
W3C

Web Content Accessibility Guidelines 1.0

W3C Proposed Recommendation 24-Mar-1999
This version:

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324
Latest version:

http://www.w3.org/TR/WAI-WEBCONTENT
Previous version:

http://www.w3.org/TR/1999/WD-WAI-PAGEAUTH-19990226
Related Documents:

Techniques for Web Content Accessibility Guidelines
List of Checkpoints for the Web Content Accessibility Guidelines 1.0

Editors:
Wendy Chisholm <chisholm@trace.wisc.edu>
Gregg Vanderheiden <gv@trace.wisc.edu>
Ian Jacobs <ij@w3.org>

Copyright W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract
These guidelines explain how to make Web content [p. 24] accessible to people with
disabilities. The guidelines are intended for all Web content developers [p. 25] (page
authors and site designers) and for developers of authoring tools [p. 24] . The
primary goal of these guidelines is to promote accessibility. However, following them
will also make Web content more available to all users, whatever user agent [p. 27]
they are using (e.g., desktop browser, voice browser, mobile phone,
automobile-based PC, etc.) or constraints they may be operating under (e.g., noisy
or noiseless surroundings, under- or over-illuminated rooms, in a hands-free
environment, etc.). Following these guidelines will also help people find information
on the Web more quickly. These guidelines do not discourage content developers
from using images, video, etc., but rather explain how to make multimedia content
more accessible to a wide audience.

This document is part of a series of accessibility guidelines published by the Web
Accessibility Initiative. The series also includes User Agent Accessibility Guidelines
([WAI-USERAGENT] [p. 30]) and Authoring Tool Accessibility Guidelines
([WAI-AUTOOLS] [p. 30]).

1

Web Content Accessibility Guidelines 1.0

This is a reference document for accessibility principles and design ideas. It is
meant to be stable and therefore does not provide specific information about
browser support for different technologies as that information changes rapidly.
Instead, the Web Accessibility Initiative Web site provides such information.

Status of this document
This document is a Proposed Recommendation of the World Wide Web Consortium
(W3C) and is currently undergoing review by the Members of the W3C. Review
comments on this specification should be sent by 21 April 1999 to
w3c-wai-gl@w3.org. An archive of public comments is available. W3C Members may
send their formal comments, visible only to the W3C Team, to
w3c-wai-wcag-review@w3.org.

This specification is a revision of the last call public Working Draft dated 26
February 1999. It incorporates suggestions from reviewers and further deliberations
of the Web Content Guidelines Working Group. A detailed list of changes to the
document is available from the Web Content Guidelines Working Group site.

The Working Group anticipates no further substantial changes to this specification.
We encourage active implementation to test this specification during the Proposed
Recommendation review period.

Publication as a Proposed Recommendation does not imply endorsement by the
W3C membership. This is still a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite W3C Drafts as
other than "work in progress."

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

This document has been produced as part of the W3C Web Accessibility Initiative.
The goal of the Web Content Guidelines Working Group is discussed in the Working
Group charter.

Related documents
The current document includes an appendix entitled "List of Checkpoints for the Web
Content Accessibility Guidelines 1.0." This appendix organizes all of the checkpoints
[p. 7] defined in the current document by topic and priority [p. 7] . The checkpoints in
the appendix link to their definitions in the current document. The topics identified in
the appendix include images, multimedia, tables, frames, forms, and scripts.

A separate document, entitled "Techniques for Web Content Accessibility
Guidelines," explains how to implement these checkpoints. It discusses each
checkpoint in more detail and provides examples using HTML, Cascading Style
Sheets (CSS), Synchronized Multimedia Integration Language (SMIL), and MathML.
Note. Not all browsers or multimedia tools may support the features described in the
guidelines. In particular, new features of HTML 4.0 or CSS 1 or CSS 2 may not be
supported. To help readers find out about support, the Techniques Document

2

Web Content Accessibility Guidelines 1.0

includes:

pointers on where to find information on browser support for the techniques.
techniques for document validation and testing
a techniques index of HTML elements and attributes that indicates which
version of HTML defines them, which are deprecated [p. 25] in HTML 4.0, etc.
a checkpoint map indicating where checkpoints are discussed in the Techniques
Document.

The Techniques Document will be updated more regularly than the current
document in order to track changes in technology.

Available formats
This document is available in the following formats:

HTML:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.html

A plain text file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.txt,

HTML (Guidelines, List of Checkpoints, Techniques) as a gzip’ed tar file :
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.tgz,

HTML (Guidelines, List of Checkpoints, Techniques) as a zip archive:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.zip,

A PostScript file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.ps,

A PDF file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.pdf.

The definitive version of this document is the HTML version.

3

Web Content Accessibility Guidelines 1.0

Table of Contents
................. 1Abstract
.............. 2Status of this document
................ 51. Introduction
............ 62. Themes of Accessible Design
......... 61. Ensuring Graceful Transformation
...... 62. Making Content Understandable and Navigable
.......... 73. How the Guidelines are Organized
............ 71. Document conventions
................. 74. Priorities
................ 85. Conformance
.......... 96. Web Content Accessibility Guidelines
... 91. Provide equivalent alternatives to auditory and visual content.
............ 102. Don’t rely on color alone.
........ 113. Use markup and style sheets properly.
.......... 124. Clarify natural language usage
........ 135. Create tables that transform gracefully.
.146. Ensure that pages featuring new technologies transform gracefully.
.... 157. Ensure user control of time-sensitive content changes.
.... 168. Ensure direct accessibility of embedded user interfaces.
.......... 169. Design for device-independence.
............ 1710. Use interim solutions.
........ 1811. Use W3C technologies and guidelines.
....... 1912. Provide context and orientation information.
........ 2013. Provide clear navigation mechanisms.
...... 2114. Ensure that documents are clear and simple.
.............. 22Appendix A. - Validation
.............. 23Appendix B. - Glossary
............... 28Acknowledgments
................. 29References

Additional appendix: List of Checkpoints for the Web Content Accessibility
Guidelines 1.0.

4

Web Content Accessibility Guidelines 1.0

1. Introduction
For those unfamiliar with accessibility issues pertaining to Web page design,
consider that many users may be operating in contexts very different from your own:

They may not be able to see, hear, move, or may not be able to process some
types of information easily or at all.
They may have difficulty reading or comprehending text.
They may not have or be able to use a keyboard or mouse.
They may have a text-only screen, a small screen, or a slow Internet
connection.
They may not speak or understand fluently the language in which the document
is written.
They may be in a situation where their eyes, ears, or hands are busy or
interfered with (e.g., driving to work, working in a loud environment, etc.).
They may have an early version of a browser, a different browser entirely, a
voice browser, or a different operating system.

Content developers must consider these different situations during page design.
While there are several situations to consider, each accessible design choice
generally benefits several disability groups at once and the Web community as a
whole. For example, by using style sheets [p. 26] to control font styles and
eliminating the FONT element, HTML authors will have more control over their
pages, make those pages more accessible to people with low vision, and by sharing
the style sheets, will often shorten page download times for all users.

The guidelines discuss accessibility issues and provide accessible design
solutions. They enumerate typical scenarios (similar to the font style example) that
may pose problems for users with certain disabilities. For example, the first guideline
[p. 9] explains how content developers can make images accessible. Some users
may not be able to see images, others may use text-based browsers that do not
support images, while others may have turned off support for images (e.g., due to a
slow Internet connection). The guidelines do not suggest avoiding images as a way
to improve accessibility. Instead, they explain that providing a text equivalent [p. 25]
that states the purpose of the image will make it accessible.

How does a text equivalent make the image accessible? Users with blindness or
low vision can understand the function of the image when the text is read aloud by a
speech synthesizer. This is particularly important when the image is part of a
hyperlink since, without an explanation of the link’s destination, a user with blindness
wouldn’t know whether to follow it. In addition to benefitting users with disabilities,
text equivalents can be used by search robots when indexing your pages.

5

Web Content Accessibility Guidelines 1.0

2. Themes of Accessible Design
The guidelines address two general themes: ensuring graceful transformation, and
making content understandable and navigable.

1. Ensuring Graceful Transformation
By following these guidelines, content developers can create pages that transform
gracefully. Pages that transform gracefully remain accessible despite any of the
constraints described in the introduction [p. 5] , including physical, sensory, and
cognitive disabilities, work constraints, and technological barriers. Here are some
keys to designing pages that transform gracefully:

Separate content from structure from presentation. The appendix explains the
difference between content, structure, and presentation [p. 24]).
Provide text (including text equivalents [p. 25]). Text can be rendered in ways
that are available to almost all browsing devices and accessible to almost all
users.
Create documents that work even if the user cannot see and/or hear. Some
content will be sensory-specific (e.g., audio, video, applets that present visual
information), so provide equivalent information in forms suited to other senses
as well. Note. This does not mean creating an entire auditory version of a site.
Screen readers [p. 26] will be able to speak all information on a page as long as
it is available in text.
Create documents that do not rely on one type of hardware. Pages should be
usable by people without mice, with small screens, low resolution screens, black
and white screens, no screens, with only voice or text output, etc.

The theme of graceful transformation is addressed primarily by guidelines 1 to 11.

2. Making Content Understandable and Navigable
Content developers should make content understandable and navigable. This
includes not only making the language clear and simple, but also providing
understandable mechanisms for navigating within and between pages. Providing
navigation tools and orientation information in pages will maximize accessibility and
usability. Not all users can make use of visual clues such as image maps,
proportional scroll bars, side-by-side frames, or graphics that guide sighted users of
graphical desktop browsers. Users also lose contextual information when they can
only view a portion of a page, either because they are accessing the page one word
at a time (speech synthesis or braille display [p. 24]), or one section at a time (small
display, or a magnified display). Very large tables, lists, menus, etc. without
orientation information may be very disorienting to users.

The theme of making content understandable and navigable is addressed
primarily in guidelines 12 to 14.

6

Web Content Accessibility Guidelines 1.0

3. How the Guidelines are Organized
This document includes fourteen guidelines, or general principles of accessible
design. Each guideline includes:

The guideline number.
The statement of the guideline.
Guideline navigation links. Three links allow navigation to the next guideline
(right arrow icon), the previous guideline (left arrow icon), or the current
guideline’s position in the table of contents (up arrow icon).
The rationale behind the guideline and some groups of users who benefit from
it.
A list of checkpoint definitions.

The list of checkpoint definitions in each guideline explain how the guideline
applies in typical content development scenarios. Each checkpoint definition
includes:

The checkpoint number.
The statement of the checkpoint.
The priority of the checkpoint. Priority 1 labels are highlighted through style
sheets.
Optional informative notes, clarifying examples, and cross references to related
guidelines or checkpoints.
A link to a section of the Techniques Document where implementations and
examples of the checkpoint are discussed.

Each checkpoint is specific enough so that someone reviewing a page or site may
verify that the checkpoint has been satisfied.

1. Document conventions
The following editorial conventions are used throughout this document:

Element names are in uppercase letters.
Attribute names are quoted in lowercase letters.
Links to definitions are rendered specially through style sheets.

4. Priorities
Each checkpoint has priority level assigned by the Working Group based on the
checkpoint’s impact on accessibility.

[Priority 1]
A Web content developer must satisfy this checkpoint. Otherwise, one or more
groups will find it impossible to access information in the document. Satisfying

7

Web Content Accessibility Guidelines 1.0

this checkpoint is a basic requirement for some groups to be able to use Web
documents.

[Priority 2]
A Web content developer should satisfy this checkpoint. Otherwise, one or
more groups will find it difficult to access information in the document. Satisfying
this checkpoint will remove significant barriers to accessing Web documents.

[Priority 3]
A Web content developer may address this checkpoint. Otherwise, one or more
groups will find it somewhat difficult to access information in the document.
Satisfying this checkpoint will improve access to Web documents.

Some checkpoints specify a priority level that may change under certain
(indicated) conditions.

5. Conformance
This section defines three levels of conformance to this document:

Conformance Level "A": all Priority 1 checkpoints are satisfied;
Conformance Level "Double-A": all Priority 1 and 2 checkpoints are satisfied;
Conformance Level "Triple-A": all Priority 1, 2, and 3 checkpoints are
satisfied;

Note. Conformance levels are spelled out in text so they may be understood when
rendered to speech.

Claims of conformance to this document must use one of the following two forms.

Form 1: Specify:

The guidelines title: "Web Content Accessibility Guidelines 1.0"
The guidelines URI: http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324
The conformance level satisfied: "A", "Double-A", or "Triple-A".
The scope covered by the claim (e.g., page, or a defined scope of site).

Example of Form 1:

"This page conforms to W3C’s "Web Content Accessibility Guidelines 1.0",
available at http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324, level
Double-A."

Form 2: Include, on each page claiming conformance, one of three icons provided
by W3C and link the icon to the appropriate W3C explanation of the claim.

Note. In the event this document becomes a Recommendation, by that date WAI
will provide a set of three icons, for "A", "Double-A", or "Triple-A" conformance levels
of "Web Content Accessibility Guidelines 1.0", together with a stable URI to the W3C
Web site for linking the icons to the W3C explanation of conformance claims.

8

Web Content Accessibility Guidelines 1.0

6. Web Content Accessibility Guidelines

Guideline 1. Provide equivalent alternatives to auditory and
visual content.

Provide content that, when presented to the user, conveys essentially
the same function or purpose as auditory or visual content.

Although some people cannot use images, movies, sounds, applets, etc. directly,
they may still use pages that include equivalent [p. 25] alternatives to the visual or
auditory content. The equivalent information must serve the same purpose as the
visual or auditory content. Thus, a text equivalent for an image of an upward arrow
that links to a table of contents could be "Go to table of contents". In some cases, an
equivalent should describe the appearance of visual content or the sound of auditory
content as well (e.g., for complex charts, billboards, or diagrams).

This guideline emphasizes the importance of providing text equivalents [p. 25] of
non-text media (images, pre-recorded audio, video) because text equivalents can be
rendered in so many ways (e.g., braille, synthesized speech, visually-displayed text).
If text equivalents are not provided for visual and auditory information, people who
are blind, have low vision, who are deaf or hard of hearing, or any user who cannot
or has chosen not to use visual or auditory information will not know the purpose of
those elements of the page.

Providing non-text equivalents (pictures, videos, audio) of text is also beneficial to
some users, especially nonreaders or people who have difficulty reading. In movies
or visual presentations, visual action such as body language or other visual cues
may not be accompanied by enough audio information to convey the same
information. Unless verbal descriptions of this visual information are provided,
people who cannot see (or look at) the visual content will not be able to perceive it.

For an audio description of a visual presentation (e.g., movie) that already has an
auditory track:

synchronize the audio description with the auditory track,
collate [p. 24] a text version of the audio description with a text version of the
auditory track (caption). The collated text will make the presentation available to
people who are deaf-blind and to people who cannot play or choose not to play
movies, animations, etc.

Note. The Techniques Document explains how to write text equivalents
specifically for images used as image maps, spacers, bullets in lists, graphical
buttons, in links, or to present mathematical equations.

9

Web Content Accessibility Guidelines 1.0

Checkpoints:

1.1 Provide a text equivalent for every non-text element (e.g., via "alt", "longdesc", or
in element content). This includes: images, graphical representations of text, image
map regions, short animations (e.g., animated GIFs), applets, ascii art, frames,
scripts, inserted list bullets, sounds (played with or without user interaction),
stand-alone audio files, synthesized speech, audio tracks of video, and video.
[Priority 1]

For example, in HTML:
Use "alt" for the IMG, INPUT, and APPLET elements, or provide equivalent
information in the content of the OBJECT and APPLET elements.
For complex elements where the "alt" text does not suffice, provide an
additional description using, for example, "longdesc" with IMG or FRAME, a
link inside an OBJECT element, or a description link [p. 25] in the
document.
For image maps, use the "alt" attribute with AREA, or the MAP element with
A elements and rich description as content.

Techniques for checkpoint 1.1
1.2 Provide redundant text links for each active region of an image map. [Priority 1 -
if server-side image maps [p. 25] are used, Priority 2 - if client-side image maps
[p. 25] are used. Redundant text links for client-side image maps are only required
until user agents [p. 27] render text equivalents for the map links.]

Techniques for checkpoint 1.2
1.3 For each movie, provide an auditory description of the video track and
synchronize it with the audio track. [Priority 1]

Techniques for checkpoint 1.3
1.4 For any time-based presentation (e.g., a movie, animation, or multimedia
presentation), synchronize equivalent alternatives (e.g., captions or video
descriptions) with the presentation. [Priority 1]

Techniques for checkpoint 1.4
1.5 Replace ASCII art with an image or explain it. [Priority 1 or Priority 2 depending
on the importance of the information.]

Refer also to checkpoint 1.1, checkpoint 13.10, and the example of ascii art in
the glossary [p. 23] .
Techniques for checkpoint 1.5

Guideline 2. Don’t rely on color alone.

Ensure that text and graphics are understandable when viewed without
color.

If color alone is used to convey information, people who cannot differentiate between
certain colors and users with devices that have non-color or non-visual displays will
not receive the information. When foreground and background colors are too close
to the same hue, they may not provide sufficient contrast when viewed using
monochrome displays or by people with different types of color deficits.

10

Web Content Accessibility Guidelines 1.0

Checkpoints:

2.1 Ensure that all information conveyed with color is also available without color, for
example from context or markup. [Priority 1]

Techniques for checkpoint 2.1
2.2 Ensure that foreground and background color combinations provide sufficient
contrast when viewed by someone having color deficits or when viewed on a black
and white screen. [Priority 2 for images, Priority 3 for text].

Techniques for checkpoint 2.2

Guideline 3. Use markup and style sheets properly.

Mark up documents with the proper structural elements. Control
presentation with style sheets rather than with presentation elements
and attributes.

Using markup improperly - not according to specification - hinders accessibility.
Misusing markup for a presentation effect (e.g., using a table for layout or a header
to change the font size) makes it difficult for users with specialized software to
understand the organization of the page or to navigate through it. Furthermore,
presentation effects used alone to convey structure (e.g., constructing what looks
like a table of data with an HTML PRE element) make it difficult to render a page
intelligibly to other devices (refer to the description of difference between content,
structure, and presentation [p. 24]).

Content developers may be tempted to use (or misuse) constructs that achieve a
desired formatting effect on older browsers. They must be aware that these practices
cause accessibility problems and must consider whether the formatting effect is so
critical as to make the document inaccessible to some users.

At the other extreme, content developers must not sacrifice appropriate markup
because a certain browser or assistive technology does not process it correctly. For
example, it is appropriate to use the TABLE element in HTML to mark up tabular
information. [p. 27] Doing so (and creating tables that transform gracefully (refer to
guideline 5) make it possible for software to render tables other than as
two-dimensional grids. Refer also to checkpoint 10.3.

Checkpoints:

3.1 When an appropriate markup language exists, use markup rather than images to
convey information. [Priority 2]

For example, use MathML to mark up mathematical equations, and style sheets
[p. 26] to format text and control layout. Also, avoid using images to represent
text - use text and style sheets instead.
Note. If important information is conveyed in many images on the page, provide
an alternative accessible page. [p. 19] Refer also to guideline 6 and guideline
11.
Techniques for checkpoint 3.1

11

Web Content Accessibility Guidelines 1.0

3.2 Use header elements to convey logical structure and use them according to
specification. [Priority 2]

For example, in HTML, use H2 to indicate a subsection of H1. Do not use
headers for font effects.
Techniques for checkpoint 3.2

3.3 Mark up lists and list items properly. [Priority 2]
For example, in HTML, nest OL, UL, and DL lists properly.
Techniques for checkpoint 3.3

3.4 Mark up quotations. Do not use quotation markup for formatting effects such as
indentation. [Priority 2]

For example, in HTML, use the Q and BLOCKQUOTE elements to markup short
and longer quotations, respectively.
Techniques for checkpoint 3.4

3.5 Create documents that validate to published formal grammars. [Priority 2]
For example, include a document type declaration at the beginning of a
document that refers to a published DTD.
Techniques for checkpoint 3.5

3.6 Use style sheets to control layout and presentation. [Priority 2]
For example, use the CSS ’font’ property instead of the HTML FONT element to
control font styles.
Techniques for checkpoint 3.6

3.7 Use relative rather than absolute units in markup language attribute values and
style sheet property values. [Priority 2]

For example, in CSS, use ’em’ or percentage lengths rather than ’pt’ or ’cm’,
which are absolute units. If absolute units are used, validate that the rendered
content is usable (refer to the section on validation [p. 22]).
Techniques for checkpoint 3.7

3.8 Provide individual button controls in a form rather than simulating a set of buttons
with an image map. [Priority 2]

Note. When a button has an image, specify text equivalent [p. 25] for the image.
Techniques for checkpoint 3.8

Guideline 4. Clarify natural language usage

Use markup that facilitates pronunciation or interpretation of
abbreviated or foreign text.

Changes between multiple languages on the same page and abbreviations can both
be indecipherable when machine-spoken or brailled unless they are identified.
Content developers should identify the predominant natural language [p. 26] of a
document’s content and indicate when language changes occur. They should also
provide expansions of abbreviations and acronyms. This information also helps
search engines find key words and identify documents in a desired language. The
information also improves readability of the Web for all people, including those with
learning disabilities, cognitive disabilities, or people who are deaf or hard of hearing.

12

Web Content Accessibility Guidelines 1.0

Checkpoints:

4.1 Clearly identify changes in the natural language of a document’s text and any
text equivalents [p. 25] (e.g., captions) of non-text content. [Priority 1]

For example, in HTML use the "lang" attribute. In XML, use "xml:lang". Server
operators should configure their server to take advantage of the content
negotiation mechanisms of the HTTP protocol so that clients can automatically
retrieve documents of the preferred language.
Techniques for checkpoint 4.1

4.2 Specify the expansion of abbreviations and acronyms. [Priority 2 for the first
occurrence of the acronym or abbreviation in a given document, Priority 3
thereafter.]

For example, in HTML, use the "title" attribute of the ABBR and ACRONYM
elements.
Techniques for checkpoint 4.2

4.3 Identify the primary natural language of a document. [Priority 3]
For example, in HTML, set the "lang" attribute on the HTML element. In XML,
use "xml:lang".
Techniques for checkpoint 4.3

Guideline 5. Create tables that transform gracefully.

Ensure that tables have necessary markup to be transformed by
accessible browsers and other user agents.

Tables should be used to mark up truly tabular information [p. 27] ("data tables").
Content developers should avoid using them to lay out pages ("layout tables").
Tables for any use also present special problems to users of screen readers [p. 26]
([-linear-tables]).

Many user agents [p. 27] transform tables to present them and if not marked up
properly, the tables will not make sense when rendered. Refer also to guideline 3.

The following checkpoints will directly benefit people who access a table through
auditory means (e.g., a screen reader or an Automobile PC that operates by speech
input and output) or who view only a portion of the page at a time (e.g., users with
blindness or low vision using speech output or a braille display, [p. 24] or other users
of devices with small displays, etc.).

Checkpoints:

5.1 For data tables, identify row and column headers. [Priority 1]
For example, in HTML, use TD to identify data cells and TH to identify headers.
Techniques for checkpoint 5.1

5.2 For data tables that have two or more logical levels of row or column headers,
use markup to associate data cells and header cells. [Priority 1]

For example, in HTML, use THEAD, TFOOT, and TBODY to group rows, COL
and COLGROUP to group columns, and the "axis", "scope", and "headers"

13

Web Content Accessibility Guidelines 1.0

attributes, to describe more complex relationships among data.
Techniques for checkpoint 5.2

5.3 Avoid using tables for layout. [Priority 2]
Techniques for checkpoint 5.3

5.4 If a table is used for layout, do not use any structural markup for the purpose of
visual formatting. [Priority 2]

For example, in HTML do not use the TH element to cause the content of a
(non-table header) cell to be displayed centered and in bold.
Techniques for checkpoint 5.4

5.5 Provide summaries for tables. [Priority 3]
For example, in HTML, use the "summary" attribute of the TABLE element.
Techniques for checkpoint 5.5

5.6 Provide abbreviations for header labels. [Priority 3]
For example, in HTML, use the "abbr" attribute on the TH element.
Techniques for checkpoint 5.6

Refer also to checkpoint 10.3 and checkpoint 3.1.

Guideline 6. Ensure that pages featuring new technologies
transform gracefully.

Ensure that pages are accessible even when newer technologies are
not supported or are turned off.

Although content developers are encouraged to use new technologies that solve
problems raised by existing technologies, they should know how to make their pages
still work with older browsers and people who choose to turn off features.

Checkpoints:

6.1 Organize content logically using appropriate structural markup so the
organization remains clear even when associated style sheets are turned off or are
not supported. [Priority 1]

This makes it more likely that the document will be understood even when styles
are turned off or overridden by the user.
Techniques for checkpoint 6.1

6.2 Ensure that descriptions and text alternatives for dynamic content are updated
when the dynamic content changes. [Priority 1]

Techniques for checkpoint 6.2
6.3 Ensure that pages are usable when scripts, applets, or other programmatic
objects are turned off or not supported. If this is not possible, provide equivalent
mechanisms on an alternative accessible page. [p. 19] [Priority 1]

For example, in HTML provide a text equivalent [p. 25] with the NOSCRIPT
element or via a server-side script. Or provide a non-text equivalent (e.g., a
snapshot in place of an animation, a video equivalent of an applet, etc.). For
applets and programmatic objects, provide text equivalents [p. 25] . Refer also
to guideline 1.

14

Web Content Accessibility Guidelines 1.0

Techniques for checkpoint 6.3
6.4 For scripts and applets, until user agents [p. 27] provide device-independent
means to activate event handlers, ensure that event handlers are keyboard
operable. [Priority 2]

Techniques for checkpoint 6.4
6.5 Provide an alternative presentation or page when the primary content is dynamic
(e.g., when frame contents change, when scripts cause changes, etc.). [Priority 2]

For example: In HTML, use NOFRAMES at the end of each frameset,
NOSCRIPT for every script, and server-side instead of client-side scripts.
Techniques for checkpoint 6.5

Refer also to checkpoint 11.4.

Guideline 7. Ensure user control of time-sensitive content
changes.

Ensure that moving, blinking, scrolling, or auto-updating objects or
pages may be paused or stopped.

Some people with cognitive or visual disabilities are unable to read moving text
quickly enough or at all. Movement can also cause such a distraction that the rest of
the page becomes unreadable for people with cognitive disabilities. Screen readers
[p. 26] are unable to read moving text. People with physical disabilities might not be
able to move quickly or accurately enough to interact with moving objects.

Note. All of the following checkpoints involve some content developer
responsibility until user agents [p. 27] provide adequate feature control mechanisms.

Checkpoints:

7.1 Until user agents [p. 27] allow users to control it, avoid causing the screen to
flicker. [Priority 1]

Note. People with photosensitive epilepsy can have seizures triggered by
flickering or flashing in the 4 to 59 flashes per second (Hertz) range with a peak
sensitivity at 20 flashes per second as well as quick changes from dark to light
(like strobe lights).
Techniques for checkpoint 7.1

7.2 Until user agents [p. 27] allow users to control it, avoid causing content to blink
(i.e., change presentation at a regular rate, such as turning on and off). [Priority 2]

Techniques for checkpoint 7.2
7.3 Until user agents [p. 27] allow users to freeze moving content, avoid movement
in pages. [Priority 2]

When a page includes moving content, provide a mechanism within a script or
applet to allow users to freeze motion or updates. Using style sheets with
scripting to create movement allows users to turn off or override the effect more
easily. Refer also to guideline 8.
Techniques for checkpoint 7.3

15

Web Content Accessibility Guidelines 1.0

7.4 Until user agents [p. 27] provide the ability to stop the refresh, do not create
periodically auto-refreshing pages. [Priority 2]

For example, in HTML, don’t cause pages to auto-refresh with
"HTTP-EQUIV=refresh" until user agents allow users to turn off the feature.
Techniques for checkpoint 7.4

7.5 Until user agents [p. 27] provide the ability to stop auto-redirect, do not use
markup to redirect pages automatically. Instead, configure the server to perform
redirects. [Priority 2]

Techniques for checkpoint 7.5

Note. The BLINK and MARQUEE elements are not defined in any W3C HTML
specification and should not be used. Refer also to guideline 11.

Guideline 8. Ensure direct accessibility of embedded user
interfaces.

Ensure that the user interface follows principles of accessible design:
device-independent access to functionality, keyboard operability,
self-voicing, etc.

When an embedded object has its "own interface", the interface - like the interface to
the browser itself - must be accessible. If the interface of the embedded object
cannot be made accessible, an alternative accessible solution must be provided.

Note. For information about accessible interfaces, please consult the User Agent
Accessibility Guidelines ([WAI-USERAGENT] [p. 30]), the Authoring Tool
Accessibility Guidelines ([WAI-AUTOOL] [p. 30]), and the discussion of applets and
other objects in the Techniques Document.

Checkpoint:

8.1 Make programmatic elements such as scripts and applets directly accessible or
compatible with assistive technologies [Priority 1 if functionality is important [p. 26]
and not presented elsewhere, otherwise Priority 2.]

Refer also to guideline 6.
Techniques for checkpoint 8.1

Guideline 9. Design for device-independence.

Use features that enable activation of page elements via input devices
other than a pointing device (e.g., keyboard, voice, etc.).

Interaction with a document must not depend on a particular input device such as a
mouse. If, for example, a form control can only be activated with a mouse or other
pointing device, someone who is using the page without sight, with voice input, or
with a keyboard or who is using an input device other than a mouse will not be able
to use the form.

16

Web Content Accessibility Guidelines 1.0

Note. Providing text equivalents for image maps or images used as links makes it
possible for users to interact with them without a pointing device. Refer also to
guideline 1.

Generally, pages that allow keyboard interaction are also accessible through
speech input or a command line interface.

Checkpoints:

9.1 Provide client-side image maps instead of server-side image maps except where
the regions cannot be defined with an available geometric shape. [Priority 1]

Refer also to checkpoint 1.1 and checkpoint 1.2.
Techniques for checkpoint 9.1

9.2 Ensure that all elements that have their own interface are keyboard operable.
[Priority 2]

Refer also to guideline 8.
Techniques for checkpoint 9.2

9.3 For scripts, specify logical event handlers rather than device-dependent event
handlers. [Priority 2]

For example, in HTML use "onfocus", "onblur", and "onselect".
Techniques for checkpoint 9.3

9.4 Create a logical tab order through links, form controls, and objects. [Priority 3]
For example, in HTML, specify tab order via the "tabindex" attribute or ensure a
logical page design.
Techniques for checkpoint 9.4

9.5 Provide keyboard shortcuts to important links (including those in client-side
image maps [p. 25]), form controls, and groups of form controls. [Priority 3]

For example, in HTML, specify shortcuts via the "accesskey" attribute.
Techniques for checkpoint 9.5

Guideline 10. Use interim solutions.

Use interim accessibility solutions so that assistive technologies and
older browsers will operate correctly.

For example, older browsers do not allow users to navigate to empty edit boxes.
Older screen readers read lists of consecutive links as one link. These active
elements are therefore difficult or impossible to access. Also, changing the current
window or popping up new windows can be very disorienting to users who have
available, but aren’t using, the graphical features of the desktop environment.

Note. The following checkpoints apply until user agents [p. 27] and assistive
technologies [p. 23] address these issues.

17

Web Content Accessibility Guidelines 1.0

Checkpoints:

10.1 Until user agents [p. 27] allow users to turn off spawned windows, do not cause
pop-ups or other windows to appear and do not change the current window without
informing the user. [Priority 2]

For example, in HTML, avoid using a frame whose target is a new window.
Techniques for checkpoint 10.1

10.2 For all form controls with implicitly associated labels, ensure that the label is
properly positioned. [Priority 2]

The label must immediately precede its control on the same line (allowing more
than one control/label per line) or be in the line preceding the control (with only
one label and one control per line). Refer also to checkpoint 12.4.
Techniques for checkpoint 10.2

10.3 Until user agents [p. 27] or assistive technologies render side-by-side text
correctly, provide a linear text alternative (on the current page or some other) for all
tables that lay out text in parallel, word-wrapped columns. [Priority 2]

Note. This checkpoint benefits people with user agents [p. 27] (such as some
screen readers [p. 26]) that are unable to handle blocks of text presented
side-by-side; the checkpoint should not discourage content developers from
using tables to represent tabular information [p. 27] .
Techniques for checkpoint 10.3

10.4 Until user agents [p. 27] handle empty controls correctly, include default,
place-holding characters in edit boxes and text areas. [Priority 3]

For example, in HTML, do this for TEXTAREA and INPUT.
Techniques for checkpoint 10.4

10.5 Until user agents [p. 27] or assistive technologies render adjacent links
distinctly, include non-link, printable characters (surrounded by spaces) between
adjacent links. [Priority 3]

Techniques for checkpoint 10.5

Guideline 11. Use W3C technologies and guidelines.

Use W3C technologies (according to specification) and follow
accessibility guidelines. Where it is not possible to use a W3C
technology, or doing so results in material that does not transform
gracefully, provide an alternative version of the content that is
accessible.

Many non-W3C formats (e.g., PDF, Shockwave, etc.) require viewing with either
plug-ins or stand-alone applications. Often, these formats cannot be viewed or
navigated with standard Web access or screen reading tools. Avoiding non-W3C
and non-standard features (proprietary elements, attributes, properties, and
extensions) will tend to make pages more accessible to more people using a wider
variety of hardware and software.

18

Web Content Accessibility Guidelines 1.0

Even when W3C technologies are used, they must be used in accordance with
accessibility guidelines.

Note. Converting documents (from PDF, PostScript, RTF, etc.) to W3C markup
languages (HTML, XML) does not always create an accessible document.
Therefore, validate each page for accessibility and usability after the conversion
process (refer to the section on validation [p. 22]). If a page does not readily
convert, either revise the page until its original representation converts appropriately
or provide an HTML or plain text equivalent.

Checkpoints:

11.1 Use W3C technologies and use the latest versions when they are supported.
[Priority 2]

Refer to the list of references [p. 29] for information about where to find the
latest W3C specifications.
Techniques for checkpoint 11.1

11.2 Avoid deprecated features of W3C technologies. [Priority 2]
For example, in HTML, don’t use the deprecated [p. 25] FONT element; use
style sheets instead (e.g., the ’font’ property in CSS).
Techniques for checkpoint 11.2

11.3 Provide information so that users may receive documents according to their
preferences (e.g., language, content type, etc.) [Priority 3]

Note. Use content negotiation where possible.
Techniques for checkpoint 11.3

11.4 If, after best efforts [p. 19] , you cannot create an accessible page, provide a
link to an alternative page that uses W3C technologies, is accessible, has equivalent
[p. 25] information, and is updated as often as the inaccessible (original) page.
[Priority 1]

Techniques for checkpoint 11.4

Note. Content developers should only resort to alternative pages when other
solutions fail because alternative pages are generally updated less often than
"primary" pages. An out-of-date page may be as frustrating as one that is
inaccessible since, in both cases, the information presented on the original page is
unavailable. Automatically generating alternative pages may lead to more frequent
updates, but content developers must still be careful to ensure that generated pages
always make sense, and that users are able to navigate a site by following links on
primary pages, alternative pages, or both. Before resorting to an alternative page,
reconsider the design of the original page; simplifying it is likely to make it more
effective for all users.

Guideline 12. Provide context and orientation information.

19

Web Content Accessibility Guidelines 1.0

Provide context and orientation information to help users understand
complex pages or elements.

Grouping and providing contextual information about the relationships between
elements can be useful for all users. Complex relationships between elements on a
page may be difficult for people with cognitive disabilities and people with visual
disabilities to interpret.

Checkpoints:

12.1 Title each frame so that users can keep track of frames by title. [Priority 1]
For example, in HTML use the "title" attribute on FRAME elements.
Techniques for checkpoint 12.1

12.2 Describe the purpose of frames and how frames relate to each other if it is not
obvious by frame titles alone. [Priority 2]

For example, in HTML, use "longdesc," or a description link. [p. 25]
Techniques for checkpoint 12.2

12.3 Divide large blocks of information into more manageable groups where natural
and appropriate. [Priority 2]

For example, in HTML, use OPTGROUP to group OPTION elements inside a
SELECT; group form controls with FIELDSET and LEGEND; use nested lists
where appropriate; use headings to structure documents, etc. Refer also to
guideline 3.
Techniques for checkpoint 12.3

12.4 Associate labels explicitly with their controls. [Priority 2]
For example, in HTML use LABEL and its "for" attribute.
Techniques for checkpoint 12.4

Guideline 13. Provide clear navigation mechanisms.

Provide clear and consistent navigation mechanisms - orientation
information, navigation bars, a site map, etc. - to increase the likelihood
that a person will find what they are looking for at a site.

Clear and consistent navigation mechanisms [p. 26] are important to people with
cognitive disabilities or blindness, and benefit all users.

Checkpoints:

13.1 Clearly identify the target of each link. [Priority 2]
Link text [p. 26] should be meaningful enough to make sense when read out of
context - either on its own or as part of a sequence of links. Link text should also
be terse.
For example, in HTML, write "Information about version 4.3" instead of "click
here". In addition to clear link text, content developers may further clarify the
target of a link with an informative link title (e.g., in HTML, the "title" attribute).
Techniques for checkpoint 13.1

20

Web Content Accessibility Guidelines 1.0

13.2 Provide metadata to add semantic information to pages and sites. [Priority 2]
For example, use RDF ([RDF] [p. 29]) to indicate the document’s author, the
type of content, and to describe the navigation mechanism, etc.
Note. Some HTML user agents [p. 27] can build navigation tools from document
relations described by the HTML LINK element and "rel" or "rev" attributes (e.g.,
rel="next", rel="previous", rel="index", etc.). Refer also to checkpoint 13.5.
Techniques for checkpoint 13.2

13.3 Provide information about the general layout of a site (e.g., a site map, or table
of contents). [Priority 2]

Also indicate what accessibility features are available and how to use them.
Techniques for checkpoint 13.3

13.4 Use navigation mechanisms in a consistent manner. [Priority 2]
Techniques for checkpoint 13.4

13.5 Provide navigation bars to highlight and give access to the navigation
mechanism. [Priority 3]

Techniques for checkpoint 13.5
13.6 Group related links, identify the group (for user agents), and, until user agents
[p. 27] do so, provide a way to bypass the group. [Priority 3]

Techniques for checkpoint 13.6
13.7 Enable different types of searches for different skill levels and preferences.
[Priority 3]

Techniques for checkpoint 13.7
13.8 Place distinguishing information at the beginning of headings, paragraphs, lists,
etc. [Priority 3]

Note. This is commonly referred to as "front-loading" and is especially helpful
for people accessing information with serial devices such as speech
synthesizers.
Techniques for checkpoint 13.8

13.9 Provide information about document collections (i.e., documents comprising
multiple pages.). [Priority 3]

For example, in HTML describe document collections with the LINK element
and the "rel" and "rev" attributes. Another way to create a collection is by
building an archive (e.g., with zip, gzip, stuffit, etc.) of the multiple pages.
Note. The performance improvement gained by offline processing can make
browsing much less expensive for people with disabilities who may be browsing
slowly.
Techniques for checkpoint 13.9

13.10 Provide a means to skip over multi-line ASCII art. [Priority 3]
Refer also to checkpoint 1.5.
Techniques for checkpoint 13.10

Guideline 14. Ensure that documents are clear and simple.

21

Web Content Accessibility Guidelines 1.0

Ensure that documents are clear and simple to promote
comprehension.

Consistent page layout, recognizable graphics, and easy to understand language
benefit all users. In particular, they help people with cognitive disabilities or who
have difficulty reading. (However, ensure that images have text equivalents for
people who are blind, have low vision, or for any user who cannot or has chosen not
to view graphics. Refer also to guideline 1.)

Using clear and simple language promotes effective communication. Access to
written information can be difficult to impossible for people who have cognitive
disabilities, learning disabilities, or who are deaf or hard of hearing. This
consideration also applies to the many people whose first language differs from your
own.

Checkpoints:

14.1 Use the clearest and simplest language appropriate for a site’s content.
[Priority 1]

Techniques for checkpoint 14.1
14.2 Provide visual or auditory equivalents to text where they facilitate
comprehension of the page. [Priority 3]

Note. For example, provide a video representation of an applet, an audio
description of video, recorded spoken text, etc. These equivalent presentations
are particularly important for non-readers. This checkpoint does not mean that
text content should be removed. Refer also to guideline 1.
Techniques for checkpoint 14.2

14.3 Create a style of presentation that is consistent across pages. [Priority 3]
Techniques for checkpoint 14.3

Appendix A. - Validation
Validate accessibility with automatic tools and human review. Automated
methods are generally rapid and convenient but cannot identify all
accessibility issues. Human review can help ensure clarity of language and
ease of navigation.

Begin using validation methods at the earliest stages of development. Accessibility
issues identified early are easier to correct and avoid.

Following are some important validation methods, discussed in more detail in the
section on validation in the Techniques Document.

1. Use an automated accessibility tool and browser validation tool. Please not that
software tools do not address all accessibility issues, such as the
meaningfulness of link text, the applicability of a text equivalent [p. 25] , etc.

2. Validate the HTML.
3. Validate the style sheets.

22

Web Content Accessibility Guidelines 1.0

4. Use a text-only browser or emulator.
5. Use multiple graphic browsers, with:

sounds and graphics loaded,
graphics not loaded,
sounds not loaded,
no mouse,
frames, scripts, style sheets, and applets not loaded

6. Use several browsers, old and new.
7. Use a self-voicing browser, a screen reader, magnification software, a small

display, etc.
8. Use spell and grammar checkers. A person reading a page with a speech

synthesizer may not be able to decipher the synthesizer’s best guess for a word
with a spelling error. Eliminating grammar problems increases comprehension.

9. Review content and structure [p. 24] for clarity and simplicity. Readability
statistics, such as those generated by some word processors may be useful
indicators of clarity and simplicity. Better still, ask an experienced (human) editor
to review written content for clarity. Editors can also improve the usability of
documents by identifying intercultural problems that might arise due to language
or icon usage.

10. Invite people with disabilities to review your documents. Expert and novice
users with disabilities will provide valuable feedback about accessibility or
usability problems and their severity.

Appendix B. - Glossary
Accessible

Content is accessible when it may be used by someone with a disability.
Applet

A program inserted into a Web page.
Assistive technology

Software that provides a specialized service and generally operates in
conjunction with an independent user agent [p. 27] . Assistive technologies
include screen readers, screen magnifiers, and voice input software.

ASCII art
ASCII art refers to text characters and symbols that are combined to create an
image. For example ";-)" is the smiley emoticon and the following drawing
represents a cow [skip ascii cow [p. 24]]:

 (__)
 (oo)
 /-------\/
 / | ||
* ||----||

23

Web Content Accessibility Guidelines 1.0

Authoring tool
HTML editors, document conversion tools, tools that generate Web content from
databases. Refer to the "Authoring Tool Accessibility Guidelines"
([WAI-AUTOOLS] [p. 30]) for information about developing accessible tools.

Backward compatible
Design that continues to work with earlier versions of a language, program, etc.

Braille
Braille uses six raised dots in different patterns to represent letters and numbers
to be read by people who are blind with their fingertips. The word "Accessible" in
braille follows:

A braille display, commonly referred to as a "dynamic braille display," raises or
lowers dot patterns on command from an electronic device, usually a computer.
The result is a line of braille that can change from moment to moment. Dynamic
braille displays range in size from one cell (six or eight dots) to an eighty cell
line. Displays with twelve to twenty cells per line are the most common.

Caption
When a text equivalent [p. 25] for video is synchronized with the video
presentation it is called a caption. Captions are used by people who cannot hear
the audio track of the video material. Without captions, people who are deaf, or
hard of hearing, or any user who cannot or has chosen not to hear sound
cannot perceive the information presented through speech, sound effects,
music, etc.

Collate
When referring to text transcripts [p. 25] , collating means combining the text
version of the descriptions and the text transcript (captions) of the primary audio
track into a single document to read like a script of the movie. In other words,
the two documents are not combined but flow as a single document.

Content/Structure/Presentation
The content of a document refers to both what the document says and the bytes
(text and markup) that make it up. The structure of a document is how it is
organized logically (e.g., by chapter, with an introduction and table of contents,
etc.) The presentation of a document is how the document is rendered (e.g., as
print, as a two-dimensional graphical presentation, as an text-only presentation,
as synthesized speech, as braille, etc.
Consider a header, for example. The content of the header is what the header
says (e.g., "Sailboats") and how it is marked up (e.g., with an H2 element in
HTML). In terms of structure, the header may be part of a chapter of the
document. Finally, the presentation of the header might be a bold block text in
the margin, a centered line of text, a title spoken with a certain voice style (like
an aural font), etc.

24

Web Content Accessibility Guidelines 1.0

Content developer
Someone who authors Web pages or designs Web sites.

Deprecated
A deprecated element or attribute is one that has been outdated by newer
constructs. Deprecated elements may become obsolete in future versions of
HTML. The techniques index of HTML elements and attributes in the
Techniques Document indicates which elements and attributes are deprecated
in HTML 4.0.
Authors should avoid using deprecated elements and attributes. User agents
should continue to support for reasons of backward compatibility.

Dynamic HTML (DHTML)
DHTML is the marketing term applied to a mixture of standards including HTML,
style sheets [p. 26] , the Document Object Model [DOM1] [p. 29] and scripting.
However, there is no W3C specification that formally defines DHTML. Most
guidelines may be applicable to applications using DHTML, however the
following guidelines focus on issues related to scripting, and style sheets:
guideline 1, guideline 6, and guideline 7.

Equivalent
An "equivalent" is information that, when presented to a user, provides
essentially the same function (or fulfills the same purpose) as another piece of
information. Due to the importance of text for a variety of output devices, we
distinguish text equivalents from non-text equivalents. For example, for an
audio clip of a conversation between two people, a text-transcript is a text
equivalent of the audio clip. Examples of non-text equivalents include spoken
audio recordings of text, icons, and videos of sign language renderings of
content. In the context of this document, text and non-text equivalents are
generally intended to serve as alternatives for portions of the primary content
that are inaccessible to people with disabilities.
Part of providing equivalent information may involve describing the appearance
(visual or audio) of an image, table, chart, or other complex object. Descriptive
information may be part of the equivalent or may be separated from it (often the
case when the description is lengthy). Descriptive information may even be
external to the document, available through a link (e.g., via the "longdesc"
attribute in HTML or via a description links, or d-links).

Image
A graphical presentation.

Image map
An image that has been divided into regions with associated actions. Clicking on
an active region causes an action to occur.
When a user clicks on an active region of a client-side image map, the user
agent calculates in which region the click occurred and follows the link
associated with that region. Clicking on an active region of a server-side image
map causes the coordinates of the click to be sent to a server, which then
performs some action.
Content developers can make client-side image maps accessible by providing
device-independent access to the same links associated with the image map’s

25

Web Content Accessibility Guidelines 1.0

regions. Client-side image maps allow the user agent to provide immediate
feedback as to whether or not the user’s pointer is over an active region.

Important
Information is important if understanding it in detail is necessary for the overall
understanding of a document.

Link text
The rendered text content of a link.

Natural Language
National spoken or written languages such as French, English, and Japanese.
The natural language of content may be indicated with the "lang" attribute in
HTML ([HTML40] [p. 29] , section 8.1) and the "xml:lang" attribute in XML
([XML] [p. 30] , section 2.12).

Navigation Mechanism
A navigation mechanism is any means by which a user can navigate a page or
site. Some typical mechanisms include:
navigation bars

A navigation bar is a collection of links to the most important parts of a
document or site.

site maps
A site map provides a global view of the organization of a page or site.

tables of contents
A table of contents generally lists (and links to) the most important sections
of a document.

Personal Digital Assistant (PDA)
A PDA is a small, portable computing device. Most PDAs are used to track
personal data such as calendars, contacts, and electronic mail. A PDA is
generally a handheld device with a small screen that allows input from various
sources.

Screen magnifier
A software program that magnifies a portion of the screen, so that it can be
more easily viewed. Screen magnifiers are used primarily by individuals with low
vision.

Screen reader
A software program that reads the contents of the screen aloud to a user.
Screen readers are used primarily by individuals who are blind, screen readers
can usually only read text that is printed, not painted, to the screen.

Style sheets
A style sheet is a set of statements that specify presentation of a document.
Style sheets may have three different origins: they may be written by content
providers, created by users, or built into user agents. In CSS ([CSS2] [p. 29]),
the interaction of content provider, user, and user agent style sheets is called
the cascade.
Presentation markup is markup that achieves a stylistic (rather than
structuring) effect such as the B or I elements in HTML. Note that the STRONG
and EM elements are not considered presentation markup since they convey
information that is independent of a particular font style.

26

Web Content Accessibility Guidelines 1.0

Tabular information
When tables are used to represent logical relationships among data - text,
numbers, images, etc., that information is called "tabular information" and the
tables are called "data tables". The relationships expressed by a table may be
rendered visually (usually on a two-dimensional grid), aurally (often preceding
cells with header information), or in other formats.

Until user agents ...
In most of the checkpoints , content developers are asked to ensure the
accessibility of their pages and sites. However, there are accessibility needs
that would be more appropriately met by a user agent [p. 27] or assistive
technology [p. 23] . Unfortunately, not all user agents or assistive technologies
provide the accessibility control users require (e.g., some user agents may not
allow users to turn off blinking content, or some screen readers may not handle
tables well). Therefore, to address cases where the responsibility for providing
accessible control lies with the user agent or assistive technology but that
control is not yet easily or widely available, certain checkpoints contain the
phrase "until user agents ...". When content developers see this phrase, they
should recognize that they are being asked to provide additional support for
accessibility until most user agents are capable of providing the necessary
control.
For each checkpoint containing this phrase, content developers must consider:

1. What is their anticipated audience? For example, designing for a company
intranet where everyone uses the same browser is different than designing
for the World Wide Web.

2. Do those users have tools available that satisfy the demands of the
checkpoint? If the answer to this question is yes, content developers are
not required to satisfy the checkpoint.

How will content developers know when most user agents or assistive
technologies meet specific needs? The W3C WAI will make information about
support for accessibility features available from its Web site (either directly or by
providing links to the information). Content developers are encouraged to
consult this information regularly for pertinent updates.

User agent
Software to access Web content, including desktop graphical browsers, text
browsers, voice browsers, mobile phones, multimedia players, plug-ins, and
assistive technologies such as screen readers and screen magnifiers.

27

Web Content Accessibility Guidelines 1.0

Acknowledgments
Web Content Guidelines Working Group Co-Chairs:

Chuck Letourneau, Starling Access Services
Gregg Vanderheiden, Trace Research and Development

W3C Team contacts:
Judy Brewer and Daniel Dardailler

We wish to thank the following people who have contributed their time and valuable
comments to shaping these guidelines:

Harvey Bingham, Kevin Carey, Chetz Colwell, Neal Ewers, Geoff Freed, Al
Gilman, Larry Goldberg, Jon Gunderson, Eric Hansen, Phill Jenkins, Leonard
Kasday, George Kerscher, Marja-Riitta Koivunen, Josh Krieger, Scott Luebking,
William Loughborough, Murray Maloney, Charles McCathieNevile, MegaZone
(Livingston Enterprises), Masafumi Nakane, Mark Novak, Charles Oppermann,
Mike Paciello, David Pawson, Michael Pieper, Greg Rosmaita, Liam Quinn,
Dave Raggett, T.V. Raman, Robert Savellis, Jutta Treviranus, Steve Tyler, Jaap
van Lelieveld, and Jason White

The original draft of this document is based on "The Unified Web Site Accessibility
Guidelines" ([UWSAG] [p. 30]) compiled by the Trace R & D Center at the University
of Wisconsin. That document includes a list of additional contributors.

28

Web Content Accessibility Guidelines 1.0

References
For the latest version of any W3C specification please consult the list of W3C
Technical Reports.

[CSS1]
"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds., 17 December
1996, revised 11 January 1999. The CSS1 Recommendation is available at:
http://www.w3.org/TR/1999/REC-CSS1-19990111.
The latest version of CSS1 is available at: http://www.w3.org/TR/REC-CSS1.

[CSS2]
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs,
eds., 12 May 1998. The CSS2 Recommendation is available at:
http://www.w3.org/TR/1998/REC-CSS2-19980512.
The latest version of CSS2 is available at: http://www.w3.org/TR/REC-CSS2.

[DOM1]
"Document Object Model (DOM) Level 1 Specification", V. Apparao, S. Byrne,
M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C.
Wilson, and L. Wood, eds., 1 October 1998. The DOM Level 1
Recommendation is available at:
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001.
The latest version of DOM Level 1 is available at:
http://www.w3.org/TR/REC-DOM-Level-1

[HTML40]
"HTML 4.0 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds., 17
December 1997, revised 24 April 1998. The HTML 4.0 Recommendation is
available at: http://www.w3.org/TR/1998/REC-html40-19980424.
The latest version of HTML 4.0 is available at:
http://www.w3.org/TR/REC-html40.

[HTML32]
"HTML 3.2 Recommendation", D. Raggett, ed., 14 January 1997. The latest
version of HTML 3.2 is available at: http://www.w3.org/TR/REC-html32.

[MATHML]
"Mathematical Markup Language", P. Ion and R. Miner, eds., 7 April 1998. The
MathML 1.0 Recommendation is available at:
http://www.w3.org/TR/1998/REC-MathML-19980407.
The latest version of MathML 1.0 is available at:
http://www.w3.org/TRREC-MathML.

[PNG]
"PNG (Portable Network Graphics) Specification", T. Boutell, ed., T. Lane,
contributing ed., 1 October 1996. The latest version of PNG 1.0 is available at:
http://www.w3.org/TR/REC-png.

[RDF]
"Resource Description Framework (RDF) Model and Syntax Specification", O.
Lassila, R. Swick, eds., 22 February 1999. The RDF Recommendation is
available at: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

29

Web Content Accessibility Guidelines 1.0

The latest version of RDF 1.0 is available at:
http://www.w3.org/TR/REC-rdf-syntax

[SMIL]
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", P.
Hoschka, ed., 15 June 1998. The SMIL 1.0 Recommendation is available at:
http://www.w3.org/TR/1998/REC-smil-19980615
The latest version of SMIL 1.0 is available at: http://www.w3.org/TR/REC-smil

[WAI-AUTOOLS]
"Authoring Tool Accessibility Guidelines", J. Treviranus, J. Richards, I. Jacobs,
C. McCathieNevile, eds. The latest Working Draft of these guidelines for
designing accessible authoring tools is available at:
http://www.w3.org/TR/WD-WAI-AUTOOLS/

[WAI-USERAGENT]
"User Agent Accessibility Guidelines", J. Gunderson and I. Jacobs, eds. The
latest Working Draft of these guidelines for designing accessible user agents is
available at: http://www.w3.org/TR/WD-WAI-USERAGENT/

[UWSAG]
"The Unified Web Site Accessibility Guidelines", G. Vanderheiden, W. Chisholm,
eds. The Unified Web Site Guidelines were compiled by the Trace R & D Center
at the University of Wisconsin under funding from the National Institute on
Disability and Rehabilitation Research (NIDRR), U.S. Dept. of Education. This
document is available at:
http://www.tracecenter.org/docs/html_guidelines/version8.htm

[XML]
"Extensible Markup Language (XML) 1.0.", T. Bray, J. Paoli, C.M.
Sperberg-McQueen, eds., 10 February 1998. The XML 1.0 Recommendation is
available at: http://www.w3.org/TR/1998/REC-xml-19980210.
The latest version of XML 1.0 is available at: http://www.w3.org/TR/REC-xml

30

Web Content Accessibility Guidelines 1.0

4/26/99

[guidelines] [techniques]

/LVW�RI�&KHFNSRLQWV�IRU�WKH�:HE�&RQWHQW�
$FFHVVLELOLW\�*XLGHOLQHV����

:�&�3URSRVHG�5HFRPPHQGDWLRQ����0DU�����

This version:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/full-checklist

Latest version:
http://www.w3.org/TR/WAI-WEBCONTENT/full-checklist

Previous version:
http://www.w3.org/TR/1999/WD-WAI-PAGEAUTH-19990226/full-checklist

Related Documents:
Web Content Accessibility Guidelines 1.0
Techniques for Web Content Accessibility Guidelines

Editors:
Wendy Chisholm <chisholm@trace.wisc.edu>
Gregg Vanderheiden <gv@trace.wisc.edu>
Ian Jacobs <ij@w3.org>

Copyright © 1999 W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

$EVWUDFW

This document is an appendix to the W3C "Web Content Accessibility Guidelines
1.0". It provides a list of all checkpoints from the Web Content Accessibility
Guidelines 1.0, organized by concept, as a checklist for Web content developers.
Please refer to the Guidelines document for introductory information, information
about related documents, a glossary of terms, and more.

This document has been produced as part of the Web Accessibility Initiative. The
goal of the WAI Web Content Guidelines Working Group is discussed in the
Working Group charter.

6WDWXV�RI�WKLV�GRFXPHQW

This document is a Proposed Recommendation of the World Wide Web

4/26/99

Consortium (W3C) and is currently undergoing review by the Members of the
W3C. Review comments on this specification should be sent by 21 April 1999 to
w3c-wai-gl@w3.org. An archive of public comments is available. W3C Members
may send their formal comments, visible only to the W3C Team, to w3c-wai-wcag-
review@w3.org.

This specification is a revision of the last call public Working Draft dated 26
February 1999. It incorporates suggestions from reviewers and further
deliberations of the Web Content Guidelines Working Group. A detailed list of
changes to the document is available from the Web Content Guidelines Working
Group site.

Publication as a Proposed Recommendation does not imply endorsement by the
W3C membership. This is still a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite W3C Drafts
as other than "work in progress."

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

This document has been produced as part of the Web Accessibility Initiative. The
goal of the Web Content Guidelines Working Group is discussed in the Working
Group charter.

3ULRULWLHV

Each checkpoint has priority level assigned by the Working Group based on the
checkpoint’s impact on accessibility.

[Priority 1]
A Web content developer must satisfy this checkpoint. Otherwise, one or
more groups will find it impossible to access information in the document.
Satisfying this checkpoint is a basic requirement for some groups to be able
to use Web documents.

[Priority 2]
A Web content developer should satisfy this checkpoint. Otherwise, one or
more groups will find it difficult to access information in the document.
Satisfying this checkpoint will remove significant barriers to accessing Web
documents.

[Priority 3]
A Web content developer may address this checkpoint. Otherwise, one or
more groups will find it somewhat difficult to access information in the
document. Satisfying this checkpoint will improve access to Web documents.

Some checkpoints specify a priority level that may change under certain
(indicated) conditions.

4/26/99

3ULRULW\���FKHFNSRLQWV

In General (Priority 1) Yes No N/A
1.1 Provide a text equivalent for every non-text element
(e.g., via "alt", "longdesc", or in element content). This
includes: images, graphical representations of text, image
map regions, short animations (e.g., animated GIFs),
applets, ascii art, frames, scripts, inserted list bullets,
sounds (played with or without user interaction), stand-alone
audio files, synthesized speech, audio tracks of video, and
video.

2.1 Ensure that all information conveyed with color is also
available without color, for example from context or markup.

4.1 Clearly identify changes in the natural language of a
document's text and any text equivalents (e.g., captions) of
non-text content.

6.1 Organize content logically using appropriate structural
markup so the organization remains clear even when
associated style sheets are turned off or are not supported.

7.1 Until user agents allow users to control it, avoid causing
the screen to flicker.

14.1 Use the clearest and simplest language appropriate for
a site's content.

And if you use images and image maps (Priority 1) Yes No N/A
1.2 Provide redundant text links for each active region of an
image map. [Priority 1 - if server-side image maps are used,
Priority 2 - if client-side image maps are used. Redundant
text links for client-side image maps are only required until
user agents render text equivalents for the map links.]

1.5 Replace ASCII art with an image or explain it. [Priority 1
or Priority 2 depending on the importance of the
information.]

9.1 Provide client-side image maps instead of server-side
image maps except where the regions cannot be defined
with an available geometric shape.

And if you use tables (Priority 1) Yes No N/A
5.1 For data tables, identify row and column headers.
5.2 For data tables that have two or more logical levels of
row or column headers, use markup to associate data cells
and header cells.

And if you use frames (Priority 1) Yes No N/A
6.2 Ensure that descriptions and text alternatives for
dynamic content are updated when the dynamic content
changes.

4/26/99

12.1 Title each frame so that users can keep track of frames
by title.

And if you use applets and scripts (Priority 1) Yes No N/A
6.3 Ensure that pages are usable when scripts, applets, or
other programmatic objects are turned off or not supported.
If this is not possible, provide equivalent mechanisms on an
alternative accessible page.

And if you use multimedia (Priority 1) Yes No N/A
1.3 For each movie, provide an auditory description of the
video track and synchronize it with the audio track.

1.4 For any time-based presentation (e.g., a movie,
animation, or multimedia presentation), synchronize
equivalent alternatives (e.g., captions or video descriptions)
with the presentation.

And if all else fails (Priority 1) Yes No N/A
11.4 If, after best efforts, you cannot create an accessible
page, provide a link to an alternative page that uses W3C
technologies, is accessible, has equivalent information, and
is updated as often as the inaccessible (original) page.

3ULRULW\���FKHFNSRLQWV

In General (Priority 2) Yes No N/A
2.2 Ensure that foreground and background color
combinations provide sufficient contrast when viewed by
someone having color deficits or when viewed on a black
and white screen. [Priority 2 for images, Priority 3 for text].

3.1 When an appropriate markup language exists, use
markup rather than images to convey information.

3.2 Use header elements to convey logical structure and
use them according to specification.

3.3 Mark up lists and list items properly.
3.4 Mark up quotations. Do not use quotation markup for
formatting effects such as indentation.

3.5 Create documents that validate to published formal
grammars.

3.6 Use style sheets to control layout and presentation.
3.7 Use relative rather than absolute units in markup
language attribute values and style sheet property values.

4.2 Specify the expansion of abbreviations and acronyms.
[Priority 2 for the first occurrence of the acronym or
abbreviation in a given document, Priority 3 thereafter.]

7.2 Until user agents allow users to control it, avoid causing
content to blink (i.e., change presentation at a regular rate,
such as turning on and off).

4/26/99

7.4 Until user agents provide the ability to stop the refresh,
do not create periodically auto-refreshing pages.

7.5 Until user agents provide the ability to stop auto-redirect,
do not use markup to redirect pages automatically. Instead,
configure the server to perform redirects.

11.1 Use W3C technologies and use the latest versions
when they are supported.

11.2 Avoid deprecated features of W3C technologies.
12.3 Divide large blocks of information into more
manageable groups where natural and appropriate.

13.1 Clearly identify the target of each link.
13.2 Provide metadata to add semantic information to pages
and sites.

13.3 Provide information about the general layout of a site
(e.g., a site map, or table of contents).

13.4 Use navigation mechanisms in a consistent manner.
And if you use images and image maps (Priority 2) Yes No N/A

3.8 Provide individual button controls in a form rather than
simulating a set of buttons with an image map.

And if you use tables (Priority 2) Yes No N/A
5.3 Avoid using tables for layout.
5.4 If a table is used for layout, do not use any structural
markup for the purpose of visual formatting.

10.3 Until user agents or assistive technologies render side-
by-side text correctly, provide a linear text alternative (on the
current page or some other) for all tables that lay out text in
parallel, word-wrapped columns.

And if you use frames (Priority 2) Yes No N/A
6.5 Provide an alternative presentation or page when the
primary content is dynamic (e.g., when frame contents
change, when scripts cause changes, etc.).

12.2 Describe the purpose of frames and how frames relate
to each other if it is not obvious by frame titles alone.

And if you use forms (Priority 2) Yes No N/A
10.2 For all form controls with implicitly associated labels,
ensure that the label is properly positioned.

12.4 Associate labels explicitly with their controls.
And if you use applets and scripts (Priority 2) Yes No N/A

6.4 For scripts and applets, until user agents provide device-
independent means to activate event handlers, ensure that
event handlers are keyboard operable.

7.3 Until user agents allow users to freeze moving content,
avoid movement in pages.

8.1 Make programmatic elements such as scripts and

4/26/99

applets directly accessible or compatible with assistive
technologies [Priority 1 if functionality is important and not
presented elsewhere, otherwise Priority 2.]

9.2 Ensure that all elements that have their own interface
are keyboard operable.

9.3 For scripts, specify logical event handlers rather than
device-dependent event handlers.

10.1 Until user agents allow users to turn off spawned
windows, do not cause pop-ups or other windows to appear
and do not change the current window without informing the
user.

3ULRULW\���FKHFNSRLQWV

In General (Priority 3) Yes No N/A
4.3 Identify the primary natural language of a document.
9.4 Create a logical tab order through links, form controls,
and objects.

9.5 Provide keyboard shortcuts to important links (including
those in client-side image maps), form controls, and groups
of form controls.

11.3 Provide information so that users may receive
documents according to their preferences (e.g., language,
content type, etc.)

13.5 Provide navigation bars to highlight and give access to
the navigation mechanism.

13.6 Group related links, identify the group (for user agents),
and, until user agents do so, provide a way to bypass the
group.

13.7 Enable different types of searches for different skill
levels and preferences.

13.8 Place distinguishing information at the beginning of
headings, paragraphs, lists, etc.

13.9 Provide information about document collections (i.e.,
documents comprising multiple pages.).

13.10 Provide a means to skip over multi-line ASCII art.
14.2 Provide visual or auditory equivalents to text where
they facilitate comprehension of the page.

14.3 Create a style of presentation that is consistent across
pages.

And if you use tables (Priority 3) Yes No N/A
5.5 Provide summaries for tables.
5.6 Provide abbreviations for header labels.

And if you use forms (Priority 3) Yes No N/A

4/26/99

10.4 Until user agents handle empty controls correctly,
include default, place-holding characters in edit boxes and
text areas.

10.5 Until user agents or assistive technologies render
adjacent links distinctly, include non-link, printable
characters (surrounded by spaces) between adjacent links.

[guidelines] [techniques]

W3C

Techniques for Web Content Accessibility
Guidelines

W3C Working Draft 24-Mar-1999
This version:

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth-tech
Latest version:

http://www.w3.org/TR/WAI-WEBCONTENT/wai-pageauth-tech
Previous version:

http://www.w3.org/TR/1999/WD-WAI-PAGEAUTH-19990226/wai-pageauth-tech
Related Documents:

Web Content Accessibility Guidelines 1.0
List of Checkpoints for the Web Content Accessibility Guidelines 1.0

Editors:
Wendy Chisholm <chisholm@trace.wisc.edu>
Gregg Vanderheiden <gv@trace.wisc.edu>
Ian Jacobs <ij@w3.org>

Copyright W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract
This document is a list of techniques that implement the guidelines described in
"Web Content Accessibility Guidelines 1.0". This document includes primarily
techniques that Web content developers may use to implement the guidelines, but
also refers to some CSS techniques as well.

While Web Content Accessibility Guidelines 1.0 strives to be a stable document
(as a W3C Recommendation), the current document will undoubtedly evolve as
technologies change and content developers discover more effective techniques for
designing accessible pages.

This document is part of a series of accessibility documents published by the Web
Accessibility Initiative.

Status of this document
This is a W3C Working Draft for review by W3C members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". This is work in progress

1

Techniques for Web Content Accessibility Guidelines

and does not imply endorsement by, or the consensus of, either W3C or members of
the Web Content Guidelines Working Group.

This document has been produced as part of the W3C Web Accessibility Initiative.
The goal of the Web Content Guidelines Working Group is discussed in the Working
Group charter.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

Please send detailed comments on this document to w3c-wai-gl@w3.org.

Available formats
This document is available in the following formats:

HTML:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth-tech.html

A plain text file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth-tech.txt,

HTML as a gzip’ed tar file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.tgz,

HTML as a zip file (this is a ’.zip’ file not an ’.exe’):
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth.zip,

A PostScript file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth-tech.ps,

A PDF file:
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth-tech.pdf.

In case of a discrepancy between the various formats of the specification,
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990324/wai-pageauth-tech.html
is considered the definitive version.

2

Techniques for Web Content Accessibility Guidelines

Table of Contents
........... 41 Accessibility Themes for HTML
........... 41.1 Structure vs. Presentation
......... 71.2 Text equivalents and descriptions
............. 91.3 Alternative pages
............. 101.4 Keyboard access
............... 111.5 Navigation
.............. 121.6 Comprehension
............. 141.7 Content negotiation
............ 141.8 Automatic page refresh
............... 151.9 Other topics
............... 151.10 Validation
............. 161.11 Browser Support
................ 162 HTML topics
......... 162.1 Document structure and metadata
............ 182.2 Language information
.............. 182.3 Text markup
................ 192.4 Lists
................ 222.5 Tables
................ 272.6 Links
........... 282.7 Images and image maps
........... 342.8 Applets and other objects
.............. 362.9 Audio and video
............ 382.10 Style and style sheets
............... 442.11 Frames
................ 482.12 Forms
............... 502.13 Scripts
............... 513 Acknowledgments
............. 534 Reference specifications
................. 535 Services
............... 546 Checkpoint Map
.......... 587 Index of HTML elements and attributes
............... 587.1 Elements
............... 627.2 Attributes

3

Techniques for Web Content Accessibility Guidelines

Priorities
Each checkpoint has priority level assigned by the Working Group based on the
checkpoint’s impact on accessibility.

[Priority 1]
A Web content developer must satisfy this checkpoint. Otherwise, one or more
groups will find it impossible to access information in the document. Satisfying
this checkpoint is a basic requirement for some groups to be able to use Web
documents.

[Priority 2]
A Web content developer should satisfy this checkpoint. Otherwise, one or
more groups will find it difficult to access information in the document. Satisfying
this checkpoint will remove significant barriers to accessing Web documents.

[Priority 3]
A Web content developer may address this checkpoint. Otherwise, one or more
groups will find it somewhat difficult to access information in the document.
Satisfying this checkpoint will improve access to Web documents.

Some checkpoints specify a priority level that may change under certain
(indicated) conditions.

The checkpoints in this document are numbered to match their numbering in Web
Content Accessibility Guidelines 1.0.

1 Accessibility Themes for HTML
The following sections discuss some accessibility that Web content developers
should keep in mind as they design HTML documents.

1.1 Structure vs. Presentation
When designing a document or series of documents, content developers should
strive to identify the desired structure for their documents without thinking about how
the documents will be presented to the user. Distinguishing the structure of a
document from how the content is presented offers a number of advantages,
including improved accessibility, manageability, and scalability.

Identifying what is structure and what is presentation may be a challenging task at
times that content developers must develop a mindset for recognizing. For instance,
many content developers consider that a horizontal rule (the HR element)
communicates a structural division. This may be true for sighted users, but to
unsighted users or users without graphical browsers, a rule has next to no meaning
(One might "guess" that an HR element implies a structural division, but without
other information, there is no guarantee.) Content developers should use the HTML
4.0 header elements (H1-H6) to identify new sections. These may be complemented
by visual or other cues such as horizontal rules, but should not be replaced by them.

4

Techniques for Web Content Accessibility Guidelines

The inverse holds as well: content developers should not use structural elements
to achieve presentation effects. For instance, even though the BLOCKQUOTE
element may cause indented text in some browsers, that is not its meaning, only a
presentation side-effect. BLOCKQUOTE elements used for indentation confuse
users and search robots alike, who expect the element to be used to mark up block
quotations.

The next two sections identify (by theme) precisely those elements and attributes
considered structural (and some of their uses) and those that are considered to
control presentation. The section on style and style sheets [p. 38] discusses how to
use CSS to accomplish the same tasks as the HTML presentation elements and
attributes.

Elements and attributes that are deprecated in HTML 4.0 ([HTML40] [p. 52])
appear in red and followed by an asterisk (*) in this document. Most presentation
elements have been deprecated in HTML 4.0.

[Checkpoint 11.2] Avoid deprecated features of W3C technologies. [Priority 2]

1.1.1 Structural elements and attributes

Document head
and body

HTML [p. 60] , HEAD [p. 60] , BODY [p. 59]

Data about the
document

TITLE [p. 62] , META [p. 61] , ADDRESS [p. 59]

Attributes alt, title, longdesc

Chapters,
sections, etc.

H1 [p. 60] -H6

Author-defined
structures

DIV [p. 60] , SPAN [p. 61]

Attributes class, id

Language, writing
direction

BDO [p. 59]

Attributes lang, hreflang, dir

Creating
paragraphs

EM [p. 60] , STRONG [p. 61]

Acronyms and
abbreviations

ACRONYM [p. 59] , ABBR [p. 59]

Subscripts and
superscripts

SUB [p. 61] , SUP [p. 61]

5

Techniques for Web Content Accessibility Guidelines

Inserted and
deleted text

INS [p. 60] , DEL [p. 59]

Attributes cite, datetime

Quotations BLOCKQUOTE [p. 59] , Q [p. 61]

Attributes cite

Identifying
chunks of text

DFN [p. 59] , CODE [p. 59] , SAMP [p. 61] , KBD [p. 60] ,
VAR [p. 62] , CITE [p. 59]

Lists UL [p. 62] , OL [p. 61] , LI [p. 60] , DL [p. 60] , DT [p. 60] , DD
[p. 59] , DIR* [p. 60] ,

Attributes start*, value*

Tables TABLE [p. 61] , CAPTION [p. 59] , THEAD [p. 62] , TFOOT
[p. 62] , TBODY [p. 61] , COLGROUP [p. 59] , COL [p. 59] ,
TR [p. 62] , TH [p. 62] , TD [p. 62]

Attributes abbr, axis, headers, scope, rowspan, span, summary

Links LINK [p. 60] , IMG [p. 60] , OBJECT [p. 61] , PARAM [p. 61] ,
APPLET* [p. 59] , MAP [p. 60] , AREA [p. 59]

Attributes shape, ismap, coords

Forms and
keyboard control

FORM [p. 60] , INPUT [p. 60] , BUTTON [p. 59] , SELECT
[p. 61] , OPTGROUP [p. 61] , OPTION [p. 61] , TEXTAREA
[p. 62] , LABEL [p. 60] , FIELDSET [p. 60] , LEGEND [p. 60] ,
ISINDEX* [p. 60]

Attributes tabindex, accesskey, label, for

Scripts SCRIPT [p. 61] , NOSCRIPT [p. 61]

Attributes onblur, onchange, onclick, ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onload, onload, onmousedown,
onmousemove, onmouseout, onmouseover, onmouseup,
onreset, onselect, onsubmit, onunload

1.1.2 Presentation elements and attributes

Note 1. Not all attributes are listed in this section. Only those deemed pertinent to
accessibility have been listed.

Note 2. While the STYLE element is presentational, it may be used to enhance
the presentation of structural elements. The other presentation elements are often
used instead of structural elements.

6

Techniques for Web Content Accessibility Guidelines

Style sheets PRE [p. 61] , CENTER* [p. 59] , BR [p. 59] , STYLE [p. 61]

Attributes align*, valign*, clear*, nowrap*, char, charoff , style

Spacing

Attributes hspace*, vspace*, cellpadding, cellspacing, compact*, type*

Text style and
fonts

TT [p. 62] , I [p. 60] , B [p. 59] , BIG [p. 59] , SMALL [p. 61] ,
STRIKE* [p. 61] , S* [p. 61] , U* [p. 62] , FONT* [p. 60] ,
BASEFONT* [p. 59]

Attributes face*, size*

Colors

Attributes background*, bgcolor*, color*, text*, link*, alink*, vlink*

Rules and
borders

HR [p. 60]

Attributes border, noshade*, rules, size (deprecated according to element).

Frames FRAMESET [p. 60] , FRAME [p. 60] , IFRAME [p. 60] ,
NOFRAMES [p. 61]

Attributes target, marginheight, marginwidth, frame, frameborder, noresize,
rows, cols, scrolling

1.2 Text equivalents and descriptions
Text is considered accessible to almost all users since it may be handled by screen
readers, non-visual browsers, braille readers, etc. It is good practice, as you design
a document containing non-textual information (images, graphics, applets, sounds,
etc.) to think about supplementing that information with textual equivalents wherever
possible.

There are several types of textual supplements to consider:

Text equivalents
A text equivalent (or alternative text) describes the function or purpose of
content. A text equivalent should not describe visual appearance or how
something sounds. For example, if an image of a magnifying glass is used for a
search button, the alt-text would be "Search" rather than "Magnifying glass".

Text equivalents should be provided for logos, photos, submit buttons,
applets, bullets in lists, ascii art, and all of the links within an image map as well
as invisible images used to layout a page.

7

Techniques for Web Content Accessibility Guidelines

Quicktest! A good test to determine if a text equivalent is useful is to imagine
reading the document aloud over the telephone. What would you say upon
encountering this image to make the page comprehensible to the listener?

Related checkpoints:
1. Refer also to checkpoint 1.1.
2. For all image map links:

Refer also to checkpoint 1.2.
3. Refer also to checkpoint 3.8.
4. Refer also to checkpoint 1.5.
5. Refer also to checkpoint 13.10.
6. Refer also to checkpoint 3.6.
7. [Checkpoint 12.1] Title each frame so that users can keep track of frames

by title. [Priority 1]
Long descriptions

In general, a long description should describe visual appearance or how
something sounds. Long descriptions are generally stored in external
documents (but may be inline if necessary).

1. [Checkpoint 12.2] Describe the purpose of frames and how frames relate to
each other if it is not obvious by frame titles alone. [Priority 2]

HTML allows content developers to specify these substitutes in several ways.
Here is a summary of attributes used for alt-text and long descriptions and the
elements they apply to (by version of HTML):

To implement alt-text, use the "alt" attribute.
In HTML 4.0, applies to: IMG, AREA, INPUT, APPLET. The attribute is
mandatory for the IMG and AREA elements.
In HTML 3.2, applies to: IMG, AREA, APPLET.
In HTML 2.0, applies to: IMG.

To implement long descriptions, use the "longdesc" attribute
In HTML 4.0, applies to: FRAME, IFRAME, IMG
In HTML 3.2, applies to: N/A.
In HTML 2.0, applies to: N/A.

Not every user agent supports these attributes. When required to design
documents for a version of HTML known not to support one of these attributes,
content developers should implement alt-text or descriptions in other ways. Methods
include:

Inline text equivalents or descriptions. For example, include a description of the
image immediately after the image.
Links to descriptions (called description links or "d-links"). Description links
should be ordinary links (on the same page or another designed for such links)
that designate a document containing a long description. The link text (content
of the A element) should be "[D]".

8

Techniques for Web Content Accessibility Guidelines

Each of the HTML topics [p. 16] below describes prioritized scenarios for alt-text
and descriptions.

Some image formats allow internal text in the data file along with the image
information. If an image format supports such text (e.g., Portable Network Graphics,
see [PNG] [p. 52]) content developers may also supply information there as well.

1.3 Alternative pages
[Checkpoint 11.4] If, after best efforts, you cannot create an accessible page,
provide a link to an alternative page that uses W3C technologies, is accessible, has
equivalent information, and is updated as often as the inaccessible (original) page.
[Priority 1]

Although it is possible to make most content accessible, it may happen that all or
part of a page remains inaccessible. Here are several additional techniques for
creating accessible alternatives:

Allow users to navigate to a separate page that is accessible and maintained
with the same frequency as the inaccessible original page. There are several
techniques for linking to an accessible alternative page:

1. Provide links at the top of both the main and alternative pages to allow a
user to move back and forth between them.

2. Use the LINK element to designate alternative documents. Browsers should
load the alternative page automatically based on the user’s browser type
and preferences.

Instead of static alternative pages, set up server-side scripts that generate
accessible versions of a page on demand.
[Checkpoint 6.5] Provide an alternative presentation or page when the primary
content is dynamic (e.g., when frame contents change, when scripts cause
changes, etc.). [Priority 2] . See the examples for Frames [p. 45] and Scripts
[p. 50] .
Otherwise provide a phone number, fax number, e-mail, or postal address
where information is available and accessible, preferably 24 hours a day

Example.

User agents that support LINK will load the alternative page for those users whose
browsers may be identified as supporting "aural","braille", or "tty" rendering.

 <HEAD>
 <TITLE>Welcome to the Virtual Mall!</TITLE>
 <LINK title="Text-only version"
 rel="alternate"
 href="text_only.html"
 media="aural, braille, tty">
 </HEAD>
 <BODY><P>...</BODY>

9

Techniques for Web Content Accessibility Guidelines

End example.

1.4 Keyboard access
Not every user has a graphic environment with a mouse or other pointing device.
Some users rely on keyboard or voice input to navigate links, activate form controls,
etc. Content developers should always ensure that users may interact with a page
with devices other than a pointing device. A page designed for keyboard access (in
addition to mouse access) will generally be accessible to users with other input
devices. What’s more, designing a page for keyboard access will usually improve its
overall design as well.

Keyboard access to links and form controls may be specified in two ways:

Keyboard shortcuts
Keyboard shortcuts allow users to combine keystrokes to navigate links or form
controls on a page. Note. Keyboard shortcuts may be handled differently by
different operating systems.

Tabbing order
Tabbing order describes a (logical) order for navigating from link to link or form
control to form control (usually by pressing the "tab" key, hence the name).

Here is a summary of attributes used for keyboard access and tabbing order and
the elements they apply to (by version of HTML):

To implement shortcuts, use the "accesskey" attribute.
In HTML, 4.0 applies to: A, AREA, BUTTON, INPUT, LABEL, LEGEND,
TEXTAREA
In HTML, 3.2 applies to: N/A.
In HTML, 2.0 applies to: N/A.

To implement tabbing order, use the "tabindex" attribute
In HTML, 4.0 applies to: A, AREA, BUTTON, INPUT, OBJECT, SELECT,
TEXTAREA
In HTML, 3.2 applies to: N/A
In HTML, 2.0 applies to: N/A

In the following example, if the accesskey "C" is activated,"doc.html" is retrieved
by the browser:

Example.

 <A accesskey="C" href="doc.html" hreflang="en"
 title="XYZ company home page">
 XYZ company home page

End example.

The next example assigns "U" as the access key. Typing "U" gives focus to the
label, which in turn gives focus to the input control, so that the user can input text.

10

Techniques for Web Content Accessibility Guidelines

Example.

 <FORM action="submit" method="post">
 <P>
 <LABEL for="user" accesskey="U">name</LABEL>
 <INPUT type="text" id="user">
 </FORM>

End example.

In the next example, we specify a tabbing order among elements (in order,
"field2", "field1", "submit"):

Example.

 <FORM action="submit" method="post">
 <P>
 <INPUT tabindex="2" type="text" name="field1">
 <INPUT tabindex="1" type="text" name="field2">
 <INPUT tabindex="3" type="submit" name="submit">
 </FORM>

End example.

[Checkpoint 9.2] Ensure that all elements that have their own interface are
keyboard operable. [Priority 2] Some elements import objects whose interfaces
cannot be controlled through HTML (applets, images, etc.) In such cases, users
should ensure that the imported objects themselves provide accessible interfaces.

1.5 Navigation
[Checkpoint 14.3] Create a style of presentation that is consistent across pages.
[Priority 3]

A consistent style of presentation on each page allows users to easily find
navigation buttons between pages, as well as find the primary content for each page.
While this helps make it easier for everyone, it especially benefits people with
learning and reading disabilities. Making it easy to predict where the needed
information is found on each page will increase the likelihood that it will be found.

Examples of structures that may appear at the same place between pages:

1. navigation bars
2. the primary content of a page
3. advertising

[Checkpoint 13.4] Use navigation mechanisms in a consistent manner. [Priority 2]

A navigation structure is the set of possible paths available for a user to take
through the content on your site. Providing navigation bars, site maps, and search
features all increase the likelihood that a user will navigate easily to the information
that they seek on your site. If your site is highly visual in nature, the structure might
be harder to navigate through if the user can’t form a mental map of where they are

11

Techniques for Web Content Accessibility Guidelines

going or where they have been. Therefore, provide a description that will help users
discover the mechanisms you have provided.

[Checkpoint 13.5] Provide navigation bars to highlight and give access to the
navigation mechanism. [Priority 3]
[Checkpoint 13.3] Provide information about the general layout of a site (e.g., a
site map, or table of contents). [Priority 2]
[Checkpoint 13.7] Enable different types of searches for different skill levels and
preferences. [Priority 3]
[Checkpoint 13.2] Provide metadata to add semantic information to pages and
sites. [Priority 2] . See [RDF] [p. 52] .

Content developers should use link types (reference to HTML 4.0, 6.12) with
LINK so that user agents may use build navigation structures. (Provide example
with "next", "prev", "content", and "start").

[Checkpoint 13.8] Place distinguishing information at the beginning of headings,
paragraphs, lists, etc. [Priority 3]

See also the section on links [p. 27] .

1.6 Comprehension

1. [Checkpoint 14.1] Use the clearest and simplest language appropriate for a
site’s content. [Priority 1] Provide a simplified text equivalent as an alternative to
the primary text. This may be helpful to non-readers and people who have
difficulty reading. Non-readers can hear the simplified text using speech output
technology. Individuals with reading difficulties may be able to read the
simplified text. Because of the challenges of maintaining separate texts, it is
preferable to simplify only the main text and not provide a simplified text
equivalent.

2. [Checkpoint 14.2] Provide visual or auditory equivalents to text where they
facilitate comprehension of the page. [Priority 3] Visual, non-text equivalents
may include, for example graphics, animations, or videos. These are especially
helpful for non-readers who can perceive visual presentations. For example,
sighted deaf non-readers may benefit from video equivalents in manual
communication (sign language). Non-readers, whether they have disability or
not, may also benefit from highly graphical equivalents.

Non-visual, non-text equivalents are very diverse. Among the most common
are pre-recorded audio of music, spoken language, or sound effects. Such
equivalents would be especially important for non-readers who can perceive
audio presentations. Presentations in the audio medium of synthesized speech
and the tactile medium of braille are usually derived from text or text equivalents
so usually require no additional work from the developer.

12

Techniques for Web Content Accessibility Guidelines

Follow these writing suggestions:

Strive for clear and accurate headings and link descriptions. Scrutinize every
heading, outline, and menu to see if the crucial words mean exactly what is
intended, and if there are more common words that would convey the same
meaning.
State the topic of the sentence or paragraph at the beginning of the sentence or
paragraph.
Limit each paragraph to one main idea.
Avoid idiomatic language, technical jargon, and other unfamiliar vocabulary and
expressions.
Avoid specialized meanings of familiar vocabulary, unless explanations are
provided.
Avoid the passive voice.
Avoid complex sentence structures.
Make link phrases terse yet meaningful enough so they make sense when read
out of context, alone or as part of a series of links.

Because people tend to scan rather than read Web pages, the quality of headings
is particularly important. Good headings will at least get people to a section that has
the information they need. From there they can go to a dictionary or even print out a
section and ask for help.

[Checkpoint 12.3] Divide large blocks of information into more manageable groups
where natural and appropriate. [Priority 2]

Grouping mechanisms in HTML 4.0 include:

Use FIELDSET to group form controls into semantic units [p. 48] and describe
the group with the LEGEND element.
Use OPTGROUP to organize long lists of menu options into smaller groups.
[p. 49] .
Use tables for tabular data [p. 22] and describe the table with CAPTION.
Group table rows and columns [p. 22] with THEAD, TBODY, TFOOT, and
COLGROUP.
Nest lists [p. 19] with UL, OL, and DL.
Use section headers [p. 17] (H1 - H6) to create structured documents and break
up long stretches of text.
Break up lines of text into paragraphs (with the P element).

All of these grouping mechanisms should be used when appropriate and natural,
i.e., when the information lends itself to logical groups. Content developers should
not create groups randomly, as this will confuse all users.

13

Techniques for Web Content Accessibility Guidelines

1.7 Content negotiation
[Checkpoint 11.3] Provide information so that users may receive documents
according to their preferences (e.g., language, content type, etc.) [Priority 3]

1. Instead of including links such as "Here is the French version of this document",
use content negotiation so that the French version is served to clients preferring

2. If not possible to use content negotiation, in HTML use "type" and "hreflang".

1.8 Automatic page refresh
Content developers sometimes create pages that refresh or change without the user
requesting the refresh. This automatic refresh can be very disorienting to some
users. There are two types of refresh mechanisms commonly used.

[Checkpoint 7.4] Until user agents provide the ability to stop the refresh, do not
create periodically auto-refreshing pages. [Priority 2] This type of refresh changes
the user’s page at regular intervals. This might be accomplished by the following
HTML markup:

Deprecated example.

<META http-equiv="refresh" content="60">
<BODY>
<P>...Information...
</BODY>

Content developers should not use this technique to simulate "push" technology.
Developers cannot predict how much time a user will require to read a page;
premature refresh can disorient users. Content developers should avoid periodic
refresh and allow users to choose when they want the latest information.

[Checkpoint 7.5] Until user agents provide the ability to stop auto-redirect, do not
use markup to redirect pages automatically. Instead, configure the server to perform
redirects. [Priority 2] This type of forward redirects the user from one page to another
generally after a timeout. The following HTML markup is frequently used to achieve
this effect:

Deprecated example.

<HEAD>
<TITLE>Don’t use this!</TITLE>
<META http-equiv="refresh" content="5;
 http://www.acme.com/newpage">
</HEAD>
<BODY>
<P>If your browser supports Refresh,
you’ll be transported to our
new site
in 5 seconds, otherwise, select the link manually.
</BODY>

14

Techniques for Web Content Accessibility Guidelines

However, users should not redirect users with this markup since is non-standard,
it disorients users, and it can disrupt a browser’s history of visited pages. Instead, in
order of preference, authors should:

1. Configure the server to use the appropriate HTTP status code (301). Using
HTTP headers is preferable because it reduces Internet traffic and download
times, it may by applied to non-HTML documents, and it may be used by agents
who requested only a HEAD request (e.g., link checkers). Also, status codes of
the 30x type provide information such as "moved permanently" or "moved
temporarily" that cannot be given with META refresh.

2. Replace the page that would be redirected with a static page containing a
normal link to the new page.

Note. Both checkpoint 7.4 and checkpoint 7.5 address problems posed by legacy
user agents. Newer user agents should disable refresh and substitute a link to new
information at the top of the page.

1.9 Other topics
[Checkpoint 13.9] Provide information about document collections (i.e., documents
comprising multiple pages.). [Priority 3]

For example, Indicate which is the first page of the document and which page
follows the current one. (e.g., by using the LINK element).

1.10 Validation

1. Use an automated accessibility validation tool such as Bobby (refer to [BOBBY]
[p. 53]).

2. Use an HTML validation service such as the W3C HTML Validation Service
(refer to [HTMLVAL] [p. 53]).

3. Use a style sheets validation service such as the W3C CSS Validation Service
(refer to [CSSVAL] [p. 53]).

4. Test your pages with a text-only browser such as Lynx ([LYNX] [p. 54]) or a
Lynx emulator such as Lynx Viewer ([LYNXVIEW] [p. 54]) or Lynx-me
([LYNXME] [p. 54]).

5. Use multiple graphic browsers, with:
sounds and graphics loaded,
graphics not loaded,
sounds not loaded,
no mouse,
frames, scripts, style sheets, and applets not loaded

6. Use several browsers, old and new.
7. Use a self-voicing browser, a screen reader, magnification software, a small

display, etc. Self-voicing browsers include "pwwebspeak".
8. Use spell and grammar checkers. A person reading a page with a speech

15

Techniques for Web Content Accessibility Guidelines

synthesizer may not be able to decipher the synthesizer’s best guess for a word
with a spelling error. Eliminating grammar problems increases comprehension.

If, after completing these tests and adjusting your design accordingly, you find that
your page is still not accessible, you must create an alternative page [p. 9] that is
accessible.

1.11 Browser Support

1. [Checkpoint 11.1] Use W3C technologies and use the latest versions when they
are supported. [Priority 2] .

2. In general, user agents ignore HTML attributes they don’t support and they
render the content of unsupported elements.

2 HTML topics
The following sections list some techniques for using HTML and CSS to design
accessible documents and some techniques for avoiding HTML accessibility traps.
The sections are organized by topic (and mirror the organization of the HTML 4.0
specification, [HTML40] [p. 52]).

2.1 Document structure and metadata
[Checkpoint 3.5] Create documents that validate to published formal grammars.
[Priority 2]

As discussed above, content developers should use structural markup wherever
possible (and use it as intended by the authors of W3C specifications). Structural
elements promote consistency in documents and supply information to other tools
(e.g., indexing tools, search engines, programs that extract tables to databases,
navigation tools that use header elements, and automatic translation software that
translates text from one language into another.

2.1.1 Metadata

Some structural elements provide information about the document itself. This is
called "metadata" about the document (Metadata is information about data).
Well-crafted metadata can provide important orientation information to users. HTML
elements that provide useful information about a document include:

TITLE: The document title. Note that the TITLE element (one time only in a
document) is different from the "title" attribute, which applies to almost every
HTML 4.0 element. This document makes use of the "title" attribute for many
occasions that require advisory titles. Content developers should use the "title"
attribute in accordance with the HTML 4.0 specification. For example, "title"
should be used with links to provide information about the target of the link.
ADDRESS: Can be used to provide information about the creator of the page.

16

Techniques for Web Content Accessibility Guidelines

LINK: Can be used to indicate alternative documents (different structure,
different language, different target device, etc.).
The META element can be used to describe metadata about a document.
Please refer to the section on automatic page refresh [p. 14] for information on
why META should not be used to redirect pages.

2.1.2 Section headers

Sections should be introduced with the HTML header elements (H1-H6). Other
markup may complement these elements to improve presentation (e.g., the HR
element to create a horizontal dividing line), but visual presentation is not sufficient
to identify document sections.

[Checkpoint 3.2] Use header elements to convey logical structure and use them
according to specification. [Priority 2] Since some users skim through a document by
navigating its headings, it is important to use them appropriately to convey document
structure. Users should order heading elements properly. For example, in HTML, H2
elements should follow H1 elements, H3 elements should follow H2 elements, etc.
Content developers should not "skip" levels (e.g., H1 directly to H3). Do not use
headings to create font effects; use style sheets [p. 38] .

Note that in HTML, heading elements (H1 - H6) do not contain entire logical
sections in their content. They should be used to begin a section of a document. The
following HTML markup shows how to create a true document "section" and control
its appearance with style sheets:

Example.

 <HEAD>
 <TITLE>Cooking techniques</TITLE>
 <STYLE type="text/css">
 /* Indent the entire section */
 DIV.section2 { margin-left: 5% }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Cooking techniques</H1>
 ... some text here ...
 <DIV class="section2">
 <H2>Cooking with oil</H2>
 ... text of the section ...
 </DIV>

 <DIV class="section2">
 <H2>Cooking with butter</H2>
 ... text of the next section ...
 </DIV>

End example.

17

Techniques for Web Content Accessibility Guidelines

2.2 Language information
[Checkpoint 4.1] Clearly identify changes in the natural language of a document’s
text and any text equivalents (e.g., captions) of non-text content. [Priority 1] If you
use a number of different languages on a page, make sure that any changes in
language are clearly identified by using the "lang" attribute:

Example.

 <P>And with a certain je ne sais quoi,
 she entered both the room, and his life, forever. <Q>My name
 is Natasha,</Q> she said. <Q lang="it">Piacere,</Q>
 he replied in impeccable Italian, locking the door.

End example.

[Checkpoint 4.3] Identify the primary natural language of a document. [Priority 3]

2.3 Text markup
As mentioned above, structural elements add information to a page that may be
used by browsers, search engines, and other software. Content developers are
encouraged to use structural elements and attributes [p. 5] whenever possible.
Below we discuss how to further improve accessibility by careful use of attributes
with these elements.

2.3.1 Emphasis

The proper HTML elements should be used to mark up emphasis: EM and
STRONG. The B and I elements should not be used; they are used to create a visual
presentation effect. The EM and STRONG elements were designed to indicate
structural emphasis that may be rendered in a variety of ways (font style changes,
speech inflection changes, etc.)

2.3.2 Acronyms and abbreviations

[Checkpoint 4.2] Specify the expansion of abbreviations and acronyms. [Priority 2 for
the first occurrence of the acronym or abbreviation in a given document, Priority 3
thereafter.] Mark up abbreviations and acronyms with ABBR and ACRONYM and
use "title" to indicate the expansion:

Example.

 <P>Welcome to the <ACRONYM title="World Wide Web">WWW</ACRONYM>!

End example.

18

Techniques for Web Content Accessibility Guidelines

2.3.3 Quotations

[Checkpoint 3.4] Mark up quotations. Do not use quotation markup for formatting
effects such as indentation. [Priority 2] See the language example [p. 18] above for
an illustration of the Q element.

Example.

 <BLOCKQUOTE cite="http://www.shakespeare.com/loveslabourlost">
 <P>Remuneration! O! that’s the Latin word for three farthings.
 --- William Shakespeare (Love’s Labor Lost).
 </P>
 </BLOCKQUOTE>

End example.

2.3.4 Text markup rather than images

[Checkpoint 3.1] When an appropriate markup language exists, use markup rather
than images to convey information. [Priority 2]

2.4 Lists
[Checkpoint 3.3] Mark up lists and list items properly. [Priority 2] The HTML list
elements DL, UL, and OL (available in HTML 3.2 and HTML 4.0) should only be
used to create lists, not for formatting effects such as indentation.

Ordered lists help non-visual users navigate. Non-visual users often "get lost" in
lists, especially those with several layers of embedding and those that do not
indicate the specific level of indentation for each item. Content developers are
encouraged to use UL for unordered lists and OL for ordered lists (i.e., use markup
appropriately). However, until user agents provide a means to identify list context
clearly (e.g., by supporting the ’:before’ pseudo-element in CSS2), content
developers should consider including contextual clues in their lists.

Please note that even for numbered lists, compound numbers are more
informative than simple numbers. Thus, a list numbered like this:

1.
 1.1
 2.1
 3.1
2.
 2.1

is more informative than a list numbered like this:

1.
 1.
 2.
 3.
2.
 2.

19

Techniques for Web Content Accessibility Guidelines

[CSS1] [p. 52] and [CSS2] [p. 52] even more so provide ways to control list
numbering styles. Users may apply list numbering styles even to unordered lists
through user style sheets.

Non-visual users may have difficulties knowing where a list itself begins and ends
and where each list item starts. Furthermore, if a list entry wraps to the next line on
the screen, it may appear to be two separate items in the list. This may pose a
problem for legacy screen readers.

Example.

The following CSS2 style sheet shows how to provide compound numbers for
nested lists created with either UL or OL elements. Items are numbered as "1", "1.1",
"1.1.1", etc.

<STYLE type="text/css">
 UL, OL { counter-reset: item }
 LI { display: block }
 LI:before { content: counters(item, "."); counter-increment: item }
</STYLE>

Until either CSS2 is widely supported by users agents or user agents allow users
to control rendering of lists through other means, authors should consider providing
contextual clues in nested lists. The following CSS1 mechanism shows how to hide
the end of a list when style sheets are turned on and to reveal it when style sheets
are turned off, when user style sheets override the hiding mechanism, or when style
sheets are not supported:

<HEAD>
 <TITLE>Contextual clues in nested lists</TITLE>
 <STYLE type="text/css">
 .endoflist { display: none }
 </STYLE>
<BODY>

 Paper:

 Envelopes
 Notepaper
 Letterhead
 Poster paper
 (End of Paper)

 Pens:

 Blue writing pens
 whiteboard pens
 (End of Pens)

 Fasteners:

 paper clips
 staples

20

Techniques for Web Content Accessibility Guidelines

 Big lengths of rope.
 (End of Fasteners)

End example.

2.4.1 Use style sheets to change list bullets

To change the "bullet" style of unordered list items, use style sheets. This way, if
images are not loaded, the browser will draw a default bullet.

Example.

<HEAD>
<TITLE>Using style sheets to change bullets</TITLE>
<STYLE type="text/css">
 UL { list-style: url(star.gif) }
</STYLE>
</HEAD>
<BODY>

 Audrey
 Laurie
 Alice

End example.

Avoid using images as bullets in definition lists. However, if this method is used,
be sure to provide alt-text [p. 7] for the images.

Deprecated example.

<DL>
 <DD>Audrey
 <DD>Laurie
 <DD>Alice
</DL>

Content developers should avoid list styles where bullets provide additional
(visual) information. However, if this is done, be sure to provide alt-text describing
meaning of the bullet:

Deprecated example.

<DL>
<DD>Roth IRA</DD>
<DD>401(k)</DD>
</DL>

Here is a better way to change list bullet styles (using style sheets). To further
ensure that users understand differences between list items indicated visually,
content developers should provide a label before or after the list item phrase:

21

Techniques for Web Content Accessibility Guidelines

Example.

<HEAD>
<TITLE>Bullet styles example</TITLE>
<STYLE type="text/css">
 .newtxt { font-weight: bold;
 color: red;
 background-color: yellow }
 .newbullet { list-style : url(yellow.gif) }
</STYLE>
</HEAD>
<BODY>

 <LI class="newbullet">Roth IRA New
 401(k)

</BODY>

End example.

2.5 Tables
Content developers may make tables more accessible in a number of ways:

Provide a caption via the CAPTION element.
[Checkpoint 5.5] Provide summaries for tables. [Priority 3] Summaries are
especially useful for non-visual readers.
[Checkpoint 5.1] For data tables, identify row and column headers. [Priority 1]
Future browsers and assistive technologies will be able to automatically
translate tables into linear sequences if data is labeled appropriately.
[Checkpoint 5.2] For data tables that have two or more logical levels of row or
column headers, use markup to associate data cells and header cells.
[Priority 1] Identify structural groups of rows (THEAD for repeated table headers,
TFOOT for repeated table footers, and TBODY for other groups of rows) and
groups of columns (COLGROUP and COL). Label table elements with the
"scope", "headers", and "axis" attributes so that future browsers and assistive
technologies will be able to select data from a table by filtering on categories.
This markup will also help browsers translate tables into linear sequences
automatically (also called table "serialization"). A linear sequence is usually
generated by reading a row left to right and proceeding each cell with the label
of its column.
[Checkpoint 5.6] Provide abbreviations for header labels. [Priority 3] Provide
terse substitutes for header labels with the "abbr" attribute on TH. These will be
particularly useful for future speaking technologies that can read row and
column labels for each cell. Abbreviations cut down on repetition and reading
time.
[Checkpoint 5.4] If a table is used for layout, do not use any structural markup
for the purpose of visual formatting. [Priority 2]

22

Techniques for Web Content Accessibility Guidelines

Most of the above elements and attributes are only available in HTML 4.0.

This markup will allow accessible browsers and other user agents to restructure
tables for non-visual media.

For information about table headers, see the table header algorithm and
discussion in the HTML 4.0 Recommendation ([HTML40] [p. 52] , section 11.4.3).

The following example shows how to associate data cells with their corresponding
headers by means of the "headers" attribute. The "headers" attribute specifies a list
of header cells (row and column labels) associated with the current data cell. This
requires each header cell to have an "id" attribute.

Example.

 <TABLE border="1"
 summary="This table charts the number of
 cups of coffee consumed by each senator,
 the type of coffee (decaf or regular),
 and whether taken with sugar.">
 <CAPTION>Cups of coffee consumed by each senator</CAPTION>
 <TR>
 <TH id="header1">Name</TH>
 <TH id="header2">Cups</TH>
 <TH id="header3" abbr="Type">Type of Coffee</TH>
 <TH id="header4">Sugar?</TH>
 <TR>
 <TD headers="header1">T. Sexton</TD>
 <TD headers="header2">10</TD>
 <TD headers="header3">Espresso</TD>
 <TD headers="header4">No</TD>
 <TR>
 <TD headers="header1">J. Dinnen</TD>
 <TD headers="header2">5</TD>
 <TD headers="header3">Decaf</TD>
 <TD headers="header4">Yes</TD>
 </TABLE>

End example.

A speech synthesizer might render this tables as follows:

 Caption: Cups of coffee consumed by each senator
 Summary: This table charts the number of cups of coffee
 consumed by each senator, the type of coffee
 (decaf or regular), and whether taken with sugar.
 Name: T. Sexton, Cups: 10, Type: Espresso, Sugar: No
 Name: J. Dinnen, Cups: 5, Type: Decaf, Sugar: Yes

A visual user agent might render this table as follows:

 [D]

23

Techniques for Web Content Accessibility Guidelines

The next example associates the same header and data cells as before, but this
time uses the "scope" attribute rather than"headers." "Scope" must have one of the
following values: row, col, rowgroup or colgroup. Scope specifies the set of data cells
to be associated with the current header cell. This method is particularly useful for
simple tables. It should be noted that the spoken rendering of this table would be
identical to that of the previous example. A choice between the "headers" and
"scope" attributes is dependent on the complexity of the table. It does not affect the
output so long as the relationships between header and data cells are made clear in
the markup.

Example.

 <TABLE border="1"
 summary="This table charts ...">
 <CAPTION>Cups of coffee consumed by each senator</CAPTION>
 <TR>
 <TH scope="col">Name</TH>
 <TH scope="col">Cups</TH>
 <TH scope="col" abbr="Type">Type of Coffee</TH>
 <TH scope="col">Sugar?</TH>
 <TR>
 <TD>T. Sexton</TD> <TD>10</TD>
 <TD>Espresso</TD> <TD>No</TD>
 <TR>
 <TD>J. Dinnen</TD> <TD>5</TD>
 <TD>Decaf</TD> <TD>Yes</TD>
 </TABLE>

End example.

The following example shows how to create categories within a table using the
"axis" attribute.

Example.

 <TABLE border="1">
 <CAPTION>Travel Expense Report</CAPTION>
 <TR>
 <TH></TH>
 <TH id="header2" axis="expenses">Meals
 <TH id="header3" axis="expenses">Hotels
 <TH id="header4" axis="expenses">Transport
 <TD>subtotals</TD>
 <TR>
 <TH id="header6" axis="location">San Jose
 <TH> <TH> <TH> <TD>
 <TR>
 <TD id="header7" axis="date">25-Aug-97
 <TD headers="header6 header7 header2">37.74
 <TD headers="header6 header7 header3">112.00
 <TD headers="header6 header7 header4">45.00
 <TD>
 <TR>
 <TD id="header8" axis="date">26-Aug-97
 <TD headers="header6 header8 header2">27.28
 <TD headers="header6 header8 header3">112.00

24

Techniques for Web Content Accessibility Guidelines

 <TD headers="header6 header8 header4">45.00
 <TD>
 <TR>
 <TD>subtotals
 <TD>65.02
 <TD>224.00
 <TD>90.00
 <TD>379.02
 <TR>
 <TH id="header10" axis="location">Seattle
 <TH> <TH> <TH> <TD>
 <TR>
 <TD id="header11" axis="date">27-Aug-97
 <TD headers="header10 header11 header2">96.25
 <TD headers="header10 header11 header3">109.00
 <TD headers="header10 header11 header4">36.00
 <TD>
 <TR>
 <TD id="header12" axis="date">28-Aug-97
 <TD headers="header10 header12 header2">35.00
 <TD headers="header10 header12 header3">109.00
 <TD headers="header10 header12 header4">36.00
 <TD>
 <TR>
 <TD>subtotals
 <TD>131.25
 <TD>218.00
 <TD>72.00
 <TD>421.25
 <TR>
 <TH>Totals
 <TD>196.27
 <TD>442.00
 <TD>162.00
 <TD>800.27
 </TABLE>

End example.

This table lists travel expenses at two locations: San Jose and Seattle, by date,
and category (meals, hotels, and transport). The following image shows how a visual
user agent might render it.

25

Techniques for Web Content Accessibility Guidelines

 [D]

2.5.1 Wrapped text in tables

One source of problems for screen readers that do not interpret the source HTML is
wrapped text in table cells. They read across the page, reading sentences on the
same row from different columns as one sentence.

For example, if a table is rendered like this on the screen:

There is a 30% chance of Classes at the University of Wisconsin
rain showers this morning, but they will resume on September 3rd.
should stop before the weekend.

This might be read by a screen reader as:

There is a 30% chance of Classes at the University of Wisconsin
rain showers this morning, but they will resume on September 3rd.
should stop before the weekend.

Screen readers that read the source HTML will recognize the structure of each
cell, but for older screen readers, content developers should minimize the risk of
word wrapping by limiting the amount of text in each cell. Also, the longest chunks of
text should all be in the last column (rightmost for left-to-right tables). This way, if
they wrap, they will still be read coherently.

Content developers should test tables for wrapping with a browser window
dimension of "640x480".

Quicktest! To get a better understanding of how a screen reader would read a
table, run a piece of paper down the page and read your table line by line.

2.5.2 Backwards compatibility issues for tables

Rows of a TFOOT element will appear before the BODY of the document in an
HTML3.2 browser.

26

Techniques for Web Content Accessibility Guidelines

2.5.3 Avoid tables for layout

[Checkpoint 5.3] Avoid using tables for layout. [Priority 2]

2.6 Links
Users who are blind often jump from link to link when skimming a page or looking for
information. When they do this, only the text of the link (the "link text") is read.

"Auditory users," people who are blind, have difficulty seeing, or who are using
devices with small or no displays are unable to scan the page quickly with their
eyes and often use a list of links to get an overview of a page or to quickly find a link.
When links are not descriptive enough, do not make sense when read out of context,
or are not unique, the auditory user must stop to read the text surrounding each link
to identify it.

[Checkpoint 13.1] Clearly identify the target of each link. [Priority 2]

Avoid, for example, general link text, such as "click here" (which is
device-dependent in addition to saying nothing about what is to be found at the end
of the link). Instead of "click here", link text should indicate the nature of the link
target, as in "more information about sea lions" or "text-only version of this page".
Note that for the latter case (and other format- or language-specific documents),
content developers are encouraged to use content negotiation [p. 14] instead, so
that users who prefer text versions will have them served automatically.

Non-visual users often browse by reading only the links of a document, tabbing
from one to the next as the links appear in the document source (or in an
author-specified tabbing order). Not every link must be understandable entirely out of
context as long as the targets are clear when the text of a series of links read in
succession is sufficiently clear.

In addition to clear link text, content developers may specify a value of the "title"
attribute that clearly and accurately describes the target of the link.

When an image is used as the content of a link, specify alt-text [p. 7] for the image
that makes sense in context.

Quicktest! To choose alt-text in this case, think of what you would say in words
rather than an image in this context.

Example.

 <IMG src="topo.html"
 alt="Current routes at Boulders Climbing Gym">

End example.

If more than one link on a page shares the same link text, all those links should
point to the same resource. Such consistency will help page design as well as
accessibility. If two or more links refer to different targets but share the same link
text, HTML authors should distinguish the links by specifying a different value for the

27

Techniques for Web Content Accessibility Guidelines

"title" attribute of each link.

"Navigation bars" (sets of links that appear on every page in a site) are usually the
first thing someone encounters on a page. For speech users, this means taking the
time to read through x number of links on every page before reaching the unique
content of a page. Therefore, grouping links will allow a user with a user agent that
can navigate by elements, to jump over the group. This is similar to how people with
vision skip reading the links when they see the same set on each page. Since this
type of mechanism is not available today, providing a link that skips over the links, or
using a tabindex at a link just before the content begins are strategies that work
today.

Example.

 <HEAD>
 <TITLE>How to use our site</TITLE>
 </HEAD>
 <BODY>
 <P class="nav">
 [Home]
 [Search]
 [New and highlighted]
 [Site map]
 </P>
 <H1>How to use our site</H1>
 <!-- content of page -->
 </BODY>

End example.

[Checkpoint 13.6] Group related links, identify the group (for user agents), and,
until user agents do so, provide a way to bypass the group. [Priority 3]

For example, in HTML, creating a navigation bar composed of links with DIV,
SPAN, FRAME, etc. Identify the group with the "id" attribute. Use "tabindex=1" on an
anchor after the group so users may quickly skip the navigation bar.

2.7 Images and image maps
Images may be inserted by two elements in HTML:

IMG
Available in HTML 4.0, 3.2, 2.0

OBJECT
Available in HTML 4.0.

Images include those that carry out simple animations (e.g., a "gif" image).

28

Techniques for Web Content Accessibility Guidelines

2.7.1 Equivalent text for images

[Checkpoint 1.1] Provide a text equivalent for every non-text element (e.g., via "alt",
"longdesc", or in element content). This includes: images, graphical representations
of text, image map regions, short animations (e.g., animated GIFs), applets, ascii art,
frames, scripts, inserted list bullets, sounds (played with or without user interaction),
stand-alone audio files, synthesized speech, audio tracks of video, and video.
[Priority 1] When using IMG, specify alt-text with the "alt" attribute.

Example.

End example.

When using OBJECT, specify alt-text [p. 7]

in the body of the OBJECT element:

Example.

 <OBJECT data="magnifyingglass.gif" type="image/gif">
 Search
 </OBJECT>

End example.

Additionally, use the "title" attribute:

Example.

 <OBJECT classid="Duke.class" title="Hello!"
 width="50" height="50">
 Duke waves hello!
 </OBJECT>

End example.

2.7.2 Long descriptions for images

When using IMG, specify a long description [p. 8] of the image with the "longdesc"
attribute:

Example.

 <IMG src="97sales.gif" alt="Sales for 1997"
 title="Sales pie chart"
 longdesc="sales97.html">

In sales97.html:

A chart showing how sales in 1997 progressed. The chart
is a bar-chart showing percentage increases in sales
by month. Sales in January were up 10% from December 1996,
sales in February dropped 3%, ..

29

Techniques for Web Content Accessibility Guidelines

End example.

For browsers that don’t support "longdesc", provide a description link as well next
to the graphic:

Example.

 [D]

End example.

When using OBJECT, provide a long description in the body of the element:

Example.

 <OBJECT data="97sales.gif" type="image/gif">
 Sales in 1997 were down subsequent to our
 anticipated purchase ...
 </OBJECT>

End example.

Or, provide a link to a long description within the body of the element:

Example.

 <OBJECT data="97sales.gif" type="image/gif">
 Chart of our Sales in 1997.
 A textual description is available.
 </OBJECT>

End example.

2.7.3 Ascii art

[Checkpoint 1.5] Replace ASCII art with an image or explain it. [Priority 1 or Priority 2
depending on the importance of the information.]

Avoid ascii art (character illustrations) and use real images instead since it is
easier to supply alt-text [p. 7] and long descriptions [p. 8] for images. The priority of
this checkpoint depends on the importance of the information (e.g., an important
chart).

[Checkpoint 13.10] Provide a means to skip over multi-line ASCII art. [Priority 3]

However, if ascii art must be used provide a link to jump over the ASCII art, as
follows.

Example.

<P>
skip over ASCII art
<!-- ASCII art goes here -->
caption for ASCII art

30

Techniques for Web Content Accessibility Guidelines

End example.

ASCII art may also be marked up as follows:

Example.

<P>
<OBJECT data="cow.txt" type="text/x-ascii-art" title="drawing of a cow">
include cow ascii art from guidelines
</OBJECT>

End example.

Another option is to use a SPAN or an ABBR element with "title".

Example.

<P>:-)

End example.

If the description of (important) ASCII art is long, provide a description [p. 8] in
addition to alt-text.

Another way to replace ascii art is to use human language substitutes. For
example, <wink> might substitute for the emoticon <SPAN title="wink
smiley">;-), the word"therefore" could replace arrows consisting of dashes
and greater than signs (e.g., -->), and the word "great" for the uncommon
abbreviation "gr8".

2.7.4 Mathematical equations in images

2.7.5 Image maps

An image map is an image that has "active regions". When the user selects one of
the regions, some action takes place -- a link may be followed, information sent to a
server, etc. To make an image map accessible, content developers must ensure that
each action associated with a visual region may be activated without a pointing
device.

Image maps are created with the MAP element (available in HTML 4.0 and 3.2).
HTML allows two types of image maps: client-side (the user’s browser processes a
URI) and server-side (the server processes click coordinates). For all image maps,
content developers must supply alt-text [p. 7] (described below), and long
descriptions [p. 8] where needed (see the section on long descriptions for images
[p. 29]).

Content developers should either avoid server-side image maps (because they
require a specific input device - a mouse) or provide the same functionality or
information in an alternative accessible format. One way to achieve this is to provide
a textual link for each active region so that each link is navigable with the keyboard
[p. 10] . If you must use a server-side image map, please consult the section on
server-side image maps [p. 33]

31

Techniques for Web Content Accessibility Guidelines

2.7.6 Client-side image maps

The active regions of a client-side image map are defined within the MAP element
and may be created with two elements:

AREA
Available in HTML 4.0, 3.2

A
Available in HTML 4.0.

[Checkpoint 9.1] Provide client-side image maps instead of server-side image
maps except where the regions cannot be defined with an available geometric
shape. [Priority 1]

Provide text equivalents [p. 7] for image maps since they convey visual
information.

If AREA is used, use the"alt" attribute:

Example.

 <IMG src="welcome.gif" alt="Image map of areas in the library"
 usemap="#map1">
 <MAP name="map1">
 <AREA shape="rect" coords="0,0,30,30"
 href="reference.html" alt="Reference">
 <AREA shape="rect" coords="34,34,100,100"
 href="media.html" alt="Audio visual lab">
 </MAP>

End example.

The same idea, but use OBJECT instead of IMG to insert the image to provide
more information about the image:

Example.

 <OBJECT data="welcome.gif" type="image/gif" usemap="#map1">
 There are several areas in the library including
 the Reference section and the
 Audio Visual Lab.
 </OBJECT>
 <MAP name="map1">
 <AREA shape="rect" coords="0,0,30,30"
 href="reference.html" alt="Reference">
 <AREA shape="rect" coords="34,34,100,100"
 href="media.html" alt="Audio visual lab">
 </MAP>

End example.

[Checkpoint 1.2] Provide redundant text links for each active region of an image
map. [Priority 1 - if server-side image maps are used, Priority 2 - if client-side image
maps are used. Redundant text links for client-side image maps are only required
until user agents render text equivalents for the map links.] In addition to providing

32

Techniques for Web Content Accessibility Guidelines

alt-text, provide redundant textual links. If the A element is used instead of AREA,
the content developer may describe the active regions and provide redundant links
at the same time:

Example.

 <OBJECT data="navbar1.gif" type="image/gif" usemap="#map1">
 <MAP name="map1">
 <P>Navigate the site.
 <A href="guide.html" shape="rect"
 coords="0,0,118,28">[Access Guide]
 <A href="shortcut.html" shape="rect"
 coords="118,0,184,28">[Go]
 <A href="search.html" shape="circle"
 coords="184.200,60">[Search]
 <A href="top10.html" shape="poly"
 coords="276,0,373,28,50,50">[Top Ten]
 </MAP>
 </OBJECT>

End example.

Note that in the previous example the MAP element is the content of the OBJECT
element so that the alternative links will only be displayed if the image map
(navbar1.gif) is not.

Note also that links have been separated by brackets ([]). This is to prevent screen
readers from reading several adjacent links as a single link.

[Checkpoint 10.5] Until user agents or assistive technologies render adjacent links
distinctly, include non-link, printable characters (surrounded by spaces) between
adjacent links. [Priority 3] Content developers should make sure they include
printable characters (such as brackets or a vertical bar (|)) surrounded by spaces
between adjacent links.

2.7.7 Server-side image maps

When a server-side image map must be used, content developers should provide an
alternative list of image map choices. There are three techniques:

If an alternative list of links follows the image map, content developers should
indicate the existence and location of the alternative list. If IMG is used to insert
the image, provide this information in the"alt" attribute. If OBJECT is used,
provide it in the "title" attribute.

Example.

33

Techniques for Web Content Accessibility Guidelines

 <IMG src="welcome.gif" alt="Links to this image map follow immediately"
 usemap="#map1" title="Welcome insignia" >
 <MAP name="map1">
 <AREA shape="rect" coords="0,0,30,30"
 href="reference.html" alt="Reference">
 <AREA shape="rect" coords="34,34,100,100"
 href="media.html" alt="Audio visual lab">
 </MAP>

 <P>[Reference]
 [Audio Visual Lab]

End example.

A more straightforward solution, although newer and less backwards
compatible, is to include the alternative links within the body of an OBJECT
element (see the previous example illustrating links in the OBJECT element
[p. 33]).
One final possibility is to create an alternative page [p. 9] that is accessible.

[Checkpoint 3.8] Provide individual button controls in a form rather than simulating
a set of buttons with an image map. [Priority 2]

2.8 Applets and other objects
Applets may be inserted by two elements in HTML:

APPLET
Available in HTML 4.0 (deprecated), 3.2.

OBJECT
Available in HTML 4.0.

Other objects, such as those requiring a plug-in, should also use the OBJECT
element. However, for backwards compatibility with Netscape browsers, use the
proprietary EMBED element within the OBJECT element as follows:

Example.

 <OBJECT classid="clsid:A12BCD3F-GH4I-56JK-xyz"
 codebase="http://site.com/content.cab" width=100 height=80>
 <PARAM name="Movie" value="moviename.swf">
 <EMBED src="moviename.swf" width=100 height=80
 pluginspage="http://www.macromedia.com/shockwave/download/">
 </EMBED>

 <NOEMBED>
 <IMG alt="Still from Movie"
 src="moviename.gif" width=100 height=80>
 </NOEMBED>

 </OBJECT>

34

Techniques for Web Content Accessibility Guidelines

End example.

For more information refer to [MACROMEDIA] [p. 54] .

2.8.1 Audio and Video produced by dynamic objects

There are several checkpoints that content developers should use to ensure that
audio or visual information presented by a dynamic object is accessible:

1. Provide a long description if necessary. See the section on long descriptions for
images [p. 29] .

2. Refer also to checkpoint 8.1.
3. [Checkpoint 1.4] For any time-based presentation (e.g., a movie, animation, or

multimedia presentation), synchronize equivalent alternatives (e.g., captions or
video descriptions) with the presentation. [Priority 1]

2.8.2 Equivalent text and descriptions for applets and programmatic
objects

If OBJECT is used, provide alt-text [p. 7] as the content of the element:

Example.

 <OBJECT classid="java:Press.class" width="500" height="500"
 title="Java applet: how temperature affects pressure">
 As temperature increases, the molecules in the balloon...
 </OBJECT>

End example.

A more complex example takes advantage of the fact the OBJECT elements may
be embedded to provide for alternative representations of information:

Example.

 <OBJECT title="How temperature affects pressure"
 classid="java:Press.class" width="500" height="500">
 <OBJECT data="Pressure.mpeg" type="video/mpeg">
 <OBJECT data="Pressure.gif" type="image/gif">
 As temperature increases, the molecules in the balloon...
 </OBJECT>
 </OBJECT>
 </OBJECT>

End example.

If APPLET is used, provide alt-text [p. 7] with the "alt" attribute and content in the
APPLET element. This enables them to transform gracefully for those user agents
that only support one of the two mechanisms ("alt" or content).

Deprecated example.

35

Techniques for Web Content Accessibility Guidelines

 <APPLET code="Press.class" width="500" height="500"
 alt="Java applet: how temperature affects pressure">
 As temperature increases, the molecules in the balloon...
 </APPLET>

2.8.3 Directly accessible applets

[Checkpoint 8.1] Make programmatic elements such as scripts and applets directly
accessible or compatible with assistive technologies [Priority 1 if functionality is
important and not presented elsewhere, otherwise Priority 2.] If an applet requires
user interaction (e.g., the ability to manipulate a physics experiment) that cannot be
duplicated in an alternative format, make the applet directly accessible.

For more information about accessible applets, please refer to [JAVAACCESS]
[p. 54] and [IBMJAVA] [p. 53] .

2.9 Audio and video
Audio and video should be accompanied by text transcripts, textual descriptions or
equivalents of auditory or visual events. When these transcripts are presented
synchronously with a video presentation they are called "captions" and are used by
people who cannot hear the audio track of the video material. Full audio transcripts
include spoken dialogue as well as any other significant sounds including on-screen
and off-screen sounds, music, laughter, applause, etc. The following two examples
show captions, a text transcript, and auditory descriptions.

Example.

Captions for a scene from "E.T." The phone rings three times, then is answered.

[phone rings]

[ring]

[ring]

Hello?"

End example.

Example.

Here’s an example of a transcript of a clip from "The Lion King" (available at [DVS]
[p. 53]).

Simba: Yeah!

Describer: Simba races outside, followed by his parents. Sarabi smiles and
nudges Simba gently toward his father. The two sit side-by-side, watching the
golden sunrise.

Mufasa: Look Simba, everything the light touches is our kingdom.

36

Techniques for Web Content Accessibility Guidelines

Simba: Wow.

End example.

2.9.1 Audio information

Some media formats (e.g., QuickTime 3.0 and SMIL) allow captions and video
descriptions to be added to the multimedia clip. SAMI allows captions to be added.

Until the format you are using supports alternative tracks, two versions of the
movie could be made available, one with captions and descriptive video, and one
without. Some technologies, such as SMIL and SAMI, allow separate audio/visual
files to be combined with text files via a synchronization file to create captioned
audio and movies.

Some technologies also allow the user to choose from multiple sets of captions to
match their reading skills. For more information see the SMIL 1.0 ([SMIL] [p. 53])
specification.

Equivalents for sounds can be provided in the form of a text phrase on the page
that links to a text transcript or description of the sound file. The link to the transcript
should appear in a highly visible location such as at the top of the page. However, if
a script is automatically loading a sound, it should also be able to automatically load
a visual indication that the sound is currently being played and provide a description
or transcript of the sound.

Note. Some controversy surrounds this technique because the browser should
load the visual form of the information instead of the auditory form if the user
preferences are set to do so. However, strategies must also work with today’s
browsers.

For more information, please refer to [NCAM] [p. 54] .

2.9.2 Visual information and motion

Video descriptions are used primarily by people who are blind to follow the action
and other non-auditory information in video material. The description provides
narration of the key visual elements without interfering with the audio or dialogue of a
movie. Key visual elements include actions, settings, body language, graphics, and
displayed text.

[Checkpoint 1.3] For each movie, provide an auditory description of the video track
and synchronize it with the audio track. [Priority 1] For movies, provide auditory
descriptions that are synchronized with the original audio. See the section on audio
information [p. 37] for more information about multimedia formats.

Text transcripts, in conjunction with the full audio transcript described above, allow
access by people with both visual and hearing disabilities. This also provides
everyone with the ability to index and search for information contained in
audio/visual materials.

37

Techniques for Web Content Accessibility Guidelines

[Checkpoint 7.3] Until user agents allow users to freeze moving content, avoid
movement in pages. [Priority 2]

However, if necessary to include an applets that involves motion or updates,
content developers should provide a mechanism for freezing this motion (for an
example, refer to [TRACE] [p. 54]). Content developers should use animated gifs to
create motion that may be suspended by the browser for people that have trouble
with it.

When necessary, a long description be provided for visual information (e.g.,
animations) to enable understanding of the page. For example for an ad that
displays text like a marquee, the text should be provided in the text equivalent,
unless there is a lot of text. For a looping image of cloud cover over the United
States, if the image is in the context of a weather status report, where the
information is presented in text, a less verbose description of the image is
necessary. However, if the image appears on in a pedagogical setting, elaborating
on cloud formations in relation to land mass, ought to be described.

See also the section on text style [p. 39] for controlling blinking.

2.10 Style and style sheets
[Checkpoint 3.6] Use style sheets to control layout and presentation. [Priority 2]
CSS1 ([[CSS1] [p. 52]) and CSS2 ([[CSS2] [p. 52]) allow content developers to
duplicate almost every HTML 4.0 presentation feature and offer more power with
less cost. However, until most users have browsers that support style sheets, not
every presentation idiom may be expressed satisfactorily with style sheets. In the
following sections, we show how style sheets may be used to create accessible
pages. We also provide examples of how to use HTML 4.0 features (e.g., tables,
bitmap text) more accessibly when they must be used.

See also the section on text markup [p. 19] .

2.10.1 General style sheet techniques

Make sure to validate [p. 15] that your pages still work when style sheets are turned
off!

[Checkpoint 6.1] Organize content logically using appropriate structural markup
so the organization remains clear even when associated style sheets are turned
off or are not supported. [Priority 1]
[Checkpoint 3.7] Use relative rather than absolute units in markup language
attribute values and style sheet property values. [Priority 2]

2.10.2 Text formatting

Content developers should use style sheets for text formatting rather than converting
text to images. For example, stylized text on a colored background can be created
with style sheets instead of as an image. This provides flexibility for people to view
the text in a form that is most readable to them including magnified, in a particular

38

Techniques for Web Content Accessibility Guidelines

color combination such as white on black, or in a particular font.

However, if you must use a bitmap to create a text effect (special font,
transformation, shadows, etc.) it must be accessible.

When bitmapped text is used in a way that makes a page inaccessible, content
developers must supply alternative pages [p. 9] .

To make a bitmap representing text accessible, it must have alt-text [p. 7] that is
the same text represented by the image.

Example.

In this example, the inserted image shows the large red characters "Example",
reflected by the alt-text.

<P>This is an
 of what we mean.
</P>

End example.

This is true of Drop Caps (large first letter of a paragraph) as well. However, we
recommend using style sheets to create the effect, as the following example
illustrates.

Example.

<HEAD>
<TITLE>Drop caps</TITLE>
<STYLE type="text/css">
 .dropcap { font-size : 120%; font-family : Helvetica }
</STYLE>
</HEAD>
<BODY>
<P>Once upon a time...
</BODY>

Note. As of the writing of this document, the CSS pseudo-element ’:first-letter’,
which allows content developers to refer to the first letter of a chunk of text, is not
widely supported.

2.10.3 Text style

Content developers should use style sheets instead of deprecated presentation
elements and attributes [p. 6] that control visual presentation.

[Checkpoint 7.1] Until user agents allow users to control it, avoid causing the
screen to flicker. [Priority 1] A flickering or flashing screen may cause seizures
in users with photosensitive epilepsy. Seizures can be triggered by flickering or
flashing in the 4 to 59 flashes per second (Hertz) range with a peak sensitivity at
20 flashes per second as well as quick changes from dark to light (like strobe
lights).
[Checkpoint 7.2] Until user agents allow users to control it, avoid causing
content to blink (i.e., change presentation at a regular rate, such as turning on

39

Techniques for Web Content Accessibility Guidelines

and off). [Priority 2] If blinking content (e.g., a headline that appears and
disappears at regular intervals) is used, provide a mechanism for stopping the
blinking. In CSS, ’text-decoration: blink’ will cause content to blink and will allow
users to stop the effect by turning off style sheets or overriding the rule in a user
style sheet. Note. Do not use the BLINK and MARQUEE elements. These
elements are not part of any W3C specification for HTML (i.e., they are
non-standard elements).
Indentation: Use the CSS ’text-indent’ property to indent text. Do not use the
BLOCKQUOTE or any other structural element to indent text.
Spacing: Content developers should achieve spacing effects with the CSS
’word-spacing’ and ’white-space’ properties rather than by putting actual spaces
between letters and using the PRE element.

2.10.4 Fonts

Instead of using deprecated presentation elements and attributes [p. 6] , use the
many CSS properties to control font characteristics: ’font-family’, ’font-size’,
’font-size-adjust’, ’font-stretch’, ’font-style’, ’font-variant’, and ’font-weight’.

2.10.5 Colors

Use these CSS properties to specify colors:

’color’, for foreground text color.
’background-color’, for background colors.
’border-color’, for border colors.
For link colors, see the :link, :visited, and :active pseudo-classes.

[Checkpoint 2.1] Ensure that all information conveyed with color is also available
without color, for example from context or markup. [Priority 1] Be careful when color
is used in references, as in "Please select an item from those listed in green." This
reference becomes useless to those who cannot process color.

For example, in this document, examples appear in a different color than the rest
of the text. However, that is not enough to identify them as examples, so we precede
each one with the word "Example." or "Deprecated example."

Quicktest! To test whether your page passes the text, examine it with a
monochrome monitor or colors turned off.

[Checkpoint 2.2] Ensure that foreground and background color combinations
provide sufficient contrast when viewed by someone having color deficits or when
viewed on a black and white screen. [Priority 2 for images, Priority 3 for text].

Quicktest! To test whether color contrast is sufficient to be read by people with
color deficiencies or by those with low resolution monitors, print pages on a black
and white printer (with backgrounds and colors appearing in grayscale).

40

Techniques for Web Content Accessibility Guidelines

Also try taking the printout and copying it for two or three generations to see how it
degrades. This will show you where you need to add redundant cues (example:
hyperlinks are usually underlined on Web pages), or whether the cues are two small
or indistinct to hold up well.

Also, try setting up a color scheme in your browser that only uses black, white,
and the four browser-safe greys and see how your page holds up.

For more information about colors and contrasts, refer to [LIGHTHOUSE] [p. 54] .

2.10.6 Layout, positioning, layering, and alignment

Layout, positioning, layering, and alignment should be done through style sheets
(notably by using CSS floats and absolute positioning).

When laying out tabular information, content developers should use tables that are
designed for accessibility (see the section on tables [p. 22] . Do not use PRE to
create a tabular layout of text.

[Checkpoint 10.3] Until user agents or assistive technologies render side-by-side
text correctly, provide a linear text alternative (on the current page or some other) for
all tables that lay out text in parallel, word-wrapped columns. [Priority 2] However,
until user agents and screen readers are able to handle text presented side-by-side,
all tables that lay out text in parallel, word-wrapped columns require a linear text
alternative (on the current page or some other). See also the section on tables
[p. 22] for additional information on table accessibility.

Provide text equivalents for all images, including invisible or transparent images.

If content developers cannot use style sheets and must use invisible or
transparent images to lay out images on the page, they should supply "null" alt-text
(alt="") for them.

Deprecated example.

In this example, an image is used to create a carefully defined space between
words or graphics. "White space" alt-text is used to prevent the words from running
together when the image is not loaded:

 my poem requires a big spacehere

In this next example, an image is used to force a graphic to appear in a certain
position:

2.10.7 Rules and borders

Rules and borders may convey the notion of "separation" to visually enabled users
but that meaning cannot be inferred out of a visual context.

41

Techniques for Web Content Accessibility Guidelines

While content developers may use HR to create a horizontal rule, they should do
so in a way that also conveys the structure in a non-visual way (e.g., by using DIV in
conjunction with the "class" attribute).

Example.

 <DIV class="navigation-bar">
 <HR title="navigation-bar">
 [Next page]
 [Prevous page]
 [First page]
 </DIV>

End example.

When using graphics (e.g., horizontal rules) as section separators, content
developers may provide an advisory title of what the graphic represents to the
visually enabled user via the "title" attribute. Hence, in the previous example, we
specified title="navigation-bar".

Example.

In this example, a red line is used to separate Chapter 7 from Chapter 8:

 <IMG src="redline.gif" alt="redline graphic"
 title="End of Chapter 7 - Visual Displays">
 <H1>Chapter 8 - Auditory and Tactile Displays</H1>

We recommend using style sheets to accomplish such styling of the line:

 <HEAD>
 <TITLE>Redline with style sheets</TITLE>
 <STYLE type="text/css">
 HR.redline { color : red }
 </STYLE>
 </HEAD>
 <BODY>
 <HR class="redline" title="End of Chapter 7 - Visual Displays">
 <H1>Chapter 8 - Auditory and Tactile Displays</H1>
 </BODY>

End example.

2.10.8 Guidelines for good CSS style sheets

Use a minimal number of style sheet for your site
If you have more than one, use the same "class" name for the same concept in
all of the style sheets.
Use linked style sheets rather than embedded styles, and avoid inline style
sheets.
Content developers should not write "!important" rules. Users should where
necessary.
Use the "em" unit to set font sizes.
Use relative length units and percentages. CSS allows you to use relative units

42

Techniques for Web Content Accessibility Guidelines

even in absolute positioning. Thus, you may position an image to be offset by
"3em" from the top of its containing element. This is a fixed distance, but is
relative to the current font size, so it scales nicely.
Only use absolute length units when the physical characteristics of the output
medium are known.
Always specify a fallback generic font.
Use numbers, not names, for colors.

Some examples follow.

Example.

Use em to set font sizes, as in:

 H1 { font-size: 2em }

rather than:

 H1 { font-size: 12pt }

End example.

Example.

Use relative length units and percentages.

 BODY { margin-left: 15%; margin-right: 10%}

End example.

Example.

Only use absolute length units when the physical characteristics of the output
medium are known.

 .businesscard { font-size: 8pt }

End example.

Example.

Always specify a fallback generic font:

 BODY { font-family: "Gill Sans", sans-serif }

End example.

Example.

Use numbers, not names, for colors:

 H1 {color: #808000}
 H1 {color: rgb(50%,50%,0%)}

End example.

43

Techniques for Web Content Accessibility Guidelines

2.11 Frames
For visually enabled users, frames may organize a page into different zones. For
non-visual users, relationships between the content in frames (e.g., one frame has a
table of contents, another the contents themselves) must be conveyed through other
means.

Frames as implemented today are problematic for several reasons:

Without scripting, they tend to break the "previous page" functionality offered by
browsers.
It is impossible to refer to the "current state" of a frameset with a URI; once a
frameset changes contents, the original URI no longer applies.
Opening a frame in a new browser window can disorient or simply annoy users.

In the following sections, we discuss how to make frames more accessible. We
also provide an alternative to frames [p. 47] that uses HTML 4.0 and CSS and
addresses many of the limitations of today’s frame implementations.

2.11.1 Title frames for easy orientation

[Checkpoint 12.1] Title each frame so that users can keep track of frames by title.
[Priority 1]

Example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD>
<TITLE>A simple frameset document</TITLE>
</HEAD>
<FRAMESET cols="10%, 90%"
 title="Our library of electronic documents">
 <FRAME src="nav.html" title="Navigation bar">
 <FRAME src="doc.html" title="Documents">
 <NOFRAMES>

 Select to go to the electronic library
 </NOFRAMES>
</FRAMESET>

End example.

2.11.2 Long descriptions of frames

[Checkpoint 12.2] Describe the purpose of frames and how frames relate to each
other if it is not obvious by frame titles alone. [Priority 2]

Example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
 <HEAD>
 <TITLE>Today’s news</TITLE>

44

Techniques for Web Content Accessibility Guidelines

 </HEAD>

 <FRAMESET COLS="10%,*,10%">

 <FRAMESET ROWS="20%,*">
 <FRAME SRC="promo.html" NAME="promo" title="promotions">
 <FRAME SRC="sitenavbar.html" NAME="navbar"
 title="Sitewide navigation bar" longdesc="frameset-desc.html#navbar">
 </FRAMESET>

 <FRAME SRC="story.html" NAME="story" title="Selected story - main content"
 longdesc="frameset-desc.html#story">

 <FRAMESET ROWS="*,20%">
 <FRAME SRC="headlines.html" NAME="index" title="Index of other
 national headlines" longdesc="frameset-desc.html#headlines">
 <FRAME SRC="ad.html" NAME="adspace" title="Advertising">
 </FRAMESET>

 <NOFRAMES>
 <p>No frames version</p>
 <p>Descriptions of frames.</p>
 </NOFRAMES>

 </FRAMESET>
</HTML>

frameset-desc.html might say something like: #Navbar - this frame provides links
to the major sections of the site: World News, National News, Local News,
Technological News, and Entertainment News. #Story - this frame displays the
currently selected story. #Index - this frame provides links to the day’s headline
stories within this section.

End example.

Note that if the a frame’s contents change, the long descriptions will no longer
apply. Also, links to a frame’s longdesc ("d-links") ought to be provided with other
alternative contents in the NOFRAMES element of a FRAMESET.

2.11.3 Invisible d-links

2.11.4 Ensure documents are readable without frames

Example.

In this example, if the user reads "top.html":

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD>
<TITLE>This is top.html</TITLE>
</HEAD>
<FRAMESET cols="50%, 50%" title="Our big document">
 <FRAME src="main.html" title="Where the content is displayed">
 <FRAME src="table_of_contents.html" title="Table of Contents">
 <NOFRAMES>

45

Techniques for Web Content Accessibility Guidelines

 Table of Contents.
 <!-- other navigational links that are available in main.html
 are available here also. -->
 </NOFRAMES>
</FRAMESET>
</HTML>

and the user agent is not displaying frames, the user will have access (via a link)
to a non-frames version of the same information.

End example.

2.11.5 Always make the source of a frame an HTML document

Content developers must provide descriptions of frames so that their contents and
the relationships between frames make sense. Note that as the contents of a frame
change, so must change any description. This is not possible if an IMG is inserted
directly into a frame, as in this deprecated example:

Deprecated example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD>
<TITLE>A bad frameset document</TITLE>
</HEAD>
<FRAMESET cols="100%" title="Static frameset">
 <FRAME name="badframe"
 src="apples.gif" title="Apples">
</FRAMESET>
</HTML>

Note that if, for example, a link causes a new image to be inserted into the frame:

 <P>Visit a beautiful grove of
 oranges

the initial title of the frame ("Apples") will no longer match the current content of
the frame ("Oranges").

[Checkpoint 6.2] Ensure that descriptions and text alternatives for dynamic content
are updated when the dynamic content changes. [Priority 1] To solve this problem,
content developers should always make the source ("src") of a frame an HTML file.
Images may be inserted into the HTML file and their text alternatives will evolve
correctly.

Example.

46

Techniques for Web Content Accessibility Guidelines

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML>
<HEAD>
<TITLE>A correct frameset document</TITLE>
</HEAD>
<FRAMESET cols="100%" title="Evolving frameset">
<FRAME name="goodframe" src="apples.html" title="Apples">
</FRAMESET>
</HTML>

 <!-- In apples.html -->
 <P>

End example.

2.11.6 Avoid opening a new window as the target of a frame

[Checkpoint 10.1] Until user agents allow users to turn off spawned windows, do not
cause pop-ups or other windows to appear and do not change the current window
without informing the user. [Priority 2] For example, content developers should avoid
specifying a new window as the target of a frame with target="_blank".

2.11.7 Alternatives to frames

One of the most common uses of frames is to split the user’s browser window into
two parts: a navigation window and a content window. As an alternative to frames,
we encourage you to try the following:

1. Create one document for the navigation mechanism (call it "nav.html"). A
separate document means that the navigation mechanism may be shared by
more than one document.

2. In each document requiring the navigation mechanism, include it at the bottom
of the document with the following (or similar) OBJECT markup:

Example.

<P>
<OBJECT data="nav.html">
Go to the table of contents
</OBJECT>

Putting the navigation mechanism at the end of the document means that
when style sheets are turned off, users have access to the document’s
important information first.

3. Use style sheets to position the navigation mechanism where you want on the
screen. For example, the following CSS rule floats the navigation bar to the left
of the page and makes it take up 25% of the available horizontal space:

 OBJECT { float: left; width: 25% }

The following CSS rule attaches the navigation mechanism to the bottom-left
corner of the page of the page and keeps it there even if the user scrolls down
the page:

47

Techniques for Web Content Accessibility Guidelines

 OBJECT { position: fixed; left: 0; bottom: 0 }

Note. Navigation mechanisms or other content may be inserted in a document by
means of server-side includes.

2.12 Forms

2.12.1 Make controls keyboard accessible

[Checkpoint 9.4] Create a logical tab order through links, form controls, and objects.
[Priority 3]

[Checkpoint 9.5] Provide keyboard shortcuts to important links (including those in
client-side image maps), form controls, and groups of form controls. [Priority 3] See
the section on keyboard access [p. 10] for more information.

2.12.2 Group form controls

Content developers should group information [p. 13] where natural and appropriate.
When form controls can be grouped into logical units, use the FIELDSET element
and label those units with the LEGEND element (both available in HTML 4.0):

Example.

<FORM action="http://somesite.com/adduser" method="post">
 <FIELDSET>
 <LEGEND>Personal information</LEGEND>
 <LABEL for="firstname">First name: </LABEL>
 <INPUT type="text" id="firstname" tabindex="1">
 <LABEL for="lastname">Last name: </LABEL>
 <INPUT type="text" id="lastname" tabindex="2">
 ...more personal information...
 </FIELDSET>
 <FIELDSET>
 <LEGEND>Medical History</LEGEND>
 ...medical history information...
 </FIELDSET>
</FORM>

End example.

2.12.3 Label form controls explicitly

[Checkpoint 12.4] Associate labels explicitly with their controls. [Priority 2] An
example of LABEL used with "for" in HTML 4.0 is given in the previous section.

[Checkpoint 10.2] For all form controls with implicitly associated labels, ensure that
the label is properly positioned. [Priority 2]

48

Techniques for Web Content Accessibility Guidelines

2.12.4 Group menu options

Content developers should group information [p. 13] where natural and appropriate.
For long lists of menu selections (which are hard to remember), content developers
should group items into a hierarchy using the OPTGROUP element (available in
HTML 4.0).

Example.

<FORM action="http://somesite.com/prog/someprog" method="post">
 <P>
 <SELECT name="ComOS">
 <OPTGROUP label="PortMaster 3">
 <OPTION label="3.7.1" value="pm3_3.7.1">PortMaster 3 with ComOS 3.7.1
 <OPTION label="3.7" value="pm3_3.7">PortMaster 3 with ComOS 3.7
 <OPTION label="3.5" value="pm3_3.5">PortMaster 3 with ComOS 3.5
 </OPTGROUP>
 <OPTGROUP label="PortMaster 2">
 <OPTION label="3.7" value="pm2_3.7">PortMaster 2 with ComOS 3.7
 <OPTION label="3.5" value="pm2_3.5">PortMaster 2 with ComOS 3.5
 </OPTGROUP>
 <OPTGROUP label="IRX">
 <OPTION label="3.7R" value="IRX_3.7R">IRX with ComOS 3.7R
 <OPTION label="3.5R" value="IRX_3.5R">IRX with ComOS 3.5R
 </OPTGROUP>
 </SELECT>
</FORM>

End example.

2.12.5 Techniques for specific controls

[Checkpoint 10.4] Until user agents handle empty controls correctly, include default,
place-holding characters in edit boxes and text areas. [Priority 3]

Example.

<FORM action="http://somesite.com/prog/text-read" method="post">
 <P>
 <TEXTAREA name=yourname rows="20" cols="80">
 Please enter your name here.
 </TEXTAREA>
 <INPUT type="submit" value="Send"><INPUT type="reset">
 </P>
</FORM>

End example.

Provide alt-text [p. 7] for images used as "submit" buttons:

Example.

<FORM action="http://somesite.com/prog/text-read" method="post">
<P>
<INPUT type="image" name=submit src="button.gif" alt="Submit">
</FORM>

49

Techniques for Web Content Accessibility Guidelines

End example.

Refer also to checkpoint 3.8.

Also see the section on keyboard access [p. 10] since this applies to form controls.

2.12.6 Backwards compatibility issues for forms

The BUTTON element does not appear and <INPUT type="button"> will appear as a
text input field in HTML3.2 browsers.

2.13 Scripts
Content developers must ensure that pages are accessible with scripts turned off or
in browsers that don’t support scripts.

2.13.1 Alternative presentation of scripts

[Checkpoint 6.3] Ensure that pages are usable when scripts, applets, or other
programmatic objects are turned off or not supported. If this is not possible, provide
equivalent mechanisms on an alternative accessible page. [Priority 1] One way to
accomplish this is with the NOSCRIPT element (available in HTML 4.0). The content
of this element is rendered with scripts are not enabled.

Example.

<SCRIPT type="text/tcl">
 ...some Tcl script to show a billboard of sports scores...
</SCRIPT>
<NOSCRIPT>
 <P>Results from yesterday’s games:</P>
 <DL>
 <DT>Bulls 91, Sonics 80.
 <DD>Bulls vs. Sonics game highlights
 ...more scores...
 </DL>
</NOSCRIPT>

End example.

[Checkpoint 6.4] For scripts and applets, until user agents provide
device-independent means to activate event handlers, ensure that event handlers
are keyboard operable. [Priority 2]

2.13.2 Device-independent event handlers

[Checkpoint 9.3] For scripts, specify logical event handlers rather than
device-dependent event handlers. [Priority 2]

An event handler is a script that is invoked when a certain event occurs (e.g, the
mouse moves, a key is pressed, the document is loaded, etc.). In HTML 4.0, event
handlers are attached to elements via script attributes [p. 6] (the attributes beginning
with "on", as in "onkeyup").

50

Techniques for Web Content Accessibility Guidelines

Some event handlers, when invoked, produce purely decorative effects such as
highlighting an image or changing the color of an element’s text. Other event
handlers produce much more substantial effects, such as carrying out a calculation,
providing important information to the user, or submitting a form. For event handlers
that do more than just change the presentation of an element, content developers
should do the following:

1. Use application-level event triggers rather than user interaction-level triggers. In
HTML 4.0, application-level event attributes are "onfocus", "onblur" (the
opposite of "onfocus"), and "onselect". Note that these attributes are also
device-independent.

2. Otherwise, if you must use device-dependent attributes, provide redundant input
mechanisms (i.e., specify two handlers for the same element):

Use "onmousedown" with "onkeydown".
Use "onmouseup" with "onkeyup"
Use "onclick" with "onkeypress"

Note that there is no keyboard equivalent to double-clicking ("ondblclick") in
HTML 4.0.

3. Do not write event handlers that rely on mouse coordinates since this prevents
device-independent input.

3 Acknowledgments
Web Content Guidelines Working Group Co-Chairs:

Chuck Letourneau, Starling Access Services
Gregg Vanderheiden, Trace Research and Development

W3C Team contacts:
Judy Brewer and Daniel Dardailler

We wish to thank the following people who have contributed their time and valuable
comments to shaping these guidelines:

Harvey Bingham, Kevin Carey, Chetz Colwell, Neal Ewers, Geoff Freed, Al
Gilman, Larry Goldberg, Jon Gunderson, Eric Hansen, Phill Jenkins, Leonard
Kasday, George Kerscher, Marja-Riitta Koivunen, Josh Krieger, Scott Luebking,
William Loughborough, Murray Maloney, Charles McCathieNevile, MegaZone
(Livingston Enterprises), Masafumi Nakane, Mark Novak, Charles Oppermann,
Mike Paciello, David Pawson, Michael Pieper, Greg Rosmaita, Liam Quinn,
Dave Raggett, T.V. Raman, Robert Savellis, Jutta Treviranus, Steve Tyler, Jaap
van Lelieveld, and Jason White

The original draft of this document is based on "The Unified Web Site Accessibility
Guidelines" ([UWSAG] [p. 53]) compiled by the Trace R & D Center at the University
of Wisconsin. That document includes a list of additional contributors.

51

Techniques for Web Content Accessibility Guidelines

4 Reference specifications
For the latest version of any W3C specification please consult the list of W3C
Technical Reports.

[CSS1]
"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds., 17 December
1996, revised 11 January 1999. The CSS1 Recommendation is available at:
http://www.w3.org/TR/1999/REC-CSS1-19990111.
The latest version of CSS1 is available at: http://www.w3.org/TR/REC-CSS1.

[CSS2]
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs,
eds., 12 May 1998. The CSS2 Recommendation is available at:
http://www.w3.org/TR/1998/REC-CSS2-19980512.
The latest version of CSS2 is available at: http://www.w3.org/TR/REC-CSS2.

[DOM1]
"Document Object Model (DOM) Level 1 Specification", V. Apparao, S. Byrne,
M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C.
Wilson, and L. Wood, eds., 1 October 1998. The DOM Level 1
Recommendation is available at:
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001.
The latest version of DOM Level 1 is available at:
http://www.w3.org/TR/REC-DOM-Level-1

[HTML40]
"HTML 4.0 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds., 17
December 1997, revised 24 April 1998. The HTML 4.0 Recommendation is
available at: http://www.w3.org/TR/1998/REC-html40-19980424.
The latest version of HTML 4.0 is available at:
http://www.w3.org/TR/REC-html40.

[HTML32]
"HTML 3.2 Recommendation", D. Raggett, ed., 14 January 1997. The latest
version of HTML 3.2 is available at: http://www.w3.org/TR/REC-html32.

[MATHML]
"Mathematical Markup Language", P. Ion and R. Miner, eds., 7 April 1998. The
MathML 1.0 Recommendation is available at:
http://www.w3.org/TR/1998/REC-MathML-19980407.
The latest version of MathML 1.0 is available at:
http://www.w3.org/TRREC-MathML.

[PNG]
"PNG (Portable Network Graphics) Specification", T. Boutell, ed., T. Lane,
contributing ed., 1 October 1996. The latest version of PNG 1.0 is available at:
http://www.w3.org/TR/REC-png.

[RDF]
"Resource Description Framework (RDF) Model and Syntax Specification", O.
Lassila, R. Swick, eds., 22 February 1999. The RDF Recommendation is
available at: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

52

Techniques for Web Content Accessibility Guidelines

The latest version of RDF 1.0 is available at:
http://www.w3.org/TR/REC-rdf-syntax

[SMIL]
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", P.
Hoschka, ed., 15 June 1998. The SMIL 1.0 Recommendation is available at:
http://www.w3.org/TR/1998/REC-smil-19980615
The latest version of SMIL 1.0 is available at: http://www.w3.org/TR/REC-smil

[WAI-AUTOOLS]
"Authoring Tool Accessibility Guidelines", J. Treviranus, J. Richards, I. Jacobs,
C. McCathieNevile, eds. The latest Working Draft of these guidelines for
designing accessible authoring tools is available at:
http://www.w3.org/TR/WD-WAI-AUTOOLS/

[WAI-USERAGENT]
"User Agent Accessibility Guidelines", J. Gunderson and I. Jacobs, eds. The
latest Working Draft of these guidelines for designing accessible user agents is
available at: http://www.w3.org/TR/WD-WAI-USERAGENT/

[UWSAG]
"The Unified Web Site Accessibility Guidelines", G. Vanderheiden, W. Chisholm,
eds. The Unified Web Site Guidelines were compiled by the Trace R & D Center
at the University of Wisconsin under funding from the National Institute on
Disability and Rehabilitation Research (NIDRR), U.S. Dept. of Education. This
document is available at:
http://www.tracecenter.org/docs/html_guidelines/version8.htm

[XML]
"Extensible Markup Language (XML) 1.0.", T. Bray, J. Paoli, C.M.
Sperberg-McQueen, eds., 10 February 1998. The XML 1.0 Recommendation is
available at: http://www.w3.org/TR/1998/REC-xml-19980210.
The latest version of XML 1.0 is available at: http://www.w3.org/TR/REC-xml

5 Services
Note. W3C cannot maintain stability for any of the following references outside of its
control. These references are included for convenience.

[DVS]
DVS Descriptive Video Services.

[BOBBY]
Bobby is an automatic accessibility validation tool developed by Cast.

[CSSVAL]
The W3C CSS Validation Service.

[HTMLVAL]
The W3C HTML Validation Service.

[IBMJAVA]
IBM Guidelines for Writing Accessible Applications Using 100% Pure Java are
available from IBM Special Needs Systems.

53

Techniques for Web Content Accessibility Guidelines

[JAVAACCESS]
Information about Java Accessibility and Usability is available from the Trace
R&D Center.

[LIGHTHOUSE]
The Lighthouse provides information about accessible colors and contrasts.

[LYNX]
Lynx is a text-only browser.

[LYNXME]
Lynx-me is a Lynx emulator.

[LYNXVIEW]
Lynx Viewer is a Lynx emulator.

[MACROMEDIA]
Flash OBJECT and EMBED Tag Syntax from Macromedia.

[NCAM]
The National Center for Accessible Media includes information about captioning
and audio description on the Web.

[TRACE]
The Trace Research & Development Center. Consult this site for a variet of
information about accessibility, including a scrolling Java applet that may be
frozen by the user.

6 Checkpoint Map
This index lists each checkpoint and the sections in this document where it is
discussed.

Guideline 1:

Checkpoint 1.1 [p. 29]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.7.1 Equivalent text for images [p. 29] "

Checkpoint 1.2 [p. 32]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.7.6 Client-side image maps [p. 32] "

Checkpoint 1.3 [p. 37]
Refer to "2.9.2 Visual information and motion [p. 37] "

Checkpoint 1.4 [p. 35]
Refer to "2.8.1 Audio and Video produced by dynamic objects [p. 35] "

Checkpoint 1.5 [p. 30]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.7.3 Ascii art [p. 30] "

54

Techniques for Web Content Accessibility Guidelines

Guideline 2:

Checkpoint 2.1 [p. 40]
Refer to "2.10.5 Colors [p. 40] "

Checkpoint 2.2 [p. 40]
Refer to "2.10.5 Colors [p. 40] "

Guideline 3:

Checkpoint 3.1 [p. 19]
Refer to "2.3.4 Text markup rather than images [p. 19] "

Checkpoint 3.2 [p. 17]
Refer to "2.1.2 Section headers [p. 17] "

Checkpoint 3.3 [p. 19]
Refer to "2.4 Lists [p. 19] "

Checkpoint 3.4 [p. 19]
Refer to "2.3.3 Quotations [p. 19] "

Checkpoint 3.5 [p. 16]
Refer to "2.1 Document structure and metadata [p. 16] "

Checkpoint 3.6 [p. 38]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.10 Style and style sheets [p. 38] "

Checkpoint 3.7 [p. 38]
Refer to "2.10.1 General style sheet techniques [p. 38] "

Checkpoint 3.8 [p. 34]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.7.7 Server-side image maps [p. 33] " and
"2.12.5 Techniques for specific controls [p. 49] "

Guideline 4:

Checkpoint 4.1 [p. 18]
Refer to "2.2 Language information [p. 18] "

Checkpoint 4.2 [p. 18]
Refer to "2.3.2 Acronyms and abbreviations [p. 18] "

Checkpoint 4.3 [p. 18]
Refer to "2.2 Language information [p. 18] "

Guideline 5:

Checkpoint 5.1 [p. 22]
Refer to "2.5 Tables [p. 22] "

Checkpoint 5.2 [p. 22]
Refer to "2.5 Tables [p. 22] "

55

Techniques for Web Content Accessibility Guidelines

Checkpoint 5.3 [p. 27]
Refer to "2.5.3 Avoid tables for layout [p. 27] "

Checkpoint 5.4 [p. 22]
Refer to "2.5 Tables [p. 22] "

Checkpoint 5.5 [p. 22]
Refer to "2.5 Tables [p. 22] "

Checkpoint 5.6 [p. 22]
Refer to "2.5 Tables [p. 22] "

Guideline 6:

Checkpoint 6.1 [p. 38]
Refer to "2.10.1 General style sheet techniques [p. 38] "

Checkpoint 6.2 [p. 46]
Refer to "2.11.5 Always make the source of a frame an HTML document [p. 46]
"

Checkpoint 6.3 [p. 50]
Refer to "2.13.1 Alternative presentation of scripts [p. 50] "

Checkpoint 6.4 [p. 50]
Refer to "2.13.1 Alternative presentation of scripts [p. 50] "

Checkpoint 6.5 [p. 9]
Refer to "1.3 Alternative pages [p. 9] " and
"2.11.4 Ensure documents are readable without frames [p. 45] "

Guideline 7:

Checkpoint 7.1 [p. 39]
Refer to "2.10.3 Text style [p. 39] "

Checkpoint 7.2 [p. 39]
Refer to "2.10.3 Text style [p. 39] "

Checkpoint 7.3 [p. 38]
Refer to "2.9.2 Visual information and motion [p. 37] "

Checkpoint 7.4 [p. 14]
Refer to "1.8 Automatic page refresh [p. 14] "

Checkpoint 7.5 [p. 14]
Refer to "1.8 Automatic page refresh [p. 14] "

Guideline 8:

Checkpoint 8.1 [p. 36]
Refer to "2.8.1 Audio and Video produced by dynamic objects [p. 35] " and
"2.8.3 Directly accessible applets [p. 36] "

56

Techniques for Web Content Accessibility Guidelines

Guideline 9:

Checkpoint 9.1 [p. 32]
Refer to "2.7.6 Client-side image maps [p. 32] "

Checkpoint 9.2 [p. 11]
Refer to "1.4 Keyboard access [p. 10] "

Checkpoint 9.3 [p. 50]
Refer to "2.13.2 Device-independent event handlers [p. 50] "

Checkpoint 9.4 [p. 48]
Refer to "2.12.1 Make controls keyboard accessible [p. 48] "

Checkpoint 9.5 [p. 48]
Refer to "2.12.1 Make controls keyboard accessible [p. 48] "

Guideline 10:

Checkpoint 10.1 [p. 47]
Refer to "2.11.6 Avoid opening a new window as the target of a frame [p. 47] "

Checkpoint 10.2 [p. 48]
Refer to "2.12.3 Label form controls explicitly [p. 48] "

Checkpoint 10.3 [p. 41]
Refer to "2.10.6 Layout, positioning, layering, and alignment [p. 41] "

Checkpoint 10.4 [p. 49]
Refer to "2.12.5 Techniques for specific controls [p. 49] "

Checkpoint 10.5 [p. 33]
Refer to "2.7.6 Client-side image maps [p. 32] "

Guideline 11:

Checkpoint 11.1 [p. 16]
Refer to "1.11 Browser Support [p. 16] "

Checkpoint 11.2 [p. 5]
Refer to "1.1 Structure vs. Presentation [p. 4] "

Checkpoint 11.3 [p. 14]
Refer to "1.7 Content negotiation [p. 14] "

Checkpoint 11.4 [p. 9]
Refer to "1.3 Alternative pages [p. 9] "

Guideline 12:

Checkpoint 12.1 [p. 44]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.11.1 Title frames for easy orientation [p. 44] "

Checkpoint 12.2 [p. 44]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.11.2 Long descriptions of frames [p. 44] "

57

Techniques for Web Content Accessibility Guidelines

Checkpoint 12.3 [p. 13]
Refer to "1.6 Comprehension [p. 12] "

Checkpoint 12.4 [p. 48]
Refer to "2.12.3 Label form controls explicitly [p. 48] "

Guideline 13:

Checkpoint 13.1 [p. 27]
Refer to "2.6 Links [p. 27] "

Checkpoint 13.2 [p. 12]
Refer to "1.5 Navigation [p. 11] "

Checkpoint 13.3 [p. 12]
Refer to "1.5 Navigation [p. 11] "

Checkpoint 13.4 [p. 11]
Refer to "1.5 Navigation [p. 11] "

Checkpoint 13.5 [p. 12]
Refer to "1.5 Navigation [p. 11] "

Checkpoint 13.6 [p. 28]
Refer to "2.6 Links [p. 27] "

Checkpoint 13.7 [p. 12]
Refer to "1.5 Navigation [p. 11] "

Checkpoint 13.8 [p. 12]
Refer to "1.5 Navigation [p. 11] "

Checkpoint 13.9 [p. 15]
Refer to "1.9 Other topics [p. 15] "

Checkpoint 13.10 [p. 30]
Refer to "1.2 Text equivalents and descriptions [p. 7] " and
"2.7.3 Ascii art [p. 30] "

Guideline 14:

Checkpoint 14.1 [p. 12]
Refer to "1.6 Comprehension [p. 12] "

Checkpoint 14.2 [p. 12]
Refer to "1.6 Comprehension [p. 12] "

Checkpoint 14.3 [p. 11]
Refer to "1.5 Navigation [p. 11] "

7 Index of HTML elements and attributes

7.1 Elements
This index lists all elements in HTML 4.0 and whether they are defined in earlier
versions of HTML. Elements that are deprecated in HTML 4.0 ([HTML40] [p. 52])
are followed by an asterisk (*). Elements that are obsolete in HTML 4.0 or don’t exist
in a W3C specification of HTML (2.0, 3.2, 4.0) do not appear in this table. An entry of

58

Techniques for Web Content Accessibility Guidelines

"N/A" means that an element is not discussed in this document.

Name (links to
4.0)

Also defined
in

Related HTML topics

A 2.0, 3.2 Keyboard access [p. 10] , Links [p. 27]

ABBR Acronyms and abbreviations [p. 18]

ACRONYM Acronyms and abbreviations [p. 18]

ADDRESS 2.0, 3.2 Metadata [p. 16]

APPLET* 3.2 Applets and other objects [p. 34]

AREA 3.2 Keyboard access [p. 10] , Images and image
maps [p. 28] ,

B 2.0, 3.2 Text style [p. 39] , Emphasis [p. 18]

BASE 2.0, 3.2 Links [p. 27]

BASEFONT* 3.2 Fonts [p. 40]

BDO N/A

BIG 3.2 Text style [p. 39]

BLOCKQUOTE 2.0, 3.2 Quotations [p. 19] , Text style [p. 39]

BODY 2.0, 3.2 N/A

BR 2.0, 3.2 Layout, positioning, and alignment [p. 41]

BUTTON Keyboard access [p. 10] , Server-side image
maps [p. 33] , Forms [p. 48]

CAPTION 3.2 Tables [p. 22]

CENTER* 3.2 Layout, positioning, and alignment [p. 41]

CITE 2.0, 3.2 N/A

CODE 2.0, 3.2 N/A

COL Tables [p. 22]

COLGROUP Tables [p. 22]

DD 2.0, 3.2 Lists [p. 19]

DEL N/A

DFN 3.2 N/A

59

Techniques for Web Content Accessibility Guidelines

DIR* 2.0, 3.2 N/A

DIV 3.2 N/A

DL 2.0, 3.2 Lists [p. 19]

DT 2.0, 3.2 Lists [p. 19]

EM 2.0, 3.2 Emphasis [p. 18] , Text style [p. 39]

FIELDSET Grouping form controls [p. 48]

FONT* 3.2 Fonts [p. 40]

FORM 2.0, 3.2 Forms [p. 48]

FRAME Frames [p. 44]

FRAMESET Frames [p. 44]

H1-H6 2.0, 3.2 Section headers [p. 17]

HEAD 2.0, 3.2 N/A

HR 2.0, 3.2 Rules and border [p. 41] , Section headers
[p. 17]

HTML 2.0, 3.2 N/A

I 2.0, 3.2 Text style [p. 39] , Emphasis [p. 18]

IFRAME Frames [p. 44]

IMG 2.0, 3.2 List bullets [p. 21] ,

INPUT 2.0, 3.2 Images and image maps [p. 28] , Keyboard
access [p. 10] , Layout, positioning, and
alignment [p. 41] , Rules and borders [p. 41]

INS N/A

ISINDEX* 2.0, 3.2 N/A

KBD 2.0, 3.2 N/A

LABEL Keyboard access [p. 10] , Form labels [p. 48]

LEGEND Keyboard access [p. 10] ,

LI 2.0, 3.2 Lists [p. 19]

LINK 2.0, 3.2 Links [p. 27] , Metadata [p. 16]

MAP 3.2 Images and image maps [p. 28]

60

Techniques for Web Content Accessibility Guidelines

MENU* 2.0, 3.2 N/A

META 2.0, 3.2 Metadata [p. 16]

NOFRAMES Frames [p. 44]

NOSCRIPT Scripts [p. 50]

OBJECT Keyboard access [p. 10] , Images and image
maps [p. 28] , Applets and other objects [p. 34]

OL 2.0, 3.2 Lists [p. 19]

OPTGROUP Forms [p. 48]

OPTION 2.0, 3.2 Forms [p. 48]

P 2.0, 3.2 N/A

PARAM 3.2 N/A

PRE 2.0, 3.2 Layout, positioning, and alignment [p. 41] , Text
style [p. 39]

Q Quotations [p. 19]

S Text style [p. 39]

SAMP 2.0, 3.2 N/A

SCRIPT 3.2
(place-holder)

Scripts [p. 50]

SELECT 2.0, 3.2 Keyboard access [p. 10] , Forms [p. 48]

SMALL 3.2 Text style [p. 39]

SPAN N/A

STRIKE* 3.2 Text style [p. 39]

STRONG 2.0, 3.2 Emphasis [p. 18] , Text style [p. 39]

STYLE 3.2
(place-holder)

Keyboard access [p. 38] ,

SUB 3.2 N/A

SUP 3.2 N/A

TABLE 3.2 Tables [p. 22]

TBODY Tables [p. 22]

TD 3.2 Tables [p. 22]

61

Techniques for Web Content Accessibility Guidelines

TEXTAREA 2.0, 3.2 Keyboard access [p. 10] , Forms [p. 48]

TFOOT Tables [p. 22]

TD 3.2 Tables [p. 22]

TD 3.2 Tables [p. 22]

THEAD Tables [p. 22]

TITLE 2.0, 3.2 Metadata [p. 16]

TR 3.2 Tables [p. 22]

TT 2.0, 3.2 Text style [p. 39]

U 3.2 Text style [p. 39]

UL 2.0, 3.2 Lists [p. 19]

VAR 2.0, 3.2 N/A

7.2 Attributes
This index lists some attributes in HTML 4.0 that affect accessibility and what
elements they apply to. Elements that are deprecated in HTML 4.0 ([HTML40] [p. 52]
) are followed by an asterisk (*). Elements that are obsolete in HTML 4.0 or don’t
exist in a W3C specification of HTML (2.0, 3.2, 4.0) do not appear in this table.
Attributes that apply to most elements of HTML 4.0 are indicated as such; please
consult the HTML 4.0 specification for the exact list of elements with this attribute.

Attributes that affect presentation [p. 6] , most of which are deprecated in HTML
4.0, are not are not listed in this table. Content developers should use style sheets
instead of these attributes.

Attributes that associate scripts with events [p. 6] are not are not listed in this
table. Please see the section on device-independent event handlers [p. 50] for more
detail.

62

Techniques for Web Content Accessibility Guidelines

Name (links to
HTML 4.0)

Applies to elements Related HTML
topics

abbr TD, TH

accesskey A, AREA, BUTTON, INPUT, LABEL,
LEGEND, TEXTAREA

alt APPLET*, AREA, IMG, INPUT

axis TD, TH

class Most elements

for LABEL

headers TD, TH

hreflang A, LINK

id Most elements

lang Most elements

longdesc IMG, FRAME, IFRAME

name FRAME (and others)

scope TD, TH

style Most elements

summary TABLE

tabindex A, AREA, BUTTON, INPUT, OBJECT,
SELECT, TEXTAREA

title Most elements

usemap IMG, INPUT, OBJECT

63

Techniques for Web Content Accessibility Guidelines

	Web Content Accessibility Guidelines v1.0
	Proposed Recommendation 24 Mar 1999
	Abstract
	Status of this document
	Related documents
	Available formats
	Table of Contents
	1. Introduction
	2. Themes of Accessible Design
	1. Ensuring Graceful Transformation
	2. Making Content Understandable and Navigable

	3. How the Guidelines are Organized
	1. Document Conventions

	4. Priorities
	5. Conformance
	6. Web Content Accessible Guidlines
	G1. Provide equivalent alternaties to auditory and visual content
	G2. Don' rely on color alone
	G3. Use markup and style sheets properly
	G4. Clarify natural language usage
	G5. Create tables that transform gracefully
	G6. Ensure that pages featuring new technologies transform gracefully
	G7. Ensure user control of time-sensitive content changes
	G8. Ensure direct accessibility of embedded user interfaces
	G9. Design for device-independence
	G10. Use interim solutions
	G11. Use W3C technologies and guidelines
	G12 Provide context and orientation information
	G13. Provide clear naviation mechanisms
	G14. Ensure that documents are clear and simple

	Appendix A - Validation
	Appendix B - Glossary
	Acknowledgements
	References

	List of Checkpoints
	Abstract
	Status of this document
	Priorities
	Priority 1 checkpoints
	Priority 2 checkpoints
	Priority 3 checkpoints

	Techniques for Web Content Accessibility Guidelines
	Abstract
	Status of this document
	Available formats
	Table of Contents
	Priorities
	1 Accessibility Themes for HTML
	1.1 Structure vs. Presentation
	1.2 Text equivalents and descriptions
	1.3 Alternative pages
	1.4 Keyboard access
	1.5 Navigation
	1.6 Comprehension
	1.7 Content negotiaion
	1.8 automatic page refresh
	1.9 Other topices
	1.10 Validation
	1.11 Browser Support

	2 HTML topics
	2.1 Document structure and metadata
	2.2 Language information
	2.3 Text markup
	2.4 Lists
	2.5 Tables
	2.6 Links
	2.7 Images and image maps
	2.8 Applets and other objects
	2.9 Audio and video
	2.10 Style and style sheets
	2.11 Frames
	2.12 Forms
	2.13 Scripts

	3 Acknowledgements
	4 Reference specifications
	5 Services
	6 Checkpoint Map
	7 Index of HTML elements and attributes
	7.1 Elements
	7.2 Attributes

	
	World Wide Web Consortium Title Page

