
XQuery 1.0 Formal Semantics

W3C Working Draft 26 March 2002
This version:

http://www.w3.org/TR/2002/WD-query-semantics-20020326/

Latest version:

http://www.w3.org/TR/query-semantics/

Previous versions:

http://www.w3.org/TR/2001/WD-query-semantics-20010607/
http://www.w3.org/TR/2001/WD-query-algebra-20010215/
http://www.w3.org/TR/2000/WD-query-algebra-20001204/

Editors:

Denise Draper (XML Query WG), Nimble Technology <ddraper@nimble.com>

Peter Fankhauser (XML Query WG), Infonyte GmbH <fankhaus@infonyte.com>

Mary Fernández (XML Query WG), AT&T Labs - Research <mff@research.att.com>

Ashok Malhotra (XML Query and XSL WGs), Microsoft <ashokma@microsoft.com>

Kristoffer Rose (XSL WG), IBM Research <krisrose@us.ibm.com>

Michael Rys (XML Query WG), Microsoft <mrys@microsoft.com>

Jérôme Siméon (XML Query WG), Lucent Technologies <simeon@research.bell-labs.com>

Philip Wadler (XML Query WG), Avaya <wadler@avaya.com>

Copyright © 2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use,
and software licensing rules apply.

Abstract
This document presents the formal semantics of XQuery [XQuery 1.0: A Query Language for XML].

Status of this Document
This is a public W3C Working Draft for review by W3C Members and other interested parties. This section
describes the status of this document at the time of its publication. It is a draft document and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use W3C Working Drafts as
reference material or to cite them as other than "work in progress." A list of current public W3C technical

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (1 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/
http://www.w3.org/TR/2002/WD-query-semantics-20020326/
http://www.w3.org/TR/query-semantics/
http://www.w3.org/TR/2001/WD-query-semantics-20010607/
http://www.w3.org/TR/2001/WD-query-algebra-20010215/
http://www.w3.org/TR/2000/WD-query-algebra-20001204/
mailto:ddraper@nimble.com
mailto:fankhaus@infonyte.com
mailto:mff@research.att.com
mailto:ashokma@microsoft.com
mailto:krisrose@us.ibm.com
mailto:mrys@microsoft.com
mailto:simeon@research.bell-labs.com
mailto:wadler@research.bell-labs.com
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

reports can be found at http://www.w3.org/TR/.

Much of this document is the result of joint work by the XML Query and XSL Working Groups, which are
jointly responsible for XPath 2.0, a language derived from both XPath 1.0 and XQuery. This document defines
the formal semantics for XQuery 1.0. A future version of this document will also define the formal semantics
for XPath 2.0. Further information on the progress of the work of the XML Query WG can be found at
http://www.w3.org/XML/Query.

This document is a work in progress. It contains many open issues, and should not be considered to be fully
stable. Vendors who wish to create preview implementations based on this document do so at their own risk.
While this document reflects the general consensus of the working groups, there are still controversial areas
that may be subject to change.

A complete list of issues is maintained in [C Issues]. In particular, the reader should note the following
important issues.

The XQuery type system is based on XML Schema, but some misalignments exist. See [Issue-0104:
Support for named typing].

●

The semantics of sortby and constructor expressions is still under discussion. See [Issue-0109:
Semantics of sortby] and [Issue-0110: Semantics of element and attribute constructors].

●

The current semantics does not completely cover all functions. Some functions used in the Formal
semantics, or some functions from the [XQuery 1.0 and XPath 2.0 Functions and Operators] document
need additional semantics specification. See [Issue-0135: Semantics of special functions].

●

Comments on this document should be sent to the W3C XML Query mailing list
www-xml-query-comments@w3.org; note that any email information sent to this list is publicly available in
the W3C XML Query mailing list archive http://lists.w3.org/Archives/Public/www-xml-query-comments/.

XQuery 1.0 has been defined jointly by the XML Query Working Group (part of the XML Activity) and the
XSL Working Group (part of the Style Activity).

Table of Contents
1 Introduction
2 Preliminaries
 2.1 Processing model
 2.2 Data Model
 2.2.1 Data model components
 2.2.2 Node identity
 2.2.3 Document order and sequence order
 2.2.4 Errors
 2.3 Schemas and types
 2.3.1 The elements of a (static) type system
 2.3.2 Subtyping
 2.3.2.1 Type equivalence
 2.3.2.2 Type substitutability

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (2 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/
http://www.w3.org/XML/Query
mailto:www-xml-query-comments@w3.org
http://lists.w3.org/Archives/Public/www-xml-query-comments/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Activity.html
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/Activity

 2.3.2.3 Subtyping and XML Schema derivation
 2.3.3 Static types and dynamic types
 2.4 Functions
 2.4.1 Functions and operators
 2.4.2 Functions and static typing
 2.4.3 Data Model Accessors and XPath Axes
 2.4.4 Other formal semantics functions
 2.5 Notation
 2.5.1 Judgments and patterns
 2.5.2 Inference rules
 2.5.4 Environments
 2.5.5 Static type inference
3 The XQuery Type System
 3.1 XQuery Types
 3.1.1 Wildcard types
 3.2 Instances, and Domain of a Type
 3.2.1 Domain of a NameTest
 3.2.2 Semantics of the Domain of a Type
 3.3 Subtyping
 3.3.1 NameTest Subtyping
 3.3.2 Semantics of Subtyping
 3.3.3 Type equivalence
 3.4 Prime types
 3.4.1 Prime types and sequences of items with similar types
 3.4.2 Computing Prime Types
 3.4.3 Common Prime Types
 3.4.3.1 Common Occurrence Indicator
 3.5 Importing types from XML Schema
 3.5.1 Schema
 3.5.2 QNames
 3.5.3 Complex Type Definitions
 3.5.3.1 Global complex type
 3.5.3.2 Anonymous local complex type
 3.5.4 Groups
 3.5.4.1 Global named group declarations
 3.5.4.2 Local groups
 3.5.5 minOccurs and maxOccurs
 3.5.6 Elements
 3.5.6.1 Global elements
 3.5.6.2 Local elements
 3.5.7 Attributes
 3.5.7.1 Use
 3.5.7.2 Global attributes

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (3 of 183) [8/12/2002 6:38:03 PM]

 3.5.7.3 Local attributes
 3.5.8 Simple Content
 3.5.9 Attribute Group
 3.5.9.1 Attribute group declaration
 3.5.9.2 Attribute group reference
 3.5.9.3 Attribute wildcard
 3.5.10 Complex Content
 3.5.11 Simple Types
 3.6 Major type issues
4 Semantics of Expressions
 4.1 Basics
 4.1.1 Expression Context
 4.1.1.1 Static Context
 4.1.1.2 Evaluation Context
 4.1.2 Type Conversions
 4.2 Primary Expressions
 4.2.1 Literals
 4.2.2 Variables
 4.2.3 Parenthesized Expressions
 4.2.4 Function Calls
 4.2.5 Comments
 4.3 Path expressions
 4.3.1 Axis Steps
 4.3.1.1 Axes
 4.3.1.2 Node Tests
 4.3.2 General Steps
 4.3.3 Step Qualifiers
 4.3.3.1 Predicates
 4.3.3.2 Dereferences
 4.3.4 Unabbreviated Syntax
 4.3.5 Abbreviated Syntax
 4.4 Sequence Expressions
 4.4.1 Constructing Sequences
 4.4.2 Combining Sequences
 4.5 Arithmetic Expressions
 4.6 Comparison Expressions
 4.6.1 Value Comparisons
 4.6.2 General Comparisons
 4.6.3 Node Comparisons
 4.6.4 Order Comparisons
 4.7 Logical Expressions
 4.8 Constructors
 4.8.1 Element Constructors

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (4 of 183) [8/12/2002 6:38:03 PM]

 4.8.2 Computed Element and Attribute Constructors
 4.8.3 Other Constructors and Comments
 4.9 FLWR Expressions
 4.9.1 FLWR expressions
 4.9.2 For expression
 4.9.3 Let expression
 4.10 Sorting Expressions
 4.11 Conditional Expressions
 4.12 Quantified Expressions
 4.13 Datatypes
 4.13.1 Referring to Datatypes
 4.13.2 Expressions on Datatypes
 4.13.2.1 Instance of
 4.13.2.2 Cast expressions
 4.13.2.2.1 Cast as
 4.13.2.2.2 Treat as
 4.13.2.2.3 Assert as
 4.13.2.3 Typeswitch
5 The Query Prolog
 5.1 Namespace Declarations and Schema Imports
 5.2 Function Definitions
6 Additional Semantics of Functions
 6.1 Formal Semantics Functions
 6.1.1 The fs:document function
 6.1.2 The fs:data function
 6.2 Functions with specific typing rules
 6.2.1 The dm:error function
 6.2.2 The op:union, op:intersect and op:expect operators
 6.2.3 The op:to operator

Appendices

A Normalized core grammar
B References
 B.1 Normative References
 B.2 Non-normative References
 B.3 Background References
C Issues
 C.1 Introduction
 C.2 Issues list
 C.3 Alphabetic list of issues
 C.3.1 Open Issues
 C.3.2 Resolved (or redundant) Issues

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (5 of 183) [8/12/2002 6:38:03 PM]

 C.4 Delegated Issues
 C.4.1 XPath 2.0
 C.4.2 XQuery
 C.4.3 Operators

1 Introduction
This document defines the formal semantics of XQuery. The present document is part of a set of documents
that together define the XQuery 1.0 language:

[XQuery 1.0: A Query Language for XML] introduces the XQuery 1.0 language, defines its capabilities
from a user-centric view, and defines the language syntax.

●

[XQuery 1.0 and XPath 2.0 Data Model] formally specifies the data model used by XQuery to represent
the content of XML documents. The XQuery language is formally defined by operations on this data
model.

●

[XQuery 1.0 and XPath 2.0 Functions and Operators] lists the functions and operators defined for the
XQuery language and specifies to which arguments they can be applied and what the result should be.

●

The scope and goals for the XQuery language were laid out in the charter of the XML Query Working Group
and in the XQuery requirements [XML Query 1.0 Requirements].

XQuery is a powerful language, capable of selecting and extracting complex patterns from XML documents
and of reformulating them into results in arbitrary ways. This document defines the semantics of XQuery by
giving a precise formal meaning to each of the constructions of the XQuery specification in terms of the
XQuery data model. This document assumes that the reader is already familiar with the XQuery language.

Two important design aspects of XQuery is that it is functional and typed. These two aspects play an
important role in the XQuery Formal Semantics.

XQuery is a functional language. It is built from expressions , called queries, rather than statements. Every
construct in the language (except for the query prolog) is an expression and expressions can be composed
arbitrarily. The result of one expression can be used as the input to any other expression, as long as the type of
the result of the former expression is compatible with the input type of the later expression with which it is
composed. Another aspect of the functional approach is that variables are always passed by value and their
value cannot be modified through side-effects.

XQuery is a typed language. Types can be imported from one or several XML Schemas (typically describing
the documents that will be processed), and the XQuery language can then perform operations based on these
types (e.g., using a treat as operation). In addition, XQuery also supports a level of static type analysis.
This means that the system can perform some inference on the type of a query, based of the type of its inputs.
Static typing allows early error detection, and may be the basis for certain forms of optimization. The type
system of XQuery is based on [XML Schema Part 1], but does not support all the features of XML Schema.
For example, XQuery does not provide support for derivation. The relationship between the XQuery type
system and XML Schema is defined in [3.5 Importing types from XML Schema]. Issues with respect to the
XQuery type system are discussed in [3.6 Major type issues].

The XQuery formal semantics builds on long-standing traditions in the database and in the programming

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (6 of 183) [8/12/2002 6:38:03 PM]

languages communities. In particular, we have been inspired by works on SQL [SQL], OQL [ODMG],
[BKD90], [CM93], and nested relational algebra (NRA) [BNTW95], [Col90], [LW97], [LMW96]. We have
also been inspired by systems such as Quilt [Quilt], UnQL [BFS00], XDuce [HP2000], XML-QL
[XMLQL99], XPath [XPath], XQL [XQL99], XSLT [XSLT 99], and YaTL [YAT99]. Additional citations are
found in the bibliography [B References].

This document is organized as follows. In [2 Preliminaries], we introduce concepts and notations used for
defining the XQuery formal semantics. In [3 The XQuery Type System], we describe the XQuery type
system, operations on the XQuery type system, and explain the relationship between the XQuery type system
and XML Schema. In [4 Semantics of Expressions], we describe the dynamic and static semantics of
XQuery. In [5 The Query Prolog], we describe the semantics of the XQuery prolog. In [6 Additional
Semantics of Functions], we describe any additional semantics required for functions.

2 Preliminaries
Ed. Note: Status: This section contains introductory material and is mostly new.

In this section, we provide background concepts for the XQuery formal semantics and introduce the notations
that are used.

2.1 Processing model

We first define a processing model for query evaluation. This processing model is not intended to be a model
for an actual implementation, although a (naive) implementation might be obtained from it. It does not require
or constrain any implementation technique, but any implementation should produce the same results as the one
obtained by following this processing model and applying the rest of the formal semantics specification.

The processing model is based of four phases; each phase consumes the result of the previous phase and
generates output for the next phase:

Parsing. The grammar for the XQuery syntax is defined in [XQuery 1.0: A Query Language for XML].
Parsing may generate syntax errors. If no error occurs, some internal representation of the parsed syntax
tree is created.

1.

Normalization. To simplify the semantics specification, we first perform some normalization over the
query. The XQuery language provides many powerful features that make querys simpler to write and
use, but are also redundant. For instance, a complex for expression might be rewritten as a
composition of several simple for expressions. The language composed of these simpler query is
called the XQuery Core language and is a subset of the complete XQuery language. The grammar of
the XQuery Core language is given in [A Normalized core grammar].

During the normalization phase, each XQuery query is mapped into its equivalent query in the core.
(Note that this has nothing to do with Unicode Normalization which works on character strings).
Normalization works by bottom-up application of normalization rules over expressions, starting with
normalization of literals. After normalization, the full semantics can be obtained just by giving a
semantics to the normalized Core query. This is done during the last two phases.

Ed. Note: The query prolog needs to be processed before normalization starts. [5 The
Query Prolog] explains how the query prolog is processed. This is not yet reflected in the

2.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (7 of 183) [8/12/2002 6:38:03 PM]

processing model. See [Issue-0130: When to process the query prolog].

Static type analysis. Static type analysis checks if each query is type safe, and if so, determines their
static types. Static type analysis is defined only for Core query. Static type analysis works by bottom-up
application of type inference rules over expressions, taking the type of literals and the known types of
input documents into account.

Static type analysis can result in a static error, if the query is not type-safe. For instance, a comparison
between an integer value and a string value might be detected as an error during the static type analysis.
If static type analysis succeeds, it results in a syntax tree where each sub-expression is "decorated" with
its static type, and in an output type for the result of the query.

Static typing does not imply that the content of XML documents must be rigidly fixed or even known in
advance. The XQuery type system accommodates "flexible" types, such as elements that can contain
any content. Schema-less documents are handled in XQuery by associating a standard type with the
document, such that it may include any legal XML content.

3.

Dynamic Evaluation. This is the phase in which the result of the query is computed. The semantics of
evaluation is defined only for Core query terms. Evaluation works by bottom-up application of
evaluation rules over expressions, starting with evaluation of literals. This guarantees that every
expression can be unambiguously reduced to a value, which is the final result of the query.

4.

The first three phases above are "analysis-time" (sometimes also called "compile-time") steps, which is to say
that they can be performed on a query before examining any input document. Indeed, analysis-time processing
can be performed before such document even exists. Analysis-time processing can detect many errors
early-on, e.g., syntax errors or type errors. If no error occurs, the result of analysis-time processing could be
some compiled form of query, suitable for execution by a compiled-query processor. The last phase is an
"execution-time" (sometimes also called "run-time") step, which is to say that it is performed on the actual
input document.

Static analysis catches only certain classes of errors. For instance, it can detect a comparison operation applied
between incompatible types (e.g., xsd:int and xsd:date). Some other classes of errors cannot be
detected by the static analysis and are only detected at execution time. For instance, whether an arithmetic
expression on 32 bits integers (xsd:int) yields an out-of-bound value can only be detected by looking at the
data, and is raised as an evaluation error.

While implementations may be free to employ different processing models, the XQuery static semantics relies
on the existence of a static type analysis phase that precedes any access to the input data. Statically typed
implementations are required to find and report static type errors, as specified in this document. It is still an
open issue (See [Issue-0098: Implementation of and conformance levels for static type checking])
whether to make the static type analysis phase optional to allow implementations to return a result for a
type-invalid query in special cases where the query happens to perform correctly on a particular instance of
input data. (Note that this is not the same as merely permitting that the static type error is emitted at evaluation
time as we do below.)

Notice that the separation of logical processing into phases is not meant to imply that implementations must
separate analysis-time from evaluation-time processing: query processors may choose to perform all phases
simultaneously at evaluation-time and may even mix the phases in their internal implementations. All the
processing model defines is what the final result of processing should be.

The above processing phases are all internal to the query processor. They do not deal with how the query
processor interacts with the outside world, notably how it accesses actual documents and types. A typical

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (8 of 183) [8/12/2002 6:38:03 PM]

query engine would support at least three other important processing phases:

XML Schema import phase. The XQuery type system is based on XML Schema. In order to perform
static type analysis, the XQuery processor needs to build type descriptions that correspond to the
schema of the input documents. This phase is achieved by mapping all schemas required by the query
into the XQuery type system. The XML Schema import phase is described in this document in [3.5
Importing types from XML Schema].

1.

XML loading phase. During the evaluation phase, expressions are applied on instances of the [XQuery
1.0 and XPath 2.0 Data Model]. How XML documents are loaded into the data model is described in
the [XQuery 1.0 and XPath 2.0 Data Model] and is not be discussed further here.

2.

Serialization phase. Once the query is evaluated, processors might want to serialize the result of the
query as actual XML documents. Serialization of data model instances is still an open issue (See
[Issue-0116: Serialization]) and is not be discussed further here.

3.

We do not describe the parsing phase formally. Notably, we do not specify data structures for the syntax trees.
Instead, we use the XQuery concrete syntax directly as a support for the formal semantics specification. More
details about parsing can be found in the [XQuery 1.0: A Query Language for XML] document. No further
discussion of parsing is included here.

For the other three phases (normalization, static type analysis and evaluation), instead or giving an algorithm
in pseudo-code, we describe the semantics formally by means of inference rules. Inference rules provide a
notation to describe how the semantics of an expression derives from the semantics of its sub-expressions.
Hence, they provide a concise and precise way for specifying bottom-up algorithms, as required by the
normalization, static type analysis, and evaluation phases.

2.2 Data Model

In this section we first present the basic components of the XQuery data model pertinent to the semantic
description. The remainder of the section is devoted to several related features that merit special attention:
node identity, order, and error values.

2.2.1 Data model components

The components manipulated in XQuery, such as simple-typed values and nodes (attributes, elements, etc.),
are defined in the [XQuery 1.0 and XPath 2.0 Data Model] document. In this section we present only a short
review of these components. We refer the reader to the [XQuery 1.0 and XPath 2.0 Data Model] document for
more details.

There are five kinds of components in the [XQuery 1.0 and XPath 2.0 Data Model]: Error, SimpleValue,
Node, Sequence, and SchemaComponent.

A single error value.●

A SimpleValue: a value from any of the value spaces of XML Schema simple types, as defined in
[XML Schema Part 2].

●

A Node; which is one of the following kinds: DocumentNode, ElementNode, AttributeNode,
NamespaceNode, CommentNode, PINode and TextNode. XML documents and their content are

●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (9 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#error
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#simpletypedvalue
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#simpletypedvalue
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#DocumentNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#AttributeNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#NamespaceNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#CommentNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ProcessingInstructionNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#TextNode

represented in the data model as trees composed of nodes and values. [XQuery 1.0 and XPath 2.0 Data
Model] defines a mapping from the PSVI (Post Schema Validation Information Set) to such trees.

A Sequence: which is an ordered collection of nodes, an ordered collection of simple-typed values, or
an ordered collection of items (i.e., any mixture of nodes and simple-typed values). An important
characteristic of sequences is that they cannot be nested. That is, all sequences are "flat", and cannot be
composed of other sequences. Moreover, there is no distinction between a single item and a singleton
sequence containing that item. That is, a single item and a singleton sequence containing that item are
equivalent. It is still open whether sequences of entire documents are permitted [Issue-0068:
Document Collections].

●

A SchemaComponent: the type of a node. The content and use of this schema component is still an open
issue.

●

[XQuery 1.0 and XPath 2.0 Data Model] defines constructors, functions to construct each of these kinds of
data model component, as well as accessors, functions to access their contents. For instance, the xf:children
function can be used to retrieve the children nodes of an element node.

2.2.2 Node identity

In the [XQuery 1.0 and XPath 2.0 Data Model], nodes have an identity. Node identity follows from the unique
location of any node within exactly one XML document (or document fragment, in the case of XML being
constructed within the query itself). It is possible for two expressions to return not only the same value, but
also the exact same node. On the other hand, two expressions could have results with the same document
structure, but different identities. XQuery supports comparison of two nodes using either "node equality"
(equality by identity) or "value equality" (equality by equal values), for instance using one of the two
operators == or =.

Simple-typed values do not have an associated identity and are therefore always compared by value equality.

The difference between node equality and value equality is illustrated on the following example:

let $a1 := <book><author>Suciu</author></book>,
 $a2 := <author>Suciu</author>,
 $a3 := $a1/author
return
 ($a1/author == $a3), {-- true, they refer to the same node --}
 ($a1/author = $a2), {-- true, they have the same value --}
 ($a1/author == $a2) {-- false, they are not the same node --}

All XQuery's operators preserve node identity with the exception of explicit copy operations and node
(element, attribute, etc.) constructors. An element constructor always creates a deep copy of its attributes and
children nodes. Other operators, such as sequence construction or path expressions, do not result in copies of
the corresponding nodes. So, for example, ($a3, $a2) creates a new sequence of nodes, the first of which
has the same identity as $a1/author.

2.2.3 Document order and sequence order

There are two kinds of order in XQuery: sequence order and document order.

Sequence order. Sequences of items in the XQuery data model are ordered. Sequence order refers to the order

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (10 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types

of these items within a given sequence.

Document order. Document order refers to the total order among all nodes within a given document. It is
defined as the order of appearance of the nodes when performing a pre-order, depth-first traversal of a tree.
For elements, this corresponds to the order of appearance of their opening tags in the corresponding XML
serialization. Document order is equivalent to the definition used in [XML Path Language (XPath) : Version
1.0].

Depending on the context, it may be possible to talk about two different notions of order for the same (set of)
nodes. For example:

let $e := <list>
 <item id="1"/>
 <item id="2"/>
 </list>,
 $s := ($e/item[@id='2'], $e/item[@id='1'])
...

The item "1" is before item "2" in document order, but the same two nodes are in the opposite order in the
sequence $s.

In the case of nodes among several documents, the order between the document is implementation defined but
must be stable. I.e., it must not change for the duration of query evaluation. Support for document order
among elements in distinct documents or document fragments is discussed in [Issue-0003: Document
Order].

2.2.4 Errors

Some queries result in an error. Errors that are detected at compile-time, like parse errors or type errors, are
reported to the user by the system. Dynamic errors must return the Error value defined by the [XQuery 1.0 and
XPath 2.0 Data Model].

Whenever necessary, we use the notation dm:error() to refer to the error value in the [XQuery 1.0 and
XPath 2.0 Data Model]. General handling of errors in XQuery is still an open issue (See [Issue-0094: Static
type errors and warnings] and Issue-98 in [XQuery 1.0: A Query Language for XML]).

2.3 Schemas and types

The Data Model establishes the space of values that may be manipulated by XQuery, but it does not establish
a complete type system. For example, we may know that a node is an ElementNode, but that does not tell us
what kind of element it is, what its legal contents is, etc.

The XQuery type system is based on [XML Schema Part 1]. An introduction to XML Schema can be found in
the primer [XML Schema Part 0]. An important notion underlying XML Schema are regular expressions, and
their tree counterparts, regular tree grammars. An introduction to regular (tree) languages can be found in
[Languages] or in [TATA]. In order to denote regular expressions, the XQuery type system uses the familiar
notation of XML DTDs. We refer the reader to [XML] for more on DTDs.

Ed. Note: We do not give an introduction to regular expressions and tree grammars for now, but
a future version of the document should add some introductory text about: regular expressions,

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (11 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#error
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode

tree grammars, and basic algorithms over these that are relevant for XQuery. Notably, some text
about closure properties, complexity, subsumption algorithm, etc. could be provided there.

This section presents an introduction to (static) type systems in general, and a conceptual overview of the
XQuery type system in particular. The XQuery type system is discussed formally in [3 The XQuery Type
System].

2.3.1 The elements of a (static) type system

A type system relates values, types, and expressions. A (static) type system requires several constituent parts:

A universe of possible types. Every type system starts with a set of primitive types and most (including
XQuery's) have type constructors that allow the construction of complex types.

In XQuery, the primitive types are the built-in simple datatypes types of [XML Schema Part 2]. There
are also type constructors for sequences and node types such as attributes and elements. These
correspond to the concepts of group, attribute and element in [XML Schema Part 1] (or more precisely,
in the formalization of XML Schema in [XML Schema : Formal Description]).

●

A notation for types. A syntax is necessary to define and manipulate types. In order to write the type
related semantics of XQuery, this document uses its own notation, which is used notably in type
inference and dynamic semantics rules.

●

A notion of instances, and domain of a type. Formally, a type is defined to be the (usually infinite) set
of instance values that belong to that type. Thus the type xs:integer consists of the set of all integer
values, and the type element address { xs:string } consists of all elements named
"address" whose contents are a single string value.

●

A notion of subtyping. Subtyping is a relationship between type, i.e., it relates types to each other.

Subtyping plays a crucial role in a type system. Most notably, it is used to determine the legality of
arguments to functions.

●

Rules that relate expressions to types. The heart of static type inference is associating a static type
with each expression in a query. In a strongly-typed language like XQuery, the static type is a guarantee
that, no matter what the input to the query is, the result of evaluating the expression is a value that
belongs to its static type.

●

Rules that relate values to types. During query evaluation, expressions are evaluated to yield values.
The dynamic component of a typing system determines the actual types of data values as they are
computed.

●

2.3.2 Subtyping

One type is a subtype of another if every value belonging to the first type also belongs to the other. Here is a
simple example of subtyping:

(xs:double)*
(xs:integer | xs:double)*

The first type is a subtype of the second, because any sequence that contains only doubles is also an example
of a sequence containing either integers or doubles.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (12 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#integer
http://www.w3.org/TR/xmlschema-2/#string

We write Type1 <: Type2 to indicate that type Type1 is a subtype Type2. Note that we use the subtype notation
<: when defining the XQuery semantics, but it is not part of the XQuery syntax.

2.3.2.1 Type equivalence

Two types are equivalent if every value of one type is also a value of the other type, and vice versa, i.e., two
types are equivalent if and only if they are both subtypes of the other. Here is a simple example of two
equivalent types:

(xs:integer | xs:double)*
(xs:double | xs:integer)*

Both of these types mean a sequence of any number of doubles or integers.

We write type equivalence as Type1 = Type2, where Type1 and Type2 are both types. If Type1 = Type2 then
Type1 <: Type2 and Type2 <: Type1 are true.

2.3.2.2 Type substitutability

Subtyping plays a crucial role in the semantics of function application since all functions have an associated
signature that declares the types of input parameters and the type of the result of the function.

Intuitively, one can call a function not only by passing an argument of the declared type, but also any
argument whose type is a subtype of the declared type. This property is called type substitutability.

Ed. Note: This section should contain an example.

2.3.2.3 Subtyping and XML Schema derivation

Subtyping in XQuery is not the same as "derivation" in XML Schema. A derived type is always a subtype of
its base type, but the opposite is not true. For instance, consider the following types:

(xs:double)+
xs:double, (xs:integer | xs:double)*

The first type is a subtype of the second, because any sequence that contains one or more doubles is also an
example of a sequence containing a double followed by a sequence of zero or more integers or doubles. But
derivation as defined in XML Schema does not hold between these two types.

The relationship between subtyping and XML Schema derivation is discussed in [Issue-0019: Support
derived types].

2.3.3 Static types and dynamic types

One consequence of having a static type system is that for the same expression, a type is first computed during
the static phase, then a type for the actual value which is the result of that expression is computed during the
dynamic phase. We use the terms static type and dynamic type respectively for each of these computed types
for a given expression. It is important to note that for the same expression the dynamic type is often more
precise than the static one, since the real value is not known statically. Indeed, the static type can be
considered as an approximation of the dynamic one based on the available static information. Consider, for
example, an XPath expression

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (13 of 183) [8/12/2002 6:38:03 PM]

$x/(foo | bar)

In this expression the static type might be

(element foo | element bar)*

If during execution, $x happens to contain exactly two foo elements, the dynamic type of (the result of
evaluating) $x is a sequence of two foo elements.

(element foo, element foo).

Of course, the basic guarantee of static type inference is that the dynamic type is always a subtype of the static
type. Note that dynamic types are specific: they never contain choices, all groups, or quantifiers.

Ed. Note: MFF: This next paragraph should be changed to describe type annotations.

The XQuery data model also defines SchemaComponents associated with Nodes. SchemaComponents relate
to the type associated with a Node through schema validation. This may be different from either the static or
the dynamic type of the node. The relationship between static types, dynamic types and schema components in
the data model is still an open issue. See [Issue-0018: Align algebra types with schema].

2.4 Functions

2.4.1 Functions and operators

The [XQuery 1.0 and XPath 2.0 Functions and Operators] document provides a number of useful basic
functions over the components of the XQuery data model (simple-typed values, nodes, sequences, etc). We
use a number of these functions in the course of describing the XQuery semantics. Here is the list of functions
from the [XQuery 1.0 and XPath 2.0 Functions and Operators] document that are used in the XQuery formal
semantics:

op:intersect●

op:union●

op:except●

op:concatenate●

op:boolean-and●

op:boolean-or●

op:union-value●

op:except-value●

op:to●

op:numeric-equal●

op:numeric-add●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (14 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#types
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node

op:get-end-datetime●

op:numeric-subtract●

op:get-duration●

op:get-start-datetime●

op:numeric-multiply●

op:numeric-divide●

op:numeric-mod●

op:boolean-equal●

op:datetime-equal●

op:duration-equal●

op:hex-binary-equal●

op:base64-binary-equal●

op:numeric-greater-than●

op:datetime-greater-than●

op:duration-greater-than●

op:numeric-less-than●

op:datetime-less-than●

op:duration-less-than●

op:node-equal●

op:node-before●

op:node-after●

op:numeric-unary-plus●

op:numeric-unary-minus●

op:operation●

xf:false●

xf:true●

xf:length●

xf:boolean●

xf:item-at●

xf:get-namespace-uri●

xf:get-local-name●

xf:round●

xf:compare●

xf:not●

xf:not3●

xf:empty-sequence●

xf:root●

xf:index-of●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (15 of 183) [8/12/2002 6:38:03 PM]

2.4.2 Functions and static typing

Many functions in the [XQuery 1.0 and XPath 2.0 Functions and Operators] document are generic: they
perform operations on arbitrary components of the data model, e.g., any kind of node, or any sequence of
items. For instance, the xf:distinct-nodes function removes duplicates in any sequence of nodes. As a
result, the signature given in the [XQuery 1.0 and XPath 2.0 Functions and Operators] document is also
generic. For instance, the signature of the xf:distinct-nodes function is:

define function xf:distinct-nodes(node*) returns node*

If applied as is, this signature would result in poor static type information. In general, it would be preferable if
some of these function signatures could take the type of input parameters into account. For instance, if the
function xf:distinct-nodes is applied on a parameter of type element a*, element b, one can
easily deduce that the resulting sequence is a collection of either a or b elements.

In order to provide better static typing, we specify typing rules for some of the functions in [XQuery 1.0 and
XPath 2.0 Functions and Operators]. These additional typing rules are given in [6 Additional Semantics of
Functions]. Here is the list of functions that are given specific typing rules.

dm:error●

op:union●

op:intersect●

op:expect●

op:to●

Ed. Note: This list reflects the content of Sections 6, but should be expanded. See [Issue-0135:
Semantics of special functions].

2.4.3 Data Model Accessors and XPath Axes

The XQuery Data Model provides operations to construct or access component of the Data Model. Some of
these operations are used in the course of defining the formal semantics. We use the namespace prefix dm:
those functions to distinguish them for other functions from the [XQuery 1.0 and XPath 2.0 Functions and
Operators] document.

Here is a list of data model constructors or accessors used for formal semantics specification.

dm:error●

dm:atomic-value●

dm:children●

dm:attributes●

dm:parent●

dm:name●

dm:node-kind●

dm:dereference●

dm:empty-sequence●

dm:namespaces●

dm:type●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (16 of 183) [8/12/2002 6:38:03 PM]

dm:typed-value●

dm:attribute-simple-node●

dm:element-simple-node●

dm:text-node●

XPath axes are used to describe tree navigation in instances of the XQuery data model. The semantics of axis
navigation is described in terms of data model functions. Some of the XPath axes are directly supported
through existing data model accessors. Some axes (e.g., ancestor) are defined as a simple recursive application
of a data model accessor and others (e.g., following) require more complex computation on top of existing
data model accessors. The correspondence between XPath axis and data model accessors is specified in
section [4.3.1 Axis Steps]

2.4.4 Other formal semantics functions

In a few cases, the formal semantics makes use of some functions that are not currently in the [XQuery 1.0 and
XPath 2.0 Functions and Operators] or in the [XQuery 1.0 and XPath 2.0 Data Model] documents. We use the
namespace prefix fs: for those functions, to distinguish them from functions in the [XQuery 1.0 and XPath
2.0 Functions and Operators] document and from Data Model accessors.

Here is a list of additional functions used for formal semantics specification.

fs:document●

fs:distinct-doc-order●

fs:data●

fs:unique-item-at●

2.5 Notation

Ed. Note: Status: This section is intended to provide an introduction to formal notations, such as
inference rules, for readers which are not familiar with these notations. It can be skipped by the
reader which is familiar with these notations. This introductory material is still considered a draft
and will be improved in further rewritings of the Formal Semantics document.

In order to make the semantics specification both concise and precise, we use logical notation in the form of
logical inference rules. In this section, we introduce the notations for inference rules and sorts of semantic
values, specifically environments.

2.5.1 Judgments and patterns

Ed. Note: The following is a somewhat terse explanation of inference rules using formal
semantic lingo informally. It needs some examples.

The basic building block of an inference rule is a judgment that expresses some property. A judgment is
specified by a description that contains a combination of basic patterns, each identifying a sort of value that
can be inserted, interspersed with symbols. Symbols must occur literally in judgments between values of a sort
that corresponds to the used patterns.

A pattern is identified by one or more italic words. The names of patterns are significant: each pattern name
corresponds to a sort of value that can be substituted legally for the pattern. For this reason, a pattern is

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (17 of 183) [8/12/2002 6:38:03 PM]

sometimes called a metavariable that is instantiated to some value of the appropriate sort.

We employ the following conventions for pattern names:

patterns for syntactic sorts denoting lexical items begin with upper case and their names correspond to
terminals or nonterminals in the XQuery grammar. For example, Expr is a pattern that can be
instantiated with any XQuery Expr.

1.

patterns for semantic sorts, to be defined, begin with lower case letters. For example, denotes a semantic
value.

2.

Furthermore, all patterns may appear with subscripts (e.g. Expr1, Expr2), which simply name different
instances of the same pattern sort.

For example, '3 => 3' and '$x+0 => 3' are both instances of the judgment described by 'Expr => value'. It is no
problem that we are overloading the symbol '3' to denote both the '3' in an expression and the value 3: this is
unambiguous because of the strict use of sorts in the judgment descriptions.

Finally, we require that each distinct pattern is instantiated to a single expression or value so if the same
pattern occurs twice in a judgment description then it should be instantiated with the same value. This means
that '3 => 3' is an instance of the judgment described by 'Expr => Expr' but '$x+0 => 3' is not. (Both, however,
are instances of the judgment described by 'Expr1 => Expr2'.)

2.5.2 Inference rules

Inference rules are used to express the logical relation between judgments and define how complex judgments
can be concluded from simpler premise judgments. (As explained in [2.1 Processing model], this approach
lends itself well to bottom-up algorithms.)

A logical inference rule is written as two collections of premise and conclusion judgments, written above and
below a dividing line, respectively:

premise1 ... premisen

conclusion1 ... conclusionn

The interpretation of an inference rule is: if all the premise judgments above the line are true, then we know
that each of the conclusion judgments below the line are also true.

Here is a simple example to illustrate (based on the example judgment from above described by 'Expr1 =>
Expr2'):

$x => 0 3 => 3

$x + 3 => 3

This rule expresses the property of the evaluation judgment 'Expr=>value': if an expression containing the
variable reference '$x' yields the value zero, and the literal expression '3' yields the value '3', then we know
that '$x + 3' yields the value '3'.

It is also possible for the expression above the line to have no judgments at all; this simply means that the
expression below the line is true under all premises:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (18 of 183) [8/12/2002 6:38:03 PM]

3 => 3

This judgment says that evaluating the expression '3' always yields the value three.

The rules above are expressed in terms of specific variables and values, but usually rules are more abstract.
That is, the judgments they relate contain patterns that match sorts of things. For example, here is a rule that
says for any variable, adding 0 yields the same value:

Variable => value

Variable + 0 => value

Formally, the rule states that if some variable in XQuery, to which Variable is instantiated, evaluates to some
value, to which value is instantiated, then we can conclude that the query 'Variable + 0', with Variable
substituted by the actual variable, evaluates to the same value.

We require that each unique patterns used in a particular inference rules is instantiated to the same value for
the entire rule. This means that we can refer to "the value of Variable" instead of the more precise "what
Variable is instantiated to in (this particular instantiation of) the inference rule".

Putting these together, here is an example of an inference rule that occurs later in this document:

statEnvs |- Expr1 : xs:boolean statEnvs |- Expr2 : Type2 statEnvs |- Expr3 : Type3

statEnvs |- if Expr1 then Expr2 else Expr3 : (Type2 | Type3)

This rule states that if the conditional expression of an if expression has type boolean, then the type of the
entire expression is one of the two types of its then and else clauses. Note that this is represented as a choice
type: '(Type2|Type3)'.

The rule also illustrates a convention of judgment expressions: Judgments usually consist of three parts: the
assumptions, the problem, and the result, organized as "assumptions |- problem =>> result" The "|-" symbol is
pronounced "turnstile" and is ubiquitous in the rules whereas the actual symbol used instead of "=>>" varies
with the defined judgment -- in this particular example it is the ":" symbol. The idea is that with the
assumption defined one can compute the result from the problem.

Ed. Note: Jonathan suggests to explain how to 'chain' inference rules. I.e., how several inference
rules are applied recursively.

2.5.3 Normalization rules

Normalization is presented as logical rewrite rules, which specify those expressions that are rewritten into
some other expression in the XQuery core. The static semantics is presented as type inference rules, which
relate XQuery expressions to types and specify under what conditions an expression is well typed. The
dynamic, or operational, semantics is presented as value inference rules, which specify the order in which an
XQuery expression is evaluated and relate XQuery expressions to values.

Ed. Note: I'm leaving this unchanged, but I think we can and should change the definition of
normalization so that it doesn't force the use of "no-op" rules; i.e. instead of forcing the recurrent
execution of more mapping rules, allow them to be pattern matched just as the rest of the

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (19 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

inference rules are.

Normalization applies a translation function to each expression in the XQuery syntax and returns an
expression in the XQuery core syntax; The notation [Expr] denotes the result of translating the XQuery
expression Expr into an expression in the XQuery core. All normalization rules have the following structure:

[Expr]
==

coreExpr

The [Expr] above the == sign denotes an expression in the XQuery language before translation and the
coreExpr beneath the == sign denotes an equivalent expression in the XQuery core.

For convenience, the translation of an optional expression, e.g., Expr?, is denoted by ([Expr])?, meaning
that the optional expression is translated, if it exists. Similarly, the translation of a repeated expression, e.g.,
Expr* is denoted by [Expr]*, meaning that each expression in the repetition is translated individually.

Many of the mapping rules from XQuery into the core convert expressions that have implicit arguments,
types, or complex semantics into core expressions that have explicit arguments, types, and a more verbose, but
explicit semantics.

2.5.4 Environments

Logical inference rules use environments to record information computed during static type inference or
dynamic evaluation so that information can be used by other logical inference rules. For example, the type
signature of a user-defined function in a query prolog can be recorded in an environment and used by
subsequence rules. Similarly, the value assigned to a variable within a let statement can be captured in an
environment and used for further evaluations.

In general an environment is a dictionary that maps a symbol (e.g., a function name or a variable name) to a
value. If env is an environment then "env(symbol)" denotes the value that symbol is mapped to by env.
Depending on the kind of environment, the "value" can be a type, a data value, etc. The notation is
intentionally akin to function application as an environment can be seen as a "function" from the argument
symbol to the value that symbol maps to.

In this specification we use environment groups that group related environments. If "envs" is an environment
group with the member "mem", then that environment is denoted "envs.mem" and the value that it maps
symbol to is denoted "envs.mem(symbol)".

In particular, updating is only defined on environment groups:

"envs [mem(symbol |-> value)]" denotes the environment group which is just like envs except that the
mem environment has been updated to map symbol to value.

●

If the "value" is a type then we use the conventional variant notation "envs [mem(symbol : value)]".●

We allow the shorthand "envs [mem(symbol1 |-> value1 ; ... ; symboln |-> valuen)]" for the nested "
(...(envs[mem(symbol1 |-> value1)]) ... [mem(symboln |-> valuen)])".

●

Note that updating the environment overrides any previous binding that might exist for the same name.
Updating the environment is used to properly capture the scope of variables, namespaces, etc. Also, note that

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (20 of 183) [8/12/2002 6:38:03 PM]

there are no operations to remove entries from environments: the need never arises because the environment
group from "before" the update remains accessible concurrently with the updated version.

Finally, an example that brings several of the notations above together. Here is a rule that extends the varType
member of the static environment group statEnvs with a typing of a new variable:

statEnvs |- Expr1 : Type1 statEnvs [varType(QName : Type1)] |- Expr2 : Type2

statEnvs |- let $QName = Expr1 return Expr2 : Type2

2.5.5 Static type inference

The result of static type inference is to associate a static type with every expression in a query, such that any
evaluation of that expression is guaranteed to yield a value that belongs to that type. This section outlines how
this is done.

For each type of expression (as defined by the grammar production rules of XQuery), we define static type
inference rules. Here is a simple example of such a rule:

Expr1 : Type1 Expr2 : Type2

Expr1 , Expr2 : Type1, Type2

This rule is read as follows: if two expressions Expr1 and Expr2 have already been statically inferred to have
types Type1 and Type2 (that's the premises above the line), then it is the case that the expression below the line
"Expr1 , Expr2" must have the type "Type1, Type2". Basically, it says that when two expressions are
concatenated together, the result type is the concatenation of their types.

The "left half" of the expression below the line (the part before the ":") corresponds to some phrase in a query,
for which we want to compute a type. If the query has been parsed into an internal parse tree, this usually
corresponds to some node in that tree. The expression usually has patterns in it (Expr1 and Expr2) that need to
be matched against the children of the node in the parse tree. The expressions above the line indicate things
that we need to know or compute to use this rule; in this case, we need to know the types of the two
sub-expressions of the "," operator. Once we know those types (by applying static inference rules recursively
to the expressions on each side), then we can compute the type of this expression. This illustrates a general
feature of the type system: the type of an expression depends only on the type of its sub-expressions. The
overall static type inference algorithm is a recursive, following the parse structure of the query. At each point
in the recursion, an appropriate matching inference rule is sought; if at any point there is no applicable rule,
then static type inference has failed: the query is not type-safe.

As stated earlier, the types computed by static inference rules are sound, which means that they guarantee that
any value computed by an expression must belong to the static type of the expression. Another characteristic
of a static type system is completeness. A type system is complete if it computes the "tightest possible" static
type for every expression. It is very rare for type systems to be complete, and XQuery is no exception: there
are expressions for which the static type system of XQuery computes a type that is not the tightest type
possible.

2.5.6 Evaluation rules

Dynamic semantics associates values with query expressions. As with static type inference, we use logical

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (21 of 183) [8/12/2002 6:38:03 PM]

inference rules to determine the value of expressions given values of sub-expressions, and information
contained in environments. XQuery's dynamic semantics is modeled on the dynamic semantics presented in
[Milner].

The dynamic rules use judgments of the form: dynEnvs |- phrase => value, where phrase is a phrase in
XQuery syntax, and value is a value.

The inference rules used for dynamic evaluation, like those for static type inference, follow a top-down
recursive structure, computing the value of expressions from the values of their sub-expressions.

The dynamic type of data values is completely determined by the values themselves. Thus, there are no extra
rules or machinery for computing dynamic types.

3 The XQuery Type System
Ed. Note: Status:The XQuery type system defined in this section is based on structural typing.
The definition and formal specification of the XQuery type system will be revisited when support
for named typing is be added. Support for named typing is discussed in [Issue-0104: Support
for named typing].

The XQuery type system is used for the specification of both the dynamic and the static semantics of XQuery.
It is used to describe the semantics of datatype operations and type conversion rules in XQuery. It is also the
basis for the static semantics of XQuery.

The XQuery type system is based on XML Schema. XML Schema defines a notion of validation for XML
documents. When doing validation, an XML Schema processor checks if the structure, and the text content of
a document verifies the constraints on the structure, and the constraints on values, specified in the schema. As
an example of constraints on the document structure, all book elements might be declared to contain an isbn
attribute, and a title element, followed by a sequence of one or more author elements. As an example of
constraints on values, the isbn attribute might be declared as a subset of the XML Schema xsd:string
values, using a XML Schema pattern facet.

The XQuery type system is based on the structural constraints of XML schema, which have been formalized
as [XML Schema : Formal Description]. There are two main difference between the XQuery type system and
[XML Schema : Formal Description]. First the XQuery type system does not capture the notion of XML
Schema names (also called normalized universal names in [XML Schema : Formal Description]). Second, the
XQuery type system uses a specific syntax, as needed for semantics specification, notably the static type
inference.

This section describes the XQuery type system, the essential operations on the XQuery type system, and the
relationship between the XQuery type system and XML Schema.

3.1 XQuery Types

Types in the XQuery type system are described with the following grammar:

[75] TypeDeclaration ::= ("define" "element" QName "{" Type? "}")
| ("define" "attribute" QName "{" Type? "}")
| ("define" "type" QName "{" Type? "}")

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (22 of 183) [8/12/2002 6:38:03 PM]

[76] Type ::= TypeUnion
| TypeBoth
| TypeSequence
| TypeRepeat
| ItemType
| TypeRef
| TypeParenthesized
| TypeNone

[77] TypeUnion ::= Type "|" Type
[78] TypeBoth ::= Type "&" Type
[80] TypeRepeat ::= Type TypeOccurrenceIndicator
[79] TypeSequence ::= Type "," Type
[81] ItemType ::= ElementRef

| AttributeRef
| SimpleType

[82] TypeRef ::= "type" QName
[83] TypeParenthesized ::= "(" Type? ")"
[84] TypeNone ::= "none"
[55] SimpleType ::= QName
[85] AttributeRef ::= ("attribute" QName)

| ("attribute" NameTest "{" Type? "}")
[86] ElementRef ::= ("element" QName)

| ("element" NameTest "{" Type?)
[87] TypeOccurrenceIndicator ::= "*" | "+" | "?"

Ed. Note: This type system does not support text, process-instruction and document nodes. Such
types have to be added (See [Issue-0105: Types for nodes in the data model.], and
[Issue-0068: Document Collections]).

In addition, some constraints, not specified by the grammar, must hold:

SimpleType
SimpleType must be one of the built-in simple datatypes from [XML Schema Part
2].

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (23 of 183) [8/12/2002 6:38:03 PM]

AttributeRef

The content model of a AttributeRef must be consistent with the allowed content of
attributes. Namely, it must be a subtype of (using wilcards types as defined in
section on [3.1.1 Wildcard types]):

xs:AnySimpleType *

In the case the content of the attribute is not specified (e.g., attribute isbn),
this indicates a reference to a globally defined attribute in the schema. Therefore
the corresponding attribute must exist in the schema and be globally declared.

ElementRef

The content model of a ElementRef must be consistent with the allowed content of
elements. Namely, it must be a subtype of:

 (xs:AnyAttribute* ,
 xs:AnySimpleType* |
 (xs:AnyElement | xs:string)*)

Note that comments and processing instructions, while they are allowed data
values within an element, do not constitute part of an element's type.

In the case the content of the element is not specified (e.g., element title),
this indicates a reference to a globally defined element in the schema. Therefore
the corresponding element must exist in the schema and be globally declared.

TypeNone

The type TypeNone indicates a type error. This type can be generated by the type
system during the course of static type analysis, but it is not a legal value in any
type declaration in a query. Note that TypeNone is the identity for choice (I.e., (t |
TypeNone) == t)).

Ed. Note: Jerome: The status of the constraints on attribute and element type constructors is
unclear. When are they enforced and checked ? (See [Issue-0106: Constraint on attribute and
element content models]

In [XML Schema Part 2], a simple datatype is either a primitive datatype, or is derived from another simple
datatype by specifying a set of facets. The type syntax of XQuery does not provide any way to define
datatypes with facets. Such types can be imported from XML Schemas and may be referenced as Type
xs:QName, where xs:QName names the definition of the faceted type in the schema.

The occurrence indicators "*", "?" and "+" indicate a sequence of any, zero or one, or more than one items,
respectively. This plays the same role as, but is more limited than, the minoccurs/maxoccurs facets of [XML
Schema Part 1], and follows the notations of DTDs.

A WildCard denotes a set of names. A WildCard is either

a QName denoting the name with the given namespace prefix and local name;●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (24 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#QName

* denoting any name in any namespace;●

NCName:* denoting any local name in namespace NCName;●

or *:NCName denoting the local name NCName in any namespace;●

The element, and attribute, type constructors may use a wildcard to specify sets of one or more
matching elements, or attributes. For example,

 element bib:* { xs:integer* }

indicates any element in the bib namespace whose content consists of zero or more integers.

Empty content is indicated with the explicit empty sequence, as in

 element bib:* { () }

If the content model is omitted, then the element, (resp. attribute or type) name must be a proper QName, and
refers to the global element (resp. attribute or type) with that name, which must be defined (by importation
from a schema or through a type definition expression).

The type system includes three operators that can combine types: ",", "|" and "&".

The "," operator builds the "sequence" of two types. For example,

 xs:integer , xs:double

means a sequence of an integer followed by a double. This corresponds to the xs:sequence construct of XML
Schema for elements; XML Schema does not recognize similar properties for simple types.

The "|" operator builds a "choice" between two types. For example,

 xs:integer | (element bib:author)*

means either an integer or a sequence of bib:author elements. The "|" operator corresponds to the
xs:choice construct of XML Schema for elements and the xs:union construct for simple types.

The "&" operator builds the "interleaved product" of two types. The type t1 & t2 matches any sequence that is
an interleaving of a sequence that matches t1 and a sequence that matches t2. For example,

 (element a , element b) & xs:string =
 element a, element b, xs:string
 | element a, xs:string, element b
 | xs:string, element a, element b

In each case, the order of element a and element b is unchanged, but the xs:string can be interleaved in
any position.

The interleaved product is a generalization of the xs:all construct in XML Schema for elements, and has no
corresponding representation in XML Schema for simple types. The xs:all construct in XML Schema may
only consist of global or local element declarations with lower bound 0 or 1, and upper bound 1.

3.1.1 Wildcard types

XQuery defines the following built-in datatypes:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (25 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-1/#element-sequence
http://www.w3.org/TR/xmlschema-1/#element-choice
http://www.w3.org/TR/xmlschema-1/#element-union
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-1/#element-all
http://www.w3.org/TR/xmlschema-1/#element-all

define type xs:AnySimpleType { xs:integer | xs:float | xs:string ... }
define type xs:AnyAttribute { attribute * { type xs:AnySimpleType * }}
define type xs:AnyElement { element * { type xs:AnyType } }
define type xs:AnyNode { type xs:AnyAttribute | type xs:AnyElement }
define type xs:AnyItem { type xs:AnySimpleType | type xs:AnyNode }
define type xs:AnyType { type xs:AnyItem* }

The concepts of xs:AnySimpleType and xs:AnyType have the same interpretation as anySimpleType and
anyType of XML Schema, respectively, though this version of xs:AnyType contains types (such as comments
and processing instructions) that do not occur in XML Schema.

3.2 Instances, and Domain of a Type

Ed. Note: Status:This section is still incomplete and based on structural typing. The notion of
domain of a type will be revised when support for named typing is added.

The semantics of a type is given by the notion of domain, I.e., the set of all values which are instance of that
type. A tree in the [XQuery 1.0 and XPath 2.0 Data Model] is an instance of a type in the XQuery type system,
if and only if it verifies the structural constraints described by the type. For instance the query:

 <bib:pubdate> { 1954, 1966, 1974, 1986 } </bib:pubdate>

creates an instance of the following type:

 element bib:* { attribute country { xs:string }?, xs:integer* }

because the element name "bib:pubdate" is an instance of the wildcard nametest "bib:*", the attribute
"country" is optional, and the content of that element is indeed a sequence of integers.

The notion of instance of a type in XQuery is structural. Notably, it does not take XML Schema names into
account. For instance, the two following XQuery types:

 define element entry { type Book }
 define type Book {
 attribute isbn { xs:string },
 element title { xs:string },
 element author { xs:string }*,
 }

and

 define element entry { type Article }
 define type Article {
 attribute isbn { xs:string }?
 (element title { xs:string } | element ref { xs:string }),
 element author { xs:string }+,
 }

might be declared in two different schemas, one for books and one for research articles. Because the notion of
instance in the XQuery type system is structural, the following document:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (26 of 183) [8/12/2002 6:38:03 PM]

http://www.w3.org/TR/xmlschema-2/#integer
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#dt-anySimpleType
http://www.w3.org/TR/xmlschema-1/#key-urType

<entry> isbn="0-618-15398-5">
 <title>The Lord of the Rings</title>
 <author>J.R.R. Tolkien</author>
</entry>

would always be an instance of both types "Book" and "Article". In XML Schema, depending against which
schema the document is validated, only one of the two above types would hold.

In this section, we define formally the domain of a XQuery type. We first define the domain of a nametest,
then define the domain of a complete type.

3.2.1 Domain of a NameTest

The semantics of a given NameTest is defined by the set of names that matches a that NameTest.

Notation

We denote access to the domain of a NameTest with the following auxiliary judgment. The notation:

statEnvs |- QName1 inwild NameTest2

indicates that the QName QName is in the domain defined by the NameTest NameTest2.

We specify the relationship QName1 inwild NameTest2 by decomposing both sides in to QNames or
WildCards, and then defining the relationship between each component of the name.

First, is always in the domain of QName is always a singleton compose of itself. Note that the following
inference rule takes namespace resolution into account.

statEnvs |- expand(QName1) => qname(URI1,ncname1) URI1 = URI2
statEnvs |- expand(QName2) => qname(URI2,ncname2) ncname1 = ncname2

statEnvs |- QName1 inwild QName2

statEnvs |- expand(QName1) => qname(ncname1)
statEnvs |- expand(QName2) => qname(ncname2) ncname1 = ncname2

statEnvs |- QName1 inwild QName2

Now the rules for QName inwild WildCard:

statEnvs |- expand(QName1) => qname(URI1,ncname1) URI1 = URI2
statEnvs |- expandNCName(NCName2) => URI2

statEnvs |- QName1 inwild NCName2:*

statEnvs |- expand(QName1) => qname(URI1,ncname1) ncname1 = NCName2

statEnvs |- QName1 inwild *:NCName2

statEnvs |- QName1 inwild *

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (27 of 183) [8/12/2002 6:38:03 PM]

3.2.2 Semantics of the Domain of a Type

Notation

We denote the domain of a type using the following auxiliary judgment. The notation:

statEnvs |- value in Type

indicates that the value is the domain of type Type.

The XQuery type system is based on tree grammars. The semantics for the domain of a type is based on the set
of a trees accepted by the corresponding tree grammar.

We do now give a full specification of the notion of language recognized by a tree grammar at this point, but
refer the reader to the literature on tree grammars, for instance [Languages], or [TATA]

Ed. Note: Future versions of that document will include a more complete description of the
notion of domain of a type.

Ed. Note: The use of pure tree grammars for defining the domain yields a structural definition of
the domain of a type. This definition will have to be revised as soon as the named typing proposal
is added.

3.3 Subtyping

This section defines the semantics of subtyping in XQuery. Subtyping is an important relationship between
type, which is used notably, when doing function applications to check whether the input parameters of the
function are valid.

We first define subtyping between nametests, then define the notion of subtyping between arbitrary types.

3.3.1 NameTest Subtyping

Notation

We denote NameTest subtyping with the following auxiliary judgment. The notation:

statEnvs |- NameTest1 <:wild NameTest2

indicates that NameTest NameTest1 is a subtype of the NameTest NameTest2.

We evaluate NameTest1 <:wild NameTest2 by decomposing both sides in to QNames or WildCards, and then
defining a subtyping relation between each component of the name.

First QName <:wild QName is only true if they represent the same fully qualified name:

statEnvs |- expand(QName1) => qname(URI1,ncname1) URI1 = URI2
statEnvs |- expand(QName2) => qname(URI2,ncname2) ncname1 = ncname2

statEnvs |- QName1 <:wild QName2

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (28 of 183) [8/12/2002 6:38:03 PM]

statEnvs |- expand(QName1) => qname(ncname1)
statEnvs |- expand(QName2) => qname(ncname2) ncname1 = ncname2

statEnvs |- QName1 <:wild QName2

Now the rules for QName <:wild WildCard:

statEnvs |- expand(QName1) => qname(URI1,ncname1) URI1 = URI2
statEnvs |- expandNCName(NCName2) => URI2

statEnvs |- QName1 <:wild NCName2:*

statEnvs |- expand(QName1) => qname(URI1,ncname1) ncname1 = NCName2

statEnvs |- QName1 <:wild *:NCName2

statEnvs |- QName1 <:wild *

And finally rules for WildCard1 <:wild WildCard2. Note that the second rule also prevents NCName:* from
being a subtype of anything unless it is a valid known prefix.

statEnvs |- * <:wild *

expandNCName(NCName) => URI

statEnvs |- NCName:* <:wild *

statEnvs |- *:NCName <:wild *

Ed. Note: DD: (1) I've taken liberties comparing, e.g. NCName = ncname, (2) this doesn't take
into account any resolution of URIs.

3.3.2 Semantics of Subtyping

Notation

We denote subtyping with the following auxiliary judgment. The notation:

statEnvs |- Type1 <: Type2

indicates that type Type1 is a subtype of Type2.

The definition of subtyping is based on the notion of domain, as defined in [3.2 Instances, and Domain of a
Type]

By definition, Type1 <: Type2 if and only if all the instances in the domain of Type1 are also in the domain of

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (29 of 183) [8/12/2002 6:38:03 PM]

Type2. That is, for every value value such that:

statEnvs |- value in Type1

it is also the case that:

statEnvs |- value in Type2

It is easy to see that the subtype relation <: is a partial order, i.e. it is reflexive: statEnvs |- Type <: Type

and it is transitive: if, statEnvs |- Type1 <: Type2 and, statEnvs |- Type2 <: Type3 then, statEnvs |-
Type1 <: Type3

Note

The above definition although complete and precise, does not give a simple means to compute subtyping.

The XQuery type system is based on tree grammars. Computing subtyping between two types can be done by
computing inclusion between their corresponding tree grammar.

We do now give a full algorithm to compute inclusion between tree grammar at this point, but refer the reader
to the literature on tree grammars, for instance [Languages], or [TATA]

Ed. Note: Future versions of that document will include a more complete description of
algorithms to compute subtyping.

Ed. Note: The use of pure tree grammars for defining the domain yields a structural definition of
the notion of subtyping. This definition will have to be revised as soon as the named typing
proposal is added.

3.3.3 Type equivalence

In a few cases, we use the fact that two types are equivalent, I.e., that they define exactly the same domain
over data model instances.

By definition, we write Type1 = Type2 if and only if, Type1<:Type2 and Type2<: Type1.

3.4 Prime types

This section defines the notion of Prime Type, and operations on prime types. Prime types play an important
role in defining the static semantics of XQuery.

3.4.1 Prime types and sequences of items with similar types

Some expressions operate on sequences of similar items. These include FLWR expressions, sorting, and
duplicate elimination. For example, consider the following small document:

 <paper>
 <author>Buneman</author>
 <author>Davidson</author>
 <author>Fernandez</author>
 <author>Suciu</author>
 <title>Adding structure to unstructured data</title>
 <editor>Afrati</editor>

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (30 of 183) [8/12/2002 6:38:04 PM]

 <editor>Kolaitis</editor>
 </paper>
: element paper {
 element author {xsd:string}+,
 element title {xsd:string},
 element editor {xsd:string}*
 }

The following query extracts a sequence of authors followed by editors and sorts them by content. This results
in a sequence with authors and editors arbitrarily interleaved. The result type reflects this by repeating a choice
of author and editor.

 (/paper/author , /paper/editor) sortby .
 => <editor>Afrati</editor>
 <author>Buneman</author>
 <author>Davidson</author>
 <author>Fernandez</author>
 <editor>Kolaitis</editor>
 <author>Suciu</author>
 : (element author {xsd:string} | element editor {xsd:string})+

Such operation always operate on sequences over choices of items, that we call a Prime type.

Prime types can be described by the following grammar production.

[88] PrimeType ::= ItemType
| (PrimeType "|" PrimeType)

This section explains the details about computing over prime types and sequences of prime types. For
instance, we explain why the above type ends in a plus rather than a star.

3.4.2 Computing Prime Types

We use two auxiliary functions on types. Note that both functions are only used by XQuery's type inference
rules; they are not part of the XQuery syntax.

The type function prime(Type) extracts all item types from the type expression Type and combines them by a
choice.

prime(ItemType) = ItemType
prime(()) = none
prime(none) = none
prime(Type1 , Type2) = prime(Type1) | prime(Type2)

prime(Type1 & Type2) = prime(Type1) | prime(Type2)

prime(Type1 | Type2) = prime(Type1) | prime(Type2)

prime(Type?) = prime(Type)
prime(Type*) = prime(Type)
prime(Type+) = prime(Type)

The type function quantifier(Type) approximates the possible number of items in Type with the quantifiers

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (31 of 183) [8/12/2002 6:38:04 PM]

supported by XQuery type expressions (?, +, *). To quantify interim results, we use the auxiliary
quantifiers 1 for exactly one occurrence, 0 for exactly zero occurrences, i.e., the quantifier of the empty list,
and - for infinitely many occurrences, i.e., the quantifier of the empty choice none, which is used to type
errors.

quantifier(ItemType) = 1
quantifier(()) = 0
quantifier(none) = 0
quantifier(Type1 , Type2) = quantifier(Type1) , quantifier(Type2)

quantifier(Type1 & Type2) = quantifier(Type1) , quantifier(Type2)

quantifier(Type1 | Type2) = quantifier(Type1) | quantifier(Type2)

quantifier(Type?) = quantifier(Type) · ?
quantifier(Type*) = quantifier(Type) · *
quantifier(Type+) = quantifier(Type) · +

The tables below specify the necessary arithmetics to compute the sum (q1 , q2), the choice (q1 | q2), and the
product (q1 · q2) of two quantifiers q1, q2.

 , 0 1 ? + *
 0 0 1 ? + *
 1 1 + + + +
 ? ? + * + *
 + + + + + +
 * * + * + *

 | 0 1 ? + *
 0 0 ? ? * *
 1 ? 1 ? + *
 ? ? ? ? * *
 + * + * + *
 * * * * * *

 · 0 1 ? + *
 0 0 0 0 0 0
 1 0 1 ? + *
 ? 0 ? ? * *
 + 0 + * + *
 * 0 * * * *

The auxiliary quantifiers for interim results are eliminated with the following type simplification rules.

Type · 0 = ()
Type · 1 = Type
Type · ? = Type?
Type · + = Type+
Type · * = Type*
Type · - = none

prime(Type) · quantifier(Type) enjoys two desirable properties:

(1) for all types Type1, Type2: Type1 <: Type2 implies prime(Type1) · quantifier(Type1) <: prime(Type2) ·
quantifier(Type2).
For example, for the two syntactically different but semantically equivalent types Type1 = (xsd:string

& xsd:integer)* and Type2 =((xsd:string,xsd:integer) |

(xsd:integer,xsd:string))*, prime(Type1) · quantifier(Type1) = prime(Type2) · quantifier(Type2) =
(xsd:string | xsd:integer)*.

(2) for all types Type: Type <: prime(Type) · quantifier(Type).
Note that for some type expressions prime(Type) · quantifier(Type) may be regarded as too general. For
example, the result-type of sorting a sequence of type xsd:integer , xsd:string is
(xsd:integer | xsd:string)+. A more specific result-type would be xsd:integer &
xsd:string, which preserves the individual quantifiers for xsd:integer and xsd:string. However,

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (32 of 183) [8/12/2002 6:38:04 PM]

computing such result-types for arbitrary type expressions loses type precision for choice types (e.g.
(xsd:integer | xsd:string)+ becomes (xsd:integer* & xsd:string*)), and it requires
more complicated typing rules.

Ed. Note: (Peter): I'm not sure whether we need to elaborate on this here, but at least Denise may
wonder why we ditched disorder(). In addition, I'm aware that (2) is a corollary of Phil's famous
factoring theorem, I'm not sure whether this also holds for (1), but haven't spend much thought on
it. BTW. Impotence holds of course as well.

Using these two auxiliary functions, the result type of a SortExpr can be computed as follows. If Expr has type
Type then Expr sortby SortSpecList has type prime(Type) · quantifier(Type). For the formal type inference rule
see [4.10 Sorting Expressions]. Similar rules are applied to type the other operations that destroy sequence
order - union, intersect, except, distinct-node, distinct-value, and unorder.

Ed. Note: (Peter): I deliberately do not introduce the formal inference rule here, because (a) the
machinery for type inference probably hasn't been explained yet at this place in the document,
and (b) the current static semantics of SortExpr is incomplete anyway. Maybe the example should
use unorder() instead of sortby.

3.4.3 Common Prime Types

Ed. Note: Status: This section contains new material necessary for the simplified semantics of
typeswitch.

When performing type checking for certain XQuery expressions, we also need to compute the common prime
types between two types, and the common occurrence indicator between two types.

The type function common-primes(Type1,Type2) extracts all item types that are common from the prime types
and and combines them into a new prime type.

Notation

In order to define the "common-primes" function, we use the following auxiliary judgment.

statEnvs |- common-primes(ItemType1, ItemType2) = Type

specifies that under the current static environment, the common prime of ItemType1, ItemType2 is type Type.

We define the common primes by looking at each combination of items in each prime type.

common-primes((ItemType1 | ··· | ItemTypen), (ItemType1' | ··· | ItemTyper'))

 =
common-primes(ItemType1, ItemType1') | ··· | common-primes(ItemTypen, ItemTyper')

We then we define whether each item is kept or discarded using the auxiliary judgment. In the case the item is
discarded, the result of common-primes is none. Remember that none is the unit for choice.

In the case of a simple type, or globally defined attribute or element, one keeps the corresponding item if both
items in the functions are the same.

statEnvs |- SimpleType1 = SimpleType2

statEnvs |- common-primes(SimpleType1, SimpleType2) = SimpleType1

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (33 of 183) [8/12/2002 6:38:04 PM]

statEnvs |- element QName1 = element QName2

statEnvs |- common-primes(element QName1, element QName2) = element QName1

statEnvs |- attribute QName1 = attribute QName2

statEnvs |- common-primes(attribute QName1, attribute QName2) = attribute QName1

When matching an element (resp. attribute), if the left-hand side item type is a subtype of the right-hand side
item type, then the function returns the left-hand side item type. This rule is particularly useful, when the right
hand side is a wildcard type, as might be often the case in a typeswitch expression.

statEnvs |- element NameTest1 { Type1 } <: element NameTest2 { Type2 }

statEnvs |- common-primes(element NameTest1 { Type1 }, element NameTest2 { Type2 }) = element
NameTest1 { Type1 }

statEnvs |- element NameTest1 { Type1 } <: element QName2

statEnvs |- common-primes(element NameTest1 { Type1 }, element QName2) = element NameTest1 { Type1 }

statEnvs |- element QName1 <: element NameTest2 { Type2 }

statEnvs |- common-primes(element QName1, element NameTest2 { Type2 }) = element QName1

statEnvs |- attribute NameTest1 { Type1 } <: attribute NameTest2 { Type2 }

statEnvs |- common-primes(attribute NameTest1 { Type1 }, attribute NameTest2 { Type2 }) => attribute
NameTest1 { Type1 }

statEnvs |- attribute NameTest1 { Type1 } <: attribute QName2

statEnvs |- common-primes(attribute NameTest1 { Type1 }, attribute QName2) => attribute NameTest1 { Type1
}

statEnvs |- attribute QName1 <: attribute NameTest2 { Type2 }

statEnvs |- common-primes(attribute QName1, attribute NameTest2 { Type2 }) => attribute QName1

Otherwise, if the left-hand side item and the right-hand side item have compatible names, then the function
returns the right-hand side item type.

statEnvs |- not (element NameTest1 { Type1 } <: element NameTest2 { Type2 })
statEnvs |- (NameTest1 <:wild NameTest2) or (NameTest2 <:wild NameTest1)

statEnvs |- common-primes(element NameTest1 { Type1 }, element NameTest2 { Type2 }) => element
NameTest2 { Type2 }

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (34 of 183) [8/12/2002 6:38:04 PM]

statEnvs |- not(element NameTest1 { Type1 } <: element QName2)
statEnvs |- (NameTest1 <:wild QName2) or (QName2 <:wild NameTest1)

statEnvs |- common-primes(element NameTest1 { Type1 }, element QName2) => element QName2

statEnvs |- not(element QName1 <: element NameTest2 { Type2 })
statEnvs |- (QName1 <:wild NameTest2) or (NameTest2 <:wild QName1)

statEnvs |- common-primes(element QName1, element NameTest2 { Type2 }) => element NameTest2 { Type2
}

statEnvs |- not(attribute NameTest1 { Type1 } <: attribute NameTest2 { Type2 })
statEnvs |- (NameTest1 <:wild NameTest2) or (NameTest2 <:wild NameTest1)

statEnvs |- common-primes(attribute NameTest1 { Type1 }, attribute NameTest2 { Type2 }) => attribute
QName2 { Type2 }

statEnvs |- not(attribute NameTest1 { Type1 } <: attribute QName2)
statEnvs |- (NameTest1 <:wild QName2) or (QName2 <:wild NameTest1)

statEnvs |- common-primes(attribute NameTest1 { Type1 }, attribute QName2) => attribute QName2

statEnvs |- not(attribute QName1 <: attribute NameTest2 { Type2 })
statEnvs |- (QName1 <:wild NameTest2) or (NameTest2 <:wild QName1)

statEnvs |- common-primes(attribute QName1, element NameTest2 { Type2 }) => attribute NameTest2 { Type2
};

Finally, in all the other cases, the common type is none. I.e., otherwise:

statEnvs |- common-primes(ItemType1, ItemType2) => none

3.4.3.1 Common Occurrence Indicator

The following table is computing the common occurrence indicator and is used in the typing of the typeswitch
expression.

 common-occur 0 1 ? + *
 0 0 0 0 0 0
 1 0 1 1 1 1
 ? 0 1 ? 1 ?
 + 0 1 1 + +
 * 0 1 ? + *

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (35 of 183) [8/12/2002 6:38:04 PM]

3.5 Importing types from XML Schema

Ed. Note: Status: This section is still incomplete, needs detailed review, and will be fully revised
to support named typing. This section is enclose here merely to illustrate what mapping from
XML Schema into the XQuery type system will look like in future versions of the document.

The XQuery type system support a static subset of XML Schema. At compile time, the XQuery environment
imports XML Schema declarations and load them as declarations in the XQuery type system for further static
reasoning. The semantics of that loading process is defined by a simple mapping from XML Schema to the
XQuery type system.

The mapping applies a translation function to each XML Schema expression in the XML Schema syntax and
returns an expression in the XQuery type system syntax. The notation [SchemaExpr] denotes the result of
translating the XML Schema expression Expr into an expression in the XQuery type system. All mapping
rules have the following structure:

[SchemaExpr]
==

Type

The [SchemaExpr] above the horizontal rule denotes an expression in XML Schema before translation and
the coreExpr beneath the horizontal rule denotes an equivalent expression in the XQuery core.

3.5.1 Schema

Schemas are imported by the 'schema' declaration in the preamble of a query. To import a schema, the
document referred to by the given URI is opened and the schema declarations contained in the document are
translated into the corresponding in-line type definitions.

[schema NCName { URI }]
==

[open-schema-document(URI)]sort_decl(NCName)

To make the translation rules a bit easier to read, we use grammar rules to distinguish between the various
parts of a <schema> element:

[89] Pragma ::= ("include" | "import" | "redefine" | "annotation")*
[90] Content ::= (("simpleType" | "complexType" | "element" | "attribute"

| "attributeGroup""attributeGroup" | "group" | "notation") "annotation"*)*

(Note: attributes that are ignored are emphasized)

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (36 of 183) [8/12/2002 6:38:04 PM]

[
 <schema
 attributeFormDefault = (qualified | unqualified) : unqualified
 elementFormDefault = (qualified | unqualified) : unqualified
 finalDefault = (#all | List of (extension | restriction)) : ''
 id = ID
 targetNamespace = anyURI
 version = token
 xml:lang = language
 {any attributes with non-schema namespace . . .}>
 Pragma Content
 </schema>

]sort_decl(NS)
==

[Pragma]sort_decl(NS) [Content]sort_decl(NS)

[
 <include
 id = ID
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
 </include>

]
==

[schema targetNS { anyURI }]sort_decl(targetNS)

An imported schema is associated with the namespace prefix that it defines:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (37 of 183) [8/12/2002 6:38:04 PM]

[
 <import
 id = ID
 namespace = NCName
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
 </import>

]
==

[schema NCName { anyURI }]sort_decl(namespace)

Redefine is unsupported.

[
 <redefine
 id = ID
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: (annotation | (simpleType | complexType | group | attributeGroup))*
 </redefine>

]sort_decl(targetNS)
==

Annotations are unsupported.

[annotation]sort_decl(targetNS)
==

3.5.2 QNames

[NCName]name(targetNS)
==

targetNS:NCName

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (38 of 183) [8/12/2002 6:38:04 PM]

[NS:NCName]name(targetNS)

==
NS:NCName

3.5.3 Complex Type Definitions

The following productions describe the structure of a complex type definition in XML Schema.

[91] ComplexTypeContent ::= "annotation"? ("simpleContent" | "complexContent" | "group" | "all"
| "choice" | "sequence")

[92] Attributes ::= ("attribute" | "attributeGroup""attributeGroup")* "anyAttribute"?

 <complexType
 abstract = boolean : false
 block = (#all | List of (extension | restriction))
 final = (#all | List of (extension | restriction))
 id = ID
 mixed = boolean : false
 name = NCName
 {any attributes with non-schema namespace . . .}>
 ComplexTypeContent
 Attributes
 </complexType>

We distinguish between global complex types (which are mapped to sort declarations) and local complex
types (which are mapped to type definitions).

3.5.3.1 Global complex type

[
 <complexType name=NCName>
 ComplexTypeContent
 Attributes
 </complexType>

]sort_decl(prefix)
==

define type [NCName]name(prefix) { [Attributes]group(prefix), [ComplexTypeContent]group(prefix) }

In case of mixed complex type, the mapping introduces TEXT in the corresponding type system
representation.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (39 of 183) [8/12/2002 6:38:04 PM]

[
 <complexType name=NCName mixed="true">
 ComplexTypeContent
 Attributes
 </complexType>

]sort_decl(prefix)
==

define type [NCName]name(prefix) { [Attributes]group(prefix), TEXT* &

[ComplexTypeContent]group(prefix) }

3.5.3.2 Anonymous local complex type

[
 <complexType>
 ComplexTypeContent
 Attributes
 </complexType>

]sort_decl(prefix)
==

[Attributes]group(prefix), [ComplexTypeContent]group(prefix)

In case of mixed complex type, the mapping introduces TEXT in the corresponding type system
representation.

[
 <complexType mixed="true">
 ComplexTypeContent
 Attributes
 </complexType>

]sort_decl(prefix)
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (40 of 183) [8/12/2002 6:38:04 PM]

[Attributes]group(prefix), TEXT* &[ComplexTypeContent]group(prefix)

3.5.4 Groups

3.5.4.1 Global named group declarations

[
 <group
 name = NCName>
 Content: (annotation?, (all | choice | sequence))
 </group>

]group(prefix)
==

define type [NCName]name(prefix) { [Content]group(prefix) }

3.5.4.2 Local groups

Anonymous local groups

[
 <group>
 Content: (annotation?, (all | choice | sequence))
 </group>

]sort_decl(prefix)
==

[Content]group(prefix)

All groups

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (41 of 183) [8/12/2002 6:38:04 PM]

[
 <all
 id = ID
 maxOccurs = 1 : 1
 minOccurs = (0 | 1) : 1
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, element1 ... elementn)

 </all>

]group(prefix)
==

[element1]group(prefix) & ... & [elementn]group(prefix)

Choice groups

[
 <choice
 id = ID
 Occurs
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (element | group | choice | sequence | any)*)
 </choice>

]group(prefix)
==

([Content1]group(prefix) | ... | [Contentn]group(prefix)) [Occurs]bound

Sequence groups

[
 <sequence
 id = ID
 Occurs
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (element | group | choice | sequence | any)*)
 </sequence>

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (42 of 183) [8/12/2002 6:38:04 PM]

]group(prefix)
==

([Content1]group(prefix), ... , [Contentn]group(prefix)) [Occurs]bound

3.5.5 minOccurs and maxOccurs

The following structure describes minOccurs and maxOccurs attributes in XML Schema.

[93] Occurs ::= ("maxOccurs" ("nonNegativeInteger" | "unbounded"))
| ("minOccurs" "nonNegativeInteger")

minOccurs and maxOccurs are mapped to the type system in the following way.

[minOccurs=0]bound
==
?

[maxOccurs="unbounded"]bound
==
+

[minOccurs=0 maxOccurs="unbounded"]bound
==
*

[minOccurs=1 maxOccurs=1]bound
==

Right now, the proposed type system grammar does not capture other occurrences cases. Therefore, these are
converted into a collection.

[minOccurs=m maxOccurs=n]bound
==
*

3.5.6 Elements

The following structure describes element declarations in XML Schema.

 <element
 abstract = boolean : false
 block = (#all | List of (extension | restriction | substitution))
 default = string
 final = (#all | List of (extension | restriction))
 fixed = string

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (43 of 183) [8/12/2002 6:38:04 PM]

 form = (qualified | unqualified)
 id = ID
 Occurs
 name = NCName
 nillable = boolean : false
 ref = QName
 substitutionGroup = QName
 type = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((simpleType | complexType)?, (unique | key | keyref)*))
 </element>

3.5.6.1 Global elements

[<element name=NCName1 type=QName>]sort_decl(prefix)
==

define element [NCName1]name(prefix) { [QName]name(prefix) }

[
 <element name=NCName>
 Content
 </element>

]sort_decl(prefix)
==

define element [NCName]name(prefix) { [Content]group(prefix) }

3.5.6.2 Local elements

Local elements with explicit bounds:

[<element ref=NCName Bound>]group(prefix)
==

element [NCName]name(prefix) [Bound]bound

[<element name=NCName type=QName Bound>]group(prefix)
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (44 of 183) [8/12/2002 6:38:04 PM]

element [NCName]name(prefix) { [QName]name(prefix) } [Bound]bound

[
 <element name=NCName Bound>
 Content
 </element>

]group(prefix)
==

element [NCName]name(prefix) { [Content]group(prefix) } [Bound]bound

Local elements with no explicit bounds:

[<element ref=NCName>]group(prefix)
==

element [NCName]name(prefix)

[<element name=NCName type=QName>]group(prefix)
==

element [NCName]name(prefix) { [QName]name(prefix) }

[
 <element name=NCName>
 Content
 </element>

]group(prefix)
==

element [NCName]name(prefix) { [Content]group(prefix) }

3.5.7 Attributes

The following structure describes attribute declarations in XML Schema.

 <attribute

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (45 of 183) [8/12/2002 6:38:04 PM]

 default = string
 fixed = string
 form = (qualified | unqualified)
 id = ID
 name = NCName
 ref = QName
 type = QName
 Use
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?))
 </attribute>

3.5.7.1 Use

The "use" attribute is used to indicate whether attributes are optional or not. The following production
describes the structure of the "use"attribute.

The meaning of the "use" attribute is naturally captured in the type system by an occurrence indicator, as
reflected in the following mapping rules.

Optional attributes are mapped to optional groups in the type system, using the '?' notation.

[optional]use
==
?

Required attributes indicate a required group.

[required]use
==

?????????????

It is an open issue what should be the semantics of a prohibited attribute in the type system.

[prohibited]use
==

3.5.7.2 Global attributes

[<attribute name=NCName type=QName>]sort_decl(prefix)
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (46 of 183) [8/12/2002 6:38:04 PM]

define attribute [NCName]name(prefix) { [QName]name(prefix) }

[
 <attribute name=NCName>
 Content
 </element>

]sort_decl(prefix)
==

define attribute [NCName]name(prefix) { [Content]group(prefix) }

3.5.7.3 Local attributes

Local attributes with explicit use:

[<attribute ref=NCName Use>]group(prefix)
==

attribute [NCName]name(prefix) [Use]use

[<attribute name=NCName type=QName Use>]group(prefix)
==

attribute [NCName]name(prefix) { [QName]name(prefix) } [Use]use

[
 <attribute name=NCName Use>
 Content
 </attribute>

]group(prefix)
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (47 of 183) [8/12/2002 6:38:04 PM]

attribute [NCName]name(prefix) { [Content]group(prefix) } [Use]use

Local attributes with no explicit use:

[<attribute ref=NCName>]group(prefix)
==

attribute [NCName]name(prefix)?

[<attribute name=NCName type=QName>]group(prefix)?
==

attribute [NCName]name(prefix) { [QName]name(prefix) }?

[
 <attribute name=NCName>
 Content
 </attribute>

]group(prefix)
==

attribute [NCName]name(prefix) { [Content]group(prefix) }?

3.5.8 Simple Content

For simple content, one just map their content in the type system. The mapping ignores most of the other
information, notably facets.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (48 of 183) [8/12/2002 6:38:04 PM]

[
 <simpleContent
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | extension))
 </simpleContent>

]group(prefix)

==

[Content]group(prefix)

The only part of the <restriction> content that is mapped is simpleType? and the attributes.

[
 <restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?, (minExclusive | minInclusive | maxExclusive | maxInclusive |
 totalDigits | fractionDigits | length | minLength | maxLength | enumeration | whiteSpace | pattern)*)?,
 ((attribute | attributeGroup)*, anyAttribute?))
 </restriction>

]group(prefix)
==

[Content]group(prefix)

All facets are ignored:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (49 of 183) [8/12/2002 6:38:04 PM]

[
 (minExclusive | minInclusive | maxExclusive | maxInclusive |
 totalDigits | fractionDigits | length | minLength |
 maxLength | enumeration | whiteSpace | pattern)*)?

]group(prefix)

==

We also ignore <extension> for now.

[
 <extension
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
 </extension>

]group(prefix)
==

3.5.9 Attribute Group

3.5.9.1 Attribute group declaration

[
 <attributeGroup
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
 </attributeGroup>

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (50 of 183) [8/12/2002 6:38:04 PM]

]sort_decl(prefix)
==

define type [NCName]name(prefix) { [Content]group(prefix) }

3.5.9.2 Attribute group reference

Attribute group reference can only occur in a complex type:

[
 <attributeGroup
 id = ID
 ref = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
 </attributeGroup>

]group(prefix)
==

[QName]name(prefix)

3.5.9.3 Attribute wildcard

The anyAttribute schema component is mapped to the corresponding wildcard in the XQuery type system. The
'namespace' modifier is ignored.

[
 <anyAttribute
 id = ID
 namespace = ((##any | ##other) | List of (anyURI | (##targetNamespace | ##local))) : ##any
 processContents = (lax | skip | strict) : strict
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?)
 </anyAttribute>

]
==

xs:AnyAttribute

3.5.10 Complex Content

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (51 of 183) [8/12/2002 6:38:04 PM]

[
 <complexContent
 id = ID
 mixed = false
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | extension))
 </complexContent>

]group(prefix)
==

[Content]group(prefix)

[
 <complexContent
 id = ID
 mixed = boolean
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | extension))
 </complexContent>

]group(prefix)
==

TEXT* & [Content]group(prefix)

[
 <restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content
 </restriction>

]group(prefix)
==

[Content]group(prefix)

3.5.11 Simple Types

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (52 of 183) [8/12/2002 6:38:04 PM]

Global simple types:

[
 <simpleType
 final = (#all | (list | union | restriction))
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | list | union))
 </simpleType>

]
==

define type [NCName]group(prefix) { [Content]group(prefix) }

Anonymous local simple type:

[
 <simpleType
 final = (#all | (list | union | restriction))
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (restriction | list | union))
 </simpleType>

]group(prefix)
==

[Content]group(prefix)

Again, we ignore all facets and only translate simpleType?

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (53 of 183) [8/12/2002 6:38:04 PM]

[
 <restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?, (minExclusive | minInclusive | maxExclusive | maxInclusive |
 totalDigits | fractionDigits | length | minLength | maxLength | enumeration | whiteSpace | pattern)*))
 </restriction>

]group(prefix)
==

[Content]group(prefix)

[
 <list
 id = ID
 itemType = QName
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, (simpleType?))
 </list>

]
==

[Content]group(prefix)*

[
 <union
 id = ID
 memberTypes = QName1, ..., QNamen
 {any attributes with non-schema namespace . . .}>
 Content: (annotation?, simpleType_1, ... simpleType_n)
 </union>

]
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (54 of 183) [8/12/2002 6:38:04 PM]

[QName1]name(prefix) | ... | [QNamen]name(prefix) | [simpleType1]group(prefix) | ... |

[simpleTypen]group(prefix)

3.6 Major type issues

Ed. Note: Alignment between XQuery, the [XQuery 1.0 and XPath 2.0 Data Model], and the
XQuery formal semantics. There are some known discrepancies between the type models in the
Data Model document, the XQuery document and this document. Currently the XQuery/XPath
grammar does not contain comments, processing-instructions or schema-components. Currently
neither XQuery nor this document contain text nodes or document nodes, which are present in the
Data Model. See issues [Issue-0068: Document Collections], [Issue-0105: Types for nodes in
the data model.].

Ed. Note: Syntax for types. With respect to the currently published XQuery document, there is
another major misalignment as well: the current XQuery document does not have a syntax for
type constructors in XQuery.

Ed. Note: Complexity of type operations. There are concerns about the complexity of type
inference, notably about type subsumption used during type inference, and validation used during
evaluation of some of the type operations (e.g., typeswitch). Additionally, there are many
language features for which it is possible to define special type inference rules that would give
tighter bounds. The question is, which features, which rules, and how do they interact with the
complexity of type inference and subtype computation. See [Issue-0080: Typing of parent],
[Issue-0083: Expressive power and complexity of typeswitch expression], [Issue-0091:
Attribute expression].

Ed. Note: XML Schema mapping. The mapping from XML Schema to the XQuery type system
is new and has not yet been reviewed by the XML Query Working Group See [Issue-0019:
Support derived types], [Issue-0020: Structural vs. name equivalence], [Issue-0073: Facets
for simple types and their role for typechecking].

4 Semantics of Expressions
Ed. Note: Status: This section contained a fully revised semantics for XQuery, based on the
December 2001 working drafts. Some sections might still await further material or editorial
consolidation, as indicated by additional status note included in each specific section.

This section defines semantics of all XQuery expressions. The organization of this section parallels the
organization of Section 2 of the XQuery document.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (55 of 183) [8/12/2002 6:38:04 PM]

[4] Expr ::= SortExpr
| OrExpr
| AndExpr
| FLWRExpr
| QuantifiedExpr
| TypeswitchExpr
| IfExpr
| GeneralComp
| ValueComp
| NodeComp
| OrderComp
| InstanceofExpr
| RangeExpr
| AdditiveExpr
| MultiplicativeExpr
| UnionExpr
| IntersectExceptExpr
| UnaryExpr
| CastExpr
| Constructor
| PathExpr

For each expression, we give a short description of the expression to be defined and include its grammar
productions. The semantics of an expression includes the normalization, static analysis, and dynamic
evaluation phases. Recall that normalization rules translate XQuery syntax into core XQuery syntax. In the
sections that contain normalization rules, we include the Core grammar productions into which the expression
is normalized. After normalization, sections on static type inference and dynamic evaluation define the static
type and dynamic value for the core expression.

The different phases are covered by the judgments shown in the following table where the environment
patterns are defined as part of the context below.

statEnvs |- query phrase
The query phrase is well-typed in the static
environment group statEnvs, [2.5.5 Static type
inference].

statEnvs |- query phrase : type expression

The query phrase is well-typed in the static
environment group statEnvs, and its static type is
given by type expression, [2.5.5 Static type
inference].

dynEnvs |- query phrase => value phrase
The evaluation of query phrase yields the value
given by value phrase in the dynamic environment
group dynEnvs, [2.5.6 Evaluation rules]

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (56 of 183) [8/12/2002 6:38:04 PM]

4.1 Basics

4.1.1 Expression Context

Introduction

The expression context for a given expression consists of all the information that can affect the result of the
expression. This information is organized into the static context and the evaluation context. This section
specifies the environments that represent the context information used by XQuery expressions.

4.1.1.1 Static Context

The XQuery static inference rules use the "static" environment group statEnvs containing the environments
built during static type checking and used during both static type checking and dynamic evaluation.

The following environments are maintained in the static environment group:

statEnvs.namespace The namespace environment maps namespace prefixes (NCNames) onto their
fully qualified definitions (an xs:anyURI), as determined by the appropriate
namespace declaration.

statEnvs.varType The static variable type environment maps variable and parameter names
(Variables) to their static type (a Type).

statEnvs.funcType The function declaration environment stores the static type signatures of
functions. Because XQuery allows multiple functions with the same name
differing only in the number of arguments, this environment maps function
name/arity (QName, integer) pairs to function type signatures (Typer, Type1, ...,
Typen) where the first is the return type and the rest are the types of the
parameters, in order.

statEnvs.elemDecl The element declaration environment maps element type names (QNames) onto
their element type definition (a Type).

statEnvs.attrDecl The attribute declaration environment maps attribute type names (QNames) onto
their attribute type definition (a Type).

statEnvs.typeDecl The type declaration environment maps type names (QNames) onto their type
definition (a Type).

Environments have an initial state when query processing begins, containing, for example, the function
signatures of all built-in functions.

A common use of the static environment is to expand QNames by looking up namespace prefixes in the
statEnvs.namespace environment. The QName production in the XQuery grammar is as follows:

[223] QName ::= ":"? NCName (":" NCName)?

which corresponds to either a single local name, or a namespace prefix and a local name.

We define a helper function, expand to expand QNames by looking up the namespace prefix in
statEnvs.namespace. We write it as follows:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (57 of 183) [8/12/2002 6:38:04 PM]

http://www.w3.org/TR/xmlschema-2/#anyURI

 statEnvs |- expand(QName) = qname(anyURI, ncname)

or

 statEnvs |- expand(QName) = qname(ncname)

where what is on the right side is a QName value (not a QName expression).

The helper expand function is defined as follows:

If QName matches NCName1:NCName2, and if statEnvs.namespace(NCName1) = anyURI, then the
expression yields qname(anyURI,NCName2). If the namespace prefix NCName1 is not found in
statEnvs.namespace, then the expression does not apply (that is, the inference rule will not match).

●

If QName matches NCName, and if statEnvs.namespace("*default*") = anyURI, then the expression
yields qname(anyURI,NCName), where anyURI is the default namespace in effect, otherwise the
expression yields qname(NCName).

●

Ed. Note: The above rules could be given as proper inference rules defining the expand
judgment.

Here is an example that shows modifying a static environment in response to a namespace definition.

statEnvs [namespace(NCName |-> StringLiteral)] |- Expr*

statEnvs |- namespace NCName = StringLiteral Expr*

This rule is read: "the phrase on the bottom (a namespace declaration followed by a sequence of expressions)
is well-typed (accepted by the static type inference rules) within an environment statEnvs if (above the line,
now) the sequence of expressions is well-typed in the environment obtained from statEnvs by adding the
namespace declaration".

This is the common idiom for passing new information in an environment along to sub-expressions. In the
case where we need to update an environment with a completely new component, we write:

statEnvs [namespace = (NewEnvironment)]

4.1.1.2 Evaluation Context

We use dynEnv to denote the group of "dynamic" environments, i.e., those environments built and used only
during dynamic evaluation.

The following environments are dynamic:

dynEnvs.funcDefn The dynamic function environment maps a function name to a function definition.
The function definition consists of an expression, which is the function's body, and
a list of variables, which are the function's formal parameters. As with
statEnvs.funcType, dynEnvs.funcDefn requires a function name and a parameter
count: it maps a (QName, integer) pair to a value list of the form (Expr , Variable1,
..., Variablen).

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (58 of 183) [8/12/2002 6:38:04 PM]

dynEnvs.varValue The dynamic value environment maps a variable name (QName) onto the variables
current value (value).

Ed. Note: DD: this still does not account for those functions that are genuinely overloaded, as
some of the built-in functions are. Probably this will be handled by special rules for those
functions in the main semantics section of the document. See [Issue-0122: Overloaded
functions]

Finally, dynamic environments have an initial state when query processing begins, containing, for example,
the function declarations of all built-in functions.

Ed. Note: Somewhere we need an exact definition of what is in the initial environments? Notice
that for XPath this is partially defined by the containing language. See [Issue-0115: What is in
the default context?].

Several built-in variables represent other parts of the evaluation context:

Built-in Variable Represents:
$fs:dot context item
$fs:position context position
$fs:last context size

context document

Variables with the "xq" namespace prefix are reserved for use in the definition of the formal semantics. It is a
static error to define a variable in the "xq" namespace.

Ed. Note: "xq" is actually a namespace prefix and should be replaced with a proper namespace
URI unique to this spec. See [Issue-0100: Namespace resolution].

Ed. Note: The following dynamic contexts have no formal representation yet: current date and
time. See [Issue-0114: Dynamic context for current date and time]

4.1.2 Type Conversions

Notation

For the basic-conversion rules, we define three normalization functions: []Optional_Atomic_Value

[]Atomic_Value_Sequence, and []Node_Sequence. They are used in the definition of arithmetic, comparison,

and function-call expressions.

Normalization

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (59 of 183) [8/12/2002 6:38:04 PM]

There are two variants of the normalization function []Optional_Atomic_Value: the first variant is not

parameterized by the required type of the expression and the second variant is parameterized by the required
type. The function converts an expression into an expression that returns an optional atomic value and is used
in the normalization of expressions whose required type is an optional atomic value. A node is converted to an
optional atomic value by extracting its typed content.

[Expr]Optional_Atomic_Value
==

typeswitch (Expr) as $v
case fs:atomic? return $v
case node return
 (typeswitch (fs:data($v)) as $w
 case fs:atomic? return $w

 default return [$w]Type_Exception_Opt_Atomic)

default return [$v]Type_Exception_Other

In the parameterized variant, an atomic value with type fs:UnknownSimpleType is always cast to the required
type:

[Expr]Optional_Atomic_Value(Type)
==

typeswitch (Expr) as $v
case fs:UnknownSimpleType return cast as Type ($v)
case fs:atomic? return $v
case node return
 (typeswitch (fs:data($v)) as $w
 case fs:UnknownSimpleType return cast as Type ($w)
 case fs:atomic? return $w

 default return [$w]Type_Exception_Opt_Atomic(Type))

default return [$v]Type_Exception_Opt_Atomic(Type)

Ed. Note: The type fs:UnknownSimpleType denotes untyped character data. The name of this
type is an open XPath/XQuery issue (Issue-174).

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (60 of 183) [8/12/2002 6:38:04 PM]

The function []Atomic_Value_Sequence(Type) is parameterized by the atomic type of the sequence. This rule is

used in the normalization of expressions whose required type is a sequence of atomic values. The rule converts
each value in the argument expression to an atomic value. An atomic value with type fs:UnknownSimpleType
is always cast to the required type. A node is converted to a sequence of atomic values by extracted its typed
content and, for each atomic value in that sequence, cast any value with type fs:UnknownSimpleType to the
required type and return all other values unchanged.

[Expr]Atomic_Value_Sequence(Type)
==

for $v in Expr
return
 typeswitch ($v) as $w
 case fs:UnknownSimpleType return cast as Type ($w)
 case atomic return $w

 case node return for $x in fs:data($w) return [$x]Optional_Atomic_Value(Type)

 default return [$v]Type_Exception_Other

The function []Node_Sequence is used in the normalization of expressions whose required type is node

sequence. They all map an XQuery core expression to an XQuery core expression.

[Expr]Node_Sequence
==

typeswitch (Expr) as $v
case node* return $v

default return [$v]Type_Exception_Other

Notation

Two more normalization functions implement type exceptions They are: []Type_Exception_Opt_Atomic(Type)

and []Type_Exception_Other.

Normalization

These definitions implement the strict type exception policy. The strict policy always raises an error:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (61 of 183) [8/12/2002 6:38:04 PM]

[Expr]Type_Exception_Opt_Atomic(Type)

==
dm:error()

[Expr]Type_Exception_Other
==

dm:error()

In the first rule, the required type is xs:boolean. The conditional expression in the "default return" clause
below guarantees that in an arbitrary sequence of items, if at least one value is a node, then the boolean
expression evaluates to true.

[Expr]Type_Exception_Opt_Atomic(boolean) = ...
==

typeswitch (Expr) as $v
case () return xf:false()
default return

 if (xf:length([$v/self::node()]Path) >= 1) then xf:true()

 else xf:boolean(xf:item-at($v, 1))

Ed. Note: MFF: The rule above requires that $v/self::node() on a simple value returns () rather
than raise an error.

Ed. Note: The semantics of Boolean node tests over sequences is still an open issue. See
[Issue-0131: Boolean node test and sequences].

In the next rule, the required type is node type. The conditional expression in the "default return" clause below
guarantees that in an arbitrary sequence of items, if the first item is a node, then the boolean expression
evaluates to true.

[Expr]Type_Exception_Opt_Atomic(node) = ...
==

typeswitch (Expr) as $v
case item+ return
 (typeswitch (xf:item-at($v, 1)) as $w
 case node return $w
 default return dm:error())
default return dm:error()

Ed. Note: MFF: All the remaining rules in the fallback conversions table must be specified. See

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (62 of 183) [8/12/2002 6:38:04 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

[Issue-0113: Incomplete specification of type conversions]

[Expr]Type_Exception_Other
==

dm:error()

4.2 Primary Expressions

This section defines the semantics of [2.2 Primary Expressions] in [XQuery 1.0: A Query Language for
XML]. Primary expressions are the basic primitives of the language.

A primary expression is a variable, literal, an element name, a function call, a wildcard expression, a
node-kind test, or a parenthesized expression.

[47] PrimaryExpr ::= Variable
| Literal
| ElementNameOrFunctionCall
| Wildcard
| KindTest
| ParenthesizedExpr

4.2.1 Literals

Introduction

A literal is a direct syntactic representation of a atomic value. XQuery supports two kinds of literals: string
literals and numeric literals.

[49] Literal ::= NumericLiteral | StringLiteral
[48] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral
[201] IntegerLiteral ::= Digits
[202] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)
[203] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?)) ([e] | [E]) ([+] | [-])? Digits
[214] StringLiteral ::= (["] [^"]* ["]) | (['] [^']* ['])

Normalization

All literals are core expressions, therefore there are no normalization rules for literals.

Core Grammar

The core grammar rules for literals are:

[49] Literal ::= NumericLiteral | StringLiteral
[48] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

Static Type Analysis

In the static semantics, the type of an integer literal is simply xs:integer:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (63 of 183) [8/12/2002 6:38:04 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-primary-expressions

statEnvs |- IntegerLiteral : xs:integer

Dynamic Evaluation

In the dynamic semantics, an integer literal is evaluated by constructing a atomic value in the data model,
which consists of the literal value and its type:

dynEnvs |- IntegerLiteral => dm:atomic-value(IntegerLiteral, xs:integer)

The formal definitions of decimal, double, and string literals are analogous to those for integer.

Static Type Analysis

statEnvs |- DecimalLiteral : xs:decimal

Dynamic Evaluation

dynEnvs |- DecimalLiteral => dm:atomic-value(DecimalLiteral, xs:decimal)

Static Type Analysis

statEnvs |- DoubleLiteral : xs:double

Dynamic Evaluation

dynEnvs |- DoubleLiteral => dm:atomic-value(DoubleLiteral, xs:double)

Static Type Analysis

statEnvs |- StringLiteral : xs:string

Dynamic Evaluation

dynEnvs |- StringLiteral => dm:atomic-value(StringLiteral, xs:string)

Ed. Note: MFF: Phil has noted that the data model should support primitive literals in their
lexical form, in which case no explicit dynamic semantic rule would be necessary. See
[Issue-0118: Data model syntax and literal values].

4.2.2 Variables

Introduction

A variable evaluates to the value to which the variable's QName is bound in the evaluation context.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (64 of 183) [8/12/2002 6:38:04 PM]

[192] Variable ::= "$" QName

Normalization

A variable is a core expression, therefore there is no normalization rule for a variable.

Core Grammar

The core grammar rules for variables are:

[192] Variable ::= "$" QName

Static Type Analysis

In the static semantics, the type of a variable is simply its type in the static type environment
statEnvs.varType:

statEnvs.varType(Variable) = Type

statEnvs |- Variable : Type

In case the variable is not bound in the environment, the system raises an error.

Dynamic Evaluation

In the dynamic semantics, a variable is evaluated by "looking up" its value in dynEnvs.varValue:

dynEnvs.varValue(Variable) = value

dynEnvs |- Variable => value

In case the variable is not bound in the environment, the system raises an error.

4.2.3 Parenthesized Expressions

The formal definition of parenthesized expressions is in [4.4 Sequence Expressions].

4.2.4 Function Calls

Introduction

A function call consists of a QName followed by a parenthesized list of zero or more expressions.

[51] ElementNameOrFunctionCall ::= QName ("(" (Expr ("," Expr)*)? ")")?

Notation

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (65 of 183) [8/12/2002 6:38:05 PM]

We define a normalization function,[]Formal_Argument for mapping the formal argument of a function call.

There are three variants of this mapping rule. If the required type of the formal argument is an optional atomic
value, the following rule is applied: (Type is the required atomic type.)

[Expr]Formal_Argument
==

[Expr]Optional_Atomic_Value(Type)

If the required type of the formal argument is a sequence of atomic values, the following rule is applied: (Type
is the atomic type of the sequence.)

[Expr]Formal_Argument
==

[Expr]Atomic_Value_Sequence(Type)

If the required type of the formal argument is neither an optional atomic value or a sequence of atomic values,
the expression is simply mapped to its corresponding core expression:

[Expr]Formal_Argument
==

[Expr]
Normalization

First, each argument in a function call is normalized to its corresponding core expression by applying

[]Formal_Argument.

[QName (Expr1, ..., Exprn)]
==

[QName] ([Expr1]Formal_Argument, ..., [Exprn]Formal_Argument)

Note that this normalization rule depends on the static environment containing function signatures. This is
working as the static context is built from the query prolog, before the normalization phase. [5 The Query
Prolog] explains how the query prolog is processed.

Core Grammar

The core grammar rule for a function call is:

[51] ElementNameOrFunctionCall ::= QName "(" (Expr ("," Expr)*)? ")"

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (66 of 183) [8/12/2002 6:38:05 PM]

Static Type Analysis

In the static semantics for core function calls, the type of each actual argument to the function must be a
subtype of the corresponding formal argument to the function, i.e., it is not necessary that the actual and
formal types be equal.

statEnvs |- QName => qname
statEnvs.funcType(qname, n) = qname(Type1, ..., Typen) returns Type

statEnvs |- Expr1 : Type'1 Type'1 <: Type1
...

statEnvs |- Exprn : Type'n Type'n <: Typen

statEnvs |- QName (Expr1, ..., Exprn) : Type

Dynamic Evaluation

In the dynamic semantics for core function calls, we first evaluate each function argument. Then we extend
dynEnvs.varValue by binding each formal variable to its corresponding actual value, and then evaluate the
body of the function in the new environment. The resulting value is the value of the function call.

dynEnvs |- QName => qname
dynEnvs.funcDefn(qname, n) = (Expr, Variable1, ... , Variablen)

dynEnvs |- Expr1 => value1 ... dynEnvs |- Exprn => valuen
dynEnvs [varValue = (Variable1 |-> value1;...; Variablen |-> valuen)] |- Expr => value

dynEnvs |- QName (Expr1, ..., Exprn) => value

Note that the function body is evaluated in the default environment,

Ed. Note: This semantics only works for non-overloaded function. This is always the case for
user defined functions, but not for [XQuery 1.0 and XPath 2.0 Functions and Operators]
functions. See [Issue-0122: Overloaded functions].

4.2.5 Comments

[106] ExprComment ::= "{--" [^}]* "--}"

Comments are lexical constructs only, and have no meaning within the query and therefore have no formal
semantics.

4.3 Path expressions

Introduction

Path expressions are used to locate nodes within a tree. There are two kinds of path expressions, absolute path
expressions and relative path expressions. An absolute path expression is a rooted relative path expression. A
relative path expression is composed of a sequence of steps.

[25] PathExpr ::= AbsolutePathExpr | RelativePathExpr
[31] AbsolutePathExpr ::= ("/" RelativePathExpr?) | ("//" RelativePathExpr)

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (67 of 183) [8/12/2002 6:38:05 PM]

[32] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*
[33] StepExpr ::= AxisStep | GeneralStep

Notation

Besides the general [Expr]Expr normalization rule for expressions, we use an auxiliary normalization rule for

path expressions, denoted [PathExpr]Path.

Normalization

A path expression always returns a sequence in document order. The complete normalization of a Path
expression is obtained by applying the Path normalization and then sorting the result by document order and
removing duplicates.

[PathExpr]Expr
==

fs:distinct-doc-order([PathExpr]Path)

Ed. Note: Jerome: the restriction that XPath expressions operate on nodes here seems too strict
and is still an open issue. See [Issue-0125: Operations on node only in XPath].

Absolute path expressions are path expressions starting with the / symbol, indicating that the expression must
be applied on the root node in the current context. Remember that the root node in the current context is the
topmost ancestor of the context node. The following two rules are used to normalize absolute path
expressions, and rely on the use of the fs:document() function, which computes the document node from
the context node.

["/"]Path
==

[xf:document($fs:dot)]Path

["/" RelativePathExpr]Path
==

[xf:document($fs:dot) "/" RelativePathExpr]Path

Ed. Note: Some of the semantics of the root expression '/' is still an open issue. For instance,
what should be the semantics of '/' in case of a document fragment (e.g., created using XQuery
element constructor). See [Issue-0123: Semantics of /].

The // syntax is part of the Abbreviated syntax in XPath. We give separate normalization rules for
Abbreviated XPath expressions in [4.3.5 Abbreviated Syntax]

Normalization of relative path expressions is done by normalizing each step, one after the other. A Step is

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (68 of 183) [8/12/2002 6:38:05 PM]

normalized by using a for expression in the following way.

[StepExpr "/" RelativePathExpr]Path
==

let $fs:sequence := fs:distinct-doc-order([StepExpr]Path) return

 let $fs:last := xf:length($fs:sequence) return
 for $fs:dot in $fs:sequence return
 let $fs:position := xf:index-of($fs:sequence, $fs:dot) return

 [RelativePathExpr]Path

As explained in the XQuery document, applying a step in XPath changes the focus (or context). The change of
focus is made explicit by the normalization rule, which binds the variable $fs:dot to the node currently
being processed, and the variable $fs:position to the position (i.e., the position within the input
sequence) of that node.

Ed. Note: This rule is using the function xf:index-of to bind the position of a node in a sequence.
This is working since path expressions should only work on nodes. See [Issue-0125: Operations
on node only in XPath]. Still, it might be preferable to be able to bind both the current node and
its position through a single processing of the collection within the for expression. The FS editors
proposed several syntax for such an operation. For instance: for $v at $i in E1
return E2. See [Issue-0124: Binding position in FLWR expressions].

The semantics of Step expressions, which are either axis or general steps, is given next.

4.3.1 Axis Steps

Introduction

An axis step is either a combination of an axis accessor, a node test and a step qualifier, or an abbreviated step.
We define here the semantics of Axis NodeTest pairs. The semantics of StepQualifiers is defined in [4.3.3
Step Qualifiers] and the semantics of abbreviated steps is defined in [4.3.5 Abbreviated Syntax].

[34] AxisStep ::= (Axis NodeTest StepQualifiers) | AbbreviatedStep

Ed. Note: (Michael Kay): there is a bug here in the formal semantics which does not deal
properly with principal node types. See [Issue-0108: Principal node types in XPath].

Notation

During the normalization process, we have to distinguish between forward and reverse Axis. In order to do so,
we need to slightly reorganize the XQuery grammar production to make that distinction. This reorganization
does not actually change the syntax, but merely regroup together different productions. Here is the grammar
that is the basis for the following normalization of steps.

[96] FSAxisStep ::= (ForwardAxis NodeTest StepQualifiers)
| (ReverseAxis NodeTest StepQualifiers)
| AbbreviatedStep

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (69 of 183) [8/12/2002 6:38:05 PM]

[97] ForwardAxis ::= "self" "::"
| "child" "::"
| "descendant" "::"
| "descendant-or-self" "::"
| "attribute" "::"

[98] ReverseAxis ::= "parent" "::"

We then use two auxiliary normalization rules denoted [...]ForwardPath and [...]ReversePath

Normalization

A forward axis is directly translated to core XQuery

[ForwardAxis NodeTest StepQualifier]Path
==

[ForwardAxis NodeTest StepQualifier]ForwardPath

A reverse axis is directly translated to core XQuery

[ReverseAxis NodeTest StepQualifier]Path
==

[ReverseAxis NodeTest StepQualifier]ReversePath

Core Grammar

We have now normalized all Axis Steps into the following core grammar.

[34] AxisStep ::= Axis NodeTest
[35] Axis ::= "child" "::"

| "descendant" "::"
| "parent" "::"
| "attribute" "::"
| "self" "::"
| "descendant-or-self" "::"

[36] NodeTest ::= NameTest | KindTest
[37] NameTest ::= QName | Wildcard
[38] Wildcard ::= "*" | ":"? NCName ":" "*" | "*" ":" NCName
[39] KindTest ::= ProcessingInstructionTest

| CommentTest
| TextTest
| AnyKindTest

[40] ProcessingInstructionTest ::= "processing-instruction" "(" StringLiteral? ")"
[41] CommentTest ::= "comment" "(" ")"
[42] TextTest ::= "text" "(" ")"

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (70 of 183) [8/12/2002 6:38:05 PM]

[43] AnyKindTest ::= "node" "(" ")"

Next, we give the static and dynamic semantics for Axis Steps.

Notation

We use the term Filter to denote either an axis or a node test.

[95] Filter ::= Axis | NodeTest

To define the semantics of axis and nodetest, we use the two following auxiliary judgments for filters. The
first judgment is defining the effect of a filter (either an axis or a nodetest) on a value, and is used in the
dynamic semantics. This judgment should be read as follows: in the current context (i.e., with respect to the
dynamic environment dynEnvs.varValue), applying the filter Filter on value Value1 yields the value
Value2

dynEnvs.varValue ; Value1 |- Filter => Value2

The second judgment is defining the effect of a filter (either an axis or a nodetest) on a type and is used in the
static semantics. This judgment should be read as follows: in the current context, (i.e., with respect to the the
static environment statEnvs.varType), applying the filter Filter on type Type1 yields the type Type2

statEnvs.varType ; Type1 |- Filter : Type2

In a few cases, when applying the type filter judgment recursively, we need to use an additional type
environment that contains local type information. We use the following notation.

statEnvs ; localTypeEnv ; Type1 |- Filter : Type2

We write updates to the local type environment as "localTypeEnv[qname : Type]"

Static Type Analysis

The static semantics of an Axis NodeTest pair is obtained by retrieving the type of the context node, and
applying the two filters (Axis, then NodeTest) on the result. The application of each filter is expressed through
the static filter judgment as follows.

statEnvs.varType($fs:dot) = Type1
statEnvs ; Type1 |- Axis : Type2

statEnvs ; Type2 |- NodeTest : Type3

statEnvs |- Axis NodeTest : Type3

Dynamic Evaluation

The dynamic semantics of an Axis NodeTest pair is obtained by retrieving the context node, and applying the
two filters (Axis, then NodeTest) on the result. The application of each filter is expressed through the filter
judgment as follows.

dynEnvs.varValue($fs:dot) = Value1
dynEnvs.varValue ; Value1 |- Axis => Value2

dynEnvs.varValue ; Value2 |- NodeTest => Value3

dynEnvs.varValue |- Axis NodeTest => Value3

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (71 of 183) [8/12/2002 6:38:05 PM]

We now define the filter judgment used in the dynamic semantics. This is done in two sets of inference rules.
The first set of inference rules is common to all filters, and defines the part of the semantics which applies to
both Axis and NodeTest. The second set of inference rules is specific to either Axis or NodeTest and is given
in the corresponding subsections below.

Static Type Analysis

Here are the common set of inference rules defining the static semantics of filters. Essentially, these rules are
used to process complex types through a filter, breaking the types down to the type of a node or of a value.
The semantics of a filter applied to a node or value type is then specific to each Axis and NodeTest.

statEnvs ; () |- Filter : ()

statEnvs ; none |- Filter : none

statEnvs ; Type1 |- Filter : Type'1
statEnvs ; type2 |- Filter : Type'2

statEnvs ; Type1, Type2 |- Filter : Type'1,Type'2

statEnvs ; Type1 |- Filter : Type'1
statEnvs ; type2 |- Filter : Type'2

statEnvs ; Type1 | Type2 |- Filter : Type'1 | Type'2

statEnvs ; Type1 |- Filter : Type'1
statEnvs ; type2 |- Filter : Type'2

statEnvs ; Type1 & Type2 |- Filter : Type'1 & Type'2

Dynamic Evaluation

Here are the common set of inference rules defining the dynamic semantics of filters. These rules apply filters
to a sequence, by breaking the sequence down to a node or value. The semantics of a filter applied to a node or
value is then specific to each Axis and NodeTest.

dynEnvs.varValue ; () |- Filter => ()

dynEnvs.varValue ; Value1 |- Filter => Value'1
dynEnvs.varValue ; Value2 |- Filter => Value'2

dynEnvs.varValue ; Value1, Value2 |- Filter => Value'1,Value'2

Ed. Note: Jerome: These rules use a notation abuse. Value'1,Value'2 indicates the

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (72 of 183) [8/12/2002 6:38:05 PM]

concatenation of Value'1 and Value'2, and is used for both constructing a new sequence and
deconstructing it. When doing the construction, it is equivalent to applying the
op:concatenate operator. We should strive for more consistent notation for data model
constructions and deconstruction, throughout the formal semantics specification. See also
[Issue-0118: Data model syntax and literal values].

4.3.1.1 Axes

Introduction

[35] Axis ::= "child" "::"
| "descendant" "::"
| "parent" "::"
| "attribute" "::"
| "self" "::"
| "descendant-or-self" "::"

Axis are used to traverse the document, returning nodes related to the context node inside the tree (children,
parent, attribute, etc).

Static Type Analysis

The following rules define the static semantics of the filter judgment when applied to an Axis.

The type for the self axis is the same type as the type of the context node.

statEnvs ; NodeType |- self:: : NodeType

In case of elements, the type of the child axis is obtained by extracting the children types out of the content
model describing the type of the context node.

statEnvs ; element qname { AttrType, ChildType } |- child:: : ChildType

The type of the attribute axis is obtained by extracting the attribute types out of the content model describing
the type of the context node.

statEnvs ; element qname { AttrType, ChildType } |- attribute:: : AttrType

The type for the parent axis is always an element, possibly optional.

statEnvs ; element |- parent:: : element?

Ed. Note: Better typing for the parent axis is still an open issue. See [Issue-0080: Typing of
parent].

The type for the namespace axis is always empty.

statEnvs NodeType |- namespace:: : ()

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (73 of 183) [8/12/2002 6:38:05 PM]

Ed. Note: Jerome: The type of namespace nodes is still an open issue. See [Issue-0105: Types
for nodes in the data model.].

The types for the descendant, and descendant-or-self axis are implemented through recursive application of
the children and parent filters. The corresponding inference rules use the auxiliary filter judgment with a local
type environment. This local type environment is used to keep track of the visited elements in order to deal
with recursive types.

statEnvs ; { } ; Type |- descendant:: : Type'

statEnvs ; Type |- descendant:: : Type'

The two following rules are used to deal with global elements. Global elements need careful treatment here in
order to deal with possible recursion. Notably, if the global element has been seen before, then the rule
terminates and returns the union of all types already visited in the local environment.

localTypeEnv(qname) = Type
localTypeEnv = { Type1, Type2, ... }

statEnvs ; element qname |- descendant:: : (Type1 | Type2 | ...)*

localTypeEnv(qname) is an error
statEnvs.varType(qname) = Type

statEnvs ; localTypeEnv[qname : Type] ; Type |- descendant:: : Type'

statEnvs localTypeEnv ; element qname |- descendant:: : element qname, Type'

Ed. Note: Peter: I need yet to figure out, whether this works, there still appear a few glitches. See
[Issue-0132: Typing for descendant].

In all other cases, the following rule applies

statEnvs ; NodeType |- child:: : Type1
statEnvs ; Type1 |- descendant:: : Type2

statEnvs NodeType |- descendant:: : Type1, Type2

statEnvs ; NodeType |- self:: : Type1
statEnvs ; Type1 |- descendant:: : Type2

statEnvs ; NodeType |- descendant-or-self:: : Type1, Type2

In all the other cases, the filter application results in an empty type.

statEnvs ; NodeType |- AxisName:: : () otherwise.

Dynamic Evaluation

The following rules define the dynamic semantics of the filter judgment when applied to an axis.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (74 of 183) [8/12/2002 6:38:05 PM]

The self axis just returns the context node.

dynEnvs.varValue ; NodeValue |- self:: => NodeValue

The child, parent, attribute and namespace axis are implemented through their corresponding accessors in the
[XQuery 1.0 and XPath 2.0 Data Model].

dynEnvs.varValue ; NodeValue |- child:: => dm:children(NodeValue)

dynEnvs.varValue ; NodeValue |- attribute:: => dm:attributes(NodeValue)

dynEnvs.varValue ; NodeValue |- parent:: => dm:parent(NodeValue)

The descendant, descendant-or-self, ancestor, and ancestor-or-self axis are implemented through recursive
application of the children and parent filters.

dynEnvs.varValue ; NodeValue |- child:: => Value1
dynEnvs.varValue ; Value1 |- descendant:: => Value2

dynEnvs.varValue ; NodeValue |- descendant:: => Value1, Value2

dynEnvs.varValue ; NodeValue |- self:: => Value1
dynEnvs.varValue ; Value1 |- descendant:: => Value2

dynEnvs.varValue ; NodeValue |- descendant-or-self:: => Value1, Value2

dynEnvs.varValue ; NodeValue |- parent:: => Value1
dynEnvs.varValue ; Value1 |- ancestor:: => Value2

dynEnvs.varValue ; NodeValue |- ancestor:: => Value1, Value2

dynEnvs.varValue ; NodeValue |- self:: => Value1
dynEnvs.varValue ; Value1 |- ancestor:: => Value2

dynEnvs.varValue ; NodeValue |- ancestor-or-self:: => Value1, Value2

In all the other cases, the filter application results in an empty sequence.

dynEnvs.varValue ; NodeValue |- AxisName:: => () otherwise.

Ed. Note: Peter: Generally steps may operate on nodes and values alike; the axis rules only can
operate on nodes (NodeValue). Is it a dynamic error to apply an axis rule on a value? See
[Issue-0125: Operations on node only in XPath].

4.3.1.2 Node Tests

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (75 of 183) [8/12/2002 6:38:05 PM]

Introduction

A node test is a condition applied on the nodes selected by an axis step. Possible node tests are described by
the following grammar productions.

[36] NodeTest ::= NameTest | KindTest
[37] NameTest ::= QName | Wildcard
[38] Wildcard ::= "*" | ":"? NCName ":" "*" | "*" ":" NCName
[39] KindTest ::= ProcessingInstructionTest

| CommentTest
| TextTest
| AnyKindTest

[40] ProcessingInstructionTest ::= "processing-instruction" "(" StringLiteral? ")"
[41] CommentTest ::= "comment" "(" ")"
[42] TextTest ::= "text" "(" ")"
[43] AnyKindTest ::= "node" "(" ")"

The inference rules for the filter node tests indicate, for each node step and each input node, whether the node
should be kept or left out. Therefore, each rule either returns the input node, or returns the empty sequence.
The overall result is then obtained by putting together all of the remaining nodes, following the generic
semantics for filters.

Static Type Analysis

Node tests on elements and attributes always accomplish the most specific type possible. For example, if $v is
bound to an element with a computed name, the type of $v is element * { Type }. The static type
computed for the expression $v/self::foo is element foo {Type}, which makes use of the
nametest foo to arrive at a more specific type.

qname2 = prefix2:local2
xf:get-namespace-uri(qname1) = statEnvs.varType(prefix2)

xf:get-local-name(qname1) = local2

statEnvs ; element qname1 {Type} |- qname2 : element qname1 {Type}

qname2 = prefix2:local2
local1 = local2

statEnvs ; element *:local1 {Type} |- qname2 : element qname2 {Type}

qname2 = prefix2:local2
statEnvs.namespace(prefix1) = statEnvs.namespace(prefix2)

statEnvs ; element prefix1:* {Type} |- qname2: element prefix1:local2{Type}

statEnvs ; element * {Type} |- qname2 : element qname2 {Type}

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (76 of 183) [8/12/2002 6:38:05 PM]

xf:get-local-name(qname1) = local2

statEnvs ; element qname1 {Type} |- *:local2 : element qname1 {Type}

local1 = local2

statEnvs ; element *:local1 {Type} |- *:local2 : element *:local2 {Type}

statEnvs ; element prefix1:* {Type} |- *:local2: element prefix1:local2{Type}

statEnvs ; element * { Type } |- *:local2 : element *:local2 {Type}

xf:get-namespace-uri(qname1) = statEnvs.namespace(prefix2)

statEnvs ; element qname1 {Type} |- prefix2:* : element qname1 {Type}

statEnvs ; element *:local1 {Type} |- prefix2:* : element prefix2:local1 {Type}

statEnvs.namespace(prefix1) = statEnvs.namespace(prefix2)

statEnvs ; element prefix1:* {Type} |- prefix2:* : element prefix1:* {Type}

statEnvs ; element * {Type} |- prefix2:* : element prefix2:* {Type}

statEnvs ; element prefix:local {Type} |- * : element prefix:local {Type}

Very similar typing rules apply to attributes:

qname2 = prefix2:local2
xf:get-namespace-uri(qname1) = statEnvs.namespace(prefix2)

xf:get-local-name(qname1) = local2

statEnvs ; attribute qname1 {Type} |- qname2 : attribute qname1 {Type}

qname2 = prefix2:local2
local1 = local2

statEnvs ; attribute *:local1 {Type} |- qname2 : attribute qname2 {Type}

qname2 = prefix2:local2
statEnvs.namespace(prefix1) = statEnvs.namespace(prefix2)

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (77 of 183) [8/12/2002 6:38:05 PM]

statEnvs ; attribute prefix1:* {Type} |- qname2: attribute prefix1:local2{Type}

statEnvs ; attribute * {Type} |- qname2 : attribute qname2 {Type}

xf:get-local-name(qname1) = local2

statEnvs ; attribute qname1 {Type} |- *:local2 : attribute qname1 {Type}

local1 = local2

statEnvs ; attribute *:local1 {Type} |- *:local2 : attribute *:local2 {Type}

statEnvs ; attribute prefix1:* {Type} |- *:local2: attribute prefix1:local2{Type}

statEnvs ; attribute * {Type} |- *:local2 : attribute *:local2 {Type}

xf:get-namespace-uri(qname1) = statEnvs.namespace(prefix2)

statEnvs ; attribute qname1 {Type} |- prefix2:* : attribute qname1 {Type}

statEnvs ; attribute *:local1 {Type} |- prefix2:* : attribute prefix2:local1 {Type}

statEnvs.namespace(prefix1) = statEnvs.namespace(prefix2)

statEnvs ; attribute prefix1:* {Type} |- prefix2:* : attribute prefix1:* {Type}

statEnvs ; attribute * {Type} |- prefix2:* : attribute prefix2:* {Type}

statEnvs ; attribute prefix:local {Type} |- * : attribute prefix:local {Type}

Comments, processing instructions, and text:

statEnvs ; processing-instruction |- processing-instruction () : processing-instruction

statEnvs ; processing-instruction |- processing-instruction (string) : processing-instruction

statEnvs ; comment |- comment () : comment

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (78 of 183) [8/12/2002 6:38:05 PM]

statEnvs ; text |- text () : text

statEnvs ; NodeType |- node () : NodeType

If none of the above rules applies then the node test returns the empty sequence, and the following dynamic
rule is applied:

statEnvs ; NodeType |- node () : ()

Ed. Note: Peter: Except for self::, all axes guarantee that the NodeType is not the generic
typenode. However, when the type node is encountered, it has to be interpreted as element
| attribute | text | comment | processing-instruction for these typing
rules to work.

Dynamic Evaluation
dm:name(NodeValue) = qname1

qname2 = prefix2:local2
xf:get-namespace-uri (qname1) = statEnvs.namespace(prefix2)

xf:get-local-name (qname1) = local2

dynEnvs.varValue ; NodeValue |- qname2 => NodeValue

dm:name (NodeValue) = qname

dynEnvs.varValue ; NodeValue |- * => NodeValue

dm:name (NodeValue) = qname
xf:get-namespace-uri (qname) = statEnvs.namespace(prefix)

dynEnvs.varValue ; NodeValue |- prefix:* => NodeValue

dm:name (NodeValue) = qname
xf:get-local-name (qname) = local

dynEnvs.varValue ; NodeValue |- *:local => NodeValue

dm:node-kind (NodeValue) = "processing-instruction"

dynEnvs.varValue ; NodeValue |- processing-instruction () => NodeValue

dm:node-kind (NodeValue) = "processing-instruction"
dm:name (NodeValue) = qname

xf:get-local-name (qname) = String

dynEnvs.varValue ; NodeValue |- processing-instruction (String) => NodeValue

Ed. Note: Note the use of the xf:get-local-name function to extract the local name out of

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (79 of 183) [8/12/2002 6:38:05 PM]

the name of the node.

dm:node-kind (NodeValue) = "comment"

dynEnvs.varValue ; NodeValue |- comment () => NodeValue

dm:node-kind (NodeValue) = "text"

dynEnvs.varValue ; NodeValue |- text () => NodeValue

The node() node test is true for all nodes. Therefore, the following rule does not have any precondition
(remember that an empty upper part in the rule indicates that the rule is always true).

dynEnvs.varValue ; NodeValue |- node () => NodeValue

If none of the above rules applies then the node test returns the empty sequence, and the following dynamic
rule is applied:

dynEnvs.varValue ; NodeValue |- node () => ()

4.3.2 General Steps

Introduction

General steps are composed of primary expressions, followed by a step qualifier. The semantics of step
qualifiers is defined in the next subsection.

[44] GeneralStep ::= PrimaryExpr StepQualifiers

Normalization

Primary expressions are normalized as expressions. I.e., their Path normalization is obtained by applying the
general normalization rules for expressions. In GeneralSteps, StepQualifiers are always applied as forward
steps. Note that the following rule makes use of a typewitch expression to ensure the path expression is always
applied on a sequence of nodes.

Ed. Note: Jerome: where to enforce the restriction that XPath expressions operate on nodes is
still an open issue. See [Issue-0125: Operations on node only in XPath].

[PrimaryExpr]Path
==

typeswitch [PrimaryExpr]Expr as $fs:new

 case node* return $fs:new
 default return dm:error()

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (80 of 183) [8/12/2002 6:38:05 PM]

[PrimaryExpr StepQualifiers]Path

==

[[PrimaryExpr]Path StepQualifiers]ForwardPath

4.3.3 Step Qualifiers

Introduction

Step qualifiers are composed of zero or more predicates (using the [...] notation) or dereference
operations (using the => notation).

[46] StepQualifiers ::= (("[" Expr "]") | ("=>" NameTest))*

Normalization

Normalization is first applied on all the components of a step qualifier. Remember that StepQualifiers might
be normalized through either a ForwardPath rule, or a ReversePath rule.

[StepQualifier1 StepQualifier2 ...]ForwardPath
==

[StepQualifier1]ForwardPath [StepQualifier2]ForwardPath ...

[StepQualifier1 StepQualifier2 ...]ReversePath
==

[StepQualifier1]ReversePath [StepQualifier2]ReversePath ...

4.3.3.1 Predicates

Normalization

We now define the semantics of predicates, for both forward and reverse steps.

[Expr1 [Expr2]]ForwardPath
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (81 of 183) [8/12/2002 6:38:05 PM]

let $fs:sequence := [Expr1]Path return

let $fs:last := xf:length(Sequence) return
for $fs:position in op:to(1,$fs:last) return
let $fs:last := xf:length($fs:sequence) return
let $fs:dot := fs:unique-item-at($fs:sequence, $fs:position) return

if [Expr2]Predicate then $fs:dot else ()

[Expr1 [Expr2]]ReversePath
==

let $fs:sequence := [Expr1]Path return

let $fs:last := xf:length(Sequence)
for $fs:counter in op:to(1,$fs:last) return
let $fs:position := $fs:last + 1 - $fs:counter return
let $fs:last := 1 return
let $fs:dot := fs:unique-item-at($fs:sequence, $fs:position)

return [Expr2]Predicate) then $fs:dot else ()

Predicates in path expressions are normalized with a special mapping rule:

[Expr]Predicate
==

typeswitch [Expr] as $v

case () return xf:false()
case numeric return op:numeric-equal(xf:round($v), $fs:position)
case xs:boolean return $v
default return

if (xf:length([$v/self::node()]Path)>=1)

then xf:true()
else dm:error()

4.3.3.2 Dereferences

Normalization

Dereference steps are mapped into an iteration, followed by a call to the dereference function, then followed
by the appropriate NameTest

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (82 of 183) [8/12/2002 6:38:05 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/xmlschema-2/#boolean

[ForwardStep "=>" NameTest]Path

==
for $fs:dot in [ForwardStep]_Expr return
let $fs:dot := dm:dereference($fs:dot) return
self::NameTest

4.3.4 Unabbreviated Syntax

Ed. Note: XQuery Section 2.3.4 has no semantic content -- it just contains examples! (This
suggests that perhaps the section structure is a little weird.)

4.3.5 Abbreviated Syntax

[45] AbbreviatedStep ::= "." | ".." | ("@" NameTest StepQualifiers)

Normalization

Here are normalization rules for the abbreviated syntax.

[// RelativePathExpr]Path
==

/ descendant-or-self::node() / [RelativePathExpr]Path

[StepExpr // RelativePathExpr]Path
==

[StepExpr]Step / descendant-or-self::node() / [RelativePathExpr]Path

[.]Path
==

[..]Path
==

parent::node()

[@ NodeTest]Path
==

attribute :: NodeTest

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (83 of 183) [8/12/2002 6:38:05 PM]

[NodeTest]Path

==
child :: NodeTest

4.4 Sequence Expressions

Introduction

This section defines the semantics of [2.4 Sequence Expressions] in [XQuery 1.0: A Query Language for
XML].

XQuery supports operators to construct and combine sequences. A sequence is an ordered collection of zero
or more items. An item is either an atomic value or a node.

4.4.1 Constructing Sequences

[50] ParenthesizedExpr ::= "(" ExprSequence? ")"
[3] ExprSequence ::= Expr ("," Expr)*
[17] RangeExpr ::= Expr "to" Expr

Normalization

The sequence expression is normalized into a sequence of core expressions:

["(" ExprSequence ")"]
==

"(" [ExprSequence] ")"

[Expr1 , ... , Exprn]
==

[Expr1], ..., [Exprn]
Ed. Note: Mike Kay remarks that it would be cleaner to have binary rules and recursion to define
the semantics rather than the ... notation.

Core Grammar

The core grammar rule for sequence expressions is:

[3] ExprSequence ::= Expr ("," Expr)*

Static Type Analysis

The static semantics of the sequence expression follows. The type of the sequence expression is the sequence
over the types of individual expressions.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (84 of 183) [8/12/2002 6:38:05 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-sequence-expressions

statEnvs |- Expr1 : Type1 ... statEnvs |- Exprn : Typen

statEnvs |- Expr1 , ... , Exprn : Type1, ..., Typen

Dynamic Evaluation

The dynamic semantics of the sequence expression follows. Each expression in the sequence is evaluated and
the resulting values are concatenated into one sequence.

dynEnvs |- Expr1 => value1 dynEnvs |- Expr2 => value2 ... dynEnvs |- Exprn => valuen

dynEnvs |- Expr1, ..., Exprn => op:concatenate(value1, op:concatenate(value2, op:concatenate(... , valuen)...)

Normalization

The normalization of the infix "to" operator maps it into an application of op:to.

[Expr1 "to" Expr2]
==

[op:to (Expr1, Expr2)]
Static Type Analysis

The static semantics of the op:to function is defined in [6 Additional Semantics of Functions].

Dynamic Evaluation

The dynamic semantics rules for function calls given in [4.2.4 Function Calls] are applied to the function call
op:to above.

Ed. Note: Should the "to" operator be defined formally? See [Issue-0133: Should to also be
described in the formal semantics?].

4.4.2 Combining Sequences

XQuery provides several operators for combining sequences.

[20] UnionExpr ::= Expr ("union" | "|") Expr
[21] IntersectExceptExpr ::= Expr ("intersect" | "except") Expr

Notation

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (85 of 183) [8/12/2002 6:38:05 PM]

First, a union, intersect, or except expression is normalized into a corresponding core expression. The

functions []SequenceOp and []SequenceValueOp are defined by the following tables:

SequenceOp [SequenceOp]SequenceOp

"union" op:union
"|" op:union
"intersect" op:intersect
"except" op:except

SequenceOp [SequenceOp]SequenceValueOp

"union" op:union-value
"|" op:union-value
"intersect" op:intersect-value
"except" op:except-value

Normalization

[Expr1 SequenceOp Expr2]
==

typeswitch (Expr1) as $v1

case fs:atomic+ return
 (typeswitch (Expr2) as $v2

 case fs:atomic+ return [SequenceOp]SequenceValueOp($v1, $v2)

 default return dm:error())
case node+
 (typeswitch (Expr2) as $v2

 case node+ return [SequenceOp]SequenceOp($v1, $v2)

 default return dm:error())
default return dm:error()

Ed. Note: MFF: this mapping assumes that there are two versions of union: one based on node
identity and one based on value equality. What happens if we have a heterogeneous sequence is
not clear. See [Issue-0120: Sequence operations: value vs. node identity].

Static Type Analysis

The static semantics of the functions that operate on sequences are defined in [6 Additional Semantics of
Functions].

Dynamic Evaluation

The dynamic semantics rules for function calls given in [4.2.4 Function Calls] are applied to the calls to

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (86 of 183) [8/12/2002 6:38:05 PM]

functions on sequences above.

4.5 Arithmetic Expressions

This section defines the semantics of [2.5 Arithmetic Expressions] in [XQuery 1.0: A Query Language for
XML].

XQuery provides arithmetic operators for addition, subtraction, multiplication, division, and modulus, in their
usual binary and unary forms.

[18] AdditiveExpr ::= Expr ("+" | "-") Expr
[19] MultiplicativeExpr ::= Expr ("*" | "div" | "mod") Expr
[22] UnaryExpr ::= ("-" | "+") Expr

Notation

Ed. Note: MFF: The operator table in this section was produced by Don Chamberlin. This table
should be in one place, probably the formal semantics

The tables in this section list the combinations of datatypes for which the various operators of XQuery are
defined. For each valid combination of datatypes, the table indicates the name of the function that implements
the operator and the datatype of the result. Definitions of the functions can be found in [XQuery 1.0 and XPath
2.0 Functions and Operators].

In the following tables, the term fs:numeric refers to the types xs:integer, xs:decimal, xs:float, and xs:double.
When the result type of an operator is listed as fs:numeric, it means "same as the highest type of any input
operand, in promotion order." For example, when invoked with operands of type xs:integer and xs:float, the
binary + operator returns a result of type xs:float.

In the following tables, the term Gregorian refers to the types xs:gYearMonth, xs:gYear, xs:gMonthDay,
xs:gDay, and xs:gMonth. For binary operators that accept two Gregorian-type operands, both operands must
have the same type (for example, if one operand is of type xs:gDay, the other operand must be of type
xs:gDay.)

The functions []BinaryOp and []UnaryOp are defined by the following two tables. The function []BinaryOp

takes the left-hand expression (A) and its type, the operator, the right-hand expression (b) and its type and
returns a new expression, which applies the type-appropriate operator to the two expressions. The function

[]UnaryOp takes an operator and an expression and returns a new expression, which applies the appropriate

operator to the expression.

Operator Type(A) Type(B)
[A; Type(A); Operator; B;

Type(B)]BinaryOp

Result type

A + B fs:numeric fs:numeric op:numeric-add(A, B) fs:numeric
A + B xs:date xs:duration (missing) xs:date
A + B xs:duration xs:date (missing) xs:date

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (87 of 183) [8/12/2002 6:38:05 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-arithmetic

A + B xs:time xs:duration (missing) xs:time
A + B xs:duration xs:time (missing) xs:time
A + B xs:dateTime xs:duration op:get-end-datetime(A, B) xs:dateTime
A + B xs:duration xs:dateTime op:get-end-datetime(B, A) xs:dateTime
A + B xs:duration xs:duration (missing) xs:duration
A - B fs:numeric fs:numeric op:numeric-subtract(A, B) fs:numeric
A - B xs:date xs:date (missing) xs:duration
A - B xs:date xs:duration (missing) xs:date
A - B xs:time xs:time (missing) xs:duration
A - B xs:time xs:duration (missing) xs:time
A - B xs:dateTime xs:dateTime op:get-duration(A, B) xs:duration
A - B xs:dateTime xs:duration op:get-start-datetime(A, B) xs:dateTime
A - B xs:duration xs:duration (missing) xs:duration
A * B fs:numeric fs:numeric op:numeric-multiply(A, B) fs:numeric
A div B fs:numeric fs:numeric op:numeric-divide(A, B) fs:numeric
A mod B fs:numeric fs:numeric op:numeric-mod(A, B) fs:numeric
A eq B fs:numeric fs:numeric op:numeric-equal(A, B) xs:boolean
A eq B xs:boolean xs:boolean op:boolean-equal(A, B) xs:boolean
A eq B xs:string xs:string op:numeric-equal(xf:compare(A, B), 1) xs:boolean
A eq B xs:date xs:date (missing) xs:boolean?
A eq B xs:time xs:time (missing) xs:boolean?
A eq B xs:dateTime xs:dateTime op:datetime-equal(A, B) xs:boolean?
A eq B xs:duration xs:duration op:duration-equal(A, B) xs:boolean?
A eq B Gregorian Gregorian (missing) xs:boolean
A eq B xs:hexBinary xs:hexBinary op:hex-binary-equal(A, B) xs:boolean
A eq B xs:base64Binary xs:base64Binary op:base64-binary-equal(A, B) xs:boolean
A eq B xs:anyURI xs:anyURI (missing) xs:boolean
A eq B xs:QName xs:QName (missing) xs:boolean
A ne B fs:numeric fs:numeric xf:not(op:numeric-equal(A, B)) xs:boolean
A ne B xs:boolean xs:boolean xf:not(op:boolean-equal(A, B)) xs:boolean
A ne B xs:string xs:string xf:not(op:numeric-equal(xf:compare(A, B), 1)) xs:boolean
A ne B xs:date xs:date (missing) xs:boolean?
A ne B xs:time xs:time (missing) xs:boolean?
A ne B xs:dateTime xs:dateTime xf:not3(op:datetime-equal(A, B)) xs:boolean?
A ne B xs:duration xs:duration xf:not3(op:duration-equal(A, B)) xs:boolean?
A ne B Gregorian Gregorian (missing) xs:boolean
A ne B xs:hexBinary xs:hexBinary xf:not(op:hex-binary-equal(A, B)) xs:boolean
A ne B xs:base64Binary xs:base64Binary xf:not(op:base64-binary-equal(A, B)) xs:boolean
A ne B xs:anyURI xs:anyURI (missing) xs:boolean
A ne B xs:QName xs:QName (missing) xs:boolean
A eq B xs:NOTATION xs:NOTATION (missing) xs:boolean

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (88 of 183) [8/12/2002 6:38:05 PM]

A ne B xs:NOTATION xs:NOTATION (missing) xs:boolean
A gt B fs:numeric fs:numeric op:numeric-greater-than(A, B) xs:boolean
A gt B xs:boolean xs:boolean (missing) xs:boolean
A gt B xs:string xs:string op:numeric-greater-than(xf:compare(A, B), 0) xs:boolean
A gt B xs:date xs:date (missing) xs:boolean?
A gt B xs:time xs:time (missing) xs:boolean?
A gt B xs:dateTime xs:dateTime op:datetime-greater-than(A, B) xs:boolean?
A gt B xs:duration xs:duration op:duration-greater-than(A, B) xs:boolean?
A lt B fs:numeric fs:numeric op:numeric-less-than(A, B) xs:boolean
A lt B xs:boolean xs:boolean (missing) xs:boolean
A lt B xs:string xs:string op:numeric-less-than(xf:compare(A, B), 0) xs:boolean
A lt B xs:date xs:date (missing) xs:boolean?
A lt B xs:time xs:time (missing) xs:boolean?
A lt B xs:dateTime xs:dateTime op:datetime-less-than(A, B) xs:boolean?
A lt B xs:duration xs:duration op:duration-less-than(A, B) xs:boolean?
A ge B fs:numeric fs:numeric op:numeric-less-than(B, A) xs:boolean
A ge B xs:string xs:string op:numeric-greater-than(xf:compare(A, B), -1) xs:boolean
A ge B xs:date xs:date (missing) xs:boolean?
A ge B xs:time xs:time (missing) xs:boolean?
A ge B xs:dateTime xs:dateTime op:datetime-less-than(B, A) xs:boolean?
A ge B xs:duration xs:duration op:duration-less-than(B, A) xs:boolean?
A le B fs:numeric fs:numeric op:numeric-greater-than(B, A) xs:boolean
A le B xs:string xs:string op:numeric-less-than(xf:compare(A, B), 1) xs:boolean
A le B xs:date xs:date (missing) xs:boolean?
A le B xs:time xs:time (missing) xs:boolean?
A le B xs:dateTime xs:dateTime op:datetime-greater-than(B, A) xs:boolean?
A le B xs:duration xs:duration op:duration-greater-than(B, A) xs:boolean?
A == B node node op:node-equal(A, B) xs:boolean
A !== B node node xf:not(op:node-equal(A, B)) xs:boolean
A << B node node op:node-before(A, B) xs:boolean
A >> B node node op:node-after(A, B) xs:boolean
A precedes
B

node node (missing) xs:boolean

A follows
B

node node (missing) xs:boolean

A union B item* item* op:union(A, B) item*
A | B item* item* op:union(A, B) item*
A intersect
B

item* item* op:intersect(A, B) item*

A except B item* item* op:except(A, B) item*
A to B xs:decimal xs:decimal op:to(A, B) xs:integer+

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (89 of 183) [8/12/2002 6:38:05 PM]

A , B item* item* op:concatenate(A, B) item*

An analogous table exists for unary operators.

Operator Operand type [Operator; Expr]UnaryOp
Result type

+ A fs:numeric op:numeric-unary-plus(A) same as operand
- A fs:numeric op:numeric-unary-minus(A) same as operand

Normalization

The normalization rules for the arithmetic operators "+" and "-" are similar, but not identical, because as the
table above illustrates, "-" is not commutative.

The following normalization rule for "+" first applies []Optional_Atomic_Type to each argument expression,

binding the results of these expressions to two new variables, $e1 and $e2. It then applies a typeswitch on
the left-hand operand $e1, and for each left-hand operand type, it applies a second typeswitch on the

right-hand operand $e2. The function [Operator]BinaryOp takes the operator, the left-hand type, and the

right-hand type and returns the appropriate function, which is applied to the argument values.

[Expr1 "+" Expr2]
==

let $coree1 := ([Expr1]),

 $coree2 := ([Expr2]),

 $e1 := [$coree1]Optional_Atomic_Value,

 $e2 := [$coree2]Optional_Atomic_Value

return
typeswitch ($e1) as $v1
case () return ()
case fs:numeric return
 (typeswitch ($e2) as $v2
 case () return ()

 case fs:numeric return [$v1; fs:numeric; "+"; $v2; fs:numeric]BinaryOp

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (90 of 183) [8/12/2002 6:38:05 PM]

 [$v1; fs:numeric; "+"; (cast ($v2) as xs:double); fs:numeric]BinaryOp

 default return dm:error())

case xs:date return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:date; "+"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:date; "+"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())
case xs:time return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:time; "+"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:time; "+"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())
case xs:dateTime return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:dateTime; "+"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:dateTime; "+"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())

case xs:duration return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:duration; "+"; $v2; xs:duration]BinaryOp

 case xs:date return [$v1; xs:duration; "+"; $v2; xs:date]BinaryOp

 case xs:time return [$v1; xs:duration; "+"; $v2; xs:time]BinaryOp

 case xs:dateTime return [$v1; xs:duration; "+"; $v2; xs:dateTime]BinaryOp

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (91 of 183) [8/12/2002 6:38:05 PM]

 [$v1; xs:duration; "+"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())

case fs:UnknownSimpleType return
 (typeswitch ($e2) as $v2
 case () return ()
 case fs:numeric return

 [(cast ($v1) as xs:double); xs:double; "+"; $v2; xs:double]BinaryOp

 case xs:duration return

 [(cast ($v1) as xs:duration); xs:duration; "+"; $v2; xs:duration;]BinaryOp

 case xs:time

 [(cast ($v1) as xs:duration); xs:duration; "+"; $v2; xs:time]BinaryOp

 case xs:dateTime return

 [(cast ($v1) as xs:duration); xs:duration; "+"; $v2; xs:dateTime]BinaryOp

 case fs:UnknownSimpleType return

 [(cast ($v1) as xs:double); xs:double; "+";(cast ($v2) as xs:double); xs:double]BinaryOp

 default return dm:error())

default return dm:error()

Ed. Note: MFF: The XQuery document specifies that the casting should depend on the lexical
form. This cannot be captured by normalization. See [Issue-0128: Casting based on the lexical
form].

Ed. Note: MFF: The Datatype production does not permit choices of item types -- this is
annoying. See [Issue-0127: Datatype limitations].

Ed. Note: Peter: the static semantics of operators is as strict as the one of functions, and is still
under discussion. See [Issue-0129: Static typing of union].

The following normalization rule for "-" is analogous to that for "+".

[Expr1 "-" Expr2]
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (92 of 183) [8/12/2002 6:38:05 PM]

let $coree1 := ([Expr1]),

 $coree2 := ([Expr2]),

 $e1 := [$coree1]Optional_Atomic_Value,

 $e2 := [$coree2]Optional_Atomic_Value

return
typeswitch ($e1) as $v1
case () return ()
case fs:numeric return
 (typeswitch ($e2) as $v2
 case () return ()

 case fs:numeric return [$v1; fs:numeric; "-"; $v2; fs:numeric]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; fs:numeric; "-"; (cast ($v2) as xs:double); fs:numeric]BinaryOp

default return dm:error())

case xs:date return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:date; "-"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:date; "-"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())

case xs:time return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:time; "-"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:time; "-"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())

case xs:dateTime return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:dateTime; "-"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (93 of 183) [8/12/2002 6:38:05 PM]

 [$v1; xs:dateTime; "-"; (cast ($v2) as xs:duration);xs:duration]BinaryOp

 default return dm:error())

case xs:duration return
 (typeswitch ($e2) as $v2

 case xs:duration return [$v1; xs:duration; "-"; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:duration; "-"; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())

case fs:UnknownSimpleType return
 (typeswitch ($e2) as $v2
 case () return ()
 case fs:numeric return

 [(cast ($v1) as xs:double); xs:double; "-" $v2; fs:numeric]BinaryOp

 case xs:duration return

 [(cast ($v1) as xs:duration); xs:duration; "-"; $v2; xs:duration]BinaryOp

 case xs:time return

 [(cast ($v1) as xs:duration); xs:duration; "-"; $v2 ; xs:time]BinaryOp

 case xs:dateTime return

 [(cast ($v1) as xs:duration); xs:duration; "-"; $v2; xs:dateTime]BinaryOp

 case fs:UnknownSimpleType return

 [(cast ($v1) as xs:double); xs:double; "-"; (cast ($v2) as xs:double)' xs:double]BinaryOp

 default return dm:error())

default return dm:error()

The multiplicative operators "*", "div", and "mod" are only defined on fs:numeric, so their normalization rule
is simple. For convenience, MultOp denotes "*", "div", or "mod".

[Expr1 MultOp Expr2]
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (94 of 183) [8/12/2002 6:38:05 PM]

let $coree1 := ([Expr1]),

 $coree2 := ([Expr2]),

 $e1 := [$coree1]Optional_Atomic_Value ,

 $e2 := [$coree2]Optional_Atomic_Value

return
typeswitch ($e1) as $v1
case () return ()
case fs:numeric return
 (typeswitch ($e2) as $v2
 case () return ()

 case fs:numeric return [$v1; fs:numeric; MultOp; $v2; fs:numeric]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; fs:numeric; MultOp; (cast ($v2) as xs:double); fs:numeric]BinaryOp

default return dm:error())

case fs:UnknownSimpleType return
 (typeswitch ($e2) as $v2
 case () return ()
 case fs:numeric return

 [(cast ($v1) as xs:double); xs:doube; "-"; $v2; fs:numeric]BinaryOp

 case fs:UnknownSimpleType return

 [(cast ($v1) as xs:double); xs:double; "-"; (cast ($v2) as xs:double); xs:double]BinaryOp

 default return dm:error())

default return dm:error()

Ed. Note: MFF: The XQuery document specifies that the casting should depend on the lexical
form. This cannot be captured by normalization. See [Issue-0128: Casting based on the lexical
form].

For convenience, UnaryOp denotes the unary operators "+" and "-". The normalization rule for unary
operators is straightforward:

[UnaryOp Expr]
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (95 of 183) [8/12/2002 6:38:05 PM]

let $coree1 := ([Expr1]),

 $e1 := [$coree1]Optional_Atomic_Value(xs:double),

return [UnaryOp; $e1]UnaryOp

Core Grammar

There are no core grammar rules for arithmetic expressions as they are normalized to function calls.

Static Type Analysis

In the [XQuery 1.0 and XPath 2.0 Functions and Operators], type promotion rules are given for all the
arithmetic operators, denoted by op:operation, and the result types of these operations. The following static
semantics rules specifies the result types for all arithmetic operators when applied to specific fs:numeric types.

statEnvs |- Expr1 : Type1 Type1 <: xs:decimal statEnvs |- Expr2 : Type2 Type2 <: xs:decimal

statEnvs |- op:operation(Expr1, Expr2) : xs:decimal

statEnvs |- Expr1 : Type1 Type1 <: xs:float statEnvs |- Expr2 : Type2 Type2 <: xs:float

statEnvs |- op:operation(Expr1, Expr2) : xs:float

statEnvs |- Expr1 : Type1 Type1 <: xs:double statEnvs |- Expr2 : Type2 Type2 <: xs:double

statEnvs |- op:operation(Expr1, Expr2) : xs:double

Ed. Note: MFF: Can the three rules above be factored?

Analogous static type rules are given for the unary arithmetic operators.

statEnvs |- Expr1 : Type1 Type1 <: xs:decimal

statEnvs |- op:operation(Expr1) : xs:decimal

statEnvs |- Expr1 : Type1 Type1 <: xs:float

statEnvs |- op:operation(Expr1) : xs:float

statEnvs |- Expr1 : Type1 Type1 <: xs:double

statEnvs |- op:operation(Expr1) : xs:double

Dynamic Evaluation

The normalization rules map all arithmetic operators into core expressions, whose dynamic semantics is
defined in other sections, therefore there are no dynamic semantics rules for arithmetic operators. The
dynamic semantics rules for function calls given in [4.2.4 Function Calls] are applied to all the function calls

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (96 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#float
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#double

op:numeric-add, etc.

4.6 Comparison Expressions

Introduction

This section defines the semantics of [2.6 Comparison Expressions] in [XQuery 1.0: A Query Language for
XML].

Comparison expressions allow two values to be compared. XQuery provides four kinds of comparison
expressions, called value comparisons, general comparisons, node comparisons, and order comparisons.

[13] ValueComp ::= Expr ("eq" | "ne" | "lt" | "le" | "gt" | "ge") Expr
[12] GeneralComp ::= Expr ("=" | "!=" | "<" S | "<=" | ">" | ">=") Expr
[14] NodeComp ::= Expr ("==" | "!==") Expr
[15] OrderComp ::= Expr ("<<" | ">>" | "precedes" | "follows") Expr

4.6.1 Value Comparisons

Normalization

The value comparison equality operators "eq" and "ne" are defined on a large set of types.

[Expr1 ValueEqOp Expr2]
==

let $coree1 := ([Expr1]),

 $coree2 := ([Expr2]),

 $e1 := [$coree1]Optional_Atomic_Value ,

 $e2 := [$coree2]Optional_Atomic_Value

return
typeswitch ($e1) as $v1
case () return ()
case fs:numeric return
 (typeswitch ($e2) as $v2
 case () return ()

 case fs:numeric return [$v1; fs:numeric; ValueEqOp; $v2; fs:numeric]BinaryOp

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (97 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-comparisons

 [$v1; fs:numeric; ValueEqOp; (cast ($v2) as xs:double); fs:numeric]BinaryOp

 default return dm:error())
case xs:boolean return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:boolean return [$v1; xs:boolean; ValueEqOp; $v2; xs:boolean]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:boolean; ValueEqOp; (cast ($v2) as xs:boolean); xs:boolean]BinaryOp

 default return dm:error())
case xs:string return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:string return [$v1; xs:string; ValueEqOp; $v2; xs:string]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:string; ValueEqOp; (cast ($v2) as xs:string); xs:string]BinaryOp

 default return dm:error())
case xs:date return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:date return [$v1; xs:date; ValueEqOp; $v2; xs:date]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:date; ValueEqOp; (cast ($v2) as xs:date); xs:date]BinaryOp

 default return dm:error())
case xs:time return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:time return [$v1; xs:time; ValueEqOp; $v2; xs:time]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:time; ValueEqOp; (cast ($v2) as xs:time); xs:time]BinaryOp

 default return dm:error())
case xs:dateTime return
 (typeswitch ($e2) as $v2
 case () return ()

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (98 of 183) [8/12/2002 6:38:06 PM]

 case xs:dateTime return [$v1; xs:dateTime; ValueEqOp; $v2; xs:dateTime]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:dateTime; ValueEqOp; (cast ($v2) as xs:dateTime); xs:dateTime]BinaryOp

 default return dm:error())
case xs:duration return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:duration return [$v1; xs:duration; ValueEqOp; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:duration; ValueEqOp; (cast ($v2) as xs:duration); xs:duration]BinaryOp

 default return dm:error())
case Gregorian return
 (typeswitch ($e2) as $v2
 case () return ()

 case Gregorian return [$v1; Gregorian; ValueEqOp; $v2; Gregorian]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; Gregorian; ValueEqOp; (cast ($v2) as Gregorian); Gregorian]BinaryOp

 default return dm:error())
case xs:hexBinary return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:hexBinary return [$v1; xs:hexBinary; ValueEqOp; $v2; xs:hexBinary]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:hexBinary; ValueEqOp; (cast ($v2) as xs:hexBinary); xs:hexBinary]BinaryOp

 default return dm:error())
case xs:base64Binary return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:base64Binary return [$v1; xs:base64Binary; ValueEqOp; $x2; xs:base64Binary]BinaryOp

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (99 of 183) [8/12/2002 6:38:06 PM]

 [$v1; xs:base64Binary; ValueEqOp; (cast ($v2) as xs:base64Binary); xs:base64Binary]BinaryOp

 default return dm:error())
case xs:anyURI return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:anyURI return [$v1; xs:anyURI; ValueEqOp; $v2; xs:anyURI]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:anyURI; ValueEqOp; (cast ($v2) as xs:anyURI); xs:anyURI]BinaryOp

 default return dm:error())
case xs:QName return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:QName return [$v1; xs:QName; ValueEqOp; $v2; xs:QName]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xsQName; ValueEqOp; (cast ($v2) as xs:QName) ; xs:QName]BinaryOp

 default return dm:error())

case fs:UnknownSimpleType return
 (typeswitch ($e2) as $v2
 case () return ()
 case fs:numeric return

 [(cast ($v1) as xs:double); xs:double; ValueEqOp; $v2; xs:double; fs:numeric]BinaryOp

 case xs:string return

 [(cast ($v1) as xs:string); xs:string; ValueEqOp; $v2; xs:string]BinaryOp

 case xs:date return

 [(cast ($v1) as xs:date); xs:date; ValueEqOp; $v2; xs:date]BinaryOp

 case xs:time return

 [(cast ($v1) as xs:time); xs:time; ValueEqOp; $v2; xs:time]BinaryOp

 case xs:dateTime return

 [(cast ($v1) as xs:dateTime); xs:dateTime; ValueEqOp; $v2; xs:dateTime]BinaryOp

 case xs:duration return

 [(cast ($v1) as xs:duration); xs:duration; ValueEqOp; $v2; xs:duration]BinaryOp,

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (100 of 183) [8/12/2002 6:38:06 PM]

 [(cast ($v1) as xs:string); xs:string; ValueEqOp; (cast ($v2) as xs:string); xs:string]BinaryOp

 default return dm:error())

default return dm:error()

Ed. Note: MFF: The definition of equality operators could be factored by introducing another
normalization function, which would be applied to the bodies of the cases. Is it clearer (albeit
longer) to just enumerate all the cases? For now, they are enumerated.

[Expr2 Type2 ValueEqOp;]ValueOp
==

 (typeswitch (Expr2) as $v2

 case () return ()

 case return [$v1; ValueEqOp; $v2;]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; Type2 ValueEqOp; (cast ($v2) as Type2); $v2]BinaryOp

 default return dm:error())

Normalization

The value comparison in-equality operators "lt", "le", "gt", and "ge" are defined on a smaller set of types
than are the equality operators "eq" and "ne". For convenience, ValueInEqOp denotes "lt", "le", "gt", or
"ge".

[Expr1 ValueInEqOp Expr2]
==

let $coree1 := ([Expr1]),

 $coree2 := ([Expr2]),

 $e1 := [$coree1]Optional_Atomic_Value ,

 $e2 := [$coree2]Optional_Atomic_Value

return
typeswitch ($e1) as $v1
case () return ()
case fs:numeric return
 (typeswitch ($e2) as $v2
 case () return ()

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (101 of 183) [8/12/2002 6:38:06 PM]

 case fs:numeric return [$v1; fs:numeric; ValueInEqOp; $v2; fs:numeric]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; fs:numeric; ValueInEqOp; (cast ($v2) as xs:double); fs:numeric]BinaryOp

 default return dm:error())
case xs:string return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:string return [$v1; xs:string; ValueInEqOp; $v2; xs:string]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:string; ValueInEqOp; (cast ($v2) as xs:string); xs:string]BinaryOp

 default return dm:error())
case xs:date return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:date return [$v1; xs:date; ValueInEqOp; $v2; xs:date]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:date; ValueInEqOp; (cast ($v2) as xs:date); xs:date]BinaryOp

 default return dm:error())
case xs:time return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:time return [$v1; xs:time; ValueInEqOp; $v2; xs:time]BinaryOp

 case fs:UnknownSimpleType return

 [$v1; xs:time; ValueInEqOp; (cast ($v2) as xs:time); xs:time]BinaryOp

 default return dm:error())
case xs:dateTime return
 (typeswitch ($e2) as $v2
 case () return ()

 case xs:dateTime return [$v1; xs:dateTime; ValueInEqOp; $v2; xs:dateTime]BinaryOp

 case fs:UnknownSimpleType return

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (102 of 183) [8/12/2002 6:38:06 PM]

 [$v1; xs:dateTime; ValueInEqOp; (cast ($v2) as xs:dateTime); xs:dateTime]BinaryOp

 default return dm:error())

case fs:UnknownSimpleType return
 (typeswitch ($e2) as $v2
 case () return ()
 case fs:numeric return

 [(cast ($v1) as xs:double); xs:double; ValueInEqOp; $v2; fs:numeric]BinaryOp

 case xs:string return

 [(cast ($v1) as xs:string); xs:string; ValueInEqOp; $v2; xs:string]BinaryOp

 case xs:date return

 [ValueInEqOp; xs:date; xs:date]BinaryOp(cast ($v1) as xs:date, $v2)

 case xs:time return

 [(cast ($v1) as xs:time); xs:time; ValueInEqOp; $v2; xs:time]BinaryOp

 case xs:dateTime return

 [(cast ($v1) as xs:dateTime); xs:dateTime; ValueInEqOp; $v2; xs:dateTime]BinaryOp

 case xs:duration return

 [(cast ($v1) as xs:duration); xs:duration; ValueInEqOp; $v2; xs:duration]BinaryOp

 case fs:UnknownSimpleType return

 [(cast ($v1) as xs:string); xs:string; ValueInEqOp; (cast ($v2) as xs:string); xs:string]BinaryOp

 default return dm:error())

default return dm:error()

Core Grammar

There are no core grammar rules for value comparisons as they are normalized to function calls.

Static Type Analysis

There are no static type rules for the general comparison operators. They all have return type xs:boolean, as
specified in [XQuery 1.0 and XPath 2.0 Functions and Operators].

Dynamic Evaluation

The normalization rules map all value comparison operators into core expressions, whose dynamic semantics
is defined in other sections, therefore there are no dynamic semantics rules for value comparison operators.
The dynamic semantics rules for function calls given in [4.2.4 Function Calls] are applied to all the function
calls op:numeric-less-than, etc.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (103 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

4.6.2 General Comparisons

Introduction

General comparisons are defined by adding existential semantics to value comparisons. The operands of a
general comparison may be sequences of any length. The result of a general comparison is always true or
false.

Notation

For convenience, GeneralOp denotes "=", "!=", "<", "", ">", or "".

The function []ValueOp is defined by the following table:

GeneralOp [GeneralOp]ValueOp

= eq

!= ne

< lt

<= le

> gt

>= ge

Normalization

A general comparison expression is normalized by mapping it into an existentially quantified,
value-comparison expression, which is normalized recursively.

[Expr1 GeneralOp Expr2]
==

[some $v1 in Expr1 satisfies (some $v2 in Expr2 satisfies [GeneralCompOp]ValueOp($v1, $v2))]
Core Grammar

There are no core grammar rules for general comparisons as they are normalized to existentially quantified
core expressions.

Static Type Analysis

There are no static type rules for the general comparison operators. The existentially quantified some
expression always returns xs:boolean. Its static typing semantics is given in [4.12 Quantified Expressions].

Dynamic Evaluation

The normalization rules map all general comparison operators into core expressions, whose dynamic
semantics is defined in other sections, therefore there are no dynamic semantics rules for general comparison
operators.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (104 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

4.6.3 Node Comparisons

Notation

For convenience, NodeOp denotes "==" and "!==".

Normalization

The normalization rule for node comparison expressions checks that both operands are optional node values,

otherwise generates an error. If both operands are nodes, it applies the operator specified by the []BinaryOp

function.

[Expr1 NodeOp Expr2]
==

let $e1 := ([Expr1]),

 $e2 := ([Expr2]),

return
typeswitch ($e1) as $v1
case () return
 (typeswitch ($e2) as $v2
 case node? return ()
 default return dm:error())
case node return
 (typeswitch ($e2) as $v2
 case () return ()

 case node return [$v1; node; NodeOp; $v2; node]BinaryOp

 default return dm:error())
default return dm:error()

Core Grammar

There are no core grammar rules for node comparisons as they are normalized to function calls.

Static Type Analysis

There are no static type rules for the node comparison operators.

Dynamic Evaluation

The normalization rules map the node comparison operators into core expressions, whose dynamic semantics
is defined in other sections, therefore there are no dynamic semantics rules for node comparison operators.

4.6.4 Order Comparisons

Notation

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (105 of 183) [8/12/2002 6:38:06 PM]

For convenience, OrderOp denotes "follow", "precedes", "<<", and ">>".

Normalization

The normalization rule for order comparison expressions checks that both operands are optional node values,

otherwise generates an error. If both operands are nodes, it applies the operator specified by the []BinaryOp

function.

[Expr1 OrderOp Expr2]
==

let $e1 := ([Expr1]),

 $e2 := ([Expr2]),

return
typeswitch ($e1) as $v1
case () return
 (typeswitch ($e2) as $v2
 case node? return ()
 default return dm:error())
case node return
 (typeswitch ($e2) as $v2
 case () return ()

 case node return [$v1; node; OrderOp; $v2; node]BinaryOp

 default return dm:error())
default return dm:error()

Core Grammar

There are no core grammar rules for order comparisons as they are normalized to function calls.

Static Type Analysis

There are no static type rules for the order comparison operators.

Dynamic Evaluation

The normalization rules map the order comparison operators into core expressions, whose dynamic semantics
is defined in other sections, therefore there are no dynamic semantics rules for order comparison operators.

4.7 Logical Expressions

Introduction

This section defines the semantics of [2.7 Logical Expressions] in [XQuery 1.0: A Query Language for XML].

A logical expression is either an and-expression or an or-expression. The value of a logical expression is

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (106 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-logical-expressions

always one of the boolean values true or false.

[6] OrExpr ::= Expr "or" Expr
[7] AndExpr ::= Expr "and" Expr

Notation

The first step in evaluating a logical expression is to reduce each of its operands to an effective boolean value.

The function []Effective_Boolean_Value takes an expression and normalizes it into an effective boolean value.

The conditional expression in the "default return" clause below guarantees that in an arbitrary sequence of
items, if at least one value is a node, then the boolean expression evaluates to true.

[Expr]Effective_Boolean_Value =
==

typeswitch (Expr) as $v
case () return xf:false()
case xs:boolean return $v
default return

 if (xf:length([$v/self::node()]Path) >= 1) then xf:true()

 else [$v]Type_Exception_Opt_Atomic(boolean)

Ed. Note: The semantics of Boolean node tests over sequences is still an open issue. See
[Issue-0131: Boolean node test and sequences].

Normalization

The normalization rules for "and" and "or" first get the effective boolean value of each argument, then apply
the appropriate operand.

[Expr1 and Expr2]
==

let $e1 := [Expr1]Effective_Boolean_Value,

 $e2 := [Expr2]Effective_Boolean_Value,

return op:boolean-and($e1, $e2)

[Expr1 or Expr2]
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (107 of 183) [8/12/2002 6:38:06 PM]

let $e1 := [Expr1]Effective_Boolean_Value,

 $e2 := [Expr2]Effective_Boolean_Value,

return op:boolean-or($e1, $e2)

Core Grammar

There are no core grammar rules for logical expressions as they are normalized to function calls.

Static Type Analysis

There are no static type rules for the logical comparison operators. They both have return type xs:boolean, as
specified in [XQuery 1.0 and XPath 2.0 Functions and Operators].

Dynamic Evaluation

The normalization rules map the logical comparison operators into core expressions, whose dynamic
semantics is defined in other sections, therefore there are no dynamic semantics rules for logical comparison
operators.

4.8 Constructors

Ed. Note: Status: This section is still draft and needs further revision. Revision of the section is
pending agreement about the semantics of element and attribute constructors. See [Issue-0110:
Semantics of element and attribute constructors]

This section defines the semantics of [2.8 Constructors] in [XQuery 1.0: A Query Language for XML].

XQuery supports two forms of constructors: a "literal" form that follows the XML syntax, and element and
attribute constructors that can be used to construct stand-alone elements and attributes, possibly with a
computed name.

[24] Constructor ::= ElementConstructor | ComputedElementConstructor
| ComputedAttributeConstructor

[57] ElementConstructor ::= "<" QName AttributeList ("/>" | (">" ElementContent* "</" QName
">"))

[63] ElementContent ::= Char
| "{{"
| "}}"
| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef
| XmlComment
| XmlProcessingInstruction
| ComputedElementConstructor
| ComputedAttributeConstructor

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (108 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean
http://www.w3.org/TR/2001/WD-xquery-20011220/#N400DC8

[64] AttributeList ::= (QName "=" (AttributeValue | EnclosedExpr))*
[65] AttributeValue ::= (["] AttributeValueContent* ["])

| (['] AttributeValueContent* ['])
[66] AttributeValueContent ::= Char

| CharRef
| "{{"
| "}}"
| EnclosedExpr
| PredefinedEntityRef

[67] EnclosedExpr ::= "{" ExprSequence "}"

4.8.1 Element Constructors

Introduction

We define the semantics of the literal form of element constructors by normalizing it to a computed element
constructor.

Normalization

Ed. Note: Status:The specification of element constructor normalization is pending adoption of a
proposal on the treatment of whitespace in XQuery expressions and of a proposal on the
semantics of element constructors. See [Issue-0110: Semantics of element and attribute
constructors].

4.8.2 Computed Element and Attribute Constructors

[58] ComputedElementConstructor ::= "element" (QName | EnclosedExpr) "{" ExprSequence? "}"
[59] ComputedAttributeConstructor ::= "attribute" (QName | EnclosedExpr) "{" ExprSequence? "}"

Normalization

Computed element and attribute expressions are normalized by mapping their sub-expressions:

[element (QName | { Expr }) { ExprSequence }]
==

element ([QName] | { [Expr] }) { [ExprSequence]}

[attribute (QName | { Expr }) { ExprSequence }]
==

attribute ([QName] | { [Expr] }) { [ExprSequence]}

Core Grammar

The core grammar rules for computed constructors are:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (109 of 183) [8/12/2002 6:38:06 PM]

[58] ComputedElementConstructor ::= "element" (QName | EnclosedExpr) "{" ExprSequence? "}"
[59] ComputedAttributeConstructor ::= "attribute" (QName | EnclosedExpr) "{" ExprSequence? "}"

Static Type Analysis

The normalization rules leave us with only a the operator form of element (resp. attribute) constructor to
handle. The element (resp. attribute) operator still has two form: one in which a QName is supplied as the
element name, and one in which a computed expression is supplied. In the latter case, we are unable to provide
anything other than a wildcard type, since the element name cannot be known until runtime.

Note that when the QName form is used, the resulting type is a constructed element type. This means that the
element type is consistent with its contents (as determined by static analysis), but it does not necessarily bear
any relation to any declared element type of the same name. In other words, there is no schema validation
implied here. Moreover, neither XQuery nor this document have yet specified how validation can be invoked,
other than with the treat as operator.

Ed. Note: DD: the above is a necessary consequence of our current evaluation model. One
variation that I can think of is that the static rules could try looking up the element name in ; if the
element name is found, then the associated, named type is used (and the contents are required to
match). If the named element type is not found, then the constructed type is used, as before. Thus,
in this scenario, validation would be done whenever an element with a "global" name was
created. See also comments on the impact of (non-)validation on element construction, in the next
section.

statEnvs |- expand(QName) = qname
statEnvs |- ExprSequence : Type1

Type1 <: (xs:AnyAttribute*, (xs:AnySimpleType | (xs:AnyElement | xs:string)*))

statEnvs |- element QName { ExprSequence } : element qname { Type1 }

statEnvs |- Expr : xs:QName
statEnvs |- ExprSequence : Type1

Type1 <: (xs:AnyAttribute*, (xs:AnySimpleType | (xs:AnyElement | xs:string)*))

statEnvs |- element { Expr } { ExprSequence } : element * { Type }

statEnvs |- Expr : xs:QName
statEnvs |- ExprSequence : Type1

Type1 <: xs:AnySimpleType

statEnvs |- attribute { Expr } { ExprSequence } : attribute * { Type }

statEnvs |- expand(QName) = qname
statEnvs |- ExprSequence : Type1

Type1 <: xs:AnySimpleType

statEnvs |- attribute QName { ExprSequence } : attribute qname { Type1 }

Dynamic Evaluation

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (110 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#QName
http://www.w3.org/TR/xmlschema-2/#string
http://www.w3.org/TR/xmlschema-2/#QName

The following rule constructs an element (resp. attribute) from its name and children sub-expressions.

dynEnvs |- NameSpec => qname
dynEnvs |- ExprSequence => (anyAttribute1, ... anyAttributen, value1, ..., valuen)

dynEnvs |- element NameSpec { ExprSequence } =>

 dm:element-simple-node(qname,
xf:empty-sequence(),
(anyAttribute1, ..., anyAttributen),

(value1, ..., valuen),

xf:empty-sequence())

dynEnvs |- NameSpec => qname
dynEnvs |- ExprSequence => (value1, ..., valuen)

dynEnvs |- attribute NameSpec { ExprSequence } =>

 dm:attribute-simple-node(qname,
(value1, ..., valuen),

xf:empty-sequence())

Note that the element constructor dm:element-simple-node functions by making copies of any Nodes
in its arguments; therefore the result of element construction is a completely "new" element.

Ed. Note: DD: There are several issues with element construction:

We do not supply either namespaces or schema-components to the constructor. We cannot do these
things because of the bottom-up nature of element construction: we do not, in general, know either the
namespaces in scope or the validation-associated schema type until this element has been "seated" in
some containing element (and so on recursively).

There is a possible solution to this chicken-and-egg problem, however: because the element constructor
makes copies of its children, it could be the responsibility of the element constructor to "fill in" the
values for namespaces-in-scope and schema-component on each newly-copied child (recursively),
based on information provided for the node. In this scenario, these fields would remain "blank" until
some appropriate activity caused a schema component to become associated with a node, etc.

One implication of this scheme would be that the "value" of elements could change as they are copied
into a new containing element. For example, defaulted attributes could be added. Possibly the
interpretation of data values would change as well, e.g. a data value supplied as a string could be
re-interpreted as a number.

●

We do not handle any special treatment of xmlns, etc. that would be needed to associate namespaces
with elements.

●

Even if/when schema components are available, it is not clear when or how defaulted attributes and/or
elements are created.

●

The conversion of atomic values to text nodes, plus the lack of schema components, means that the data●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (111 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#AttributeNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#sequences
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#Node

model must necessarily lose type information about element contents. Thus the data model function
dm:typed-value cannot do what we need it to do. Possibly the text node constructor
dm:text-node could keep track of the types of the atomic values used to create the text node?

4.8.3 Other Constructors and Comments

[60] CdataSection ::= "<![CDATA[" Char* "]]>"
[61] XmlProcessingInstruction ::= "<?" PITarget Char* "?>"
[62] XmlComment ::= "<!--" Char* "-->"

XQuery currently does not define how comments and processing instructions are created.

4.9 FLWR Expressions

Introduction

This section defines the semantics of [2.9 FLWR Expressions] in [XQuery 1.0: A Query Language for XML].

XQuery provides a FLWR expression for iteration, for binding variables to intermediate results, and to filter
bound variables based on a predicate.

A FLWRExpr in XQuery 1.0 consists of a sequence of ForClauses, LetClauses, and an optional WhereClause,
followed by a return clause, as described by the following grammar productions.

[8] FLWRExpr ::= (ForClause | LetClause)+ WhereClause? "return" Expr
[27] ForClause ::= "for" Variable "in" Expr ("," Variable "in" Expr)*
[28] LetClause ::= "let" Variable ":=" Expr ("," Variable ":=" Expr)*
[29] WhereClause ::= "where" Expr

4.9.1 FLWR expressions

Notation

Individual FLWR clauses are normalized by means of the auxiliary normalization rules:

[FLWRClause]flwr_clause(Expr)

Where FLWRClause can be any either a ForClause, a LetClause, or a WhereClause:

[100] FLWRClause ::= ForClause | LetClause | WhereClause

Note that, as is, this auxiliary rule normalizes a fragment of the FLWR expression, while taking the remainder
of the expression (in Expr) as an additional parameter.

Normalization

Full FLWR expressions are normalized to nested core expressions using two sets of normalization rules. Note
that some of the rules also accepts ungrammatical FLWRExprs such as "where Expr1 return Expr2". This does
not matter, as normalization is always applied on parsed XQuery expressions, and ungrammatical FLWRExprs
would be rejected by the parser beforehand.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (112 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#ElementNode
http://www.w3.org/TR/2001/WD-query-datamodel-20011220/#TextNode
http://www.w3.org/TR/2001/WD-xquery-20011220/#id-flwr-expressions

The first set of rules is applied on a full FLWR expression, splitting it at the clause level, then applying further
normalization on each separate clause.

[(ForClause | LetClause | WhereClause) FLWRExpr]
==

[(ForClause | LetClause | WhereClause)]flwr_clause([FLWRExpr])

[(ForClause | LetClause | WhereClause) return Expr]
==

[(ForClause | LetClause | WhereClause)]flwr_clause([Expr])

Then each FLWR clause is normalized separately. A ForClause may bind more than one variable, whereas a
for expression in the XQuery core binds and iterates over only one variable. Therefore, a ForClause is
normalized to nested for expressions:

[for Variable1 in Expr1,...,Variablen in Exprn] flwr_clause(Expr)
==

for Variable1 in [Expr1] return

 ···

 for Variablen in [Exprn] return Expr

Note that the additional Expr parameter of the auxiliary normalization rule is used as the final return
expression.

Likewise, a LetClause clause is normalized to nested let expressions:

[let Variable1 := Expr1, ···, Variablen := Exprn]flwr_clause(Expr)
==

let Variable1 := [Expr1] return

 ···

 let Variablen := [Exprn] return Expr

A WhereClause is normalized to an IfExpr, with the else-branch returning the empty list:

[where Expr1]flwr_clause(Expr)
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (113 of 183) [8/12/2002 6:38:06 PM]

if ([Expr1]) then Expr else ()

Example

The following simple example illustrates, how a FLWRExpr is normalized. The FLWR expressions is used to
iterate over two collections, binding variables $i and $j to items in these collections. It uses a let clause to
binds the local variable $k to the sum of both numbers, and a where clause to selects those numbers that have
only a sum equal to or greater than the integer 5.

 for $i in (1, 2),
 $j in (3, 4)
 let $k := $i + $j
 where $k >= 5
 return
 <tuple>
 <i> { $i } </i>
 <j> { $j } </j>
 </tuple>

Through the first set of rules, this is normalized to (except for the operators and element constructor which are
not treated here):

 for $i in (1, 2) return
 for $j in (3, 4) return
 let $k := $i + $j return
 if ($k >= 5) then
 <tuple>
 <i> { $i } </i>
 <j> { $j } </j>
 </tuple>
 else
 ()

For each binding of $i to an item in the sequence (1 , 2) the inner for expression iterates over the
sequence (3 , 4) to produce tuples ordered by the ordering of the outer sequence and then by the ordering
of the inner sequence. We see in the rest of the section, how this core expression results in the following
document fragment:

 (<tuple>
 <i>1</i>
 <j>4</j>
 </tuple>,
 <tuple>
 <i>2</i>
 <j>3</j>
 </tuple>,
 <tuple>

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (114 of 183) [8/12/2002 6:38:06 PM]

 <i>2</i>
 <j>4</j>
 </tuple>)

with the static type:

 element tuple {
 element i { xs:decimal },
 element j { xs:decimal }
 }*

4.9.2 For expression

Core Grammar

After normalization single for expressions are described by the following core grammar production.

[0] ForExpr ::= ForClause "return" Expr

Static Type Analysis

A single for expression is typed as follows: First Type1 of the iteration expression Expr1 is inferred. Then the
prime type of Type1 - prime(Type1) - is determined. This is a choice of all item types in Type1 (see also [3.4
Prime types]). With the variable component of the static environment statEnvs extended with Variable1 of
type prime(Type1), the type Type2 of Expr2 is inferred. Because the for expression iterates over the result of
Expr1, the final type of the iteration is Type2 multiplied with the possible number of items in Type1 (one, ?, *,
or +). This number is determined by the auxiliary type-function quantifier(Type1).

statEnvs |- Expr1 : Type1
statEnvs [varType(Variable1 : prime(Type1))] |- Expr2 : Type2

statEnvs |- for Variable1 in Expr1 return Expr2 : Type2 · quantifier(Type1)

Example

For example, if $example is bound to the sequence (<one/> , <two/> , <three/>) of type
element one {}, element two {}, element three {}, then the query

 for $s in $example
 return <out> {$s} </out>

is typed as follows:

 (1) prime(element one {}, element two {}, element three {}) =
 element one {} | element two {} | element three {}
 (2) quantifier(element one {}, element two {}, element three {}) = +
 (3) $s : element one {} | element two {} | element three {}
 (4) <out> {$s} </out> :
 element out {element one {} | element two {} | element three {}}
 (5) result-type :
 element out {element one {} | element two {} | element three {}}+

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (115 of 183) [8/12/2002 6:38:06 PM]

This result-type is not the most specific type possible. It does not take into account the order of elements in the
input type, and it forgets about the individual and overall number of elements in the input type. The most
specific type possible is: element out {element one {}}, element out {element two
{}}, element out {element three {}}. However, inferring such a specific type for arbitrary
input types and arbitrary return clauses requires significantly more complicated type inference rules. In
addition, if put into the context of an element, the specific type violates the "consistent element restriction" of
XML schema, which requires that an element must have a unique content model within a particular context.

Dynamic Evaluation

The evaluation of a for expression distinguishes two cases: If the iteration expression Expr1 evaluates to the
empty sequence, then the entire expression evaluates to the empty sequence.

dynEnvs |- Expr1 => value empty(value)

dynEnvs |- for Variable1 in Expr1 return Expr2 => dm:empty-sequence()

Otherwise, the iteration expression Expr1, is evaluated to produce the sequence itemValue1, ..., itemValuen.
Then for each item itemValuei in this sequence, the body of the for expression Expr2 is evaluated in the
environment dynEnvs extended with Variable1 bound to itemValuei. This produces values valuei, which are
concatenated to produce the result sequence.

dynEnvs |- Expr1 => itemValue1 ,..., itemValuen
dynEnvs [varValue(Variable1 |-> itemValue1)] |- Expr2 => value1

···
dynEnvs [varValue(Variable1 |-> itemValue1)] |- Expr2 => valuen

dynEnvs |- for Variable1 in Expr1 return Expr2 => op:concatenate(value1 ,..., valuen)

Ed. Note: The dynamic semantics of for could be better defined without the use of ··· and using
recursion. See [Issue-0134: Should we define for with head and tail?].

Example

Note that even if the expression in the return clause can result in a sequence, sequences are never nested in the
XQuery data model. For instance, in the following for expression:

 for $i in (1,2)
 return (<i> {$i} </i>, <negi> {-$i} </negi>)

each iteration in the for results in a sequence of two elements, which are then concatenated and flattened in the
resulting sequence (through the op:concatenate function):

 (<i>1</i>,
 <negi>-1</negi>,
 <i>2</i>,
 <negi>-2</negi>,

4.9.3 Let expression

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (116 of 183) [8/12/2002 6:38:06 PM]

Core Grammar

After normalization single let expressions are described by the following core grammar production.

[0] LetExpr ::= LetClause "return" Expr

Static Type Analysis

A let expression extends the type environment statEnvs with Variable1 of type Type1 inferred from Expr1, and
infers the type of Expr2 in the extended environment to produce the result type Type2.

statEnvs |- Expr1 : Type1 statEnvs [varType(Variable1 : Type1)] |- Expr2 : Type2

statEnvs |- let Variable1 := Expr1 return Expr2 : Type2

Dynamic Evaluation

A let expression extends the dynamic environment dynEnvs with Variable bound to value1 returned by Expr1,
and evaluates Expr2 in the extended environment to produce value2.

dynEnvs |- Expr1 => value1 dynEnvs [varValue(Variable1 |-> itemValue1)] |- Expr2 => value2

dynEnvs |- let Variable1 := Expr1 return Expr2 => value2

Example

Note the use of the environment discipline to define the scope of each variables. For instance, in the following
nested let expression:

 let $k := 5 return
 let $k := $k + 1 return
 $k+1

the outermost let expression binds variable $k to the integer 5 in the environment, then the expression $k+1 is
computed, yielding value 6, to which the second variable $k is bound. The expression then results in the final
integer 7.

4.10 Sorting Expressions

Ed. Note: Status: This section is still incomplete and needs further revision. This revision is
pending agreement about the semantics of sorting.See [Issue-0109: Semantics of sortby].

Introduction

This section defines the semantics of [2.10 Sorting Expressions] in [XQuery 1.0: A Query Language for
XML]. A sorting expression provides a way to specify the order of items in a sequence.

[5] SortExpr ::= Expr "stable"? "sortby" "(" SortSpecList ")"
[26] SortSpecList ::= Expr ("ascending" | "descending")? ("," SortSpecList)?

Normalization

In XQuery, the specification of ascending/descending is optional. We normalize missing sort order to

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (117 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#N401001

"ascending".

[Expr (, SortSpecList)?]
==

[Expr] ascending (, [SortSpecList])?

Core Grammar

The core grammar rule for the sort expression is:

[5] SortExpr ::= Expr "stable"? "sortby" "(" SortSpecList ")"

Static Type Analysis

The sortby expression returns prime(Type) · quantifier(Type) of its input type Type (see also [3.4 Prime
types]).

statEnvs |- Expr : Type

statEnvs |- Expr sortby SortSpecList : prime(Type) · quantifier(Type)

Ed. Note: (MF) / Oct 23/2000: This definition assumes that the equality operator on Type2 is
defined. An alternative is requiring Expr2 to have fs:atomic, but that seems too restrictive.

Ed. Note: DD: My version is even worse: it doesn't even refer to the types of the SortSpecList; it
is true this ought to check the types of the sortby expressions for the existence of an ordering
relation. Also: we need to define how to sort nodes in document order.

Ed. Note: Peter: yes indeed, this needs to be fixed. We need (a) a core xf:sort (with only one
criterion) and appropriate more specific static and dynamic semantics, (b) a normalization of the
surface sortby (with many criteria) to the core xf:sort. Maybe we should tie this to resolution of
Dana's issue with sortby.

Dynamic Evaluation

The dynamic semantics of the sortby operator has not been defined. See [Issue-0109: Semantics of sortby].

4.11 Conditional Expressions

Introduction

This section defines the semantics of [2.11 Conditional Expressions] in [XQuery 1.0: A Query Language for
XML]. A conditional expression supports conditional evaluation of one of two expressions.

[11] IfExpr ::= "if" "(" Expr ")" "then" Expr "else" Expr

Normalization

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (118 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-conditionals

[if (Expr1) then Expr2 else Expr3]
==

let $fs:new := [Expr1]Effective_Boolean_Value,

return if ($fs:new) then [Expr2] else [Expr3]
where $fs:new is a newly created variable that does not appear in the rest of the query.

Core Grammar

The core grammar rule for the conditional expression is:

[11] IfExpr ::= "if" "(" Expr ")" "then" Expr "else" Expr

Static Type Analysis
statEnvs |- Expr1 : xs:boolean statEnvs |- Expr2 : Type2 statEnvs |- Expr3 : Type3

statEnvs |- if (Expr1) then Expr2 else Expr3 : (Type2 | Type3)

Dynamic Evaluation

If the conditional's boolean expression Expr1 evaluates to true, Expr2 is evaluated and its value is produced. If
the conditional's boolean expression evaluates to false, Expr3 is evaluated and its value is produced. Note that
the existence of two separate evaluation rules ensures that only one branch of the conditional is evaluated.

Ed. Note: DD: actually, I would like that last sentence to be true, but I don't think it is: there is
nothing that I know of in the semantics of evaluation rules that says that the clauses must be
evaluated left-to-right, so currently nothing stops an implementation from evaluating the body
expressions first. Even if this is a functional language generally, I am sure there will be
non-functional side-effects in implementation-dependent extensions to the language, and I think
we must find a way to formally state that bodies of conditionals do not get executed if their test
fails.

dynEnvs |- Expr1 => true dynEnvs |- Expr2 => value2

dynEnvs |- if Expr1 then Expr2 else Expr3 => value2

dynEnvs |- Expr1 => false dynEnvs |- Expr3 => value3

dynEnvs |- if Expr1 thenExpr2 elseExpr3 => value3

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (119 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/xmlschema-2/#boolean

4.12 Quantified Expressions

Introduction

This section defines the semantics of [2.12 Quantified Expressions] in [XQuery 1.0: A Query Language for
XML].

XQuery defines two quantification expressions:

[9] QuantifiedExpr ::= ("some" | "every") Variable "in" Expr "satisfies" Expr

Normalization

The quantification expressions are entirely normalized into other core expressions in the following
normalization rules.

[some Variable in Expr1 satisfies Expr2]
==

xf:not (xf:empty(

 for Variable in [Expr1] return

 if ([Expr2]Effective_Boolean_Value) then 1

 else ()
))

[every Variable in Expr1 satisfies Expr2]
==

xf:empty(

 for Variable in [Expr1] return

 if (xf:not([Expr2]Effective_Boolean_Value)) then 1

 else ()
)

Core Grammar

There are no core grammar rules for quantified expressions as they are normalized to other core expressions.

Dynamic Evaluation

There are no additional dynamic evaluation rules for the quantified expressions.

Static Type Analysis

There are no additional static type rules for the quantified expressions.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (120 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#id-quantified-expressions

4.13 Datatypes

Introduction

This section defines the semantics of [2.13 Datatypes] in [XQuery 1.0: A Query Language for XML].

Datatypes can be used in the language to refer to a type declared in the query prolog (see [5 The Query
Prolog]). Datatypes are used to declare the type of function parameters and in several kinds of XQuery
expressions. We first describe the semantics of Datatypes with respect to the XQuery type system, then
describe the semantics of expressions on Datatypes.

4.13.1 Referring to Datatypes

Introduction

The syntax of Datatypes is described by the following grammar productions.

[53] Datatype ::= (("element" "of" "type" QName) | DTKind | "node" | SimpleType
| "item") OccurrenceIndicator

[54] DTKind ::= ("element" | "attribute") QName?
[56] OccurrenceIndicator ::= ("*" | "+" | "?")?

We give the semantics of Datatypes by means of normalization rules from Datatypes to the XQuery type
system (see [3 The XQuery Type System]). We then describe the dynamic and static semantics of
expressions involving datatypes in terms of operations on the XQuery type system.

Ed. Note: Note that normalization on Datatypes does not occur during the normalization phase,
but whenever a dynamic or static rule requires it. The reason for that deviation from the
processing model is that the result of Datatype normalization is not part of the XQuery syntax
(See issue [Issue-0089: Syntax for types in XQuery]). Datatype normalization is the only
occurrence of such a deviation in the formal semantics.

Notation

To define the semantics of Datatypes, we make use of the following auxiliary normalization rule. The
notation:

[Datatype]Datatype
==

Type

specifies that Datatype is equivalent to Type, in the XQuery type system.

We also rely of the following additional production, which facilitates the specification of the normalization
rules for Datatypes.

[99] DTComponent ::= ("element" "of" "type" QName) | DTKind | "node" | SimpleType | "item"

Normalization

OccurenceIndicators are left unchanged when normalizing Datatypes into XQuery types. Each kind of

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (121 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#datatypes

Datatype component is normalized separately into the XQuery type system.

[DTComponent OccurrenceIndicator]Datatype
==

[DTComponent]Datatype OccurrenceIndicator

The Datatype component "element of type QName" can be used to refer to any element, (i.e., with any
qname), whose type is the globally defined type QName. Note that the following mapping rule uses the type
environment to make sure the global type exists, and a wildcard name for the resulting element.

If statEnvs.varType(QName) => Type, then

[element of type QName]Datatype
==

element * { type QName }

otherwise it is an error.

The Datatype component DTKind can be used to refer to a globally defined element or attribute. In case the
name of the element or attribute is missing, this means any element or attribute is allowed. Note that the
following mapping rules use the type environment to make sure the global element or attribute exists, and a
wildcard type in case the name of the element or attribute is missing.

If statEnvs.elemDecl(QName) => Type, then

[element QName]Datatype
==

element QName

otherwise it is an error.

If statEnvs.attrDecl(QName) => Type, then

[attribute QName]Datatype
==

attribute QName

otherwise it is an error.

[element]Datatype
==

xs:AnyElement

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (122 of 183) [8/12/2002 6:38:06 PM]

[attribute]Datatype

==
xs:AnyAttribute

The Datatype components "node" and "item" correspond to wildcard types. node indicates that any node is
allowed, and item indicates that any node or value is allowed. The following mapping rules make use of the
corresponding wildcard types.

[node]Datatype
==

xs:AnyNode

[item]Datatype
==

xs:AnyItem

The Datatype component SimpleType is used to refer to one of the XML Schema simple type, and is left
unchanged during normalization.

If SimpleType is an [XML Schema Part 2] simple type, then

[SimpleType]Datatype
==

SimpleType

otherwise it is an error.

Ed. Note: Jerome: The formal semantics makes use of several built-in types which are not in
XML Schema, notably fs:numeric and fs:UnknownSimpleType. These types are necessary for the
specification of some of XPath type conversion rules, and are accepted without raising an error.
The status of these types is still an open issue. See [Issue-0127: Datatype limitations].

4.13.2 Expressions on Datatypes

Introduction

Expressions on Datatypes are expressions whose semantics depends on the type of some of the
sub-expressions on which they are applied. The syntax of Datatype expressions is described by the following
grammar productions.

[16] InstanceofExpr ::= Expr "instance" "of" "only"? Datatype
[10] TypeswitchExpr ::= "typeswitch" "(" Expr ")" ("as" Variable)? CaseClause+ "default"

"return" Expr
[30] CaseClause ::= "case" Datatype "return" Expr

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (123 of 183) [8/12/2002 6:38:06 PM]

[23] CastExpr ::= ("cast" "as" | "treat" "as" | "assert" "as") Datatype "(" Expr ")"

4.13.2.1 Instance of

Introduction

The Datatype expression "Expr instance of Datatype" is true if and only if the result of evaluating expression
Expr is an instance of the type referred to by Datatype.

Normalization

An "instance of" expression is normalized into a "typeswitch" expression. Note that the following
normalization rule uses a variable $fs:new, which is a newly created variable which must not conflict with any
variables in scope. This variable is necessary to comply to the syntax of typeswitch expressions in the core
XQuery, but is never used.

[Expr instance of Datatype]Expr
==

typeswitch ([Expr]Expr) as $fs:new

 case Datatype return xf:true()
 default return xf:false()

Ed. Note: MFF: The "instance of" expression allows an optional "only" modifier. The use case
for such a modifier is based on named typing, while the XQuery semantics is currently based on
structural typing. It is not clear what the semantics of the "only" modifier under structural typing
should be and how it can be supported. See [Issue-0111: Semantics of instance of ... only].

4.13.2.2 Cast expressions

Cast expressions are expressions that check or change the type of an expression against a given type.

4.13.2.2.1 Cast as

Introduction

The expression "cast as Datatype (Expr)" can be used to explicitly convert the result of an expression from
one type to another. It changes both the type and value of the result of an expression, and can only be applied
on a simple value and an XML Schema simple type.

The semantics of cast expressions follows the specification given in Section [14. Casting Functions] of the
[XQuery 1.0 and XPath 2.0 Functions and Operators] document. The casting table in Section [14. Casting
Functions] of the [XQuery 1.0 and XPath 2.0 Functions and Operators] document indicates whether a cast is
allowed or not. In case it is allowed, a specific cast function is applied, based on the input and output XML
Schema simple types. The semantics of the cast function follows casting rules which are described in the rest
of the remainder of Section [14. Casting Functions] of the [XQuery 1.0 and XPath 2.0 Functions and
Operators] document and is not specified further here.

Ed. Note: Jerome: The [XQuery 1.0 and XPath 2.0 Functions and Operators] document does not
provide any function for casting, just a table and casting rules. It would be preferable to either

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (124 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting

have an explicit function to normalize to, or to put the semantics of casts in the Formal
Semantics. This relates to Issue 17 in the [XQuery 1.0 and XPath 2.0 Functions and Operators]
document.

Notation

We make use of the following auxiliary judgments to represent access to the casting table and to the semantics
of casting, as described in Section [14. Casting Functions] of the [XQuery 1.0 and XPath 2.0 Functions and
Operators] document.

The notation:

Type1 CastAllowed Type2 => { Y, M, N }

indicates whether casting from type Type1 to Type2 is always possible (Y), may be possible (M), or is not
allowed (N).

The notation:

cast as Type2 (value1) => value2

indicates that applying the casting rules for Type2 on value1 yields the value value2.

Dynamic Evaluation

If the cast is allowed (Y or M), the following evaluation rule applies the casting rules on the result of the input
expression. The rule uses the data model function dm:type in order to obtain the dynamic type of the input
value, Datatype normalization to obtain the output type, and the above auxiliary judgments to check whether
the cast is allowed and apply the casting rules.

dynEnvs |- Expr1 => value1
dm:type(value1) = Type1

[Datatype2]Datatype => Type2
Type1 CastAllowed Type2 => { Y, M }

cast as Type2 (value1) => value2

dynEnvs |- cast as Datatype2 (Expr1) => value2

Note that in the case the cast is allowed, but the casting table indicates "M", the casting operation might still
fail at run-time, if the input value is inappropriate (e.g. attempting to cast the string "VRAI" into xs:boolean).
In that case, the dynamic evaluation returns an error value.

In the case the casting table returns "N", the cast is not allowed and the dynamic semantics always returns an
error value.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (125 of 183) [8/12/2002 6:38:06 PM]

http://www.w3.org/TR/2001/WD-xquery-operators-20011220/#casting
http://www.w3.org/TR/xmlschema-2/#boolean

dynEnvs |- Expr1 => value1
dm:type(value1) = Type1

[Datatype2]Datatype => Type2

Type1 CastAllowed Type2 => N

dynEnvs |- cast as Datatype2 (Expr1) => dm:error()

Static Type Analysis

The following static typing rules gives the statics semantics of "cast as" expression. If the cast table indicates
that the cast is allowed, then the static semantics is always the output type of the cast. In the case the cast table
indicates the cast is not allowed, the system raises a static type error.

statEnvs |- Expr : Type1 [Datatype2]Datatype => Type2 Type1 CastAllowed Type2 => { Y, M }

statEnvs |- cast as Datatype2 (Expr) : Type2

4.13.2.2.2 Treat as

Introduction

The expressions "treat as Datatype (Expr)", can be used to change the dynamic type of the result of an
expression, without changing its value. Treat as never raises a static type error, but might raise a run-time error
if the dynamic type of the expression is not an instance of the specified type.

Normalization

Treat as expressions are normalized to typeswitch expressions. Note that the following normalization rule uses
a variable $fs:new, which is a newly created variable which must not conflict with any variables in scope.

[treat as Datatype (Expr)]Expr
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (126 of 183) [8/12/2002 6:38:06 PM]

typeswitch ([Expr]Expr) as $fs:new

 case Datatype return $fs:new
 default return dm:error()

4.13.2.2.3 Assert as

Introduction

The expression "assert as Datatype (Expr)", performs a similar operation as "treat as" but is always type safe.
The system raises a static error in the case it cannot infer that the type of the expression is not a subtype of the
specified type.

Dynamic Evaluation

Dynamically, the "assert as" expression is a no-op. As the static type system enforces statically that the type of
the input expression is of the specified type.

dynEnvs |- Expr => value

dynEnvs |- assert as Type (Expr) => value

Static Type Analysis

The "assert as" expression is type safe if and only if the type of the input expression is a subtype of the
specified type. This semantics is specified as the following typing rule.

statEnvs |- : Type1 [Datatype2]Datatype => Type2 Type1 <: Type2

statEnvs |- assert as Datatype2 (Expr1) : Type2

Ed. Note: Jerome: The semantics for "assert as" here relies on structural typing. It will have to be
revised when named typing is added. See [Issue-0104: Support for named typing].

4.13.2.3 Typeswitch

Introduction

The typeswitch expression of XQuery allows users to perform different operations according to the type of an
input expression.

A typeswitch expression may have an optional "as Variable" statement, used to bind a variable to the result of
the input expression. This variable is optional in XQuery but mandatory in the XQuery core. As we will see,
one of the reasons for having this variable is better static typing.

Normalization

Normalization of typeswitch expressions is applied to make sure an appropriate "as Variable" statement is
present.

The following general normalization rule merely adds a newly created variable, which does not appear in the
rest of the query. In that normalization rule, Expr0 must not be a variable. Note that $fs:new is a newly

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (127 of 183) [8/12/2002 6:38:06 PM]

generated variable that must not conflict with any variables in scope and is not used in any of the
sub-expressions.

[
typeswitch (Expr0)

 case Datatype1 return Expr1
 ···
 case Datatypen return Exprn
 default return Exprn+1

]Expr
==

typeswitch ([Expr0]Expr) as $fs:new

 case Datatype1 return [Expr1]Expr

 ···

 case Datatypen return [Exprn]Expr

 default return [Exprn+1]Expr

An additional normalization rule is also applied in the case where the input expression is limited to a variable.
This special case rule is used to propagate better typing information in each "case" branch of the typeswitch.

[
typeswitch (Variable0)

 case Datatype1 return Expr1
 ···
 case Datatypen return Exprn
 default return Exprn+1

]Expr
==

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (128 of 183) [8/12/2002 6:38:07 PM]

typeswitch (Variable0) as Variable0

 case Datatype1 return [Expr1]Expr

 ···

 case Datatypen return [Exprn]Expr

 default return [Exprn+1]Expr

In other words, this normalization rules treats:

typeswitch (Variable) case ...

identically to:

typeswitch (Variable) as Variable case ...

As a result, Variable benefits from the more accurate type information given to the variable in the "as" clause
of the typeswitch during static type analysis.

Notation

We use the following additional grammar production to identify branches of the typeswitch.

[101] CaseRules ::= ("case" Datatype "return" Expr CaseRules) | ("default" "return" Expr)

When defining the dynamic and static semantics of typeswitch, we use the following auxiliary judgments to
denote partial evaluation and typing for the branches of a typeswitch.

The two following judgments

dynEnvs Case (Variable, value) |- case Type return Expr CaseRules => value2

and

dynEnvs Case (Variable, value) |- default return Expr => value2

are used in the dynamic semantics of typeswitch. They indicates that under the environment dynEnvs, and
with the typeswitch variable "Variable" bound to value "value", the given case rules (e.g., "case Type return
Expr CaseRules") evaluate to value2.

The two following judgments

statEnvs Case (Variable, Type ; (Type1 | ... | Typen)) |- case Datatype return Expr CaseRules : Type2

and

statEnvs Case (Variable, Type ; (Type1 | ... | Typen))) |- default return Expr : Type2

are used in the static semantics of typeswitch. They indicates that under the type environment statEnvs, and
with the typeswitch variables "Variable" bound to type "Type", the type inferred for the given case rules (e.g.,
"case Datatype return Expr CaseRules") is type Type2. Note that the typing judgments also keep track of all
previously visited types in the typeswitch. This additional information is used later on in typing the default
clause.

Dynamic Evaluation

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (129 of 183) [8/12/2002 6:38:07 PM]

The evaluation of a typeswitch proceeds as follows. First, the input expression is evaluated, yielding an input
value. Then the first case clause whose Datatype type matches that value is selected and its corresponding
expression is evaluated.

During typeswitch evaluation, the variable Variable and the value value to match against, are kept on the left
of the turnstile |- in the auxiliary judgments. Each case rule of a typeswitch expression is always evaluated
against this value, and case rules are tried from left to right. The rule for the typeswitch expression evaluates
its expression and sets up the appropriate environment for the case rules:

dynEnvs |- Expr => value0 dynEnvs Case (Variable, value0) |- CaseRules => value1

dynEnvs |- typeswitch (Expr) as Variable CaseRules => value1

If the value value0 is in the domain of the type Type, the next rule extends the environment by binding the
variable Variable to value0 and evaluates the body of the case rule. Remember that the domain of a type is the
possibly infinite set containing all values that are instances of that type.

Ed. Note: Jerome: The notion of domain of a type needs to be clarified. This should go in section
3. about the type system. The notion of domain of a type will change as soon as the named typing
proposal is added. See [Issue-0104: Support for named typing].

[Datatype]Datatype => Type value0 in Dom(Type)
dynEnvs [varValue(Variable |-> value)] |- Expr => value1

dynEnvs Case (Variable, value0) |- case Datatype return Expr CaseRules => value1

If the value value0 is not in the domain of the type expression Type (i.e., the normalized version of
Datatype),the next rule evaluates the case rules following the current one. The body of the given case rule is
not evaluated if value0 is not in the domain of the given type.

[Datatype]Datatype => Type not (value0 in Dom(Type)) dynEnvs Case (Variable,value0) |-

CaseRules => value1

dynEnvs Case (Variable, value0) |- case Datatype return Expr CaseRules => value1

Finally, the last rule states that the "default" branch of a typeswitch expression always evaluates to its given
expression.

dynEnvs |- Expr => value1

dynEnvs Case (Variable, value0); |- default return Expr => value1

Static Type Analysis

The typeswitch expression possesses one of the more complex sets of static typing rules. The rules account for
the fact that if the static type of the conditional expression is known, then we may be able to determine that
some of the case clauses do not apply.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (130 of 183) [8/12/2002 6:38:07 PM]

The main typeswitch rule relies upon the auxiliary type judgments to determine the type of each of the case
clauses and of the default clause. These rules are provided after the main rule. Note the type of the input
expression is always treated as a collection of similar items, using the "prime" and "quantifier" operations on
types. This is necessary as further typing rules compute the common prime types for branch of the type switch.

Ed. Note: Jerome: the use of the common prime types replaces the previous use of type
intersection. Common prime types simplifies significantly the complexity in implementing
typeswitch, but is less precise in certain cases.

statEnvs |- Expr0 : Type0
Type0' = prime(Type0) · quantifier(Type0)

[Datatype1]Datatype => Type1
 ···

[Datatypen]Datatype => Typen
statEnvs Case (Variable0, Type0 ; ()) |- case Datatype1 return Expr1 : Type1'

 ···
statEnvs Case (Variable0, Type0 ; (Type1 | ... | Typen-1)) |- case Datatypen return Exprn : Typen'

statEnvs Case (Variable0, Type0 ; (Type1 | ... | Typen)) |- default return Exprn+1 : Typen+1'

statEnvs |- (typeswitch (Expr0) as Variable0
 case Datatype1 return Expr1
 ···
 case Datatypen return Exprn
 default return Exprn+1) : Type1' | ... | Typen+1'

Now we give the rules that determines the static type of each case clause in the typeswitch. In each rule, one
need to compute the "common prime types" between the input type and the case clause datatype.

The first rule is applied if the "common prime types" is none. In that case, we know for sure the corresponding
case clause will not be evaluated and the corresponding result type is none. Thanks to this rule, it is often
possible to infer a quite precise type for the overall typeswitch through elimination of some branches.

[Datatype]Datatype => Type
common-primes(prime(Type0), prime(Type)) = Type'0

Type'0 = none

statEnvs Case (Variable0, Type0 ; (Type1 | ... | Typer)) |- case Datatype return Expr : none

The second rule is applied if the "common prime types" is anything else but none. In that case, the input
variable is added into the type environment, and type inference is applied on the expression on the right-hand
side of the case clause. Note that the type of the input variable is set to the "common prime types", and not the
input type.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (131 of 183) [8/12/2002 6:38:07 PM]

[Datatype]Datatype => Type
common-primes(prime(Type0), prime(Type)) = Type'0

common-occur(quantifier(Type0), quantifier(Type)) = Quant0'
not(Type'0 = none)

statEnvs [varType(Variable : Type'0 · Quant0')] |- Expr : Type1

statEnvs |- case Datatype return Expr : Type1

Note that these two rules do not take the visited datatypes into account. The "default" clause differs from the
other clauses is that it does not specify a Datatype. The typing rule for the "default" clause uses the visited
type instead. Intuitively, the type corresponding to the "default" clause is any type but the ones in the other
cases clauses.

Therefore, in case the type of the input expression is a subtype of all the visited types, then one knows for sure
the case clause is not evaluated and the type of the default clause is xq_none;.

Type0 <: (Type1 | ... | Typen)

statEnvs Case (Variable0, Type0 ; (Type1 | ... | Typen)) |- default return Expr : none

Otherwise, the input variable is added into the type environment, and type inference is applied on the
expression on the right-hand side of the default clause. Note that the type of the input variable is set to the

input type of the expression.

Ed. Note: Jerome: There is an asymmetry here. It would be nicer to be able to have the type be
more precise, like for the other case clauses. The technical problem is the need for some form of
negation. I think one could define a "non-common-primes" function that would do the trick, but I

leave that as open for now until further review of the new typeswitch section is made. See
[Issue-0112: Typing for the typeswitch default clause].

not(Type0 <: (Type1 | ... | Typen))
statEnvs [varType(Variable : Type0)] |- Expr : Type1

statEnvs Case (Variable0, Type0 ; (Type1 | ... | Typen)) |- default return Expr : Type1

Example

The typing rules for typeswitch provides reasonably precise type information in a number of useful cases. For
example, consider the following a iteration expression followed by a typeswitch.

 for $x in $bib/book/*
 return
 typeswitch $x as $e
 case element author return $e/name
 case element title return &fs_data;($e)
 default return ()

Remember that the "data" function is only working on single nodes. Note that the above typeswitch is using

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (132 of 183) [8/12/2002 6:38:07 PM]

variable $e, which has a more precise typing (element title { xs:string }) than the input
expression $x (element title | element author | element editor ...).

The type rules for typeswitch do not, however, account for the interdependence between successive case
clauses. Thus if two case clauses had overlapping Datatypes, the static rules would behave as if both case
clauses "fired", rather than just the first one.

Ed. Note: Jerome: It seems that the simpler version of typeswitch proposed here would actually
allow to take previous case clauses into account. This is something worth exploring as it would
improve the static analysis in a way that might be helpful to users. See [Issue-0112: Typing for
the typeswitch default clause].

5 The Query Prolog
Ed. Note: Status: This section is still draft and needs further revision. Revision of the section is
pending agreement on issues related to namespaces and named typing.

Introduction

This section defines the semantics of [3. The Query Prolog] in [XQuery 1.0: A Query Language for XML].

The Query Prolog is a series of declarations and definitions that affect query processing. The Query Prolog
can be used to define namespaces, import type definitions from XML Schemas, and define functions.
Namespace declarations and schema imports always precede function definitions, as specified by the
following grammar productions.

[1] Query ::= QueryProlog ExprSequence?
[2] QueryProlog ::= (NamespaceDecl

| DefaultNamespaceDecl
| SchemaImport)* FunctionDefn*

The order in which functions are defined is immaterial. Notably, user-defined functions may invoke other
user-defined functions in any order.

5.1 Namespace Declarations and Schema Imports

Introduction

[68] NamespaceDecl ::= "namespace" QName "=" StringLiteral
[69] DefaultNamespaceDecl ::= "default" ("element" | "function") "namespace" "=" StringLiteral
[72] SchemaImport ::= "schema" StringLiteral ("at" StringLiteral)?

Namespace Declarations and Schema Import are not part of query proper but are used to modify the input
context for the rest of the query processing. As such, Namespace Declarations and Schema Import are
processed before the normalization phase.

The semantics of Schema Import is described in terms of the XQuery type system. The process of converting
an XML Schema into a sequence of type declarations is described in Section [3.5 Importing types from
XML Schema]. We here describe how the resulting sequence of type declarations is added into the static
environment when the prolog is processed.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (133 of 183) [8/12/2002 6:38:07 PM]

http://www.w3.org/TR/2001/WD-xquery-20011220/#N401342

Notation

We denote by prolog declarations, either namespace declarations or type declarations.

[73] PrologDeclList ::= PrologDecl*
[74] PrologDecl ::= NamespaceDecl

| DefaultNamespaceDecl
| TypeDeclaration

When processing Namespace Declarations and Schema Import, we use the following auxiliary judgment. The
notation:

PrologDeclList => statEnvs

indicates that the sequence of prolog declarations PrologDeclList yields the static environment statEnvs.

Context Processing

Prolog declarations are processed in the order they are encountered, as described by the following inference
rules. The first rule specify that for an empty sequence of prolog declarations, the static environment is
composed of a default context.

Ed. Note: Jerome: What do the default namespace and type environments contain? I believe at
least the default namespace environment should contain the "xs", "xf" and "op" prefixes, as well
as the default namespaces bound to the empty namespace. Should the default type environment
contain wildcard types? See [Issue-0115: What is in the default context?].

() => statEnvsDefault

A namespace declaration adds a new (prefix,uri) binding in the namespace component of the static
environment.

PrologDeclList => statEnvs
statEnvs' = statEnvs [namespace(NCName |-> StringLiteral)]

PrologDeclList namespace NCName = StringLiteral => statEnvs'

A default element namespace declaration changes the default element namespace prefix binding in the
namespace component of the static environment.

PrologDeclList => statEnvs
statEnvs' = statEnvs [namespace(fsdefaultelem |-> StringLiteral)]

PrologDeclList default element namespace = StringLiteral => statEnvs'

A default function namespace declaration changes the default function namespace prefix binding in the
namespace component of the static environment.

PrologDeclList => statEnvs
statEnvs' = statEnvs [namespace(fsdefaultfunc |-> StringLiteral)]

PrologDeclList default function namespace = StringLiteral => statEnvs'

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (134 of 183) [8/12/2002 6:38:07 PM]

Type, element and attribute declarations are added respectively to the type, element and attribute declarations
components of the static environment.

PrologDeclList => statEnvs
statEnvs' = statEnvs [typeDecl(QName |-> Type)]

PrologDeclList define type QName { Type } => statEnvs'

PrologDeclList => statEnvs
statEnvs' = statEnvs [elemDecl(QName |-> Type)]

PrologDeclList define element QName { Type } => statEnvs'

PrologDeclList => statEnvs
statEnvs' = statEnvs [attrDecl(QName |-> Type)]

PrologDeclList define attribute QName { Type } => statEnvs'

Note that for namespaces, later declarations can override earlier declarations of the same prefix. In the case of
global elements, attributes and types, multiple declarations correspond to an error.

5.2 Function Definitions

Introduction

User defined functions specify the name of the function, the names and types of the parameters, and the type
of the result. The function body defines how the result of the function is computed from its parameters.

[70] FunctionDefn ::= "define" "function" QName "(" ParamList? ")" ("returns" Datatype)?
EnclosedExpr

[71] ParamList ::= Param ("," Param)*
[52] Param ::= Datatype? Variable

Notation

We use the following auxiliary normalization rule [· · ·]Param for the normalization of parameters in function

definitions.

PrologDeclList => statEnvs
statEnvs' = statEnvs [attrDecl(QName |-> Type)]

PrologDeclList define attribute QName { Type } => statEnvs'

Normalization

The only form of normalization required for user defined functions is adding the type for its parameters or for
the return clause if it is not provided.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (135 of 183) [8/12/2002 6:38:07 PM]

[define function QName (ParamList?) returns Datatype EnclosedExpr]Expr
==

define function [QName] ([ParamList?]Param) returns Datatype [EnclosedExpr]Expr

If the return type of the function is not provided, it is given the item* datatype, corresponding to xs:AnyType.

[define function QName (ParamList?) EnclosedExpr]Expr
==

define function [QName] ([ParamList?]Param) returns item* [EnclosedExpr]Expr

Parameters without a declared typed are given the item* datatype, corresponding to xs:AnyType.

[Variable]Param
==

item* Variable

[Datatype Variable]Param
==

Datatype Variable

Context Processing

First, all the function signatures are added into the static environment, and all the function bodies are added
into the dynamic environment. This process happens before static type analysis occurs.

FunctionDefnList => statEnvs, dynEnvs
statEnvs' = statEnvs [funcType(QName |-> (Datatype1 , ··· Datatypen , Datatyper))]

dynEnvs' = dynEnvs [funcDefn(QName |-> (Expr , Variable1 , ··· Variablen))]

FunctionDefnList define function QName (Datatype1 Variable1, ··· Datatypen Variablen)
returns Datatyper

{ Expr } => statEnvs', dynEnvs'

Static Type Analysis

The static typing rules for function definitions checks whether the type of the enclosed expression is consistent
with the type of the input parameters, and the type of the return clause.

statEnvs [varType(Variable1 : Datatype1 ;...; Variablen : Datatypen)] |- Expr : Type
Type <: Datatyper

statEnvs |- define function QName (Datatype1 Variable1 , ··· Datatypen Variablen)
returns Datatyper

{ Expr }

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (136 of 183) [8/12/2002 6:38:07 PM]

What this typing rule is checking is: if the input parameters are of the given type, then is it true that the result
of the function is of the return type. If the type checking fails, the system raises an error. Otherwise, it does not
have any other effect, as function signatures are already inside the static environment.

Dynamic Evaluation

There is no need to describe a dynamic semantics at this point, as we do not have yet any actual value to
evaluated the function. The actual semantics of function evaluation has been described in [4.2.4 Function
Calls].

6 Additional Semantics of Functions
Ed. Note: Status: This section is still incomplete. This section will be completed as soon as
Sections 4 and 5 are consolidated. See [Issue-0135: Semantics of special functions].

As was explained in section [2.4 Functions], a number of functions play a role defining the formal semantics
of XQuery. Some other functions from the [XQuery 1.0 and XPath 2.0 Functions and Operators] document
need special static typing rules. This section gives the semantics of all "special" functions, used in the formal
semantics.

6.1 Formal Semantics Functions

Introduction

We give the definition, and semantics, of functions used in the formal semantics that are not part of the
[XQuery 1.0 and XPath 2.0 Functions and Operators] document.

6.1.1 The fs:document function

The fs:document function computes the document node of the current node, and is used to define the
semantics of the / expression in XQuery. The fs:document function is defined as a recursive XQuery function
as follows.

 define function fs:document(node $x) returns node
 {
 if empty(dm:parent($x))
 then $x
 else fs:document($x)
 }

6.1.2 The fs:data function

Introduction

The fs:data function is used to access the value content of an element or attribute. This function corresponds to
the dm:typed-value accessor in the XQuery data model.

Ed. Note: Some aspects of the semantics of the data() function are still an open issue. For
instance, what should be the result of data() over a text node. See [Issue-0107: Semantics of
data()].

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (137 of 183) [8/12/2002 6:38:07 PM]

Notation

To compute the resulting type for the fs:data function, we use the same approach as for the child axis in
XPath, by applying the fs:data function as a Filter. See [4.3.1 Axis Steps] for the definition and the semantics
of Filters.

We use the following notation, adapted from the Filter judgment in [4.3.1 Axis Steps].

dynEnvs.varValue ; Type1 |- fs:data : Type2

Static Type Analysis

Static type analysis for the fs:data function checks that the function is applied on an element or attribute with a
simple type content. If so, it returns the corresponding simple type through an application of the Filter
judgment on the input type of the function.

statEnvs |- Expr : Type1
statEnvs |- Type1 <: (element * { xs:AnyAttribute*, xs:AnySimpleType } | attribute * { xs:AnySimpleType })

dynEnvs.varValue ; Type1 |- fs:data : Type2

statEnvs |- fs:data(Expr) : Type2

statEnvs ; element qname { AttrType, SimpleType } |- fs:data : SimpleType;

statEnvs ; attribute qname { SimpleType } |- fs:data : SimpleType;

If applied on any other kind of item, it returns the empty sequence.

statEnvs |- Expr : Type
statEnvs |- not(Type <: (element * { xs:AnyAttribute*, xs:AnySimpleType } | attribute * {

xs:AnySimpleType }))
statEnvs |- Type <: item

dynEnvs |- fs:data(Expr) : ()

Otherwise (for empty sequences or sequences of more than one item value), it raises an error.

Example

Consider the following variables and its corresponding static type.

 $x : (element price { attribute currency { xs:string }, xs:decimal }
 | element price_code { xs:integer })

Applying the fs:data function on that variable results in the following type.

 fs:data($x) : (xs:decimal | xs:integer)

Remark that, as the input type is a choice, applying the Filter judgment results in a choice of simple types for

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (138 of 183) [8/12/2002 6:38:07 PM]

the output of the fs:data function.

Dynamic Evaluation

Dynamically, the fs:data function is implemented as the dm:typed-value data model accessor.

dynEnvs |- Expr => value1 dm:typed-value(value1) = value2

dynEnvs |- fs:data(Expr) => value2

6.2 Functions with specific typing rules

6.2.1 The dm:error function

Static Type Analysis

The dm:error function always returns the none type.

statEnvs |- dm:error() : none

6.2.2 The op:union, op:intersect and op:expect operators

Static Type Analysis

The static semantics for op:union uses the auxiliary type functions prime(Type) and quantifier(Type); which
are defined in [3.4 Prime types]. The type of each argument is determined, and then prime(.) and quantifier(.)
are applied to the sequence type (Type1, Type2).

statEnvs |- Expr1 : Type1 statEnvs |- Expr2 : Type2 Type3 = Type1 , Type2

statEnvs |- op:union(Expr1, Expr2) : prime(Type3) · quantifier(Type3)

The static semantics of op:intersect is analogous to that for op:union Because an intersection may always be
empty, the result type needs to be made optional.

statEnvs |- Expr1 : Type1 statEnvs |- Expr2 : Type2 Type3 = Type1, Type2

statEnvs |- op:intersect(Expr1, Expr2) : prime(Type3) · quantifier(Type3) · ?

The static semantics of op:except follows. The type of the second argument is ignored as it does not contribute
to the result type. Like with op:intersect the result of may be the empty list.

statEnvs |- Expr1 : Type1

statEnvs |- op:except(Expr1, Expr2) : prime(Type1) · quantifier(Type1) · ?

6.2.3 The op:to operator

The static semantics of the op:to function states that it always returns an integer sequence:

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (139 of 183) [8/12/2002 6:38:07 PM]

statEnvs |- Expr1 : xs:integer statEnvs |- Expr2 : xs:integer

statEnvs |- op:to(Expr1, Expr2) : xs:integer*

Ed. Note: MFF: the binary operator "to" is not defined on empty sequences. The [XQuery 1.0
and XPath 2.0 Functions and Operators] document says operands are decimals, while the XQuery
document says they are integers. What happens when Expr1 > Expr2? See [Issue-0119:
Semantics of op:to].

A Normalized core grammar
This section contains the grammar of XQuery after it has been normalized, sometimes referred to as the "core"
syntax. The XQuery core is [should be] a minimal, complete, and proper subset of the entire XQuery
language. It is minimal, because no normalized expression can be removed without reducing the
expressiveness of the language. It is complete, because every expression in the XQuery language can be
re-expressed as an expression in the normalized language.

Ed. Note: DD 27/8/2001: Do we really believe it is minimal?

The core syntax is currently not a proper subset of the XQuery syntax defined in [XQuery 1.0: A Query
Language for XML]. The following XQuery issues address alignment of the core with the complete syntax:
'11: Alternative syntax for element construction (xquery-element-construction)'; and '32: Correspondence of
Types (xquery-type-correspondence)' [XQuery 1.0: A Query Language for XML].

The following new issues are related to normalization of XQuery: [Issue-0007: References: IDREFS,
Keyrefs, Joins], [Issue-0008: Fixed point operator or recursive functions], [Issue-0009: Externally
defined functions], [Issue-0010: Construct values by copy], [Issue-0011: XPath tumbler syntax instead
of index?].

NON-TERMINALS

[1] Query ::= QueryProlog ExprSequence?
[2] QueryProlog ::= (NamespaceDecl

| DefaultNamespaceDecl
| SchemaImport)* FunctionDefn*

[3] ExprSequence ::= Expr (Comma Expr)*
[4] Expr ::= SortExpr

| ForExpr
| LetExpr
| TypeswitchExpr
| IfExpr
| CastExpr
| Constructor
| PathExpr

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (140 of 183) [8/12/2002 6:38:07 PM]

[5] SortExpr ::= Expr Stable? Sortby Lpar SortSpecList Rpar
[6] ForExpr ::= ForClause Return Expr
[7] LetExpr ::= LetClause Return Expr
[8] TypeswitchExpr ::= Typeswitch Lpar Expr Rpar As Variable CaseClause+ Default

Return Expr
[9] IfExpr ::= If Lpar Expr Rpar Then Expr Else Expr
[10] CastExpr ::= (CastAs | AssertAs) Datatype Lpar Expr Rpar
[11] Constructor ::= ComputedElementConstructor | ComputedAttributeConstructor
[12] PathExpr ::= RelativePathExpr
[13] SortSpecList ::= Expr (Ascending | Descending) (Comma SortSpecList)?
[14] ForClause ::= For Variable In Expr
[15] LetClause ::= Let Variable ColonEquals Expr
[16] CaseClause ::= Case Datatype Return Expr
[17] RelativePathExpr ::= StepExpr
[18] StepExpr ::= AxisStep | GeneralStep
[19] AxisStep ::= Axis NodeTest
[20] Axis ::= AxisChild

| AxisDescendant
| AxisParent
| AxisAttribute
| AxisSelf
| AxisDescendantOrSelf

[21] NodeTest ::= NameTest | KindTest
[22] NameTest ::= QName | Wildcard
[23] Wildcard ::= Star | NCNameColonStar | StarColonNCName
[24] KindTest ::= ProcessingInstructionTest

| CommentTest
| TextTest
| AnyKindTest

[25] ProcessingInstructionTest ::= ProcessingInstruction Lpar StringLiteral? Rpar
[26] CommentTest ::= Comment Lpar Rpar
[27] TextTest ::= Text Lpar Rpar
[28] AnyKindTest ::= Node Lpar Rpar
[29] GeneralStep ::= PrimaryExpr
[30] PrimaryExpr ::= Variable

| Literal
| ElementNameOrFunctionCall
| ParenthesizedExpr

[31] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral
[32] Literal ::= NumericLiteral | StringLiteral
[33] ParenthesizedExpr ::= Lpar ExprSequence? Rpar

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (141 of 183) [8/12/2002 6:38:07 PM]

[34] ElementNameOrFunctionCall ::= QName Lpar (Expr (Comma Expr)*)? Rpar
[35] Param ::= Datatype Variable
[36] Datatype ::= ((ElementOfType QName) | DTKind | Node | SimpleType

| Item) OccurrenceIndicator
[37] DTKind ::= (Element | Attribute) QName?
[38] SimpleType ::= QName
[39] OccurrenceIndicator ::= (Star | Plus | QMark)?
[40] ComputedElementConstructor ::= Element (QName | EnclosedExpr) Lbrace ExprSequence?

Rbrace
[41] ComputedAttributeConstructor ::= Attribute (QName | EnclosedExpr) Lbrace ExprSequence?

Rbrace
[42] EnclosedExpr ::= Lbrace ExprSequence Rbrace
[43] NamespaceDecl ::= Namespace QName Equals StringLiteral
[44] DefaultNamespaceDecl ::= Default (Element | Function) Namespace Equals StringLiteral
[45] FunctionDefn ::= DefineFunction QName Lpar ParamList? Rpar Returns

Datatype EnclosedExpr
[46] ParamList ::= Param (Comma Param)*
[47] SchemaImport ::= Schema StringLiteral (AtKeyword StringLiteral)?

Normalization also simplifies the lexical structure of the language:

TERMINALS

[50] S ::= WhitespaceChar+
[51] AxisChild ::= "child" "::"
[52] AxisDescendant ::= "descendant" "::"
[53] AxisParent ::= "parent" "::"
[54] AxisAttribute ::= "attribute" "::"
[55] AxisSelf ::= "self" "::"
[56] AxisDescendantOrSelf ::= "descendant-or-self" "::"
[57] AxisNamespace ::= "namespace" "::"
[58] DefineFunction ::= "define" "function"
[59] AtKeyword ::= "at"
[60] In ::= "in"
[61] Return ::= "return"
[62] Then ::= "then"
[63] Else ::= "else"
[64] Default ::= "default"
[65] Namespace ::= "namespace"
[66] As ::= "as"
[67] Case ::= "case"
[68] Only ::= "only"
[69] Returns ::= "returns"

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (142 of 183) [8/12/2002 6:38:07 PM]

[70] Function ::= "function"
[71] Element ::= "element"
[72] Item ::= "item"
[73] Attribute ::= "attribute"
[74] ElementOfType ::= "element" "of" "type"
[75] TypeToken ::= "type"
[76] Node ::= "node"
[77] Schema ::= "schema"
[78] Nmstart ::= Letter | "_"
[79] Nmchar ::= Letter | CombiningChar | Extender | Digit | "." | "-" | "_"
[80] Star ::= "*"
[81] ColonStar ::= ":" "*"
[82] NCNameColonStar ::= ":"? NCName ":" "*"
[83] StarColonNCName ::= "*" ":" NCName
[84] Equals ::= "="
[85] ColonEquals ::= ":="
[86] Plus ::= "+"
[87] QMark ::= "?"
[88] Arrow ::= "=>"
[89] Lpar ::= "("
[90] Rpar ::= ")"
[91] Variable ::= "$" QName
[92] For ::= "for"
[93] Let ::= "let"
[94] CastAs ::= "cast" "as"
[95] AssertAs ::= "assert" "as"
[96] Digits ::= [0-9]+
[97] IntegerLiteral ::= Digits
[98] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)
[99] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?)) ([e] | [E]) ([+] | [-])? Digits
[100] Comment ::= "comment"
[101] Text ::= "text"
[102] ProcessingInstruction ::= "processing-instruction"
[103] If ::= "if"
[104] Typeswitch ::= "typeswitch"
[105] Comma ::= ","
[106] StringLiteral ::= (["] [^"]* ["]) | (['] [^']* ['])
[107] Sortby ::= "sortby"
[108] Stable ::= "stable"
[109] Ascending ::= "ascending"
[110] Descending ::= "descending"
[111] PITarget ::= NCName
[112] NCName ::= Nmstart Nmchar*
[113] QName ::= ":"? NCName (":" NCName)?

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (143 of 183) [8/12/2002 6:38:07 PM]

[114] Amp ::= "&"
[115] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp" | "quot" | "apos") ";"
[116] HexDigits ::= ([0-9] | [a-f] | [A-F])+
[117] CharRef ::= "&#" (Digits | ("x" HexDigits)) ";"
[118] Lbrace ::= "{"
[119] Rbrace ::= "}"
[120] LCurlyBraceEscape ::= "{{"
[121] RCurlyBraceEscape ::= "}}"
[122] Char ::= ([#x0009] | [#x000D] | [#x000A] | [#x0020-#xFFFD])
[123] WhitespaceChar ::= ([#x0009] | [#x000D] | [#x000A] | [#x0020])
[124] Whitespace ::= WhitespaceChar*
[125] Letter ::= BaseChar | Ideographic
[126] BaseChar ::= ([#x0041-#x005A] | [#x0061-#x007A] | [#x00C0-#x00D6]

| [#x00D8-#x00F6] | [#x00F8-#x00FF] | [#x0100-#x0131]
| [#x0134-#x013E] | [#x0141-#x0148] | [#x014A-#x017E]
| [#x0180-#x01C3] | [#x01CD-#x01F0] | [#x01F4-#x01F5]
| [#x01FA-#x0217] | [#x0250-#x02A8] | [#x02BB-#x02C1] | [#x0386]
| [#x0388-#x038A] | [#x038C] | [#x038E-#x03A1] | [#x03A3-#x03CE]
| [#x03D0-#x03D6] | [#x03DA] | [#x03DC] | [#x03DE] | [#x03E0]
| [#x03E2-#x03F3] | [#x0401-#x040C] | [#x040E-#x044F]
| [#x0451-#x045C] | [#x045E-#x0481] | [#x0490-#x04C4]
| [#x04C7-#x04C8] | [#x04CB-#x04CC] | [#x04D0-#x04EB]
| [#x04EE-#x04F5] | [#x04F8-#x04F9] | [#x0531-#x0556] | [#x0559]
| [#x0561-#x0586] | [#x05D0-#x05EA] | [#x05F0-#x05F2]
| [#x0621-#x063A] | [#x0641-#x064A] | [#x0671-#x06B7]
| [#x06BA-#x06BE] | [#x06C0-#x06CE] | [#x06D0-#x06D3]
| [#x06D5] | [#x06E5-#x06E6] | [#x0905-#x0939] | [#x093D]
| [#x0958-#x0961] | [#x0985-#x098C] | [#x098F-#x0990]
| [#x0993-#x09A8] | [#x09AA-#x09B0] | [#x09B2] | [#x09B6-#x09B9]
| [#x09DC-#x09DD] | [#x09DF-#x09E1] | [#x09F0-#x09F1]
| [#x0A05-#x0A0A] | [#x0A0F-#x0A10] | [#x0A13-#x0A28]
| [#x0A2A-#x0A30] | [#x0A32-#x0A33] | [#x0A35-#x0A36]
| [#x0A38-#x0A39] | [#x0A59-#x0A5C] | [#x0A5E]
| [#x0A72-#x0A74] | [#x0A85-#x0A8B] | [#x0A8D]
| [#x0A8F-#x0A91] | [#x0A93-#x0AA8] | [#x0AAA-#x0AB0]
| [#x0AB2-#x0AB3] | [#x0AB5-#x0AB9] | [#x0ABD] | [#x0AE0]
| [#x0B05-#x0B0C] | [#x0B0F-#x0B10] | [#x0B13-#x0B28]
| [#x0B2A-#x0B30] | [#x0B32-#x0B33] | [#x0B36-#x0B39]
| [#x0B3D] | [#x0B5C-#x0B5D] | [#x0B5F-#x0B61]
| [#x0B85-#x0B8A] | [#x0B8E-#x0B90] | [#x0B92-#x0B95]
| [#x0B99-#x0B9A] | [#x0B9C] | [#x0B9E-#x0B9F]
| [#x0BA3-#x0BA4] | [#x0BA8-#x0BAA] | [#x0BAE-#x0BB5]
| [#x0BB7-#x0BB9] | [#x0C05-#x0C0C] | [#x0C0E-#x0C10]
| [#x0C12-#x0C28] | [#x0C2A-#x0C33] | [#x0C35-#x0C39]
| [#x0C60-#x0C61] | [#x0C85-#x0C8C] | [#x0C8E-#x0C90]
| [#x0C92-#x0CA8] | [#x0CAA-#x0CB3] | [#x0CB5-#x0CB9]
| [#x0CDE] | [#x0CE0-#x0CE1] | [#x0D05-#x0D0C]

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (144 of 183) [8/12/2002 6:38:07 PM]

| [#x0D0E-#x0D10] | [#x0D12-#x0D28] | [#x0D2A-#x0D39]
| [#x0D60-#x0D61] | [#x0E01-#x0E2E] | [#x0E30] | [#x0E32-#x0E33]
| [#x0E40-#x0E45] | [#x0E81-#x0E82] | [#x0E84] | [#x0E87-#x0E88]
| [#x0E8A] | [#x0E8D] | [#x0E94-#x0E97] | [#x0E99-#x0E9F]
| [#x0EA1-#x0EA3] | [#x0EA5] | [#x0EA7] | [#x0EAA-#x0EAB]
| [#x0EAD-#x0EAE] | [#x0EB0] | [#x0EB2-#x0EB3] | [#x0EBD]
| [#x0EC0-#x0EC4] | [#x0F40-#x0F47] | [#x0F49-#x0F69]
| [#x10A0-#x10C5] | [#x10D0-#x10F6] | [#x1100] | [#x1102-#x1103]
| [#x1105-#x1107] | [#x1109] | [#x110B-#x110C] | [#x110E-#x1112]
| [#x113C] | [#x113E] | [#x1140] | [#x114C] | [#x114E] | [#x1150]
| [#x1154-#x1155] | [#x1159] | [#x115F-#x1161] | [#x1163] | [#x1165]
| [#x1167] | [#x1169] | [#x116D-#x116E] | [#x1172-#x1173] | [#x1175]
| [#x119E] | [#x11A8] | [#x11AB] | [#x11AE-#x11AF]
| [#x11B7-#x11B8] | [#x11BA] | [#x11BC-#x11C2] | [#x11EB]
| [#x11F0] | [#x11F9] | [#x1E00-#x1E9B] | [#x1EA0-#x1EF9]
| [#x1F00-#x1F15] | [#x1F18-#x1F1D] | [#x1F20-#x1F45]
| [#x1F48-#x1F4D] | [#x1F50-#x1F57] | [#x1F59] | [#x1F5B]
| [#x1F5D] | [#x1F5F-#x1F7D] | [#x1F80-#x1FB4]
| [#x1FB6-#x1FBC] | [#x1FBE] | [#x1FC2-#x1FC4]
| [#x1FC6-#x1FCC] | [#x1FD0-#x1FD3] | [#x1FD6-#x1FDB]
| [#x1FE0-#x1FEC] | [#x1FF2-#x1FF4] | [#x1FF6-#x1FFC] | [#x2126]
| [#x212A-#x212B] | [#x212E] | [#x2180-#x2182] | [#x3041-#x3094]
| [#x30A1-#x30FA] | [#x3105-#x312C] | [#xAC00-#xD7A3])

[127] Ideographic ::= ([#x4E00-#x9FA5] | [#x3007] | [#x3021-#x3029])
[128] CombiningChar ::= ([#x0300-#x0345] | [#x0360-#x0361] | [#x0483-#x0486]

| [#x0591-#x05A1] | [#x05A3-#x05B9] | [#x05BB-#x05BD]
| [#x05BF] | [#x05C1-#x05C2] | [#x05C4] | [#x064B-#x0652]
| [#x0670] | [#x06D6-#x06DC] | [#x06DD-#x06DF]
| [#x06E0-#x06E4] | [#x06E7-#x06E8] | [#x06EA-#x06ED]
| [#x0901-#x0903] | [#x093C] | [#x093E-#x094C] | [#x094D]
| [#x0951-#x0954] | [#x0962-#x0963] | [#x0981-#x0983] | [#x09BC]
| [#x09BE] | [#x09BF] | [#x09C0-#x09C4] | [#x09C7-#x09C8]
| [#x09CB-#x09CD] | [#x09D7] | [#x09E2-#x09E3] | [#x0A02]
| [#x0A3C] | [#x0A3E] | [#x0A3F] | [#x0A40-#x0A42]
| [#x0A47-#x0A48] | [#x0A4B-#x0A4D] | [#x0A70-#x0A71]
| [#x0A81-#x0A83] | [#x0ABC] | [#x0ABE-#x0AC5]
| [#x0AC7-#x0AC9] | [#x0ACB-#x0ACD] | [#x0B01-#x0B03]
| [#x0B3C] | [#x0B3E-#x0B43] | [#x0B47-#x0B48]
| [#x0B4B-#x0B4D] | [#x0B56-#x0B57] | [#x0B82-#x0B83]
| [#x0BBE-#x0BC2] | [#x0BC6-#x0BC8] | [#x0BCA-#x0BCD]
| [#x0BD7] | [#x0C01-#x0C03] | [#x0C3E-#x0C44] | [#x0C46-#x0C48]
| [#x0C4A-#x0C4D] | [#x0C55-#x0C56] | [#x0C82-#x0C83]
| [#x0CBE-#x0CC4] | [#x0CC6-#x0CC8] | [#x0CCA-#x0CCD]
| [#x0CD5-#x0CD6] | [#x0D02-#x0D03] | [#x0D3E-#x0D43]
| [#x0D46-#x0D48] | [#x0D4A-#x0D4D] | [#x0D57] | [#x0E31]
| [#x0E34-#x0E3A] | [#x0E47-#x0E4E] | [#x0EB1]
| [#x0EB4-#x0EB9] | [#x0EBB-#x0EBC] | [#x0EC8-#x0ECD]
| [#x0F18-#x0F19] | [#x0F35] | [#x0F37] | [#x0F39] | [#x0F3E]

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (145 of 183) [8/12/2002 6:38:07 PM]

| [#x0F3F] | [#x0F71-#x0F84] | [#x0F86-#x0F8B] | [#x0F90-#x0F95]
| [#x0F97] | [#x0F99-#x0FAD] | [#x0FB1-#x0FB7] | [#x0FB9]
| [#x20D0-#x20DC] | [#x20E1] | [#x302A-#x302F] | [#x3099]
| [#x309A])

[129] Digit ::= ([#x0030-#x0039] | [#x0660-#x0669] | [#x06F0-#x06F9]
| [#x0966-#x096F] | [#x09E6-#x09EF] | [#x0A66-#x0A6F]
| [#x0AE6-#x0AEF] | [#x0B66-#x0B6F] | [#x0BE7-#x0BEF]
| [#x0C66-#x0C6F] | [#x0CE6-#x0CEF] | [#x0D66-#x0D6F]
| [#x0E50-#x0E59] | [#x0ED0-#x0ED9] | [#x0F20-#x0F29])

[130] Extender ::= ([#x00B7] | [#x02D0] | [#x02D1] | [#x0387] | [#x0640] | [#x0E46]
| [#x0EC6] | [#x3005] | [#x3031-#x3035] | [#x309D-#x309E]
| [#x30FC-#x30FE])

B References

B.1 Normative References

XML

World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Second edition), October,
2000 See http://www.w3.org/TR/REC-xml.

XML Names

World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.org/TR/REC-xml-names/ .

XML Schema Part 0

World Wide Web Consortium. XML Schema Part 0 : Primer. W3C Recommendation, May 2001. See
http://www.w3.org/TR/xmlschema-0/

XML Schema Part 1

World Wide Web Consortium. XML Schema Part 1 : Structures. W3C Recommendation, May 2001.
See http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2

World Wide Web Consortium. XML Schema Part 2 : Datatypes. W3C Recommendation, May 2001.
See http://www.w3.org/TR/xmlschema-2/.

XQuery 1.0: A Query Language for XML

World Wide Web Consortium.XQuery 1.0: A Query Language for XML. W3C Working Draft, 20
December 2001. See http://www.w3.org/TR/xquery/

XQuery 1.0 and XPath 2.0 Data Model

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft, 20
December 2001. See http://www.w3.org/TR/query-datamodel/.

XQuery 1.0 and XPath 2.0 Functions and Operators

World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working
Draft, 20 December 2001. See http://www.w3.org/TR/xquery-operators/

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (146 of 183) [8/12/2002 6:38:07 PM]

http://www.w3.org/TR/xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/query-datamodel/
http://www.w3.org/TR/xquery-operators/

B.2 Non-normative References

XML Path Language (XPath) : Version 1.0

World Wide Web Consortium. XML Path Language (XPath) : Version 1.0. W3C Recommendation,
November, 1999. See http://www.w3.org/TR/xpath.html.

XML Path Language (XPath) 2.0

World Wide Web Consortium. XML Path Language (XPath) 2.0. W3C Working Draft, 20 December
2001. See http://www.w3.org/TR/xpath20/.

XML Query 1.0 Requirements

World Wide Web Consortium. XML Query 1.0 Requirements. W3C Working Draft, 15 Feb 2001. See
http://www.w3.org/TR/xmlquery-req.

XML Query Use Cases

World Wide Web Consortium. XML Query Use Cases. W3C Working Draft, 20 Dec 2001. See
http://www.w3.org/TR/xmlquery-use-cases.

XML Schema : Formal Description

World Wide Web Consortium. XML Schema: Formal Description. W3C Working Draft, March 2001.
See http://www.w3.org/TR/xmlschema-formal/

XSLT 99

World Wide Web Consortium. XSL Transformations (XSLT), Version 1.0. W3C Recommendation,
November 1999. See http://www.w3.org/TR/xslt.

B.3 Background References

BFS00

P. Buneman, M. Fernandez, D. Suciu. UnQL: A query language and algebra for semistructured data
based on structural recursion. VLDB Journal, April, 2000, Vol 9, Number 1.

BKD90

Francois Bancilhon, Paris Kanellakis, Claude Delobel. Building an Object-Oriented Database System.
Morgan Kaufmann, 1990.

BNTW95

Peter Buneman, Shamim Naqvi, Val Tannen, Limsoon Wong. Principles of programming with complex
object and collection types. Theoretical Computer Science 149(1):3--48, 1995.

CM93

S. Cluet and G. Moerkotte. Nested queries in object bases. Workshop on Database Programming
Languages, pages 226--242, New York, August 1993.

Col90

L. S. Colby. A recursive algebra for nested relations. Information Systems 15(5):567-582, 1990.

Graefe93

Goetz Graefe, Query Evaluation Techniques for Large Databases. In ACM Computing Surveys,
25(2):73--170, 1993.

HP2000

Haruio Hosoya, Benjamin Pierce, XDuce : A Typed XML Processing Language (Preliminary Report)

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (147 of 183) [8/12/2002 6:38:07 PM]

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xmlquery-use-cases
http://www.w3.org/TR/xmlschema-formal/
http://www.w3.org/TR/xslt

WebDB Workshop 2000.

Languages

Handbook of Formal Languages. G. Rozenberg and A. Salomaa, editors. Springer-Verlag. 1997.

LMW96

Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language for multi-dimensional arrays:
Design, implementation, and optimization techniques. SIGMOD 1996.

LW97

Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions. Journal of
Computer and Systems Sciences, 55(2):241--272, October 1997.

Milner

R. Milner, M. Tofte, R. Harper, D. MacQueen The Definition of Standard ML (Revise). MIT Press,
1997.

Mitchell

John C. Mitchell Foundations for Programming Languages. MIT Press, 1998.

Mog89

E. Moggi, Computational lambda-calculus and monads. In Symposium on Logic in Computer Science
Asilomar, California, IEEE, June 1989.

Mog91

E. Moggi, Notions of computation and monads. Information and Computation, 93(1), 1991.

ODMG

Rick Cattell et al. The Object Database Standard: ODMG-93, Release 1.2. Morgan Kaufmann
Publishers, San Francisco, 1996.

Quilt

Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. International Workshop on the Web and Databases (WebDB'2000),
Dallas, Texas, May 2000.

SQL

International Organization for Standardization (ISO). Information Technology-Database Language
SQL. Standard No. ISO/IEC 9075:1999. (Available from American National Standards Institute, New
York, NY 10036, (212) 642-4900.)

TATA

Tree Automata Techniques and Applications. H. Comon and M. Dauchet and R. Gilleron and F.
Jacquemard and D. Lugiez and S. Tison and M. Tommasi. See http://www.grappa.univ-lille3.fr/tata/.
1997.

Wad93

P. Wadler, Monads for functional programming. In M. Broy, editor, Program Design Calculi, NATO
ASI Series, Springer Verlag, 1993. Also in J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, LNCS 925, Springer Verlag, 1995.

Wad95

P. Wadler, How to declare an imperative. ACM Computing Surveys, 29(3):240--263, September 1997.

Won00

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (148 of 183) [8/12/2002 6:38:07 PM]

http://www.grappa.univ-lille3.fr/tata/

Limsoon Wong. An introduction to the Kleisli query system and a commentary on the influence of
functional programming on its implementation. Journal of Functional Programming, to appear.

XMLQL99

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for XML. In
International World Wide Web Conference, 1999.

XQL99

J. Robie, editor. XQL '99 Proposal, 1999. See http://www.ibiblio.org/xql/xql-proposal.html.

YAT99

S. Cluet, and J. Siméon. YATL: A Functional and Declarative Language for XML. See
http://db.bell-labs.com/user/simeon/icfp.ps

C Issues

C.1 Introduction

The issues in [C.2 Issues list] serve as a design history for this document. The ordering of issues is irrelevant.
Each issue has a unique id of the form Issue-<dddd> (where d is a digit). This can be used for referring to the
issue by <url-of-this-document>#Issue-<dddd>. Furthermore, each issue has a mnemonic header, a date, an
optional description, and an optional resolution. For convenience, resolved issues are displayed in green. Some
of the descriptions of the resolved issues are obsolete w.r.t. to the current version of the document.

Ed. Note: Peter (Aug-05-2000): For the sake of archival, there are some duplicate issues raised in
multiple instances. Duplicate issues are marked as "resolved" with reference to the representative
issue.

C.2 Issues list

Issue-0001: Attributes

Date: Jul-26-2000
Raised by: Algebra Editors

Description: One example of the need for support of [Issue-0049: Unordered Collections], but also:
Attributes need to be constrained to contain white space separated lists of simple types only.

Resolution: Attributes are represented by attribute attribute-name { content }.

Issue-0002: Namespaces

Date: Jul-26-2000
Raised by: Algebra Editors

Resolution: Namespaces are represented by {uri-of-namespace}localname.

Issue-0003: Document Order

Date: Jul-26-2000
Raised by: Algebra Editors

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (149 of 183) [8/12/2002 6:38:07 PM]

http://www.ibiblio.org/xql/xql-proposal.html
http://db.bell-labs.com/user/simeon/icfp.ps

Description: The data model and algebra do not define a global order on documents. Querying global order is
often required in document-oriented queries.

Resolution: Resolved by adding < operator defined on nodes in same document. See [Issue-0079: Global
order between nodes in different documents] for order between nodes in different documents.

Issue-0004: References vs containment

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The query-algebra datamodel currently does not explicitly model children-elements by
references (other than the XML-Query Datamodel. This facilitates presentation, but may be an
oversimplification with regard to [Issue-0005: Element identity].

Resolution: This issue is resolved by subsumption as follows: (1) All child-elements are (implicit) references
to nodes. (2) Thus, having resolved [Issue-0005: Element identity] this issue is resolved too.

Issue-0005: Element identity

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Do expressions preserve element identity or don't they? And does "=" and distinct use
comparison by reference or comparison by value?

Resolution: The first part of the question has been resolved by resolution of [Issue-0010: Construct values
by copy]. The second part raises a more specific issue [Issue-0066: Shallow or Deep Equality?].

Issue-0006: Source and join syntax instead of "for"

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Another term for "source and join syntax" is "comprehension".

Resolution: This issue is resolved by subsumption under [Issue-0021: Syntax]. List comprehension is a
syntactic alternative to "for v in e1 do e2", which has been favored by the WG in the resolution of
[Issue-0021: Syntax].

Issue-0007: References: IDREFS, Keyrefs, Joins

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Currently, the Algebra does not support reference values, such as IDREF, or Keyref (not to be
mixed up with "node-references" - see [Issue-0005: Element identity], which are defined in the XML Query
Data Model. The Algebra's type system should be extended to support reference types and the data model
operators ref, and deref should be supported (similar to id() in XPath).

Resolution: Delegated to XPath 2.0. Algebra should adopt solutions (e.g., id()/keyref() functions) provided in
XPath 2.0. There may be an interaction between IDREFs and RefNodes, but we're not going to cover that
now.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (150 of 183) [8/12/2002 6:38:07 PM]

Issue-0008: Fixed point operator or recursive functions

Date: Jul-26-2000
Raised by: Algebra Editors

Description: It may be useful to add a fixed-point operator, which can be used in lieu of recursive functions
to compute, for example, the transitive closure of a collection.

Currently, the Algebra does not guarantee termination of recursive expressions. In order to ensure termination,
we might require that a recursive function take one argument that is a singleton element, and any recursive
invocation should be on a descendant of that element; since any element has a finite number of descendants,
this avoids infinite regress. (Ideally, we should have a simple syntactic rule that enforces this restriction, but
we have not yet devised such a rule.)

Impacts optimization; hard to do static type inference; current algebra is first-order

Issue-0009: Externally defined functions

Date: Jul-26-2000
Raised by: Algebra Editors

Description: There is no explicit support for externally defined functions.

The set of built-in functions may be extended to support other important operators.

Resolution: Algebra editors endorse a solution that uses XP for specifying signatures of external functions.
Algebra will adopt solution provided by XQuery.

Issue-0010: Construct values by copy

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Need to be able to construct new types from bits of old types by reference and by copy. Related
to [Issue-0005: Element identity].

Resolution: The WG wishes to support both: construction of values by copy, as well as references to original
nodes. This needs some further investigation to sort out all technical difficulties (see [Issue-0062: Open
questions for constructing elements by reference]) so the change has not yet been reflected in the Algebra
document.

Issue-0011: XPath tumbler syntax instead of index?

Date: Jul-26-2000
Raised by: Algebra Editors

Description: XPath provides as a shorthand syntax [integer] to select child-elements by their position on the
sibling axes, whereas the xml-query algebra uses a combination of a built-in function index() and iteration.

Addendum by JS (submitted by MF) Dec 19/2000: The typing of index is lossy : it produces a factored type.
Jerome suggests the more precise range operator:

e : q min m max n n' - (m'-1) = r m' >= m n' <= n

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (151 of 183) [8/12/2002 6:38:07 PM]

 range(e;m';n') : q min r max r

nth(e;n) == range(e;n;n)

The range operator takes a repetition of prime types and those values in the range m' to n'; if the repetition
does not include that range, a run-time error is raised. The range and nth operators could also be defined in
terms of head and tail and polymorphic recursive functions. In the absence of parameteric polymorphism,
it is not possible to define range and nth with precise types.

Here are Peter's rules:

e : p min m max n n!=*

range(e;m';n') : p{n'-max(m,m')+1,min(n',n)-m'+1}

For example:
let v1 = a[] min 2 max 4

range(v1;3;3): a[] min 1 max 1
range(v1;1;3): a[] min 2 max 3
range(v1;3;5): a[] min 1 max 2
range(v1;1;5): a[] min 2 max 4

e : p min m max *

range(e;m';n') : p min 0 max n'-m'+1

let v2 = a[] min 0 max *

range(v2;1;3): a[] min 0 max 2

this follows the typical semantics for head() and tail():
head(()) = tail(()) = ()
and the semantics behind
range(e;m',n') = tail o ...(m' times) ... o tail o head,
 tail o ...(m'+1 times) ... o tail o head,
 ...
 tail o ...(n' times) ... o tail o head

I would have no troubles in restricting ourselves to nth() instead of range() in the algebra (range can always be
enumerated by nth()). Furthermore, we should consider whether m',n' can be computed numbers.

Issue-0012: GroupBy - needs second order functions?

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The type system is currently first order: it does not support function types nor higher-order
functions. Higher-order functions are useful for specifying, for example, sorting and grouping operators,
which take other functions as arguments.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (152 of 183) [8/12/2002 6:38:07 PM]

Resolution: The WG has decided to express groupBy by a combination of for and distinct. Thus w.r.t.
to GroupBy this Issue is resolved. Because GroupBy is not the only use case for higher order functions, a new
issue [Issue-0063: Do we need (user defined) higher order functions?] is raised.

Issue-0013: Collations

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Collations identify the ordering to be applied for sorting strings. Currently, it is considered to
have an (optional parameter) collation "name" as follows: "SORT variable IN exp BY +(expression
{ASCENDING|DESCENDING} {COLLATION name}). An alternative would be to model a collation as a
simple type derived from string, and use type-level casting, i.e. expression :collationtype (which is already
supported in the XML Query Algebra), for specifying the collation. That would make: "SORT variable IN exp
BY +(expression:collationname {ASCENDING|DESCENDING}). But that requires some support from
XML-Schema.

More generally, collations are important for any operator in the Algebra that involves string comparison,
among them: sort, distinct, "=" and "<".

Resolution: Formal semantics will adopt solution provided by Operators.

Issue-0014: Polymorphic types

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The type system is currently monomorphic: it does not permit the definition of a function over
generalized types. Polymorphic functions are useful for factoring equivalent functions, each of which operate
on a fixed type.

The current type system has already a built-in polymorphic type (lists) and is likely to have more (unordered
collections). The question is, whether to allow for user-defined polymorphic types and user defined
polymorphic functions.

Issue-0015: 3-valued logic to support NULLs

Date: Jul-26-2000
Raised by: Algebra Editors

Resolution: The Formal Semantics supports the current semantics of NULL values, as described in the
XQuery December working draft. The Formal Semantics will reflect further resolution of open issues on
NULLs and 3 valued logic as decided by XQuery.

Issue-0016: Mixed content

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The XML-Query Algebra allows to generate elements with an arbitrary mixture of data (of
simple type) and elements. XML-Schema only allows for a combination of strings interspersed with elements
(aka mixed content). We need to figure out whether and how to constrain the XML-Query Algebra
accordingly (e.g. by typing rules?)

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (153 of 183) [8/12/2002 6:38:07 PM]

Resolution: The type system has been extended to support the interleaving operator & - see [3 The XQuery
Type System]. Mixed content is defined in terms of &.

Issue-0017: Unordered content

Date: Jul-26-2000
Raised by: Algebra Editors

Description: All-groups in XML-Schema, not to be mixed up with [Issue-0049: Unordered Collections]

Resolution: The type system has been extended with the support of all-groups - see [3 The XQuery Type
System].

Issue-0018: Align algebra types with schema

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The Algebra's internal type system is the type system of XDuce. A potentially significant
problem is that the Algebra's types may lose information when converted into XML Schema types, for
example, when a result is serialized into an XML document and XML Schema.

James Clark points out : "The definition of AnyComplexType doesn't match the concrete syntax for types
since it applies unbounded repetition to AnyTree and one alternative for AnyTree is AnyAttribute." This is
another example of an alignment issue.

This issue comprises also issues [Issue-0016: Mixed content], [Issue-0017: Unordered content],
[Issue-0053: Global vs. local elements], [Issue-0054: Global vs. local complex types], [Issue-0019:
Support derived types], substitution groups.

Issue-0019: Support derived types

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The current type system does not support user defined type hierarchies (by extension or by
restriction).

Issue-0020: Structural vs. name equivalence

Date: Jul-26-2000
Raised by: Algebra Editors

Description: The subtyping rules in [3.3 Subtyping] only define structural subtyping. We need to extend this
with support for subtyping via user defined type hierarchies - this is related to [Issue-0019: Support derived
types].

Issue-0021: Syntax

Date: Jul-26-2000
Raised by: Algebra Editors

Description: (e.g. for.<-.in vs for.in.do)

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (154 of 183) [8/12/2002 6:38:07 PM]

Resolution: The WG has voted for several syntax changes , "for v in e do e", "let v = e do", "sort v in e by e
...", "distinct", "match case v:t e ... else e".

Issue-0022: Indentation, Whitespaces

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Is indentation significant?

Resolution: The WG has consensus that indentation is not significant , i.e., all documents are white space
normalized.

Issue-0023: Catch exceptions and process in algebra?

Date: Jul-26-2000
Raised by: Algebra Editors

Description: Does the Algebra give explicit support for catching exceptions and processing them?

Resolution: Subsumed by new issue [Issue-0064: Error code handling in Query Algebra].

Issue-0024: Value for empty sequences

Date: Jul-26-2000
Raised by: Algebra Editors

Description: What does "value" do with empty sequences?

Resolution: The definition of value(e) has changed to:

value(e) = typeswitch children(e)
 case v: AnyScalar do v
 else()

Furthermore, the typing rules for "for v in e1 do e2" have been changed such that the variable v is
typed-checked seperately for each unit-type occuring in expression e1.

Consequently the following example would be typed as follows:

query for b in b0/book do
 value(b/year): xs:integer min 0 max *

rather than leading to an error.

Issue-0025: Treatment of empty results at type level

Date: Jul-26-2000
Raised by: Algebra Editors

Description: This is related to [Issue-0024: Value for empty sequences].

Resolution: Resolved by resolution of [Issue-0025: Treatment of empty results at type level].

Issue-0026: Project - one tag only

Date: Jul-26-2000

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (155 of 183) [8/12/2002 6:38:07 PM]

Raised by: Algebra Editors

Description: Project is only parameterized by one tag. How can we translate a0/(b | c)?

Resolution: With the new syntax (and type system) a0/(b | c) can be translated to "for v in a0 do typeswitch
case v1:b[AnyType] do v1 case v2:c[AnyType] do c else ()".

Issue-0027: Case syntax

Date: Jul-26-2000
Raised by: Quilt Comments et al.

Description: N-ary case can be realized by nested binary cases.

Resolution: New (n-ary) case syntax is introduced.

Issue-0028: Fusion

Date: Jul-26-2000
Raised by: Michael Rys

Description: Does the Algebra support fusion as introduced by query languages such as LOREL? This is
related to [Issue-0005: Element identity], because fusion only makes sense with support of element identity.

Resolution: Fusion is equivalent to 'natural full-outer join'. XQuery can reraise issue if desired. If added, the
Algebra editors should review any solution w.r.t typing.

Issue-0029: Views

Date: Jul-26-2000
Raised by: Michael Rys

Description: One of the problems in views: Can we undeclare/hide things in environment? For example, if
we support element-identity, can we explicitly discard a parent, and/or children from an element in the
result-set? Related to [Issue-0005: Element identity].

Resolution: XQuery can reraise issue if desired. If added, the Algebra editors should review any solution
w.r.t typing.

Issue-0030: Automatic type coercion

Date: Jul-26-2000
Raised by: Dana Florescu

Description: What do we do if a value does not have a type or a different type from what is required?

Suggested Resolution: We believe that the XML Query Language should specify default type coercions for
mixed mode arithmetic should be performed according to a fixed precedence hierarchy of types, specifically
integer to fixed decimal, fixed decimal to float, float to double. This policy has the advantage of simplicity,
tradition, and static type inference. Programmers could explicitly specify alternative type coercions when
desirable.

Resolution: Delegation to XPath 2.0, XQuery, and/or Operators.

Issue-0031: Recursive functions

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (156 of 183) [8/12/2002 6:38:07 PM]

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: subsumed by [Issue-0008: Fixed point operator or recursive functions]

Issue-0032: Full regular path expressions

Date: Jul-26-2000
Raised by: Dana Florescu

Description: Full regular path expressions allow to constrain recursive navigation along paths by means of
regular expressions, e.g. a/b*/c denotes all paths starting with an a, proceeding with arbitrarily many b's and
ending in a c. Currently the XML-Query Algebra can express this by means of (structurally) recursive
functions. An alternative may be the introduction of a fixpoint operator [Issue-0008: Fixed point operator
or recursive functions].

Resolution: XPath 2.0 can raise issue if desired. The Algebra editors should review any solution w.r.t typing.

Issue-0033: Metadata Queries

Date: Jul-26-2000
Raised by: Dana Florescu

Description: Metadata queries are queries that require runtime access to type information.

Issue-0034: Fusion

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Identical with [Issue-0028: Fusion]

Issue-0035: Exception handling

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Subsumed by [Issue-0023: Catch exceptions and process in algebra?] and [Issue-0064:
Error code handling in Query Algebra].

Issue-0036: Global-order based operators

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Subsumed by [Issue-0003: Document Order]

Issue-0037: Copy vs identity semantics

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: subsumed by [Issue-0005: Element identity]

Issue-0038: Copy by reachability

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (157 of 183) [8/12/2002 6:38:07 PM]

Date: Jul-26-2000
Raised by: Dana Florescu

Description: Is it possible to copy children as well as IDREFs, Links, etc.? Related to [Issue-0005: Element
identity] and [Issue-0008: Fixed point operator or recursive functions]

Resolution: Resolved by addition of "deep" copy operator in [XQuery 1.0 and XPath 2.0 Data Model].

Issue-0039: Dereferencing semantics

Date: Jul-26-2000
Raised by: Dana Florescu

Resolution: Subsumed by [Issue-0005: Element identity]

Issue-0040: Case Syntax

Date: Aug-01-2000
Raised by: Quilt

Description: We suggest that the syntax for "case" be made more regular. At present, it takes only two
branches, the first labelled with a tag-name and the second labelled with a variable. A more traditional syntax
for "case" would have multiple branches and label them in a uniform way. If the algebra is intended only for
semantic specification, "case" may not even be necessary.

Resolution: subsumed by [Issue-0027: Case syntax]

Issue-0041: Sorting

Date: Aug-01-2000
Raised by: Quilt

Description: We are not happy about the three-step sorting process in the Algebra. We would prefer a
one-step sorting operator such as the one illustrated below, which handles multiple sort keys and mixed
sorting directions: SORT emp <- employees BY emp/deptno ASCENDING emp/salary DESCENDING

Resolution: The WG has decided to go for the above syntax, with an (optional) indication of COLLATION.

Issue-0042: GroupBy

Date: Aug-01-2000
Raised by: Quilt

Description: We do not think the algebra needs an explicit grouping operator. Quilt and other high-level
languages perform grouping by nested iteration. The algebra can do the same.

related to [Issue-0012: GroupBy - needs second order functions?]

Resolution: The WG has decided to skip groupBy for the time being.

Issue-0043: Recursive Descent for XPath

Date: Aug-01-2000
Raised by: Quilt

Description: The very important XPath operator "//" is supported in the Algebra only by writing a recursive

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (158 of 183) [8/12/2002 6:38:08 PM]

function. This is adequate for a semantic specification, but if the Algebra is intended as an optimizable target
language it will need better support for "//" (possibly in the form of a fix-point operator.)

Resolution: Resolved by subsumption under [Issue-0043: Recursive Descent for XPath]

Issue-0044: Keys and IDREF

Date: Aug-01-2000
Raised by: Quilt

Description: We think the algebra needs some facility for dereferencing keys and IDREFs (exploiting
information in the schema.)

Resolution: Subsumed by [Issue-0007: References: IDREFS, Keyrefs, Joins]

Issue-0045: Global Order

Date: Aug-01-2000
Raised by: Quilt

Description: We are concerned about absence of support for operators based on global document ordering
such as BEFORE and AFTER.

Resolution: Subsumed by [Issue-0003: Document Order]

Issue-0046: FOR Syntax

Date: Aug-01-2000
Raised by: Quilt

Description: We agree with comments made in the face-to-face meeting about the aesthetics of the Algebra's
syntax for iteration. For example, the following syntax is relatively easy to understand: FOR x IN some_expr
EVAL f(x) whereas we find the current algebra equivalent to be confusing and misleading: FOR x <-
some_expr IN f(x) This syntax appears to assign the result of some_expr to variable x, and uses the word IN in
a non-intuitive way.

Resolution: Subsumed by [Issue-0021: Syntax]

Issue-0047: Attributes

Date: Aug-01-2000
Raised by: Quilt

Description: See [Issue-0001: Attributes].

Resolution: Subsumed by [Issue-0001: Attributes]

Issue-0048: Explicit Type Declarations

Date: Jul-27-2000
Raised by: Group 1 at F2F, Redmond

Description: Type Declaration for the results of a query: The issue is whether to auto construct the result type
from a query or to pre-declare the type of the result from a query and check for correct type on the return
value. Suggestion: Support for pre-declared result data type and as well as to coerce the output to a new type is

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (159 of 183) [8/12/2002 6:38:08 PM]

desirable. Runtime or compile time type checking is to be resolved? Once you attach a name to a type, it is
preserved during the query processing.

Resolution: W.r.t. compile time type casts this is already possible with e:t. For run-time casts an issue has
been raised in [Issue-0062: Open questions for constructing elements by reference].

Issue-0049: Unordered Collections

Date: Jul-27-2000
Raised by: Algebra Editors, Group 1, F2F, Redmond

Description: Currently, all sequences in the data model are ordered. It may be useful to have unordered
forests. The distinct-node function, for example, produces an inherently unordered forest. Unordered
forests can benefit from many optimizations for the relational algebra, such as commutable joins.

Handling of collection of attributes is easy but the collection of elements is complex due to complex type
support for the elements. It makes sense to allow casting from unordered to ordered collection and vice versa.
It is not clear whether the new ordered or unordered collection is a new type or not. It affects function
resolution, optimization.

Our request to Schema to represent insignificance of ordering at schema level has not been fulfilled. Thus we
need to be aware that this information may get lost, when mapping to schema.

Resolution: Unordered collections are described by {t} see [3 The XQuery Type System], some operators
(sort, distinct-node, for, and sequence) are overloaded, and some operators (difference, intersection) are
added). A new issue [Issue-0076: Unordered types] is raised.

Issue-0050: Recursive Descent for XPath

Date: Jul-27-2000
Raised by: Group 1, F2F, Redmond

Description: Suggestion: The group likes to add a support for fixed-point operator in the query language that
will allow us to express the semantics of the // operator in an xpath expression. A path expression of the form
a//b may be represented by a fixed-point operator fp(a, "/.")/b.

Resolution: Subsumed by [Issue-0043: Recursive Descent for XPath]

Issue-0051: Project redundant?

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: It appears that project a e could be reduced to sth. like

for v <- e in case v of a[v1] =>
 a[v1] | v2 => ()

... or would that generate a less precise type?

Resolution: With the new type system and handling of the for operator, project is indeed redundant.

Issue-0052: Axes of XPath

Date: Aug-05-2000

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (160 of 183) [8/12/2002 6:38:08 PM]

Raised by: Peter Fankhauser

Description: The current algebra makes navigation to parents difficult to impossible. With support of
Element Identity [Issue-0005: Element identity] and recursive functions [Issue-0008: Fixed point operator
or recursive functions] one can express parent() by a recursive function via the document root. More direct
support needs to be investigated w.r.t its effect on the type system.

The WG wishes to support a built-in operator parent().

Resolution: XPath 2.0 and XQuery can reraise issue if desired. Algebra should review any solution w.r.t
typing. Question: whether namespace axis (i.e., access namespace nodes) will be included in XQuery. Algebra
currently has issues related to typing of parent() and descendant(). If sibling axes are included in XQuery, then
Algebra should review w.r.t. typing.

Issue-0053: Global vs. local elements

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: The current type system cannot represent global element-declarations of XML-Schema. All
element declarations are local.

Resolution: The type system now supports both local and global elements and attributes.

Issue-0054: Global vs. local complex types

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: The current type system does not distinguish between global and local types as XML-Schema
does. All types appear to be fully nested (i.e. local types)

Resolution: The type system now supports both local and global types.

Issue-0055: Types with non-wellformed instances

Date: Aug-05-2000
Raised by: Peter Fankhauser

Description: The type system and algebra allows for sequences of simple types, which can usually be not
represented as a well-formed document. How shall we constrain this? Related to [Issue-0016: Mixed
content].

Issue-0056: Operators on Simple Types

Date: Jul-15-2000
Raised by: Fernandez et al.

Description: We intentionally did not define equality or relational operators on element and simple type.
These operators should be defined by consensus.

Ed. Note: MF, 15-Jan-2001 A joint task force on operators with members from the XSLT, XML
Schema, and XML Query working groups is chartered to define arithmetic operators.

Resolution: XQuery formal semantics adopts solution provided by Operators task force.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (161 of 183) [8/12/2002 6:38:08 PM]

Issue-0057: More precise type system; choice in path

Date: Aug-07-2000
Raised by: LA-Team

Description: (This subsumes [Issue-0051: Project redundant?]). If the type system were more precise,
then (project a e) could be replaced by:

for v <- e in
 case v of
 a[v1] => a[v1]
 | v2 => ()

One could also represent (e/(a|b)) directly in a similar style.

for v <- e in
 case v of
 a[v1] => a[v1]
 | v2 => case v2 of
 b[v3] => b[v3]
 | v4 => ()

Currently, there is no way to represent (e/(a|b)) without loss of precision, so if we do not change the type
system, we may need to have some way to represent (e/(a|b)) and similar terms without losing precision. (The
LA team has a design for this more precise type system, but it is too large to fit in the margin of this web
page!)

Resolution: See resolution of [Issue-0051: Project redundant?]

Issue-0058: Downward Navigation only?

Date: Aug-07-2000
Raised by: LA-Team

Description: Related to [Issue-0052: Axes of XPath]. The current type system (and the more precise system
alluded to in [Issue-0057: More precise type system; choice in path]) seems well suited for handling XPath
children and descendant axes, but not parent, ancestor, sibling, preceding, or following axes. Is this limitation
one we can live with?

Resolution: Subsumed by [Issue-0052: Axes of XPath]

Issue-0059: Testing Subtyping

Date: Aug-07-2000
Raised by: LA-Team

Description: One operation required in the Algebra is to test whether XML type t1 is a subtype of XML type
t2, indicated by writing t1 <: t2. There is a well-known algorithm for this, based on tree automata, which is a
straightforward variant of the well-known algorithm for testing whether the language generated by one
regular-expression is a subset of the language generated by another. (The algorithm involves generating
deterministic automata for both regular expressions or types.)

However, the naive implementation of the algorithm for comparing XML types can be slow in practice,
whereas the naive algorithm for regular expressions is tolerably fast. The only acceptably fast implementation

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (162 of 183) [8/12/2002 6:38:08 PM]

of a comparison for XML types that the LA team knows of has been implemented by Haruo Hasoya, Jerome
Voullion, and Benjamin Pierce at the University of Pennsylvania, for their implementation of Xduce. (Our
implementation of the Algebra re-uses their code, with permission.)

So, should we adopt a simpler definition of subtyping which is easier to test? One possibility is to adopt the
sibling restriction from Schema, which requires that any two elements which appear a siblings in the same
content model must themselves have contents of the same type. Jerome Simeon and Philip Wadler discovered
that adopting the sibling restriction reduces the problem of checking subtyping of XML types to that of
checking regular languages for inclusion, so it may be worth adopting the restriction for that reason.

Issue-0060: Internationalization aspects for strings

Date: Jun-26-2000
Raised by: I18N

Description: These issues are taken from the comments on the Requirements Document by I18N

Further information can be found at http://www.w3.org/TR/WD-charreq.

It is a goal of i18n that queries involving string matching ("select x where x='some_constant'") treat
canonically equivalent strings (in the Unicode sense) as matching. If the query and the target are both XML,
early normalization (as per the Character Model) is assumed and binary comparison ensures that the
equivalence requirement is satisfied. However, if the target is originally a legacy database which logically has
a layer that exports the data as XML, that XML must be exported in normalized form. The XML Query spec
must impose the normalization requirement upon such layers.

Similarly, the query may come from a user-interface layer that creates the XML query. The XML Query spec
must impose the normalization requirement upon such layers.

Provided that the query and the target are in normalized form C, the output of the query must itself be in
normalized form C.

Queries involving string matching should support various kinds of loose matching (such as case-insensitivity,
katakana-hiragana equivalence, accent-accentless equivalence, etc.)

If such features as case-insensitivity are present in queries involving string matching, these features must be
properly internationalized (e.g. case folding works for accented letters) and language-dependence must be
taken into account (e.g. Turkish dotless-i).

Queries involving character counting and indexing must take into account the Character Model. Specifically,
they should follow Layer 3 (locale-independent graphemes). Additional details can be found in The Unicode
Standard 3.0 and UTR#18. Queries involving word counting and indexing should similarly follow the
recommendations in these references.

Resolution: XQuery formal semantics adopts solution provided by Operators task force.

Issue-0061: Model for References

Date: Aug-16-2000
Raised by: Group 3, F2F, Redmond

Description: Related to a number of issues around [Issue-0005: Element identity].

Use Cases●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (163 of 183) [8/12/2002 6:38:08 PM]

http://www.w3.org/TR/WD-charreq

Table of Contents

REF *could* do this well if it were restructured - it does not maintain unforeseen relationships or use
them...

Bibliographies

Recursive parts

RDF assertions

Inversion of simple parent/child references (related to [Issue-0058: Downward Navigation only?]).

What can we leave out?

can we leave out transitive closure?

can we limit recursion?

can we leave out fixed point recursion?

related to [Issue-0008: Fixed point operator or recursive functions]

●

Do we need to be able to...

a. Find the person with the maximum number of descendants?

b. Airplane routes: how can I get from RDU to Raleigh? (fixed point: guaranteeing termination in
reasonable time...)

c. Given children and their mothers, can I get mothers and their children? (without respect to the form of
the original reference...)

related to [Issue-0008: Fixed point operator or recursive functions].

●

Should we abstract out the difference between different kinds of references? If so, should we be able to
cast to a particular kind of reference in the output?

a. abstracting out the differences is cheaper, which is kewl...

b. the kind of reference gives me useful information about: locality (same document, same repository,
big bad internet...) static vs. dynamic (xpointer *may* be resolved dynamically, or *may* be resolved at
run time, ID/IDREF is static).

related to [Issue-0007: References: IDREFS, Keyrefs, Joins].

●

do we need to be able to generate ids, e.g. using skolem functions?

for a document in RAM, or in a persistent tree, identity may be present, implicit, system dependent, and
cheap - it's nice to have an abstraction that requires no more than the implicit identity

persistable ID is more expensive, may want to be able to serialize with ID/IDREF to instantiate
references in the data model

can use XPath instead of generating ID/IDREF, but these references are fragile, and one reason for
queries is to create data that may be processed further

●

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (164 of 183) [8/12/2002 6:38:08 PM]

persistable ID unique within a repository context

persistable ID that is globally unique

related to [Issue-0005: Element identity].

copy vs. reference semantics

"MUST not preclude updates..."

in a pure query environment, sans update, we do not need to distinguish these

if we have update, we may need to distinguish, perhaps in a manner similar to "updatable cursors" in
SQL

programs may do queries to get DOM nodes that can that be modified. It is essential to be able to
distinguish copies of nodes from the nodes themselves.

copy semantics - what does it mean?

copy the descendant hierarchy?

copy the reachability tree? (to avoid dangling references)

related to [Issue-0038: Copy by reachability].

●

Resolution: Handled in current data model and algebra.

The following issues have been raised since Sep-25-2000.

Issue-0062: Open questions for constructing elements by reference

Date: Sep-25-2000
Raised by: Mary Fernandez et al.

Description: (1) What is the value of parent() when constructing new elements with children refering to
original nodes?

(2) Is an approach to either make copies for all children or provide references to all children, or should we
allow for a more flexible combination of copies and references?

Resolution: Operational semantics specifies that element node constructor creates copies of all its children.
Addition of RefNode in [XQuery 1.0 and XPath 2.0 Data Model] supports explicit reference value.

Issue-0063: Do we need (user defined) higher order functions?

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: The current XML-Query-Algebra does not allow functions to be parameters of another function
- so called higher order functions. However, most of the Algebra operators are (built-in) higher functions,
taking expressions as an argument ("sort", "for", "case" to name a few). Even a fixpoint operator, "fun f(x)=e,
fix f(x) in e" (see also [Issue-0008: Fixed point operator or recursive functions]), would be a built-in
higher order function.

Resolution: The XML Query Algebra will not support user defined higher order functions. It does support a

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (165 of 183) [8/12/2002 6:38:08 PM]

number of built-in higher order functions.

Issue-0064: Error code handling in Query Algebra

Date: Oct-04-2000
Raised by: Rezaur Rahman

Description: How do we return an error code from a function defined in current Query algebra. Do we need
to create an array (or a structure) to merge the return value and error code to do this. If that is true, it may be
inefficient to implement. In order for cleaner and efficient implementation, it may be necessary to allow a
function declaration to take a parameter of type "output" and allow it to return an error code as part of the
function definition.

Resolution: One does not need to create a structure to combine return values with error codes, provided each
operator or function /either/ returns a value /or/ raises an error. The XML-Query Algebra supports means to
raise errors, but does not define standard means to catch errors. Raising errors is accomplished by the
expression "error" of type Ø (empty choice). Because Ø | t = t, such runtype errors do not influence static
typing. The surface syntax and/or detailed specification of operators on simple types (see [Issue-0056:
Operators on Simple Types]) may choose to differentiate errors into several error-codes.

Issue-0065: Built-In GroupBy?

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: We may revisit the resolution of [Issue-0042: GroupBy] and reintroduce GroupBy along the
lines of sort: "group v in e1 by [e2 {collation}]". One reason for this may be that this allows to use collation
for deciding about the equality of strings.

Resolution: The WG has decided to close this issue, and for the time being not consider GroupBy as a
built-in operator. Furthermore, [Issue-0013: Collations] is ammended to deal with collations for all operators
involving a comparison of strings.

Issue-0066: Shallow or Deep Equality?

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: What is the meaning of "=" and "distinct"? Equality of references to nodes or deep equality of
data?

Resolution: [XQuery 1.0 and XPath 2.0 Data Model] defines "=" (value equality) and "==" (identity equality)
operators. Description of distinct states that it uses "==".

Issue-0067: Runtime Casts

Date: Sep-21-2000
Raised by: ???

Description: In some contexts it may be desirable to cast values at runtime. Such runtime casts lead to an
error if a value cannot be cast to a given type.

Resolution: cast e : t has been introduced as a reducible operator expressed in terms of typeswitch.

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (166 of 183) [8/12/2002 6:38:08 PM]

Issue-0068: Document Collections

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: Per our requirements document we are chartered to support document collections. The current
XML-Query Algebra deals with single documents only. There are a number of subissues:

(a) Do we need a more elaborate notion of node-references? E.g. pair of (URI of root-node, local node-ref)

(b) Does the namespace mechanism suffice to type collections of nodes from different documents? Probably
yes.

(c) Provided (a) and (b) can be settled, will the approach taken for [Issue-0049: Unordered Collections] do
the rest?

Issue-0069: Organization of Document

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: The current document belongs more to the genre (scientific) paper than to the genre
specification. One may consider the following modifications: (a) reorganize intro to give a short overview and
then state the purpose (strongly typed, neutral syntax with formal semantics as a basis for possibly multiple
syntaxes, etc.) (compared to version Aug-23, this version has already gone a good deal in this direction). (b)
Equip various definitions and type rules with id's. (c) Elaborate appendices on mapping XML-Query-Algebra
Model vs. XML-Query-Datamodel, XML-Query-Type System vs. XML-Schema-Type System. (d) Maybe
add an appendix on use-case-solutions. The problem is of course: Part of this is a lot of work, and we may not
achieve all for the first release.

Resolution: The WG decided to dispose of this issue. The current overall organization of the document is
quite adequate, but of course editorial decisions will have to made all the time.

Issue-0070: Stable vs. Unstable Sort/Distinct

Date: Oct-02-2000
Raised by: Steve Tolkin

Description: Should sort (and distinct) be stable on ordered collections, i.e. lists, and unstable on unordered
collections (see [Issue-0049: Unordered Collections])?

Resolution: sort and distinct are stable on ordered collections, and unstable on unordered collections.

Issue-0071: Alignment with the XML Query Datamodel

Date: Sep-26-2000
Raised by: Mary Fernandez

Description: Currently, the XML Query Algebra Datamodel does not model PI's and comments.

Resolution: Addition of operational semantics defines relationship of Algebra to Data Model.

Issue-0072: Facet value access in Query Algebra

Date: Oct-04-2000

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (167 of 183) [8/12/2002 6:38:08 PM]

Raised by: Rezaur Rahman

Description: Each of the date-time data types have facet values as defined by the schema data types draft
spec. This problem is general enough to be applied to other simple data types.

The question is : Should we provide access to these facet values on an instance of a particular data types? If
so, what type of access? My take is the facets are to be treated like read-only attributes of a data instance and
one should have a read access to them.

Issue-0073: Facets for simple types and their role for typechecking

Date: Oct-16-2000
Raised by: Peter Fankhauser

Description: XML-Schema introduces a number of constraining facets http://www.w3.org/TR/xmlschema-2/
for simple types (among them: length, pattern, enumeration, ...). We need to figure out whether and how to use
these constraining facets for type-checking.

Issue-0074: Operational semantics for expressions

Date: Nov-16-2000
Raised by: Mary Fernandez

Description: It is necessary to add an operational semantics that formally defines each operator in the
Algebra.

Resolution: The new document contains a full specification of the dynamic semantics.

Issue-0075: Overloading user defined functions

Date: Nov-17-2000
Raised by: Don Chamberlain

Description: User defined functions can not be overloaded in the XML Query Algebra, i.e., a function is
exclusively identified by its name, and not by its signature. Should this restriction be relaxed and if so - to
which extent?

Resolution: No overloading in Query 1.0

Issue-0076: Unordered types

Date: Dec-11-2000
Raised by: Phil Wadler

Description: Currently unorderedness is represented at type level by {t}, and some (built-in) operators are
overloaded such they have different semantics (and potentially different return type) depending on their input
type. An alternative is to not represent unorderedness at type level, but rather support unordered for, unordered
(unstable) sort, unordered (unstable) distinct.

Resolution: Removed unordered types from type system. Added support for unordered operator.

Issue-0077: Interleaved repetition and closure

Date: Dec-12-2000
Raised by: Peter Fankhauser

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (168 of 183) [8/12/2002 6:38:08 PM]

http://www.w3.org/TR/xmlschema-2/

Description: Regular Languages are closed w.r.t. to the interleaved product. However, they are not closed
w.r.t. to interleaved repetition, which can (e.g) generate the 1 degree Dyck language D[1] = () | a D[1] b | D[1]
D[1] = (a,b)^{0,*}, and more generally, any language that coordinates cardinalities of individual members
from an alphabeth: E.g. (a ^ b)^ min 0 max * = all strings with equally many a's and b's. These are beyond
regular languages. Should we thus try to do without interleaved repetition?

Resolution: if we use interleaved repetition (which we will because it is in MSL), they will be restricted to
prime types.

Issue-0078: Generation of ambiguous types

Date: Dec-12-2000
Raised by: Jerome Simeon

Description: Unambiguous content-models in XML 1.0 and XML Schema are not closed w.r.t. union. It
appears that the XML Query-Algebra can generate result types which can not be transformed to an
unambiguous content-model.

Issue-0079: Global order between nodes in different documents

Date: Dec-16-2000
Raised by: Algebra Editors

Description: The global order operator < is defined on nodes in the same document, but not between nodes in
different documents.

Resolution: Resolution follows from the XQuery Data Model. Order between documents is implementation
defined but stable.

Issue-0080: Typing of parent

Date: Dec-16-2000
Raised by: Algebra Editors

Description: Currently, the parent operator yields an imprecise type : AnyElement min 0 max 1. It
might be possible to type parent more precisely, for example, by using the normalized names in MSL,
which encode containment of types.

Issue-0081: Lexical representation of Schema simple types

Date: Jan-17-2001
Raised by: Algebra Editors

Description: Schema simple types must be defined for the Algebra and XQuery.

Resolution: Algebra will adopt lexical reps supported by XQuery.

Issue-0082: Type and expression operator precedence

Date: Jan-17-2001
Raised by: Algebra Editors

Description: The precedence of the type expressions is not defined.

Issue-0083: Expressive power and complexity of typeswitch expression

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (169 of 183) [8/12/2002 6:38:08 PM]

Date: Jan-17-2001
Raised by: Algebra Editors, Michael Brundage

Description: When processing an XML document without schema information, i.e., the type of the document
is AnyComplexType, then match expressions may be very expensive to evaluate:

 typeswitch x
 case t1 : AnyTree do 1
 case t2 : AnyTree min 0 max 2 do 2
 case t3 : *[*[*[*[* ... [AnyAttribute]]]]] do 3
 else ERROR

typeswitch itself is not the issue. The real problem is having very liberal type patterns. We could restrict the
kinds of type patterns that we permit.

Resolution: Typeswitch types are now restricted to datatypes. Named typing will further help in reducing the
complexity by allowing type annotation contained in the data model as a means for optimization.

Issue-0084: Execution model

Date: Jan-17-2001
Raised by: Algebra Editors

Description: Need prose describing execution model scenarios : interpretor vs. compile/runtime vs.
translation into another query language. Explain relationship between static and dynamic semantics.

Resolution: Section [2.1 Processing model] defines a procesing model which serves as a framework for the
Formal Semantics specification.

Issue-0085: Semantics of Wildcard type

Date: Jan-17-2001
Raised by: Algebra Editors, Michael Brundage

Description: Cite: wildcard types cannot be implemented. If x!y means any name in x except names in y,
what does x!y!z mean? In general, how do ! and | operate (precedence, associativity)? Parentheses are required
to force the desired grouping of these two operators. Also, what does x!* mean? (There's an infinite family of
such examples.)

Resolution: The XQuery type systyem now uses only simple wildcard names based on XPath's NameTest
production.

Issue-0086: Syntactic rules

Date: Jan-17-2001
Raised by: Algebra Editors

Description: Need rules for specifying syntactic correctness of query: symbol spaces; variable def'ns precede
uses; list of keywords, etc.

Resolution: Syntactic rules should be dealt with in XQuery document

Issue-0087: More examples of Joins

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (170 of 183) [8/12/2002 6:38:08 PM]

Date: Jan-17-2001
Raised by: Algebra Editors, Michael Brundage

Description: Cite: no join operator; wants example of many-to-many joins, inner join, left and full outer
joins.

Resolution: The XQuery document gives a number of such examples.

Issue-0088: Align types with XML Schema : Formal Description.

Date: 02-Apr-2001
Raised by: Mary Fernandez

Description: Sources of misalignment: XQuery types include comment and processing instruction; [XML
Schema : Formal Description] does not. XQuery uses () for empty sequence; MSL uses the epsilon character.
XQuery permits the names of attribute and element components to be wildcard expressions. MSL only permits
literal names for attributes and elements, but permits stand-alone wildcard expressions. XQuery types call '&'
interleaved repetition, but MSL says it means 'all g1 and g2 in either order'. Does MSL mean interleaved
repetition?

Issue-0089: Syntax for types in XQuery

Date: 30-Apr-2001
Raised by: Mary Fernandez

Description: Formalism document gives a particular syntax for type expressions that is not supported in the
XQuery surface syntax.

Issue-0090: Static type-assertion expression

Date: 30-Apr-2001
Raised by: Mary Fernandez

Description: Formalism document uses a static type-assertion expression that is not supported in the XQuery
surface syntax.

Resolution: Static type assertion is supported in XQuery with the new "assert as" expression.

Issue-0091: Attribute expression

Date: 30-Apr-2001
Raised by: Mary Fernandez

Description: XQuery formal semantics has stand-alone attribute constructor/expression ATTRIBUTE
QName (Exp) that is not supported in XQuery surface syntax.

Resolution: Stand-alone attribute construction is supported in XQuery with the new syntax for element and
attribute constructors.

Issue-0092: Error expression

Date: 11-May-2001
Raised by: Jerome Simeon

Description: XQuery formal semantics has an error expression Error that is not supported in XQuery

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (171 of 183) [8/12/2002 6:38:08 PM]

surface syntax.

Resolution: Errors are raised by a function "dm:erorr()" instead of a separate expression.

Issue-0093: Representation of Text Nodes in type system

Date: 11-May-2001
Raised by: Mary Fernandez

Description: The data model distinguished between text nodes and strings, which are simple-typed values.
Text nodes have identity, parents, and siblings. Strings do not. Text nodes are accessed by the children()
accessor; strings and other simple-typed values are accessed by the typed-value() accessor. The distinction
between text nodes and simple-typed values should exist in type system as well.

Resolution: Subsumed by new issue [Issue-0105: Types for nodes in the data model.].

Issue-0094: Static type errors and warnings

Date: 31-May-2001
Raised by: Don Chamberlin

Description: Static type errors and warnings are not specified. We need to enumerate in both the XQuery and
formal semantics documents what kinds of static type errors and warnings are produced by the type system.
See also [Issue-0090: Static type-assertion expression].

Issue-0095: Importing Schemas and DTDs into query

Date: 31-May-2001
Raised by: Don Chamberlin

Description: We do not specify how a Schema or DTD is 'imported' into a query so that its information is
available during type checking. Schema and DTDs can either be named explicitly (e.g., by an 'IMPORT
SCHEMA' clause in a query) or implicitly, by accessing documents that refer to a Schema or DTD. The
mechanism for statically accessing a Schema or DTD is unspecified.

Issue-0096: Support for schema-less and incompletely validated documents

Date: 31-May-2001
Raised by: Don Chamberlin/Mary Fernandez

Description: This is related to [Issue-0095: Importing Schemas and DTDs into query]. We do not specify
what is the effect of type checking a query that is applied to a document without a DTD or Schema. In general,
a schema-less document has type xs:AnyType and type checking can proceed under that assumption. A related
issue is what is the effect of type checking a query that is applied to an incompletely validated document. As
above, we can make *no* assumptions about the static type of an incompletely validated document and must
assume its static type is xs:AnyType.

Issue-0097: Static type-checking vs. Schema validation

Date: 31-May-2001
Raised by: Mary Fernandez

Description: Static type checking and schema validation are not equivalent, but we might want to do both in
a query. For example, we might want to assert statically that an expression has a particular type and also

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (172 of 183) [8/12/2002 6:38:08 PM]

validate dynamically the value of an expression w.r.t a particular schema.

The differences between static type checking and schema validation must be enumerated clearly (the XSFD
people should help us with this).

Issue-0098: Implementation of and conformance levels for static type checking

Date: 31-May-2001
Raised by: Don Chamberlin

Description: This issue is related to [Issue-0059: Testing Subtyping] Static type checking may be difficult
and/or expensive to implement. Some discussion of algorithmic issues of type checking are needed. In
addition, we may want to define "conformance levels" for XQuery, in which some processors (or some
processing modes) are more permissive about types. This would allow XQuery implementations that do not
understand all of Schema, and it would allow customers some control over the cost/benefit tradeoff of type
checking.

Issue-0099: Incomplete/inconsistent mapping from to core

Date: 06-June-2001
Raised by: Don Chamberlin

Description: This mapping is still preliminary and contains inconsistencies. These inconsistencies will be
addressed in detail in the next draft of the document.

Resolution: The Formal Semantics now provides a complete mapping from XQuery to the Core XQuery.
Remaining issues with respect to that mapping are indicated separately.

Issue-0100: Namespace resolution

Date: March-11-2002
Raised by: FS Editors

The way (when? where?) namespace prefixes are resolved is still an open issue.

Issue-0101: Support for mixed content in the type system

Date: March-11-2002
Raised by: FS Editors

Description: Support for mixed content in the type system is an open issue. This reopens issue [Issue-0016:
Mixed content]. Dealing with mixed content with interleaving raises complexity issue. See also [Issue-0103:
Complexity of interleaving].

Issue-0102: Indentation, Whitespace

Date: March-11-2002
Raised by: FS Editors

Description: Whitespace normalization in XQuery is still an open issue. This reopens issue [Issue-0022:
Indentation, Whitespaces].

Issue-0103: Complexity of interleaving

Date: March-11-2002

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (173 of 183) [8/12/2002 6:38:08 PM]

Raised by: FS Editors

Description: The current type system allows interleaving is allowed on arbitrary types. Interleaving is an
expensive operation and it is not clear how to define subtyping for it. Should we restrict use of interleaving on
(optional) atomic types ? Should this restriction reflects the one in XML schema ? Related to [Issue-0077:
Interleaved repetition and closure].

Issue-0104: Support for named typing

Date: March-11-2002
Raised by: FS Editors

Description: XML Schema is based on named typing, while the XQuery type system is based on strucural
typing. Directly related issues are [Issue-0019: Support derived types] and [Issue-0018: Align algebra
types with schema]. Other impacted issues are [Issue-0020: Structural vs. name equivalence],
[Issue-0072: Facet value access in Query Algebra], [Issue-0073: Facets for simple types and their role
for typechecking], [Issue-0088: Align types with XML Schema : Formal Description.], [Issue-0095:
Importing Schemas and DTDs into query], [Issue-0097: Static type-checking vs. Schema validation],
[Issue-0098: Implementation of and conformance levels for static type checking], [Issue-0111:
Semantics of instance of ... only].

Issue-0105: Types for nodes in the data model.

Date: March-11-2002
Raised by: FS Editors

Description: The XQuery type system only supports element and attribute nodes. It needs to support other
kinds of nodes from the XQuery datamodel, notably: text nodes and document nodes. Should it also include
support for PI nodes, comment nodes and namespace nodes?

The data model distinguishes between text nodes and strings, which are simple-typed values. Text nodes have
identity, parents, and siblings. Strings do not. Text nodes are accessed by the children() accessor; strings and
other simple-typed values are accessed by the typed-value() accessor. The distinction between text nodes and
simple-typed values should exist in type system as well.

Issue-0106: Constraint on attribute and element content models

Date: March-11-2002
Raised by: Jerome

Description: The XQuery type system allows more content model than what XML Schema allows. For
instance, the current type grammar allows the following types:

 element d { (attribute a | element b, attribute c)* }
 attribute a { element b }

Section [3 The XQuery Type System] indicates corresponding constraints on the XQuery type system to
avoid that problem. The status of these constraints is unclear. When are they enforced and checked?

Issue-0107: Semantics of data()

Date: March-11-2002

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (174 of 183) [8/12/2002 6:38:08 PM]

Raised by: FS Editors

Description: What is the semantics of data() applied to anything else than an element or attribute node ?

Issue-0108: Principal node types in XPath

Date: March-11-2002
Raised by: Michael Kay

Description: There is a known bug in the formal semantics which does not deal properly with principal node
types. This bug should be resolved based on some semantics previously proposed by Phil Wadler.

Issue-0109: Semantics of sortby

Date: March-11-2002
Raised by: Jerome

Description: The precise semantics of sortby is still open issue.

Issue-0110: Semantics of element and attribute constructors

Date: March-11-2002
Raised by: Jerome

Description: The precise semantics of element constructors is still an open issue.

Issue-0111: Semantics of instance of ... only

Date: March-11-2002
Raised by: Mary Fernandez

Description: The "instance of" expression allows an optional "only" modifier. The use case for such a
modifier is based on named typing, while the XQuery semantics is currently based on structural typing. It is
not clear what the semantics of the "only" modifier under structural typing should be and how it can be
supported.

Issue-0112: Typing for the typeswitch default clause

Date: March-11-2002
Raised by: Jerome

Description: There is an asymetry in the typing for the default clause in typeswitch vs. the other case clauses.
This results in a less precise type when the default clause can be applied.

It would be nicer to be able to have the type be more precise, like for the other case clauses.

The technical problem is the need for some form of negation. I think one could define a
"non-common-primes" function that would do the trick, but I leave that as open for now until further review of
the new typeswitch section is made.

Issue-0113: Incomplete specification of type conversions

Date: March-11-2002
Raised by: Mary Fernandez

Description: Not all the fallback conversion rules are specified yet in section [4.1.2 Type Conversions]. All

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (175 of 183) [8/12/2002 6:38:08 PM]

the remaining rules in the fallback conversions table must be specified.

Issue-0114: Dynamic context for current date and time

Date: March-11-2002
Raised by: Jerome

Description: The following components dynamic contexts have no formal representation yet: current date
and time.

Related question: where are these context components used?

Issue-0115: What is in the default context?

Date: March-11-2002
Raised by: Jerome

Description: What do the default namespace and type environments contain? I believe at least the default
namespace environment should contain the "xs", "xf" and "op" prefixes, as well as the default namespaces
bound to the empty namespace. Should the default type environment contain wildcard types?

Issue-0116: Serialization

Date: March-11-2002
Raised by: Jerome

Description: Serialization of data model instances, and XQuery results is still an open issue.

Issue-0117: Data model constructor for error values

Date: March-11-2002
Raised by: Jerome

Description: The XQuery data model supports an error value, but there is no constructor for it. Currently the
formal semantics is using the notation dm:error() to create an error value. Should there be some function(s) in
the [XQuery 1.0 and XPath 2.0 Functions and Operators] document to create error values?

Issue-0118: Data model syntax and literal values

Date: March-11-2002
Raised by: Phil Wadler

Description: Phil suggests the data model should support primitive literals in their lexical form, in which case
no explicit dynamic semantic rule would be necessary.

More generally, should the data model support a constructor syntax?

Issue-0119: Semantics of op:to

Date: March-11-2002
Raised by: Mary Fernandez

Description: The binary operator "to" is not defined on empty sequences. The [XQuery 1.0 and XPath 2.0
Functions and Operators] document says operands are decimals, while the XQuery document says they are
integers. What happens when Expr1 > Expr2?

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (176 of 183) [8/12/2002 6:38:08 PM]

Issue-0120: Sequence operations: value vs. node identity

Date: March-11-2002
Raised by: Mary Fernandez

Description: The [XQuery 1.0 and XPath 2.0 Functions and Operators] document provides only one function
for union (intersect, etc.) of sequences of nodes and values. The semantics is very different for node only and
value only sequences. The semantics is undefined for heterogeneous sequences. Should we have two union
(intersect, etc.) functions, one for nodes, and one for values?

Issue-0121: Casting functions

Date: March-11-2002
Raised by: Jerome

Description: The [XQuery 1.0 and XPath 2.0 Functions and Operators] document does not provide any
function for casting, just a table and casting rules. Wouldn't it be preferable to either have an explicit function
to normalize to? This relates to Issue 17 in the [XQuery 1.0 and XPath 2.0 Functions and Operators]
document.

Issue-0122: Overloaded functions

Date: March-11-2002
Raised by: Denise Draper

Description: Some [XQuery 1.0 and XPath 2.0 Functions and Operators] functions are overloaded. How to
deal with overloaded built-in functions in the Formal Semantics is still an open issue.

Issue-0123: Semantics of /

Date: March-11-2002
Raised by: FS Editors

Description: Some of the semantics of the root expression / is still an open issue. For instance, what should
be the semantics of '/' in case of a document fragment (I.e., created using XQuery element constructor).

Issue-0124: Binding position in FLWR expressions

Date: March-11-2002
Raised by: FS Editors

Description: The only way to bind position() is through implicit operations. It would be useful and cleaner to
also have a way to bind position in a sequence explicitely. The FS editors proposed several syntax for such an
operation, one of these syntaxes look like "for $v at $i in E1 return E2" which modifies the for expression to
bind a variable "$i" to the position in sequence "E1" explicitely.

Issue-0125: Operations on node only in XPath

Date: March-11-2002
Raised by: FS Editors

Description: Generally steps may operate on nodes and values alike; the axis rules only can operate on nodes
(NodeValue). Is it a dynamic error to apply an axis rule on a value?

More generally, the XQuery document states that XPath operates on nodes only. Where that restriction should

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (177 of 183) [8/12/2002 6:38:08 PM]

be applied is an open issue.

Issue-0126: Semantics of effective boolean value

Date: March-11-2002
Raised by: FS Editors

Description: Some of the semantics of effective boolean value is still an open issue.

Issue-0127: Datatype limitations

Date: March-11-2002
Raised by: FS Editors

Description: Should the Datatype production allow the following: fs:atomic, fs:numeric,
fs:UnknownSimpleType ?

The formal semantics makes use of several built-in types which are not in XML Schema: fs:numeric,
fs:atomic, and fs:UnknownSimpleType. These types are necessary for the specification of some of XPath type
conversion rules, and will be accepted without raising an error.

Issue-0128: Casting based on the lexical form

Date: March-11-2002
Raised by: Mary Fernandez

Description: The XQuery/XPath spec says : "If an operand is an untyped simple value (...), it is cast to the
type suggested by its lexical form." It is not clear how to define the semantics for this.

Issue-0129: Static typing of union

Date: March-11-2002
Raised by: Michael Rys

Description: What should be the semantics of arithmetics expressions over unions. Right now, it would raise
a dynamic error. Do we want to raise a static error?

Should operators and functions consistenly with respect to typing?

With the current semantics in Section 4.5 expr1 + expr2 raises a static type error if (e.g.) expr1 has type string
and expr2 has type integer. It raises only a dynamic error, if expr1 has type (string | integer) and expr2 has
type integer, and expr1 actually evaluates to a string. An alternative would be that this raises also a static error,
because it cannot be guarantueed to succeed on all instances.

Issue-0130: When to process the query prolog

Date: March-11-2002
Raised by: Jerome

Description: The query prolog needs to be processed before the normalization phase. This is not reflected yet
in the processing model.

Issue-0131: Boolean node test and sequences

Date: March-11-2002
Raised by: Michael Rys

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (178 of 183) [8/12/2002 6:38:08 PM]

Description: The current semantics for boolean node tests makes it "true if the expression is a sequence that
contains at least one node and error if the sequence contains no node". This is inefficient to implement. Some
alternative semantics have been proposed.

Issue-0132: Typing for descendant

Date: March-11-2002
Raised by: Peter Fankhauser

Description: The current static typing for descendant is still under review and the inferences rules in that
version are probably containing bugs.

Issue-0133: Should to also be described in the formal semantics?

Date: March-11-2002
Raised by: Michael Kay

Description: The current semantics of the op operator is using the op:to function from the [XQuery 1.0 and
XPath 2.0 Functions and Operators] document. Should it be defined formally?

Mike Kay suggests the following definition: [A to B] => if A=B then (A) else (A, A+1 to
B)

Issue-0134: Should we define for with head and tail?

Date: March-11-2002
Raised by: Michael Kay

Description: Mike Kay proposes to use the following recursion to define the dynamic semantics of for:

[for $x in () return E2] => ()
[for $x in SEQ return E2] =>
(let $x := head(SEQ) return E2, for $x in tail(SEQ) return E2)

Unfortunately head and tail are not define in [XQuery 1.0 and XPath 2.0 Functions and Operators] right now.

Issue-0135: Semantics of special functions

Date: March-11-2002
Raised by: Michael Kay

Description: The current semantics does not completely cover built-in functions. Some functions used in the
Formal semantics, or some functions from the [XQuery 1.0 and XPath 2.0 Functions and Operators] document
need additional semantics specification.

C.3 Alphabetic list of issues

Open Issues

C.3.1 Open Issues

Number: 58

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (179 of 183) [8/12/2002 6:38:08 PM]

[Issue-0018: Align algebra types with schema]
[Issue-0088: Align types with XML Schema : Formal Description.]
[Issue-0124: Binding position in FLWR expressions]
[Issue-0131: Boolean node test and sequences]
[Issue-0128: Casting based on the lexical form]
[Issue-0121: Casting functions]
[Issue-0103: Complexity of interleaving]
[Issue-0106: Constraint on attribute and element content models]
[Issue-0117: Data model constructor for error values]
[Issue-0118: Data model syntax and literal values]
[Issue-0127: Datatype limitations]
[Issue-0068: Document Collections]
[Issue-0114: Dynamic context for current date and time]
[Issue-0073: Facets for simple types and their role for typechecking]
[Issue-0072: Facet value access in Query Algebra]
[Issue-0008: Fixed point operator or recursive functions]
[Issue-0078: Generation of ambiguous types]
[Issue-0098: Implementation of and conformance levels for static type checking]
[Issue-0095: Importing Schemas and DTDs into query]
[Issue-0113: Incomplete specification of type conversions]
[Issue-0102: Indentation, Whitespace]
[Issue-0033: Metadata Queries]
[Issue-0100: Namespace resolution]
[Issue-0125: Operations on node only in XPath]
[Issue-0122: Overloaded functions]
[Issue-0014: Polymorphic types]
[Issue-0108: Principal node types in XPath]
[Issue-0123: Semantics of /]
[Issue-0107: Semantics of data()]
[Issue-0126: Semantics of effective boolean value]
[Issue-0110: Semantics of element and attribute constructors]
[Issue-0111: Semantics of instance of ... only]
[Issue-0119: Semantics of op:to]
[Issue-0109: Semantics of sortby]
[Issue-0135: Semantics of special functions]
[Issue-0120: Sequence operations: value vs. node identity]
[Issue-0116: Serialization]
[Issue-0133: Should to also be described in the formal semantics?]
[Issue-0134: Should we define for with head and tail?]
[Issue-0097: Static type-checking vs. Schema validation]
[Issue-0094: Static type errors and warnings]
[Issue-0129: Static typing of union]
[Issue-0020: Structural vs. name equivalence]

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (180 of 183) [8/12/2002 6:38:08 PM]

[Issue-0019: Support derived types]
[Issue-0101: Support for mixed content in the type system]
[Issue-0104: Support for named typing]
[Issue-0096: Support for schema-less and incompletely validated documents]
[Issue-0089: Syntax for types in XQuery]
[Issue-0059: Testing Subtyping]
[Issue-0082: Type and expression operator precedence]
[Issue-0105: Types for nodes in the data model.]
[Issue-0055: Types with non-wellformed instances]
[Issue-0132: Typing for descendant]
[Issue-0112: Typing for the typeswitch default clause]
[Issue-0080: Typing of parent]
[Issue-0115: What is in the default context?]
[Issue-0130: When to process the query prolog]
[Issue-0011: XPath tumbler syntax instead of index?]

Resolved (or redundant) Issues

C.3.2 Resolved (or redundant) Issues

Number: 77

[Issue-0015: 3-valued logic to support NULLs]
[Issue-0071: Alignment with the XML Query Datamodel]
[Issue-0091: Attribute expression]
[Issue-0001: Attributes]
[Issue-0047: Attributes]
[Issue-0030: Automatic type coercion]
[Issue-0052: Axes of XPath]
[Issue-0065: Built-In GroupBy?]
[Issue-0027: Case syntax]
[Issue-0040: Case Syntax]
[Issue-0023: Catch exceptions and process in algebra?]
[Issue-0013: Collations]
[Issue-0010: Construct values by copy]
[Issue-0038: Copy by reachability]
[Issue-0037: Copy vs identity semantics]
[Issue-0039: Dereferencing semantics]
[Issue-0003: Document Order]
[Issue-0063: Do we need (user defined) higher order functions?]
[Issue-0058: Downward Navigation only?]
[Issue-0005: Element identity]
[Issue-0064: Error code handling in Query Algebra]
[Issue-0092: Error expression]

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (181 of 183) [8/12/2002 6:38:08 PM]

[Issue-0035: Exception handling]
[Issue-0084: Execution model]
[Issue-0048: Explicit Type Declarations]
[Issue-0083: Expressive power and complexity of typeswitch expression]
[Issue-0009: Externally defined functions]
[Issue-0046: FOR Syntax]
[Issue-0032: Full regular path expressions]
[Issue-0028: Fusion]
[Issue-0034: Fusion]
[Issue-0045: Global Order]
[Issue-0036: Global-order based operators]
[Issue-0079: Global order between nodes in different documents]
[Issue-0054: Global vs. local complex types]
[Issue-0053: Global vs. local elements]
[Issue-0042: GroupBy]
[Issue-0012: GroupBy - needs second order functions?]
[Issue-0099: Incomplete/inconsistent mapping from to core]
[Issue-0022: Indentation, Whitespaces]
[Issue-0077: Interleaved repetition and closure]
[Issue-0060: Internationalization aspects for strings]
[Issue-0044: Keys and IDREF]
[Issue-0081: Lexical representation of Schema simple types]
[Issue-0016: Mixed content]
[Issue-0061: Model for References]
[Issue-0087: More examples of Joins]
[Issue-0057: More precise type system; choice in path]
[Issue-0002: Namespaces]
[Issue-0062: Open questions for constructing elements by reference]
[Issue-0074: Operational semantics for expressions]
[Issue-0056: Operators on Simple Types]
[Issue-0069: Organization of Document]
[Issue-0075: Overloading user defined functions]
[Issue-0026: Project - one tag only]
[Issue-0051: Project redundant?]
[Issue-0050: Recursive Descent for XPath]
[Issue-0043: Recursive Descent for XPath]
[Issue-0031: Recursive functions]
[Issue-0007: References: IDREFS, Keyrefs, Joins]
[Issue-0004: References vs containment]
[Issue-0093: Representation of Text Nodes in type system]
[Issue-0067: Runtime Casts]
[Issue-0085: Semantics of Wildcard type]
[Issue-0066: Shallow or Deep Equality?]

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (182 of 183) [8/12/2002 6:38:08 PM]

[Issue-0041: Sorting]
[Issue-0006: Source and join syntax instead of "for"]
[Issue-0070: Stable vs. Unstable Sort/Distinct]
[Issue-0090: Static type-assertion expression]
[Issue-0086: Syntactic rules]
[Issue-0021: Syntax]
[Issue-0025: Treatment of empty results at type level]
[Issue-0049: Unordered Collections]
[Issue-0017: Unordered content]
[Issue-0076: Unordered types]
[Issue-0024: Value for empty sequences]
[Issue-0029: Views]

C.4 Delegated Issues

C.4.1 XPath 2.0

The following issues are delegated to XPath 2.0: [Issue-0007: References: IDREFS, Keyrefs, Joins],
[Issue-0030: Automatic type coercion], [Issue-0032: Full regular path expressions], [Issue-0052: Axes
of XPath].

C.4.2 XQuery

The following issues are delegated to XQuery: [Issue-0009: Externally defined functions], [Issue-0028:
Fusion], [Issue-0029: Views], [Issue-0030: Automatic type coercion], [Issue-0052: Axes of XPath],
[Issue-0081: Lexical representation of Schema simple types], [Issue-0082: Type and expression
operator precedence], [Issue-0086: Syntactic rules].

C.4.3 Operators

The following issues are delegated to XPath 2.0:[Issue-0013: Collations], [Issue-0030: Automatic type
coercion], [Issue-0056: Operators on Simple Types], [Issue-0060: Internationalization aspects for
strings].

XQuery 1.0 Formal Semantics

http://www.w3c.org/TR/query-semantics/ (183 of 183) [8/12/2002 6:38:08 PM]

	XQuery 1.0 Formal Semantics
	W3C Working Draft, 26 March, 2002
	Abstract
	Status of this Document
	Table of Contents
	1 Introduction
	2 Preliminaries
	2.1 Processing Model
	2.2 Data Model
	2.2.1 Data Model Components
	2.2.2 Node Identity
	2.2.3 Document Order and Sequence Order
	2.2.4 Errors

	2.3 Schemas and Types
	2.3.1 The Elements of a (Static) Type System
	2.3.2 Subtyping
	2.3.2.1 Type Equivalence
	2.3.2.2 Type Substitutability
	2.3.2.3 Subtyping and XML Schema Derivation

	2.3.3 Static Types and Dynamic Types

	2.4 Functions
	2.4.1 Functions and Operators
	2.4.2 Functions and Static Typing
	2.4.3 Data Model Accessors and XPath Axes
	2.4.4 Other Formal Semantics Functions

	2.5 Notation
	2.5.1 Judgements and Patterns
	2.5.2 Inference Rules
	2.5.3 Normalization Rules
	2.5.4 Environments
	2.5.5 Static Type Inference
	2.5.6 Evaluation Rules

	3 The XQuery Type System
	3.1 XQuery Types
	3.1.1 Wildcard Types

	3.2 Instances, and Domain of a Type
	3.2.1 Domain of a NameTest
	3.2.2 Semantics of the Domain of a Type

	3.3 Subtyping
	3.3.1 NameTest Subtyping
	3.3.2 Semantics of Subtyping
	3.3.3 Type Equivalence

	3.4 Prime Types
	3.4.1 Prime Types and Sequences of Items with Similar Types
	3.4.2 Computing Prime Types
	3.4.3 Common Prime Types
	3.4.3.1 Common Occurance Indicator

	3.5 Importing Types from XML Schema
	3.5.1 Schema
	3.5.2 QNames
	3.5.3 Complex Type Definitions
	3.5.3.1 Global Complex Types
	3.5.3.2 Anonymous Local Complex Types

	3.5.4 Groups
	3.5.4.1 Glocal Named Group Declarations
	3.5.4.2 Local Groups

	3.5.5 minOccurs and maxOccurs
	3.5.6 Elements
	3.5.6.1 Global Elements
	3.5.6.2 Local Elements

	3.5.7 Attributes
	3.5.7.1 Use
	3.5.7.2 Global Attributes
	3.5.7.3 Local Attributes

	3.5.8 Simple Content
	3.5.9 Attribute Group
	3.5.9.1 Attribute Group Declaration
	3.5.9.2 Attribute Group Reference
	3.5.9.3 Attribute Wildcard

	3.5.10 Complex Content
	3.5.11 Simple Types

	3.6 Major Type Issues

	4 Semantics of Expressions
	4.1 Basics
	4.1.1 Expression Context
	4.1.1.1 Static Context
	4.1.1.2 Evaluation Context

	4.1.2 Type Conversions

	4.2 Primary Expressions
	4.2.1 Literals
	4.2.2 Variables
	4.2.3 Parenthesized Expressions
	4.2.4 Function Calls
	4.2.5 Comments

	4.3 Path Expressions
	4.3.1 Axis Steps
	4.3.1.1 Axes
	4.3.1.2 Node Tests

	4.3.2 General Steps
	4.3.3 Step Qualifiers
	4.3.3.1 Predicates
	4.3.3.2 Dereferences

	4.3.4 Unabbreviated Syntax
	4.3.5 Abbreviated Syntax

	4.4 Sequence Expressions
	4.4.1 Constructing Sequences
	4.4.2 Combining Sequences

	4.5 Arithmetic Expressions
	4.6 Comparison Expressions
	4.6.1 Value Comparisons
	4.6.2 General Comparisons
	4.6.3 Node Comparisons
	4.6.4 Order Comparisons

	4.7 Logical Expressions
	4.8 Constructors
	4.8.1 Element Constructors
	4.8.2 Computed Element and Attribute Constructors
	4.8.3 Other Constructors and Comments

	4.9 FLWR Expressions
	4.9.1 FLWR Expressions
	4.9.2 For Expression
	4.9.3 Let Expression

	4.10 Sorting Expressions
	4.11 Conditional Expressions
	4.12 Quantified Expressions
	4.13 Datatypes
	4.13.1 Referring to Datatypes
	4.13.2 Expressions on Datatypes
	4.13.2.1 Instance of
	4.13.2.2 Cast Expressions
	4.13.2.2.1 Cast As
	4.13.2.2.2 Treat As
	4.13.2.2.3 Typeswitch

	5 The Query Prolog
	5.1 Namespace Declarations and Schema Imports
	5.2 Function Definitions

	6 Additional Semantics of Functions
	6.1 Formal Semantic Functions
	6.1.1 The fs:document function
	6.1.2 The fs:data function

	6.2 Functions with Specific Typing Rules
	6.2.1 The dm:error Function
	6.2.2 The op:union, op:intersect and op:expect operators
	6.2.3 the op:to operator

	Appendix A: Normalized Core Grammar
	Non-Terminals
	Terminals

	Appendix B: References
	B.1 Normative References
	B.2 Non-normative References
	B.3 Background References

	Appendix C: Issues
	C.1 Introduction
	C.2 Issues List
	C.3 Alphabetic List of Issues
	C.3.1 Open Issues
	C.3.2 Resolved (or Redundant) Issues

	C.4 Delegated Issues
	C.4.1 XPath 2.0
	C.4.2 XQuery
	C.4.3 Operators

	
	World Wide Web Consortium Title Page

