operation Equal is defined in terms of the equality property of the value space: for any values a, b drawn
from the value space, Equal(a,b) istrueif a=b, and false otherwise.

2.5 Facets

[Definition:] A facet isasingle defining aspect of a concept or an object. Generally speaking, each facet of an item
characterizes that item along independent aspects or dimensions.

The facets of a datatype serve to distinguish those aspects of one datatype which differ from other datatypes. Rather than being
defined solely in terms of a prose description the datatypes in this specification are defined in terms of the synthesis of facet
values which together determine the value space and properties of the datatype.

Facets are of two types: fundamental facets that define the datatype and non-fundamental or constraining facets that constrain
the permitted values of a datatype.

2.5.1 Fundamental facets

Datatypes are characterized by properties of their value spaces. These optional properties are discussed in this section. Each of

these properties give rise to a facet that servesto characterize the datatype.
2.5.1.1 Order

[Definition:] A value space, and hence a datatype, is said to be ordered if there exists an order relation defined for that value
space. Order relations have the following rules:

« for every pair (a, b) from the value space, either a≤ bor b ≤ a, ora=b;
« for every triple (a, b, c) from the value space, if a≤ band b ≤ ¢, then a≤ c.

If avaue spaceis ordered, then the datatype will have a corresponding [Char acterizing operations], called InOrder(a, b),
defined by:
« for every (a, b) from the value space, InOrder(a, b) istrue if a≤ b, and false otherwise.

There may exist several possible order relations for a given value space. Additionally, there may exist multiple datatypes with
the same value space. In such cases, each datatype will define a different order relation on the value space.

Ed. Note: Currently, no order relations are defined on the built-in datatypes provided by this specification;
additionally, there is no means to specify an order relation on user-generated datatypes. Thiswill be addressed in a
future draft.

2.5.1.2 Bounds

Some ordered value spaces, and hence some datatypes, are said to be bounded. [Definition:] A value space is bounded above if
there exists a unique value U in the value space such that, for all values v in the value space, v ≤ U. Thevalue U issaid to be
an upper bound of the value space. [Definition:] A value spaceis bounded below if there exists aunique value L in the space
such that, for al valuesv in the value space, L ≤ v. The value L isthen said to be alower bound of the value space.

[Definition:] A datatype is bounded if its value space has both an upper and a lower bound.
2.5.1.3 Cardinality

[Definition:] Every value space has associated with it the concept of cardinality. Some value spaces are finite, some are
countably infinite while still others are uncountably infinite. A datatype is said to have the cardinality of its value space. It is
sometimes useful to categorize value spaces (and hence, datatypes) as to their cardinality. There are three significant cases:

« value spacesthat arefinite
« value spaces that are countably infinite and exact (see [Exact and Approximate])

« value spaces that are countably infinite and approximate (see [Exact and Approximate])

Every conceptualy finite value space is necessarily exact. No computational datatype is uncountably infinite.

Ed. Note: Currently, cardinality is not specified for the built-in datatypes provided by this specification;
additionally, there is no means to specify a cardinality on user-generated datatypes. Thiswill be addressed in a
future draft.

2.5.1.4 Exact and Approximate

The computational model of a datatype may limit the degree to which values of the datatype can be distinguished. If every value
in the value space of the conceptual datatype is distinguishable in the computational model from every other value in the value
space, then the datatype is said to be exact.

Certain mathematical datatypes having values which do not have finite representations are said to be approximate, in the
following sense:

Let M be the mathematical datatype and C be the corresponding computational datatype, and let P be the mapping
from the value space of M to the value space of C. Then for every value V' in C, thereisacorresponding value v in
M and areal value h such that P(x) = v' for all X in M such that |v - x| <h. That is, V' is the approximation in C to
al valuesin M which are "within distance h of value v". Furthermore, for at least one value v' in C, there ismore
than one valuey in M such that P(y) = v' And thus C is not an exact model of M.

In this specification, all approximate datatypes have computational models which specify, via parametric values, a degree of
approximation, that is, they require a certain minimum set of values of the mathematical datatype to be distinguishable in the
computational datatype.

Ed. Note: Currently, exactness is not specified for the built-in datatypes provided by this specification;
additionally, there is no means to specify a exactness for user-generated datatypes. Thiswill be addressed in a
future draft.

2.5.1.5 Numeric

A datatype is said to be numeric if its values are conceptually quantities (in some mathematical number system). A datatype
whose values do not have this property is said to be non-numeric.

2.5.2 Constraining or Non-fundamental facets

Constraining facets are optional properties that can be applied to a datatype to (further) constrain its value space. Constraining
the val ue space consequently constrains the allowed lexical representations. Adding constraining facets to a[Base type] is used

to define [User -gener ated datatypes].

Ed. Note: should we consider units/dimensionality now? or wait for afurther draft? Note that
implicitly has units.

2.5.2.1 Length

[Definition:] For the[siring] datatype, length specifies the maximum number of allowable characters in the string. For the
datatype it specifies the maximum length in bytes.

Ed. Note: We need to ultimately reconcile the notion of string length with the resolution of the i18n issues around
character, indexing, etc.

2.5.2.2 Maximum Length

[Definition:] The maxlength facet indicates the maximum length, in bytes, of a[string] datatype for which the [ength facet is
not specified.

2.5.2.3 Lexical representation

The datatypes defined in this specification are defined in terms of abstract value spaces and their properties as opposed to how
values are lexically represented in XML instances. However, the lexical representation of valuesis of prime importance in many
applications. Because of this importance, each [Primitive datatypes] definition includes a detailed description of its default
[Cexical Space]. [Definition:] The lexical representation facet can be used to constrain the allowable representations, or
literals, for values of a datatype. The meaning of the lexical representation facet depends on the datatype to which it is applied.

For example, for [string], values for the lexical representation facet are either [Pictures] or [Regular Expressions], while for
[dateTime], values are derived from [TSO 8601] and [SOL].

2.5.2.4 Enumeration

[Definition:] Presence of an enumer ation facet constrains the value space of the datatype to one of the specified list. The
enumeration facet can be applied to any datatype. No order or any other relationship isimplied between the elements of the
enumeration list.

2.5.2.5 maxInclusive

[Definition:] The maxl nclusive facet determines the upper bound of the value space for a datatype with the property.

The maximum value specified with this facet isinclusive in the sense that the value specified for the facet isitself included in
the value space for the datatype.

2.5.2.6 maxExclusive

[Definition:] The maxExclusive facet determines the upper bound of the value space for a datatype with the property.
The maximum value specified with this facet is exclusive in the sense that the value specified for the facet isitself excluded
from the value space for the datatype.

2.5.2.7 minlInclusive

[Definition:] The minlnclusive facet determines the lower bound of the value space for a datatype with the property.

The minimum value specified with this facet isinclusive in the sense that the value specified for the facet isitself included in the
value space for the datatype.

2.5.2.8 minExclusive

[Definition:] The minExclusive facet determines the lower bound of the value space for a datatype with the property.
The minimum value specified with this facet is exclusive in the sense that the value specified for the facet isitself excluded from
the value space for the datatype.

2.6 Datatype dichotomies

It is useful to categorize the datatypes defined in this specification aong various dimensions, forming a set of characterization
dichotomies.

2.6.1 Atomic vs. aggregate datatypes

Thefirst distinction to be made is that between atomic and aggr egate datatypes.
« [Definition:] Atomic datatypes are those having values which are intrinsically indivisible.

« [Definition:] Aggregate datatypes are those having values which can be decomposed into two or more component
values.

For example, adate that is represented as a single character string could be the value of an atomic date datatype; while another
date represented as separate "month", "day" and "year" elements would be the value of an aggregate date datatype. Not
surprisingly, the distinction is analogous to that between an XML element whose content model is #PCDATA and one with
element content.

As discussed above, this specification focuses mainly on atomic datatypes. Later versions will address aggregate datatypesin

more detail. Note that the XML attribute types [[DREFS], [ENTTTTES] and [NM TOKENS] can be thought of as aggregate
(list) types.

A datatype which is atomic in this specification need not be an "atomic" datatype in any programming language used to
implement this specification.

2.6.2 Primitive vs. generated datatypes
« [Definition:] Primitive datatypes are those that are not defined in terms of other datatypes; they exist ab initio.
« [Definition:] Generated datatypes are those that are defined in terms of other datatypes.

For example, a[number] is awell defined mathematical concept that cannot be defined in terms of other datatypes while a
isaspecia case of the more general datatype [dateTTme].

The datatypes defined by this specification fall into both the primitive and the generated categories. It isfelt that ajudiciously
chosen set of primitive datatypes will serve the widest possible audience by providing a set of convenient datatypes that can be
used asis, aswell as providing arich enough base from which the variety of datatypes needed by schema designers can be
generated.

A datatype which is primitive in this specification need not be a"primitive" datatype in any programming language used to
implement this specification.

2.6.2.1 Base type

[Definition:] Every generated datatype is defined in terms of an existing datatype, referred to as the base type. Base types may
be either primitive or generated.

In the example above, isreferred to as a subtype of the base type [dateTime]. The value space of a subtype is a subset of
the value space of the base type.

2.6.3 Built-in vs. user-generated datatypes

« [Definition:] Built-in datatypes are those which are entirely defined in this specification, and may be either primitive or
generated;

« [Definition:] User-generated datatypes are those generated datatypes whose base types are built-in datatypes or
user-generated datatypes and are defined by individual schema designers by giving values to constraining facets.

Conceptually thereis no difference between the built-in generated datatypes included in this specification and the
user-generated datatypes which will be created by individual schema designers. The built-in generated datatypes are those which
are believed to be so common that if they were not defined in this specification many schema designers would end up
reinventing them. Furthermore, including these generated datatypes in this specification serves to demonstrate the mechanics
and utility of the datatype generation facilities of this specification.

A datatype which is built-in in this specification need not be a "built-in" datatype in any programming language used to
implement this specification.

3. Built-in datatypes

Issue (nulls): A future revision of this specification will provide a general mechanism for specifying the difference
between "null" and "not present” for al datatypes. Exactly what that mechanism will be is an open issue at this
point.

3.1 Namespace considerations

The built-in datatypes defined by this specification are designed so that systems other than XML Schema may be able to use
them. To facilitate such usage, the built-in datatypes in this specification come from the XML Datatype namespace, the
namespace defined by this specification. This appliesto both built-in primitive and built-in generated datatypes.

NOTE: The exact URLs for the namespace(s) defined by this W3C specification is still an open issue. Thisissue
has been raised with the XML Coordination Group (issue 1999-0201-07 Standardizing W3C namespace URIs) for
genera coordination and resolution.

Each user-generated datatype is al so associated with a unique namespace. However, user-generated datatypes do not come from
the XML Datatype namespace; rather, they come from the namespace of the schemain which they are defined. Note that
associating a namespace with a user-generated datatype is not a general purpose extensibility mechanism and does not apply to
primitive datatypes. Suppose a schema author wanted to introduce a new set of primitive datatypes, say a core set of
mathematical datatypes not based on the Number datatype defined as a built-in primitive by this specification. Such a schema
author might try to define those datatypes, associate a unique namespace with them and expect schema processors to understand
them. Unfortunately, such a scenario would not work. Each such datatype would need specialized validation code and there are
still many unresolved issues regarding standard mechanisms for sharing such code.

As described in more detail in [User-gener ated datatypes], each user-generated datatype must be defined in terms of abase
type included in this specification or a user-generated datatype by assigning facets which serve to constrain the value set of the
user-generated datatype to a subset of the base type. Such a mechanism works because al schema processors are required to be
able to validate datatypes defined by subsetting the value space of a datatype included in this specification.

3.2 Primitive datatypes

The primitive datatypes are described below. For each primitive datatype we discuss the fundamental facets, if any, and the
constraining facets, if any.

3.211D
Thisisthe ID datatype from [XML]. It applies only to attribute values. ID has no fundamental or constraining facets.

Validity Constraint: ID

Values of type [TD] must match the production. A name must not appear more than once in an XML document as avalue
of thistype; i.e., ID values must uniquely identify the elements which bear them.

Ed. Note: There are severa situations in which we need better reference mechanisms than those provided by ID
and IDREF/IDREFS. For example, it would be desirable to extend |Ds and |DREFs to be typed and scoped to

http://www.w3.org/TR/REC-xml#NT-Name

better represent primary key/foreign key relationships in a database. XSL has recently introduced the concept of
xsl:key and xdl:keyref whereby a single property of an element can be used as a key. We need such a mechanism
for XML asawhole and it would be nice if this were extended to support multi-part keys.

3.2.2 IDREF

Thisis the IDREF datatype from [XML]. It applies only to attribute values. IDREF has no fundamental or constraining facets.

Validity Constraint: IDREF

Values of type IDREF must match the production; each must match the value of an ID attribute on some element
in the XML document; i.e. IDREF values must match the value of some ID attribute.

3.2.3 IDREFS

Thisisthe IDREFS datatype from [XML]. It applies only to attribute values. IDREFS has no fundamental or constraining
facets.

Validity Constraint: IDREFS

Values of type IDREFS must match each must match the value of an ID attribute on some element in the XML
document; i.e. IDREF values must match the value of some ID attribute.

3.2.4 ENTITY

Thisisthe ENTITY datatype from [XML]. It applies only to attribute values. ENTITY has no fundamental or constraining
facets.

Validity Constraint: Entity Name

Values of type ENTITY must match the production; each must match the name of an declared in
the schema.

3.2.5 ENTITIES

Thisisthe ENTITIES datatype from [XML]. It applies only to attribute values. ENTITIES has no fundamental or constraining
facets.

Validity Constraint: Entity Names

Values of type ENTITIES must match the production; each must match the name of an declared
in the schema.

3.2.6 NMTOKEN

Thisisthe NMTOKEN datatype from [XML]. It restricts the contents to avalid XML name. NMTOKEN applies only to
attribute values and has no fundamental or constraining facets.

Validity Constraint: Name Token
Values of type NMTOKEN must match the Nmiokerj production; values of type NMTOKENS must match Nmfokens.

I ssue (nmtoken-primitive-or-gener ated): should NMTOKEN be defined as a primitive (as above) or as a subtype
of with aregular expression facet such as "[a-zA-Z0-9_-]+" (or whatever the regular expression actually

should be to match the Nmtokerj production)? A similar issue also appliesto all of the XML attribute types, [TD],
[TDREF], [[DREFS], [ENTTTY], [ENTTTTES] and [NOTATTON].

3.2.7 NMTOKENS

Thisisthe NMTOKENS datatype from [XML]. It restricts the contents to alist of valid XML names. NMTOKENS applies only
to attribute values and has no fundamental or constraining facets.

http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#NT-Names
http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#dt-unparsed
http://www.w3.org/TR/REC-xml#NT-Names
http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#dt-unparsed
http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtokens
http://www.w3.org/TR/REC-xml#NT-Nmtoken

Validity Constraint: Name Tokens
Values of type NMTOKENS must match the production.

3.2.8 NOTATION

Thisisthe NOTATION datatype from [XML]. NOTATION has no fundamental or constraining facets.
Validity Constraint: Notation Attributes

Values of this type must match one of the hotafion names included in the declaration; all notation names in the declaration must
be declared.

3.2.9 string

[Definition:] The string datatype represents character stringsin XML. The value space of the string datatype is the set of finite
sequences of UCS characters ([TSO 10646] and [Unicode]). A UCS character (or just character, for short) is an atomic unit of
communication; it is not further specified except to note that every UCS character has a corresponding UCS code point, which is
an integer.

3.2.9.1 Lexical Representation

The string datatype has an optional constraining facet called [L exical repr esentation] The value of thisfacet is either apicture
or aregular expression. Picture types are discussed in Appendix and regular expression constraints are discussed in
Appendix [Regular Expressions]. If thisfacet is not present, there is no restriction on the lexical representation.

Issue (picture-or-regex): Should the values of the [L exical representation] facet be pictures, regexs, both or
some other mechanism?

3.2.9.2 Length

The string datatype has an optional constraining facet called [engtH. If length is specified we have afixed length character
string. If length is not specified we have a variable length character string.

3.2.9.3 Maximum Length

The string datatype has an optional constraining facet called maxlength. If maxlength is specified for avariable length string it
represents an upper bound of the length of the string. Both [ength and maxIengtH cannot be defined for the same datatype. The
absolute maximum length of variable length character string depends on the XML parser implementation.

3.2.9.4 Maximum and Minimum Values

The string datatype a so has the following constraining facets:
« maxinclusive
« maxExclusive
« mininclusive
o minExclusive

Clearly, the effect of these constraining facets depends on the collating sequence used to define the property for strings.

Ed. Note: Theissue of collating sequences for stringsis complex. It will be discussed in detail in a subsequent
version of this specification.

3.2.10 boolean

[Definition:] The boolean datatype has the value space required to support the mathematical concept of binary-valued logic:
{true, false}.

Issue (three-valued-logic): Do we need to add a third value "unknown" to the value space to support three-valued
logic? SQL supports this. Will the general mechanism for "nulls' to be defined in afuture revision handle this
case?

http://www.w3.org/TR/REC-xml#NT-Nmtokens
http://www.w3.org/TR/REC-xml#Notations

3.2.10.1 Lexical Representation

An instance of a datatype that is defined as boolean can have the following legal |exical values {0, 1, true, false, yes, no}. If a
lexical representation facet is not present in the datatype definition then all these lexical values are allowed. A lexica
representation facet can be added to the datatype definition to restrict the lexical valuesto a subset of the above.

3.2.11 number

[Definition:] The number datatype is the standard mathematical concept of number, including the integers, reals, rationals, etc.

Number has the following constraining facets:

« maxinclusive

« maxExclusive

« mininclusive

o minExclusive
Ed. Note: The motivation for the number datatype was to allow the user to specify avalue that could take any legal
lexical representation for anumeric quantity. Thisturns out to be problematic, however, due to the large number of
extant representations some of which cannot be distinguished without extra information. Having to define alexical

representation facet for number seems to defeat its purpose and, thus, the number datatype may be removed from
this specification.

3.2.12 dateTime

[Definition:] The dateTime datatype represents a combination of date and time values as defined and in
encoded as asingle string. An optional facet specifiesthe lexical representation. If thisis not specified, all lexical representation
formats conforming to Section 5 and are acceptable.

I ssue (non-gr egor ian-dates): Both standards are limited to Gregorian dates. As an internalization issue, do we
want support for non-gregorian dates? This issue also applies to [dat€], [time] and [timePeriod].

3.2.12.1 Lexical Representation

If this facet is specified its value must correspond to alegal representation for combinations of dates and times as defined in
and sections 5.1 and 5.4 of [TSO 8601].

I ssue (dateTime-lexical-r epresentation): We need to spell out the various SQL and I SO 8601 representations
(e.g., CCYYMMDD and CCYY-MM-DD, etc.) in detail here, or in a (non-normative) appendix. We may also want
to support additional formats e.g. neither SQL or 1SO 8601 seems to support the 12/25/1999 format for date. A
lexical representation for dateTime as a collection of elements may aso be desirable. Thisissue aso appliesto
[date], [time] and [timePeriod].

3.2.13 binary

[Definition:] The binary datatype represents strings (blobs) of binary data. It has two fundamental facets. The optional

facet specifies the length of the data. If the length is not specified the default is unlimited length. The optional "encoding” facet
specifies the encoding which may be "hex" for hexadecimal digits or "base64" for MIME style Base64 data.

3.2.14 uri

[Definition: | The uri datatype represents a Universal Resource |dentifier (URI) Reference as defined in [REC 2396]. It has no
fundamental or constraining facets.

I ssue (uri-scheme-facet): should we have afacet to alow alimitation to a specific scheme? It might be useful to
ableto say that something was not only a URI, but that it was a"mailto" and not a"http://...".

3.3 Generated datatypes

This section gives conceptual definitions for all built-in generated datatypes defined by this specification, including a
description of the facets which apply to each datatype. The concrete syntax used to define generated datatypes (whether built-in
or user-generated) is given in section [User-gener ated datatypes] and the compl ete definitions of the built-in generated

datatypes (written in that concrete syntax) are provided in Appendix [Built-in Gener ated Datatype Definitions (nor mative)].

3.3.1integer

[Definition:] Theinteger datatype corresponds to the standard mathematical concept of integer numbers. The value space of the
integer datatype is the infinite set {-∞,...,-2,-1,0,1,2,...,∞} although computer implementations restrict thisto afinite
set. The basetype of integer is[number].

Integer has the following constraining facets:
« maxinclusive
« maxExclusive
« mininclusive
o minExclusive

3.3.1.1 Lexical representation

If this optional required facet is not specified, standard integer representations are acceptable. These consist of a string of digits
with an optional sign or optional parentheses to indicate a negative number. Optional commas may appear after every three
digits. For example: -1, 12678967543233, (100,000).

This facet must be specified if other lexical representations are desired such as the European format that allows periods after
every three digits.

3.3.2 decimal

[Definition:] The decimal datatype restricts allowable values to numbers with an exact fractional part. The basetype of decimal
is [Tumber].
Decimal has the following required fundamental facets:

« precision: the total number of digitsin the number.

« scae the number of digits after the decimal point. Must be less than or equal to precision.

Decimal has the following constraining facets:
« maxinclusive
« maxExclusive
« mininclusive
« minExclusive

3.3.2.1 Lexical representation

If this optional required facet is not specified, standard decimal representations are acceptable. These consist of a string of digits
separated by a period as adecimal indicator, in accordance with the scale and precision facets, with an optional sign or optional
parentheses to indicate a negative number. Optional commas may appear after every three digits. For example: -1.23,
12678967.543233, (100,000.00).

This facet must be specified if other lexical representations are desired such as the European format that uses a commainstead
of aperiod as the decimal indicator.

3.3.3 real

[Definition:] The real datatype is a computational approximation to the standard mathematical concept of real numbers. These
are often called floating point numbers. The basetype of real is[number].

Real has the following constraining facets:

o maxinclusive
o MmaxExclusive
o mininclusive

o minExclusive

3.3.3.1 Lexical representation

Real values have asingle standard lexical representation consisting of a mantissa followed by the character "E" followed by an
exponent. The exponent must be an integer with optional sign without parentheses or commas. The mantissa must be a decimal
number with optional sign without parentheses or commas. For example: -1E4, 1267.43233E12, 12.78E-2.

3.3.4 date

[Definition:] The date datatype represents a date value as defined in encoded as asingle string. The basetype of
dateis[dateTime]. An optional fundamental facet specifiesthe lexical format. If thisis not specified, all lexical representation
formats conforming to Section 5.2 and are acceptable. For example, 1985-04-12, 19850412.

I ssue (other-date-r epresentations): Both 1SO and SQL allow only the minus sign, "-", as separator? Do we want
to allow other separators such as the solidus, "/" or colon, ":" ? We also need to discuss the aggregate representation
for dates.

3.3.4.1 Lexical Representation

This optional facet can be used to restrict the allowed lexical representations. Its value must correspond to alegal representation
for dates as defined Section 5.2 of or [SOL].

3.3.5time

[Definition:] The time datatype represents atime value as defined in encoded as a single string. The basetype of
dateis[dateTime]. An optional fundamental facet specifiesthe lexical format. If thisis not specified, all lexical representation
formats conforming to Section 5.3 and are acceptable. For example, 23:20:50, 232050.

3.3.5.1 Lexical Representation

This optional facet can be used to restrict the allowed lexical representations. 1ts value must correspond to alegal representation
for time as defined Section 5.3 of or [SOL].

3.3.6 timePeriod

[Definition:] The timePeriod datatype represents a period of time as defined in encoded as asingle string. The
basetype of date is[dateTime]. A timePeriod is one of:
« aduration of time with a specific start and end. For example, 19990412T232050/19990415T021000, in
syntax, where the start and end are separated by the solidus, "/*, and the date and time by the letter "T".

« aduration of time without a specified start and end (e.g., 1 second, 3 months) This corresponds to the [SOL] datatype
"interval”. For example, 2001-01-05-12.00.00.0000 in SQL syntax.

« aduration of time with a specific start but not a specific end. For example, 19990412T232050/P1Y 3M15D12H30M in
syntax.

« aduration of time with a specific end but not a specific start, For example, PLY 3M 15D12H30M/19990415T021000 in
syntax.

The formats need to be extended to support:
« A minus sign immediately following the "P" to indicate negative periods.

An optional fundamental facet specifies the lexical format. If thisis not specified, al lexical representation formats conforming
to Section 5.5 and are acceptable.

3.3.6.1 Lexical Representation

If this facet is specified its value must correspond to alegal representation for time periods as defined in section 5.5 of

BE01] or [SQL].
4. User-generated datatypes

A user-generated datatype can be defined from a built-in datatype by adding optional constraining facets. For example, someone
may want to define a datatype called heightlninches from the built-in datatype integer by supplying maxinclusive and
minlnclusive facets. In this case, heightlnlnches is the name of the new user-generated datatype, integer is its base type and

maxI nclusive and minlnclusive are the constraining facets.

<dat at ype nane="hei ght | nl nches" >
<baset ype name="real " URI ="http://ww. w3. or g/ xm schenas/ dat at ypes" />
<m nl ncl usi ve>
0.0
</ m nl ncl usi ve>
<maxl| ncl usi ve>
120.0
</ maxl ncl usi ve>
</ dat at ype>

Ed. Note: The abstract syntax proposed here (and the productions) are preliminary as they allow datatype
definitions which are logically inconsistent (e.g., they alow numeric facets on non-numeric datatypes). Thiswill be
corrected in future drafts, as the XML Schema language comes to allow the specification of tighter constraints.

Ed. Note: This section needs more explanatory text describing the productions and their relationship to the
conceptual framework described in sections[Type System] and [Built-in datatypes].

Datatype definitions

[1] dat at ypeDef n:: = NCNane [Constraint: [Uniqué
paset ype dat at ype definitions]
Facets

[2] baset ype :: =dat at ypenang

[3] facets::=prdered | [Constraint: Appropriateé

Facets |

The following is the definition for a possible built-in generated datatype "currency”. Such a datatype definition could appear in
the schema which defines datatypes for XML Schemas and shows that a generated datatype can have the same value space asits
basetype, which might mean that it isjust an alias or renaming of the basetype. In this case, the specification would probably
also define some "semantics' for currency which went beyond those of decimal.

<dat at ype nanme="currency" >
<baset ype name="dt: deci mal "/ >
</ dat at ype>

Constraint: Unique datatype definitions

The name of the datatype being defined must be unique among the datatypes defined in the containing schema.
Constraint: Appropriate facets

If the value space of the basetype is ordered, then only ordered facets may appear in a datatype definition.

Datatype names

http://www.w3.org/TR/REC-xml-names#NT-NCName

[4] dat at ypenane : : =pui [{1 nnang |
user gennang

[5] builtinnane::=1D | |DREF |
| DREFS |
NMTOKEN |
NMTOKENS |
ENTI TY |
ENTI TI ES |
string | uri |
bi nary |
nunber |
i nteger | real
| deci mal |
dat eTi me |
date | tine |
ti mePeri od

[6] usergennane:: =NCNang [Constraint: De pe
pans]

NOTE: The production labeled datatypename above is not to be confused with that labeled datatypeName in
Section 3.3.1 of [Structural Schemas].

Constraint: Datatype name

The name specified must be the name of a datatype defined in the schema in which the user-generated datatype is defined.

Facets

[7] ordered::=pounds| | puneric

[8] unordered::=[exicalRepresentation | enunmeration | [ength
| pexLength
Ordered facets
[9] bounds : : =(mnlnclusive |
maxI ncl usi ve) ?

(PMnExclusive |
maxExcl usi ve)) ?

[10] maxI ncl usi ve:: =[iteral Val ue [Constraint:
Lypd |

[11] minlnclusive::=[iteralVal ug [Constraint:
Eypd |

[12] mi nExcl usive::=[iteral Val ue [Constraint:
Eypd |

[13] maxExcl usive:: =[iteral Val ug [Constraint:
Lypd |

Congtraint: Literal type
The literal value specified must be of the same type as the basetype in the datatype definition in which this facet appears.

Numeric facets

http://www.w3.org/TR/REC-xml-names#NT-NCName
http://www.w3.org/1999/05/xml-schema-1/structures.html#nt-schemaRef

[14] nuneric::=precision | scale€e
[15] precision::=[ntegerLiterall
[16] scale::=[ntegerLiteral]

The following is the definition for a user-generated datatype which could be used to represent monetary amounts for usein a
financial management application which does not allow figures above $1M and alows only whole cents. This definition would
appear in a schema authored by an end-user (i.e., not in the schema for schemas) and shows how to define a datatype by
specifying facet values which constrain the range of the basetype in a manner specific to the basetype. Thisis different than
specifying max/min values as discussed before.

This type could just as well have been defined with the potential built-in generated type "currency”, defined above, asits
basetype,

<dat at ype nanme="anount ">
<baset ype name="deci mal" URI ="http://ww. wW3. or g/ xml schemas/ dat at ypes" />
<pr eci si on>
8
</ pr eci si on>
<scal e>
2
</ scal e>
</ dat at ype>

Unordered facets

[17] length::=[ntegerliterall]

[18] maxLength::=integerLiterall

[19] enureration::=[iterall+

[20] | exi cal Representation::=[exicall+

[21] I exi cal ::=]exical Spec| [Constraint:
Specification]

Constraint: Lexical specification

The lexical specification must be of the "correct” kind, i.e., a dateTime lexical representation for datatypes generated from

etc

The following example is a definition for a user-generated datatype which limits the possible lexical representations of datesto
the two main forms found in section 5.2.1.1. This datatype definition would appear in a schema authored by an

end-user and shows how to define a datatype by restricting the lexical form of its literals. The example a so shows how this
datatype would be used in an element definition.

<dat at ype name="nyDat e" >
<baset ype nanme="date" URI="http://ww. w3. org/xm schenas/ dat at ypes" />
<l exi cal Repr esenati on>
<| exi cal >
CCYYMVDD
</l exi cal >
<| exi cal >
CCYY- Mt DD
</l exi cal >
</l exi cal Repr esenat i on>
</ dat at ype>

<el ement Type nane="shi ppi ngDat e" >
<dat at ypeRef nanme="nyDate" >

</ el ement Type>

Given the definitions above, the following might occur in an instance document.

<sh| ppi ngDat €>19990510</ shi ppi ngDat e>

<sh| ppi ngDat e>1999- 05- 10</ shi ppi ngDat e>

Both of the above shipping dates refer to "abstract” date of May 10, 1999

The following example is a datatype definition for a user-generated datatype which limits the possible literal values of datesto
the four US holidays enumerated. This datatype definition would appear in a schema authored by an end-user and shows how to
define a datatype by enumerating the values in its value space. The enumerated values must be type-valid literals for the
basetype.

<dat at ype name="hol i days" >
<baset ype nanme="date" URI ="http://ww. w3. or g/ xm schenas/ dat at ypes" />
<enuner ati on>
<literal >
-0101 <I-- New Year's day -->
</literal >
<literal >
-0704 <l-- 4th of july -->
</literal >
<literal >
-1125 <l -- Thanksgiving -->
</literal >
<literal >
-1225 <l-- Christmas -->
</literal >
</ enuner ati on>
</ dat at ype>

Literals

[22] literal ::=[iteral Val ue

[23] literal Value::=pgtringliteral] | punericliteral] |
dateTineLiteral| | uriLiterall

[24] stringLiteral ::=(see [string]]

[25] nunericLiteral ::=[ntegerliteral] | realLiteral] |

decimal Literall
[26] integerLiteral ::=(see [integer]]

[27] real Literal ::=see
[28] decimal Literal ::=see [decinmal [}

[29] dateTineLiteral ::=(see [dateTi ne[])
[30] uriLiteral ::=(see [uri]l)

I ssue (definition-overriding): should it be possible to specify avalue for a non-fundamental facet on an element
or attribute of a given datatype in an instance document or in an el ement or attribute definition in a schema (see
Section 3.4.4 of [Structural Schemas])? If so, what syntax should be used? This needs to be coordinated with the

structural schema editorial team.

5. Conformance

The XML specification [XML] defines two levels of conformance. Well-formed documents conform to valid XML syntax but
may or may not obey the constraints defined by aDTD. Valid XML documents conform to the structure laid downina DTD.
Thus, if aDTD defines an attribute as an 1D, instances of XML documents conforming to the DTD can only be valid if the
values of such attributes are valid XML names and are unique in the document. By introducing additional datatypesto XML,
this specification extends the notion of validity in the sense that values defined to have a certain datatype in the schema must
conform to the lexical representations allowed for that datatype. It also needs to be said that that is al that is expected of an
XML processor. There are no expressions on datatypes. Neither are there operations on datatypes.

In some cases, datatypes will not be specified in the schema but will be specified in XML documents. In other cases, datatypes
in the documents will be specialized versions of datatypes specified for the same component in the schema. Validating XML
processors should be able to validate the format of valuesin XML documents in these cases as well.

Appendices

A. Schema for Datatype Definitions (normative)

<?xm version='1.0"?>
<! DOCTYPE schenma PUBLIC '-//WBC//DTD XSDL 19990506/ / EN
"http://ww. wW3. org/ 1999/ 05/ 06- xsdl / WD- xsdl . dtd' >

<schema xm ns=' http://ww. w3. org/ TR/ 1999/ WD- xdt | - 19990506. xsd
name=' http://ww. w3. or g/ TR/ 1999/ WD- xdt | - 19990506. xsd
version='0.1"'>
<nmodel Group nane="ordered" >
<choi ce>
<nodel Gr oupRef nanme="bounds"/>
<nodel G oupRef nanme="nuneric"/>
</ choi ce>
</ model G oup>
<nodel G oup nane="bounds" >
<choi ce>
<sequence>
<el enent TypeRef nanme="ni nl ncl usi ve" m nCccur="0" nmaxCccur="1"/>
<el ement TypeRef nanme="nmaxl ncl usi ve" m nCccur="0" nmaxCccur="1"/>
</ sequence>
<sequence>
<el ement TypeRef nanme="ni nExcl usi ve" m nOccur="0" nmaxCccur="1"/>
<el enent TypeRef nanme="naxExcl usi ve" m nCccur="0" nmaxCccur="1"/>
</ sequence>
</ choi ce>
</ nodel Gr oup>
<nmodel G oup nane="nuneric">
<choi ce>
<el ement TypeRef nane="preci sion"/>
<el ement TypeRef nane="scal e"/>
</ choi ce>
</ model G oup>
<nodel G oup nane="unor der ed" >
<choi ce>
<nodel Gr oupRef nanme="1|exi cal Representati on"/>
<nodel G oupRef nanme="enuneration"/>
<nodel G oupRef nanme="Iength"/>

<nodel G oupRef nanme="rmaxLengt h"/>
</ choi ce>
</ nodel Gr oup>

<el enent Type nane="dat at ype" >
<sequence>
<el ement TypeRef nane="baset ype"/>
<choi ce m nCccur="0" maxCccur="*">
<nodel G oupRef nanme="ordered"/>
<nodel Gr oupRef nanme="unordered"/>
</ choi ce>
</ sequence>
<attrDecl nane="nane" required="true">
<dat at ypeRef nanme="NMIOKEN'"/ >
</ attrDecl >
<attrDecl nane="export">
<dat at ypeRef nanme="bool ean">
<def aul t >t rue</ def aul t >
</ dat at ype>
</ attrDecl >
</ el ement Type>
<el enent Type nane="baset ype" >
<empty/ >
<attrDecl nane="nane" required="true">
<dat at ypeRef nanme="NMIOKEN'/ >
</ attrDecl >
<attrDecl name="schemaAbbrev">
<dat at ypeRef nanme="NMIOKEN"/ >
</attrDecl >
<attrDecl nanme="schemaNane">
<dat at ypeRef nanme="uri"/>
</ attrDecl >
</ el ement Type>
<el enent Type nanme="nmaxExcl usi ve" >

<dat at ypeRef nane="string"/> <!-- the datatype depends

</ el ement Type>
<el enent Type nanme="m nExcl usi ve" >

<dat at ypeRef name="string"/> <!-- the datatype depends

</ el ement Type>
<el ement Type nanme="nmax| ncl usi ve" >

<dat at ypeRef nanme="string"/> <!-- the datatype depends

</ el ement Type>
<el enment Type name="mi nl ncl usi ve" >

<dat at ypeRef name="string"/> <!-- the datatype depends

</ el ement Type>

<el enment Type name="preci si on">
<dat at ypeRef name="i nt eger"/>

</ el ement Type>

<el ement Type nane="scal e">
<dat at ypeRef name="i nt eger"/>

</ el ement Type>

<el ement Type name="I| engt h" >
<dat at ypeRef nanme="i nt eger"/>

</ el ement Type>

<el enent Type nanme="rmaxLengt h">
<dat at ypeRef nanme="i nteger"/>

</ el ement Type>

<el ement Type nanme="enunerati on">

on

on

on

on

t he

t he

t he

t he

baset ype

baset ype

baset ype

baset ype

<sequence m nCccur="1" maxCccur="*">
<el ement TypeRef nane="literal "/>
</ sequence>
</ el ement Type>
<el ement Type name="literal ">
<dat at ypeRef nanme="string"/>
</ el ement Type>
<el enent Type nane="I| exi cal Represent ati on">
<sequence m nCccur="1" maxCccur="*">
<el ement TypeRef nane="|exi cal "/>
</ sequence>
</ el ement Type>
<el enent Type nanme="I exi cal ">
<dat at ypeRef nanme="string"/>
</ el ement Type>
</ schema>

<l-- the datatype depends on the basetype -->

<l-- the datatype depends on the basetype -->

B. DTD for Datatype Definitions (normative)

<IENTITY % nuneric "precision | scale">

<IENTI TY % bounds " ((m nl ncl usive | minExcl usive)?,
(maxl ncl usi ve | maxExcl usive)?)">

<IENTITY % ordered "%bounds; | %wuneric;">

<IENTI TY % unordered "I exi cal Representation |
| length | maxLength">

enuner ati on

<! ELEMENT dat at ype (basetype,
<I ATTLI ST dat at ype
name NMIOKEN #REQUI RED
export (true|false) "true">

(Yordered; | %nordered;)*)>

<! ELEMENT basetype EMPTY>

<I ATTLI ST baset ype
nanme NMIOKEN #REQUI RED
schemaAbbr ev NMIOKEN #| MPLI ED
schemaNanme CDATA #l MPLI ED>

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

maxExcl usi ve (#PCDATA) >
m nExcl usi ve (#PCDATA) >
mex| ncl usi ve (#PCDATA) >
m nl ncl usi ve (#PCDATA) >

<! ELEMENT
<! ELEMENT

preci si on (#PCDATA) >
scal e (#PCDATA) >

<! ELEMENT
<! ELEMENT
<! ELEMENT

| engt h (#PCDATA) >
maxLengt h (#PCDATA) >
enuneration (literal)+>

<I ELEMENT literal (#PCDATA) >
<! ELEMENT | exi cal Representation (I exical)+>
<! ELEMENT | exi cal (#PCDATA) >

C. Built-in Generated Datatype Definitions (normative)
This section gives the datatype definitions for al built-in generated datatypes. These definitions are to appear in the "schemafor
schemas" and not in schema instances written by end-users.

Ed. Note: this section needs to be expanded to include all built-in generated datatypes defined in

<dat at ype nane="date">
<baset ype name="dat eTi ne" URI ="http://ww. wW3. or g/ xm schenas/ dat at ypes" />
<| exi cal Repr esent ati on>
<l--1S0O 8601 section 5.2.1.1 and SQL-->
<l exi cal >
CCYYMVDD <!-- 19850412 ==> April 12, 1985-->
</ exi cal >
<| exi cal >
CCYY- MM DD<! - - 1985-04-12 ==> April 12, 1985-->
</l exi cal >
<l--]1S0O 8601 section 5.2.1.2-->
<| exi cal >
CCYY-MM <!-- 1985-04 ==> April, 1985-->
</ exi cal >

<l exi cal >
CCYY <l-- 1985 ==> 1985-->
</ | exi cal >
<| exi cal >
CC <l-- 19 ==> the 1900's-->

</l exi cal >
<I--1SO 8601 section 5.2.1.3-->
<l exi cal >

YYMVDD <I-- 850412 ==> April 12, '85 (in the current century)-->
</ exi cal >
<| exi cal >

YY-MM DD <!-- 85-04-12 ==> April 12, '85 (in the current century)-->
</l exi cal >

<l exi cal >
- YYIMWM <l-- -8504 ==> April, "85 (in the current century)-->
</l exi cal >
<| exi cal >
- YY- MM <l-- -85-04 ==> April, "85 (in the current century)-->
</l exi cal >
<l exi cal >
-YY <l-- -85 ==> "85 (in the current century)-->
</ exi cal >
<| exi cal >
- - MVDD <l-- --0412 ==> April 12-->
</l exi cal >
<| exi cal >
--MiDD <!-- --04-12 ==> April 12-->
</l exi cal >
<| exi cal >
-- W <l-- --04 ==> April-->
</l exi cal >
<l exi cal >
---DD <l-- ---12 ==> the 12th-->

</ | exi cal >
<l --]1S0O 8601 section 5.2.2.1-->
<| exi cal >

CCYYDDD <!-- 1985102 ==> April 12, 1985 (i.e., the 102nd day of 1985)-->
</ exi cal >
<l exi cal >
CCYY-DDD <!-- 1985-102 ==> April 12, 1985 (i.e., the 102nd day of 1985)-->
</ exi cal >
<I--1SO 8601 section 5.2.2.2-->
<| exi cal >
YYDDD <l-- 85102 ==> April 12, '85 (in the current century) (i.e., the
102nd day of '85)-->
</ exi cal >
<l| exi cal >
YY- DDD <l-- 85-102 ==> April 12, '85 (in the current century) (i.e., the
102nd day of '85)-->
</l exi cal >
<l exi cal >
- DDD <l-- -102 ==> April 12 (i.e., the 102nd day of the year)-->
</ exi cal >
<I--1SO 8601 section 5.2.3.1-->
<| exi cal >
CCYYWwD <!-- 1985WL55 ==> April 12, 1985 (i.e., the 5th day of the 15th
week of 1985)-->
</ exi cal >
<| exi cal >
CCYY- Ww\w D<! - - 1985-WL5-5 ==> April 12, 1985 (i.e., the 5th day of the 15th
week of 1985)-->
</l exi cal >
<l--1S0O 8601 section 5.2.3.2-->
<l exi cal >
CCYYWwv <!-- 1985W5 ==> the 15th week of 1985-->
</l exi cal >
<| exi cal >
CCYY-Ww <!-- 1985-WL5 ==> the 15th week of 1985-->
</l exi cal >
<I--1SO 8601 section 5.2.3.3-->
<| exi cal >
YYWwD <l-- 85WL55 ==> April 12, '85 (in the current century) (i.e., the
5th day of the 15th week of '85)-->
</l exi cal >
<| exi cal >
YY-Www+ D <!-- 85-WL5-5 ==> April 12, '85 (in the current century) (i.e.
the 5th day of the 15th week of '85)-->
</l exi cal >
<l exi cal >
YYWw <l-- 85WL5 ==> the 15th week in the current century-->
</l exi cal >
<| exi cal >
YY- Wwv <l-- 85-WL5 ==> the 15th week in the current century-->
</ exi cal >

<l exi cal >

- YWwD <l-- -5WI55 ==> April 12, ''5 (in the current decade)-->
</ exi cal >
<| exi cal >

-Y-WwD <!-- -5WL5-5 ==> April 12, ''5 (in the current decade)-->
</l exi cal >
<| exi cal >

- WD <I-- -WL55 ==> April 12 (in the current year)-->

</| exi cal >
<| exi cal >

- Www+ D <l-- -W5-5 ==> April 12 (in the current year)-->
</ exi cal >

<l exi cal >
- Wwwv <I-- -W5 ==> 15th week in the current year-->
</ exi cal >
<| exi cal >
-WD <l-- -W5 ==> Friday (of the current week) (i.e., the 5th day)-->
</l exi cal >
<| exi cal >
---D <l-- ---5 ==> Friday (of any week in any year)-->

</ exi cal >
</l exi cal Repr esent ati on>
</ dat at ype>

D. Pictures

"Pictures', similar to those in [COBOL] picture clauses, can be used to constrain the format of strings and in some cases control

their conversion to numbers. A picture is an aphanumeric string consisting of character symbols. Each symbol, which is usually
one character but may be two characters, is a placeholder that stands for a set of characters. For example, the picture"A" stands
for asingle aphabetic character.

Thefollowing isalist of picture symbols and their meanings.

A
A single alphabetic character.
B
A single blank character.
E
The character E, used to indicate floating point numbers.
S
The leftmost character of a picture indicating a signed number. The characters"+" or "-" may appear in the S position.
Vv
Animplied decimal sign. Theinput 1234 validated by a picture 99V 99 is converted into 12.34.
X
Any character.
Z
The leftmost leading numeric character that can be replaced by a space character when the content of that content position
isazero.
9
Any numeric character.
1
Any boolean character (0 or 1).
0/,-,.,and,
represent themselves.
cs

A placeholder for an appropriate currency symbol.

Here are some examples of picture constraints

$123,45.90 satisfies picture $999, 99. 99

$123,45.90 satisfies picture XXXX, XX. XX

123-45-5678 satisfies picture 999-99-9999 (Social Security Nunber)
24E80 satisfies picture 99E99 (fl oating point)

23.45 satisfies picture 99.99

2345 satisfies picture 99V99 (translates to 23.45)

E. Regular Expressions

Ed. Note: The following description of regular expressionsis copied (with slight modification) by permission from
the documentation of the [Perl] programming language.

I ssue (perl-regex): Should the final recommendation use Perl's regular expression "extensions'?

[Definition:] Regular expressions, similar to those in [Per], can be used to constrain the format of strings. A regular
expression is an alphanumeric string consisting of character symbols. Each symbol, which is usually one character but may be
two characters, is a placeholder that stands for a set of characters.

Any single character matchesitself, unlessit is a metacharacter with a special meaning described here or above. Y ou can cause
characters that normally function as metacharactersto be interpreted literaly by prefixing them with a"\" (e.g., "\." matchesa

", not any character; "\\" matchesa"\"). A series of characters matches that series of charactersin the target string, so the
pattern blurfl would match "blurfl” in the target string.

Y ou can specify a character class, by enclosing alist of charactersin [], which will match any one character from the list. If the
first character after the"[" is""", the class matches any character not in the list. Within alist, the "-" character is used to specify
arange, so that a-z represents all characters between "a"' and "z", inclusive. If you want "-" itself to be a member of a class, put
it at the start or end of thelist, or escape it with a backslash. (The following all specify the same class of three characters: [-aZ],
[az-], and [a\-Z]. All are different from [a-z], which specifies a class containing twenty-six characters.)

Certain characters as used as metacharacters. The following list contains al of the metacharacters and their meanings.

\

Quote the next metacharacter
Match the beginning of theline

Match any character (except newline)

$

Match the end of the line (or before newline at the end)
|

Alternation
0

Grouping

[l

Character class

Within aregular expression, the following standard quantifiers are recogni zed:

*
Match O or more times

Match 1 or more times

Match 1 or O times
{n}

Match exactly ntimes
{n}
Match at least n times
{n.m}
Match at least n but not more than m times

The following character sequences also have special meaning within aregular expression.
\t

tab
\n
newline
\r
return
\033
octal char 003
\x1B
hex char 1B
\w
Match a"word" character (alphanumeric plus"”_")
\W
Match a non-word character
\s
Match a whitespace character
\S
Match a non-whitespace character
\d
Match a digit character
\D

Match a non-digit character

Ed. Note: we should probably define XML-specific character sequences for things like Nmtoker], Name, etc., as
well as ones for the character classes listed in XML 1.0 Appendix B. Character Classes

Regular expressions may also contain the following zero-width assertions:
\b

Match aword boundary
\B

Match a non-(word boundary)

A word boundary (\b) is defined as a spot between two characters that has a\w on one side of it and a\W on the other side of it
(in either order), counting the imaginary characters off the beginning and end of the string as matching a\W.

555-1212 is matched by \d{3}-\d{4} (phone nunber)

888-555-1212 is matched by (\d{3}-)?\d{3}-\d{4} (phone nunber with optional area
code)

$123,45.90 is matched by \$\d{3},\d{2}\.\d{2}

123-45-5678 is matched by \d{3}-?\d{2}-?\d{4} (Soci al Security Nunber)

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Name
http://www.w3.org/TR/REC-xml#CharClasses

F. References

COBOL
COBOL Standard. See http://www.dkuug.dk/jtcI/sc22/wgéi

SO 10646

ISO (International Organization for Standardization). |SO/IEC 10646-1993 (E). | nformation technology -- Universal
Multiple-Octet Coded Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane. [Geneval: International
Organization for Standardization, 1993 (plus amendments AM 1 through AM 7).

SO 11404
Language-independent Datatypes. Available from http://web.ansi.org/public/catalog/cal_top.html

SO 8601
Representations of dates and times. See http://www.iso.ch/markete/8601. pdf

Available from http://www.w3.0rg/ TR/T998/WD-xd-19981216
Namespacesin XML
Namespacesin XML, Tim Bray et al. W3C, 1998 Available at: http://www.w3.org/ TR/REC-xml-names
Perl
The Perl Programming Language. See http://www.perl.ord
RDF Schema
RDF Schema Specification. See hitp://www.w3.0rg/ TR/PR-rdf-schema
RFC 2396
Tim Berners-Lee, et. al. RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax.. 1998 Available at:
http://www.ietf.org/rfc/rfc2396.tx1
SQL

SQL Standard. See http://www.jcc.com/SQL Pages/jccs sal.htm

Structural Schemas
XML SchemaPart 1: Structures. Available at: http:

Unicode

The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-Wesley Devel opers Press,
1996.

XML
XML Standard. See http://www.w3.org/ TR/REC-xml

XML Schema Requirements
XML Schema Requirements. Available at: http://www.w3.0rg/ TR/INOTE-xml-schema-red

XSL
XSL Working Draft. See http://www.w3.org/ TR/T998/WD-xd-19981214

G. Open Issues

nmtoken-primitive-or-generated
picture-or-regex
three-valued-logig
hon-gregorian-dates

http://www.dkuug.dk/jtc1/sc22/wg4/
http://web.ansi.org/public/catalog/cat_top.html
http://www.iso.ch/markete/8601.pdf
http://www.w3.org/TR/1998/WD-xsl-19981216
http://www.w3.org/TR/REC-xml-names
http://www.perl.org/
http://www.w3.org/TR/PR-rdf-schema
http://www.ietf.org/rfc/rfc2396.txt
http://www.jcc.com/sql_stnd.html
http://www.w3.org/XML/Group/1999/05/06-xmlschema-1/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/NOTE-xml-schema-req
http://www.w3.org/TR/1998/WD-xsl-19981216

EaIETI me-lexical -riresentatl or I
uri-scheme-tacel

jother-date-representations
definition-overriding

<?xm version='1.0""?>

<! DOCTYPE schema PUBLIC '-//WBC//DTD XSDL 19990506/ / EN
"http://ww. w3. org/ 1999/ 05/ 06- xsdl / WD- xsdl . dtd" >

<schema xm ns='http://ww. w3. org/ TR/ 1999/ WD- xdt | - 19990506. xsd
name=" http://ww. w3. or g/ TR/ 1999/ WD- xdt | - 19990506. xsd

version='"0.1">
<nodel Group nane="or dered">
<choi ce>
<nodel G oupRef name="bounds"/>
<nodel G oupRef name="nuneric"/>
</ choi ce>
</ model G oup>
<nodel Group nane="bounds" >
<choi ce>
<sequence>

<el ement TypeRef nanme="mi nl ncl usi ve"
<el enent TypeRef nanme="rmaxl ncl usi ve"

</ sequence>
<sequence>

<el enent TypeRef nanme="m nExcl usi ve"
<el enent TypeRef nanme="maxExcl usi ve"

</ sequence>
</ choi ce>
</ model G oup>
<nodel Group nane="nuneric">
<choi ce>
<el ement TypeRef nane="precision"/>
<el ement TypeRef nane="scal e"/>
</ choi ce>
</ model G oup>
<nodel G oup nane="unor der ed" >
<choi ce>

m nCccur =" 0"
m nCccur =" 0"

m nCccur =" 0"
m nCccur =" 0"

<nodel G oupRef name="I| exi cal Representati on"/>

<nodel G oupRef name="enuneration"/>
<nodel G oupRef name="Iengt h"/>
<nodel G oupRef name="maxLength"/>
</ choi ce>
</ model G oup>

<el ement Type nane="dat at ype" >
<sequence>
<el ement TypeRef nane="basetype"/>
<choi ce m nCccur="0" maxCccur="*">
<nodel G oupRef name="ordered"/>
<nodel G oupRef name="unor dered"/>
</ choi ce>
</ sequence>
<attrDecl nane="nane" required="true">
<dat at ypeRef name="NMICKEN'/ >
</ attrDecl >
<attrDecl nane="export">
<dat at ypeRef nane="bool ean">
<def aul t >t rue</ def aul t >
</ dat at ype>
</ attrDecl >
</ el ement Type>
<el ement Type name="baset ype" >

maxQOccur="1"/>
maxQOccur="1"/>

maxCOccur="1"/>
maxQOccur="1"/>

<enpty/ >
<attrDecl nane="nane" required="true">
<dat at ypeRef nanme="NMIOKEN'/ >
</ attrDecl >
<attrDecl nanme="schemaAbbrev">
<dat at ypeRef nanme="NMIOKEN'/ >
</ attrDecl >
<attrDecl name="schemaNane">
<dat at ypeRef nanme="uri"/>
</ attrDecl >
</ el ement Type>
<el ement Type name="maxExcl usi ve" >
<dat at ypeRef name="string"/> <!-- the datatype depends on the basetype -->
</ el ement Type>
<el ement Type name="m nExcl usi ve" >
<dat at ypeRef name="string"/> <!-- the datatype depends on the basetype -->
</ el ement Type>
<el ement Type name="maxl ncl usi ve" >
<dat at ypeRef name="string"/> <!-- the datatype depends on the basetype -->
</ el ement Type>
<el ement Type name="mi nl ncl usi ve" >
<dat at ypeRef name="string"/> <!-- the datatype depends on the basetype -->
</ el ement Type>
<el ement Type name="preci sion">
<dat at ypeRef name="i nteger"/>
</ el ement Type>
<el ement Type nane="scal e">
<dat at ypeRef name="i nteger"/>
</ el ement Type>
<el ement Type nane="|ength">
<dat at ypeRef name="i nteger"/>
</ el ement Type>
<el ement Type name="maxLengt h" >
<dat at ypeRef name="i nteger"/>
</ el ement Type>
<el ement Type name="enuneration">
<sequence m nCccur="1" maxCccur="*">
<el ement TypeRef nane="literal"/>
</ sequence>
</ el ement Type>
<el ement Type nane="literal ">
<dat at ypeRef name="string"/> <l-- the datatype depends on the basetype -->
</ el ement Type>
<el ement Type name="I| exi cal Representati on">
<sequence mi nCccur="1" maxCccur="*">
<el ement TypeRef nane="1|exical"/>
</ sequence>
</ el ement Type>
<el ement Type nane="I|exi cal ">
<dat at ypeRef name="string"/> <l-- the datatype depends on the basetype -->
</ el ement Type>
</ schema>

<IENTITY % nuneric "precision | scale">

<IENTITY % bounds " ((m nlnclusive | mnExclusive)?,
(maxl ncl usi ve | maxExcl usive)?)">

<IENTITY % ordered "%bounds; | %wumeric;">

<IENTITY % unordered "I exi cal Representati on | enuneration
| length | maxLength">

<l ELEMENT dat at ype (basetype, (%ordered; | %nordered;)*)>
<I ATTLI ST dat at ype

name NMIOKEN #REQUI RED

export (true|false) "true">

<l ELEMENT basetype EMPTY>

<I ATTLI ST baset ype
nane NMIOKEN #REQUI RED
schemaAbbrev NMIOKEN #| MPLI ED
schemaNanme CDATA #| MPLI ED>

<! ELEMENT maxExcl usi ve (#PCDATA) >
<! ELEMENT mi nExcl usi ve (#PCDATA) >
<I ELEMENT maxl| ncl usi ve (#PCDATA) >
<I ELEMENT ni nl ncl usi ve (#PCDATA) >

<I ELEMENT preci si on (#PCDATA) >
<! ELEMENT scal e (#PCDATA) >

<! ELEMENT | engt h (#PCDATA) >

<! ELEMENT maxLengt h (#PCDATA) >

<I ELEMENT enuneration (literal)+>

<! ELEMENT literal (#PCDATA) >

<I ELEMENT | exi cal Representation (| exical)+>
<! ELEMENT | exi cal (#PCDATA) >

	XML Schema Part 1: Structures
	W3C Working Draft, 6 May, 1999
	Status of this Document
	Abstract
	Table of Contents
	1. Introduction
	1.1 Documentation Conventions
	1.2 Purpose
	1.3 Relationship To Other Work
	1.4 Terminology

	2. Conceptual Framework
	2.1 Kinds of XML Documents
	2.2 On schemas, constraints and contributions
	2.3 On 'types'
	2.4 Schemas and their component parts
	2.5 Names and Symbol Spaces
	2.6 Abstract and Concrete Syntax

	3. Schema Definitions and Declarations
	3.1 The Schema
	3.2 The Document and its Root
	3.3 References to Schema Constructs
	3.4 Types, Elements and Attributes
	3.4.1 Datatype Definition
	3.4.2 Archetype Definition
	3.4.3 Attribute Declaration
	3.4.4 Attribute Group Definition
	3.4.5 Element Content Model
	3.4.6 Mixed Content
	3.4.7 Element-Only Content
	3.4.8 Named Model Group
	3.4.9 Element Type Declaration

	3.5 Archetype Refinement
	3.6 Entities and Notations
	3.6.1 Internal Parsed Entity Declaration
	3.6.2 External Parsed Entity Declaration
	3.6.3 Unparsed Entity Declaration
	3.6.4 Notation Declaration

	4. Schema Composition and Namespaces
	4.1 Associating Instance Document Constructs with Corresponding Schemata
	4.2 Exporting Schema Constructs
	4.3 Facilities for Schema Composition
	4.4 Schema Import
	4.5 Using Abbreviations to Reference Imported Schemas
	4.6 Import Restrictions
	4.7 Schema Inclusion
	4.8 Access to Schemata

	5. Documenting schemas
	6. Conformance
	6.1 Schema Validity
	6.2 Responsibilities of Schema-aware processors
	6.3 Lexical representation
	6.4 Information set

	Appendices
	A. (normative) Schema for Schemas
	B. (normative) DTD for Schemas
	C. Glossary (normative)
	D. References (normative)
	E. Grateful Acknowledgments (non-normative)
	F. Sample Schema (non-normative)
	G. Open Issues

	XML Schema Part 2: Datatypes
	Status of this Document
	Abstract
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Requirements
	1.3 Scope
	1.4 Terminology
	1.5 Organization

	2. Type System
	2.1 Datatype
	2.2 Value space
	2.3 Lexical Space
	2.4 Characterizing operations
	2.4.1 Equal

	2.5 Facets
	2.5.1 Fundamental facets
	2.5.2 Constraining or Non-fundamental facets

	2.6 Datatype dichotomies
	2.6.1 Atomic vs. aggregate datatypes
	2.6.2 Primitive vs. generated datatypes
	2.6.3 Built-in vs. user-generated datatypes

	3. Built-in datatypes
	3.1 Namespace considerations
	3.2 Primitive datatypes
	3.2.1 ID
	3.2.2 IDREF
	3.2.3 IDREFS
	3.2.4 ENTITY
	3.2.5 ENTITIES
	3.2.6 NMTOKEN
	3.2.7 NMTOKENS
	3.2.8 NOTATION
	3.2.9 string
	3.2.10 boolean
	3.2.11 number
	3.2.12 dateTime
	3.2.13 binary
	3.2.14 uri

	3.3 Generated datatypes
	3.3.1 integer
	3.3.2 decimal
	3.3.3 real
	3.3.4 date
	3.3.5 time
	3.3.6 timePeriod

	4. User-generated datatypes
	5. Conformance
	Appendices
	A. Schema for Datatype Definitions (normative)
	B. DTD for Datatype Definitions (normative)
	C. Built-in Generated Datatype Definitions (normative)
	D. Pictures
	E. Regular Expressions
	F. References
	G. Open Issues

	
	World Wide Web Consortium Title Page

