XQuery 1.0 Formal Semantics

W3C
XQuery 1.0 Formal Semantics
W3C Working Draft 26 March 2002

Thisversion:
http://www.w3.0rg/TR/2002/WD-query-semanti cs-20020326/

Latest version:
http://www.w3.org/TR/query-semantics

i1

Previous versions;

http://www.w3.0rg/TR/2001/WD-query-semantics-20010607/
http://www.w3.org/TR/2001/WD-query-al gebra-20010215/
http://www.w3.org/TR/2000/WD-query-al gebra-20001204/

Editors:
Denise Draper (XML Query WG), Nimble Technology <ddraper @nimble.com>

Peter Fankhauser (XML Query WG), Infonyte GmbH <fankhaus@infonyte.com>

Mary Ferndndez (XML Query WG), AT& T Labs - Research <mff @research.att.com>
Ashok Malhotra (XML Query and XSL WGs), Microsoft <ashokma@microsoft.com>
Kristoffer Rose (XSL WG), IBM Research <krisrose@us.ibm.com>

Michael Rys (XML Query WG), Microsoft <mrys@microsoft.com>

Jérdme Siméon (XML Query WG), Lucent Technologies <simeon@research.bell-1abs.com>
Philip Wadler (XML Query WG), Avaya <wadler@avaya.com>

Copyright © 2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use,
and software licensing rules apply.

Abstract

This document presents the formal semantics of XQuery [XQuery 1.0: A Query Language for XML].

Status of this Document

Thisisapublic W3C Working Draft for review by W3C Members and other interested parties. This section
describes the status of this document at the time of its publication. It is a draft document and may be updated,
replaced, or obsoleted by other documents at any time. It isinappropriate to use W3C Working Drafts as
reference material or to cite them as other than "work in progress." A list of current public W3C technical

http://www.w3c.org/TR/query-semantics/ (1 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/
http://www.w3.org/TR/2002/WD-query-semantics-20020326/
http://www.w3.org/TR/query-semantics/
http://www.w3.org/TR/2001/WD-query-semantics-20010607/
http://www.w3.org/TR/2001/WD-query-algebra-20010215/
http://www.w3.org/TR/2000/WD-query-algebra-20001204/
mailto:ddraper@nimble.com
mailto:fankhaus@infonyte.com
mailto:mff@research.att.com
mailto:ashokma@microsoft.com
mailto:krisrose@us.ibm.com
mailto:mrys@microsoft.com
mailto:simeon@research.bell-labs.com
mailto:wadler@research.bell-labs.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

XQuery 1.0 Formal Semantics

reports can be found at http://www.w3.org/TR/.

Much of this document is the result of joint work by the XML Query and XSL Working Groups, which are
jointly responsible for XPath 2.0, alanguage derived from both XPath 1.0 and XQuery. This document defines
the formal semanticsfor XQuery 1.0. A future version of this document will also define the formal semantics
for XPath 2.0. Further information on the progress of the work of the XML Query WG can be found at
http://www.w3.org/XML/Query.

This document is awork in progress. It contains many open issues, and should not be considered to be fully

stable. Vendors who wish to create preview implementations based on this document do so at their own risk.
While this document reflects the general consensus of the working groups, there are still controversial areas
that may be subject to change.

A completelist of issuesis maintained in [C | ssues]. In particular, the reader should note the following
important issues.

« The XQuery type system is based on XML Schema, but some misalignments exist. See [I ssue-0104:
Support for named typing].

« The semantics of sortby and constructor expressionsis still under discussion. See [ssue-0109:
Semantics of sortby] and [Issue-0110: Semantics of element and attribute constructor g|.

« The current semantics does not completely cover all functions. Some functions used in the Formal
semantics, or some functions from the [XQuery 1.0 and XPath 2.0 Functions and Operators| document

need additional semantics specification. See [Issue-0135: Semantics of special functions).

Comments on this document should be sent to the W3C XML Query mailing list
www-xml-guery-comments@wa3.org; note that any email information sent to thislist is publicly availablein

the W3C XML Query mailing list archive http://lists.w3.org/Archives/Public/www-xml-query-comments/.

XQuery 1.0 has been defined jointly by the XML Query Working Group (part of the XML Activity) and the
XSL Working Group (part of the Style Activity).

Table of Contents

1 Introduction
2 Preliminaries
2.1 Processing model
2.2 DataModel
2.2.1 Data model components
2.2.2 Node identity
2.2.3 Document order and sequence order
2.2.4 Errors
2.3 Schemas and types
2.3.1 The elements of a(static) type system
2.3.2 Subtyping
2.3.2.1 Type equivalence
2.3.2.2 Type substitutability

http://www.w3c.org/TR/query-semantics/ (2 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/
http://www.w3.org/XML/Query
mailto:www-xml-query-comments@w3.org
http://lists.w3.org/Archives/Public/www-xml-query-comments/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Activity.html
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/Activity

XQuery 1.0 Formal Semantics

2.3.2.3 Subtyping and XML Schema derivation
2.3.3 Static types and dynamic types
2.4 Functions
2.4.1 Functions and operators
2.4.2 Functions and static typing
2.4.3 Data Model Accessors and XPath Axes
2.4.4 Other formal semantics functions
2.5 Notation
2.5.1 Judgments and patterns
2.5.2 Inference rules
2.5.4 Environments
2.5.5 Static type inference
3 The XQuery Type System
3.1 XQuery Types
3.1.1 Wildcard types
3.2 Instances, and Domain of a Type
3.2.1 Domain of a NameTest
3.2.2 Semantics of the Domain of aType
3.3 Subtyping
3.3.1 NameTest Subtyping
3.3.2 Semantics of Subtyping
3.3.3 Type equivalence
3.4 Prime types
3.4.1 Prime types and sequences of items with similar types
3.4.2 Computing Prime Types
3.4.3 Common Prime Types
3.4.3.1 Common Occurrence I ndicator
3.5 Importing types from XML Schema
3.5.1 Schema
3.5.2 ONames
3.5.3 Complex Type Definitions
3.5.3.1 Global complex type
3.5.3.2 Anonymous local complex type
3.5.4 Groups
3.5.4.1 Global named group declarations
3.5.4.2 Local groups
3.5.5 minOccurs and maxOccurs
3.5.6 Elements
3.5.6.1 Global elements
3.5.6.2 Local elements
3.5.7 Attributes
35.7.1 Use
3.5.7.2 Global attributes

http://www.w3c.org/TR/query-semantics/ (3 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

3.5.7.3 Local attributes
3.5.8 Simple Content
3.5.9 Attribute Group
3.5.9.1 Attribute group declaration
3.5.9.2 Attribute group reference
3.5.9.3 Attribute wildcard
3.5.10 Complex Content
3.5.11 Simple Types
3.6 Major type issues
4 Semantics of Expressions
4.1 Basics
4.1.1 Expression Context
4.1.1.1 Static Context
4.1.1.2 Evaluation Context
4.1.2 Type Conversions
4.2 Primary Expressions
4.2.1 Literds
4.2.2 Variables
4.2.3 Parenthesized Expressions
4.2.4 Function Calls
4.2.5 Comments
4.3 Path expressions
4.3.1 Axis Steps
4.3.1.1 Axes
4.3.1.2 Node Tests
4.3.2 General Steps
4.3.3 Step Qualifiers
4.3.3.1 Predicates
4.3.3.2 Dereferences
4.3.4 Unabbreviated Syntax
4.3.5 Abbreviated Syntax
4.4 Sequence Expressions
4.4.1 Constructing Seguences
4.4.2 Combining Sequences
4.5 Arithmetic Expressions
4.6 Comparison Expressions
4.6.1 Vaue Comparisons
4.6.2 General Comparisons
4.6.3 Node Comparisons
4.6.4 Order Comparisons
4.7 Logical Expressions
4.8 Constructors
4.8.1 Element Constructors

http://www.w3c.org/TR/query-semantics/ (4 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

4.8.2 Computed Element and Attribute Constructors
4.8.3 Other Constructors and Comments
4.9 FLWR Expressions
4.9.1 FLWR expressions
4.9.2 For expression
4.9.3 Let expression
4.10 Sorting Expressions
4.11 Conditional Expressions
4.12 Quantified Expressions
4.13 Datatypes
4.13.1 Referring to Datatypes
4.13.2 Expressions on Datatypes
4.13.2.1 Instance of
4.13.2.2 Cast expressions
4.13.2.2.1 Cast as
4.13.2.2.2 Treat as
4.13.2.2.3 Assert as
4.13.2.3 Typeswitch
5 The Query Prolog
5.1 Namespace Declarations and Schema Imports
5.2 Function Definitions
6 Additional Semantics of Functions
6.1 Formal Semantics Functions
6.1.1 The fs.document function
6.1.2 Thefs.datafunction
6.2 Functions with specific typing rules
6.2.1 The dm:error function
6.2.2 The op:union, op:intersect and op:expect operators
6.2.3 The op:to operator

Appendices

A Normalized core grammar
B References
B.1 Normative References
B.2 Non-normative References
B.3 Background References
C Issues
C.1 Introduction
C.2 Issueslist
C.3 Alphabsetic list of issues

C.3.1 Open Issues
C.3.2 Resolved (or redundant) Issues

http://www.w3c.org/TR/query-semantics/ (5 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

C.4 Delegated Issues
C.4.1 XPath 2.0

C.4.2 XQuery
C.4.3 Operators

1 Introduction

This document defines the formal semantics of XQuery. The present document is part of a set of documents
that together define the XQuery 1.0 language:

e [XQuery 1.0: A Query Language for XML] introduces the XQuery 1.0 language, defines its capabilities
from a user-centric view, and defines the language syntax.

e [XQuery 1.0 and XPath 2.0 Data Model] formally specifies the data model used by XQuery to represent

the content of XML documents. The XQuery language is formally defined by operations on this data
model.

o [XQuery 1.0 and XPath 2.0 Functions and Operatorg] lists the functions and operators defined for the
XQuery language and specifies to which arguments they can be applied and what the result should be.

The scope and goals for the XQuery language were laid out in the charter of the XML Query Working Group
and in the XQuery requirements [XML Query 1.0 Requirements].

XQuery isapowerful language, capable of selecting and extracting complex patterns from XML documents
and of reformulating them into results in arbitrary ways. This document defines the semantics of XQuery by
giving a precise formal meaning to each of the constructions of the XQuery specification in terms of the
XQuery data model. This document assumes that the reader is already familiar with the XQuery language.

Two important design aspects of XQuery isthat it isfunctional and typed. These two aspects play an
important role in the XQuery Formal Semantics.

XQuery isafunctional language. It is built from expressions, called queries, rather than statements. Every
construct in the language (except for the query prolog) is an expression and expressions can be composed
arbitrarily. The result of one expression can be used as the input to any other expression, aslong as the type of
the result of the former expression is compatible with the input type of the later expression with whichitis
composed. Another aspect of the functional approach is that variables are always passed by value and their
value cannot be modified through side-effects.

XQuery isatyped language. Types can be imported from one or several XML Schemas (typically describing
the documents that will be processed), and the X Query language can then perform operations based on these
types(e.g., using at r eat as operation). In addition, XQuery also supports alevel of static type analysis.
This means that the system can perform some inference on the type of a query, based of the type of itsinputs.
Static typing allows early error detection, and may be the basis for certain forms of optimization. The type
system of XQuery isbased on [XML Schema Part 1], but does not support all the features of XML Schema.
For example, XQuery does not provide support for derivation. The relationship between the XQuery type
system and XML Schemaisdefined in [3.5 Importing typesfrom XML Schema]. Issues with respect to the

XQuery type system are discussed in [3.6 M ajor typeissues|.

The XQuery formal semantics builds on long-standing traditions in the database and in the programming

http://www.w3c.org/TR/query-semantics/ (6 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

languages communities. In particular, we have been inspired by works on SQL [SQL], OQL [ODMG],
[BKD90], [CM93], and nested relational algebra (NRA) [BNTW95], [Col90], [LW97], [LMW96]. We have
also been inspired by systems such as Quilt [Quilt], UnQL [BFS00], X Duce [HP2000], XML-QL
[XMLQL99], XPath [XPath], XQL [XQL99], XSLT [XSLT 99], and YaTL [YAT99]. Additional citations are
found in the bibliography [B References|.

This document is organized asfollows. In [2 Preliminaries|, we introduce concepts and notations used for
defining the XQuery formal semantics. In[3 The XQuery Type System], we describe the XQuery type

system, operations on the XQuery type system, and explain the relationship between the X Query type system
and XML Schema. In [4 Semantics of Expressions|, we describe the dynamic and static semantics of

XQuery. In[5 The Query Prolog], we describe the semantics of the XQuery prolog. In[6 Additional
Semantics of Functions], we describe any additional semantics required for functions.

2 Preliminaries

Ed. Note: Status: This section contains introductory material and is mostly new.

In this section, we provide background concepts for the XQuery formal semantics and introduce the notations
that are used.

2.1 Processing model

We first define a processing model for query evaluation. This processing model is not intended to be a model
for an actual implementation, although a (naive) implementation might be obtained from it. It does not require
or constrain any implementation technique, but any implementation should produce the same results as the one
obtained by following this processing model and applying the rest of the formal semantics specification.

The processing model is based of four phases; each phase consumes the result of the previous phase and
generates output for the next phase:

1. Parsing. The grammar for the XQuery syntax is defined in [XQuery 1.0: A Query Language for XML].

Parsing may generate syntax errors. If no error occurs, some internal representation of the parsed syntax
treeis created.

2. Normalization. To simplify the semantics specification, we first perform some normalization over the
query. The XQuery language provides many powerful features that make querys ssmpler to write and
use, but are also redundant. For instance, acomplex f or expression might be rewritten asa
composition of several smplef or expressions. The language composed of these simpler query is
called the XQuery Core language and is a subset of the complete XQuery language. The grammar of
the XQuery Core languageisgivenin [A Normalized core grammar].

During the normalization phase, each XQuery query is mapped into its equivalent query in the core.
(Note that this has nothing to do with Unicode Normalization which works on character strings).
Normalization works by bottom-up application of normalization rules over expressions, starting with
normalization of literals. After normalization, the full semantics can be obtained just by giving a
semantics to the normalized Core query. Thisis done during the last two phases.

Ed. Note: The query prolog needs to be processed before normalization starts. [5 The
Query Prolog] explains how the query prolog is processed. Thisisnot yet reflected in the

http://www.w3c.org/TR/query-semantics/ (7 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

processing model. See[Issue-0130: When to processthe query prolog].

3. Static type analysis. Static type analysis checks if each query istype safe, and if so, determines their
static types. Static type analysisis defined only for Core query. Static type analysis works by bottom-up
application of type inference rules over expressions, taking the type of literals and the known types of
input documents into account.

Static type analysis can result in astatic error, if the query is not type-safe. For instance, a comparison
between an integer value and a string value might be detected as an error during the static type analysis.
If static type analysis succeeds, it resultsin a syntax tree where each sub-expression is "decorated" with
Its static type, and in an output type for the result of the query.

Static typing does not imply that the content of XML documents must be rigidly fixed or even known in
advance. The XQuery type system accommodates "flexible" types, such as elements that can contain
any content. Schemarless documents are handled in XQuery by associating a standard type with the
document, such that it may include any legal XML content.

4. Dynamic Evaluation. Thisisthe phase in which the result of the query is computed. The semantics of
evaluation is defined only for Core query terms. Evaluation works by bottom-up application of
evaluation rules over expressions, starting with evaluation of literals. This guarantees that every
expression can be unambiguously reduced to avalue, which isthe final result of the query.

Thefirst three phases above are "anaysis-time" (sometimes also called "compile-time") steps, which isto say
that they can be performed on a query before examining any input document. Indeed, analysis-time processing
can be performed before such document even exists. Analysis-time processing can detect many errors
early-on, e.g., syntax errors or type errors. If no error occurs, the result of analysis-time processing could be
some compiled form of query, suitable for execution by a compiled-query processor. The last phaseisan
"execution-time" (sometimes also called "run-time") step, which isto say that it is performed on the actual
input document.

Static analysis catches only certain classes of errors. For instance, it can detect a comparison operation applied
between incompatible types (e.g., xsd: i nt and xsd: dat e). Some other classes of errors cannot be
detected by the static analysis and are only detected at execution time. For instance, whether an arithmetic
expression on 32 bitsintegers (xsd: i nt) yields an out-of-bound value can only be detected by looking at the
data, and israised as an evaluation error.

While implementations may be free to employ different processing models, the XQuery static semantics relies
on the existence of a static type analysis phase that precedes any access to the input data. Statically typed
implementations are required to find and report static type errors, as specified in this document. It isstill an
open issue (See [Issue-0098: I mplementation of and confor mance levelsfor static type checking])
whether to make the static type analysis phase optional to allow implementations to return aresult for a
type-invalid query in specia cases where the query happens to perform correctly on a particular instance of
input data. (Note that this is not the same as merely permitting that the static type error is emitted at evaluation
time as we do below.)

Notice that the separation of logical processing into phasesis not meant to imply that implementations must
separate analysis-time from eval uation-time processing: query processors may choose to perform all phases
simultaneously at eval uation-time and may even mix the phasesin their internal implementations. All the
processing model definesiswhat the final result of processing should be.

The above processing phases are al internal to the query processor. They do not deal with how the query
processor interacts with the outside world, notably how it accesses actual documents and types. A typical

http://www.w3c.org/TR/query-semantics/ (8 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

query engine would support at least three other important processing phases:

1. XML Schemaimport phase. The XQuery type system is based on XML Schema. In order to perform
static type analysis, the XQuery processor needs to build type descriptions that correspond to the
schema of the input documents. This phase is achieved by mapping all schemas required by the query
into the XQuery type system. The XML Schemaimport phase is described in this document in [3.5

Importing typesfrom XML Schema].

2. XML loading phase. During the evaluation phase, expressions are applied on instances of the [XQuery
1.0 and XPath 2.0 DataModel]. How XML documents are loaded into the data model is described in
the [XQuery 1.0 and XPath 2.0 Data Model] and is not be discussed further here.

3. Serialization phase. Once the query is evaluated, processors might want to serialize the result of the
guery as actual XML documents. Serialization of data model instancesis still an open issue (See
[Issue-0116: Serialization]) and is not be discussed further here.

We do not describe the parsing phase formally. Notably, we do not specify data structures for the syntax trees.
Instead, we use the XQuery concrete syntax directly as a support for the formal semantics specification. More
details about parsing can be found in the [XQuery 1.0: A Query Language for XML] document. No further
discussion of parsing isincluded here.

For the other three phases (normalization, static type analysis and evaluation), instead or giving an algorithm
in pseudo-code, we describe the semantics formally by means of inference rules. Inference rules provide a
notation to describe how the semantics of an expression derives from the semantics of its sub-expressions.
Hence, they provide a concise and precise way for specifying bottom-up algorithms, as required by the
normalization, static type analysis, and eval uation phases.

2.2 Data Model

In this section we first present the basic components of the XQuery data model pertinent to the semantic
description. The remainder of the section is devoted to several related features that merit special attention:
node identity, order, and error values.

2.2.1 Data model components

The components manipulated in XQuery, such as simple-typed values and nodes (attributes, elements, etc.),
are defined in the [XQuery 1.0 and XPath 2.0 Data Model] document. In this section we present only a short

review of these components. We refer the reader to the [XQuery 1.0 and XPath 2.0 Data Model] document for
more details.

There are five kinds of components in the [XQuery 1.0 and XPath 2.0 Data Model]: Error, SimpleValue,
Node, Sequence, and SchemaComponent.

« A singleerror value.

« A SimpleVaue: avauefrom any of the value spaces of XML Schema simple types, as defined in
[XML Schema Part 2].

« A Node; which is one of the following kinds: DocumentNode, ElementNode, AttributeNode,
NamespaceNode, CommentNode, PINode and TextNode. XML documents and their content are

http://www.w3c.org/TR/query-semantics/ (9 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#error
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#simpletypedvalue
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#simpletypedvalue
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#DocumentNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#AttributeNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#NamespaceNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#CommentNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ProcessingInstructionNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#TextNode

XQuery 1.0 Formal Semantics

represented in the data model as trees composed of nodes and values. [XQuery 1.0 and XPath 2.0 Data
Model] defines a mapping from the PSVI (Post Schema Validation Information Set) to such trees.

« A Sequence: which isan ordered collection of nodes, an ordered collection of simple-typed values, or
an ordered collection of items (i.e., any mixture of nodes and simple-typed values). An important
characteristic of sequencesisthat they cannot be nested. That is, all sequences are "flat", and cannot be
composed of other sequences. Moreover, there is no distinction between a single item and a singleton
sequence containing that item. That is, asingle item and a singleton sequence containing that item are
equivalent. It is still open whether sequences of entire documents are permitted [ssue-0068:

Document Collections].

« A SchemaComponent: the type of anode. The content and use of this schema component is still an open
Issue.

[XQuery 1.0 and XPath 2.0 Data Model] defines constructors, functions to construct each of these kinds of

data model component, as well as accessors, functions to access their contents. For instance, the xf:children
function can be used to retrieve the children nodes of an element node.

2.2.2 Node identity

In the [XQuery 1.0 and XPath 2.0 Data Model], nodes have an identity. Node identity follows from the unique

location of any node within exactly one XML document (or document fragment, in the case of XML being
constructed within the query itself). It is possible for two expressions to return not only the same value, but
also the exact same node. On the other hand, two expressions could have results with the same document
structure, but different identities. XQuery supports comparison of two nodes using either "node equality"
(equality by identity) or "value equality” (equality by equal values), for instance using one of the two
operators == or =.

Simple-typed values do not have an associated identity and are therefore always compared by value equality.
The difference between node equality and value equality isillustrated on the following example:

| et $al : = <book><aut hor >Suci u</ aut hor ></ book>,
$a2 : = <aut hor>Suci u</ aut hor >,
$a3 : = $al/ aut hor

return
($al/ author == $a3), {-- true, they refer to the sane node --}
($al/author = $a2), {-- true, they have the sane val ue --}
($al/author == $a2) {-- false, they are not the sane node --}

All XQuery's operators preserve node identity with the exception of explicit copy operations and node
(element, attribute, etc.) constructors. An element constructor always creates a deep copy of its attributes and
children nodes. Other operators, such as sequence construction or path expressions, do not result in copies of
the corresponding nodes. So, for example, ($a3, $a2) createsanew sequence of nodes, the first of which
has the same identity as$al/ aut hor .

2.2.3 Document order and sequence order

There are two kinds of order in XQuery: sequence order and document order.

Sequence order. Sequences of itemsin the XQuery data model are ordered. Sequence order refersto the order

http://www.w3c.org/TR/query-semantics/ (10 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types

XQuery 1.0 Formal Semantics

of these items within a given sequence.

Document order. Document order refersto the total order among all nodes within a given document. It is
defined as the order of appearance of the nodes when performing a pre-order, depth-first traversal of atree.
For elements, this corresponds to the order of appearance of their opening tags in the corresponding XML
serialization. Document order is equivalent to the definition used in [XML Path Language (XPath) : Version

1.0].

Depending on the context, it may be possible to talk about two different notions of order for the same (set of)
nodes. For example:

let $e := <list>
<itemid="1"/>
<itemid="2"/>
</list>,

$s 1= ($elitenf @d="2"], S$elitenf @d="1"])

Theitem"1" isbeforeitem "2" in document order, but the same two nodes are in the opposite order in the
sequence $s.

In the case of nodes among several documents, the order between the document is implementation defined but
must be stable. |.e., it must not change for the duration of query evaluation. Support for document order
among elements in distinct documents or document fragmentsis discussed in [1ssue-0003: Document

Order].

2.2.4 Errors

Some queriesresult in an error. Errors that are detected at compile-time, like parse errors or type errors, are
reported to the user by the system. Dynamic errors must return the Error value defined by the [XQuery 1.0 and

XPath 2.0 Data Model].

Whenever necessary, we use the notationdm er r or () to refer to the error value in the [XQuery 1.0 and
XPath 2.0 Data Model]. General handling of errorsin XQuery is still an open issue (See [ssue-0094: Static
type errorsand warnings| and Issue-98 in [XQuery 1.0: A Query Language for XML]).

2.3 Schemas and types

The Data Model establishes the space of values that may be manipulated by XQuery, but it does not establish
a complete type system. For example, we may know that a node is an ElementNode, but that does not tell us

what kind of element it is, what itslegal contentsis, etc.

The XQuery type system is based on [XML Schema Part 1]. Anintroduction to XML Schema can be found in
the primer [XML Schema Part 0]. An important notion underlying XML Schema are regular expressions, and

thelr tree counterparts, regular tree grammars. An introduction to regular (tree) languages can be found in
[Languages] or in [TATA]. In order to denote regular expressions, the XQuery type system uses the familiar
notation of XML DTDs. We refer the reader to [XML] for more on DTDs.

Ed. Note: We do not give an introduction to regular expressions and tree grammars for now, but
afuture version of the document should add some introductory text about: regular expressions,

http://www.w3c.org/TR/query-semantics/ (11 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#error
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode

XQuery 1.0 Formal Semantics

tree grammars, and basic algorithms over these that are relevant for XQuery. Notably, some text
about closure properties, complexity, subsumption algorithm, etc. could be provided there.

This section presents an introduction to (static) type systemsin general, and a conceptual overview of the
XQuery type system in particular. The XQuery type system is discussed formally in [3 The XQuery Type

gstem|.

2.3.1 The elements of a (static) type system

A type system relates values, types, and expressions. A (static) type system requires several constituent parts:

« A universe of possibletypes. Every type system starts with a set of primitive types and most (including
XQuery's) have type constructors that allow the construction of complex types.

In XQuery, the primitive types are the built-in simple datatypes types of [XML Schema Part 2]. There

are also type constructors for sequences and node types such as attributes and elements. These
correspond to the concepts of group, attribute and element in [XML Schema Part 1] (or more precisely,

in the formalization of XML Schemain [XML Schema: Forma Description]).

« A notation for types. A syntax is necessary to define and manipulate types. In order to write the type
related semantics of XQuery, this document uses its own notation, which is used notably in type
inference and dynamic semantics rules.

« A notion of instances, and domain of atype. Formally, atype is defined to be the (usually infinite) set
of instance values that belong to that type. Thus the type xs.integer consists of the set of all integer

values, and thetype el enment address { xs:string } consistsof all elements named
"address' whose contents are a single string value.

« A notion of subtyping. Subtyping is arelationship between type, i.e,, it relates types to each other.

Subtyping plays acrucia rolein atype system. Most notably, it is used to determine the legality of
arguments to functions.

« Rulesthat relate expressionsto types. The heart of static type inference is associating a static type
with each expression in aquery. In a strongly-typed language like XQuery, the static type is a guarantee
that, no matter what the input to the query is, the result of evaluating the expression is a value that
belongsto its static type.

« Rulesthat relate valuesto types. During query evaluation, expressions are evaluated to yield val ues.
The dynamic component of atyping system determines the actual types of data values asthey are
computed.

2.3.2 Subtyping

Onetypeis a subtype of another if every value belonging to the first type also belongs to the other. Hereisa
simple example of subtyping:

(xs:double)*
(xs:integer | xs:double)*

Thefirst typeis a subtype of the second, because any sequence that contains only doublesis also an example
of a sequence containing either integers or doubles.

http://www.w3c.org/TR/query-semantics/ (12 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#integer
http://www.w3.org/TR/xmlschema-2/#string

XQuery 1.0 Formal Semantics

We write Type; <: Type, to indicate that type Type; is a subtype Type,. Note that we use the subtype notation
<: when defining the XQuery semantics, but it is not part of the XQuery syntax.

2.3.2.1 Type equivalence

Two types are equivalent if every value of one typeis also avalue of the other type, and vice vers, i.e., two
types are equivalent if and only if they are both subtypes of the other. Here is a ssmple example of two
equivalent types:

(xs:integer | xs:double)*
(Xs:double | xs:integer)*

Both of these types mean a sequence of any number of doubles or integers.
We write type equivalence as Type; = Type,, where Type; and Type, are both types. If Type; = Type, then
Type; <: Typey and Type, <: Type; aretrue.

2.3.2.2 Type substitutability

Subtyping plays a crucia role in the semantics of function application since all functions have an associated
signature that declares the types of input parameters and the type of the result of the function.

Intuitively, one can call afunction not only by passing an argument of the declared type, but also any
argument whose type is a subtype of the declared type. This property is called type substitutability.

Ed. Note: This section should contain an example.
2.3.2.3 Subtyping and XML Schema derivation

Subtyping in XQuery is not the same as "derivation" in XML Schema. A derived typeis aways a subtype of
its base type, but the opposite is not true. For instance, consider the following types:

(xs:double)+
xs:double, (xs:integer | xs:double)*

Thefirst typeis a subtype of the second, because any sequence that contains one or more doublesis also an
example of a sequence containing a double followed by a sequence of zero or more integers or doubles. But
derivation as defined in XML Schema does not hold between these two types.

The relationship between subtyping and XML Schema derivation is discussed in [I1ssue-0019: Support
derived types|.

2.3.3 Static types and dynamic types

One consequence of having a static type system is that for the same expression, atypeisfirst computed during
the static phase, then atype for the actual value which isthe result of that expression is computed during the
dynamic phase. We use the terms static type and dynamic type respectively for each of these computed types
for a given expression. It isimportant to note that for the same expression the dynamic type is often more
precise than the static one, since the real value is not known statically. Indeed, the static type can be
considered as an approximation of the dynamic one based on the available static information. Consider, for
example, an XPath expression

http://www.w3c.org/TR/query-semantics/ (13 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

$x/ (foo | bar)

In this expression the static type might be

(element foo | elenent bar)*

If during execution, $x happens to contain exactly two f 00 elements, the dynamic type of (the result of
evaluating) $x isasequence of two f 00 elements.

(elenment foo, elenent foo).

Of course, the basic guarantee of static type inference is that the dynamic type is always a subtype of the static
type. Note that dynamic types are specific: they never contain choices, al groups, or quantifiers.

Ed. Note: MFF: This next paragraph should be changed to describe type annotations.

The XQuery data model also defines SchemaComponents associated with Nodes. SchemaComponents relate
to the type associated with a Node through schema validation. This may be different from either the static or

the dynamic type of the node. The relationship between static types, dynamic types and schema componentsin
the data model is still an open issue. See [Issue-0018: Align algebra types with schema].

2.4 Functions
2.4.1 Functions and operators

The [XQuery 1.0 and XPath 2.0 Functions and Operators] document provides a number of useful basic

functions over the components of the X Query data model (simple-typed values, nodes, sequences, etc). We
use a number of these functionsin the course of describing the XQuery semantics. Here isthe list of functions
from the [XQuery 1.0 and XPath 2.0 Functions and Operators] document that are used in the XQuery formal

Ssemantics
e Op:intersect
e Op: uNi on
e Op: except
« Op: concatenate
« 0p: bool ean- and
e 0Op: bool ean-or
e Op: uni on-val ue
« 0Op: except -val ue
e Op:to
e Op: nuneric-equal
e Op: Nnuneric-add

http://www.w3c.org/TR/query-semantics/ (14 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node

XQuery 1.0 Formal Semantics

e Op: get-end-datetine

e Op: Numeri c-subtract

e Op:get-duration

e Op:get-start-datetine
e Op:Nuneric-multiply

e Op: numeri c-divi de

e Op: nuneri c- nod

« 0p: bool ean- equal

e Op: datetine-equal

e Op:duration-equa

« op: hex-bi nary-equal

o 0p: base64- bi nary- equal
e Op: Nuneric-greater-than
o Op:datetine-greater-than
e Op:duration-greater-than
e Op: numeric-less-than

o Op:datetine-|ess-than
e Op:duration-|ess-than
e Op: node- equal

e 0Op: node- before

e Op: node-after

e Op: Numeric-unary-plus
e Op: NUMEeri c-unary-m nus
e Op: Operation

« xf:fal se

o« Xf:true

o« Xf:length

o Xf: bool ean

e Xf:item at

« Xf:get-nanespace-uri

« Xxf:get-1local -nane

o xf:round

o Xf:conpare

o Xf:not

o Xf:not3

« Xf:enpty-sequence

o Xf:root

o Xf:index- of

http://www.w3c.org/TR/query-semantics/ (15 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics
2.4.2 Functions and static typing

Many functionsin the [XQuery 1.0 and XPath 2.0 Functions and Operators| document are generic: they

perform operations on arbitrary components of the data model, e.g., any kind of node, or any sequence of
items. For instance, the xf : di sti nct - nodes function removes duplicates in any sequence of nodes. Asa
result, the signature given in the [XQuery 1.0 and XPath 2.0 Functions and Operators] document is also

generic. For instance, the signature of the xf : di st i nct - nodes functionis:
define function xf:distinct-nodes(node*) returns node*

If applied asis, this signature would result in poor static type information. In general, it would be preferable if
some of these function signatures could take the type of input parameters into account. For instance, if the
function xf : di sti nct - nodes isapplied on aparameter of typeel enent a*, el enent b, onecan
easily deduce that the resulting sequence is a collection of either a or b elements.

In order to provide better static typing, we specify typing rules for some of the functionsin [XQuery 1.0 and
XPath 2.0 Functions and Operators]. These additional typing rules are given in [6 Additional Semantics of
Functions|. Hereisthe list of functions that are given specific typing rules.

« dmerror

e Op: union

e Op:intersect

e Op: expect

e Op:to
Ed. Note: Thislist reflects the content of Sections 6, but should be expanded. See [| ssue-0135:
Semantics of special functions].

2.4.3 Data Model Accessors and XPath Axes

The XQuery Data Model provides operations to construct or access component of the Data Model. Some of
these operations are used in the course of defining the formal semantics. We use the namespace prefix dm
those functions to distinguish them for other functions from the [XQuery 1.0 and XPath 2.0 Functions and

Operators|] document.

Hereisalist of data model constructors or accessors used for formal semantics specification.
« dmerror
« dm at om c-val ue
e dmchildren
e« dmattributes
o dm parent
o dm nane
« dm node- ki nd
« dm dereference
« dm enpty-sequence
« dm namespaces
« dmtype

http://www.w3c.org/TR/query-semantics/ (16 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

« dmtyped-val ue

« dmattribute-sinple-node
o dm el enent - si npl e- node

« dmtext-node

XPath axes are used to describe tree navigation in instances of the XQuery data model. The semantics of axis
navigation is described in terms of data model functions. Some of the X Path axes are directly supported
through existing data model accessors. Some axes (e.g., ancestor) are defined as a simple recursive application
of adata model accessor and others (e.g., following) require more complex computation on top of existing
data model accessors. The correspondence between X Path axis and data model accessorsis specified in
section [4.3.1 Axis Steps]

2.4.4 Other formal semantics functions

In afew cases, the formal semantics makes use of some functions that are not currently in the [XQuery 1.0 and
XPath 2.0 Functions and Operators]| or in the [XQuery 1.0 and XPath 2.0 Data Model] documents. We use the
namespace prefix f s: for those functions, to distinguish them from functionsin the [XQuery 1.0 and XPath
2.0 Functions and Operators] document and from Data Model accessors.

Hereisalist of additional functions used for formal semantics specification.
o fs:docunent
o fs:distinct-doc-order
« fs:data
o fS:unique-item at

2.5 Notation

Ed. Note: Status: This section isintended to provide an introduction to formal notations, such as
inference rules, for readers which are not familiar with these notations. It can be skipped by the
reader which isfamiliar with these notations. This introductory material is still considered a draft
and will be improved in further rewritings of the Formal Semantics document.

In order to make the semantics specification both concise and precise, we use logical notation in the form of
logical inference rules. In this section, we introduce the notations for inference rules and sorts of semantic
values, specifically environments.

2.5.1 Judgments and patterns

Ed. Note: Thefollowing is a somewhat terse explanation of inference rules using formal
semantic lingo informally. It needs some examples.

The basic building block of an inference ruleis ajudgment that expresses some property. A judgment is
specified by a description that contains a combination of basic patterns, each identifying a sort of value that
can be inserted, interspersed with symbols. Symbols must occur literally in judgments between values of a sort
that corresponds to the used patterns.

A patternisidentified by one or more italic words. The names of patterns are significant: each pattern name
corresponds to a sort of value that can be substituted legally for the pattern. For this reason, a patternis

http://www.w3c.org/TR/query-semantics/ (17 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

sometimes called a metavariable that is instantiated to some value of the appropriate sort.
We employ the following conventions for pattern names:

1. patternsfor syntactic sorts denoting lexical items begin with upper case and their names correspond to
terminals or nonterminals in the XQuery grammar. For example, Expr is a pattern that can be
instantiated with any X Query Expr.

2. patterns for semantic sorts, to be defined, begin with lower case letters. For example, denotes a semantic
value.

Furthermore, al patterns may appear with subscripts (e.g. Exprq, Exprsy), which ssmply name different
Instances of the same pattern sort.

For example, '3 => 3' and '$x+0 => 3' are both instances of the judgment described by 'Expr => valu€'. It isno
problem that we are overloading the symbol '3' to denote both the '3' in an expression and the value 3: thisis
unambiguous because of the strict use of sorts in the judgment descriptions.

Finally, we require that each distinct pattern is instantiated to a single expression or value so if the same
pattern occurs twice in ajudgment description then it should be instantiated with the same value. This means
that '3 => 3'is an instance of the judgment described by 'Expr => Expr' but '$x+0 => 3" is not. (Both, however,
are instances of the judgment described by 'Exprq => Expr,'.)

2.5.2 Inference rules

Inference rules are used to express the logical relation between judgments and define how complex judgments
can be concluded from simpler premise judgments. (As explained in [2.1 Processing model], this approach

lends itself well to bottom-up algorithms.)

A logical inference rule is written as two collections of premise and conclusion judgments, written above and
below adividing line, respectively:
premise; ... premise,

conclusion; ... conclusion,

The interpretation of an inferenceruleis: if al the premise judgments above the line are true, then we know
that each of the conclusion judgments below the line are also true.

Here isasimple example to illustrate (based on the example judgment from above described by 'Expr, =>
Expry):
$x=>0 3=>3
$x+3=>3

This rule expresses the property of the evaluation judgment 'Expr=>value’: if an expression containing the
variable reference '$x' yields the value zero, and the literal expression '3' yields the value '3, then we know
that '$x + 3' yields the value '3".

It is also possible for the expression above the line to have no judgments at all; this simply means that the
expression below the lineistrue under all premises:

http://www.w3c.org/TR/query-semantics/ (18 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

3=>3

This judgment says that evaluating the expression '3' always yields the value three.

The rules above are expressed in terms of specific variables and values, but usually rules are more abstract.
That is, the judgments they relate contain patterns that match sorts of things. For example, hereis arule that
says for any variable, adding O yields the same value:

Variable => value
Variable + 0 => value

Formally, the rule states that if some variable in XQuery, to which Variable is instantiated, evaluates to some
value, to which value is instantiated, then we can conclude that the query 'Variable + 0", with Variable
substituted by the actual variable, evaluates to the same value.

We require that each unique patterns used in a particular inference rules is instantiated to the same value for
the entire rule. This means that we can refer to "the value of Variable" instead of the more precise "what
Variable isinstantiated to in (this particular instantiation of) the inference rule".
Putting these together, here is an example of an inference rule that occurs later in this document:

statEnvs |- Exprq : xsiboolean — statEnvs |- Expro : Type, statEnvs |- Exprg: Types

statEnvs|-i f Exprqt hen Expro el se Exprz: (Types | Types)

Thisrule states that if the conditional expression of an if expression has type boolean, then the type of the
entire expression is one of the two types of its then and else clauses. Note that thisis represented as a choice

type: '(Type,|[Types)'.

Therule also illustrates a convention of judgment expressions. Judgments usually consist of three parts: the
assumptions, the problem, and the result, organized as "assumptions |- problem =>> result" The"|-" symbol is
pronounced "turnstile” and is ubiquitous in the rules whereas the actual symbol used instead of "=>>" varies
with the defined judgment -- in this particular exampleitisthe":" symbol. Theideais that with the
assumption defined one can compute the result from the problem.

Ed. Note: Jonathan suggests to explain how to 'chain’ inference rules. |.e., how several inference
rules are applied recursively.

2.5.3 Normalization rules

Normalization is presented as logical rewrite rules, which specify those expressions that are rewritten into
some other expression in the XQuery core. The static semantics is presented as type inference rules, which
relate XQuery expressions to types and specify under what conditions an expression iswell typed. The
dynamic, or operational, semanticsis presented as value inference rules, which specify the order in which an
XQuery expression is evaluated and relate XQuery expressions to values.

Ed. Note: I'm leaving this unchanged, but I think we can and should change the definition of
normalization so that it doesn't force the use of "no-op" rules; i.e. instead of forcing the recurrent
execution of more mapping rules, allow them to be pattern matched just as the rest of the

http://www.w3c.org/TR/query-semantics/ (19 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

inference rules are.

Normalization applies a translation function to each expression in the XQuery syntax and returns an
expression in the XQuery core syntax; The notation [Expr] denotes the result of translating the XQuery
expression Expr into an expression in the XQuery core. All normalization rules have the following structure:

o]

coreExpr
The [Expr] above the == sign denotes an expression in the XQuery language before translation and the
coreExpr beneath the == sign denotes an equivalent expression in the XQuery core.

For convenience, the tranglation of an optional expression, e.g., Expr?, is denoted by ([Expr])?, meaning
that the optional expression istrandated, if it exists. Similarly, the trandlation of arepeated expression, e.g.,
Expr* is denoted by [Expr]*, meaning that each expression in the repetition is translated individually.

Many of the mapping rules from XQuery into the core convert expressions that have implicit arguments,
types, or complex semantics into core expressions that have explicit arguments, types, and a more verbose, but
explicit semantics.

2.5.4 Environments

Logical inference rules use environments to record information computed during static type inference or
dynamic evaluation so that information can be used by other logical inference rules. For example, the type
signature of a user-defined function in aquery prolog can be recorded in an environment and used by
subsequence rules. Similarly, the value assigned to a variable within alet statement can be captured in an
environment and used for further evaluations.

In general an environment is adictionary that maps a symbol (e.g., afunction name or a variable name) to a
value. If env isan environment then "env(symbol)" denotes the value that symbol is mapped to by env.

Depending on the kind of environment, the "value" can be atype, adatavalue, etc. The notation is
intentionally akin to function application as an environment can be seen as a "function” from the argument
symbol to the value that symbol maps to.

In this specification we use environment groups that group related environments. If "envs' is an environment
group with the member "mem", then that environment is denoted "envs.mem" and the value that it maps
symbol to is denoted "envs.mem(symbol)".

In particular, updating is only defined on environment groups:

« "envs[mem(symbol |-> value) |* denotes the environment group which isjust like envs except that the
mem environment has been updated to map symbol to value.

« If the"value" isatype then we use the conventional variant notation "envs|[mem(symbol : value)]".

« Weallow the shorthand "envs [mem(symbol4 |-> valuey ; ... ; symbol, |-> value,)]" for the nested "
(...(envsimem(symbol 1 [-> value;)]) ... [mem(symbol, |-> valuen)])".

Note that updating the environment overrides any previous binding that might exist for the same name.
Updating the environment is used to properly capture the scope of variables, namespaces, etc. Also, note that

http://www.w3c.org/TR/query-semantics/ (20 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

there are no operations to remove entries from environments: the need never arises because the environment
group from "before" the update remains accessible concurrently with the updated version.

Finally, an example that brings several of the notations above together. Here is arule that extends the varType
member of the static environment group statEnvs with atyping of a new variable:

statEnvs |- Exprq: Type; statEnvs[varType(QName: Type;)] |- Expro : Types

statEnvs |- | et $OName=Exprireturn Expro @ Typey

2.5.5 Static type inference

The result of static type inference isto associate a static type with every expression in a query, such that any
evaluation of that expression is guaranteed to yield a value that belongs to that type. This section outlines how
thisis done.

For each type of expression (as defined by the grammar production rules of XQuery), we define static type
inference rules. Hereis a simple example of such arule:

Exprqi:Type; EXxpro: Typey
Exprq , Expro : Typey, Type;

Thisruleisread asfollows: if two expressions Exprq and Expr, have already been statically inferred to have
types Type; and Type, (that's the premises above the line), then it is the case that the expression below the line
"Exprq , Expro" must have the type "Type;, Typey". Basicaly, it says that when two expressions are
concatenated together, the result type is the concatenation of their types.

The"left half" of the expression below the line (the part before the ":") corresponds to some phrase in a query,
for which we want to compute atype. If the query has been parsed into an internal parse tree, this usually
corresponds to some node in that tree. The expression usually has patternsin it (Expr4 and Expry) that need to

be matched against the children of the node in the parse tree. The expressions above the line indicate things
that we need to know or compute to use this rule; in this case, we need to know the types of the two
sub-expressions of the"," operator. Once we know those types (by applying static inference rules recursively
to the expressions on each side), then we can compute the type of this expression. Thisillustrates a general
feature of the type system: the type of an expression depends only on the type of its sub-expressions. The
overall static type inference algorithm is arecursive, following the parse structure of the query. At each point
in the recursion, an appropriate matching inference rule is sought; if at any point thereis no applicablerule,
then static type inference has failed: the query is not type-safe.

As stated earlier, the types computed by static inference rules are sound, which means that they guarantee that
any value computed by an expression must belong to the static type of the expression. Another characteristic
of astatic type system is completeness. A type system is complete if it computes the "tightest possible" static
type for every expression. It isvery rare for type systems to be complete, and XQuery is no exception: there
are expressions for which the static type system of XQuery computes atype that is not the tightest type
possible.

2.5.6 Evaluation rules

Dynamic semantics associates values with query expressions. As with static type inference, we use logical

http://www.w3c.org/TR/query-semantics/ (21 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

inference rules to determine the value of expressions given values of sub-expressions, and information
contained in environments. XQuery's dynamic semantics is modeled on the dynamic semantics presented in

[Milner].

The dynamic rules use judgments of the form: dynEnvs |- phrase => value, where phraseisaphrasein
XQuery syntax, and valueis avalue.

The inference rules used for dynamic evaluation, like those for static type inference, follow atop-down
recursive structure, computing the value of expressions from the values of their sub-expressions.

The dynamic type of data valuesis completely determined by the values themselves. Thus, there are no extra
rules or machinery for computing dynamic types.

3 The XQuery Type System

Ed. Note: Status: The XQuery type system defined in this section is based on structural typing.
The definition and formal specification of the XQuery type system will be revisited when support
for named typing is be added. Support for named typing is discussed in [1ssue-0104: Support

for named typing].

The XQuery type system is used for the specification of both the dynamic and the static semantics of XQuery.
It is used to describe the semantics of datatype operations and type conversion rules in XQuery. It isaso the
basis for the static semantics of XQuery.

The XQuery type system is based on XML Schema. XML Schema defines a notion of validation for XML
documents. When doing validation, an XML Schema processor checks if the structure, and the text content of
a document verifies the constraints on the structure, and the constraints on values, specified in the schema. As
an example of constraints on the document structure, all book elements might be declared to contain ani sbn
attribute, and at i t | e element, followed by a sequence of one or more aut hor elements. As an example of
constraints on values, the i sbn attribute might be declared as a subset of the XML Schemaxsd: stri ng
values, using a XML Schema pattern facet.

The XQuery type system is based on the structural constraints of XML schema, which have been formalized
as[XML Schema: Formal Description]. There are two main difference between the X Query type system and

[XML Schema: Formal Description]. First the XQuery type system does not capture the notion of XML
Schema names (also called normalized universal namesin [XML Schema : Formal Description]). Second, the

XQuery type system uses a specific syntax, as needed for semantics specification, notably the static type
inference.

This section describes the XQuery type system, the essential operations on the XQuery type system, and the
relationship between the XQuery type system and XML Schema.

3.1 XQuery Types

Typesin the XQuery type system are described with the following grammar:

[75] TypeDeclaration ("define” "element” QName "{" Type?"}")
| ("define” "attribute” QName"{" Type?"}")
| ("define” "type" QName"{" Type?"}")

http://www.w3c.org/TR/query-semantics/ (22 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

[76]

[77]
[78]
[80]
[79]
[81]

[82]
[83]
[84]
[55]
[85]

[86]

[87]

Type

TypeUnion
TypeBoth

TypeRepeat
TypeSeguence
[temType

{

TypeRef

TypeParenthes zed

TypeNone

SimpleType
AttributeRef

ElementRef

TypeOccurrencel ndicator

TypeUnion

| TypeBoth

| TypeSequence

| TypeRepeat

| ltemType

| TypeRef

| TypeParenthesized
| TypeNone

Type "|* Type
Type "&" Type
Type TypeOccurrencel ndicator
Type "," Type
ElementRef

| AttributeRef

| SimpleType
"type" QOName

"(" Type?")"

"none"

OName

("attribute” QName)
| ("attribute” NameTest "{" Type?"}")

("element” QName)
| ("element” NameTest "{" Type?)
ll*ll | II+|I Il?l

Ed. Note: Thistype system does not support text, process-instruction and document nodes. Such
types have to be added (See [1ssue-0105: Typesfor nodesin the data model.], and

[1ssue-0068: Document Collections]).

In addition, some constraints, not specified by the grammar, must hold:

SmpleType

SmpleType must be one of the built-in simple datatypes from [XML Schema Part

2.

http://www.w3c.org/TR/query-semantics/ (23 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

The content model of a AttributeRef must be consistent with the allowed content of
attributes. Namely, it must be a subtype of (using wilcards types as defined in
section on [3.1.1 Wildcard types]):

AttributeRef ys- AnySi npl eType *

In the case the content of the attribute is not specified (e.g.,att ri but e i sbn),
thisindicates areference to a globally defined attribute in the schema. Therefore
the corresponding attribute must exist in the schema and be globally declared.

The content model of a ElementRef must be consistent with the allowed content of
elements. Namely, it must be a subtype of:

(xs:AnyAttribute* ,
xs: AnySi npl eType* |
(xs:AnyElenment | xs:string)*)

ElementRef

Note that comments and processing instructions, while they are allowed data
values within an element, do not constitute part of an element's type.

In the case the content of the element is not specified (e.g., el enent title),
thisindicates areference to aglobally defined element in the schema. Therefore
the corresponding element must exist in the schema and be globally declared.

The type TypeNone indicates atype error. This type can be generated by the type
system during the course of static type analysis, but it isnot alegal valuein any
type declaration in a query. Note that TypeNone is the identity for choice (l.e., (t |
TypeNone) ==1)).

TypeNone

Ed. Note: Jerome: The status of the constraints on attribute and element type constructorsis
unclear. When are they enforced and checked ? (See [Issue-0106: Constraint on attribute and

element content models]

In [XML Schema Part 2], asimple datatype is either a primitive datatype, or is derived from another simple
datatype by specifying a set of facets. The type syntax of XQuery does not provide any way to define
datatypes with facets. Such types can be imported from XML Schemas and may be referenced as Type
xs.QName, where xs.QName names the definition of the faceted type in the schema.

The occurrenceindicators "*", "?" and "+" indicate a sequence of any, zero or one, or more than one items,
respectively. This plays the same role as, but is more limited than, the minoccurs/maxoccurs facets of [XML

Schema Part 1], and follows the notations of DTDs.

A WildCard denotes a set of names. A WildCard is either

« aQName denoting the name with the given namespace prefix and local name;

http://www.w3c.org/TR/query-semantics/ (24 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#QName

XQuery 1.0 Formal Semantics

« * denoting any name in any namespace,
« NCName* denoting any local name in namespace NCName;
« or *: NCName denoting the local name NCName in any namespace;

Theel enent ,andat t ri but e, type constructors may use awildcard to specify sets of one or more
matching elements, or attributes. For example,

el ement bib:* { xs:integer* }
indicates any element in the bi b namespace whose content consists of zero or more integers.

Empty content is indicated with the explicit empty sequence, asin
element bib:* { () }

If the content model is omitted, then the element, (resp. attribute or type) name must be a proper QName, and
refers to the global element (resp. attribute or type) with that name, which must be defined (by importation
from a schema or through a type definition expression).

The type system includes three operators that can combine types: ",", "[" and "&".

The"," operator builds the "sequence" of two types. For example,
xs:integer , xs:double

means a sequence of an integer followed by adouble. This corresponds to the xs.sequence construct of XML
Schema for elements; XML Schema does not recognize similar properties for simple types.

The"|" operator builds a"choice" between two types. For example,
xs:integer | (elenent bib:author)*

means either an integer or a sequence of bi b: aut hor elements. The"|" operator corresponds to the
xs.choice construct of XML Schemafor elements and the xs:union construct for simple types.

The"&" operator builds the "interleaved product” of two types. The type t; & t, matches any sequence that is
an interleaving of a sequence that matches t1 and a sequence that matches t,. For example,

(element a , elenment b) & xs:string =
el ement a, elenment b, xs:string
| element a, xs:string, element b
| xs:string, element a, element b

In each case, the order of el enent a and el enent b isunchanged, but the xs:string can be interleaved in
any position.

The interleaved product is a generalization of the xs:all construct in XML Schema for elements, and has no
corresponding representation in XML Schema for simple types. The xs.all construct in XML Schema may
only consist of global or local element declarations with lower bound 0 or 1, and upper bound 1.

3.1.1 Wildcard types

XQuery defines the following built-in datatypes:

http://www.w3c.org/TR/query-semantics/ (25 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-1/#element-sequence
http://www.w3.org/TR/xmlschema-1/#element-choice
http://www.w3.org/TR/xmlschema-1/#element-union
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-1/#element-all
http://www.w3.org/TR/xmlschema-1/#element-all

XQuery 1.0 Formal Semantics

define type xs: AnySi npl eType { xs:integer | xs:float | xs:string ... }
define type xs: AnyAttribute { attribute * { type xs:AnySi npl eType * }}
defi ne type xs: AnyEl enent { element * { type xs:AnyType } }

defi ne type xs: AnyNode { type xs:AnyAttribute | type xs:AnyEl enent }
define type xs: Anyltem { type xs:AnySi npl eType | type xs:AnyNode }
define type xs: AnyType { type xs:Anyltent }

The concepts of xs:AnySimpleType and xs:AnyType have the same interpretation as anySimpleType and
anyType of XML Schema, respectively, though this version of xs:AnyType contains types (such as comments
and processing instructions) that do not occur in XML Schema.

3.2 Instances, and Domain of a Type

Ed. Note: Status: This section is still incomplete and based on structural typing. The notion of
domain of atype will be revised when support for named typing is added.

The semantics of atypeis given by the notion of domain, |.e., the set of all values which are instance of that
type. A treein the [XQuery 1.0 and XPath 2.0 Data Model] is an instance of atype in the XQuery type system,

if and only if it verifies the structural constraints described by the type. For instance the query:
<bi b: pubdate> { 1954, 1966, 1974, 1986 } </bi b: pubdat e>

creates an instance of the following type:
el ement bib:* { attribute country { xs:string }?, xs:integer* }

because the element name "bib:pubdate” is an instance of the wildcard nametest "bib:*", the attribute
"country” is optional, and the content of that element is indeed a sequence of integers.

The notion of instance of atypein XQuery is structural. Notably, it does not take XML Schema names into
account. For instance, the two following XQuery types:

define elenment entry { type Book }
defi ne type Book {
attribute isbn { xs:string },
element title { xs:string },
el ement author { xs:string }*,

}

and

define elenent entry { type Article }

define type Article {
attribute isbn { xs:string }?
(element title { xs:string } | element ref { xs:string }),
el ement author { xs:string }+,

}

might be declared in two different schemas, one for books and one for research articles. Because the notion of
instance in the XQuery type system is structural, the following document:

http://www.w3c.org/TR/query-semantics/ (26 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#integer
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#dt-anySimpleType
http://www.w3.org/TR/xmlschema-1/#key-urType

XQuery 1.0 Formal Semantics

<entry> isbn="0-618-15398-5">
<title>The Lord of the R ngs</title>
<aut hor>J. R R Tol ki en</ aut hor >
</entry>

would always be an instance of both types "Book" and "Article€". In XML Schema, depending against which
schema the document is validated, only one of the two above types would hold.

In this section, we define formally the domain of a XQuery type. We first define the domain of a nametest,
then define the domain of a complete type.

3.2.1 Domain of a NameTest

The semantics of agiven NameTest is defined by the set of names that matches a that NameTest.

Notation

We denote access to the domain of a NameTest with the following auxiliary judgment. The notation:
statEnvs |- QNamey i nyyjjg NameTest,

indicates that the QName QName is in the domain defined by the NameTest NameTest,.

We specify the relationship QName; i n,,jjg NameTest, by decomposing both sides in to QNames or
WildCards, and then defining the relationship between each component of the name.

First, isawaysin the domain of QName is always a singleton compose of itself. Note that the following
inference rule takes namespace resol ution into account.

statEnvs |- expand(QName;) => gname(URI 1,ncname;) URI1 = URI,
statEnvs |- expand(QNamey) => gname(URI,ncname,) ncname; = ncnamey

statEnvs |- QNamey i ny,ijg QNamey

statEnvs |- expand(QName;) => gname(ncname;)
statEnvs |- expand(QNamey) => gname(ncnamey) ncname; = ncnamey
statEnvs |- QNamey i ny,ijg QNamey

Now the rules for QNamei n,,;;g WildCard:

statEnvs |- expand(QName;) => gname(URI 1,ncname;) URI1 =URIy
statEnvs |- expandNCNanme (NCNamey) => URI»

statEnvs |- QNamey i nyyijg NCNamey: *

statEnvs |- expand(QName;) => gname(URI,ncname;) ncname; = NCName,
statEnvs |- QNamey i nyyijg * : NCNamey

statEnvs |- QNamey i Nyig *

http://www.w3c.org/TR/query-semantics/ (27 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

3.2.2 Semantics of the Domain of a Type

Notation

We denote the domain of atype using the following auxiliary judgment. The notation:
statEnvs |- valuei n Type

indicates that the value is the domain of type Type.

The XQuery type system is based on tree grammars. The semantics for the domain of atypeis based on the set
of atrees accepted by the corresponding tree grammar.

We do now give afull specification of the notion of language recognized by atree grammar at this point, but
refer the reader to the literature on tree grammars, for instance [Languages|, or [TATA]

Ed. Note: Future versions of that document will include a more compl ete description of the
notion of domain of atype.

Ed. Note: The use of pure tree grammars for defining the domain yields a structural definition of
the domain of atype. This definition will have to be revised as soon as the named typing proposal
is added.

3.3 Subtyping

This section defines the semantics of subtyping in XQuery. Subtyping is an important relationship between
type, which is used notably, when doing function applications to check whether the input parameters of the
function are valid.

We first define subtyping between nametests, then define the notion of subtyping between arbitrary types.
3.3.1 NameTest Subtyping

Notation

We denote NameTest subtyping with the following auxiliary judgment. The notation:
statEnvs |- NameTest; <: yiig NameTest,

indicates that NameTest NameTest; is a subtype of the NameTest NameTest,.

We evaluate NameTestq <: \,ijg NameTest, by decomposing both sides in to QNames or WildCards, and then
defining a subtyping relation between each component of the name.

First QName <: \,ijg QName is only trueif they represent the same fully qualified name:

statEnvs |- expand(QName;) => gname(URI 1,ncname;) URI1 = URI,
statEnvs |- expand(QNamey) => gname(URI»,ncnamey) ncname; = ncnamey

statEnvs |- QName; <: yiig @Name,

http://www.w3c.org/TR/query-semantics/ (28 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

statEnvs |- expand(QName;) => gname(ncname;)
statEnvs |- expand(QNamey) => gname(ncnamey) ncname; = ncnamey
statEnvs |- QName; <: yijg @Namey

Now the rules for QName <: ;i WildCard:

statEnvs |- expand(QName;) => gname(URI 1,ncname;) URI1 =URI,
statEnvs |- expandNCNanme (NCNamey) => URI»

statEnvs |- QName; <: yiig NCNamey: *

statEnvs |- expand(QName;) => gname(URI{,ncname;) ncname; = NCName,
statEnvs |- QName; <: \ilg * : NCNamey

statEnvs |- QName; <: wiig *

And finally rules for WildCard, <: ijg WildCard,. Note that the second rule aso prevents NCName: * from
being a subtype of anything unlessit isavalid known prefix.

statEnvs |- * <: il *

expandNCNane(NCName) => URI
statEnvs |- NCName: * <: yijg *

statEnvs |- * : NCName <: ijq *

Ed. Note: DD: (1) I've taken liberties comparing, e.g. NCName = ncname, (2) this doesn't take
into account any resolution of URIs.

3.3.2 Semantics of Subtyping

Notation

We denote subtyping with the following auxiliary judgment. The notation:
statEnvs |- Type; <: Type,

indicates that type Type; is a subtype of Typey.

The definition of subtyping is based on the notion of domain, as defined in [3.2 I nstances, and Domain of a
Type|

By definition, Type; <: Type, if and only if al the instances in the domain of Type; are aso in the domain of

http://www.w3c.org/TR/query-semantics/ (29 of 183) [8/12/2002 6:38:03 PM]

XQuery 1.0 Formal Semantics

Type,. That is, for every value value such that:
statEnvs |- valuei n Type;

it is also the case that:
statEnvs |- valuei n Type,

It is easy to see that the subtyperelation <: isapartia order, i.e. itisreflexive: statEnvs |- Type <: Type

anditistransitive: if, statEnvs |- Type; <: Type, and, statEnvs|- Type, <: Typez then, statEnvs |-
Typey <: Types

Note
The above definition athough complete and precise, does not give a simple means to compute subtyping.

The XQuery type system is based on tree grammars. Computing subtyping between two types can be done by
computing inclusion between their corresponding tree grammar.

We do now give afull algorithm to compute inclusion between tree grammar at this point, but refer the reader
to the literature on tree grammars, for instance [Languages], or [TATA]

Ed. Note: Future versions of that document will include a more compl ete description of
algorithms to compute subtyping.

Ed. Note: The use of pure tree grammars for defining the domain yields a structural definition of
the notion of subtyping. This definition will have to be revised as soon as the named typing
proposal is added.

3.3.3 Type equivalence

In afew cases, we use the fact that two types are equivalent, |.e., that they define exactly the same domain
over data model instances.

By definition, we write Type; = Type, if and only if, Type;<: Type, and Typey<: Type;.

3.4 Prime types

This section defines the notion of Prime Type, and operations on prime types. Prime types play an important
role in defining the static semantics of XQuery.

3.4.1 Prime types and sequences of items with similar types

Some expressions operate on sequences of similar items. These include FLWR expressions, sorting, and
duplicate elimination. For example, consider the following small document:
<paper >
<aut hor >Buneman</ aut hor >
<aut hor >Davi dson</ aut hor >
<aut hor >Fer nandez</ aut hor >
<aut hor >Suci u</ aut hor >
<title>Adding structure to unstructured data</title>
<editor>Afrati</editor>

http://www.w3c.org/TR/query-semantics/ (30 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<edi tor>Kol ai ti s</editor>

</ paper >

el ement paper {
el ement aut hor {xsd:string}+,
el ement title {xsd:string},
el enent editor {xsd:string}*

}

The following query extracts a sequence of authors followed by editors and sorts them by content. This results
In a sequence with authors and editors arbitrarily interleaved. The result type reflects this by repeating a choice
of author and editor.

(/ paper/author , /paper/editor) sorthy .
=> <editor>Afrati </ editor>

<aut hor >Buneman</ aut hor >
<aut hor >Davi dson</ aut hor >
<aut hor >Fer nandez</ aut hor >
<edi tor>Kol ai ti s</editor>
<aut hor >Suci u</ aut hor >
(el ement author {xsd:string} | elenment editor {xsd:string})+

Such operation always operate on sequences over choices of items, that we call aPrime type.

Prime types can be described by the following grammar production.

[88] PrimeType := ItemType
| (PrimeType"|" PrimeType)

This section explains the details about computing over prime types and sequences of prime types. For
instance, we explain why the above type ends in a plus rather than a star.

3.4.2 Computing Prime Types

We use two auxiliary functions on types. Note that both functions are only used by XQuery's type inference
rules; they are not part of the XQuery syntax.

The type function prime(Type) extracts al item types from the type expression Type and combines them by a
choice.

prime(ltemType) = ltemType
prime(()) = none
prime(none) = none

prime(Typey) | prime(Typey)
prime(Typer) | prime(Typey)
prime(Typer) | prime(Typey)

prime(Typey , Typey)
prime(Type; & Typey)
prime(Type; | Typey)

prime(Type?) = prime(Type)
prime(Type*) = prime(Type)
prime(Typet) = prime(Type)

The type function quantifier(Type) approximates the possible number of itemsin Type with the quantifiers

http://www.w3c.org/TR/query-semantics/ (31 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

supported by XQuery type expressions (?, +, *). To quantify interim results, we use the auxiliary
guantifiers 1 for exactly one occurrence, O for exactly zero occurrences, i.e., the quantifier of the empty list,
and - for infinitely many occurrences, i.e., the quantifier of the empty choice none, which is used to type
errors.

guantifier(ltemType) =1
quantifier(()) =0
guantifier(none) =0

quantifier(Typey) , quantifier(Typey)
quantifier(Typey) , quantifier(Typey)
quantifier(Typey) | quantifier(Type,)
quantifier(Type) - ?
quantifier(Type) - *
quantifier(Type) - +

quantifier(Type; , Typey)
quantifier(Type; & Typey)
quantifier(Type; | Typey)
quantifier(Type?)
quantifier(Type*)
guantifier(Typet)

The tables below specify the necessary arithmetics to compute the sum (g, , d»), the choice (g4 | gp), and the
product (q; - gp) of two quantifiersqy, gp.

Lfofaf+ [} [L[ofaf?[+[*} [- [o[1[?]+]*
[ofof1[?[+[*} [ofof?[?[*[*| [o0]ofofofo[0
[L[L[+[+[+[+] [L[2[2]?[+[* [L]O[L1[?]+][*
2 [l) [2lof? 2] [*
I 0
I T I G B e R) A A A
The auxiliary quantifiers for interim results are eliminated with the following type simplification rules.
Type-0 = ()

Type-1 = Type

Type-? = Type?

Type-+ = Typet

Type-* = Type*

Type-- = none

prime(Type) - quantifier(Type) enjoys two desirable properties:

(1) for all types Typeq, Typey: Type; <: Type, implies prime(Type;) - quantifier(Type;) <: prime(Typey) -
quantifier(Typey).

For example, for the two syntactically different but semantically equivalent types Type; = (xsd: string
& xsd:integer)* and Type, =((xsd:string, xsd:integer) |

(xsd:integer, xsd:string))*, prime(Type;) - quantifier(Type;) = prime(Typey) - quantifier(Typey) =
(xsd:string | xsd:integer)*.

(2) for al types Type: Type <: prime(Type) - quantifier(Type).

Note that for some type expressions prime(Type) - quantifier(Type) may be regarded as too general. For
example, the result-type of sorting a sequence of typexsd: i nt eger , xsd:stringis

(xsd:integer | xsd:string)+.A morespecific result-typewould be xsd: i nt eger &
xsd: st ri ng, which preserves the individual quantifiersfor xsd: i nt eger and xsd: stri ng. However,

http://www.w3c.org/TR/query-semantics/ (32 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

computing such result-types for arbitrary type expressions loses type precision for choice types (e.g.
(xsd:integer | xsd:string)+becomes(xsd:integer* & xsd:string*)),anditrequires
more complicated typing rules.

Ed. Note: (Peter): I'm not sure whether we need to elaborate on this here, but at least Denise may
wonder why we ditched disorder(). In addition, I'm aware that (2) isacorollary of Phil's famous
factoring theorem, I'm not sure whether this also holds for (1), but haven't spend much thought on
it. BTW. Impotence holds of course aswell.

Using these two auxiliary functions, the result type of a SortExpr can be computed as follows. If Expr has type
Type then Expr sortby SortSpecList has type prime(Type) - quantifier(Type). For the formal type inference rule
see [4.10 Sorting Expressions]. Similar rules are applied to type the other operations that destroy sequence
order - union, intersect, except, distinct-node, distinct-value, and unorder.

Ed. Note: (Peter): | deliberately do not introduce the formal inference rule here, because (a) the
machinery for type inference probably hasn't been explained yet at this place in the document,
and (b) the current static semantics of SortExpr isincomplete anyway. Maybe the example should
use unorder() instead of sortby.

3.4.3 Common Prime Types

Ed. Note: Status: This section contains new material necessary for the ssmplified semantics of
typeswitch.

When performing type checking for certain XQuery expressions, we also need to compute the common prime
types between two types, and the common occurrence indicator between two types.

The type function common-primes(Type;, Typey) extracts all item types that are common from the prime types
and and combines them into a new prime type.

Notation

In order to define the "common-primes* function, we use the following auxiliary judgment.
statEnvs |- common-primes(ltemType;, ItemTypey) = Type

specifies that under the current static environment, the common prime of ItemType;, [temType, is type Type.

We define the common primes by looking at each combination of itemsin each prime type.
common-primes((ItemTypey | -+ | ItemType,,), (ItemType;' | -+ | ItemType,'))

common-primes([temTypey, ItemType;') | --- | common-primes(ItemTypey,, ItemType,')

We then we define whether each item is kept or discarded using the auxiliary judgment. In the case theitemis
discarded, the result of common-primesis none. Remember that none is the unit for choice.

In the case of asimple type, or globally defined attribute or element, one keeps the corresponding item if both
items in the functions are the same.

statEnvs |- SmpleType; = SmpleType,

statEnvs |- common-primes(SmpleType;, SmpleTypey) = SmpleType;

http://www.w3c.org/TR/query-semantics/ (33 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

statEnvs |- element QName; = element QName,

statEnvs |- common-primes(element QName;, element QName,) = element QName;

statEnvs |- attribute QName; = attribute QName,

statEnvs |- common-primes(attribute QName;, attribute QNamey) = attribute QName;

When matching an element (resp. attribute), if the left-hand side item type is a subtype of the right-hand side
item type, then the function returns the left-hand side item type. Thisruleis particularly useful, when the right
hand side is awildcard type, as might be often the case in a typeswitch expression.

statEnvs |- element NameTest; { Type; } <: element NameTest, { Typey }

statEnvs |- common-primes(element NameTest1 { Type; }, element NameTest, { Type, }) = element
NameTest; { Type; }

statEnvs |- element NameTest; { Type; } <: element QName,
statEnvs |- common-primes(element NameTest; { Type; }, element QName,) = element NameTest; { Type; }

statEnvs |- element QName; <: element NameTest, { Type, }

statEnvs |- common-primes(element QName;, element NameTest, { Type, }) = element QName;

statEnvs |- attribute NameTest; { Type; } <: attribute NameTest, { Type, }

statEnvs |- common-primes(attribute NameTest, { Type; }, attribute NameTest, { Type, }) => attribute
NameTest; { Type; }

statEnvs |- attribute NameTest; { Type; } <: attribute QName,

statEnvs |- common-primes(attribute NameTest; { Type; }, attribute QName,) => attribute NameTest; { Type;
}

statEnvs |- attribute QName; <: attribute NameTest, { Typey }
statEnvs |- common-primes(attribute QName;, attribute NameTest, { Type, }) => attribute QName;

Otherwise, if the left-hand side item and the right-hand side item have compatible names, then the function
returns the right-hand side item type.

statEnvs |- not (element NameTest; { Type; } <: element NameTest, { Type, })
statEnvs |- (NameTest; <: ijg NameTest,) or (NameTest, <: il NameTesty)

statEnvs |- common-primes(element NameTest, { Type; }, element NameTest, { Typey }) => element
NameTest, { Type, }

http://www.w3c.org/TR/query-semantics/ (34 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

statEnvs |- not(element NameTest; { Type; } <: element QName,)
statEnvs |- (NameTest] <: il @Namey) or (QName, <: ,,ijg NameTest1)

statEnvs |- common-primes(element NameTest; { Type; }, element QNamey) => element QName,

statEnvs |- not(element QName; <: element NameTest, { Type, })
statEnvs |- (QNamey <: ijq NameTest,) or (NameTest, <: ,ijq QName;)

statEnvs |- common-primes(element QName;, element NameTest, { Type, }) => element NameTest, { Type,
}

statEnvs |- not(attribute NameTest; { Type; } <: attribute NameTest, { Typey })
statEnvs |- (NameTest <: il NameTest,) or (NameTests <: \yijg NameTest,)

statEnvs |- common-primes(attribute NameTest1 { Type; }, attribute NameTest, { Type, }) => attribute
QName;, { Typey }

statEnvs |- not(attribute NameTest; { Type; } <: attribute QName,)
statEnvs |- (NameTest; <: ijg @QNamey) or (QName, <: ,,iig NameTest1)

statEnvs |- common-primes(attribute NameTest; { Type; }, attribute QNamey) => attribute QName,

statEnvs |- not(attribute QName; <: attribute NameTest, { Typey })
statEnvs |- (QName; <: ijg NameTest,) or (NameTesty <: \yijg QNamey)

statEnvs |- common-primes(attribute QName;, element NameTest, { Type, }) => attribute NameTest, { Typey
b

Finally, in all the other cases, the common type is none. |.e., otherwise:
statEnvs |- common-primes(ltemType;, ItemType,) => none

3.4.3.1 Common Occurrence Indicator

The following table is computing the common occurrence indicator and is used in the typing of the typeswitch
expression.

[common-occur [0 [1[? [+ [*
0 of[ofofo
1 CIEYESES
E CIFKIES
g LIEYENED
§ CIESEES

http://www.w3c.org/TR/query-semantics/ (35 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

3.5 Importing types from XML Schema

Ed. Note: Status: This section is still incomplete, needs detailed review, and will be fully revised
to support named typing. This section is enclose here merely to illustrate what mapping from
XML Schemainto the XQuery type system will look like in future versions of the document.

The XQuery type system support a static subset of XML Schema. At compile time, the XQuery environment
imports XML Schema declarations and |oad them as declarations in the X Query type system for further static
reasoning. The semantics of that loading processis defined by a simple mapping from XML Schemato the
XQuery type system.

The mapping applies a translation function to each XML Schema expression in the XML Schema syntax and
returns an expression in the XQuery type system syntax. The notation [SchemaExpr] denotes the result of
translating the XML Schema expression Expr into an expression in the XQuery type system. All mapping
rules have the following structure:

[SchemaExpr]

Type
The [SchemaExpr]| above the horizontal rule denotes an expression in XML Schema before transation and
the coreExpr beneath the horizontal rule denotes an equivalent expression in the XQuery core.
3.5.1 Schema

Schemas are imported by the 'schema’ declaration in the preamble of a query. To import a schema, the
document referred to by the given URI is opened and the schema declarations contained in the document are
translated into the corresponding in-line type definitions.

[schema NCName{ URI }]

[open-schema-document(URI)] sort_decl(NCName)

To make the trandation rules a bit easier to read, we use grammar rules to distinguish between the various
parts of a<schema> element:

[89] Pragma
[90] Content

("include" | "import" | "redefine” | "annotation™)*
(("ssimpleType" | "complexType" | "element” | "attribute”
| "attributeGroup™"attributeGroup” | "group” | "notation™) "annotation™*)*

(Note: attributes that are ignored are emphasized)

http://www.w3c.org/TR/query-semantics/ (36 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<schema
attributeFormDefault = (qualified | unqualified) : unqualified
elementFormDefault = (qualified | unqualified) : unqualified
finalDefault = (#all | List of (extension | restriction)) : "
id=1D
targetNamespace = anyURI
version = token
xml:lang = language
{any attributes with non-schema namespace. . .}>
Pragma Content

</schema>

] sort_decl(NS)

[Pragma| sort_decl(NS) [Content] sort_decl(NS)
<include

id=1D
schemal_ocation = anyURI
{any attributes with non-schema namespace.. . .} >

Content: (annotation?)
</include>

[SChema targetNS { anyURI }] sort_decl (targetNS)

An imported schema is associated with the namespace prefix that it defines:

http://www.w3c.org/TR/query-semantics/ (37 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<import
id=1D
namespace = NCName
schemal_ocation = anyURI
{any attributes with non-schema namespace.. . .}>
Content: (annotation?)
</import>

[schema NCName { anyURI }] sort_decl(namespace)

Redefine is unsupported.

<redefine

id=1D

schemal_ocation = anyURI

{any attributes with non-schema namespace.. . .} >

Content: (annotation | (smpleType | complexType | group | attributeGroup))*
</redefine>

] sort_decl(targetNS)

Annotations are unsupported.

[annotati On] sort_decl (targetNS)

3.5.2 QNames

[NCName] name(targetNS)

targetNS:NCName

http://www.w3c.org/TR/query-semantics/ (38 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

NS:NCName
3.5.3 Complex Type Definitions

The following productions describe the structure of acomplex type definition in XML Schema.
[91] ComplexTypeContent

"annotation"? ("simpleContent” | "complexContent" | "group” | "all"
| "choice" | "sequence")
("attribute" | "attributeGroup""attributeGroup™")* "anyAttribute"?

[92] Attributes

<complexType
abstract = boolean : false
block = (#all | List of (extension | restriction))
final = (#all | List of (extension | restriction))
id= 1D
mixed = boolean : false
name = NCName
{any attributes with non-schema namespace.. . .} >
ComplexTypeContent
Attributes

</complexType>

We distinguish between global complex types (which are mapped to sort declarations) and local complex
types (which are mapped to type definitions).

3.5.3.1 Global complex type

[

<complexType name=NCName>
ComplexTypeContent
Attributes

</complexType>

] sort_decl(prefix)

define type [NCName] name(prefix) { [Attri butes] group(prefix)s [Compl exTypeContent] group(prefix) }

In case of mixed complex type, the mapping introduces TEXT in the corresponding type system
representation.

http://www.w3c.org/TR/query-semantics/ (39 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[

<complexType name=NCName mixed="true">
ComplexTypeContent
Attributes

</complexType>

] sort_decl(prefix)

define type [NCName] name(prefix) { [Attri butes] group(prefix): TEXT* &

3.5.3.2 Anonymous local complex type

[

<complexType>
ComplexTypeContent
Attributes
</complexType>

] sort_decl(prefix)

[Attri butes] group(prefix): [Compl exTypeContent] group(prefix)

In case of mixed complex type, the mapping introduces TEXT in the corresponding type system
representation.

<complexType mixed="true">
ComplexTypeContent
Attributes

</complexType>

] sort_decl(prefix)

http://www.w3c.org/TR/query-semantics/ (40 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[Attri butes] group(prefix): 1EXT* & [Compl exTypeContent] group(prefix)

3.5.4 Groups

3.5.4.1 Global named group declarations

<group

name = NCName>

Content: (annotation?, (all | choice | sequence))
</group>

] group(prefix)

define type [NCName] name(prefix) { [Content] group(prefix) }

3.5.4.2 Local groups

Anonymous local groups

<group>
Content: (annotation?, (all | choice | sequence))
</group>

] sort_decl (prefix)

[Content] group(prefix)

All groups

http://www.w3c.org/TR/query-semantics/ (41 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<all
id=1D
maxOccurs=1:1
minOccurs=(0]1):1
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, element, ... element,,)

</al>

] group(prefix)

[elementl] group(prefix) & - & [elementn] group(prefix)

Choice groups

<choice

id=1D

Occurs

{any attributes with non-schema namespace.. . .} >

Content: (annotation?, (element | group | choice | sequence | any)*)
</choice>

] group(prefix)

([Contentl] group(prefix) | - | [Contentn] group(prefix)) [OCCWS] bound

Sequence groups

<sequence

id=1D

Occurs

{any attributes with non-schema namespace.. . .} >

Content: (annotation?, (element | group | choice | sequence | any)*)
</sequence>

http://www.w3c.org/TR/query-semantics/ (42 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

] group(prefix)

([Contentl] group(prefix)s ==+ » [Contentn] group(prefix)) [Occurs] bound

3.5.5 minOccurs and maxOccurs

The following structure describes minOccurs and maxOccurs attributes in XML Schema.

[93] Occurs := ("maxOccurs’ ("nonNegativelnteger” | "unbounded"))
| ("minOccurs” "nonNegativelnteger™)

minOccurs and maxOccurs are mapped to the type system in the following way.

[mi nOccurs=0] bound

?

[maxOccurs=" unbounded“] bound

+

[mi nOccurs=0 maxOccursz"unbounded"] bound

*

[mi nOccurs=1 maxOccurszl] bound

Right now, the proposed type system grammar does not capture other occurrences cases. Therefore, these are
converted into a collection.

[mi nOccurs=m maxOccurszn] bound

*

3.5.6 Elements

The following structure describes element declarationsin XML Schema.

<element
abstract = boolean : false
block = (#all | List of (extension | restriction | substitution))

default = string
final = (#all | List of (extension | restriction))
fixed = string

http://www.w3c.org/TR/query-semantics/ (43 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics
form= (qualified | unqualified)
id=1D
Occurs
name = NCName
nillable = boolean : false
ref = QName
substitutionGroup = QName
type = QName
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, ((simpleType | complexType)?, (unique | key | keyref)*))
</element>

3.5.6.1 Global elements

[<element name=NCNamel type=QN ame>] sort_decl (prefix)

define element [NCNamel] name(prefix) { [QName] name(prefix) }

[

<element name=NCName>
Content
</element>

] sort_decl (prefix)

define element [NCN ame] name(prefix) { [Content] group(prefix) }

3.5.6.2 Local elements

Local elements with explicit bounds:

[<e| ement refF=NCName Bound>] group(prefix)

element [NCName] name(prefix) [Bound] bound

[<e| ement name=NCName type=QName Bound>] group(prefix)

http://www.w3c.org/TR/query-semantics/ (44 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

element [NCName] name(prefix) { [QName] name(prefix) } [Bound] bound

[

<element name=NCName Bound>
Content
</element>

] group(prefix)

element [NCName] name(prefix) { [Content] group(prefix) } [Bound] bound

Local elements with no explicit bounds:

[<element name=NCName type=QN ame>] group(prefix)

element [NCName] name(prefix) { [QName] name(prefix) }

[

<element name=NCName>
Content
</element>

] group(prefix)

element [NCName] name(prefix) { [Content] group(prefix) }
3.5.7 Attributes

The following structure describes attribute declarationsin XML Schema.
<attribute

http://www.w3c.org/TR/query-semantics/ (45 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

default = string

fixed = string

form = (qualified | unqualified)
id=1D

name = NCName

ref = QName

type = QName

Use

{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (ssmpleType?))
</attribute>

3.5.7.1 Use

The"use" attribute is used to indicate whether attributes are optional or not. The following production
describes the structure of the "use"attribute.

The meaning of the "use" attribute is naturally captured in the type system by an occurrence indicator, as
reflected in the following mapping rules.

Optional attributes are mapped to optional groups in the type system, using the 7 notation.

[optional] USe

?

Required attributes indicate a required group.

It is an open issue what should be the semantics of a prohibited attribute in the type system.

[prohi bited] LSe

3.5.7.2 Global attributes

[<attribute name=NCName type=QName>] sort_decl (prefix)

http://www.w3c.org/TR/query-semantics/ (46 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

define attribute [NCName] name(prefix) { [QName] name(prefix) }

[

<attribute name=NCName>
Content
</element>

] sort_decl (prefix)

define attribute [NCName] name(prefix) { [Content] group(prefix) }

3.5.7.3 Local attributes

Local attributes with explicit use:

[<attri bute ref=NCName Use>] group(prefix)

[<attri bute name=NCName type=QName Use>] group(prefix)

attribute [NCName] name(prefix) { [QName] name(prefix) } [Use] use

[

<attribute name=NCName Use>
Content
</attribute>

] group(prefix)

http://www.w3c.org/TR/query-semantics/ (47 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

attribute [NCName] name(prefix) { [Content] group(prefix) } [USG] use

Local attributes with no explicit use:

[<attri bute ref=NCN am@] group(prefix)

attribute [NCName] name(prefix)?

[<attri bute name=NCName type=QName>] group(prefix) ?

attribute [NCName] name(prefix) { [QName] name(prefix) } ?

[

<attribute name=NCName>
Content
</attribute>

] group(prefix)

3.5.8 Simple Content

For simple content, one just map their content in the type system. The mapping ignores most of the other
information, notably facets.

http://www.w3c.org/TR/query-semantics/ (48 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<simpleContent
id=1D
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (restriction | extension))
</simpleContent>

] group(prefix)

[Content] group(prefix)

The only part of the <restriction> content that is mapped is simpleType? and the attributes.

[

<restriction
base = QName
id=1D
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (smpleType?, (minExclusive | mininclusive | maxExclusive | maxinclusive |
totalDigits | fractionDigits | length | minLength | maxLength | enumeration | whiteSpace | pattern)*)?,
((attribute | attributeGroup)*, anyAttribute?))

</restriction>

] group(prefix)

[Content] group(prefix)

All facets are ignored:

http://www.w3c.org/TR/query-semantics/ (49 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[

(minExclusive | mininclusive | maxExclusive | maxinclusive |
total Digits | fractionDigits | length | minLength |
maxL ength | enumeration | whiteSpace | pattern)*)?

] group(prefix)

We also ignore <extension> for now.

<extension

base = QName

id=1D

{any attributes with non-schema namespace.. . .} >

Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
</extension>

] group(prefix)

3.5.9 Attribute Group

3.5.9.1 Attribute group declaration

<attributeGroup

id=1D

name = NCName

{any attributes with non-schema namespace.. . .}>

Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
</attributeGroup>

http://www.w3c.org/TR/query-semantics/ (50 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

] sort_decl (prefix)

define type [NCName] name(prefix) { [Content] group(prefix) }

3.5.9.2 Attribute group reference

Attribute group reference can only occur in acomplex type:

[

<attributeGroup
id=1D
ref = QName
{any attributes with non-schema namespace.. . .} >
Content: (annotation?)
</attributeGroup>

] group(prefix)

[QName] name(prefix)
3.5.9.3 Attribute wildcard

The anyAttribute schema component is mapped to the corresponding wildcard in the XQuery type system. The
'namespace’ modifier isignored.

<anyAttribute
id=1D
namespace = ((##any | ##other) | List of (anyURI | (##targetNamespace | ##local))) : #any
processContents = (lax | skip | strict) : strict
{any attributes with non-schema namespace.. . .} >
Content: (annotation?)
</anyAttribute>

]

xs.AnyAttribute

3.5.10 Complex Content

http://www.w3c.org/TR/query-semantics/ (51 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<complexContent
id=1D
mixed = false
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (restriction | extension))
</complexContent>

] group(prefix)

[Content] group(prefix)

[

<complexContent
id=1D
mixed = boolean
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (restriction | extension))
</complexContent>

] group(prefix)

TEXT* & [Content] group(prefix)

[

<restriction
base = QName
id=1D
{any attributes with non-schema namespace.. . .} >
Content
</restriction>

] group(prefix)

[Conte”t] group(prefix)

3.5.11 Simple Types

http://www.w3c.org/TR/query-semantics/ (52 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

Global simple types:

<simpleType
final = (#all | (list | union | restriction))
id= 1D
name = NCName
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (restriction | list | union))
</simpleType>

define type [NCName] group(prefix) { [Content] group(prefix) }

Anonymous local ssimple type:

<simpleType
final = (#all | (list | union | restriction))
id=1D
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (restriction | list | union))
</simpleType>

] group(prefix)

[Content] group(prefix)

Again, weignore al facets and only trandate ssmpleType?

http://www.w3c.org/TR/query-semantics/ (53 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

<restriction
base = QName
id=1D
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (smpleType?, (minExclusive | mininclusive | maxExclusive | maxinclusive |
total Digits | fractionDigits | length | minLength | maxLength | enumeration | whiteSpace | pattern)*))
<[restriction>

] group(prefix)

[Content] group(prefix)

[

<list
id=1D
itemType = QName
{any attributes with non-schema namespace.. . .} >
Content: (annotation?, (sSsmpleType?))

</list>
[Content] group(prefix)”
<union
id=1D

memberTypes = QNamey, ..., QName,

{any attributes with non-schema namespace.. . .} >
Content: (annotation?, smpleType 1, ... smpleType _n)
</union>

http://www.w3c.org/TR/query-semantics/ (54 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[QNamel] name(prefix) | - | [QNamen] name(prefix) | [simpl eTypel] group(prefix) | - |
[simpl eTypen] group(prefix)

3.6 Major type issues

Ed. Note: Alignment between XQuery, the[XQuery 1.0 and XPath 2.0 Data M odel], and the
XQuery formal semantics. There are some known discrepancies between the type modelsin the
Data Model document, the X Query document and this document. Currently the X Query/X Path
grammar does not contain comments, processing-instructions or schema-components. Currently
neither XQuery nor this document contain text nodes or document nodes, which are present in the
Data Model. See issues [l ssue-0068: Document Collections], [1ssue-0105: Typesfor nodesin

the data model.].

Ed. Note: Syntax for types. With respect to the currently published XQuery document, thereis
another major misalignment as well: the current XQuery document does not have a syntax for
type constructors in XQuery.

Ed. Note: Complexity of type operations. There are concerns about the complexity of type
inference, notably about type subsumption used during type inference, and validation used during
evaluation of some of the type operations (e.g., typeswitch). Additionally, there are many
language features for which it is possible to define specia type inference rules that would give
tighter bounds. The question is, which features, which rules, and how do they interact with the
complexity of type inference and subtype computation. See [Issue-0080: Typing of parent],
[Issue-0083: Expressive power and complexity of typeswitch expression], [Issue-0091.

Attribute expression].

Ed. Note: XML Schema mapping. The mapping from XML Schemato the XQuery type system
Is new and has not yet been reviewed by the XML Query Working Group See [ssue-0019:

Support derived types], [Issue-0020: Structural vs. name equivalence], [I ssue-0073: Facets
for smpletypesand their rolefor typechecking].

4 Semantics of Expressions

Ed. Note: Status. This section contained afully revised semantics for XQuery, based on the
December 2001 working drafts. Some sections might still await further material or editorial
consolidation, as indicated by additional status note included in each specific section.

This section defines semantics of all XQuery expressions. The organization of this section parallels the
organization of Section 2 of the XQuery document.

http://www.w3c.org/TR/query-semantics/ (55 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[4] Expr := SortExpr
| OrExpr
| AndExpr
| FLWREXpr
| QuantifiedExpr
| TypeswitchExpr
| IfExpr
| GeneralComp
| VaueComp
NodeComp

I

| OrderComp

| | nstanceofExpr
| R

|

0

Add|t|veEx9r
| MultiplicativeExpr

| UnionExpr

| IntersectExceptExpr
| UnaryExpr

| CastExpr

| Constructor

| PathExpr

For each expression, we give a short description of the expression to be defined and include its grammar
productions. The semantics of an expression includes the normalization, static analysis, and dynamic
evaluation phases. Recall that normalization rules translate XQuery syntax into core XQuery syntax. In the
sections that contain normalization rules, we include the Core grammar productions into which the expression
is normalized. After normalization, sections on static type inference and dynamic evaluation define the static
type and dynamic value for the core expression.

The different phases are covered by the judgments shown in the following table where the environment
patterns are defined as part of the context below.

The query phrase is well-typed in the static
statEnvs |- query phrase environment group statEnvs, [2.5.5 Static type
inference].

The query phrase iswell-typed in the static
environment group statEnvs, and its static typeis

given by type expression, [2.5.5 Static type

inference].

statEnvs |- query phrase : type expression

The evaluation of query phrase yields the value
dynEnvs |- query phrase => value phrase given by value phrase in the dynamic environment
group dynknvs, [2.5.6 Evaluation rules]

http://www.w3c.org/TR/query-semantics/ (56 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

4.1 Basics
4.1.1 Expression Context

I ntroduction

The expression context for a given expression consists of all the information that can affect the result of the
expression. Thisinformation is organized into the static context and the evaluation context. This section
specifies the environments that represent the context information used by XQuery expressions.

4.1.1.1 Static Context

The XQuery static inference rules use the "static" environment group statEnvs containing the environments
built during static type checking and used during both static type checking and dynamic evaluation.

The following environments are maintained in the static environment group:

statEnvs.namespace The namespace environment maps namespace prefixes (NCNames) onto their
fully qualified definitions (an xs.anyURI), as determined by the appropriate

namespace declaration.

statEnvsvarType The static variable type environment maps variable and parameter names
(Variables) to their static type (a Type).

statEnvs.funcType The function declaration environment stores the static type signatures of
functions. Because X Query allows multiple functions with the same name
differing only in the number of arguments, this environment maps function
name/arity (QName, integer) pairs to function type signatures (Type;, Typey, ..,
Type,) where the first is the return type and the rest are the types of the
parameters, in order.

statEnvs.elemDecl The element declaration environment maps el ement type names (QNames) onto
their element type definition (a Type).

statEnvs.attrDecl The attribute declaration environment maps attribute type names (QNames) onto
their attribute type definition (a Type).

statEnvs.typeDecl The type declaration environment maps type names (QNames) onto their type
definition (a Type).

Environments have an initial state when query processing begins, containing, for example, the function
signatures of all built-in functions.

A common use of the static environment is to expand QNames by looking up namespace prefixesin the
statEnvs.namespace environment. The QName production in the XQuery grammar is as follows:

[223] OName := ":"?NCName (":" NCName)?

which corresponds to either asingle local name, or a namespace prefix and alocal name.

We define a helper function, expand to expand QNames by looking up the namespace prefix in
statEnvs.namespace. We write it as follows:

http://www.w3c.org/TR/query-semantics/ (57 of 183) [8/12/2002 6:38:04 PM]

http://www.w3.org/TR/xmlschema-2/#anyURI

XQuery 1.0 Formal Semantics
statEnvs |- expand(QName) = gname(anyURI, ncname)
or
statEnvs |- expand(QName) = gname(ncname)
where what is on the right side is a QName value (not a QName expression).
The helper expand function is defined as follows:

« If QName matches NCName;: NCName,, and if statEnvs.namespace(NCName;) = anyURI, then the
expression yields gname(anyURI,NCNamey). If the namespace prefix NCName; is not found in
statEnvs.namespace, then the expression does not apply (that is, the inference rule will not match).

« If QName matches NCName, and if statEnvs.namespace("* default*") = anyURI, then the expression
yields gname(anyURI,NCName), where anyURI is the default namespace in effect, otherwise the
expression yields gname(NCName).

Ed. Note: The above rules could be given as proper inference rules defining the expand
judgment.
Here is an example that shows modifying a static environment in response to a namespace definition.
statEnvs [namespace(NCName |-> StringLiteral) | |- Expr*
statEnvs |- namespace NCName = SrringLiteral Expr*

Thisruleisread: "the phrase on the bottom (a namespace declaration followed by a sequence of expressions)
iswell-typed (accepted by the static type inference rules) within an environment statEnvs if (above the line,

now) the sequence of expressions is well-typed in the environment obtained from statEnvs by adding the
namespace declaration”.

Thisisthe common idiom for passing new information in an environment along to sub-expressions. In the
case where we need to update an environment with a completely new component, we write:

statEnvs [namespace = (NewEnvironment) |

4.1.1.2 Evaluation Context

We use dynEnv to denote the group of "dynamic" environments, i.e., those environments built and used only
during dynamic evaluation.

The following environments are dynamic:

dynEnvs.funcDefn The dynamic function environment maps a function name to a function definition.
The function definition consists of an expression, which is the function's body, and
alist of variables, which are the function's formal parameters. Aswith
statEnvs.funcType, dynEnvs.funcDefn requires a function name and a parameter
count: it maps a (QName, integer) pair to avaluelist of the form (Expr , Variabley,

..., Variabley).

http://www.w3c.org/TR/query-semantics/ (58 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

dynEnvs.varVaue The dynamic value environment maps a variable name (QName) onto the variables
current value (value).

Ed. Note: DD: this still does not account for those functions that are genuinely overloaded, as
some of the built-in functions are. Probably thiswill be handled by special rules for those
functions in the main semantics section of the document. See [Issue-0122: Overloaded

functions]

Finally, dynamic environments have an initial state when query processing begins, containing, for example,
the function declarations of all built-in functions.

Ed. Note: Somewhere we need an exact definition of what isin the initial environments? Notice
that for XPath thisis partially defined by the containing language. See [Issue-0115: What isin
the default context?].

Severa built-in variables represent other parts of the evaluation context:

IBuilt-in Variable |Represents:

|$fs:dot |context item
|$fs:position |context position
|$fs:last |context size

|context document

Variables with the "xq" namespace prefix are reserved for use in the definition of the formal semantics. Itisa
static error to define avariable in the "xg" namespace.

Ed. Note: "xqg" is actually a namespace prefix and should be replaced with a proper namespace
URI unique to this spec. See [l ssue-0100: Namespace resolution].

Ed. Note: The following dynamic contexts have no formal representation yet: current date and
time. See[lssue-0114: Dynamic context for current date and time]

4.1.2 Type Conversions

Notation

For the basic-conversion rules, we define three normalization functions: [] Optional_Atomic_Value

and function-call expressions.

Normalization

http://www.w3c.org/TR/query-semantics/ (59 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

There are two variants of the normalization function [] Optional_Atomic_Value thefirst variant is not

parameterized by the required type of the expression and the second variant is parameterized by the required
type. The function converts an expression into an expression that returns an optional atomic value and is used
in the normalization of expressions whose required type is an optional atomic value. A node is converted to an

optional atomic value by extracting its typed content.

[Expr] Optiona_Atomic_Vaue

typeswitch (Expr) as $v
case fs:atomic? return $v
case node return
(typeswitch (fs.data($v)) as Sw
case fs:atomic? return $w

default return [W] Type Exception_Opt_Atomic)

default return [$V] Type_Exception_Other

In the parameterized variant, an atomic value with type fs:UnknownSimpleType is always cast to the required
type:

[Expr] Optional_Atomic_Value(Type)

typeswitch (Expr) as $v
case fs:UnknownSimpleType return cast as Type ($v)
case fs:atomic? return $v
case node return
(typeswitch (fs.data($v)) as $w
case fs:UnknownSimpleType return cast as Type ($w)
case fs.atomic? return $w

default return [WV] Type Exception_ Opt_Atomic(Type))
default return [$/] Type_Exception_Opt_Atomic(Type)

Ed. Note: The type fs:UnknownSimpleType denotes untyped character data. The name of this
type is an open XPath/XQuery issue (Issue-174).

http://www.w3c.org/TR/query-semantics/ (60 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

The function [] Atomic_Value Sequence(Type) IS Parameterized by the atomic type of the sequence. Thisruleis

used in the normalization of expressions whose required type is a sequence of atomic values. The rule converts
each value in the argument expression to an atomic value. An atomic value with type fs:UnknownSimpleType
is always cast to the required type. A node is converted to a sequence of atomic values by extracted its typed
content and, for each atomic value in that sequence, cast any value with type fs:UnknownSimpleTypeto the

required type and return all other values unchanged.

[EXp"] Atomic_Vaue Sequence(Type)

for $v in Expr

return
typeswitch ($v) as $w
case fs:.UnknownSimpleType return cast as Type ($w)
case atomic return $w

Case nOde return fOI’ $X in deaIa($\N) return [$X] Optiona]_Atomic_Va] ue(Type)

default return [$V] Type_Exception_Other

The function [] Node Sequence IS Used in the normalization of expressions whose required type is node
sequence. They all map an XQuery core expression to an XQuery core expression.

[Expr] Node_Sequence

typeswitch (Expr) as $v
case node* return $v

default return [$V] Type_Exception_Other
Notation
Two more normalization functions implement type exceptions They are: [] Type Exception_Opt_Atomic(Type)

and [] Type_Exception_Other-
Normalization
These definitionsimplement thest ri ct type exception policy. The strict policy always raises an error:

http://www.w3c.org/TR/query-semantics/ (61 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[Expr] Type Exception_Opt_Atomic(Type)

dm:;r_ror()

[EXp"] Type_Exception_Other

dm:error()

In the first rule, the required type is xs.boolean. The conditional expression in the "default return” clause
below guarantees that in an arbitrary sequence of items, if at least one value is a node, then the boolean
expression evaluates to true.

[Expr] Type_Exception_Opt_Atomic(boolean) = -

typeswitch (Expr) as $v
case () return xf:false()
default return

if (xf:length([&//self::node()] path) >= 1) then xf:true()

else xf:boolean(xf:item-at($v, 1))
Ed. Note: MFF: The rule above requires that $v/self::node() on asimple value returns () rather
than raise an error.

Ed. Note: The semantics of Boolean node tests over sequencesis still an open issue. See
[Issue-0131: Boolean nodetest and sequences)].

In the next rule, the required type is node type. The conditional expression in the "default return” clause below
guarantees that in an arbitrary sequence of items, if the first item is a node, then the boolean expression

evauatesto true.

[Expr] Type_Exception_Opt_Atomic(node) = -

typeswitch (Expr) as $v

case item+ return
(typeswitch (xf:item-at($v, 1)) as $w
case node return $w
default return dm:error())

default return dm:error()

Ed. Note: MFF: All the remaining rulesin the fallback conversions table must be specified. See

http://www.w3c.org/TR/query-semantics/ (62 of 183) [8/12/2002 6:38:04 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

[Issue-0113: Incomplete specification of type conversions]

[Expr] Type Exception_Other
dm:;r_ror()
4.2 Primary Expressions

This section defines the semantics of [2.2 Primary Expressions] in [XQuery 1.0: A Query Language for
XML]. Primary expressions are the basic primitives of the language.

A primary expression isavariable, literal, an element name, afunction call, awildcard expression, a
node-kind test, or a parenthesized expression.

[47] PrimaryExpr := Variable
| Literal
| ElementNameOrFunctionCall
| Wildcard
| KindTest
| ParenthesizedExpr
4.2.1 Literals

I ntroduction

A literal isadirect syntactic representation of a atomic value. XQuery supports two kinds of literals: string
literals and numeric literals.

[49] Litera »= NumericLiteral | StringLiteral

[48] NumericLiteral ::= IntegerLiteral | DecimallLiteral | DoubleLiteral

[201] IntegerLiteral ::= Digqits

[202] DecimallLiteral ::= ("." Digits) | (Digits"." [0-9]*)

[203] Doubleliteral ::= (("." Digits) | (Digits ("." [0-9]*)?) ([€] | [E]) ([+] | [-])? Digits

[214] StringLiteral (0 N R A DR (W G)]

Normalization

All literals are core expressions, therefore there are no normalization rules for literals.
Core Grammar

The core grammar rules for literals are:
[49] Litera == NumericLiteral | StringLiteral
[48] NumericLiteral ::= IntegerLiteral | DecimalLiteral | Doublel iteral

Static Type Analysis

In the static semantics, the type of an integer literal is simply xs:integer:

http://www.w3c.org/TR/query-semantics/ (63 of 183) [8/12/2002 6:38:04 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-primary-expressions

XQuery 1.0 Formal Semantics

statEnvs |- IntegerLiteral : xs:integer

Dynamic Evaluation

In the dynamic semantics, an integer literal is evaluated by constructing a atomic value in the data model,
which consists of the literal value and itstype:

dynEnvs |- IntegerLiteral => dm:atomic-value(lntegerLiteral, xs:integer)

The formal definitions of decimal, double, and string literals are analogous to those for integer.

Static Type Analysis

statEnvs |- DecimalLiteral : xs:decimal

Dynamic Evaluation

dynEnvs |- DecimalLiteral => dm:atomic-value(DecimalLiteral, xs.decimal)

Static Type Analysis

statEnvs |- DoubleLiteral : xs:double

Dynamic Evaluation

dynEnvs |- DoubleLiteral => dm:atomic-value(DoubleL iteral, xs:double)

Static Type Analysis

statEnvs |- StringLiteral : xs:string

Dynamic Evaluation

dynEnvs |- StringLiteral => dm:atomic-value(StringLiteral, xs:string)

Ed. Note: MFF: Phil has noted that the data model should support primitive literalsin their
lexical form, in which case no explicit dynamic semantic rule would be necessary. See
[Issue-0118: Data model syntax and literal values).

4.2.2 Variables

I ntroduction

A variable evaluates to the value to which the variable's QName is bound in the evaluation context.

http://www.w3c.org/TR/query-semantics/ (64 of 183) [8/12/2002 6:38:04 PM]

XQuery 1.0 Formal Semantics

[192] Variable := "$' QName

Normalization

A variable is acore expression, therefore there is no normalization rule for avariable.
Core Grammar

The core grammar rulesfor variables are:

[192] Variable := "$' QName

Static Type Analysis

In the static semantics, the type of avariable is simply itstype in the static type environment
statEnvs.varType:

statEnvs.varType(Variable) = Type
statEnvs |- Variable : Type

In case the variable is not bound in the environment, the system raises an error.

Dynamic Evaluation

In the dynamic semantics, avariable is evaluated by "looking up” its value in dynEnvs.varValue:
dynEnvs.varVaue(Variable) = value
dynEnvs |- Variable => value

In case the variable is not bound in the environment, the system raises an error.

4.2.3 Parenthesized Expressions

The formal definition of parenthesized expressionsisin [4.4 Sequence Expressions|.

4.2.4 Function Calls

I ntroduction

A function call consists of a QName followed by a parenthesized list of zero or more expressions.
[51] ElementNameOrFunctionCall ::= OName ("(" (Expr ("," Expr)*)?")")?

Notation

http://www.w3c.org/TR/query-semantics/ (65 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

We define a normalization function, [] Formal_Argument fOr mapping the formal argument of afunction call.

There are three variants of this mapping rule. If the required type of the formal argument is an optional atomic
value, the following ruleis applied: (Typeisthe required atomic type.)

[EXpr] Formal_Argument

[EXpr] Optional_Atomic_Value(Type)

If the required type of the formal argument is a sequence of atomic values, the following ruleis applied: (Type
Is the atomic type of the sequence.)

[EXpr] Formal_Argument

[Expr] Atomic_Value Sequence(Type)

If the required type of the formal argument is neither an optional atomic value or a sequence of atomic values,
the expression is simply mapped to its corresponding core expression:

[Expr] Formal_Argument

[ew]

Normalization
First, each argument in afunction call is normalized to its corresponding core expression by applying
[] Formal _Argument:

[QName(ExE)r_l, Expfn)]

[QName] ([EXp"l] Formal_Argument: -+ [Expry,] Formal_Argument)

Note that this normalization rule depends on the static environment containing function signatures. Thisis
working as the static context is built from the query prolog, before the normalization phase. [5 The Query

Prolog] explains how the query prolog is processed.

Core Grammar

The core grammar rule for afunction call is:
[51] ElementNameOrFunctionCall := OName"(" (Expr (*," Expr)*)?")"

http://www.w3c.org/TR/query-semantics/ (66 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

Static Type Analysis

In the static semantics for core function calls, the type of each actual argument to the function must be a
subtype of the corresponding formal argument to the function, i.e., it is not necessary that the actual and
formal types be equal.
statEnvs |- QName => gname
statEnvs.funcType(gname, n) = gname(Typey, ..., Type,) returns Type
statEnvs |- Exprq : Type'y Type'1 <: Type;

statEnvs |- Exprp, : Ty|b“e'n Type', <: Type,
statEnvs |- QName (Expry, ..., Expry) : Type

Dynamic Evaluation

In the dynamic semantics for core function calls, we first evaluate each function argument. Then we extend
dynEnvs.varValue by binding each formal variable to its corresponding actual value, and then evaluate the

body of the function in the new environment. The resulting value is the value of the function call.
dynEnvs |- QName => gname
dynEnvs.funcDefn(gname, n) = (Expr, Variabley, ..., Variable,)
dynEnvs |- Exprq => valuey ... dynEnvs |- Expr, => value,
dynEnvs|[varValue = (Variable; |-> valuey;...; Variable, |-> value,)] |- Expr => value

dynEnvs |- QName (Expry, ..., Expry) => value

Note that the function body is evaluated in the default environment,

Ed. Note: This semantics only works for non-overloaded function. Thisis always the case for
user defined functions, but not for [XQuery 1.0 and XPath 2.0 Functions and Operators]

functions. See [Issue-0122: Overloaded functions|.

4.2.5 Comments

[106] ExprComment ::= "{--"[~}]*"--}"

Comments are lexical constructs only, and have no meaning within the query and therefore have no formal
semantics.

4.3 Path expressions

I ntroduction

Path expressions are used to locate nodes within atree. There are two kinds of path expressions, absolute path
expressions and relative path expressions. An absolute path expression is arooted relative path expression. A
relative path expression is composed of a sequence of steps.

[25] PathExpr .= AbsolutePathExpr | RelativePathExpr
[31] AbsolutePathExpr := ("/" RelativePathExpr?) | ("//" RelativePathExpr)

http://www.w3c.org/TR/query-semantics/ (67 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[32] RelativePathExpr
[33] StepExpr

StepExpr (("/" | "/I") StepExpr)*
AxisStep | Genera Step

Notation

Besides the genera [Expr] Expr Normalization rule for expressions, we use an auxiliary normalization rule for

path expressions, denoted [PathExpr] Path-

Nor malization

A path expression always returns a sequence in document order. The complete normalization of a Path
expression is obtained by applying the Path normalization and then sorting the result by document order and
removing duplicates.

fs:distinct-doc-order ([PathExpr] Path)

Ed. Note: Jerome: the restriction that X Path expressions operate on nodes here seems too strict
and is still an openissue. See[Issue-0125: Operations on node only in XPath].

Absolute path expressions are path expressions starting with the/ symbol, indicating that the expression must
be applied on the root node in the current context. Remember that the root node in the current context is the
topmost ancestor of the context node. The following two rules are used to normalize absolute path
expressions, and rely on the use of thef s: docunment () function, which computes the document node from
the context node.

]

[xf:document($fs.dot)] Path

["/" RelativePathExpr] Path

[xf:document($fs.dot) "/" Rel ativePathExpr] Path

Ed. Note: Some of the semantics of the root expression' /' isstill an open issue. For instance,
what should be the semanticsof ' /' in case of a document fragment (e.g., created using XQuery
element constructor). See [Issue-0123:. Semantics of /].

The/] syntax is part of the Abbreviated syntax in XPath. We give separate normalization rules for
Abbreviated X Path expressionsin [4.3.5 Abbreviated Syntax]

Normalization of relative path expressionsis done by normalizing each step, one after the other. A Step is

http://www.w3c.org/TR/query-semantics/ (68 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

normalized by using af or expression in the following way.

[StepExpr "I" Rel ativePathExpr] Path

let $fs:sequence := fs:distinct-doc-order([StepExpr] Path) return
let $fs:last := xf:length($fs:sequence) return
for $fs.dot in $fs:sequence return
let $fs:position := xf:index-of ($fs.sequence, $fs:dot) return

[Relati vePathExpr] Path

As explained in the XQuery document, applying a step in XPath changes the focus (or context). The change of
focus is made explicit by the normalization rule, which binds the variable $f s: dot to the node currently
being processed, and the variable $f s: posi t i on to the position (i.e., the position within the input
sequence) of that node.

Ed. Note: Thisruleisusing the function xf:index-of to bind the position of a node in a sequence.
Thisisworking since path expressions should only work on nodes. See [Issue-0125: Operations
on node only in XPath]. Still, it might be preferable to be able to bind both the current node and
its position through a single processing of the collection within the for expression. The FS editors
proposed severa syntax for such an operation. For instance: f or $v at $i in El

return E2.See[lssue-0124: Binding position in FLWR expressions|.

The semantics of Step expressions, which are either axis or general steps, is given next.

4.3.1 Axis Steps

I ntroduction

An axis step is either a combination of an axis accessor, a node test and a step qualifier, or an abbreviated step.
We define here the semantics of Axis NodeTest pairs. The semantics of StepQualifiersis defined in [4.3.3

Step Qualifiers| and the semantics of abbreviated steps is defined in [4.3.5 Abbreviated Syntax].
[34] AxisStep ::= (AxisNodeTest StepQualifiers) | AbbreviatedStep

Ed. Note: (Michael Kay): thereisabug here in the formal semantics which does not deal
properly with principal node types. See [l ssue-0108: Principal node typesin XPath].

Notation

During the normalization process, we have to distinguish between forward and reverse Axis. In order to do so,
we need to slightly reorganize the XQuery grammar production to make that distinction. This reorganization
does not actually change the syntax, but merely regroup together different productions. Here is the grammar
that is the basis for the following normalization of steps.

[96] FSAxisStep = (ForwardAxis NodeTest StepQualifiers)
| (ReverseAxis NodeTest StepQualifiers)
| AbbreviatedStep

http://www.w3c.org/TR/query-semantics/ (69 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[97] ForwardAxis "self' it
"child" "::"
‘descendant” "::"

|
I
| "descendant-or-self" "::"
|

“attribute” "::"

[98] ReverseAxis parent” "::

We then use two auxiliary normalization rules denoted [] ForwardPath ad [] ReversePath

Normalization

A forward axisis directly transated to core XQQuery

[ForwardAxis NodeTest StepQual ifier] Path

[ForwardAxis NodeTest StepQual ifier] ForwardPath

A reverse axisis directly trandated to core XQuery

[ReverseAxis NodeTest StepQual ifier] Path

[ReverseAxis NodeTest StepQual ifier] ReversePath

Core Grammar

We have now normalized all Axis Stepsinto the following core grammar.

[34] AxisStep == AxisNodeTest
[35] Axis = "child" ":"

| "descendant™ "::"

| "parent” "::"

| "attribute" "::"

| "self" "

| "descendant-or-self” "::"
[36] NodeTest == NameTest | KindTest
[37] NameTest .= QName| Wildcard
[38] Wildcard = " "2 NCName "ttt | "t " NCName
[39] KindTest ::= ProcessinglnstructionTest

| CommentTest

| TextTest

| AnyKindTest

[40] ProcessinglnstructionTest "processing-instruction” "(* StringLiteral ?")"
[41] CommentTeSt = "Commentn u(u ||)||
[42] TextTest "text" (")"

http://www.w3c.org/TR/query-semantics/ (70 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[43] An K|ndTeSt = "node" ll(n u)u
Next, we give the static and dynamic semantics for Axis Steps.

Notation

We use the term Filter to denote either an axis or a node test.
[95] Filter := Axis| NodeTest

To define the semantics of axis and nodetest, we use the two following auxiliary judgments for filters. The
first judgment is defining the effect of afilter (either an axis or a nodetest) on avalue, and is used in the
dynamic semantics. This judgment should be read as follows: in the current context (i.e., with respect to the
dynamic environment dynEnvs.varValue), applying thefilter Fi | t er onvalue Val ue; yieldsthe value

Val uejp

dynEnvs.varValue; Value; |- Filter => Valuey

The second judgment is defining the effect of afilter (either an axis or a nodetest) on atype and is used in the
static semantics. This judgment should be read as follows: in the current context, (i.e., with respect to the the
static environment statEnvs.varType), applying thefilter Fi | t er ontype Type; yieldsthetype Type,

statEnvs.varType ; Type; |- Filter : Typey

In afew cases, when applying the type filter judgment recursively, we need to use an additional type
environment that contains local type information. We use the following notation.

statEnvs; local TypeEnv ; Type; |- Filter : Typey

We write updates to the local type environment as "local TypeEnv[gname : Typeg]"
Static Type Analysis

The static semantics of an Axis NodeTest pair is obtained by retrieving the type of the context node, and
applying the two filters (Axis, then NodeTest) on the result. The application of each filter is expressed through
the static filter judgment as follows.
statEnvs.varType($fs.dot) = Type;
statEnvs; Type; |- Axis: Types
statEnvs; Type, |- NodeTest : Types

statEnvs |- Axis NodeTest : Types

Dynamic Evaluation

The dynamic semantics of an Axis NodeTest pair is obtained by retrieving the context node, and applying the
two filters (Axis, then NodeTest) on the result. The application of each filter is expressed through the filter
judgment as follows.
dynEnvs.varValue($fs:dot) = Value;
dynEnvs.varValue; Value; |- Axis=> Vauey
dynEnvs.varValue; Vaue, |- NodeTest => Values

dynEnvs.varValue |- Axis NodeTest => Valuez

http://www.w3c.org/TR/query-semantics/ (71 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

We now define the filter judgment used in the dynamic semantics. Thisis done in two sets of inference rules.
Thefirst set of inference rulesis common to all filters, and defines the part of the semantics which appliesto
both Axis and NodeTest. The second set of inference rulesis specific to either Axis or NodeTest and is given

in the corresponding subsections below.

Static Type Analysis

Here are the common set of inference rules defining the static semantics of filters. Essentially, theserules are
used to process complex types through afilter, breaking the types down to the type of a node or of avalue.
The semantics of afilter applied to anode or value type is then specific to each Axis and NodeTest.

statEnvs; () |- Filter : ()

statEnvs ; none |- Filter : none

statEnvs; Typey |- Filter : Type'y
statEnvs ; types |- Filter : Type's

statEnvs ; Typey, Type; |- Filter : Type'1, Type's

statEnvs; Typey |- Filter : Type'q
statEnvs ; type; |- Filter : Type's

statEnvs; Type; | Type, |- Filter : Type'q | Type',

statEnvs; Typey |- Filter : Type'y
statEnvs ; type; |- Filter : Type's

statEnvs ; Type; & Type, |- Filter : Type'; & Type's

Dynamic Evaluation

Here are the common set of inference rules defining the dynamic semantics of filters. These rules apply filters
to a sequence, by breaking the sequence down to a node or value. The semantics of afilter applied to anode or
value is then specific to each Axis and NodeTest.

dynEnvs.varValue; () |- Filter => ()

dynEnvs.varValue; Value; |- Filter => Value'y
dynEnvs.varValue; Value; |- Filter => Value'y

dynEnvs.varValue; Value;, Value, |- Filter => Vaue'q,Vaue's

Ed. Note: Jerome: These rules use a notation abuse. Val ue' 1, Val ue' , indicates the

http://www.w3c.org/TR/query-semantics/ (72 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

concatenation of Val ue' 1 and Val ue' 5, and isused for both constructing a new sequence and
deconstructing it. When doing the construction, it is equivalent to applying the

op: concat enat e operator. We should strive for more consistent notation for data model
constructions and deconstruction, throughout the formal semantics specification. See al'so
[Issue-0118: Data model syntax and literal values|.

4.3.1.1 Axes

I ntroduction
[35] Axis == "child" "::"

| "descendant" "::
| "parent” "::"

| "attribute" "::"
I

|

"self it
"descendant-or-self" "::"

Axis are used to traverse the document, returning nodes related to the context node inside the tree (children,
parent, attribute, etc).

Static Type Analysis
The following rules define the static semantics of the filter judgment when applied to an Axis.

The type for the self axis is the same type as the type of the context node.

statEnvs ; NodeType |- self:: : NodeType

In case of elements, the type of the child axisis obtained by extracting the children types out of the content
model describing the type of the context node.

statEnvs ; element gname { AttrType, ChildType} |- child:: : ChildType

The type of the attribute axis is obtained by extracting the attribute types out of the content model describing
the type of the context node.

statEnvs ; element gname { AttrType, ChildType} |- attribute:: : AttrType

The type for the parent axisis always an element, possibly optional.

statEnvs ; element |- parent:: : element?

Ed. Note: Better typing for the parent axisis still an open issue. See [l ssue-0080: Typing of
parent].
The type for the namespace axisis always empty.

statEnvs NodeType |- namespace:: : ()

http://www.w3c.org/TR/query-semantics/ (73 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

Ed. Note: Jerome: The type of namespace nodesis still an open issue. See [1ssue-0105:; Types
for nodesin the data model.].

The types for the descendant, and descendant-or-self axis are implemented through recursive application of
the children and parent filters. The corresponding inference rules use the auxiliary filter judgment with alocal
type environment. Thislocal type environment is used to keep track of the visited elementsin order to deal
with recursive types.

statEnvs; { } ; Type |- descendant:: : Type

statEnvs; Type |- descendant:: : Type'

The two following rules are used to deal with global elements. Global elements need careful treatment here in
order to deal with possible recursion. Notably, if the global element has been seen before, then the rule
terminates and returns the union of all types already visited in the local environment.

local TypeEnv(gname) = Type
local TypeEnv = { Typey, Typey, ... }

statEnvs ; element gname |- descendant:: : (Type; | Typey | ...)*

local TypeEnv(gname) is an error
statEnvs.varType(gname) = Type

statEnvs ; local TypeEnv[gname : Type] ; Type |- descendant:: : Type

statEnvs local TypeEnv ; element gname |- descendant:: : element gname, Type'

Ed. Note: Peter: | need yet to figure out, whether this works, there still appear afew glitches. See
[Issue-0132: Typing for descendant].

In all other cases, the following rule applies
statEnvs ; NodeType |- child:: : Typeq
statEnvs; Type; |- descendant:: : Typey

statEnvs NodeType |- descendant:: : Typeq, Type

statEnvs ; NodeType |- self:: : Type;
statEnvs; Type; |- descendant:: : Typey

statEnvs ; NodeType |- descendant-or-self:: : Type;, Types

In all the other cases, the filter application results in an empty type.
statEnvs ; NodeType |- AxisName:: : () otherwise.

Dynamic Evaluation

The following rules define the dynamic semantics of the filter judgment when applied to an axis.

http://www.w3c.org/TR/query-semantics/ (74 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

The self axisjust returns the context node.
dynEnvs.varVaue ; NodeVaue |- self:: => NodeVaue

The child, parent, attribute and namespace axis are implemented through their corresponding accessorsin the
[XQuery 1.0 and XPath 2.0 Data Model].

dynEnvs.varVaue ; NodeValue |- child:: => dm:children(NodeV a ue)

dynEnvs.varVaue ; NodeValue |- attribute:: => dm:attributes(NodeV alue)

dynEnvs.varVaue ; NodeVaue |- parent:: => dm:parent(NodeV alue)

The descendant, descendant-or-self, ancestor, and ancestor-or-self axis are implemented through recursive
application of the children and parent filters.
dynEnvs.varValue ; NodeValue |- child:: => Value;
dynEnvs.varValue; Value; |- descendant:: => Vaue,

dynEnvs.varValue ; NodeValue |- descendant:: => Value;, Valuey

dynEnvs.varValue ; NodeValue |- self:: => Value;
dynEnvs.varValue; Value; |- descendant:: => Vaue,

dynEnvs.varValue ; NodeValue |- descendant-or-self:: => Value,, Vaue,

dynEnvs.varValue ; NodeVaue |- parent:: => Value;
dynEnvs.varValue; Vaue; |- ancestor:: => Vaue,

dynEnvs.varValue ; NodeValue |- ancestor:: => Vaue, Vaue,

dynEnvs.varValue; NodeValue |- self:: => Value;
dynEnvs.varValue; Vaue; |- ancestor:: => Vaue,

dynEnvs.varValue ; NodeValue |- ancestor-or-self:: => Valuey, Vaue,

In al the other cases, the filter application results in an empty sequence.
dynEnvs.varVaue ; NodeVaue |- AxisName:: => () otherwise.

Ed. Note: Peter: Generally steps may operate on nodes and values alike; the axis rules only can
operate on nodes (NodeValue). Isit adynamic error to apply an axisrule on avalue? See
[Issue-0125: Operations on node only in XPath].

4.3.1.2 Node Tests

http://www.w3c.org/TR/query-semantics/ (75 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

I ntroduction

A node test is a condition applied on the nodes selected by an axis step. Possible node tests are described by

the following grammar productions.

[36]
[37]
[38]
[39]

[40]
[41]
[42]
[43]

NodeTest
NameT est
Wildcard
KindTest

Processingl nstructionT est
CommentTest
TextTest

AnyKindTest

NameTest | KindTest

QName | Wildcard

II*II | Il:ll? NCNarT]e |I:II Il*ll | ll*ll ll:ll NCNarne
Processingl nstructionT est

| CommentTest

| TextTest

| AnyKindTest

"processing-instruction" " (" StringLiteral?")"
“comment™ (" ")"

"text" (")"

"node" "(")"

The inference rules for the filter node tests indicate, for each node step and each input node, whether the node
should be kept or left out. Therefore, each rule either returns the input node, or returns the empty sequence.
The overall result is then obtained by putting together all of the remaining nodes, following the generic
semanticsfor filters.

Static Type Analysis

Node tests on elements and attributes always accomplish the most specific type possible. For example, if $v is
bound to an element with a computed name, thetype of $v isel ement * { Type }.The static type
computed for the expression $v/ sel f: : fooisel ement foo {Type}, which makes use of the
nametest f 00 to arrive at a more specific type.

gname, = prefixy:local,

xf:get-namespace-uri(gname;) = statEnvs.varType(prefix,)
xf:get-local-name(gname;) = local,

statEnvs ; element gname; { Type} |- gname, : element gname; { Type}

gname, = prefixy:local o
local{ = local,

statEnvs ; element *:local1 { Type} |- gname, : element gname, { Type}

gname, = prefixy:local,

statEnvs.namespace(prefix,) = statEnvs.namespace(prefix,)

statEnvs ; element prefix;:* {Type} |- gnamey: element prefixq:local o{ Type}

statEnvs ; element * {Type} |- gname, : element gname, { Type}

http://www.w3c.org/TR/query-semantics/ (76 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

xf:get-local-name(gname;) = local,

statEnvs ; element gname; { Type} |- *:local, : element gname; { Type}

local; = local»

statEnvs ; element *:local1 { Type} |- *:local, : element *:local» { Type}

statEnvs ; element prefixy:* {Type} |- *:local»: element prefixq:local »{ Type}

statEnvs; element * { Type} |- *:local, : element *:local, { Type}

xf:get-namespace-uri(gname;) = statEnvs.namespace(prefix,)

statEnvs ; element gname; { Type} |- prefixo:* : element gname; { Type}

statEnvs ; element *:local1 { Type} |- prefixo:* : element prefixy:local 1 { Type}

statEnvs.namespace(prefix4) = statEnvs.namespace(prefixo)

statEnvs ; element prefixq:* {Type} |- prefixo:* : element prefixq:* { Type}

statEnvs ; element * {Type} |- prefixo:* : element prefixo:* { Type}

statEnvs ; element prefix:local { Type} |- * : element prefix:loca { Type}

Very similar typing rules apply to attributes:
gname, = prefixy:local)
xf:get-namespace-uri(gname;) = statEnvs.namespace(prefixo)
xf:get-local-name(gname;) = local

statEnvs ; attribute gnamey { Type} |- gname, : attribute gname; { Type}

gname, = prefixo:local »
local{ = local,

statEnvs ; attribute *:local1 { Type} |- gname; : attribute gname, { Type}

gname, = prefixy:local)
statEnvs.namespace(prefix;) = statEnvs.namespace(prefixo)

http://www.w3c.org/TR/query-semantics/ (77 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

statEnvs ; attribute prefix,:* {Type} |- gnamey: attribute prefix4:local o Type}

statEnvs ; attribute * { Type} |- gname, : attribute gname, { Type}

xf:get-local-name(gname;) = local,

statEnvs ; attribute gname; { Type} |- *:local, : attribute gname; { Type}

local1 = local,
statEnvs ; attribute *:local1 { Type} |- *:local, : attribute *:local, { Type}

statEnvs ; attribute prefixq:* {Type} |- *:local,: attribute prefix,:local »{ Type}

statEnvs; attribute * { Type} |- *:local, : attribute *:local» { Type}

xf:get-namespace-uri(gname;) = statEnvs.namespace(prefix,)

statEnvs; attribute gname; { Type} |- prefixo:* : attribute gname; { Type}

statEnvs ; attribute *:local 1 { Type} |- prefixo:* : attribute prefixo:local 1 { Type}

statEnvs.namespace(prefixq) = statEnvs.namespace(prefix,)
statEnvs ; attribute prefix(:* {Type} |- prefixy:* : attribute prefix1:* { Type}

statEnvs ; attribute * { Type} |- prefixy:* : attribute prefix,:* { Type}

statEnvs; attribute prefix:local { Type} |- * : attribute prefix:local { Type}

Comments, processing instructions, and text:

statEnvs ; processing-instruction |- processing-instruction () : processing-instruction

statEnvs ; processing-instruction |- processing-instruction (string) : processing-instruction

statEnvs ; comment |- comment () : comment

http://www.w3c.org/TR/query-semantics/ (78 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

statEnvs; text |- text () : text

statEnvs ; NodeType |- node () : NodeType

If none of the above rules applies then the node test returns the empty sequence, and the following dynamic
ruleis applied:
statEnvs ; NodeType |- node () : ()

Ed. Note: Peter: Except for sel f : : , all axes guarantee that the NodeType is not the generic
typenode. However, when the type node is encountered, it has to be interpreted as el enent
| attribute | text | conment | processing-instruction forthesetyping

rules to work.

Dynamic Evaluation
dm:name(NodeValue) = gname;
gname, = prefixy:local o
xf:get-namespace-uri (gname;) = statEnvs.namespace(prefix,)
xf:get-local-name (gname;) = local,

dynEnvs.varValue ; NodeValue |- gname, => NodeValue

dm:name (NodeValue) = gname
dynEnvs.varVaue; NodeVaue |- * => NodeValue

dm:name (NodeValue) = gname
xf:get-namespace-uri (gname) = statEnvs.namespace(prefix)

dynEnvs.varVaue ; NodeVaue |- prefix:* => NodeVaue

dm:name (NodeValue) = gname
xf:get-local-name (gname) = local

dynEnvs.varVaue ; NodeVaue |- *:local => NodeVaue

dm:node-kind (NodeValue) = "processing-instruction"
dynEnvs.varValue ; NodeValue |- processing-instruction () => NodeValue

dm:node-kind (NodeValue) = "processing-instruction"
dm:name (NodeValue) = gname
xf:get-local-name (gname) = String

dynEnvs.varVaue ; NodeVaue |- processing-instruction (String) => NodeVaue

Ed. Note: Note the use of the xf : get - | ocal - nane function to extract the local name out of

http://www.w3c.org/TR/query-semantics/ (79 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

the name of the node.
dm:node-kind (NodeValue) = "comment"

dynEnvs.varVaue ; NodeVaue |- comment () => NodeValue

dm:node-kind (NodeValue) = "text"
dynEnvs.varVaue ; NodeVaue |- text () => NodeValue

Thenode() nodetestistruefor all nodes. Therefore, the following rule does not have any precondition
(remember that an empty upper part in the rule indicates that the rule is always true).

dynEnvs.varVaue ; NodeValue |- node () => NodeValue

If none of the above rules applies then the node test returns the empty sequence, and the following dynamic
ruleis applied:
dynEnvs.varValue ; NodeValue |- node () => ()

4.3.2 General Steps

I ntroduction

General steps are composed of primary expressions, followed by a step qualifier. The semantics of step
qualifiersis defined in the next subsection.

[44] GeneralStep ::= PrimaryExpr StepQualifiers

Nor malization

Primary expressions are normalized as expressions. |.e., their Path normalization is obtained by applying the
general normalization rules for expressions. In General Steps, StepQualifiers are always applied as forward
steps. Note that the following rule makes use of atypewitch expression to ensure the path expression is always
applied on a sequence of nodes.

Ed. Note: Jerome: where to enforce the restriction that X Path expressions operate on nodes is
still an open issue. See [l ssue-0125: Operations on node only in XPath].

[Pri maryExpr] Path
typeswitch [Pri maryExpr] Expr & $fsinew

case node* return $fs:new
default return dm:error()

http://www.w3c.org/TR/query-semantics/ (80 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[PrimaryExpr StepQualifiers| pah

[[Pri mar yExpr] Path StepQUdiﬂerS] ForwardPath
4.3.3 Step Qualifiers

I ntroduction

Step qualifiers are composed of zero or more predicates (usingthe[...] notation) or dereference
operations (using the => notation).

[46] StepQuadlifiers = (("[" Expr"]") | ("=>" NameTest))*

Normalization

Normalization isfirst applied on all the components of a step qualifier. Remember that StepQualifiers might
be normalized through either a ForwardPath rule, or a ReversePath rule.

[StepQuaIifierl StepQualifier; ...] ForwardPath
[StepQUdifierl] ForwardPath [StepQuaIifierz] ForwardPath -
[StepQuaIifierl StepQualifiers ...] ReversePath

[StGEIOQlJa“fier 1] ReversePath [SteIOQUc’ﬂ“fier 2] ReversePath -
4.3.3.1 Predicates

Normalization

We now define the semantics of predicates, for both forward and reverse steps.

[EXprl [Expr]] ForwardPath

http://www.w3c.org/TR/query-semantics/ (81 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

let $fs:sequence := [Exprl] path return

let $fs:last := xf:length(Seguence) return

for $fs:position in op:to(1,$fs:.last) return

let $fslast := xf:length($fs.sequence) return

let $fs:dot := fs:unique-item-at($fs:sequence, $fs:position) return

if [Expr2 Predicate then $fs:.dot else ()

[EXprl [Exprz]] ReversePath
let $fs:sequence := [Exprl] path Feturn
let $fs:last := xf:length(Sequence)
for $fs.counter in op:to(1,$fs.last) return
let $fs:position := $fs:last + 1 - $fs:.counter return
let $fsilast := 1 return
let $fs:dot ;= fs:unique-item-at($fs:sequence, $fs.position)

return [Exprz] Predicate) then $fs:dot else ()

Predicates in path expressions are normalized with a special mapping rule:

[EXIOf] Predicate
typeswitch [Expr] as v
case () return xf:false()
case numeric return op:numeric-equal (xf:round($v), $fs:position)
case xs:boolean return $v
default return

if (xf:Iength([&/seIf::node()] path)>=1)
then xf:true()
else dm:error()

4.3.3.2 Dereferences

Normalization

Dereference steps are mapped into an iteration, followed by a call to the dereference function, then followed
by the appropriate NameT est

http://www.w3c.org/TR/query-semantics/ (82 of 183) [8/12/2002 6:38:05 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

[ForwardStep "=>" NameTest] Path

for $fs.dot in [ForwardStep |_Expr return
let $fs:dot := dm:dereference($fs.dot) return
self::NameTest

4.3.4 Unabbreviated Syntax

Ed. Note: XQuery Section 2.3.4 has no semantic content -- it just contains examples! (This
suggests that perhaps the section structure is alittle weird.)

4.3.5 Abbreviated Syntax

[45] AbbreviatedStep = "."| ".." | ("@" NameTest StepQualifiers)

Normalization

Here are normalization rules for the abbreviated syntax.

[I RelativePathExpr] Path

| descendant-or-self::node() / [Rel ativePathExpr] Path

[StepExpr // Rel ativePthExpr] Path

[StepExpr] Step / descendant-or-self::node() / [Rel ativePathExpr] Path

Path

Path

parent_: :_node()

[@ NodeTest] Path

attribute ;; NodeTest

http://www.w3c.org/TR/query-semantics/ (83 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[NodeTeﬁt] Path

child :: NodeTest
4.4 Sequence Expressions

I ntroduction
This section defines the semantics of [2.4 Sequence Expressions] in [XQuery 1.0: A Query Language for
XML].

XQuery supports operators to construct and combine sequences. A sequenceis an ordered collection of zero
or more items. An item is either an atomic value or a node.

4.4.1 Constructing Sequences

[50] ParenthesizedExpr ::= "(" ExprSeguence?")"
[3] ExprSequence = Expr ("," Expr)*
[17] RangeExpr = Expr "to" Expr

Normalization

The sequence expression is normalized into a sequence of core expressions.

(" [ExprSequence |)"

[Exprl, - Exprn]

[exory]. .. [Er,]

Ed. Note: Mike Kay remarks that it would be cleaner to have binary rules and recursion to define
the semantics rather than the ... notation.

Core Grammar

The core grammar rule for sequence expressionsiis.
[3] ExprSequence ::= Expr (*," Expr)*

Static Type Analysis

The static semantics of the sequence expression follows. The type of the sequence expression is the sequence
over the types of individual expressions.

http://www.w3c.org/TR/query-semantics/ (84 of 183) [8/12/2002 6:38:05 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-sequence-expressions

XQuery 1.0 Formal Semantics

statEnvs |- Exprq: Type; ... statEnvs|- Expry @ Type,

statEnvs |- Expry , ..., Exprp, : Typey, ..., Type,

Dynamic Evaluation

The dynamic semantics of the sequence expression follows. Each expression in the sequence is evaluated and
the resulting values are concatenated into one sequence.

dynEnvs |- Expr; =>value; dynEnvs|- Expro =>value, ... dynEnvs|- Expr, => value,
dynEnvs |- Expry, ..., Expr, => op:concatenate(val ue;, op:concatenate(val uey, op:concatenate(... , valuey)...)

Normalization

The normalization of the infix "to" operator maps it into an application of op:to.

[Exprl "t o" Exprz]

[op:to (Expry, Exprz)]
Static Type Analysis

The static semantics of the op:to function is defined in [6 Additional Semantics of Functions].

Dynamic Evaluation

The dynamic semantics rules for function calls givenin [4.2.4 Function Calls| are applied to the function call
op:to above.

Ed. Note: Should the "to" operator be defined formally? See [I ssue-0133: Should to also be
described in the formal semantics?].

4.4.2 Combining Sequences

XQuery provides several operators for combining sequences.

[20] UnionExpr = Expr ("union" | "|") Expr
[21] IntersectExceptExpr := Expr ("intersect" | "except") Expr
Notation

http://www.w3c.org/TR/query-semantics/ (85 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

First, aunion, intersect, or except expression is normalized into a corresponding core expression. The

functions [] Sequenceop ad [] SequenceValueop &€ defined by the following tables:

|SequenceOp | [SequenceOp] SequenceOp
"union” lop:union

" lop:union

"intersect” |op:intersect

"except” |op:except

|SequenceOp | [SequenceOp] SequenceVaueOp
"union” lop:union-value

" lop:union-value

"intersect” |op:intersect-value

|"except” |op:except-value

Normalization

[Expr 1 SequenceOp Exprz]

typeswitch (Exprq) as $vl
case fs.atomic+ return
(typeswitch (Expry) as $v2

case fs:atomic+ return [SequenceOp] SequenceVaueop($v1, $v2)

default return dm:error())
case node+
(typeswitch (Expr,) as $v2

case node+ return [SequenceOp] Sequenceop($v1, $v2)

default return dm:error())
default return dm:error()

Ed. Note: MFF: this mapping assumes that there are two versions of union: one based on node
identity and one based on value equality. What happens if we have a heterogeneous sequenceis
not clear. See[Issue-0120: Sequence oper ations. value vs. node identity].

Static Type Analysis

The static semantics of the functions that operate on sequences are defined in [6 Additional Semantics of

Functions|.

Dynamic Evaluation

The dynamic semantics rules for function calls given in [4.2.4 Function Calls| are applied to the calls to

http://www.w3c.org/TR/query-semantics/ (86 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

functions on sequences above.

4.5 Arithmetic Expressions

This section defines the semantics of [2.5 Arithmetic Expressions] in [XQuery 1.0: A Query Language for
XML].

XQuery provides arithmetic operators for addition, subtraction, multiplication, division, and modulus, in their
usual binary and unary forms.

[18] AdditiveExpr
[19] MultiplicativeExpr
[22] UnaryExpr

Expr ("+"] "-") Expr
Expr ("*" | "div" | "mod") Expr

(" | ") Expr

Notation

Ed. Note: MFF: The operator table in this section was produced by Don Chamberlin. This table
should be in one place, probably the formal semantics

The tables in this section list the combinations of datatypes for which the various operators of XQuery are
defined. For each valid combination of datatypes, the table indicates the name of the function that implements
the operator and the datatype of the result. Definitions of the functions can be found in [XQuery 1.0 and XPath
2.0 Functions and Operators].

In the following tables, the term fs:numeric refers to the types xs.integer, xs.decimal, xs.float, and xs.double.
When the result type of an operator islisted as fs:numeric, it means "same as the highest type of any input
operand, in promotion order." For example, when invoked with operands of type xs:integer and xs:float, the
binary + operator returns aresult of type xs:float.

In the following tables, the term Gregorian refers to the types xs.gY earMonth, xs.gY ear, xs.gMonthDay,
xs.gDay, and xs.gMonth. For binary operators that accept two Gregorian-type operands, both operands must
have the same type (for example, if one operand is of type xs.gDay, the other operand must be of type

xs.gDay.)

The functions [] Binaryop and [] Unaryop are defined by the following two tables. The function [] BinaryOp
takes the left-hand expression (A) and its type, the operator, the right-hand expression (b) and its type and
returns a new expression, which applies the type-appropriate operator to the two expressions. The function

] Unaryop takes an operator and an expression and returns anew expression, which applies the appropriate
operator to the expression.

[A; Type(A); Operator; B;
Operator Type(A) Type(B) Result type
Type(B)] BinaryOp
A +B Ifs:numeric |fs:numeric lop:numeric-add(A, B) Ifs:numeric
A +B Ixs:date xs:duration |(missing) Ixs:date
A+B Ixs:duration xs:date |(missing) Ixs:date

http://www.w3c.org/TR/query-semantics/ (87 of 183) [8/12/2002 6:38:05 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-arithmetic

XQuery 1.0 Formal Semantics

A +B xsitime xs:duration |(missing) xsitime

A +B Ixs:duration xs:time |(missing) xsitime

A +B xs:.dateTime |xs:duration |op:get-end-datetime(A, B) xs:dateTime
A +B Ixs:duration xs:dateTime |op:get-end-datetime(B, A) xs:dateTime
A +B Ixs:duration xs:duration |(missing) xs:duration
|A-B Ifs:numeric |fs:numeric lop:numeric-subtract(A, B) |fs:numeric
IA-B Ixs:date Ixs:date |(missing) xs:duration
IA-B Ixs:date xs:duration |(missing) xs:date
|A-B xs:time xs:time |(missing) xs:duration
IA-B xsitime xs:duration |(missing) xsitime
IA-B xs:.dateTime |xs.dateTime |op:get-duration(A, B) xs:duration
IA-B xs:.dateTime |xs:duration |op:get-start-datetime(A, B) xs:dateTime
IA-B Ixs:duration xs:duration |(missing) xs:duration
IA*B Ifs:numeric |fs:numeric lop:numeric-multiply(A, B) |fs:numeric
IAdivB [fsnumeric |fs:numeric lop:numeric-divide(A, B) |fs:numeric
/AmodB [fs:numeric |fs:numeric lop:numeric-mod(A, B) |fs:numeric
A eqB Ifs:numeric |fs:numeric lop:numeric-equal (A, B) xs:boolean
|A eqB xs:boolean xs:boolean |op:boolean-equal (A, B) xs:boolean
A eqB Ixs:string xs:string |opznumeric-equal (xf:compare(A, B), 1) xs:boolean
|AeqB xs:date xs:date |(missing) xs:boolean?
|A eq B xsitime xsitime |(missing) xs:boolean?
|A eq B xs:.dateTime |xs.dateTime |op:datetime-equal (A, B) xs:boolean?
|A eq B Ixs:duration xs:duration |op:duration-equal (A, B) xs:boolean?
A eqB |Gregorian |Gregorian |(missing) xs:boolean
|A eqB IxsthexBinary |[xs:thexBinary |op:hex-binary-equal(A, B) xs:boolean
A eqB xs:base64Binary |xs:base64Binary |op:base64-binary-equal (A, B) xs:boolean
|A eqB xs:anyURI xs:anyURI |(missing) xs:boolean
|AeqB Ixs:QName Ixs:QName |(missing) xs:boolean
|AneB Ifs:numeric |fs:numeric xf:not(op:numeric-equal (A, B)) xs:boolean
|AneB xs:boolean xs:boolean |xf:not(op:boolean-equal (A, B)) xs:boolean
/A neB IXs:string Ixs:string Ixf:not(op:numeric-equal (xf:compare(A, B), 1)) [xs:boolean
/A neB Ixs:date xs:date |(missing) xs:boolean?
/A neB xsitime xs:time |(missing) xs:boolean?
/A neB xs:.dateTime |xs.dateTime |xf:not3(op:datetime-equal (A, B)) xs:boolean?
|/AneB Ixs:duration xs:duration xf:not3(op:duration-equal (A, B)) xs:boolean?
|AneB |Gregorian |Gregorian |(missing) xs:boolean
|AneB xs:hexBinary |xsthexBinary |xf:not(op:hex-binary-equal (A, B)) xs:boolean
|AneB xs:base64Binary |xs:base64Binary |xf:not(op:base64-binary-equal (A, B)) xs:boolean
|AneB xs:anyURI xs:anyURI |(missing) xs:boolean
|AneB Ixs:QName Ixs:QName |(missing) xs:boolean
|A eq B XxssNOTATION |[xssNOTATION |(missing) xs:boolean

http://www.w3c.org/TR/query-semantics/ (88 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

/A neB XxssNOTATION |[xs:NOTATION |(missing) xs:boolean
|AgtB Ifs:numeric |fs:numeric |op:numeric-greater-than(A, B) xs:boolean
|AgtB xs:boolean xs:boolean |(missing) xs:boolean
A gtB Ixs:string xs:string |op:numeric-greater-than(xf:compare(A, B), 0) |xs:boolean
|A gt B Ixs:date xs:date |(missing) xs:boolean?
|A gtB xs:time xsitime |(missing) xs:boolean?
|AgtB xs:.dateTime |xs.dateTime |op:datetime-greater-than(A, B) xs:boolean?
|A gtB Ixs:duration xs:duration |op:duration-greater-than(A, B) xs:boolean?
IAltB fs:numeric |fs:numeric |op:numeric-less-than(A, B) xs:boolean
AltB xs:boolean xs:boolean |(missing) xs:boolean
AltB Xs:string Ixs:string |op:numeric-less-than(xf:compare(A, B), 0) xs:boolean
AltB Ixs:date xs:date |(missing) xs:boolean?
AltB xsitime xs:time |(missing) xs:boolean?
IA1tB xs:dateTime |xsidateTime |op:datetime-less-than(A, B) xs:boolean?
IA1tB Ixs:duration xs:duration lop:duration-less-than(A, B) xs:boolean?
|A geB Ifs:numeric |fs:numeric lop:numeric-less-than(B, A) xs:boolean
|A geB Ixs:string xs:string |op:numeric-greater-than(xf:compare(A, B), -1) |xs:boolean
|A geB Ixs:date Ixs:date |(missing) xs:boolean?
|A geB xs:time xs:time |(missing) xs:boolean?
|A geB xs.dateTime |[xs.dateTime |op:datetime-less-than(B, A) xs:boolean?
|A geB Ixs:duration xs:duration |op:duration-less-than(B, A) xs:boolean?
|AleB Ifs:numeric |fs:numeric |op:numeric-greater-than(B, A) xs:boolean
|AleB Ixs:string Ixs:string |op:numeric-less-than(xf:compare(A, B), 1) xs:boolean
|AleB Ixs:date xs:date |(missing) xs:boolean?
)AleB xsitime xsitime |(missing) xs:boolean?
|AleB xs.dateTime [xsidateTime |op:datetime-greater-than(B, A) xs:boolean?
)AleB Ixs:duration xs:duration |op:duration-greater-than(B, A) xs:boolean?
A == Inode Inode |op:node-equal (A, B) xs:boolean
IA1==B |node Inode xf:not(op:node-equal (A, B)) xs:boolean
/A<<B Inode Inode |opznode-before(A, B) xs:boolean
IA>>B |node Inode |op:node-after(A, B) xs:boolean
g‘ precedes node node (missing) xs:boolean
'é follows node node (missing) xs:boolean
|AunionB |item* litem* lop:union(A, B) litem*

IA|B litem* litem* lopzunion(A, B) litem*

|g‘ Intersect |item* |item* op:intersect(A, B) item™*

|A except B |item* litem* |op:except(A, B) litem*
/AtoB Ixs:decimal xs:decimal lop:to(A, B) xsiinteger+

http://www.w3c.org/TR/query-semantics/ (89 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

A, B litem* litem* lop:concatenate(A, B) item*

An analogous table exists for unary operators.

|Operator Operand type [Operator; Expr] Unary0p| Result type
[+ A fsnumeric |op:numeric-unary-plus(A) |same as operand
-A fsnumeric |op:numeric-unary-minus(A) |same as operand

Normalization

The normalization rules for the arithmetic operators "+" and "- " are similar, but not identical, because as the
table above illustrates, "- " is not commutative.

The following normalization rule for "+" first applies [] Optional_Atomic_Type {0 €ach argument expression,

binding the results of these expressions to two new variables, $e1 and $e2. It then applies atypeswitch on
the left-hand operand $e1, and for each |eft-hand operand type, it applies a second typeswitch on the

right-hand operand $e2. The function [Operator] BinaryOp takes the operator, the left-hand type, and the
right-hand type and returns the appropriate function, which is applied to the argument values.

[eors)

let $coreel = ([Exprq])
$coree2 := ([Expr,]),
$el = [$C0reel] Optional_Atomic_Value:

$e2:= [$Coree2] Optional_Atomic_Value
return
typeswitch ($el) as $vi
case () return ()
case fs:numeric return
(typeswitch ($e2) as $v2
case () return ()

case fs:numeric return [$v1; fsnumeric; "+"; $v2; fs:numeric] BinaryOp
case fs:UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (90 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[$v1; fs.numeric; "+"; (cast ($v2) as xs:double); fs:numeric] BinaryOp

default return dm:error())
case xs.date return

(typeswitch ($e2) as $v2
case xs.duration return [$v1; xs.date; "+"; $v2; xs:duration] BinaryOp
case fs:.UnknownSimpleType return

[$v1; xs.date; "+"; (cast ($v2) as xs.duration); xs:duration] BinaryOp
default return dm:error())
case xs:time return
(typeswitch ($e2) as $v2
case xs.duration return [$vl1; xstime "+"; $v2; xs:duration] BinaryOp
case fs:UnknownSimpleType return

[$v1; xsitime; "+"; (cast ($v2) as xs.duration); xs:duration] BinaryOp

default return dm:error())
case xs.dateTime return
(typeswitch ($e2) as $v2

case Xs:duration return [$v1; xs.dateTime; "+"; $v2; xs:duration] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs.dateTime; "+"; (cast ($v2) as xs.duration); xs.duration] BinaryOp
default return dm:error())

case xs.duration return
(typeswitch ($e2) as $v2

case xs.duration return [$v1; xs.duration; "+"; $v2; xs.duration] BinaryOp
case xs.date return [$v1; xs.duration; "+"; $v2; xs:date] BinaryOp
case xs:time return [$v1; xs.duration; "+"; $v2; xsiti me] BinaryOp

case xs.dateTime return [$v1; xs.duration; "+"; $v2; xs.dateTi me] BinaryOp
case fs:UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (91 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[$v1; xs.duration; "+"; (cast ($v2) as xs.duration); xs:duration] BinaryOp
default return dm:error())

case fs:UnknownSimpleType return
(typeswitch ($e2) as $v2
case () return ()
case fs:numeric return

[(cast ($v1) as xs:double); xs:double; "+"; $v2; Xs. double] BinaryOp
case xs.duration return

[(cast ($v1) as xs.duration); xs.duration; "+"; $v2; xs.duration;] BinaryOp

case xs:itime

| (cast ($v1) asxs:duration); xs:duration; "+"; $v2; xstti me] BinaryOp
case xs.dateTime return

| (cast ($v1) asxs.duration); xs:duration; "+"; $v2; xs.dateTi me] BinaryOp
case fs:UnknownSimpleType return

| (cast ($v1) asxs:double); xsidouble; "+";(cast ($v2) as xsidouble); xs:double] BinaryOp
default return dm:error())
default return dm:error()

Ed. Note: MFF: The XQuery document specifies that the casting should depend on the lexical
form. This cannot be captured by normalization. See [Issue-0128: Casting based on thelexical

form].

Ed. Note: MFF: The Datatype production does not permit choices of item types -- thisis
annoying. See[lssue-0127: Datatype limitations].

Ed. Note: Peter: the static semantics of operatorsis as strict as the one of functions, and is il
under discussion. See [Issue-0129: Static typing of union].

The following normalization rule for "- " is analogous to that for "+".

[Exprl v Exprz]

http://www.w3c.org/TR/query-semantics/ (92 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

let $coreel := ([Exprq]),
$coree? := ([Exprz]),
$el = [$coreel] Optiona _Atomic_Value:

$e2 = [$coree?] Optional_Atomic_Value
return
typeswitch ($el) as $v1
case () return ()
case fs:numeric return
(typeswitch ($e2) as $v2
case () return ()
case fs:numeric return [$v1; fsnumeric; "- "; $v2; fs:numeric] BinaryOp
case fs:UnknownSimpleType return

[$v1; fsnumeric; "- "; (cast ($v2) as xs.double); fs:numer iC] BinaryOp
default return dm:error())
case xs.date return

(typeswitch ($e2) as $v2
case xs.duration return [$vl; xs.date; - "; $v2; xs.duration] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs.date; "- "; (cast ($v2) as xs.duration); xs.duration] BinaryOp
default return dm:error())
case xs:time return
(typeswitch ($e2) as $v2
case xs.duration return [&/1; xstime; "-"; $v2; xs:duration] BinaryOp
case fs:UnknownSimpleType return

[$v1; xstime; - "; (cast ($v2) as xs:.duration); xs.duration] BinaryOp
default return dm:error())

case xs.dateTime return
(typeswitch ($€2) as $v2

case xs.duration return [$v1; xs.dateTime; "- "; $v2; xs:duration] BinaryOp
case fs:UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (93 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

[&/1; xs.dateTime; "- "; (cast ($v2) as xs.duration);xs:duration] BinaryOp

default return dm:error())

case xs.duration return
(typeswitch ($e2) as $v2

case xs.duration return [$v1; xsduration; "- "; $v2; xs:duration] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs.duration; "- "; (cast ($v2) as xs:duration); xs.duration] BinaryOp
default return dm:error())

case fs:UnknownSimpleType return
(typeswitch ($€2) as $v2
case () return ()
case fs:numeric return

| (cast ($v1) asxs:double); xsidouble; - " $v2; fs:numeric] BinaryOp
case xs.duration return

| (cast ($v1) asxs:duration); xs:duration; "- *; $v2; xs.duration] BinaryOp
case xs:time return

| (cast ($v1) asxs:duration); xsiduration; " *; $v2 ; xstti me] BinaryOp
case xs.dateTime return

| (cast ($v1) as xs:duration); xsiduration; "- "; $v2; xs:dateTime] BinaryOp
case fs:UnknownSimpleType return

I (cast ($v1) as xs.double); xs:double; "- "; (cast ($v2) as xs.double)' xs:double] BinaryOp
default return dm:error())
default return dm:error()

The multiplicative operators "* ", "div", and "nod" are only defined on fs:numeric, so their normalization rule
issimple. For convenience, MultOp denotes"* ", "div", or "nod".

[Expr 1 MultOp Exprz]

http://www.w3c.org/TR/query-semantics/ (94 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

let $coreel = ([Exprq])
$coree? = ([Expr,])
$el = [$coree1] Optional_Atomic_Value -

$e2 := [$coree?] Optional_Atomic_Value
return
typeswitch ($el) as $vi
case () return ()
case fs:numeric return
(typeswitch ($e2) as $v2
case () return ()

case fs:numeric return [$v1; fs:numeric; MultOp; $v2; fs:numeric] BinaryOp
case fs:UnknownSimpleType return

[$v1; fsnumeric; MultOp; (cast ($v2) as xs:.double); fs:numeric] BinaryOp
default return dm:error())
case fs:UnknownSimpleType return
(typeswitch ($e2) as $v2
case () return ()
case fs:numeric return

| (cast ($v1) asxs:double); xs:doube; - "; $v2; fsinumeric] BinaryOp
case fs:UnknownSimpleType return

| (cast ($v1) asxs.double); xs:double; - "; (cast ($v2) as xs:double); xs:double] BinaryOp
default return dm:error())
default return dm:error()

Ed. Note: MFF: The XQuery document specifies that the casting should depend on the lexical
form. This cannot be captured by normalization. See [Issue-0128: Casting based on thelexical

form].

For convenience, UnaryOp denotes the unary operators "+" and "- ". The normalization rule for unary
operatorsis straightforward:

[UnaryOp Expr]

http://www.w3c.org/TR/query-semantics/ (95 of 183) [8/12/2002 6:38:05 PM]

XQuery 1.0 Formal Semantics

let $coreel = ([Exprq])
$el = [$coreel] Optional_Atomic_Vaue(xs.double):
return [UnaryOp; $e1] UnaryOp

Core Grammar

There are no core grammar rules for arithmetic expressions as they are normalized to function calls.

Static Type Analysis

In the [XQuery 1.0 and XPath 2.0 Functions and Operators]|, type promotion rules are given for all the
arithmetic operators, denoted by op:operation, and the result types of these operations. The following static
semantics rules specifies the result types for al arithmetic operators when applied to specific fs:numeric types.

statEnvs |- Exprq: Type; Type; <: xsidecimal statEnvs|- Expro: Type, Typep <: xs.decimal
statEnvs |- op:operation(Expr4, Expry) : xs.decimal

statEnvs |- Exprq: Type; Type; <: xsfloat statEnvs|- Expro: Type, Type, <: xsfloat
statEnvs |- op:operation(Exprq, Expr») : xs:float

statEnvs |- Exprq: Type; Type; <: xs.double statEnvs|- Expro: Type, Type, <: xs.double
statEnvs |- op:operation(Expr 4, Expr») : xs:.double

Ed. Note: MFF: Can the three rules above be factored?

Analogous static type rules are given for the unary arithmetic operators.
statEnvs |- Exprq: Type; Typep <: xs.decimal

statEnvs |- op:operation(Expr4) : xs.decimal

statEnvs |- Exprq: Type; Type; <: xs:float
statEnvs |- op:operation(Expr) : xs:float

statEnvs |- Exprqi: Type; Typep <: xs.double
statEnvs |- op:operation(Expr4) : xs.double

Dynamic Evaluation

The normalization rules map all arithmetic operators into core expressions, whose dynamic semanticsis
defined in other sections, therefore there are no dynamic semantics rules for arithmetic operators. The
dynamic semantics rules for function calls given in [4.2.4 Function Calls] are applied to all the function calls

http://www.w3c.org/TR/query-semantics/ (96 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#double

XQuery 1.0 Formal Semantics

op:numeric-add, etc.
4.6 Comparison Expressions

I ntroduction

This section defines the semantics of [2.6 Comparison Expressions] in [XQuery 1.0: A Query Language for

XML].

Comparison expressions allow two values to be compared. XQuery provides four kinds of comparison
expressions, called value comparisons, general comparisons, node comparisons, and order comparisons.

[13] VaueComp = Expr ("eg"| "ne"| "It"| "le"| "ot" | "ge") Expr

[12] GeneradComp = Expr ("="]"!="]"<" S| "<="|">"| ">=") Expr
[14] NodeComp = Expr ("=="] "1==") Expr

[15] OrderComp = Expr ("<<"| ">>"| "precedes’ | "follows") Expr

4.6.1 Value Comparisons

Normalization

The value comparison equality operators "eq" and "ne" are defined on alarge set of types.

[Exprq VaueEqOp Expr 2]

let $coreel := ([Exprq])
$coree2 := ([Exprz]),
$el := [$C0reel] Optional_Atomic_Value -

$e2:= [$CoreeZ] Optional_Atomic_Value
return
typeswitch ($el) as $v1
case () return ()
case fs:numeric return
(typeswitch ($e2) as $v2
case () return ()

case fs:numeric return [$v1; fs:numeric; ValueEqOp; $v2; fs:numeric] BinaryOp
case fs:UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (97 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-comparisons

XQuery 1.0 Formal Semantics

[$v1; fsnumeric; ValueEqOp; (cast ($v2) as xs:.double); fs:numeric] BinaryOp

default return dm:error())

case xs:boolean return
(typeswitch ($e2) as $v2
case () return ()

case xs:boolean return [$v1; xs:boolean; ValueEqOp; $v2; xs: boolean] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs:boolean; ValueEqOp; (cast ($v2) as xs:hoolean); xs:boolean] BinaryOp

default return dm:error())

case xs.string return
(typeswitch ($e2) as $v2
case () return ()

case xs.string return [$v1; xs:string; ValueEqOp; $v2; xs:string] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs:string; ValueEgOp; (cast ($v2) as xs:string); xs:string] BinaryOp
default return dm:error())
case xs.date return
(typeswitch ($e2) as $v2
case () return ()

case xs:date return [$v1; xs.date; ValueEqOp; $v2; xs:date] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs:date; ValueEqOp; (cast ($v2) as xs.date); xs:.date] BinaryOp
default return dm:error())
case xs.time return
(typeswitch ($e2) as $v2
case () return ()

case xs:time return [$v1; xs:itime; ValueEqOp; $v2; xsiti me] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs:itime; ValueEqOp; (cast ($v2) as xs:itime); xsti me] BinaryOp
default return dm:error())
case xs.dateTime return
(typeswitch ($e2) as $v2
case () return ()

http://www.w3c.org/TR/query-semantics/ (98 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

case xs.dateTime return [$v1; xs.dateTime; ValueEqOp; $v2; xs.dateTi me] BinaryOp

case fs:UnknownSimpleType return

[$v1; xs.dateTime; VaueEqOp; (cast ($v2) as xs.dateTime); xs.dateTi me] BinaryOp

default return dm:error())

case xs.duration return
(typeswitch ($e2) as $v2
case () return ()

case xs.duration return [$v1; xs.duration; VaueEqOp; $v2; xs.duration] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs.duration; ValueEqOp; (cast ($v2) as xs:duration); xs.duration] BinaryOp

default return dm:error())

case Gregorian return
(typeswitch ($e2) as $v2
case () return ()

case Gregorian return [$v1; Gregorian; ValueEqOp; $v2; Gregorian] BinaryOp
case fs:UnknownSimpleType return

| sv1: Gregorian: VatueqOp: (cast (9v2) as Gregorian): Gregorian] snaryop
default return dm:error())
case xs.hexBinary return
(typeswitch ($e2) as $v2
case () return ()

case Xs:hexBinary return [$v1; xs:hexBinary; VaueEqOp; $v2; xs:hexBinary] BinaryOp
case fs:UnknownSimpleType return

[$v1; xsshexBinary; ValueEqOp; (cast ($v2) as xs:hexBinary); xs:hexBinary] BinaryOp
default return dm:error())
case Xs.base64Binary return
(typeswitch ($e2) as $v2
case () return ()
case xs.baseb64Binary return [$v1; xs.baseb4Binary; ValueEqOp; $x2; xs:base64Binary] BinaryOp
case fs:.UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (99 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

[$v1; xs:base64Binary; VaueEqOp; (cast ($v2) as xs.base64Binary); xs.base64Binary] BinaryOp
default return dm:error())
case xs:anyURI return
(typeswitch ($e2) as $v2
case () return ()

case xs:anyURI return [$v1; xsianyURI; ValueEqOp; $v2; xs:anyURI] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs:anyURI; ValueEqOp; (cast ($v2) as xs:anyURI); xs.anyURI] BinaryOp
default return dm:error())
case xs:QName return
(typeswitch ($e2) as $v2
case () return ()

case xs:QName return [$v1; xs:QName; ValueEqOp; $v2; xs:QName] BinaryOp
case fs:UnknownSimpleType return

[$v1; xsQName; VaueEqOp; (cast ($v2) as xs:QName) ; XS:QName] BinaryOp
default return dm:error())

case fs:UnknownSimpleType return
(typeswitch ($e2) as $v2
case () return ()
case fs:numeric return

| (cast ($v1) asxs:double); xsidouble; ValueEqOp; $v2; xs:double; fs:numeric] BinaryOp
case xs:string return

| (cast ($v1) asxsistring); xs:string; ValueEqOp; $v2; xs:stri ng] BinaryOp
case xs.date return

| (cast ($v1) asxs:date); xs.date; ValueEqOp; $v2; xs: date] BinaryOp
case xs:time return

| (cast ($v1) asxsitime); xsitime; ValueEqOp; $v2; xstti me] BinaryOp
case xs.dateTime return

| (cast ($v1) asxs:dateTime); xs:dateTime; ValueEqOp; $v2; xs:dateTi me] BinaryOp
case xs.duration return

| (cast ($v1) asxs:duration); xs.duration; ValueEqOp; $v2; xs:duration] BinaryOp»
case fs:UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (100 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

[(cast ($v1) as xs:string); xs.string; VaueEqOp; (cast ($v2) as xs:string); xs:string] BinaryOp
default return dm:error())
default return dm:error()

Ed. Note: MFF: The definition of equality operators could be factored by introducing another
normalization function, which would be applied to the bodies of the cases. Isit clearer (albeit
longer) to just enumerate al the cases? For now, they are enumerated.

[Expr, Type, VaueEqOp;] ValueOp

(typeswitch (Expr,) as $v2
case () return ()

case return [$v1; ValueEqOp; $v2;] BinaryOp
case fs:UnknownSimpleType return

[$v1; Type, ValueEqOp; (cast ($v2) as Typey); $v2] BinaryOp
default return dm:error())

Normalization

The value comparison in-equality operators”l t *, "l e", "gt ", and "ge" are defined on a smaller set of types
than are the equality operators "eq" and "ne". For convenience, VauelnEqOp denotes™l t ", "l e", "gt ", or
"ge".

[Expr 1 VauelnEgOp Expr2]

let $coreel = ([Exprq]),
$coree? = ([Exprz]),
$el = [$coreel] Optional_Atomic_Value

$e2 1= [$coree?] Optional_Atomic_Value
return
typeswitch ($el) as $v1
case () return ()
case fs:numeric return
(typeswitch ($e2) as $v2
case () return ()

http://www.w3c.org/TR/query-semantics/ (101 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

case fs:numeric return [$v1; fs.numeric; VauelnEqOp; $v2; fs:numeric] BinaryOp

case fs:UnknownSimpleType return

[$v1; fs:numeric; VauelnEqOp; (cast ($v2) as xs.double); fs:numeric] BinaryOp

default return dm:error())

case xs:string return
(typeswitch ($e2) as $v2
case () return ()

case xs.string return [$v1; xs:string; ValuelnEqOp; $v2; xs:string] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs:string; ValuelnEqOp; (cast ($v2) as xs:string); xs:string] BinaryOp
default return dm:error())
case xs.date return
(typeswitch ($e2) as $v2
case () return ()
case xs.date return [$v1; xs.date; VauelnEqOp; $v2; xs: date] BinaryOp
case fs:UnknownSimpleType return

[$v1; xs.date; ValuelnEqOp; (cast ($v2) as xs.date); xs:date] BinaryOp
default return dm:error())
case xs:time return
(typeswitch ($e2) as $v2
case () return ()
case Xs:time return [$v1; xsitime; ValuelnEqOp; $v2; xsiti me] BinaryOp
case fs:UnknownSimpleType return

[$v1; xsitime; ValuelnEqOp; (cast ($v2) as xs:time); xsiti me] BinaryOp
default return dm:error())
case xs.dateTime return
(typeswitch ($e2) as $v2
case () return ()
case xs.dateTime return [$v1; xs.dateTime; ValuelnEqOp; $v2; xs.dateTi me] BinaryOp
case fs:UnknownSimpleType return

http://www.w3c.org/TR/query-semantics/ (102 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

[$v1; xs.dateTime; ValuelnEqOp; (cast ($v2) as xs.dateTime); xs.dateTi me] BinaryOp

default return dm:error())

case fs:UnknownSimpleType return
(typeswitch ($e2) as $v2
case () return ()
case fs:numeric return

I (cast ($v1) as xs.double); xs:double; VauelnEqOp; $v2; fs:numeric] BinaryOp
case xs:string return

| (cast ($v1) asxsistring); xs:string; ValuelnEqOp; $v2; xsistri ng] BinaryOp
case xs.date return

I VauelnEqOp; xs.date; xs:daf[e] Binaryop(Cast ($v1) as xs.date, $v2)
case xs:time return

| (cast ($v1) asxsitime); xsitime; ValuelnEqOp; $v2; xstti me] BinaryOp
case xs.dateTime return

| (cast ($v1) asxs:dateTime); xsidateTime; ValuelnEqOp; $v2; xs:dateTi me] BinaryOp
case xs.duration return

| (cast ($v1) asxs:duration); xs:duration; ValuelnEqOp; $v2; xs:duration] BinaryOp
case fs:UnknownSimpleType return

| (cast ($v1) as xs:string); xs:string; ValuelnEqOp; (cast ($v2) as xs:string); xs:string] BinaryOp
default return dm:error())
default return dm:error()

Core Grammar
There are no core grammar rules for value comparisons as they are normalized to function calls.
Static Type Analysis

There are no static type rules for the general comparison operators. They all have return type xs.boolean, as
specified in [XQuery 1.0 and XPath 2.0 Functions and Operators).

Dynamic Evaluation

The normalization rules map all value comparison operators into core expressions, whose dynamic semantics
is defined in other sections, therefore there are no dynamic semantics rules for value comparison operators.
The dynamic semantics rules for function calls givenin [4.2.4 Function Calls] are applied to all the function

calls op:numeric-less-than, etc.

http://www.w3c.org/TR/query-semantics/ (103 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

4.6.2 General Comparisons

I ntroduction

General comparisons are defined by adding existential semantics to value comparisons. The operands of a
general comparison may be sequences of any length. The result of a general comparison isawayst r ue or
fal se.

Notation

For convenience, GeneralOp denotes "=", "l =", "<" """ ">" or

The function [] Valueop IS defined by the following table:

|General O|O|[General Op] ValueOp
—
= Ine
< It
[<= e
|> |9t
>= lge

Normalization

A general comparison expression is hormalized by mapping it into an existentially quantified,
value-comparison expression, which is normalized recursively.

[Expr1 General Op Expr 2]

[some $v1in Exprq satisfies (some $v2 in Expr, satisfies [General CompOp] valueop($v1, &/2))]

Core Grammar

There are no core grammar rules for general comparisons as they are normalized to existentially quantified
core expressions.

Static Type Analysis

There are no static type rules for the general comparison operators. The existentially quantified some
expression always returns xs:boolean. Its static typing semanticsis givenin [4.12 Quantified Expressions|.

Dynamic Evaluation

The normalization rules map all general comparison operators into core expressions, whose dynamic
semanticsis defined in other sections, therefore there are no dynamic semantics rules for general comparison
operators.

http://www.w3c.org/TR/query-semantics/ (104 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

4.6.3 Node Comparisons

Notation
For convenience, NodeOp denotes "=="and "! ==".

Nor malization

The normalization rule for node comparison expressions checks that both operands are optiona node values,

otherwise generates an error. If both operands are nodes, it applies the operator specified by the [] BinaryOp
function.

[Expr 1 NodeOp Expr2]

let $el = ([Exprl]),
$e2::([Exprz]),

return
typeswitch ($el) as $v1
case () return
(typeswitch ($e2) as $v2
case node? return ()
default return dm:error())
case node return
(typeswitch ($e2) as $v2
case () return ()
case node return [$v1; node; NodeOp; $v2; node] BinaryOp
default return dm:error())
default return dm:error()

Core Grammar

There are no core grammar rules for node comparisons as they are normalized to function calls.
Static Type Analysis

There are no static type rules for the node comparison operators.

Dynamic Evaluation

The normalization rules map the node comparison operators into core expressions, whose dynamic semantics
Is defined in other sections, therefore there are no dynamic semantics rules for node comparison operators.

4.6.4 Order Comparisons

Notation

http://www.w3c.org/TR/query-semantics/ (105 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics
For convenience, OrderOp denotes "follow", "precedes’, "<<", and ">>".

Nor malization

The normalization rule for order comparison expressions checks that both operands are optional node values,

otherwise generates an error. If both operands are nodes, it applies the operator specified by the [] BinaryOp
function.

[Exprl OrderOp Exprz]

let $el := ([Exprl]),
$€21:([Eprz]),

return
typeswitch ($el) as $v1
case () return
(typeswitch ($e2) as $v2
case node? return ()
default return dm:error())
case node return
(typeswitch ($e2) as $v2
case () return ()
case node return [&/1; node; OrderOp; $v2; node] BinaryOp
default return dm:error())
default return dm:error()

Core Grammar

There are no core grammar rules for order comparisons as they are normalized to function calls.

Static Type Analysis

There are no static type rules for the order comparison operators.

Dynamic Evaluation

The normalization rules map the order comparison operators into core expressions, whose dynamic semantics

is defined in other sections, therefore there are no dynamic semantics rules for order comparison operators.

4.7 Logical Expressions

I ntroduction
This section defines the semantics of [2.7 Logical Expressions] in [XQuery 1.0: A Query Language for XML].

A logical expression is either an and-expression or an or-expression. The value of alogical expression is

http://www.w3c.org/TR/query-semantics/ (106 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-logical-expressions

XQuery 1.0 Formal Semantics

aways one of the boolean valuest r ue or f al se.
[6] OrExpr := Expr "or" Expr

[7] AndExpr := Expr "and" Expr
Notation

Thefirst step in evaluating alogical expression isto reduce each of its operands to an effective boolean value.

The function [] Effective_Boolean_Value {@kes an expression and normalizes it into an effective boolean value.

The conditional expression in the "default return” clause below guarantees that in an arbitrary sequence of
items, if at least one value is a node, then the boolean expression evaluates to true.

[Expr] Effective_Boolean Value =

typeswitch (Expr) as $v
case () return xf:false()
case xs:boolean return $v
default return

if (xf:length([$v/self::node()] path) >= 1) then xf:true()

else [$v] Type_Exception_Opt_Atomic(boolean)

Ed. Note: The semantics of Boolean node tests over sequencesis till an open issue. See
[Issue-0131: Boolean node test and sequences].

Normalization
The normalization rules for "and" and "or " first get the effective boolean value of each argument, then apply
the appropriate operand.

let $el := [EXprl] Effective_Boolean_Valuer

$e2 = [EXprZ] Effective Boolean_Valuer
return op:boolean-and($el, $e2)

[Exprl or Expr2]

http://www.w3c.org/TR/query-semantics/ (107 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

let $el := [EXprl] Effective_Boolean Valuer
$e2:= [EXprZ] Effective_Boolean_Value:
return op:boolean-or($el, $e2)
Core Grammar
There are no core grammar rules for logical expressions as they are normalized to function calls.
Static Type Analysis

There are no static type rules for the logical comparison operators. They both have return type xs:boolean, as
specified in [XQuery 1.0 and XPath 2.0 Functions and Operators].

Dynamic Evaluation

The normalization rules map the logical comparison operators into core expressions, whose dynamic
semantics is defined in other sections, therefore there are no dynamic semantics rules for logical comparison
operators.

4.8 Constructors

Ed. Note: Status: This section is still draft and needs further revision. Revision of the sectionis
pending agreement about the semantics of element and attribute constructors. See [l ssue-0110:

Semantics of element and attribute constructor s]

This section defines the semantics of [2.8 Constructors] in [XQuery 1.0: A Query Language for XML].

XQuery supports two forms of constructors: a"literal" form that follows the XML syntax, and element and
attribute constructors that can be used to construct stand-alone elements and attributes, possibly with a
computed name.

[24] Constructor

ElementConstructor | ComputedElementConstructor
| ComputedAttributeConstructor

"<" QName AttributeList ("/>" | (">" ElementContent* "</" QName
">"))

Char

| “{{"

| "3}

| ElementConstructor

| EnclosedExpr

| CdataSection

| CharRef

| PredefinedEntityRef

| XmlComment

| XmlProcessinglnstruction

| ComputedElementConstructor

| ComputedAttributeConstructor

[57] ElementConstructor

[63] ElementContent

http://www.w3c.org/TR/query-semantics/ (108 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean
http://www.w3.org/TR/2001/WD-xquery-20011220/#N400DC8

XQuery 1.0 Formal Semantics

[64] AttributeList
[65] AttributeValue

(QName "=" (AttributeValue | EnclosedExpr))*
(["] AttributeV alueContent* ["])

| (['] AttributeV alueContent* [1])

Char

| CharRef

| "{{"

| "}}"

| EnclosedExpr

| PredefinedEntityRef

“{" ExprSequence"}"

[66] AttributeVaueContent

[67] EnclosedExpr

4.8.1 Element Constructors

I ntroduction

We define the semantics of the literal form of element constructors by normalizing it to a computed element
constructor.

Normalization

Ed. Note: Status: The specification of element constructor normalization is pending adoption of a
proposal on the treatment of whitespace in XQuery expressions and of a proposal on the
semantics of element constructors. See [Issue-0110: Semantics of element and attribute

constructors).

4.8.2 Computed Element and Attribute Constructors

[58] ComputedElementConstructor ::= "element" (QName| EnclosedExpr) "{" ExprSequence?"}"
[59] ComputedAttributeConstructor ::= “attribute" (QName| EnclosedExpr) "{" ExprSequence?"}"

Normalization

Computed element and attribute expressions are normalized by mapping their sub-expressions:

[el ement (QName | { Expr }) { ExprSequence }]
element ([QName] |{ [Expr] DA [ExprSequence] }
[attri bute (QName | { Expr }) { ExprSequence }]

attribute([QName] [{ [E:qc_)r] H{ [ExprSequence]}
Core Grammar

The core grammar rules for computed constructors are:

http://www.w3c.org/TR/query-semantics/ (109 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

[58] ComputedElementConstructor = "element” (QName| EnclosedExpr) "{" ExprSequence?"}"
[59] ComputedAttributeConstructor "attribute” (QName | EnclosedExpr) "{" ExprSequence? "}"

Static Type Analysis

The normalization rules leave us with only athe operator form of element (resp. attribute) constructor to
handle. The element (resp. attribute) operator still has two form: one in which a QName is supplied as the
element name, and one in which a computed expression is supplied. In the latter case, we are unable to provide
anything other than awildcard type, since the el ement name cannot be known until runtime.

Note that when the QName form is used, the resulting type is a constructed element type. This means that the
element type is consistent with its contents (as determined by static analysis), but it does not necessarily bear
any relation to any declared element type of the same name. In other words, there is no schema validation
implied here. Moreover, neither XQuery nor this document have yet specified how validation can be invoked,

other than with the treat as operator.

Ed. Note: DD: the above is a necessary consequence of our current evaluation model. One
variation that | can think of isthat the static rules could try looking up the element namein ; if the
element name is found, then the associated, named type is used (and the contents are required to
match). If the named element type is not found, then the constructed typeis used, as before. Thus,
in this scenario, validation would be done whenever an element with a"globa™ name was
created. See also comments on the impact of (non-)validation on element construction, in the next
section.
statEnvs |- expand(QName) = gname
statEnvs |- ExprSequence : Type;
Type; <: (xsAnyAttribute*, (xssAnySimpleType | (xs:AnyElement | xsistring)*))

statEnvs |- element QName { ExprSequence } : element gname { Type; }

statEnvs |- Expr : xs:QName
statEnvs |- ExprSequence : Type;
Type; <: (xsAnyAttribute*, (xssAnySimpleType | (xs:AnyElement | xs:string)*))

statEnvs |- element { Expr } { ExprSequence} : element * { Type}

statEnvs |- Expr : xs:QName
statEnvs |- ExprSequence : Type;
Type; <: xsAnySimpleType

statEnvs |- attribute { Expr } { ExprSequence} : attribute * { Type}

statEnvs |- expand(QName) = gname
statEnvs |- ExprSequence : Type;
Type; <: xssAnySimpleType

statEnvs |- attribute QName { ExprSequence} : attribute gname { Type; }

Dynamic Evaluation

http://www.w3c.org/TR/query-semantics/ (110 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#QName

XQuery 1.0 Formal Semantics

The following rule constructs an element (resp. attribute) from its name and children sub-expressions.

dynEnvs |- NameSpec => gname
dynEnvs |- ExprSequence => (anyAttributey, ... anyAttribute,, valuey, ..., value,)

dynEnvs |- element NameSpec { ExprSequence} =>
dm el ement - si npl e- node(gname,
xf : enpty- sequence(),
(‘anyAttributey, ..., anyAttribute,),
(valueq, ..., value,),
xf : enpt y- sequence())

dynEnvs |- NameSpec => gname
dynEnvs |- ExprSequence => (valuey, ..., valuey,)
dynEnvs |- attribute NameSpec { ExprSequence } =>
dm attribute-sinpl e- node(gname,
(valuey, ..., valuey,),
xf : enpt y- sequence())

Note that the element constructor dm el enent - si npl e- node functions by making copies of any Nodes
in its arguments; therefore the result of element construction is a completely "new" element.

Ed. Note: DD: There are several issues with element construction;

« Wedo not supply either namespaces or schema-components to the constructor. We cannot do these
things because of the bottom-up nature of element construction: we do not, in general, know either the
namespaces in scope or the validation-associated schema type until this element has been "seated" in
some containing element (and so on recursively).

Thereis a possible solution to this chicken-and-egg problem, however: because the e ement constructor
makes copies of its children, it could be the responsibility of the element constructor to “fill in" the
values for namespaces-in-scope and schema-component on each newly-copied child (recursively),
based on information provided for the node. In this scenario, these fields would remain "blank™ until
some appropriate activity caused a schema component to become associated with a node, etc.

One implication of this scheme would be that the "value" of elements could change as they are copied
into anew containing element. For example, defaulted attributes could be added. Possibly the
interpretation of data values would change as well, e.g. a data value supplied as a string could be
re-interpreted as a number.

« Wedo not handle any special treatment of xmins, etc. that would be needed to associate namespaces
with elements.

« Even if/when schema components are available, it is not clear when or how defaulted attributes and/or
elements are created.

« The conversion of atomic values to text nodes, plus the lack of schema components, means that the data

http://www.w3c.org/TR/query-semantics/ (111 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#AttributeNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node

XQuery 1.0 Formal Semantics

model must necessarily lose type information about element contents. Thus the data model function
dm t yped- val ue cannot do what we need it to do. Possibly the text node constructor

dm t ext - node could keep track of the types of the atomic values used to create the text node?

4.8.3 Other Constructors and Comments

"<I[CDATA[" Char* "]]>"

[60] CdataSection

[61] XmlProcessinglnstruction = "<?' PITarget Char* "?>"
[62] XmlComment n= <" Charr Y-->"

XQuery currently does not define how comments and processing instructions are created.

4.9 FLWR Expressions

I ntroduction

This section defines the semantics of [2.9 FLWR Expressions] in [XQuery 1.0: A Query Language for XML].

XQuery provides a FLWR expression for iteration, for binding variables to intermediate results, and to filter
bound variables based on a predicate.

A FLWREXxpr in XQuery 1.0 consists of a sequence of ForClauses, LetClauses, and an optional WhereClause,
followed by areturn clause, as described by the following grammar productions.

[8] FLWREXpr .= (ForClause | LetClause)+ WhereClause? "return” Expr
[27] ForClause = "for" Variable"in" Expr ("," Variable "in" Expr)*
[28] LetClause = "let" Variable":=" Expr ("," Variable ":=" Expr)*

[29] WhereClause "where" Expr

4.9.1 FLWR expressions

Notation

Individual FLWR clauses are normalized by means of the auxiliary normalization rules:

[FLWRC ause] flwr_clause(EXPr)

Where FLWRClause can be any either a ForClause, a LetClause, or a WhereClause:
[100] FLWRClause := ForClause| LetClause| WhereClause

Note that, asis, this auxiliary rule normalizes a fragment of the FLWR expression, while taking the remainder
of the expression (in Expr) as an additional parameter.

Normalization

Full FLWR expressions are normalized to nested core expressions using two sets of nhormalization rules. Note
that some of the rules also accepts ungrammatical FLWREXprs such as "where Expr4 return Expry". This does

not matter, as normalization is always applied on parsed X Query expressions, and ungrammatical FLWREXprs
would be rejected by the parser beforehand.

http://www.w3c.org/TR/query-semantics/ (112 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#TextNode
http://www.w3.org/TR/2001/WD-xquery-20011220/#id-flwr-expressions

XQuery 1.0 Formal Semantics

Thefirst set of rulesis applied on afull FLWR expression, splitting it at the clause level, then applying further
normalization on each separate clause.

[(ForClause | LetClause | WhereClause) FLWREXxpr]

[(ForClause | LetClause | WhereCl ause)] flwr_cl ause([FLWRExpr])

[(ForClause | LetClause | WhereClause) return Expr]

[(ForCI ause | LetClause | WhereCl ause)] flwr_cl ause([Expr])
Then each FLWR clause is normalized separately. A ForClause may bind more than one variable, whereas a

for expression in the XQuery core binds and iterates over only one variable. Therefore, a ForClause is
normalized to nested for expressions:

[for Variabley in Expryq,...,Variable, in Exprn] flwr_clause(EXPr)

for Variableg in [Expr 1] return

for Variable, in [Exprn] return Expr

Note that the additional Expr parameter of the auxiliary normalization rule is used as the final return
expression.

Likewise, aLetClause clause is normalized to nested let expressions:

[let Variable; := Expry, -+, Variable, := Exprn] flwr_clause(EXPr)

let Variable; := [Exprl] return

let Variable, := [Exprn] return Expr

A WhereClause is normalized to an IfExpr, with the else-branch returning the empty list:

[where Expr 1] flwr_clause(EXPr)

http://www.w3c.org/TR/query-semantics/ (113 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

if ([Exprl) then Expr else ()

Example

The following simple example illustrates, how a FLWREXxpr is normalized. The FLWR expressionsis used to
iterate over two collections, binding variables $i and $j toitemsin these collections. It usesal et clauseto
binds the local variable $k to the sum of both numbers, and a where clause to selects those numbers that have
only asum equal to or greater than the integer 5.

for i in (1, 2),
$j in (3, 4)
let $k := $i + $j
where $k >= 5
return
<t upl e>
<i>{ $ } <i>
<i>{ % } </j>
</tupl e>

Through the first set of rules, thisis normalized to (except for the operators and element constructor which are
not treated here):
for $i in (1, 2) return
for $j in (3, 4) return
let $k := $i + $ return
if ($k >= 5) then
<t upl e>
<i>{ & } <«i>
<j>{ 8 } </j>
</tupl e>
el se

()

For each binding of $i toaniteminthesequence(1 , 2) theinner for expression iterates over the
sequence (3 , 4) to produce tuples ordered by the ordering of the outer sequence and then by the ordering
of the inner sequence. We seein the rest of the section, how this core expression resultsin the following
document fragment:

(<tupl e>
< >1</i>
<j >4</j >
</tupl e>,
<t upl e>
< >2</i>
<j>3</j>
</t upl e>,
<t upl e>

http://www.w3c.org/TR/query-semantics/ (114 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics
<i >2</i >
<j >4</ | >

</tupl e>)

with the static type:

el ement tuple {
element i { xs:decimal },
el ement j { xs:deciml }

}*
4.9.2 For expression

Core Grammar

After normalization single for expressions are described by the following core grammar production.
[0] ForExpr ::= ForClause"return" Expr

Static Type Analysis

A single for expression is typed as follows: First Type; of the iteration expression Expr4 isinferred. Then the
prime type of Type; - prime(Type;) - is determined. Thisisachoice of all item typesin Type; (see also [3.4
Prime types]). With the variable component of the static environment statEnvs extended with Variable; of
type prime(Typey), the type Type, of Expr isinferred. Because the for expression iterates over the result of
Expr1, the final type of theiteration is Type, multiplied with the possible number of itemsin Type; (one, ?, *,
or +). This number is determined by the auxiliary type-function quantifier(Type;).
statEnvs |- Expr : Type;
statEnvs [varType(Variable; : prime(Typey))] |- Expro : Types

statEnvs |- for Variable; in Exprq return Expr, : Type, - quantifier(Type;)

Example

For example, if $exanpl e isbound to the sequence (<one/ > , <two/ > , <three/>) of type
el ement one {}, elenment two {}, elenent three {},thenthequery

for $s in $exanple
return <out> {$s} </out>

Istyped asfollows:

(1) prinme(elenent one {}, elenent two {}, elenent three {}) =

el ement one {} | element two {} | elenent three {}
(2) quantifier(elenment one {}, element two {}, elenent three {}) = +
(3) $s : elenment one {} | elenment two {} | elenent three {}
(4) <out> {$s} </out> :

el ement out {elenent one {} | element two {} | elenent three {}}
(5) result-type :

el ement out {elenent one {} | elenent two {} | elenent three {}}+

http://www.w3c.org/TR/query-semantics/ (115 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

This result-type is not the most specific type possible. It does not take into account the order of elementsin the
input type, and it forgets about the individual and overall number of elementsin the input type. The most
specific type possibleis: el enent out {el enent one {}}, elenent out {elenment two
{}}, elenment out {elenent three {}}.However, inferring such aspecific type for arbitrary
input types and arbitrary return clauses requires significantly more complicated type inference rules. In
addition, if put into the context of an element, the specific type violates the "consistent element restriction” of
XML schema, which requires that an element must have a unique content model within a particular context.

Dynamic Evaluation

The evaluation of afor expression distinguishes two cases: If the iteration expression Expr4 evaluates to the
empty sequence, then the entire expression evaluates to the empty sequence.
dynEnvs |- Expr; =>value empty(value)

dynEnvs |- for Variable; in Exprq return Expro => dm:empty-sequence()

Otherwise, the iteration expression Expr, is evaluated to produce the sequence itemValuey, ..., itemValue,,.
Then for each item itemValug; in this sequence, the body of the for expression Expr, is evaluated in the
environment dynEnvs extended with Variable; bound to itemValue,. This produces values value;, which are
concatenated to produce the result sequence.
dynEnvs |- Exprq => itemValuey ,..., itemValue,
dynEnvs|[varVaue(Variable; |-> itemValuey)] |- Expro => value;

dynEnvs[varVaue(Variable; |-> itemValuey)] |- Expr, => value,

dynEnvs |- for Variable; in Expr4 return Expr, => op:concatenate(valuey ,..., valuey,)

Ed. Note: The dynamic semantics of for could be better defined without the use of --- and using
recursion. See [Issue-0134: Should we define for with head and tail?].

Example
Note that even if the expression in the return clause can result in a sequence, sequences are never nested in the
XQuery data model. For instance, in the following for expression:
for $i in (1,2)
return (<i> {$i} </i> <negi> {-$i} </negi>)

each iteration in the for results in a sequence of two elements, which are then concatenated and flattened in the
resulting sequence (through the op:concatenate function):

(<i>1</i >,
<negi >- 1</ negi >,
<i >2</i >,
<negi >- 2</ negi >,

4.9.3 Let expression

http://www.w3c.org/TR/query-semantics/ (116 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

Core Grammar

After normalization single let expressions are described by the following core grammar production.
[0] LetExpr := LetClause"return" Expr

Static Type Analysis

A let expression extends the type environment statEnvs with Variable; of type Type; inferred from Expr4, and
infers the type of Expr, in the extended environment to produce the result type Typey.

statEnvs |- Exprq: Type; statEnvs| varType(Variabley : Typep)] |- Expro : Typey

statEnvs |- let Variable; := Exprq return Exprs : Typey

Dynamic Evaluation

A let expression extends the dynamic environment dynEnvs with Variable bound to value; returned by Expr,
and evaluates Expr, in the extended environment to produce value,.

dynEnvs |- Expr; =>value; dynEnvs|[varValue(Variable; |-> itemValuey)] |- Expro => valuey

dynEnvs |- let Variable; := Exprq return Expr, => value,

Example

Note the use of the environment discipline to define the scope of each variables. For instance, in the following
nested |et expression:

let $k := 5 return
let $k := $k + 1 return
$k+1

the outermost let expression binds variable $k to the integer 5 in the environment, then the expression $k+1 is
computed, yielding value 6, to which the second variable $k is bound. The expression then results in the final
integer 7.

4.10 Sorting Expressions

Ed. Note: Status: This section is still incomplete and needs further revision. Thisrevisionis
pending agreement about the semantics of sorting.See [|ssue-0109: Semantics of sorthy].

I ntroduction

This section defines the semantics of [2.10 Sorting Expressions] in [XQuery 1.0: A Query L anguage for
XML]. A sorting expression provides away to specify the order of itemsin a sequence.

[5] SortExpr = Expr "stable"?"sortby" " (" SortSpecList)"
[26] SortSpecList ::= Expr ("ascending” | "descending”)? ("," SortSpecList)?

Nor malization

In XQuery, the specification of ascending/descending is optional. We normalize missing sort order to

http://www.w3c.org/TR/query-semantics/ (117 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#N401001

XQuery 1.0 Formal Semantics

"ascending".

[Expr (, SortSpecList)?]

[Expr] ascending (, [SortSpecList])?

Core Grammar

The core grammar rule for the sort expressionis:
[5] SortExpr := Expr "stable"?"sortby" "(" SortSpecList)"

Static Type Analysis
Thesort by expression returns prime(Type) - quantifier(Type) of itsinput type Type (seeaso [3.4 Prime

types)).
statEnvs |- Expr : Type

statEnvs |- Expr sor t by SortSpecList : prime(Type) - quantifier(Type)

Ed. Note: (MF) / Oct 23/2000: This definition assumes that the equality operator on Type is
defined. An alternative is requiring Expr» to have fs:atomic, but that seems too restrictive.

Ed. Note: DD: My version is even worse: it doesn't even refer to the types of the SortSpecList; it
istrue this ought to check the types of the sortby expressions for the existence of an ordering
relation. Also: we need to define how to sort nodes in document order.

Ed. Note: Peter: yesindeed, this needs to be fixed. We need (a) a core xf:sort (with only one
criterion) and appropriate more specific static and dynamic semantics, (b) a normalization of the
surface sortby (with many criteria) to the core xf:sort. Maybe we should tie this to resolution of

Dana's issue with sortby.

Dynamic Evaluation
The dynamic semantics of the sortby operator has not been defined. See [1ssue-0109: Semantics of sortby].

4.11 Conditional Expressions

I ntroduction

This section defines the semantics of [2.11 Conditional Expressions] in [XQuery 1.0: A Query L anguage for
XML]. A conditional expression supports conditional evaluation of one of two expressions.

[11] IfExpr == "if""(" Expr")" "then" Expr "else" Expr

Normalization

http://www.w3c.org/TR/query-semantics/ (118 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-conditionals

XQuery 1.0 Formal Semantics

[if (Exprq) then Expr, else Expr3]

let $fs:new := [EXprl] Effective_Boolean_Valuer
return if ($fs:new) then [Exprz] else [Exprg]

where $fs:new isanewly created variable that does not appear in the rest of the query.
Core Grammar
The core grammar rule for the conditional expressionis:

[11] IfExpr = "if""(" Expr")" "then" Expr "else" Expr

Static Type Analysis
statEnvs |- Exprq : xs:boolean — statEnvs |- Expro: Type, statEnvs |- Exprg: Types

statEnvs |- i f (Exprq) t hen Expry el se Expry: (Typey | Types)

Dynamic Evaluation

If the conditional's boolean expression Expr, evaluatesto true, Expr» is evaluated and its value is produced. |f
the conditional's bool ean expression evaluates to false, Expr3 is evaluated and its value is produced. Note that
the existence of two separate evaluation rules ensures that only one branch of the conditional is evaluated.

Ed. Note: DD: actually, | would like that last sentence to be true, but | don't think it is: thereis
nothing that | know of in the semantics of evaluation rules that says that the clauses must be
evaluated left-to-right, so currently nothing stops an implementation from evaluating the body
expressionsfirst. Evenif thisisafunctional language generally, | am sure there will be
non-functional side-effects in implementation-dependent extensions to the language, and | think
we must find away to formally state that bodies of conditionals do not get executed if their test
fails.

dynEnvs |- Exprq =>true dynEnvs |- Expr, => value,
dynEnvs |- if Exprq then Expro €lse Exprg => value,

dynEnvs |- Exprq =>false dynEnvs|- Expr3 => valueg

dynEnvs|-i f Exprqt henExpr; el seExprg =>values

http://www.w3c.org/TR/query-semantics/ (119 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

4.12 Quantified Expressions

Introduction

This section defines the semantics of [2.12 Quantified Expressions] in [XQuery 1.0: A Query Language for
XML].

XQuery defines two quantification expressions:

[9] QuantifiedExpr ::= ("some" | "every") Variable"in" Expr "satisfies’ Expr

Normalization

The quantification expressions are entirely normalized into other core expressions in the following
normalization rules.

[some Variablein Exprq satisfies Expr2]

xf:not (xf:empty(
for Variablein [Exprl] return
if ([EXIsz] Effective Boolean Value) thenl

else ()
)

[every Variable in Expr satisfies Exprz]

xf:empty/(
for Variablein [Exprl] return
if (xf:not([Exprz] Effective Boolean Value)) thenl

else ()
)

Core Grammar

There are no core grammar rules for quantified expressions as they are normalized to other core expressions.

Dynamic Evaluation

There are no additional dynamic evaluation rules for the quantified expressions.

Static Type Analysis

There are no additional static type rules for the quantified expressions.

http://www.w3c.org/TR/query-semantics/ (120 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-quantified-expressions

XQuery 1.0 Formal Semantics

4.13 Datatypes

I ntroduction

This section defines the semantics of [2.13 Datatypes] in [XQuery 1.0: A Query Language for XML].

Datatypes can be used in the language to refer to atype declared in the query prolog (see[5 The Query
Prolog]). Datatypes are used to declare the type of function parameters and in several kinds of XQuery

expressions. We first describe the semantics of Datatypes with respect to the XQuery type system, then
describe the semantics of expressions on Datatypes.

4.13.1 Referring to Datatypes

I ntroduction

The syntax of Datatypes is described by the following grammar productions.

[53] Datatype = (("element” "of" "type" QName) | DTKind | "node" | SimpleType
| "item™) Occurrencel ndicator

[54] DTKind ("element” | "attribute") QName?

[56] Occurrencelndicator = ("*" | "+"| "?")?

We give the semantics of Datatypes by means of normalization rules from Datatypes to the XQuery type
system (see[3 The XQuery Type System]). We then describe the dynamic and static semantics of

expressions involving datatypes in terms of operations on the XQuery type system.

Ed. Note: Note that normalization on Datatypes does not occur during the normalization phase,
but whenever adynamic or static rule requiresit. The reason for that deviation from the
processing model isthat the result of Datatype normalization is not part of the XQuery syntax
(Seeissue[lssue-0089: Syntax for typesin XQuery]). Datatype normalization is the only

occurrence of such adeviation in the formal semantics.

Notation

To define the semantics of Datatypes, we make use of the following auxiliary normalization rule. The
notation:

[Datatype] Datatype
Type
specifies that Datatype is equivalent to Type, in the XQuery type system.

We aso rely of the following additional production, which facilitates the specification of the normalization
rules for Datatypes.

[99] DTComponent ::= ("element” "of" "type" QName) | DTKind | "node" | SmpleType| "item"

Normalization

Occurencel ndicators are left unchanged when normalizing Datatypes into XQuery types. Each kind of

http://www.w3c.org/TR/query-semantics/ (121 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#datatypes

XQuery 1.0 Formal Semantics

Datatype component is normalized separately into the XQuery type system.

[DTComponent Occurrencel ndi cator] Datatype

[DTComponent] Datatype Occurrencel ndicator

The Datatype component "“element of type QName" can be used to refer to any element, (i.e., with any
gname), whose type is the globally defined type QName. Note that the following mapping rule uses the type
environment to make sure the global type exists, and a wildcard name for the resulting element.

If statEnvs.varType(QName) => Type, then

[element of type QName] Datatype
element * { B/_pe QName}
otherwiseit isan error.

The Datatype component DTKind can be used to refer to a globally defined element or attribute. In case the
name of the element or attribute is missing, this means any element or attribute is allowed. Note that the
following mapping rules use the type environment to make sure the global element or attribute exists, and a
wildcard type in case the name of the element or attribute is missing.

If statEnvs.elemDecl(QName) => Type, then

[element QName] Datatype
element QName
otherwiseit is an error.

If statEnvs.attrDecl (QName) => Type, then

[attri bute QName] Datatype
attribute QName

otherwiseit isan error.

xs:AnyElement

http://www.w3c.org/TR/query-semantics/ (122 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

[attri bute] Datatype

xS:AnyAttribute

The Datatype components "node" and "item" correspond to wildcard types. node indicates that any nodeis
allowed, and i t emindicates that any node or value is allowed. The following mapping rules make use of the
corresponding wildcard types.

xs.Anyltem

The Datatype component SimpleType is used to refer to one of the XML Schema simpletype, and isleft
unchanged during normalization.

If SmpleTypeisan [XML Schema Part 2] simpletype, then

[Simpl eType] Datatype
SimpleType
otherwiseit is an error.

Ed. Note: Jerome: The formal semantics makes use of several built-in types which are not in
XML Schema, notably fs:numeric and fs:UnknownSimpleType. These types are necessary for the
specification of some of XPath type conversion rules, and are accepted without raising an error.
The status of these typesis still an open issue. See [l ssue-0127: Datatype limitations).

4.13.2 Expressions on Datatypes

I ntroduction

Expressions on Datatypes are expressions whose semantics depends on the type of some of the
sub-expressions on which they are applied. The syntax of Datatype expressions is described by the following
grammar productions.

[16] InstanceofExpr ::= Expr "instance" "of" "only"? Datatype
[10] TypeswitchExpr ::= "typeswitch" "(" Expr")" ("as' Variable)? CaseClauset+ "default"

"return” Expr

[30] CaseClause "case" Datatype "return” Expr

http://www.w3c.org/TR/query-semantics/ (123 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

[23] CastExpr n= ("cast" "as'| "treat" "as' | "assert” "as") Datatype " (" Expr ")"

4.13.2.1 Instance of

I ntroduction

The Datatype expression "Expr instance of Datatype" istrueif and only if the result of evaluating expression
Expr isan instance of the type referred to by Datatype.

Normalization

An "instance of" expression is normalized into a"typeswitch" expression. Note that the following
normalization rule uses a variable $fs:new, which is anewly created variable which must not conflict with any
variablesin scope. This variable is necessary to comply to the syntax of typeswitch expressionsin the core
XQuery, but is never used.

[Expr instance of Datatype | gxpr

typeswitch ([Expr] Expr) & $fsinew

case Datatype return xf:true()
default return xf:false()

Ed. Note: MFF: The "instance of" expression allows an optional "only" modifier. The use case
for such amodifier is based on named typing, while the XQuery semanticsis currently based on
structural typing. It is not clear what the semantics of the "only" modifier under structural typing
should be and how it can be supported. See[Issue-0111: Semantics of instance of ... only].

4.13.2.2 Cast expressions

Cast expressions are expressions that check or change the type of an expression against a given type.

4,13.2.2.1 Cast as

I ntroduction

The expression "cast as Datatype (Expr)" can be used to explicitly convert the result of an expression from
one type to another. It changes both the type and value of the result of an expression, and can only be applied
on asimple value and an XML Schema simple type.

The semantics of cast expressions follows the specification given in Section [14. Casting Functions] of the
[XQuery 1.0 and XPath 2.0 Functions and Operators| document. The casting table in Section [14. Casting
Functions] of the [XQuery 1.0 and XPath 2.0 Functions and Operators| document indicates whether acast is

allowed or not. In case it is alowed, a specific cast function is applied, based on the input and output XML
Schema simple types. The semantics of the cast function follows casting rules which are described in the rest
of the remainder of Section [14. Casting Functions] of the [XQuery 1.0 and XPath 2.0 Functions and

Operators] document and is not specified further here.

Ed. Note: Jerome: The [XQuery 1.0 and XPath 2.0 Functions and Operators] document does not
provide any function for casting, just atable and casting rules. It would be preferable to either

http://www.w3c.org/TR/query-semantics/ (124 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting

XQuery 1.0 Formal Semantics

have an explicit function to normalize to, or to put the semantics of castsin the Formal
Semantics. Thisrelatesto Issue 17 in the [XQuery 1.0 and XPath 2.0 Functions and Operators]

document.

Notation

We make use of the following auxiliary judgments to represent access to the casting table and to the semantics
of casting, as described in Section [14. Casting Functions| of the [XQuery 1.0 and XPath 2.0 Functions and

Operators|] document.

The notation:

Type; CastAllowed Type, =>{ Y, M, N }

indicates whether casting from type Type; to Type, is always possible (Y), may be possible (M), or is not
allowed (N).

The notation:
cast as Type, (value;) => value,

indicates that applying the casting rules for Type, on value; yields the value value.

Dynamic Evaluation

If the cast isallowed (Y or M), the following evaluation rule applies the casting rules on the result of the input
expression. The rule uses the data model function dm t ype in order to obtain the dynamic type of the input
value, Datatype normalization to obtain the output type, and the above auxiliary judgments to check whether
the cast is alowed and apply the casting rules.

dynEnvs |- Exprq => valueg
dm:type(value,) = Type;

[Datatype,] Datatype => TYP€2
Type; CastAllowed Type, =>{ Y, M }
cast as Typey (value;) => value,

dynEnvs |- cast as Datatype, (Exprq) => value,

Note that in the case the cast is alowed, but the casting table indicates "M", the casting operation might still
fail at run-time, if the input value isinappropriate (e.g. attempting to cast the string "V RAI" into xs:boolean).
In that case, the dynamic evaluation returns an error value.

In the case the casting table returns "N", the cast is not allowed and the dynamic semantics always returns an
error value.

http://www.w3c.org/TR/query-semantics/ (125 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/xmlschema-2/#boolean

XQuery 1.0 Formal Semantics

dynEnvs |- Exprq => valueg
dm:type(valuey) = Type;

[Datatype;] Datatype = TYP&2

Type; CastAllowed Type, => N
dynEnvs |- cast as Datatype, (Exprq) => dm:error()

Static Type Analysis

The following static typing rules gives the statics semantics of "cast as' expression. If the cast table indicates
that the cast is allowed, then the static semantics is aways the output type of the cast. In the case the cast table
indicates the cast is not allowed, the system raises a static type error.

statEnvs |- Expr : Type; [Datatypez] Datatype => TYP&2 Type; CastAllowed Type, =>{ Y, M }

statEnvs |- cast as Datatype, (Expr) : Type,

4.13.2.2.2 Treat as

I ntroduction

The expressions "treat as Datatype (Expr)", can be used to change the dynamic type of the result of an
expression, without changing its value. Treat as never raises a static type error, but might raise a run-time error
if the dynamic type of the expression is not an instance of the specified type.

Normalization

Treat as expressions are normalized to typeswitch expressions. Note that the following normalization rule uses
avariable $fs:new, which is a newly created variable which must not conflict with any variablesin scope.

[treat as Datatype (Expr)] Expr

http://www.w3c.org/TR/query-semantics/ (126 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

typeswitch ([Expr] Expr) & $fsinew
case Datatype return $fs:new
default return dm:error()

4.13.2.2.3 Assert as

I ntroduction

The expression "assert as Datatype (Expr)", performs asimilar operation as "treat as' but is always type safe.
The system raises a static error in the case it cannot infer that the type of the expression is not a subtype of the
specified type.

Dynamic Evaluation

Dynamically, the "assert as' expression is ano-op. Asthe static type system enforces statically that the type of
the input expression is of the specified type.

dynEnvs |- Expr => value

dynEnvs |- assert as Type (Expr) => value

Static Type Analysis

The "assert as" expression istype safe if and only if the type of the input expression is a subtype of the
specified type. This semantics is specified as the following typing rule.

statEnvs |- : Type; [Datatypez] Datatype => TYP&2 Typep < Typey
statEnvs |- assert as Datatype, (Exprq) : Typey

Ed. Note: Jerome: The semantics for "assert as* hererelies on structural typing. It will have to be
revised when named typing is added. See [l ssue-0104: Support for named typing].

4.13.2.3 Typeswitch

I ntroduction

The typeswitch expression of XQuery allows users to perform different operations according to the type of an
input expression.

A typeswitch expression may have an optional "as Variable" statement, used to bind a variable to the result of
the input expression. This variable is optional in XQuery but mandatory in the XQuery core. Aswe will see,
one of the reasons for having this variable is better static typing.

Normalization

Normalization of typeswitch expressionsis applied to make sure an appropriate "as Variable" statement is
present.

The following general normalization rule merely adds a newly created variable, which does not appear in the
rest of the query. In that normalization rule, Exprg must not be avariable. Note that $fs:new is a newly

http://www.w3c.org/TR/query-semantics/ (127 of 183) [8/12/2002 6:38:06 PM]

XQuery 1.0 Formal Semantics

generated variable that must not conflict with any variablesin scope and is not used in any of the
sub-expressions.

typeswitch (Exprg)
case Datatype; return Expr4

case Datatype;, return Exprp,
default return Exprp4+q

Jew

typeswitch ([Expro] Expr) @ $fsinew
case Datatype; return I Exprl_ Expr

case Datatype, return | Exprp, Expr

default return [Exprn+1] Expr

An additional normalization rule is also applied in the case where the input expression is limited to a variable.
This special caseruleis used to propagate better typing information in each "case" branch of the typeswitch.

[

typeswitch (Variabley)
case Datatype; return Expr4

case Datatype;, return Exprp,
default return Exprp4+q

http://www.w3c.org/TR/query-semantics/ (128 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics
typeswitch (Variabley) as Variabley
case Datatype; return | EXprq | gxpr

case Datatype, return | EXpry | expr

default return [Exprn+1] Expr
In other words, this normalization rules treats:
typeswitch (Variable) case ...

identically to:
typeswitch (Variable) as Variable case ...

As aresult, Variable benefits from the more accurate type information given to the variable in the "as" clause
of the typeswitch during static type analysis.

Notation

We use the following additional grammar production to identify branches of the typeswitch.
[101] CaseRules

("case" Datatype "return” Expr CaseRules) | ("default” "return™ Expr)

When defining the dynamic and static semantics of typeswitch, we use the following auxiliary judgmentsto
denote partia evaluation and typing for the branches of atypeswitch.

The two following judgments

dynEnvs Case (Variable, value) |- case Type return Expr CaseRules => value,

and
dynEnvs Case (Variable, value) |- default return Expr => value,

are used in the dynamic semantics of typeswitch. They indicates that under the environment dynEnvs, and

with the typeswitch variable "Variable" bound to value "value', the given case rules (e.g., "case Type return
Expr CaseRules') evaluate to valuey.

The two following judgments
statEnvs Case (Variable, Type; (Type; | ... | Typey)) |- case Datatype return Expr CaseRules : Type,

and
statEnvs Case (Variable, Type; (Typeq | ... | Typey))) |- default return Expr : Type,

are used in the static semantics of typeswitch. They indicates that under the type environment statEnvs, and

with the typeswitch variables "Variable" bound to type "Type", the type inferred for the given case rules (e.g.,
"case Datatype return Expr CaseRules") istype Type,. Note that the typing judgments also keep track of all

previoudly visited typesin the typeswitch. This additional information is used later on in typing the default
clause.

Dynamic Evaluation

http://www.w3c.org/TR/query-semantics/ (129 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

The evaluation of atypeswitch proceeds as follows. First, the input expression is evaluated, yielding an input
value. Then the first case clause whose Datatype type matches that value is selected and its corresponding
expression is evaluated.

During typeswitch evaluation, the variable Variable and the value value to match against, are kept on the left
of the turnstile |- in the auxiliary judgments. Each case rule of atypeswitch expression is always eval uated
against this value, and case rules are tried from left to right. The rule for the typeswitch expression evaluates
Its expression and sets up the appropriate environment for the case rules:

dynEnvs |- Expr =>valuey ~ dynEnvs Case (Variable, valueg) |- CaseRules => value;

dynEnvs |- typeswitch (Expr) as Variable CaseRules => value;

If the value valueg is in the domain of the type Type, the next rule extends the environment by binding the
variable Variable to valuey and evaluates the body of the case rule. Remember that the domain of atypeisthe
possibly infinite set containing all values that are instances of that type.

Ed. Note: Jerome: The notion of domain of atype needsto be clarified. This should go in section
3. about the type system. The notion of domain of atype will change as soon as the named typing
proposal is added. See [l ssue-0104: Support for named typing].

Datatype] Datatype => Type valuegi n Dom(Type)
dynEnvs|[varValue(Variable |-> value) | |- Expr => value;

dynEnvs Case (Variable, valuep) |- case Datatype return Expr CaseRules => value;

If the value valueg is not in the domain of the type expression Type (i.e., the normalized version of

Datatype),the next rule eval uates the case rules following the current one. The body of the given caseruleis
not evaluated if valueg is not in the domain of the given type.

[Datatype] Datatype => Type not (valuegi n Dom(Type)) dynEnvs Case (Variable,valuep) |-
CaseRules => value;

dynEnvs Case (Variable, valuep) |- case Datatype return Expr CaseRules => value;

Finally, the last rule states that the "default” branch of atypeswitch expression always evaluates to its given
expression.

dynEnvs |- Expr => value;

dynEnvs Case (Variable, valuep); |- default return Expr => value;

Static Type Analysis

The typeswitch expression possesses one of the more complex sets of static typing rules. The rules account for
the fact that if the static type of the conditional expression is known, then we may be able to determine that
some of the case clauses do not apply.

http://www.w3c.org/TR/query-semantics/ (130 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

The main typeswitch rule relies upon the auxiliary type judgments to determine the type of each of the case
clauses and of the default clause. These rules are provided after the main rule. Note the type of the input
expression is always treated as a collection of similar items, using the "prime" and "quantifier" operations on
types. Thisis necessary as further typing rules compute the common prime types for branch of the type switch.

Ed. Note: Jerome: the use of the common prime types replaces the previous use of type
intersection. Common prime types simplifies significantly the complexity in implementing
typeswitch, but isless precise in certain cases.
statEnvs |- Exprg : Typeg
Typey = prime(Typep) - quantifier(Typep)

[Datatype;] Datatype => TYP€1

[Datatype,] Datatype = TYPen
statEnvs Case (Variabley, Typey ; () |- case Datatype; return Exprq : Type;'

statEnvs Case (Variabley, Typeg ; (Typeq | ... | Typen.1)) |- case Datatype, return Exprp, : Type,
statEnvs Case (Variableg, Typey ; (Typey | ... | Typey)) |- default return Expri+q : Typen+q'

statEnvs |- (typeswitch (Exprg) as Variable,
case Datatype; return Expr4

case Datatypey, return Exprp,
default return Exprp1) : Typey' | ... | Typens1'

Now we give the rules that determines the static type of each case clause in the typeswitch. In each rule, one
need to compute the "common prime types" between the input type and the case clause datatype.

Thefirst ruleis applied if the "common primetypes' is hone. In that case, we know for sure the corresponding
case clause will not be evaluated and the corresponding result type is none. Thanksto thisrule, it is often
possible to infer a quite precise type for the overall typeswitch through elimination of some branches.

[Datatype] Datatype =~ Type
common-primes(prime(Typep), prime(Type)) = Type'y
Typ€e'p = none

statEnvs Case (Variabley, Typey; (Type; | ... | Typey)) |- case Datatype return Expr : none

The second ruleis applied if the "common prime types' is anything else but none. In that case, the input
variable is added into the type environment, and type inference is applied on the expression on the right-hand
side of the case clause. Note that the type of the input variable is set to the "common prime types’, and not the

Input type.

http://www.w3c.org/TR/query-semantics/ (131 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Datatype] Datatype => Type
common-primes(prime(Typep), prime(Type)) = Type'g
common-occur(quantifier(Typep), quantifier(Type)) = Quanty'
not(Type' g = none)
statEnvs [varType(Variable : Type'g - Quanty)] |- Expr : Type;

statEnvs |- case Datatype return Expr : Type;

Note that these two rules do not take the visited datatypes into account. The "default" clause differs from the
other clausesisthat it does not specify a Datatype. The typing rule for the "default” clause uses the visited
type instead. Intuitively, the type corresponding to the "default" clause is any type but the ones in the other
cases clauses.

Therefore, in case the type of the input expression is a subtype of all the visited types, then one knows for sure
the case clause is not evaluated and the type of the default clause is xgq_none;.

Typep <: (Typey | ... [Typey)
statEnvs Case (Variabley, Typey; (Type; | ... | Typey)) |- default return Expr : none

Otherwise, the input variable is added into the type environment, and type inference is applied on the
expression on the right-hand side of the default clause. Note that the type of the input variable is set to the
input type of the expression.

Ed. Note: Jerome: Thereis an asymmetry here. It would be nicer to be able to have the type be
more precise, like for the other case clauses. The technical problem is the need for some form of
negation. | think one could define a"non-common-primes" function that would do the trick, but |

leave that as open for now until further review of the new typeswitch section is made. See
[Issue-0112; Typing for the typeswitch default clause].

not(Typeg <: (Typeq | ... | Typey))
statEnvs [varType(Variable : Typep) | |- Expr : Typeg

statEnvs Case (Variableg, Typeg ; (Typey | ... | Typey)) |- default return Expr : Typeg

Example

The typing rules for typeswitch provides reasonably precise type information in a number of useful cases. For
example, consider the following aiteration expression followed by atypeswitch.

for $x in $bi b/ book/*

return
typeswi tch $x as $e
case el ement author return $e/ name
case elenent title return & s_data; ($e)
default return ()

Remember that the "data" function is only working on single nodes. Note that the above typeswitch is using

http://www.w3c.org/TR/query-semantics/ (132 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

variable $e, which has amore precisetyping (el ement title { xs:string })thantheinput
expression $x (el enent title | elenent author | elenment editor ...).

The type rules for typeswitch do not, however, account for the interdependence between successive case
clauses. Thusif two case clauses had overlapping Datatypes, the static rules would behave as if both case
clauses "fired", rather than just the first one.

Ed. Note: Jerome: It seems that the simpler version of typeswitch proposed here would actually
allow to take previous case clauses into account. Thisis something worth exploring asit would
improve the static analysis in away that might be helpful to users. See [Issue-0112: Typing for

the typeswitch default clause].

5 The Query Prolog

Ed. Note: Status: This section is still draft and needs further revision. Revision of the section is
pending agreement on issues related to namespaces and named typing.

I ntroduction

This section defines the semantics of [3. The Query Prolog] in [XQuery 1.0: A Query Lanquage for XML].

The Query Prolog is a series of declarations and definitions that affect query processing. The Query Prolog
can be used to define namespaces, import type definitions from XML Schemas, and define functions.
Namespace declarations and schema imports always precede function definitions, as specified by the
following grammar productions.

[1] Query == QueryProlog ExprSeguence?
[2] QueryProlog := (NamespaceDecl
| DefaultNamespaceDecl

| Schemal mport)* FunctionDefn*

The order in which functions are defined isimmaterial. Notably, user-defined functions may invoke other
user-defined functions in any order.

5.1 Namespace Declarations and Schema Imports

I ntroduction

[68] NamespaceDecl .= "namespace” QName =" StringLitera
[69] DefaultNamespaceDecl "default” ("element” | "function") "namespace" "=" StringLiteral
[72] Schemalmport "schema" StringLiteral ("at" StringLiteral)?

Namespace Declarations and Schema Import are not part of query proper but are used to modify the input
context for the rest of the query processing. As such, Namespace Declarations and Schema Import are
processed before the normalization phase.

The semantics of Schema Import is described in terms of the XQuery type system. The process of converting
an XML Schemainto a sequence of type declarationsis described in Section [3.5 mporting types from

XML Schema]. We here describe how the resulting sequence of type declarationsis added into the static
environment when the prolog is processed.

http://www.w3c.org/TR/query-semantics/ (133 of 183) [8/12/2002 6:38:07 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#N401342

XQuery 1.0 Formal Semantics

Notation

We denote by prolog declarations, either namespace declarations or type declarations.

[73] PrologDeclList ::= PrologDecl*
[74] PrologDecl == NamespaceDecl
| DefaultNamespaceDecl

| TypeDeclaration

When processing Namespace Declarations and Schema Import, we use the following auxiliary judgment. The
notation:

PrologDeclList => statEnvs
indicates that the sequence of prolog declarations PrologDeclList yields the static environment statEnvs.

Context Processing

Prolog declarations are processed in the order they are encountered, as described by the following inference
rules. Thefirst rule specify that for an empty sequence of prolog declarations, the static environment is
composed of a default context.

Ed. Note: Jerome: What do the default namespace and type environments contain? | believe at
least the default namespace environment should contain the "xs', "xf" and "op" prefixes, as well
as the default namespaces bound to the empty namespace. Should the default type environment
contain wildcard types? See [Issue-0115: What isin the default context?].

() => statEnvsDefault

A namespace declaration adds a new (prefix,uri) binding in the namespace component of the static
environment.

PrologDeclList => statEnvs
statEnvs = statEnvs [namespace(NCName |-> StringLiteral)]

PrologDeclList namespace NCName = StringLiteral => statEnvs

A default element namespace declaration changes the default element namespace prefix binding in the
namespace component of the static environment.

PrologDeclList => statEnvs
statEnvs' = statEnvs [namespace(fsdefaultelem |-> StringLiteral) |

PrologDeclList default element namespace = StringLiteral => statEnvs

A default function namespace declaration changes the default function namespace prefix binding in the
namespace component of the static environment.

PrologDeclList => statEnvs
statEnvs' = statEnvs [namespace(fsdefaultfunc |-> StringLiteral)]

PrologDeclList default function namespace = SringLiteral => statEnvs

http://www.w3c.org/TR/query-semantics/ (134 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Type, element and attribute declarations are added respectively to the type, element and attribute declarations
components of the static environment.

PrologDeclList => statEnvs
statEnvs = statEnvs [typeDecl (QName |-> Type) |

PrologDeclList define type QName { Type} => statEnvs

PrologDeclList => statEnvs
statEnvs = statEnvs [elemDecl (QName |-> Type) |

PrologDeclList define element QName { Type} => statEnvs

PrologDeclList => statEnvs
statEnvs = statEnvs [attrDecl(QName |-> Type) |

PrologDeclList define attribute QName { Type } => statEnvs

Note that for namespaces, later declarations can override earlier declarations of the same prefix. In the case of
global elements, attributes and types, multiple declarations correspond to an error.

5.2 Function Definitions

I ntroduction

User defined functions specify the name of the function, the names and types of the parameters, and the type
of the result. The function body defines how the result of the function is computed from its parameters.

[70] FunctionDefn "define" "function" QName " (" ParamList?")" ("returns' Datatype)?
EnclosedExpr

[71] ParamList = Param ("," Param)*
[52] Param = Datatype? Variable
Notation

We use the following auxiliary normalization rule [-] param fOr the normalization of parametersin function

definitions.

PrologDeclList => statEnvs
statEnvs = statEnvs [attrDecl(QName |-> Type) |

PrologDeclList define attribute QName { Type} => statEnvs

Normalization

The only form of normalization required for user defined functionsis adding the type for its parameters or for
the return clause if it is not provided.

http://www.w3c.org/TR/query-semantics/ (135 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

[define function QName (ParamList?) returns Datatype EnclosedExpr] Expr

define function [QName] ([ParamList?] Param) F€turns Datatype [Encl osedExpr] Expr

If the return type of the function is not provided, it is given the item* datatype, corresponding to xs:AnyType.

[define function QName (ParamList?) EnclosedExpr] Expr

define function [QName] ([ParamList?] Param) F€turnsitem* [Encl O%dExpr] Expr

Parameters without a declared typed are given the item* datatype, corresponding to xs.AnyType.

item* Variable
[Datatype Variable | pyram

Datatype Variable
Context Processing

First, all the function signatures are added into the static environment, and all the function bodies are added
into the dynamic environment. This process happens before static type analysis occurs.

FunctionDefnList => statEnvs, dynEnvs
statEnvs = statEnvs [funcType(QName |-> (Datatype; , --- Datatype,, , Datatypey)) |
dynEnvs = dynEnvs[funcDefn(QName |-> (Expr , Variabley , --- Variabley))]

FunctionDefnList define function QName (Datatype; Variabley, - Datatype, Variable,)
returns Datatype;
{ Expr } => statEnvs, dynEnvs

Static Type Analysis

The static typing rules for function definitions checks whether the type of the enclosed expression is consistent
with the type of the input parameters, and the type of the return clause.
statEnvs [varType(Variable; : Datatype; ;...; Variable, : Datatype,)] |- Expr : Type
Type <: Datatype,

statEnvs |- define function QName (Datatype; Variable; , - Datatype, Variable,)
returns Datatype,

{ Expr}

http://www.w3c.org/TR/query-semantics/ (136 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

What thistyping ruleis checking is: if the input parameters are of the given type, then isit true that the result
of the function is of the return type. If the type checking fails, the system raises an error. Otherwise, it does not
have any other effect, as function signatures are already inside the static environment.

Dynamic Evaluation

There is no need to describe a dynamic semantics at this point, as we do not have yet any actual value to
evaluated the function. The actual semantics of function evaluation has been described in [4.2.4 Function

Callg].

6 Additional Semantics of Functions

Ed. Note: Status. This section is still incomplete. This section will be completed as soon as
Sections 4 and 5 are consolidated. See [Issue-0135: Semantics of special functions).

Aswas explained in section [2.4 Functions], a number of functions play arole defining the formal semantics
of XQuery. Some other functions from the [XQuery 1.0 and XPath 2.0 Functions and Operators] document

need special static typing rules. This section gives the semantics of all "special™ functions, used in the formal
semantics.

6.1 Formal Semantics Functions

I ntroduction

We give the definition, and semantics, of functions used in the formal semantics that are not part of the
[XQuery 1.0 and XPath 2.0 Functions and Operators| document.

6.1.1 The f s: document function

The fs.document function computes the document node of the current node, and is used to define the
semantics of the/ expression in XQuery. The fs.document function is defined as a recursive XQuery function
asfollows.

define function fs:docunent (node $x) returns node

{
if enpty(dm parent ($x))
t hen $x
el se fs:docunent ($x)

}

6.1.2 The f s: dat a function

I ntroduction

The fs.data function is used to access the value content of an element or attribute. This function corresponds to
the dm:typed-val ue accessor in the XQuery data model.

Ed. Note: Some aspects of the semantics of the data() function are still an open issue. For
instance, what should be the result of data() over atext node. See [I ssue-0107: Semantics of

data()].

http://www.w3c.org/TR/query-semantics/ (137 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Notation

To compute the resulting type for the fs.data function, we use the same approach as for the child axisin
XPath, by applying the fs.datafunction as a Filter. See [4.3.1 Axis Steps] for the definition and the semantics

of Filters.

We use the following notation, adapted from the Filter judgment in [4.3.1 Axis Steps).
dynEnvs.varValue; Type; |- fs.data: Type,

Static Type Analysis

Static type analysis for the fs:.data function checks that the function is applied on an element or attribute with a
simple type content. If so, it returns the corresponding simple type through an application of the Filter
judgment on the input type of the function.
statEnvs |- Expr : Type;
statEnvs |- Type; <: (element * { xssAnyAttribute*, xssAnySimpleType} | attribute * { xs:AnySimpleType})
dynEnvs.varValue; Type; |- fs.data: Type,

statEnvs |- fs:data(Expr) : Type,

statEnvs ; element gname { AttrType, SimpleType} |- fs.data: SimpleType;

statEnvs ; attribute gname { SimpleType} |- fs.data: SimpleType;

If applied on any other kind of item, it returns the empty sequence.
statEnvs |- Expr : Type
statEnvs |- not(Type <: (element * { xs:AnyAttribute*, xs.AnySimpleType } | attribute * {
xs:AnySimpleType}))
statEnvs |- Type<: item

dynEnvs |- fs.data(Expr) : ()

Otherwise (for empty sequences or sequences of more than one item value), it raises an error.
Example

Consider the following variables and its corresponding static type.

$x . (element price { attribute currency { xs:string }, xs:decinmal }
| element price_code { xs:integer })

Applying the fs:data function on that variable results in the following type.

fs:data($x) : (xs:decimal | xs:integer)

Remark that, as the input type is a choice, applying the Filter judgment results in a choice of simple types for

http://www.w3c.org/TR/query-semantics/ (138 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

the output of the fs:data function.
Dynamic Evaluation

Dynamically, the fs:data function isimplemented as the dm:typed-value data model accessor.
dynEnvs |- Expr =>value; dm:typed-value(value;) = value,

dynEnvs |- fs.data(Expr) => value,

6.2 Functions with specific typing rules
6.2.1 The dm error function

Static Type Analysis

The dm:error function always returns the none type.

statEnvs |- dm:error() : none

6.2.2 The op: uni on, op: i nt ersect and op: expect operators

Static Type Analysis
The static semantics for op:union uses the auxiliary type functions prime(Type) and quantifier(Type); which
are defined in [3.4 Prime types]. The type of each argument is determined, and then prime(.) and quantifier(.)
are applied to the sequence type (Type;, Typey).

statEnvs |- Expry : Type; statEnvs |- Expro: Type, Types = Typey , Type,

statEnvs |- op:union(Exprq, Exproy) : prime(Typeg) - quantifier(Types)

The static semantics of op:intersect is analogous to that for op:union Because an intersection may always be
empty, the result type needs to be made optional.

statEnvs |- Expry : Typey statEnvs|- Exprp @ Type, Types = Typey, Type;

statEnvs |- op:intersect(Expr4, Exprop) : prime(Types) - quantifier(Types) - ?

The static semantics of op:except follows. The type of the second argument isignored as it does not contribute
to the result type. Like with op:intersect the result of may be the empty list.

statEnvs |- Expr : Type;

statEnvs |- op:except(Expr1, Exproy) : prime(Type) - quantifier(Type;) - ?

6.2.3 The op: t o operator

The static semantics of the op:to function states that it always returns an integer sequence:

http://www.w3c.org/TR/query-semantics/ (139 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

statEnvs |- Exprq : Xsiinteger — statEnvs |- Expro : xs:integer

statEnvs |- op:to(Expr4, Expro) : Xsiinteger*

Ed. Note: MFF: the binary operator "to" is not defined on empty sequences. The [XQuery 1.0
and XPath 2.0 Functions and Operators] document says operands are decimals, while the XQuery
document says they are integers. What happens when Exprl > Expr2? See [I ssue-0119:
Semantics of op:to].

A Normalized core grammar

This section contains the grammar of XQuery after it has been normalized, sometimes referred to as the "core"
syntax. The XQuery coreis[should be] aminimal, complete, and proper subset of the entire X Query
language. It is minimal, because no normalized expression can be removed without reducing the
expressiveness of the language. It is complete, because every expression in the XQuery language can be
re-expressed as an expression in the normalized language.

Ed. Note: DD 27/8/2001: Do wereally believe it is minimal ?

The core syntax is currently not a proper subset of the XQuery syntax defined in [XQuery 1.0: A Query
Language for XML]. The following X Query issues address alignment of the core with the compl ete syntax:

'11: Alternative syntax for element construction (xquery-element-construction)'; and '32: Correspondence of
Types (xquery-type-correspondence)' [XQuery 1.0: A Query Language for XML].

The following new issues are related to normalization of XQuery: [Issue-0007: References: IDREFS,
Keyrefs, Joing], [1ssue-0008: Fixed point operator or recursive functiong], [I ssue-0009: Externally

defined functions], [1ssue-0010: Construct values by copy], [Issue-0011: XPath tumbler syntax instead
of index?].

NON-TERMINALS

[1] Query == QueryProlog ExprSeqguence?
[2] QueryProlog .= (NamespaceDecl
| DefaultNamespaceDecl
| Schemalmport)* FunctionDefn*
[3] ExprSequence = Expr (Comma Expr)*
[4] Expr = SortExpr

J
E

— |~
)
‘%ﬂ

ypeswitchExpr

E
m
X

00
:
Y

onstructor

S
7

http://www.w3c.org/TR/query-semantics/ (140 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

[5]
[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]
[22]
[23]
[24]

[25]
[26]
[27]
[28]
[29]
[30]

[31]
[32]
[33]

SortExpr
ForExpr

LetExpr
TypeswitchExpr

IfExpr
CastExpr
Constructor
PathExpr
SortSpecList

ForClause
LetClause
CaseClause
RelativePathExpr
StepExpr
AxisStep

AXxis

NodeTest
NameTest
Wildcard
KindTest

ProcessinglnstructionT est
CommentTest

TextTest

AnyKindTest

General Step

PrimaryExpr

NumericLitera
Litera
Parenthesi zedExpr

Expr Stable? Sortby L par SortSpecL ist Rpar
ForClause Return Expr
LetClause Return Expr

Typeswitch Lpar Expr Rpar As Variable CaseClause+ Default

Return Expr
If Lpar Expr Rpar Then Expr Else Expr
(CastAs| AssertAs) Datatype Lpar Expr Rpar

ComputedElementConstructor | ComputedAttributeConstructor

Rel ativePathExpr

Expr (Ascending | Descending) (Comma SortSpecList)?

For Variable In Expr

Let Variable ColonEquals Expr
Case Datatype Return Expr
StepExpr

AxisStep | Genera Step

Axis NodeTest

AxisChild

| AxisDescendant

| AxisParent

| AxisAttribute

| AxisSelf

| AxisDescendantOrSelf
NameTest | KindTest
OName | Wildcard

Star | NCNameColonStar | StarColonNCName
ProcessinglnstructionTest

| CommentTest

| TextTest

| AnyKindTest
Processinglnstruction Lpar StringLiteral? Rpar
Comment L par Rpar

Text Lpar Rpar

Node L par Rpar

PrimaryExpr

Variable

| Litera

| ElementNameOrFunctionCall
| ParenthesizedExpr
IntegerLiteral | DecimallLiteral | DoubleL iteral
NumericLiteral | StringLiteral
L par ExprSequence? Rpar

http://www.w3c.org/TR/query-semantics/ (141 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

OName Lpar (Expr (Comma Expr)*)? Rpar

Datatype Variable

((ElementOfType QName) | DTKind | Node | SimpleType
| 1tem) Occurrencel ndicator

(Element | Attribute) QName?

OName

(Star | Plus| QMark)?

Element (QName | EnclosedExpr) L brace ExprSequence?
Rbrace

Attribute (QName | EnclosedExpr) Lbrace ExprSequence?
Rbrace

L brace ExprSequence Rbrace

Namespace QName Equals StringL iteral

Default (Element | Function) Namespace Equals StringL iteral

DefineFunction QName Lpar ParamList? Rpar Returns
Datatype EnclosedExpr

Param (Comma Param)*

Schema StringL.iteral (AtKeyword StringLiteral)?

Normalization also simplifies the lexical structure of the language:

[34] ElementNameOrFunctionCall
[35] Param

[36] Datatype

[37] DTKind

[38] SimpleType

[39] Occurrencelndicator

[40] ComputedElementConstructor
[41] ComputedAttributeConstructor
[42] EnclosedExpr

[43] NamespaceDecl|

[44] DefaultNamespaceDecl
[45] FunctionDefn

[46] ParamList

[47] Schemalmport
TERMINALS

[50] S =
[51] AxisChild =
[52] AxisDescendant =
[53] AxisParent =
[54] AxisAttribute =
[55] AxisSdf =
[56] AxisDescendantOrSelf ::=
[57] AxisNamespace =
[58] DefineFunction =
[59] AtKeyword =
[60] In =
[61] Return 1=
[62] Then =
[63] Else =
[64] Default =
[65] Namespace =
[66] As =
[67] Case =
[68] Only 1=
[69] Returns =

WhitespaceChar+

“child" "::"

"descendant™ "::
"parent” "::"

“attribute" "

"selft
"descendant-or-self" "::"
"namespace” "::"
"define" "function"

Ilmll
n i r]II

"return”

"then"
lld %ll

"default"
"namespace

II$
"C&"
Ilonlyll

"returns’

http://www.w3c.org/TR/query-semantics/ (142 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

[70] Function := "function”

[71] Element = "element"

[72] Item = "item"

[73] Attribute = "dtribute"

[74] ElementOfType = "element" "of" "type"
[75] TypeToken = "type"

[76] Node = "node"

[77] Schema = "schema'

[78] Nmstart = Letter| "_"

[79] Nmchar = Letter | CombiningChar | Extender | Digit| "." | "-"] "_"
[80] Star e

T gn

[81]] ColonStar
[82] NCNameColonStar

II:II? NCNarr]e II:II Mg n

[83] StarColonNCName = """ NCName
[84] Equals = =

[85] ColonEquals = "=

[86] Plus = "4

[87] OMark = "

[88] Arrow = =

[89] Lpar ="

[90] Rpar =)

[91] Variable = "$" OName
[92] For = "for"

[93] Let = Mle”

[94] CastAs = "cad" "as"
[95] AssertAs = "assert" "as'
[96] Digits = [0-9]+

[97] IntegerLiteral = Digqits

[98] DecimallLitera
[99] DoubleLitera

("." Diqgits) | (Digits"." [0-9]*)
(("." Digits) | (Digits ("." [0-9]*)?)) ((e] | [E]) ([+] | [-])? Digits

[105] Comma
[106] StringLiteral

[100] Comment = "comment"

[101] Text = "text"

[102] Processinglnstruction = "processing-instruction”
[103] If = if"

[104] Typeswitch = "typeswitch"

CTT D1 QT 1)

[107] Sortby = "sortby"
[108] Stable = "stable"
[109] Ascending = "ascending"
[110] Descending = "descending"
[111] PITarget = NCName

Nmstart Nmchar*
":"? NCName (":" NCName)?

[112] NCName
[113] OName

http://www.w3c.org/TR/query-semantics/ (143 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]

Amp
PredefinedEntityRef
HexDigits

CharRef

Lbrace

Rbrace

L CurlyBraceEscape
RCurlyBraceEscape
Char
WhitespaceChar
Whitespace

L etter

BaseChar

ngn
"&" ("It | "gt" | "amp" | "quot" | "apos’) "’

([0-9] | [&f] | [A-F])+

"&#"' (Digits| ("x" HexDigits)) ";"

g

"o

g

myn

([#x0009] | [#x000D] | [#x000A] | [#x0020-#xFFFD])

([#x0009] | [#x000D] | [#x000A] | [#x0020Q])

WhitespaceChar*

BaseChar | 1deographic

([#x0041-#x005A] | [#x0061-#x007A] | [#x00CO-#x00D6]

| [#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131]

| [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E]

| [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5]

| [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | [#x0386]
| [#x0388-#x038A] | [#x038C] | [#x038E-#x03A1] | [#x03A3-#x03CE]
| [#x03D0-#x03D6] | [#x03DA] | [#x03DC] | [#x03DE] | [#x03EQ]

| [#x03E2-#x03F3] | [#x0401-#x040C] | [#x040E-#x044F]

| [#x0451-#x045C] | [#x045E-#x0481] | [#x0490-#x04C4]

| [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB]

| [#XO4EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | [#x0559]
| [#x0561-#x0586] | [#x05D0-#x05EA] | [#Xx05F0-#x05F2]

| [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-#x06B7]

| [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3]

| [#x06D5] | [#x06E5-#x06E6] | [#x0905-#x0939] | [#x093D]

| [#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990]

| [#x0993-#x09A8] | [#x09AA-#x09BQ] | [#x09B2] | [#x09B6-#x09B9]
| [#x09DC-#x09DD] | [#x09DF-#x09E1] | [#x09F0-#x09F1]

| [#x0A05-#x0A0A] | [#x0AOF-#x0A10] | [#x0A13-#x0A 28]

| [#x0A2A-#x0A 30] | [#x0A32-#x0A33] | [#x0A 35-#x0A36]

| [#x0A 38-#x0A39] | [#x0A59-#x0A5C] | [#x0A5E]

| [#x0A72-#x0A74] | [#x0A85-#x0A8B] | [#x0A8D]

| [#x0A8F-#x0A91] | [#x0A93-#x0AAS8] | [#x0AAA-#x0ABOQ]

| [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | [#X0ABD] | [#x0AEQ]

| [#x0B05-#x0B0C] | [#x0BOF-#x0B10] | [#x0B13-#x0B28]

| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39]

| [#x0B3D] | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]

| [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95]

| [#x0B99-#x0B9A] | [#x0B9C] | [#x0B9OE-#x0B9F]

| [#xOBA3-#x0BA4] | [#x0BA8-#x0BAA] | [#xOBAE-#x0BB5]

| [#x0BB7-#x0BB9] | [#x0C05-#x0COC] | [#x0COE-#x0C10]

| [#x0C12-#x0C28] | [#X0C2A-#x0C33] | [#x0C35-#x0C39]

| [#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90]

| [#x0C92-#x0CAS] | [#XOCAA-#x0CB3] | [#x0CB5-#x0CB9]

| [#xOCDE] | [#x0CEO-#x0CE1] | [#x0D05-#x0D0C]

http://www.w3c.org/TR/query-semantics/ (144 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

[127]
[128]

|deographic
CombiningChar

| [#xODOE-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39]

| [#xOD60-#x0D61] | [#xOE0L-#XOE2E] | [#XOE30] | [#XOE32-#X0E33]
| [#XOE40-#x0E45] | [#XOESL-#X0ES2] | [#XOES84] | [#XOES7-#X0ES8]
| [#xOE8A] | [#xOE8D] | [#x0E94-#x0E97] | [#x0E99-#x0E9F]

| [#XxOEA 1-#x0EA3] | [#XOEA5] | [#XOEAT7] | [#XOEAA-#XOEAB]

| [#xOEAD-#xOEAE] | [#xOEBOQ] | [#xOEB2-#x0EB3] | [#X0EBD]

| [#XOECO-#XOECA] | [#xOF40-#x0FA7] | [#XOF49-#x0F69]

| [#x10A0-#x10C5] | [#x10D0-#x10F6] | [#x1100] | [#x1102-#x1103]
| [#x1105-#x1107] | [#x1109] | [#x110B-#x110C] | [#x110E-#x1112]

| [#x113C] | [#x113E] | [#x1140] | [#x114C] | [#x114E] | [#x1150]

| [#x1154-#x1155] | [#x1159] | [#x115F-#x1161] | [#x1163] | [#x1165]
| [#x1167] | [#x1169] | [#x116D-#x116E] | [#x1172-#x1173] | [#x1175]
| [#x119E] | [#x11A8] | [#x11AB] | [#x11AE-#x11AF]

| [#x11B7-#x11B8] | [#x11BA] | [#x11BC-#x11C2] | [#x11EB]

| [#x11FO] | [#X11F9] | [#x1EQ0-#x1E9B] | [#x1EAO-#x1EFQ]

| [#xLFO0-#x1F15] | [#x1F18-#x1F1D] | [#X1F20-#x1F45]

| [#xLFA48-#x1FAD] | [#x1F50-#x1F57] | [#X1F59] | [#x1F5B]

| [#x1F5D] | [#X1F5F-#X1F7D] | [#x1F80-#x1FB4]

| [#x1FB6-#x1FBC] | [#X1FBE] | [#X1FC2-#x1FC4]

| [#x1FC6-#x1FCC] | [#X1FDO-#x1FD3] | [#X1FD6-#x1FDB]

| [#x LFEO-#X1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | [#x2126]
| [#x212A-#x212B] | [#x212E] | [#x2180-#x2182] | [#x3041-#x3094]

| [#x30A 1-#x30FA] | [#x3105-#x312C] | [#XACO0-#xD7A3])
([#x4E00-#xOFAB] | [#x3007] | [#x3021-#x3029])

([#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486]

| [#x0591-#x05A1] | [#x05A3-#x05B9)] | [#x05BB-#x05BD]

| [#x05BF] | [#x05C1-#x05C2] | [#X05C4] | [#x064B-#x0652]

| [#x0670] | [#x06D6-#x06DC] | [#x06DD-#X06DF]

| [#x0BEO-#X06E4] | [#XOBE7-#X06ES] | [#X06EA-#X06ED]

| [#x0901-#x0903] | [#x093C] | [#x093E-#x094C] | [#x094D]

| [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] | [#x09BC]

| [#x09BE] | [#x09BF] | [#x09CO-#x09C4] | [#X09C7-#x09C8]

| [#Xx09CB-#X09CD] | [#x09D7] | [#X09E2-#x09E3] | [#X0A02]

| [#xOA3C] | [#XOA3E] | [#x0A3F] | [#X0A40-#x0A42]

| [#XOA47-#x0A48] | [#XOA4B-#X0A4D] | [#X0AT0-#X0A71]

| [#xOA81-#x0A83] | [#XOABC] | [#XOABE-#X0ACS]

| [#XOACT7-#x0ACY] | [#xOACB-#X0ACD] | [#x0BO1-#x0B03]

| [#x0B3C] | [#XOB3E-#x0B43] | [#Xx0B47-#x0B48]

| [#x0B4B-#x0B4D] | [#Xx0B56-#x0B57] | [#X0B82-#x0B83]

| [#xOBBE-#x0BC2] | [#x0BC6-#x0BCS] | [#XxOBCA-#x0BCD]

| [#x0BD7] | [#x0CO1-#x0C03] | [#x0C3E-#x0C44] | [#x0CA46-#x0C48]
| [#xOCAA-#Xx0CAD] | [#x0C55-#x0C56] | [#x0C82-#x0C83]

| [#xOCBE-#x0CC4] | [#x0CC6-#x0CC8] | [#XxOCCA-#x0CCD]

| [#xOCD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43]

| [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | [#x0D57] | [#x0E31]

| [#xOE34-#x0E3A] | [#XOE47-#xOEAE] | [#xOEB1]

| [#xOEB4-#XOEBY] | [#XOEBB-#X0EBC] | [#Xx0EC8-#X0ECD]

| [#XOF18-#x0F19] | [#xOF35] | [#xOF37] | [#xOF39] | [#XOF3E]

http://www.w3c.org/TR/query-semantics/ (145 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

| [#XOF3F] | [#XOF71-#x0F84] | [#x0F86-#x0F8B] | [#XO0F90-#x0F95]
| [#xOF97] | [#XOF99-#xOFAD] | [#XOFB1-#x0FB7] | [#XOFBY]
| [#x20D0-#x20DC] | [#Xx20E1] | [#x302A-#x302F] | [#x3099]
| [#x309A])
[129] Digit = ([#x0030-#x0039)] | [#X0660-#x0669] | [#X0B6F0-#X06F9)]
| [#x0966-#x096F] | [#x09E6-#Xx09EF] | [#X0A66-#X0A6F]
| [#XOAE6-#xOAEF] | [#Xx0B66-#x0B6F] | [#XxOBE7-#X0BEF]
| [#x0C66-#Xx0C6F] | [#XOCE6-#XOCEF] | [#x0D66-#x0D6F]
| [#XOE50-#x0E59] | [#XOEDO-#X0EDY] | [#x0F20-#x0F29])
[130] Extender = ([#x00B7] | [#x02D0] | [#x02D1] | [#x0387] | [#x0640] | [#XOE46]
| [#xOECS] | [#x3005] | [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE])

B References

B.1 Normative References

XML
World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second edition), October,
2000 See http://www.w3.0org/ TR/REC-xml.

XML Names
World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/ TR/REC-xml-names .

XML SchemaPart O
World Wide Web Consortium. XML Schema Part O : Primer. W3C Recommendation, May 2001. See
http://www.w3.org/TR/xmlschema-0/

XML SchemaPart 1
World Wide Web Consortium. XML Schema Part 1 : Structures. W3C Recommendation, May 2001.
See http://www.w3.org/TR/xmlschema-1/

XML SchemaPart 2
World Wide Web Consortium. XML Schema Part 2 : Datatypes. W3C Recommendation, May 2001.
See http://www.w3.0rg/TR/xmlschema-2/.

XQuery 1.0: A Query Language for XML
World Wide Web Consortium.XQuery 1.0: A Query Language for XML. W3C Working Draft, 20
December 2001. See http://www.w3.0rg/TR/xquery/

XQuery 1.0 and XPath 2.0 Data Model
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft, 20
December 2001. See http://www.w3.org/TR/query-datamodel/.

XQuery 1.0 and XPath 2.0 Functions and Operators

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working
Draft, 20 December 2001. See http://www.w3.0rg/TR/xquery-operators/

http://www.w3c.org/TR/query-semantics/ (146 of 183) [8/12/2002 6:38:07 PM]

http://www.w3.org/TR/xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/xquery-operators/

XQuery 1.0 Formal Semantics

B.2 Non-normative References

XML Path Language (XPath) : Version 1.0
World Wide Web Consortium. XML Path Language (XPath) : Version 1.0. W3C Recommendation,
November, 1999. See http://www.w3.0rg/TR/xpath.html.

XML Path Language (XPath) 2.0
World Wide Web Consortium. XML Path Language (XPath) 2.0. W3C Working Draft, 20 December
2001. See http://www.w3.org/TR/xpath20/.

XML Query 1.0 Requirements
World Wide Web Consortium. XML Query 1.0 Requirements. W3C Working Draft, 15 Feb 2001. See
http://www.w3.0rg/TR/xmlquery-req.

XML Query Use Cases
World Wide Web Consortium. XML Query Use Cases. W3C Working Draft, 20 Dec 2001. See
http://www.w3.0rg/TR/xmlquery-use-cases.

XML Schema: Formal Description
World Wide Web Consortium. XML Schema: Formal Description. W3C Working Draft, March 2001.
See http://www.w3.0rg/TR/xmlschema-formal/

XSLT 99

World Wide Web Consortium. XSL Transformations (XSLT), Version 1.0. W3C Recommendation,
November 1999. See http://www.w3.org/TR/xslt.

B.3 Background References

BFS00

P. Buneman, M. Fernandez, D. Suciu. UnQL: A query language and algebra for semistructured data
based on structural recursion. VLDB Journal, April, 2000, Vol 9, Number 1.

BKD90

Francois Bancilhon, Paris Kanellakis, Claude Delobel. Building an Object-Oriented Database System.
Morgan Kaufmann, 1990.

BNTW95

Peter Buneman, Shamim Nagvi, Va Tannen, Limsoon Wong. Principles of programming with complex
object and collection types. Theoretical Computer Science 149(1):3--48, 1995.

CM93

S. Cluet and G. Moerkotte. Nested queries in object bases. Workshop on Database Programming
Languages, pages 226--242, New Y ork, August 1993.

Col90
L. S. Colby. A recursive algebra for nested relations. Information Systems 15(5):567-582, 1990.
Graefe93

Goetz Graefe, Query Evaluation Techniques for Large Databases. In ACM Computing Surveys,
25(2):73--170, 1993.

HP2000
Haruio Hosoya, Benjamin Pierce, XDuce : A Typed XML Processing Language (Preliminary Report)

http://www.w3c.org/TR/query-semantics/ (147 of 183) [8/12/2002 6:38:07 PM]

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xslt

XQuery 1.0 Formal Semantics

WebDB Workshop 2000.
Languages

Handbook of Formal Languages. G. Rozenberg and A. Salomaa, editors. Springer-Verlag. 1997.
LMW96

Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multi-dimensional arrays:
Design, implementation, and optimization techniques. SGMOD 1996.

LW97

Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions. Journal of
Computer and Systems Sciences, 55(2):241--272, October 1997.

Milner

R. Milner, M. Tofte, R. Harper, D. MacQueen The Definition of Sandard ML (Revise). MIT Press,
1997.

Mitchell
John C. Mitchell Foundations for Programming Languages. MIT Press, 1998.
Mog89

E. Moggi, Computational lambda-cal culus and monads. In Symposium on Logic in Computer Science
Asilomar, California, IEEE, June 1989.

Mog9l
E. Moggi, Notions of computation and monads. I nformation and Computation, 93(1), 1991.
ODMG
Rick Cattell et al. The Object Database Standard: ODMG-93, Release 1.2. Morgan Kaufmann
Publishers, San Francisco, 1996.
Quilt
Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. International Workshop on the Web and Databases (WebDB'2000),
Dallas, Texas, May 2000.
SQL
International Organization for Standardization (1SO). Information Technology-Database Language

L. Standard No. ISO/IEC 9075:1999. (Available from American National Standards Institute, New
York, NY 10036, (212) 642-4900.)

TATA

Tree Automata Techniques and Applications. H. Comon and M. Dauchet and R. Gilleron and F.
Jacquemard and D. Lugiez and S. Tison and M. Tommasi. See http://www.grappa.univ-lille3.fr/tatal.

1997.
Wad93

P. Wadler, Monads for functional programming. In M. Broy, editor, Program Design Calculi, NATO
ASl Series, Springer Verlag, 1993. Alsoin J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, LNCS 925, Springer Verlag, 1995.

Wad95
P. Wadler, How to declare an imperative. ACM Computing Surveys, 29(3):240--263, September 1997.
Won00

http://www.w3c.org/TR/query-semantics/ (148 of 183) [8/12/2002 6:38:07 PM]

http://www.grappa.univ-lille3.fr/tata/

XQuery 1.0 Formal Semantics

Limsoon Wong. An introduction to the Kleidli query system and a commentary on the influence of
functional programming on itsimplementation. Journal of Functional Programming, to appear.

XMLQL99

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for XML. In
International World Wide Web Conference, 1999.

XQL99
J. Robie, editor. XQL '99 Proposal, 1999. See http://www.ibiblio.org/xgl/xql-proposal .html.
YAT99

S. Cluet, and J. Siméon. YATL: A Functional and Declarative Language for XML. See
http://db.bell-1abs.com/user/simeon/icfp.ps

C Issues

C.1 Introduction

Theissuesin [C.2 Issues list] serve as adesign history for this document. The ordering of issuesisirrelevant.
Each issue has aunique id of the form Issue-<dddd> (where d isa digit). This can be used for referring to the
issue by <url-of-this-document>#l ssue-<dddd>. Furthermore, each issue has a mnemonic header, adate, an
optional description, and an optional resolution. For convenience, resolved issues are displayed in green. Some
of the descriptions of the resolved issues are obsolete w.r.t. to the current version of the document.

Ed. Note: Peter (Aug-05-2000): For the sake of archival, there are some duplicate issuesraised in
multiple instances. Duplicate issues are marked as "resolved" with reference to the representative
ISsue.

C.2 Issues list

ssue-0001: Attributes

Date: Jul-26-2000
Raised by: Algebra Editors

Description: One example of the need for support of [Issue-0049: Unordered Collections], but also:
Attributes need to be constrained to contain white space separated lists of simple types only.

Resolution: Attributes are represented by attribute attribute-name { content }.
I ssue-0002: Namespaces

Date: Jul-26-2000
Raised by: Algebra Editors

Resolution: Namespaces are represented by { uri-of-namespace} |ocalname.
I ssue-0003: Document Order

Date: Jul-26-2000
Raised by: Algebra Editors

http://www.w3c.org/TR/query-semantics/ (149 of 183) [8/12/2002 6:38:07 PM]

http://www.ibiblio.org/xql/xql-proposal.html
http://db.bell-labs.com/user/simeon/icfp.ps

XQuery 1.0 Formal Semantics

Description: The datamodel and algebra do not define a global order on documents. Querying global order is
often required in document-oriented queries.

Resolution: Resolved by adding < operator defined on nodes in same document. See [I ssue-0079: Global
order between nodesin different documents] for order between nodes in different documents.

| ssue-0004: References vs containment

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The query-algebra datamodel currently does not explicitly model children-elements by
references (other than the XML-Query Datamodel. This facilitates presentation, but may be an
oversimplification with regard to [I ssue-0005: Element identity].

Resolution: Thisissueisresolved by subsumption asfollows: (1) All child-elements are (implicit) references
to nodes. (2) Thus, having resolved [l ssue-0005: Element identity] thisissue is resolved too.

I ssue-0005: Element identity

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Do expressions preserve element identity or don't they? And does "=" and distinct use
comparison by reference or comparison by value?

Resolution: Thefirst part of the question has been resolved by resolution of [I ssue-0010: Construct values
by copy]. The second part raises a more specific issue [| ssue-0066: Shallow or Deep Equality?].

I ssue-0006: Source and join syntax instead of "for"

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Another term for "source and join syntax" is"comprehension”.

Resolution: Thisissueisresolved by subsumption under [Issue-0021: Syntax]. List comprehensionisa

syntactic alternative to "for v in el do €2", which has been favored by the WG in the resolution of
[Issue-0021: Syntax].

I ssue-0007: References. IDREFS, Keyrefs, Joins

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Currently, the Algebra does not support reference values, such as IDREF, or Keyref (not to be
mixed up with "node-references’ - see [I1ssue-0005: Element identity], which are defined in the XML Query
Data Model. The Algebra's type system should be extended to support reference types and the data model
operatorsr ef , and der ef should be supported (similar to id() in XPath).

Resolution: Delegated to XPath 2.0. Algebra should adopt solutions (e.g., id()/keyref() functions) provided in
XPath 2.0. There may be an interaction between IDREFs and RefNodes, but we're not going to cover that
Now.

http://www.w3c.org/TR/query-semantics/ (150 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

I ssue-0008: Fixed point operator or recursive functions

Date: Jul-26-2000
Raised by: Algebra Editors

Description: It may be useful to add a fixed-point operator, which can be used in lieu of recursive functions
to compute, for example, the transitive closure of a collection.

Currently, the Algebra does not guarantee termination of recursive expressions. In order to ensure termination,
we might require that a recursive function take one argument that is a singleton element, and any recursive
Invocation should be on a descendant of that element; since any element has a finite number of descendants,
thisavoidsinfinite regress. (Ideally, we should have a ssmple syntactic rule that enforces this restriction, but
we have not yet devised such arule.)

I mpacts optimization; hard to do static type inference; current algebrais first-order
I ssue-0009: Externally defined functions

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Thereisno explicit support for externally defined functions.
The set of built-in functions may be extended to support other important operators.

Resolution: Algebra editors endorse a solution that uses XP for specifying signatures of external functions.
Algebrawill adopt solution provided by XQuery.

Issue-0010: Construct values by copy

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Need to be able to construct new types from bits of old types by reference and by copy. Related
to [Issue-0005: Element identity].

Resolution: The WG wishes to support both: construction of values by copy, as well as referencesto original
nodes. This needs some further investigation to sort out all technical difficulties (see [l ssue-0062: Open

questionsfor constructing elements by referencel]) so the change has not yet been reflected in the Algebra
document.

Issue-0011: XPath tumbler syntax instead of index?

Date: Jul-26-2000
Raised by: Algebra Editors

Description: XPath provides as a shorthand syntax [integer] to select child-elements by their position on the
sibling axes, whereas the xml-query algebra uses a combination of a built-in function index() and iteration.

Addendum by JS (submitted by MF) Dec 19/2000: The typing of index islossy : it produces afactored type.
Jerome suggests the more preciser ange operator:

http://www.w3c.org/TR/query-semantics/ (151 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics
range(e;m;n") : gmMnr nmaxr

nth(e; n) == range(e; n;n)

Ther ange operator takes a repetition of prime types and those valuesin therangem ton' ; if the repetition
does not include that range, arun-time error israised. Ther ange and nt h operators could also be defined in
terms of head andt ai | and polymorphic recursive functions. In the absence of parameteric polymorphism,
it isnot possible to definer ange and nt h with precise types.

Here are Peter's rules:

range(e;m;n") : p{n' -mx(mm)+1l, mn(n ,n)-m+1}

For exanpl e:
let vl = a[] mn 2 max 4

range(vl; 3;3): a[] mn 1 nax
range(vl;1;3): a[] mn 2 nmax
range(vl; 3;5): a[] mn 1 nax
range(vl; 1;5): a[] mn 2 max

ADNWPE

range(e;m;n') : pmn O mx n' -n+1

let v2 = a[] mn O nmax *

range(v2;1;3): a[] mn O nmax 2

this follows the typical semantics for head() and tail ():

head(()) = tail(()) = ()

and the semantics behi nd

range(e;m,n") = tail o ...(m tines) ... O tail o head,
tail o...(mM+1 tinmes) ... o tail o head,
tail o ...(n" timnes) ... O tail o head

| would have no troubles in restricting ourselves to nth() instead of range() in the algebra (range can always be
enumerated by nth()). Furthermore, we should consider whether m',n' can be computed numbers.

Issue-0012: GroupBy - needs second order functions?

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Thetype system is currently first order: it does not support function types nor higher-order
functions. Higher-order functions are useful for specifying, for example, sorting and grouping operators,
which take other functions as arguments.

http://www.w3c.org/TR/query-semantics/ (152 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Resolution: The WG has decided to express groupBy by a combination of f or and di sti nct. Thusw.r.t.
to GroupBY this Issue is resolved. Because GroupBY is not the only use case for higher order functions, anew
issue [l ssue-0063: Do we need (user defined) higher order functions?] is raised.

| ssue-0013: Collations

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Collationsidentify the ordering to be applied for sorting strings. Currently, it is considered to
have an (optiona parameter) collation "name" asfollows. "SORT variable IN exp BY +(expression
{ASCENDING|DESCENDING} { COLLATION name}). An alternative would be to model a collation asa
simple type derived from string, and use type-level casting, i.e. expression :collationtype (which is already
supported in the XML Query Algebra), for specifying the collation. That would make: "SORT variable IN exp
BY +(expression:collationname { ASCENDING|DESCENDING}). But that requires some support from
XML-Schema.

More generally, collations are important for any operator in the Algebra that involves string comparison,
among them: sort, distinct, "=" and "<".

Resolution: Formal semantics will adopt solution provided by Operators.
I ssue-0014: Polymorphic types

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The type system is currently monomorphic: it does not permit the definition of afunction over
generalized types. Polymorphic functions are useful for factoring equivalent functions, each of which operate
on afixed type.

The current type system has already a built-in polymorphic type (lists) and islikely to have more (unordered
collections). The question is, whether to allow for user-defined polymorphic types and user defined
polymorphic functions.

I ssue-0015: 3-valued logic to support NULLs

Date: Jul-26-2000
Raised by: Algebra Editors

Resolution: The Formal Semantics supports the current semantics of NULL values, as described in the
XQuery December working draft. The Formal Semantics will reflect further resolution of open issues on
NULLsand 3 valued logic as decided by XQuery.

| ssue-0016: Mixed content

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The XML-Query Algebra alows to generate elements with an arbitrary mixture of data (of
simple type) and elements. XML -Schema only allows for a combination of strings interspersed with elements
(akamixed content). We need to figure out whether and how to constrain the XML-Query Algebra
accordingly (e.g. by typing rules?)

http://www.w3c.org/TR/query-semantics/ (153 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Resolution: The type system has been extended to support the interleaving operator & - see [3 The XQuery
Type System]. Mixed content is defined in terms of &.

| ssue-0017: Unordered content

Date: Jul-26-2000
Raised by: Algebra Editors

Description: All-groupsin XML-Schema, not to be mixed up with [Issue-0049: Unordered Collections]

Resolution: The type system has been extended with the support of all-groups - see [3 The XQuery Type

System].
Issue-0018: Align algebratypes with schema

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The Algebrasinternal type system is the type system of XDuce. A potentially significant
problem is that the Algebra's types may lose information when converted into XML Schematypes, for
example, when aresult is serialized into an XML document and XML Schema.

James Clark points out : "The definition of AnyComplexType doesn't match the concrete syntax for types
since it applies unbounded repetition to AnyTree and one alternative for AnyTree is AnyAttribute." Thisis
another example of an alignment issue.

Thisissue comprises also issues [Issue-0016: Mixed content], [Issue-0017: Unordered content],
[Issue-0053: Global vs. local elementg], [1ssue-0054: Global vs. local complex types], [| ssue-0019:
Support derived types], substitution groups.

Issue-0019: Support derived types

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The current type system does not support user defined type hierarchies (by extension or by
restriction).

Issue-0020: Structural vs. name equivalence

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The subtyping rulesin [3.3 Subtyping] only define structural subtyping. We need to extend this
with support for subtyping via user defined type hierarchies - thisis related to [ssue-0019: Support derived

types].
Issue-0021: Syntax

Date: Jul-26-2000
Raised by: Algebra Editors

Description: (e.g. for.<-.invsfor.in.do)

http://www.w3c.org/TR/query-semantics/ (154 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Resolution: The WG has voted for severa syntax changes, "forvinedo €', "letv=edo", "sortvineby e
L tdistinet”, "match casevite ... else €',

I ssue-0022: Indentation, Whitespaces

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Isindentation significant?

Resolution: The WG has consensus that indentation is not significant , i.e., all documents are white space
normalized.

I ssue-0023: Catch exceptions and process in algebra?

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Doesthe Algebragive explicit support for catching exceptions and processing them?

Resolution: Subsumed by new issue [I ssue-0064: Error code handling in Query Algebra].

Issue-0024: Value for empty sequences

Date: Jul-26-2000
Raised by: Algebra Editors

Description: What does "value" do with empty sequences?

Resolution: The definition of value(e) has changed to:

val ue(e) = typeswitch children(e)
case v: AnyScalar do v
el se()

Furthermore, the typing rules for "for v in €1 do €2" have been changed such that the variable v is
typed-checked seperately for each unit-type occuring in expression el.

Consequently the following example would be typed as follows:

query for b in bO/book do
val ue(b/year): xs:integer mn O max *

rather than leading to an error.
I ssue-0025: Treatment of empty results at type level

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Thisisrelated to [Issue-0024. Value for empty sequences|.

Resolution: Resolved by resolution of [I ssue-0025: Treatment of empty results at type level].

I ssue-0026: Project - onetag only
Date: Jul-26-2000

http://www.w3c.org/TR/query-semantics/ (155 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Raised by: Algebra Editors
Description: Project isonly parameterized by one tag. How can we translate a0/(b | ¢)?

Resolution: With the new syntax (and type system) a0/(b | ¢) can be trandlated to "for v in a0 do typeswitch
case v1:b[AnyType] do vl casev2:.c[AnyType] do c else()".

Issue-0027: Case syntax

Date: Jul-26-2000
Raised by: Quilt Comments et al.

Description: N-ary case can be realized by nested binary cases.
Resolution: New (n-ary) case syntax is introduced.
I ssue-0028: Fusion

Date: Jul-26-2000
Raised by: Michael Rys

Description: Doesthe Algebra support fusion as introduced by query languages such as LOREL? Thisis
related to [1ssue-0005: Element identity], because fusion only makes sense with support of element identity.

Resolution: Fusionisequivalent to 'natural full-outer join'. XQuery can reraiseissue if desired. If added, the
Algebra editors should review any solution w.r.t typing.

ssue-0029: Views

Date: Jul-26-2000
Raised by: Michael Rys

Description: One of the problems in views. Can we undeclare/hide things in environment? For example, if
we support element-identity, can we explicitly discard a parent, and/or children from an element in the
result-set? Related to [I ssue-0005: Element identity].

Resolution: XQuery can reraiseissue if desired. If added, the Algebra editors should review any solution
w.r.t typing.

I ssue-0030: Automatic type coercion

Date: Jul-26-2000
Raised by: Dana Florescu

Description: What do we do if avalue does not have atype or adifferent type from what is required?

Suggested Resolution: We believe that the XML Query Language should specify default type coercions for
mixed mode arithmetic should be performed according to afixed precedence hierarchy of types, specifically
integer to fixed decimal, fixed decimal to float, float to double. This policy has the advantage of simplicity,
tradition, and static type inference. Programmers could explicitly specify alternative type coercions when
desirable.

Resolution: Delegation to XPath 2.0, XQuery, and/or Operators.

| ssue-0031: Recursive functions

http://www.w3c.org/TR/query-semantics/ (156 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: subsumed by [Issue-0008: Fixed point operator or recursive functions]

Issue-0032: Full regular path expressions

Date: Jul-26-2000
Raised by: Dana Florescu

Description: Full regular path expressions allow to constrain recursive navigation along paths by means of
regular expressions, e.g. a/b*/c denotes all paths starting with an a, proceeding with arbitrarily many b's and
ending in ac. Currently the XML-Query Algebra can express this by means of (structurally) recursive

functions. An alternative may be the introduction of afixpoint operator [1ssue-0008: Fixed point operator

or recursive functions|.

Resolution: XPath 2.0 can raiseissueif desired. The Algebra editors should review any solution w.r.t typing.
I ssue-0033: Metadata Queries

Date: Jul-26-2000
Raised by: Dana Florescu

Description: Metadata queries are queries that require runtime access to type information.
Issue-0034: Fusion

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: ldentical with [Issue-0028: Fusion]

I ssue-0035: Exception handling

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Subsumed by [Issue-0023: Catch exceptions and processin algebra?] and [| ssue-0064-
Error code handlingin Query Algebra].

I ssue-0036: Global-order based operators

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Subsumed by [Issue-0003: Document Order]

I ssue-0037: Copy vsidentity semantics

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: subsumed by [Issue-0005: Element identity]

I ssue-0038: Copy by reachability

http://www.w3c.org/TR/query-semantics/ (157 of 183) [8/12/2002 6:38:07 PM]

XQuery 1.0 Formal Semantics

Date: Jul-26-2000
Raised by: Dana Florescu

Description: Isit possible to copy children aswell as IDREFs, Links, etc.? Related to [ssue-0005: Element
identity] and [Issue-0008: Fixed point operator or recursive functions]

Resolution: Resolved by addition of "deep” copy operator in [XQuery 1.0 and XPath 2.0 Data Model].

I ssue-0039: Dereferencing semantics

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Subsumed by [l ssue-0005: Element identity]

I ssue-0040: Case Syntax

Date: Aug-01-2000
Raised by: Quilt

Description: We suggest that the syntax for "case" be made more regular. At present, it takes only two
branches, the first 1abelled with a tag-name and the second labelled with a variable. A more traditional syntax
for "case" would have multiple branches and label them in auniform way. If the algebraisintended only for
semantic specification, "case" may not even be necessary.

Resolution: subsumed by [Issue-0027: Case syntax]

I ssue-0041: Sorting

Date: Aug-01-2000
Raised by: Quilt

Description: We are not happy about the three-step sorting process in the Algebra. We would prefer a
one-step sorting operator such as the oneillustrated below, which handles multiple sort keys and mixed
sorting directions: SORT emp <- employees BY emp/deptno ASCENDING emp/salary DESCENDING

Resolution: The WG has decided to go for the above syntax, with an (optional) indication of COLLATION.
Issue-0042: GroupBy

Date: Aug-01-2000
Raised by: Quilt

Description: We do not think the algebra needs an explicit grouping operator. Quilt and other high-level
languages perform grouping by nested iteration. The algebra can do the same.

related to [I ssue-0012: GroupBY - needs second order functions?]

Resolution: The WG has decided to skip groupBY for the time being.
Issue-0043: Recursive Descent for X Path

Date: Aug-01-2000
Raised by: Quilt

Description: The very important X Path operator "//" is supported in the Algebra only by writing arecursive

http://www.w3c.org/TR/query-semantics/ (158 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

function. Thisis adequate for a semantic specification, but if the Algebraisintended as an optimizable target
language it will need better support for "//" (possibly in the form of afix-point operator.)

Resolution: Resolved by subsumption under [Issue-0043: Recursive Descent for XPath]

| ssue-0044: Keysand IDREF

Date: Aug-01-2000
Raised by: Quilt

Description: We think the algebra needs some facility for dereferencing keys and IDREFs (exploiting
information in the schema.)

Resolution: Subsumed by [Issue-0007: References. IDREFS, Keyrefs, Joins|

| ssue-0045: Global Order

Date: Aug-01-2000
Raised by: Quilt

Description: We are concerned about absence of support for operators based on global document ordering
such as BEFORE and AFTER.

Resolution: Subsumed by [Issue-0003: Document Order]

Issue-0046: FOR Syntax

Date: Aug-01-2000
Raised by: Quilt

Description: We agree with comments made in the face-to-face meeting about the aesthetics of the Algebra's
syntax for iteration. For example, the following syntax isrelatively easy to understand: FOR x IN some_expr
EVAL f(x) whereas we find the current algebra equivalent to be confusing and misleading: FOR x <-
some_expr IN f(x) This syntax appears to assign the result of some_expr to variable x, and usestheword IN in
anon-intuitive way.

Resolution: Subsumed by [Issue-0021: Syntax]

| ssue-0047: Attributes

Date: Aug-01-2000
Raised by: Quilt

Description: See[lssue-0001: Attributes|.

Resolution: Subsumed by [Issue-0001: Attributes]

I ssue-0048: Explicit Type Declarations

Date: Jul-27-2000
Raised by: Group 1 at F2F, Redmond

Description: Type Declaration for the results of aquery: The issue is whether to auto construct the result type
from aquery or to pre-declare the type of the result from a query and check for correct type on the return
value. Suggestion: Support for pre-declared result data type and as well as to coerce the output to a new typeis

http://www.w3c.org/TR/query-semantics/ (159 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

desirable. Runtime or compile time type checking is to be resolved? Once you attach anameto atype, itis
preserved during the query processing.

Resolution: W.r.t. compiletime type casts thisis already possible with e:t. For run-time casts an issue has
been raised in [I ssue-0062: Open questionsfor constructing elements by referencel.

| ssue-0049: Unordered Collections

Date: Jul-27-2000
Raised by: Algebra Editors, Group 1, F2F, Redmond

Description: Currently, all sequencesin the data model are ordered. It may be useful to have unordered
forests. Thedi st i nct - node function, for example, produces an inherently unordered forest. Unordered
forests can benefit from many optimizations for the relational algebra, such as commutable joins.

Handling of collection of attributesis easy but the collection of elements is complex due to complex type
support for the elements. It makes sense to allow casting from unordered to ordered collection and vice versa.
It is not clear whether the new ordered or unordered collection is anew type or not. It affects function
resolution, optimization.

Our request to Schemato represent insignificance of ordering at schema level has not been fulfilled. Thus we
need to be aware that this information may get lost, when mapping to schema.

Resolution: Unordered collections are described by {t} see[3 The XQuery Type System], some operators

(sort, distinct-node, for, and sequence) are overloaded, and some operators (difference, intersection) are
added). A new issue [l ssue-0076: Unordered types| israised.

| ssue-0050: Recursive Descent for XPath

Date: Jul-27-2000
Raised by: Group 1, F2F, Redmond

Description: Suggestion: The group likes to add a support for fixed-point operator in the query language that
will allow us to express the semantics of the // operator in an xpath expression. A path expression of the form
allb may be represented by a fixed-point operator fp(a, "/.")/b.

Resolution: Subsumed by [Issue-0043: Recursive Descent for XPath]

Issue-0051: Project redundant?

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: It appearsthat project a e could be reduced to sth. like

for v <- e in case v of a[vl] =>
a[vl] | v2 => ()

... or would that generate a less precise type?

Resolution: With the new type system and handling of the for operator, project is indeed redundant.
| ssue-0052: Axes of XPath

Date: Aug-05-2000

http://www.w3c.org/TR/query-semantics/ (160 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

Raised by: Peter Fankhauser

Description: The current algebra makes navigation to parents difficult to impossible. With support of
Element Identity [1ssue-0005: Element identity] and recursive functions [1 ssue-0008: Fixed point operator

or recursive functions| one can express parent() by a recursive function via the document root. More direct
support needs to be investigated w.r.t its effect on the type system.

The WG wishes to support a built-in operator parent().

Resolution: XPath 2.0 and XQuery can reraise issue if desired. Algebra should review any solution w.r.t
typing. Question: whether namespace axis (i.e., access namespace nodes) will be included in XQuery. Algebra
currently has issues related to typing of parent() and descendant(). If sibling axes are included in XQuery, then
Algebra should review w.r.t. typing.

| ssue-0053: Global vs. loca elements

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: The current type system cannot represent global element-declarations of XML-Schema. All
element declarations are local.

Resolution: The type system now supports both local and global elements and attributes.
Issue-0054: Global vs. local complex types

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: The current type system does not distinguish between global and local types as XML-Schema
does. All types appear to be fully nested (i.e. local types)

Resolution: The type system now supports both local and global types.
I ssue-0055: Types with non-wellformed instances

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: The type system and algebra alows for sequences of simple types, which can usually be not
represented as a well-formed document. How shall we constrain this? Related to [| ssue-0016: Mixed

content].

I ssue-0056: Operators on Simple Types

Date: Jul-15-2000
Raised by: Fernandez et al.

Description: Weintentionally did not define equality or relational operators on element and simple type.
These operators should be defined by consensus.

Ed. Note: MF, 15-Jan-2001 A joint task force on operators with members from the XSLT, XML
Schema, and XML Query working groups is chartered to define arithmetic operators.

Resolution: XQuery formal semantics adopts solution provided by Operators task force.

http://www.w3c.org/TR/query-semantics/ (161 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

Issue-0057: More precise type system; choice in path

Date: Aug-07-2000
Raised by: LA-Team

Description: (Thissubsumes[lssue-0051: Project redundant?]). If the type system were more precise,
then (project a€) could be replaced by:

for v &t;- e in

case v of
a[vl] => a[vl]
| v2 => ()

One could also represent (e/(alb)) directly in asimilar style.

for v &t;- ein
case v of
a[vl] => a[vl]
| v2 => case v2 of
b[v3] => b[vVv3]
| v4 => ()

Currently, there is no way to represent (e/(alb)) without loss of precision, so if we do not change the type
system, we may need to have some way to represent (e/(alb)) and similar terms without losing precision. (The
LA team has a design for this more precise type system, but it istoo large to fit in the margin of thisweb

page!)
Resolution: Seeresolution of [Issue-0051: Project redundant?]

| ssue-0058: Downward Navigation only?

Date: Aug-07-2000
Raised by: LA-Team

Description: Related to [1ssue-0052: Axes of XPath]. The current type system (and the more precise system
alluded toin [Issue-0057: M ore precise type system; choice in path]) seems well suited for handling X Path

children and descendant axes, but not parent, ancestor, sibling, preceding, or following axes. Isthislimitation
one we can live with?

Resolution: Subsumed by [Issue-0052: Axes of XPath]

I ssue-0059: Testing Subtyping

Date: Aug-07-2000
Raised by: LA-Team

Description: One operation required in the Algebraisto test whether XML type tl is a subtype of XML type
t2, indicated by writing t1 <: t2. Thereis awell-known algorithm for this, based on tree automata, whichisa
straightforward variant of the well-known algorithm for testing whether the language generated by one
regular-expression is a subset of the language generated by another. (The algorithm involves generating
deterministic automata for both regular expressions or types.)

However, the naive implementation of the algorithm for comparing XML types can be slow in practice,
whereas the naive algorithm for regular expressionsistolerably fast. The only acceptably fast implementation

http://www.w3c.org/TR/query-semantics/ (162 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

of acomparison for XML types that the LA team knows of has been implemented by Haruo Hasoya, Jerome
Voullion, and Benjamin Pierce at the University of Pennsylvania, for their implementation of Xduce. (Our
implementation of the Algebrare-uses their code, with permission.)

So, should we adopt a simpler definition of subtyping which is easier to test? One possibility isto adopt the
sibling restriction from Schema, which requires that any two elements which appear a siblingsin the same
content model must themselves have contents of the same type. Jerome Simeon and Philip Wadler discovered
that adopting the sibling restriction reduces the problem of checking subtyping of XML types to that of
checking regular languages for inclusion, so it may be worth adopting the restriction for that reason.

I ssue-0060: Internationalization aspects for strings

Date: Jun-26-2000
Raised by: 118N

Description: Theseissues are taken from the comments on the Requirements Document by 118N

Further information can be found at http://www.w3.org/TR/WD-charreq.

Itisagoa of i18n that queriesinvolving string matching ("select x where x="'some_constant™) treat
canonically equivalent strings (in the Unicode sense) as matching. If the query and the target are both XML,
early normalization (as per the Character Model) is assumed and binary comparison ensures that the
equivalence requirement is satisfied. However, if the target is originally alegacy database which logically has
alayer that exports the data as XML, that XML must be exported in normalized form. The XML Query spec
must impose the normalization requirement upon such layers.

Similarly, the query may come from a user-interface layer that creates the XML query. The XML Query spec
must impose the normalization requirement upon such layers.

Provided that the query and the target are in normalized form C, the output of the query must itself bein
normalized form C.

Queriesinvolving string matching should support various kinds of loose matching (such as case-insensitivity,
katakana-hiragana equivalence, accent-accentless equivalence, etc.)

If such features as case-insensitivity are present in queries involving string matching, these features must be
properly internationalized (e.g. case folding works for accented letters) and language-dependence must be
taken into account (e.g. Turkish dotless-).

Queriesinvolving character counting and indexing must take into account the Character Model. Specifically,
they should follow Layer 3 (locale-independent graphemes). Additional details can be found in The Unicode
Standard 3.0 and UTR#18. Queries involving word counting and indexing should similarly follow the
recommendations in these references.

Resolution: XQuery formal semantics adopts solution provided by Operators task force.
I ssue-0061: Model for References

Date: Aug-16-2000
Raised by: Group 3, F2F, Redmond

Description: Related to a number of issues around [I ssue-0005: Element identity].

o UseCases

http://www.w3c.org/TR/query-semantics/ (163 of 183) [8/12/2002 6:38:08 PM]

http://www.w3.org/TR/WD-charreq

XQuery 1.0 Formal Semantics

Table of Contents

REF *could* do thiswell if it were restructured - it does not maintain unforeseen relationships or use
them...

Bibliographies
Recursive parts
RDF assertions

Inversion of simple parent/child references (related to [1 ssue-0058: Downward Navigation only?]).

o What can we |leave out?
can we leave out transitive closure?
can we limit recursion?
can we leave out fixed point recursion?

related to [I ssue-0008: Fixed point operator or recursive functions|

« Dowe needto beableto...
a. Find the person with the maximum number of descendants?

b. Airplane routes: how can | get from RDU to Raleigh? (fixed point: guaranteeing termination in
reasonabletime...)

c. Given children and their mothers, can | get mothers and their children? (without respect to the form of
the original reference...)

related to [I ssue-0008: Fixed point operator or recursive functions).

« Should we abstract out the difference between different kinds of references? If so, should we be able to
cast to a particular kind of reference in the output?

a. abstracting out the differencesis cheaper, which iskewl...

b. the kind of reference gives me useful information about: locality (same document, same repository,
big bad internet...) static vs. dynamic (xpointer *may* be resolved dynamically, or *may* be resolved at
run time, ID/IDREF is static).

related to [I ssue-0007: References. IDREFS, Keyrefs, Joing|.

« dowe need to be able to generate ids, e.g. using skolem functions?

for adocument in RAM, or in a persistent tree, identity may be present, implicit, system dependent, and
cheap - it's nice to have an abstraction that requires no more than the implicit identity

persistable ID is more expensive, may want to be able to serialize with ID/IDREF to instantiate
references in the data model

can use XPath instead of generating ID/IDREF, but these references are fragile, and one reason for
gueriesisto create data that may be processed further

http://www.w3c.org/TR/query-semantics/ (164 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics
persistable ID unique within arepository context
persistable ID that is globally unique
related to [I ssue-0005: Element identity].

« COpy Vs. reference semantics
"MUST not preclude updates..."
In a pure query environment, sans update, we do not need to distinguish these

If we have update, we may need to distinguish, perhapsin a manner similar to "updatable cursors' in

SoL

programs may do queriesto get DOM nodes that can that be modified. It is essential to be able to
distinguish copies of nodes from the nodes themselves.

copy semantics - what does it mean?
copy the descendant hierarchy?
copy the reachability tree? (to avoid dangling references)

related to [I ssue-0038: Copy by reachability].

Resolution: Handled in current data model and algebra.
The following issues have been raised since Sep-25-2000.
I ssue-0062: Open questions for constructing elements by reference

Date: Sep-25-2000
Raised by: Mary Fernandez et al.

Description: (1) What is the value of parent() when constructing new elements with children refering to
origina nodes?

(2) Is an approach to either make copiesfor all children or provide referencesto all children, or should we
allow for a more flexible combination of copies and references?

Resolution: Operational semantics specifies that e ement node constructor creates copies of all its children.
Addition of RefNode in [XQuery 1.0 and XPath 2.0 Data Model] supports explicit reference value.

| ssue-0063: Do we need (user defined) higher order functions?

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: The current XML-Query-Algebra does not allow functions to be parameters of another function
- so called higher order functions. However, most of the Algebra operators are (built-in) higher functions,
taking expressions as an argument ("sort", "“for", "case" to name afew). Even afixpoint operator, "fun f(x)=e,

fix f(x) in €' (see aso [Issue-0008: Fixed point operator or recursive functions]), would be a built-in
higher order function.

Resolution: The XML Query Algebrawill not support user defined higher order functions. It does support a

http://www.w3c.org/TR/query-semantics/ (165 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

number of built-in higher order functions.
| ssue-0064: Error code handling in Query Algebra

Date: Oct-04-2000
Raised by: Rezaur Rahman

Description: How do we return an error code from a function defined in current Query algebra. Do we need
to create an array (or a structure) to merge the return value and error code to do this. If that istrue, it may be
inefficient to implement. In order for cleaner and efficient implementation, it may be necessary to alow a
function declaration to take a parameter of type "output” and allow it to return an error code as part of the
function definition.

Resolution: One does not need to create a structure to combine return values with error codes, provided each
operator or function /either/ returns avalue /or/ raises an error. The XML-Query Algebra supports means to
raise errors, but does not define standard meansto catch errors. Raising errors is accomplished by the
expression "error" of type @ (empty choice). Because @ | t = t, such runtype errors do not influence static
typing. The surface syntax and/or detailed specification of operators on simple types (see [| ssue-0056:

Operatorson Simple Types]) may choose to differentiate errors into several error-codes.

I ssue-0065: Built-In GroupBy?

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: We may revisit the resolution of [I ssue-0042: GroupBy] and reintroduce GroupBYy along the

lines of sort: "group v in el by [e2 { collation}]". One reason for this may be that this allows to use collation
for deciding about the equality of strings.

Resolution: The WG has decided to close thisissue, and for the time being not consider GroupBy as a
built-in operator. Furthermore, [1ssue-0013: Collations] is ammended to deal with collations for al operators

involving a comparison of strings.

| ssue-0066: Shallow or Deep Equality?

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: What isthe meaning of "=" and "distinct"? Equality of references to nodes or deep equality of
data?

Resolution: [XQuery 1.0 and XPath 2.0 Data Model] defines =" (value equality) and "==" (identity equality)
operators. Description of distinct states that it uses"==".

| ssue-0067: Runtime Casts

Date: Sep-21-2000
Raised by: 7??

Description: In some contexts it may be desirable to cast values at runtime. Such runtime casts lead to an
error if avalue cannot be cast to a given type.

Resolution: cast e: t hasbeen introduced as areducible operator expressed intermsof t ypeswi t ch.

http://www.w3c.org/TR/query-semantics/ (166 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

| ssue-0068: Document Collections

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: Per our requirements document we are chartered to support document collections. The current
XML-Query Algebradeals with single documents only. There are a number of subissues:

() Do we need a more elaborate notion of node-references? E.g. pair of (URI of root-node, local node-ref)

(b) Does the namespace mechanism suffice to type collections of nodes from different documents? Probably
yes.

(c) Provided (a) and (b) can be settled, will the approach taken for [I ssue-0049: Unordered Collections| do
the rest?

I ssue-0069: Organization of Document

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: The current document belongs more to the genre (scientific) paper than to the genre
specification. One may consider the following modifications: (a) reorganize intro to give a short overview and
then state the purpose (strongly typed, neutral syntax with formal semantics as abasis for possibly multiple
syntaxes, etc.) (compared to version Aug-23, this version has already gone a good deal in this direction). (b)
Equip various definitions and type rules with id's. (c) Elaborate appendices on mapping XML-Query-Algebra
Model vs. XML-Query-Datamodel, XML-Query-Type System vs. XML-Schema-Type System. (d) Maybe
add an appendix on use-case-solutions. The problem is of course: Part of thisisalot of work, and we may not
achieve all for the first release.

Resolution: The WG decided to dispose of thisissue. The current overall organization of the document is
quite adequate, but of course editorial decisions will have to made all the time.

| ssue-0070: Stable vs. Unstable Sort/Distinct

Date: Oct-02-2000
Raised by: Steve Tolkin

Description: Should sort (and distinct) be stable on ordered collections, i.e. lists, and unstable on unordered
collections (see [I ssue-0049: Unordered Collections])?

Resolution: sort and distinct are stable on ordered collections, and unstable on unordered collections.
Issue-0071: Alignment with the XML Query Datamodel

Date: Sep-26-2000
Raised by: Mary Fernandez

Description: Currently, the XML Query Algebra Datamodel does not model Pl's and comments.
Resolution: Addition of operational semantics defines relationship of Algebrato Data Model.
Issue-0072: Facet value accessin Query Algebra

Date: Oct-04-2000

http://www.w3c.org/TR/query-semantics/ (167 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

Raised by: Rezaur Rahman

Description: Each of the date-time data types have facet values as defined by the schema data types draft
spec. This problem is general enough to be applied to other simple data types.

The question is : Should we provide access to these facet values on an instance of a particular data types? If
so, what type of access? My take is the facets are to be treated like read-only attributes of a data instance and
one should have aread access to them.

I ssue-0073: Facets for ssimple types and their role for typechecking

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: XML-Schemaintroduces a number of constraining facets http://www.w3.org/TR/xmlschema-2/

for simple types (among them: length, pattern, enumeration, ...). We need to figure out whether and how to use
these constraining facets for type-checking.

Issue-0074: Operational semantics for expressions

Date: Nov-16-2000
Raised by: Mary Fernandez

Description: It isnecessary to add an operational semantics that formally defines each operator in the
Algebra.

Resolution: The new document contains afull specification of the dynamic semantics.
I ssue-0075: Overloading user defined functions

Date: Nov-17-2000
Raised by: Don Chamberlain

Description: User defined functions can not be overloaded in the XML Query Algebra, i.e., afunctionis
exclusively identified by its name, and not by its signature. Should this restriction be relaxed and if so - to
which extent?

Resolution: No overloading in Query 1.0
I ssue-0076: Unordered types

Date: Dec-11-2000
Raised by: Phil Wadler

Description: Currently unorderednessis represented at type level by {t}, and some (built-in) operators are
overloaded such they have different semantics (and potentially different return type) depending on their input
type. An aternative isto not represent unorderedness at type level, but rather support unordered for, unordered
(unstable) sort, unordered (unstable) distinct.

Resolution: Removed unordered types from type system. Added support for unordered operator.
Issue-0077: Interleaved repetition and closure

Date: Dec-12-2000
Raised by: Peter Fankhauser

http://www.w3c.org/TR/query-semantics/ (168 of 183) [8/12/2002 6:38:08 PM]

http://www.w3.org/TR/xmlschema-2/

XQuery 1.0 Formal Semantics

Description: Regular Languages are closed w.r.t. to the interleaved product. However, they are not closed
w.r.t. to interleaved repetition, which can (e.g) generate the 1 degree Dyck language D[1] = () |aD[1] b | D[1]
D[1] = (a,b)*{0,*}, and more generally, any language that coordinates cardinalities of individua members
from an alphabeth: E.g. (a” b)* min 0 max * = all strings with equally many as and b's. These are beyond
regular languages. Should we thus try to do without interleaved repetition?

Resolution: if we use interleaved repetition (which we will becauseitisin MSL), they will be restricted to
prime types.

Issue-0078: Generation of ambiguous types

Date: Dec-12-2000
Raised by: Jerome Simeon

Description: Unambiguous content-modelsin XML 1.0 and XML Schema are not closed w.r.t. union. It
appears that the XML Query-Algebra can generate result types which can not be transformed to an
unambiguous content-model.

I ssue-0079: Global order between nodes in different documents

Date: Dec-16-2000
Raised by: Algebra Editors

Description: The global order operator < is defined on nodes in the same document, but not between nodesin
different documents.

Resolution: Resolution follows from the XQuery Data Model. Order between documents is implementation
defined but stable.

I ssue-0080: Typing of parent

Date: Dec-16-2000
Raised by: Algebra Editors

Description: Currently, the par ent operator yields animprecisetype: AnyEl ement mn 0 max 1.t
might be possible to type par ent more precisely, for example, by using the normalized namesin MSL,
which encode containment of types.

Issue-0081: Lexical representation of Schema simple types

Date: Jan-17-2001
Raised by: Algebra Editors

Description: Schema simple types must be defined for the Algebra and XQuery.
Resolution: Algebrawill adopt lexical reps supported by X Query.
Issue-0082: Type and expression operator precedence

Date: Jan-17-2001
Raised by: Algebra Editors

Description: The precedence of the type expressionsis not defined.

I ssue-0083: Expressive power and complexity of typeswitch expression

http://www.w3c.org/TR/query-semantics/ (169 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

Date: Jan-17-2001
Raised by: Algebra Editors, Michael Brundage

Description: When processing an XML document without schemainformation, i.e., the type of the document
Is AnyComplexType, then match expressions may be very expensive to evaluate:

typeswitch x

case t1 : AnyTree do 1

case t2 : AnyTree min O max 2 do 2

case t3 : *[*[*[*[* ... [AnyAttribute]]]]] do 3
el se ERROR

typeswitch itself is not the issue. Thereal problem is having very liberal type patterns. We could restrict the
kinds of type patterns that we permit.

Resolution: Typeswitch types are now restricted to datatypes. Named typing will further help in reducing the
complexity by allowing type annotation contained in the data model as a means for optimization.

| ssue-0084: Execution model

Date: Jan-17-2001
Raised by: Algebra Editors

Description: Need prose describing execution model scenarios : interpretor vs. compile/runtime vs.
trandlation into another query language. Explain relationship between static and dynamic semantics.

Resolution: Section [2.1 Processing model] defines a procesing model which serves as a framework for the
Formal Semantics specification.

I ssue-0085: Semantics of Wildcard type

Date: Jan-17-2001
Raised by: Algebra Editors, Michael Brundage

Description: Cite: wildcard types cannot be implemented. If X!y means any name in x except namesinyy,
what does x!y!z mean? In general, how do ! and | operate (precedence, associativity)? Parentheses are required
to force the desired grouping of these two operators. Also, what does x!* mean? (There's an infinite family of
such examples.)

Resolution: The XQuery type systyem now uses only simple wildcard names based on XPath's NameTest
production.

Issue-0086: Syntactic rules

Date: Jan-17-2001
Raised by: Algebra Editors

Description: Need rules for specifying syntactic correctness of query: symbol spaces; variable def'ns precede
uses, list of keywords, etc.

Resolution: Syntactic rules should be dealt with in XQuery document

| ssue-0087: More examples of Joins

http://www.w3c.org/TR/query-semantics/ (170 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

Date: Jan-17-2001
Raised by: Algebra Editors, Michael Brundage

Description: Cite: no join operator; wants example of many-to-many joins, inner join, left and full outer
joins.

Resolution: The XQuery document gives a number of such examples.

I ssue-0088: Align typeswith XML Schema: Formal Description.

Date: 02-Apr-2001
Raised by: Mary Fernandez

Description: Sources of misalignment: X Query types include comment and processing instruction; [XML
Schema : Formal Description] does not. XQuery uses () for empty sequence; MSL uses the epsilon character.
XQuery permits the names of attribute and element components to be wildcard expressions. MSL only permits
literal names for attributes and elements, but permits stand-alone wildcard expressions. XQuery typescall ‘&'
interleaved repetition, but MSL saysit means 'all g1 and g2 in either order'. Does MSL mean interleaved
repetition?

Issue-0089: Syntax for typesin XQuery

Date: 30-Apr-2001
Raised by: Mary Fernandez

Description: Formalism document gives a particular syntax for type expressions that is not supported in the
XQuery surface syntax.

Issue-0090: Static type-assertion expression

Date: 30-Apr-2001
Raised by: Mary Fernandez

Description: Formalism document uses a static type-assertion expression that is not supported in the XQuery
surface syntax.

Resolution: Static type assertion is supported in XQuery with the new "assert as' expression.
Issue-0091: Attribute expression

Date: 30-Apr-2001
Raised by: Mary Fernandez

Description: XQuery formal semantics has stand-alone attribute constructor/expression ATTRI BUTE
QNane (Exp) that isnot supported in XQuery surface syntax.

Resolution: Stand-alone attribute construction is supported in XQuery with the new syntax for element and
attribute constructors.

I ssue-0092: Error expression

Date: 11-May-2001
Raised by: Jerome Simeon

Description: XQuery formal semantics has an error expression Er r or that is not supported in XQuery

http://www.w3c.org/TR/query-semantics/ (171 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

surface syntax.
Resolution: Errorsareraised by afunction "dm:erorr()" instead of a separate expression.
I ssue-0093: Representation of Text Nodes in type system

Date: 11-May-2001
Raised by: Mary Fernandez

Description: The data model distinguished between text nodes and strings, which are simple-typed values.
Text nodes have identity, parents, and siblings. Strings do not. Text nodes are accessed by the children()
accessor; strings and other simple-typed values are accessed by the typed-value() accessor. The distinction
between text nodes and simple-typed values should exist in type system as well.

Resolution: Subsumed by new issue [Issue-0105: Typesfor nodesin the data model.].

Issue-0094: Static type errors and warnings

Date: 31-May-2001
Raised by: Don Chamberlin

Description: Static type errors and warnings are not specified. We need to enumerate in both the XQuery and
formal semantics documents what kinds of static type errors and warnings are produced by the type system.
See also [Issue-0090: Static type-assertion expression].

I ssue-0095: Importing Schemas and DTDs into query

Date: 31-May-2001
Raised by: Don Chamberlin

Description: We do not specify how a Schemaor DTD is'imported’ into a query so that itsinformation is
available during type checking. Schema and DTDs can either be named explicitly (e.g., by an IMPORT
SCHEMA' clause in aquery) or implicitly, by accessing documents that refer to a Schemaor DTD. The
mechanism for statically accessing a Schemaor DTD is unspecified.

I ssue-0096: Support for schema-less and incompletely validated documents

Date: 31-May-2001
Raised by: Don Chamberlin/Mary Fernandez

Description: Thisisrelated to [1ssue-0095: I mporting Schemas and DTDsinto query]. We do not specify
what is the effect of type checking a query that is applied to a document without aDTD or Schema. In general,
a schema-less document has type xs:AnyType and type checking can proceed under that assumption. A related
issueiswhat is the effect of type checking a query that is applied to an incompletely validated document. As
above, we can make * no* assumptions about the static type of an incompletely validated document and must
assume its static type isxs:AnyType.

Issue-0097: Static type-checking vs. Schema validation

Date: 31-May-2001
Raised by: Mary Fernandez

Description: Static type checking and schema validation are not equivalent, but we might want to do both in
aquery. For example, we might want to assert statically that an expression has a particular type and also

http://www.w3c.org/TR/query-semantics/ (172 of 183) [8/12/2002 6:38:08 PM]

XQuery 1.0 Formal Semantics

validate dynamically the value of an expression w.r.t a particular schema.

The differences between static type checking and schema validation must be enumerated clearly (the XSFD
people should help us with this).

I ssue-0098: Implementation of and conformance levelsfor static type checking

Date: 31-May-2001
Raised by: Don Chamberlin

Description: Thisissueisrelated to [I1ssue-0059: Testing Subtyping] Static type checking may be difficult
and/or expensive to implement. Some discussion of algorithmic issues of type checking are needed. In
addition, we may want to define "conformance levels' for XQuery, in which some processors (or some
processing modes) are more permissive about types. This would allow X Query implementations that do not
understand all of Schema, and it would alow customers some control over the cost/benefit tradeoff of type
checking.

I ssue-0099: Incomplete/inconsistent mapping from to core

Date: 06-June-2001
Raised by: Don Chamberlin

Description: Thismapping isstill preliminary and contains inconsistencies. These inconsistencies will be
addressed in detail in the next draft of the document.

Resolution: The Formal Semantics now provides a complete mapping from XQuery to the Core XQuery.
Remaining issues with respect to that mapping are indicated separately.

I ssue-0100: Namespace resolution

Date: March-11-2002
Raised by: FS Editors

The way (when? where?) namespace prefixes are resolved is still an open issue.
Issue-0101: Support for mixed content in the type system

Date: March-11-2002
Raised by: FS Editors

Description: Support for mixed content in the type system is an open issue. This reopens issu