SOAP Version 1.2

W3C
Y
SOAP Version 1.2

W3C Working Draft 9 July 2001

Thisversion:
http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/
Latest version:
http://www.w3.org/TR/soapl2/
Editors:
Martin Gudgin (DevelopMentor)
Marc Hadley (Sun Microsystems)
Jean-Jacques Moreau (Canon)
Henrik Frystyk Nielsen (Microsoft Corp.)

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software
licensing rules apply.

Abstract

SOAP version 1.2 isalightweight protocol for exchange of information in a decentralized, distributed environment. It isan
XML based protocol that consists of four parts: an envelope that defines aframework for describing what isin a message
and how to process it, a set of encoding rules for expressing instances of application-defined data types, a convention for
representing remote procedure calls and responses and a binding convention for exchanging messages using an underlying
protocol. SOAP can potentially be used in combination with avariety of other protocols, however, the only bindings
defined in this document describe how to use SOAP in combination with HTTP and the experimental HTTP Extension
Framework.

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. The latest status of this document series is maintained at the W3C.

Thisisthefirst W3C Working Draft of the SOAP version 1.2 specification for review by W3C members and other
interested parties. It has been produced by the XML Protocol Working Group (WG), which is part of the XML Protocol

Activity.

The XML Protocol Protocol Working Group has, in keeping with its charter, produced a set of requirements and usage
scenarios that have been published as a Working Draft. To better evaluate SOAP/1.1 against these requirements and usage
scenarios, the Working Group has produced an abstract model and a glossary of terms and concepts used by the Working
Group. In addition, the Working Group has produced an issues list that describes issues and concerns raised by mapping its

regquirements and the XMLP abstract model against the SOAP/1.1 specification as well asissues raised on the
<xml-dist-app@w3.org> mailing list against SOAP/1.1.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (1 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/
http://www.w3.org/TR/soap12/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/2000/xp/Activity
http://www.w3.org/2000/xp/Activity
http://www.w3.org/TR/xmlp-reqs/
http://www.w3.org/TR/xmlp-reqs/
http://www.w3.org/TR/xmlp-am/
http://www.w3.org/2000/xp/Group/xmlp-issues
mailto:xml-dist-app@w3.org

SOAP Version 1.2

The current name for this specification is SOAP version 1.2, this first Working Draft being based on SOAP/1.1 as per the
Working Group's charter (see change log in appendix D)

Comments on this document should be sent to xmlp-comments@w3.org (public archives). It isinappropriate to send
discussion emailsto this address.

Discussion of this document takes place on the public <xml-dist-app@w3.org> mailing list (Archives) per the email
communication rulesin the XML Protocol Working Group Charter.

Thisisapublic W3C Working Draft. It is adraft document and may be updated, replaced, or obsoleted by other documents
at any time. It isinappropriate to use W3C Working Drafts as reference material or to cite them as other than "work in
progress’. A list of all W3C technical reports can be found at http://www.w3.0rg/TR/.

Table of Contents

1. Introduction
1.1 Design Goals
1.2 Notational Conventions
1.3 Examples of SOAP Messages
1.4 SOAP Terminology
1.4.1 Protocol Concepts

1.4.2 Data Encapsulation Concepts
1.4.3 Message Sender and Receiver Concepts
1.4.4 Data Encoding Concepts
2. The SOAP Message Exchange Model
2.1 Nodes
2.2 Actors and Nodes
2.3 Targeting SOAP Header Blocks
2.4 Understanding Headers
2.5 Processing Messages
3. Relation to XML
4. SOAP Envelope
4.1.1 SOAP encodingStyle Attribute
4.1.2 Envelope Versioning Model
4.2 SOAP Header
4.2.1 Use of Header Attributes
4.2.2 SOAP actor Attribute
4.2.3 SOAP mustUnderstand Attribute
4.3 SOAP Body
4.3.1 Relationship between SOAP Header and Body
4.4 SOAP Fault
4.4.1 SOAP Fault Codes
4.4.2 MustUnderstand Faults

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (2 of 47) [7/18/2001 10:21:54 AM]

mailto:xmlp-comments@w3.org
http://lists.w3.org/Archives/Public/xmlp-comments/
mailto:xml-dist-app@w3.org
http://lists.w3.org/Archives/Public/xml-dist-app/
http://www.w3.org/2000/09/XML-Protocol-Charter#email
http://www.w3.org/2000/09/XML-Protocol-Charter#email
http://www.w3.org/2000/09/XML-Protocol-Charter
http://www.w3.org/TR/

SOAP Version 1.2

5. SOAP Encoding
5.1 Rulesfor Encoding Typesin XML
5.2 Simple Types
5.2.1 Strings
5.2.2 Enumerations
5.2.3 Array of Bytes
5.3 Polymorphic Accessor

5.4 Compound Types

5.4.1 Compound Values and Referencesto Values
5.4.2 Arrays
5.4.2.1 PartiallyTransmitted Arrays
5.4.2.2 SparseArrays
5.4.3 Generic Compound Types
5.5 Default Values
5.6 SOAP root Attribute
6. Using SOAPInHTTP
6.1 SOAP HTTP Request
6.1.1 The SOAPAction HTTP Header Field
6.2 SOAP HTTP Response
6.3 The HTTP Extension Framework
6.4 SOAP HTTP Examples
7. Using SOAP for RPC
7.1 RPC and SOAP Body
7.2 RPC and SOAP Header
8. Security Considerations
9. References

9.1. Normative references

9.2. Informative references
A. SOAP Envelope Examples
A.1 Sample Encoding of Call Requests
A.2 Sample Encoding of Response
B. Acknowledgements
C. Version Transition From SOAP/1.1 to SOAP/1.2
D. ChangeLog
D.1 SOAP Specification Changes
D.2 XML Schema Changes

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (3 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

1. Introduction

SOAP version 1.2 provides a ssmple and lightweight mechanism for exchanging structured and typed information between
peersin adecentralized, distributed environment using XML. SOAP does not itself define any application semantics such as
aprogramming model or implementation specific semantics; rather it defines a simple mechanism for expressing
application semantics by providing a modular packaging model and encoding mechanisms for encoding application defined
data. Thisalows SOAP to be used in alarge variety of systems ranging from messaging systems to remote procedure calls
(RPC).

SOAP consists of four parts:

1. The SOAP envelope (see section 4) construct defines an overall framework for expressing what isin a message, who
should deal with it, and whether it is optional or mandatory.

2. The SOAP encoding rules (see section 5) defines a serialization mechanism that can be used to exchange instances of
application-defined datatypes.

3. The SOAP RPC representation (see section 7) defines a convention that can be used to represent remote procedure
calls and responses.

4. The SOAP binding (see section 6) defines a convention for exchanging SOAP envel opes between peers using an
underlying protocol for transport.

To simplify the specification, these four parts are functionally orthogonal. In particular, the envelope and the encoding rules
are defined in different namespaces.

This specification defines two SOAP bindings that describe how a SOAP message can be carried in HTTP [5] messages
either with or without the experimental HTTP Extension Framework [6].

1.1 Design Goals

Two magjor design goals for SOAP are simplicity and extensibility. SOAP attempts to meet these goals by omitting features
often found in messaging systems and distributed object systems such as:

« distributed garbage collection;
« boxcarring or batching of messages,
« Objects-by-reference (which requires distributed garbage collection);

« activation (which requires objects-by-reference).
1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [2].

The namespace prefixes "env" and "enc" used in the prose sections of this document are associated with the SOAP
namespace names " http://www.w3.0rg/2001/06/soap-envel ope” and "http://www.w3.0rg/2001/06/soap-encoding"

respectively.

The namespace prefixes "xs" and "xsi" used in the prose sections of this document are associated with the namespace names
"http://www.w3.0rg/200/XML Schema' and " http://www.w3.0rg/2001/X ML Schema-instance" respectively, both of which
are defined in the XML Schemas specification [10,11].

Note that the choice of any namespace prefix is arbitrary and not semantically significant.

Namespace URIs of the general form "http://example.org/..." and "http://example.com/..." represent an

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (4 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-envelope
http://www.w3.org/2001/06/soap-encoding

SOAP Version 1.2

application-dependent or context-dependent URI [4].
This specification uses the augmented Backus-Naur Form (BNF) as described in RFC-2616 [5].

Editorial notes are indicated with yellow background (may not appear in all media) and prefixed with "Ednote".

1.3 Examples of SOAP Messages

The first example shows a simple notification message expressed in SOAP. The message contains the header block
"aertcontrol” and the body block "aert" which are both application defined and not defined by SOAP. The header block
contains the parameters "priority" and "expires" which may be of use to intermediaries as well as the ultimate destination of
the message. The body block contains the actual notification message to be delivered.

Example 0

<env: Envel ope xm ns:env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >
<env: Header >
<n:al ertcontrol xmns:n="http://exanple.org/alertcontrol">
<n:priority>1l</n:priority>
<n: expi res>2001- 06- 22T14: 00: 00- 05: 00</ n: expi res>
</n:alertcontrol >
</ env: Header >
<env: Body>
<malert xmns:n"http://exanple.org/alert">
<m nmsg>Pi ck up Mary at school at 2pnk/ m nsg>
</malert>
</ env: Body>
</ env: Envel ope>

Sample SOAP Message containing a header block and a body block

SOAP messages may be bound to different underlying protocols and used in avariety of message exchange patterns. The
following example shows SOAP used in connection with HTTP as the underlying protocol taking advantage of the
reguest/response mechanism provided by HT TP (see section section 6).

Examples 1 and 2 show a sample SOAP/HTTP request and a sample SOAP/HTTP response. The SOAP/HTTP request
contains ablock called GetL astTradePrice which takes a single parameter, the ticker symbol for a stock. Asin the previous
example, the GetL astTradePrice element is not defined by SOAP itself. The service's response to this request contains a
single parameter, the price of the stock. The SOAP Envelope element is the top element of the XML document representing
the SOAP message. XML namespaces are used to disambiguate SOAP identifiers from application specific identifiers.

Example 1

POST / St ockQuote HITP/ 1.1

Host: www. st ockquot eserver.com

Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: nnnn

SQAPAction: "http://exanpl e.org/ 2001/ 06/ quot es”

<env: Envel ope xm ns: env="http://ww. w3. org/ 2001/ 06/ soap- envel ope" >
<env: Body>
<m Get Last TradePri ce
env: encodi ngStyl e="htt p://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
xm ns: me" http://exanpl e. org/ 2001/ 06/ quot es" >
<synbol >DI S</ synbol >
</ m Get Last Tr adePri ce>
</ env: Body>
</ env: Envel ope>

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (5 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

Sample SOAP Message embedded in an HTTP Request

Example 2 shows the SOAP message sent by the StockQuote service in the corresponding HT TP response to the request
from Example 1.

Example 2

HTTP/ 1.1 200 K

Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<env: Envel ope xm ns: env="http://ww. w3. org/ 2001/ 06/ soap- envel ope" >
<env: Body>
<m Get Last Tr adePri ceResponse
env: encodi ngStyl e="htt p://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
xm ns: me" http://exanpl e. org/ 2001/ 06/ quot es" >
<Price>34.5</Price>
</ m Get Last Tr adePri ceResponse>
</ env: Body>
</ env: Envel ope>

Sample SOAP Message embedded in an HTTP Response
More examples are available in Appendix A.

1.4 SOAP Terminology
1.4.1 Protocol Concepts

SOAP

The formal set of conventions governing the format and processing rules of a SOAP message and basic control of
interaction among applications generating and accepting SOAP messages for the purpose of exchanging information
along a SOA P message path.

SOAP binding

Theformal set of rulesfor carrying a SOAP message within or on top of another protocol (underlying protocol) for
the purpose of transmission. Typical SOAP bindings include carrying a SOAP message within an HT TP message, or
on top of TCP.

SOAP node

A SOAP node processes a SOA P message according to the formal set of conventions defined by SOAP. The SOAP
node is responsible for enforcing the rules that govern the exchange of SOAP messages and accesses the services
provided by the underlying protocols through SOAP bindings. Non-compliance with SOAP conventions can cause a
SOAP node to generate a SOAP fault (see a'so SOAP receiver and SOAP sender).

1.4.2 Data Encapsulation Concepts

SOAP message

A SOAP message is the basic unit of communication between peer SOAP nodes.
SOAP envelope
The outermost syntactic construct or structure of a SOAP message defined by SOAP within which all other syntactic

elements of the message are enclosed.
SOAP block

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (6 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

A syntactic construct or structure used to delimit data that logically constitutes a single computational unit as seen by
aSOAP node. A SOAP block isidentified by the fully qualified name of the outer element for the block, which

consists of the namespace URI and the local name. A block encapsulated within the SOAP header is called a header
block and a block encapsulated within a SOAP body is called a body block.

SOAP header

A collection of zero or more SOAP blocks which may be targeted at any SOAP receiver within the SOAP message
path.
SOAP body

A collection of zero, or more SOAP blocks targeted at the ultimate SOAP receiver within the SOAP message path.
SOAP fault

A special SOAP block which contains fault information generated by a SOAP node.
The following diagram illustrates how a SOAP message is composed.
Figure 1: Encapsulation model illustrating the parts of a SOAP message

SOAP Envelope
SOAP Header

SOAP Body

1.4.3 Message Sender and Receiver Concepts

SOAP sender

A SOAP sender is a SOAP node that transmits a SOAP message.
SOAP receiver

A SOAP receiver isa SOAP node that accepts a SOAP message.
SOAP message path

The set of SOAP senders and SOAP receivers through which a single SOAP message passes. Thisincludes theinitial
SOAP sender, zero or more SOAP intermediaries, and the ultimate SOAP receiver.

initial SOAP sender

The SOAP sender that originates a SOAP message as the starting point of a SOAP message path.
SOAP intermediary

A SOAP intermediary is both a SOAP receiver and a SOAP sender, target-able from within a SOAP message. It

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (7 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

processes a defined set of blocks in a SOAP message along a SOAP message path. It actsin order to forward the
SOAP message towards the ultimate SOAP receiver.

ultimate SOAP receiver

The SOAP receiver that the initial sender specifies as the final destination of the SOAP message within a SOAP
message path. A SOAP message may not reach the ultimate recipient because of a SOAP fault generated by a SOAP
node along the SOA P message path.

1.4.4 Data Encoding Concepts

SOAP data model

A set of abstract constructs that can be used to describe common data types and link relationships in data.
SOAP data encoding

The syntactic representation of data described by the SOAP data model within one or more SOAP blocksin a SOAP
MEessage.

2. The SOAP Message Exchange Model

SOAP messages are fundamentally one-way transmissions from a SOAP sender to a SOAP receiver, but asillustrated
above, SOAP messages are often combined to implement patterns such as request/response.

SOAP implementations can be optimized to exploit the unique characteristics of particular network systems. For example,
the HTTP binding described in section 6 provides for SOAP response messages to be delivered as HT TP responses, using

the same connection as the inbound request.

2.1 SOAP Nodes

A SOAP node can be the initial SOAP sender, the ultimate SOAP receiver, or a SOAP intermediary, in which caseit is both
a SOAP sender and a SOAP receiver. SOAP does not provide a routing mechanism, however SOAP does recognise that a
SOAP sender originates a SOAP message which is sent to an ultimate SOAP receiver, via zero or more SOAP
intermediaries.

A SOAP node receiving a SOAP message MUST perform processing, generate SOAP faults, SOAP responses, and if
appropriate send additional SOAP messages, as provided by the remainder of this specification.

2.2 SOAP Actors and SOAP Nodes

In processing a SOAP message, a SOAP node is said to act in the role of one or more SOAP actors, each of which is
identified by a URI known as the SOAP actor name. Each SOAP node MUST act in the role of the special SOAP actor
named " http://www.w3.0rg/2001/06/soap-envel ope/actor/next”, and can additionally assume the roles of zero or more other
SOAP actors. A SOAP node can establish itself as the ultimate SOAP receiver by acting in the (additional) role of the
anonymous SOAP actor. The roles assumed MUST be invariant during the processing of an individual SOAP message;
because this specification deals only with the processing of individual SOAP messages, no statement is made regarding the
possibility that a given piece of software might or might not act in varying roles when processing more than one SOAP

message.

While the purpose of a SOAP actor name is to identify a SOAP node, there are no routing or message exchange semantics
associated with the SOAP actor name. For example, SOAP Actors MAY be named with a URI useable to route SOAP
messages to an appropriate SOAP node. Conversely, it is also appropriate to use SOAP actor roles with names that are
related more indirectly to message routing (e.g. "http://example.org/banking/anyAccountMgr") or which are unrelated to
routing (e.g. aURI meant to identify "all cache management software”; such a header might be used, for example, to carry
an indication to any concerned software that the containing SOAP message is idempotent, and can safely be cached and

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (8 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-envelope/actor/next

SOAP Version 1.2

replayed.)
2.3 Targeting SOAP Header Blocks

SOAP header blocks carry optional env:actor attributes (see section 4.2.2) that are used to target them to the appropriate
SOAP node(s). SOAP header blocks with no env:actor attribute and the SOAP body are implicitly targeted at the
anonymous SOAP actor, implying that they are to be processed by the ultimate SOAP receiver. We refer to the (implicit or
explicit) value of the SOAP actor attribute as the SOAP actor for the corresponding SOAP block (either a SOAP header
block or a SOAP body block).

We say that a SOAP block istargeted to a SOAP node if the SOAP actor (if present) on the block matches (see [8]) arole

played by the SOAP node, or in the case of a SOAP block with no actor attribute (including SOAP body blocks), if the
SOAP node has assumed the role of the anonymous SOAP actor.

2.4 Understanding SOAP Headers

We presume that specifications for awide variety of header functions will be developed over time, and that each SOAP
node MAY include the software necessary to implement one or more such extensions. We say that a SOAP header block is
understood by a SOAP node if the software at that SOAP node has been written to fully conform to and implement the
semantics conveyed by the fully qualified name of the outer-most element of that block.

When a SOAP header block is tagged with a SOAP mustUnderstand attribute with avalue of "1", the targeted SOAP node
MUST: either process the SOAP block according to the semantics conveyed by the fully qualified name of the outer-most
element of that block; or not process the SOAP message at al, and fail (see section 4.4).

2.5 Processing SOAP Messages

This section sets out the rules by which SOAP messages are processed. Unless otherwise stated, processing must be
semantically equivalent to performing the following steps separately, and in the order given. Note however that nothing in
this specification should be taken to prevent the use of optimistic concurrency, roll back, or other techniques that might
provide increased flexibility in processing order aslong as all SOAP messages, SOAP faults and application-level side
effects are equivalent to those that would be obtained by direct implementation of the following rules.

1. Generate asingle SOAP mustUnderstand fault if one or more SOAP blocks targeted at the SOAP node carry the
attribute env:mustUnderstand="1" and are not understood by that node. If such afault is generated, any further
processing MUST NOT be done.

2. Process SOAP blockstargeted at the SOAP node, generating SOAP faults if necessary. A SOAP node MUST process
SOAP blocksidentified as env:mustUnderstand="1". A SOAP node MAY process or ignore SOAP blocks not so
identified. In al cases where a SOAP block is processed, the SOAP node must understand the SOAP block and must
do such processing in amanner fully conformant with the specification for that SOAP block. Faults, if any, must also
conform to the specification for the processed SOAP block. It is possible that the processing of particular SOAP
block would control or determine the order of processing for other SOAP blocks. For example, one could create a
SOAP header block to force processing of other SOAP header blocksin lexical order. In the absence of such a SOAP
block, the order of processing is at the discretion of the SOAP node. SOAP nodes can make reference to any
information in the SOAP envelope when processing a SOAP block. For example, a caching function can cache the
entire SOAP message, if desired.

If the SOAP node is a SOAP intermediary, the SOAP message pattern and results of processing (e.g. no fault generated)
MAY require that the SOAP message be sent further along the SOAP message path. Such relayed SOAP messages MUST
contain all SOAP header blocks and the SOAP body blocks from the original SOAP message, in the original order, except
that SOAP header blocks targeted at the SOAP intermediary MUST be removed (such SOAP blocks are removed regardless
of whether they were processed or ignored). Additional SOAP header blocks MAY be inserted at any point in the SOAP
message, and such inserted SOAP header blocks MAY be indistinguishable from one or more just removed (effectively
leaving them in place, but emphasizing the need to reinterpret at each SOAP node along the SOAP message path.)

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (9 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

3. Relation to XML

All SOAP messages are encoded using XML (see [7] for more information on XML).

A SOAP application SHOULD include the proper SOAP namespace on all elements and attributes defined by SOAPiIn
messages that it generates. A SOAP application MUST be able to process SOAP namespaces in messages that it receives. It
MUST discard messages that have incorrect namespaces (see section 4.4) and it MAY process SOAP messages without

SOA P namespaces as though they had the correct SOAP namespaces.

SOAP defines the following namespaces (see [8] for more information on XML namespaces):

« The SOAP envelope has the namespace identifier "http://www.w3.0rg/2001/06/soap-envel ope"

« The SOAP seridization has the namespace identifier "http://www.w3.0rg/2001/06/soap-encoding"

« The SOAP mustUnderstand fault namespace identifier " http://www.w3.0rg/2001/06/soap-faults"

« The SOAP upgrade namespace identifier "http://www.w3.0rg/2001/06/soap-upgrade”

Schema documents for these namespaces can be found by dereferencing the namespace identifiers.

A SOAP message MUST NOT contain a Document Type Declaration. A SOAP message MUST NOT contain Processing
Instructions. [7]

SOAP usesthe local, unqualified "id" attribute of type "ID" to specify the unique identifier of an encoded element. SOAP
uses the local, unqualified attribute "href" of type "anyURI" to specify areference to that value, in amanner conforming to
the XML Specification [7], XML Schema Specification [11], and XML Linking Language Specification [9].

With the exception of the SOAP mustUnderstand attribute (see section 4.2.3) and the SOAP actor attribute (see section
4.2.2), itisgenerally permissible to have attributes and their values appear in XML instances or alternatively in schemas,
with equal effect. That is, declarationin aDTD or schemawith adefault or fixed value is semantically equivaent to
appearance in an instance.

4. SOAP Envelope

A SOAP message isan XML document that consists of a mandatory SOAP envelope, an optional SOAP Header, and a
mandatory SOAP Body. This XML document is referred to as a SOAP message for the rest of this specification. The
namespace identifier for the elements and attributes defined in this section is " http://www.w3.0rg/2001/06/soap-envel ope".

A SOAP message contains the following:

« A SOAP envelope. Thisisthe top element of the XML document representing the SOAP message.

« A SOAP Header. Thisis ageneric mechanism for adding features to a SOAP message in a decentralized manner
without prior agreement between the communicating parties (a SOAP sender, a SOAP receiver, and possibly one or
more SOAP intermediaries). SOAP defines afew attributes that can be used to indicate who should deal with a
feature and whether it is optional or mandatory (see section 4.2)

« A SOAP Body. Thisisacontainer for mandatory information intended for the ultimate SOAP receiver (see section
4.3). SOAP defines a SOAP fault for reporting errors.

The grammar rules are as follows:
1. SOAP envelope
o The element nameis "Envelope".

o Theelement MUST be present in a SOAP message

http://iwww.w3.0rg/TR/2001/WD-so0ap12-20010709/ (10 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-envelope
http://www.w3.org/2001/06/soap-encoding
http://www.w3.org/2001/06/soap-faults
http://www.w3.org/2001/06/soap-upgrade
http://www.w3.org/2001/06/soap-envelope

SOAP Version 1.2

o Theeement MAY contain namespace declarations as well as additional attributes. If present, such additional
attributes MUST be namespace-qualified. Similarly, the element MAY contain additional sub-elements. If
present these sub-elements MUST be namespace-qualified and MUST come immediately after the SOAP
Body.

2. SOAP Header (see section 4.2)
o The element nameis "Header".

o Theelement MAY be present in a SOAP message. If present, the element MUST be the first immediate child
element of a SOAP envelope.

o Theelement MAY contain a set of SOAP header blocks, each being an immediate child element of the SOAP
Header. All immediate child elements of the SOAP Header MUST be namespace-qualified.

3. SOAP Body (see section 4.3)
o The element nameis "Body".

o Theelement MUST be present in a SOAP message and MUST be an immediate child element of a SOAP
Envelope. It MUST come immediately after the SOAP Header, if present. Otherwise, it MUST be the first
immediate child element of the SOAP envelope.

o Theelement MAY contain a set of SOAP body blocks, each being an immediate child element of the SOAP
Body. Immediate child elements of the SOAP Body MAY be namespace-qualified. At most one child element
MAY be a SOAP fault. The SOAP fault is used to carry error information (see section 4.4).

4.1.1 SOAP encodingStyle Attribute

The SOAP encodingStyle global attribute can be used to indicate the serialization rules used in a SOAP message. This
attribute MAY appear on any element, and is scoped to that element'’s contents and all child elements not themselves
containing such an attribute, much as an XML namespace declaration is scoped. There is no default encoding defined for a
SOAP message.

The attribute value is an ordered list of one or more URIs identifying the serialization rule or rules that can be used to
deserialize the SOAP message indicated in the order of most specific to least specific. Example 3 shows three sample values
for the encodingStyle attribute.

Example 3

encodi ngStyl e="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
encodi ngStyl e="http://exanpl e. org/ encodi ng/restricted http://exanpl e. org/ encodi ng/"
encodi ngStyl e=""

Example values for the encodingStyle attribute

The serialization rules defined by SOAP in section 5 are identified by the URI
"http://www.w3.0rg/2001/06/soap-encoding”. SOAP messages using this particular serialization SHOULD indicate this
using the SOAP encodingStyle attribute. In addition, all URIs syntactically beginning with
"http://www.w3.0rg/2001/06/soap-encoding” indicate conformance with the SOAP encoding rules defined in section 5
(though with potentially tighter rules added).

A value of the zero-length URI ("") explicitly indicates that no claims are made for the encoding style of contained
elements. This can be used to turn off any claims from containing elements.

4.1.2 Envelope Versioning Model

SOAP does not define atraditional versioning model based on major and minor version numbers. A SOAP message MUST
contain a SOAP envelope associated with the " http://www.w3.0rg/2001/06/soap-envel ope” namespace. If a SOAP message

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (11 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-encoding
http://www.w3.org/2001/06/soap-encoding
http://www.w3.org/2001/06/soap-envelope

SOAP Version 1.2

isreceived by a SOAP node in which the SOAP envelope is associated with a different namespace, the SOAP node MUST
treat thisas aversion error and generate a VersionMismatch SOAP fault (see section 4.4). A SOAP VersionMismatch fault

message MUST use the SOAP/1.1 envel ope namespace " http://schemas.xml soap.org/soap/envel ope/” (see Appendix C).

4.2 SOAP Header

SOAP provides a flexible mechanism for extending a SOAP message in a decentralized and modular way without prior
knowledge between the communicating parties. Typical examples of extensions that can be implemented as SOAP header
blocks are authentication, transaction management, payment, etc.

The SOAP Header is encoded as the first immediate child element of the SOAP envelope. All immediate child elements of
the SOAP Header are called SOAP header blocks.

The encoding rules for SOAP header blocks are as follows:

1. A SOAP header block isidentified by its fully qualified element name, which consists of the namespace URI and the
local name. All immediate child elements of the SOAP Header MUST be namespace-qualified.

2. The SOAP encodingStyle attribute MAY be used to indicate the encoding style used for the SOAP header blocks (see
section 4.1.1).

3. The SOAP actor attribute (see section 4.2.2) and SOAP mustUnderstand attribute (see section 4.2.3) MAY be used to
indicate which SOAP node will process the SOAP header block, and how it will be processed (see section 4.2.1).

4.2.1 Use of Header Attributes

The SOAP Header attributes defined in this section determine how a SOAP receiver should process an incoming SOAP
message, as described in section 2. A SOAP sender generating a SOAP message SHOULD only use the SOAP Header
attributes on immediate child elements of the SOAP Header. A SOAP receiver MUST ignore all SOAP Header attributes
that are not applied to an immediate child element of the SOAP Header.

An example is a SOAP header block with an element identifier of "Transaction”, a"mustUnderstand” value of "1", and a
value of 5, as shown in Example 4.

Example 4

<env: Header xm ns:env="http://ww. w3. org/ 2001/ 06/ soap- envel ope" >
<t:Transaction xmns:t="http://exanple.org/ 2001/ 06/tx" env:nust Under st and="1" >
5
</t:Transaction>
</ env: Header >

Example header with a single header block
4.2.2 SOAP actor Attribute

EdNote: This section partially overlaps with section 2. We expect thisto be reconciled in a future revision of the
specification.

A SOAP message travels from an initial SOAP sender to an ultimate SOAP receiver, potentially passing through a set of
SOAP intermediaries along a SOAP message path. Both intermediaries as well as the ultimate SOAP receiver are identified
by aURI.

Not al parts of a SOAP message may be intended for the ultimate SOAP receiver. They may be intended instead for one or
more SOAP intermediaries on the SOAP message path. However, a SOAP intermediary MUST NOT forward further a
SOAP header block intended for it. Thiswould be considered as a breach of contract, the contract being only between the
SOAP node which generated the SOAP header block, and the SOAP intermediary itself. However, the SOAP intermediary
MAY instead insert asimilar SOAP header block, which effectively sets up a new contract between that SOAP
intermediary and the SOAP node at which the SOAP header block is targeted.

http://iwww.w3.0rg/TR/2001/WD-s0ap12-20010709/ (12 of 47) [7/18/2001 10:21:54 AM]

http://schemas.xmlsoap.org/soap/envelope/

SOAP Version 1.2

The SOAP actor global attribute can be used to indicate the SOAP node at which a particular SOAP header block is
targeted. The value of the SOAP actor attribute isa URI. The special URI

"http://www.w3.0rg/2001/06/soap-envel ope/actor/next” indicates that the SOAP header block is intended for the very first
SOAP node that processes the message. Thisis similar to the hop-by-hop scope model represented by the Connection
header field inHTTP.

Omitting the SOAP actor attribute indicates that the SOAP header block istargeted at the ultimate SOAP receiver.
This attribute MUST appear in the SOAP message itself in order to be effective, and not in an eventual corresponding XML
Schema (see section 3 and 4.2.1).

4.2.3 SOAP mustUnderstand Attribute

EdNote: This section partially overlaps with section 2. We expect this to be reconciled in afuture revision of the
specification.

The SOAP mustUnderstand global attribute can be used to indicate whether the processing of a SOAP header block is
mandatory or optional at the target SOAP node. The target SOAP node itself is defined by the SOAP actor attribute (see
section 4.2.2). The value of the SOAP mustUnderstand attribute is either "1" or "0". The absence of this attribute is

semantically equivalent to its presence with the value "0", which means processing the block is optional.

When a SOAP header block is tagged with a SOAP mustUnderstand attribute with avalue of "1", the targeted SOAP node
MUST: either process the SOAP block according to the semantics conveyed by the fully qualified name of the outer-most
element of that block; or not process the SOAP message at al, and fail (see section 4.4).

The SOAP mustUnderstand attribute allows for robust evolution. Elements tagged with the SOAP mustUnderstand attribute
with avalue of "1" MUST be presumed to somehow modify the semantics of their parent or peer elements. Tagging
elements in this manner assures that this change in semantics will not be silently (and, presumably, erroneously) ignored by
those who may not fully understand it.

This attribute MUST appear in the SOAP message itself in order to be effective, and not in an eventual corresponding XML
Schema (see section 3 and 4.2.1).

4.3 SOAP Body

The SOAP Body element provides a simple mechanism for exchanging mandatory information intended for the ultimate
SOAP receiver of a SOAP message. Typical uses of SOAP Body include marshalling RPC calls and error reporting.

The SOAP Body element is an immediate child element of a SOAP envelope. If a SOAP Header is present then the SOAP
Body MUST immediately follow the SOAP Header, otherwise it MUST be the first immediate child el ement of the SOAP
envelope.

All immediate child elements of the SOAP Body are called SOAP body blocks, and each SOAP body block is encoded as
an independent element within the SOAP Body.

The encoding rules for SOAP body blocks are as follows:

1. A SOAP body block isidentified by its fully qualified element name, which consists of the namespace URI and the
local name. Immediate child elements of the SOAP Body element MAY be namespace-qualified.

2. The SOAP encodingStyle attribute MAY be used to indicate the encoding style used for the SOAP body blocks (see
section 4.1.1).

SOAP defines one particular SOAP body block, the SOAP fault, which is used for reporting errors (see section 4.4).

4.3.1 Relationship between SOAP Header and Body

While both SOAP Header and SOAP Body are defined as independent elements, they are in fact related. The relationship

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (13 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-envelope/actor/next

SOAP Version 1.2

between a SOAP body block and a SOAP header block is as follows: a SOAP body block is semantically equivalent to a
SOAP header block targeted at the anonymous actor and with a SOAP mustUnderstand attribute with avalue of "1". The
anonymous actor isindicated by omitting the actor attribute (see section 4.2.2).

4.4 SOAP Fault

The SOAP fault is used to carry error and/or status information within a SOAP message. If present, the SOAP fault MUST
appear as a SOAP body block and MUST NOT appear more than once within a SOAP Body.

The SOAP Fault defines the following four sub-elements:
faultcode

The faultcode element is intended for use by software to provide an algorithmic mechanism for identifying the fault.
The faultcode MUST be present in a SOAP fault and the faultcode value MUST be a qualified name as defined in [8],

section 3. SOAP defines asmall set of SOAP fault codes covering basic SOAP faults (see section 4.4.1)
faultstring

The faultstring element is intended to provide a human readable explanation of the fault and is not intended for
algorithmic processing. The faultstring element is similar to the 'Reason-Phrase’ defined by HTTP (see [5], section
6.1). It MUST be present in a SOAP fault and SHOULD provide at least some information explaining the nature of
the fault.

faultactor

The faultactor element is intended to provide information about which SOAP node on the SOAP message path
caused the fault to happen (see section 2). It issimilar to the SOAP actor attribute (see section 4.2.2) but instead of
indicating the target of a SOAP header block, it indicates the source of the fault. The value of the faultactor attribute
isaURI identifying the source. SOAP nodes that do not act as the ultimate SOAP receiver MUST include the
faultactor element in the SOAP fault. The ultimate SOAP receiver MAY use the faultactor element to indicate
explicitly that it generated the fault (see also the detail element below).

detail

The detail element isintended for carrying application specific error information related to the SOAP Body. It MUST
be present when the contents of the SOAP Body could not be processed successfully . It MUST NOT be used to carry
error information about any SOAP header blocks. Detailed error information for SOAP header blocks MUST be
carried within the SOAP header blocks themselves, see section 4.4.2 for an example.

The absence of the detail element in the SOAP fault indicates that the fault is not related to the processing of the
SOAP Body. This can be used to find out whether the SOAP Body was at least partially processed by the ultimate
SOAP receiver before the fault occurred, or not.

All immediate child elements of the detail element are called detail entries, and each detail entry is encoded as an
independent element within the detail element.

The encoding rules for detail entries are as follows (see also example 10):

1. A detail entry isidentified by its fully qualified element name, which consists of the namespace URI and the
local name. Immediate child elements of the detail element MAY be namespace-qualified.

2. The SOAP encodingStyle attribute MAY be used to indicate the encoding style used for the detail entries (see
section 4.1.1).

4.4.1 SOAP Fault Codes

The SOAP faultcode values defined in this section MUST be used in the SOAP faultcode element when describing faults
defined by this specification. The namespace identifier for these SOAP faultcode valuesis

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (14 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

"http://www.w3.0rg/2001/06/soap-envel ope”. Use of this space is recommended (but not required) in the specification of
methods defined outside of the present specification.

The default SOAP faultcode values are defined in an extensible manner that allows for new SOAP faultcode values to be
defined while maintaining backwards compatibility with existing SOAP faultcode values. The mechanism used is very
similar to the 1xx, 2xx, 3xx etc basic status classes classes defined in HTTP (see [5] section 10). However, instead of
integers, they are defined as XML qualified names (see [8] section 3). The character "." (dot) is used as a separator of SOAP
faultcode values indicating that what isto the left of the dot is a more generic fault code value than the value to the right.
Thisisillustrated in Example 5.

Example 5

Client. Aut hentication

Example of an authentication fault code
The faultcode values defined by SOAP are listed in the following table.

| Name | Meaning
|Versi onMismatch |The processing party found an invalid namespace for the SOAP envel ope element (see section 4.1.2)

Animmediate child element of the SOAP Header element that was either not understood or not obeyed
MustUnderstand |by the processing party contained a SOAP mustUnderstand attribute with a value of "1" (see section
4.2.3)

The Client class of errorsindicate that the message was incorrectly formed or did not contain the
appropriate information in order to succeed. For example, the message could lack the proper
authentication or payment information. It is generally an indication that the message should not be
resent without change. See also section 4.4 for a description of the SOAP Fault detail sub-element.

The Server class of errorsindicate that the message could not be processed for reasons not directly
attributabl e to the contents of the message itself but rather to the processing of the message. For
Server example, processing could include communicating with an upstream SOAP node, which did not
respond. The message may succeed at alater point in time. See also section 4.4 for a description of the
SOAP Fault detail sub-element.

Client

4.4.2 MustUnderstand Faults

When a SOAP node generates a MustUnderstand fault, it SHOULD provide, in the generated fault message, header blocks
as described below which detail the qualified names (QNames, per the XML Schema Datatypes specification) of the
particular header block(s) which were not understood.

Each such header block has alocal name of Misunderstood and a namespace name of
"http://www.w3.0rg/2001/06/soap-faults'. Each block has an unqualified attribute with alocal name of gname whose value
isthe QName of a header block which the faulting node failed to understand.

For example, the message shown in Example 6 will result in the fault message shown in Example 7 if the recipient of the
initial message does not understand the two header elementsabc: Ext ensi onl and def : Ext ensi on2.

Example 6

<env: Envel ope xm ns:env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope' >
<env: Header >
<abc: Ext ensi onl xm ns: abc="http://exanpl e. org/ 2001/ 06/ ext"
env: must Under stand="1" />
<def : Ext ensi on2 xm ns: def="http://exanpl e.com stuff’
env: nust Under stand="1" />
</ env: Header >
<env: Body>

.</ .en;/: Body>

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (15 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-envelope

SOAP Version 1.2

</ env: Envel ope>
SOAP envelope that will cause a SOAP MustUnderstand fault if Extensionl or Extension2 are not understood

Example 7

<env: Envel ope xm ns:env="http://ww. W3. or g/ 2001/ 06/ soap- envel ope
xm ns: f="http://ww. w3. org/ 2001/ 06/ soap-faults' >
<env: Header >
<f: M sunder st ood gnane=' abc: Ext ensi onl
xm ns: abc="http://exanpl e. org/ 2001/ 06/ ext' />
<f: M sunder st ood gnane="' def: Ext ensi on2
xm ns: def =" http://exanpl e.com stuff' />
</ env: Header >
<env: Body>
<env: Faul t >
<f aul t code>Must Under st and</ f aul t code>
<faultstring>One or nore nandatory headers not understood</faultstring>
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

SOAP fault generated as aresult of not understanding Extensionl and Extension2 in Example 6

Note that there is no requirement that the namespace prefix returned in the value of the gname attribute match the
namespace prefix of the original header element. Provided the prefix maps to the same namespace name the faulting node
may use any prefix.

Note also that there is no guarantee that each MustUnderstand error contains ALL misunderstood header QNames. SOAP
nodes MAY generate a fault after the first header block that causes an error containing details about that single header block
only, aternatively SOAP nodes MAY generate a combined fault detailing all of the MustUnderstand problems at once.

5. SOAP Encoding

The SOAP encoding style is based on a simple type system that is a generalization of the common features found in type
systems in programming languages, databases and semi-structured data. A type either isa simple (scalar) typeorisa
compound type constructed as a composite of several parts, each with atype. Thisis described in more detail below. This
section defines rules for serialization of a graph of typed objects. It operates on two levels. First, given a schemain any
notation consistent with the type system described, a schemafor an XML grammar may be constructed. Second, given a
type-system schema and a particular graph of values conforming to that schema, an XML instance may be constructed. In
reverse, given an XML instance produced in accordance with these rules, and given aso the original schema, a copy of the
original value graph may be constructed.

The namespace identifier for the elements and attributes defined in this section is
"http://www.w3.0rg/2001/06/soap-encoding”. The encoding samples shown assume all namespace declarations are at a

higher element level.

Use of the data model and encoding style described in this section is encouraged but not required; other data models and
encodings can be used in conjunction with SOAP (see section 4.1.1).

5.1 Rules for Encoding Types in XML

XML allows very flexible encoding of data. SOAP defines a narrower set of rules for encoding. This section defines the
encoding rules at ahigh level, and the next section describes the encoding rules for specific types when they require more
detail. The encodings described in this section can be used in conjunction with the mapping of RPC calls and responses
specified in Section 7.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (16 of 47) [7/18/2001 10:21:54 AM]

http://www.w3.org/2001/06/soap-encoding

SOAP Version 1.2

To describe encoding, the following terminology is used:

1

10.

11.

A "value" isastring, the name of a measurement (number, date, enumeration, etc.) or acomposite of several such
primitive values. All values are of specific types.

A "simple value" is one without named parts. Examples of simple values are particular strings, integers, enumerated
values etc.

A "compound value" is an aggregate of relations to other values. Examples of Compound Values are particular
purchase orders, stock reports, street addresses, etc.

Within a compound value, each related value is potentially distinguished by arole name, ordinal or both. Thisis
called its "accessor." Examples of compound values include particular Purchase Orders, Stock Reports etc. Arrays are
also compound values. It is possible to have compound values with several accessors each named the same, as for
example, RDF does.

An"array" isacompound value in which ordinal position serves as the only distinction among member values.

A "struct" isacompound value in which accessor name is the only distinction among member values, and no
accessor has the same name as any other.

A "simple type" isaclass of simple values. Examples of simple types are the classes called "string,” "integer,"
enumeration classes, etc.

A "compound type" is aclass of compound values. An example of a compound type is the class of purchase order
values sharing the same accessors (shipTo, total Cogt, etc.) though with potentially different values (and perhaps
further constrained by limits on certain values).

Within a compound type, if an accessor has a name that is distinct within that type but is not distinct with respect to
other types, that is, the name plus the type together are needed to make a unique identification, the nameis called
"locally scoped.” If however the name is based in part on a Uniform Resource Identifier, directly or indirectly, such
that the name aloneis sufficient to uniquely identify the accessor irrespective of the type within which it appears, the
nameis called "universally scoped.”

Given the information in the schemarelative to which a graph of valuesis serialized, it is possible to determine that
some values can only be related by a single instance of an accessor. For others, it is not possible to make this
determination. If only one accessor can reference it, avalueis considered "single-reference”. If referenced by more
than one, actually or potentialy, it is"multi-reference.” Note that it is possible for a certain value to be considered

"single-reference” relative to one schema and "multi-reference” relative to another.

Syntactically, an element may be "independent” or "embedded.” An independent element is any element appearing at
the top level of aserialization. All others are embedded elements.

Although it is possible to use the xsi:type attribute such that a graph of valuesis self-describing both in its structure and the
types of its values, the serialization rules permit that the types of values MAY be determinate only by reference to a schema.
Such schemas MAY be in the notation described by "XML Schema Part 1: Structures’ [10] and "XML Schema Part 2:

Datatypes' [11] or MAY bein any other notation. Note aso that, while the serialization rules apply to compound types
other than arrays and structs, many schemas will contain only struct and array types.

Therulesfor serialization are as follows:

1

All values are represented as element content. A multi-reference value MUST be represented as the content of an
independent element. A single-reference value SHOULD not be (but MAY be).

For each element containing a value, the type of the value MUST be represented by at |east one of the following
conditions: (@) the containing element instance contains an xsi:type attribute, (b) the containing element instanceis
itself contained within an element containing a (possibly defaulted) enc:arrayType attribute or (c) or the name of the
element bears a definite relation to the type, that type then determinable from a schema.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (17 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

3. A simplevalueisrepresented as character data, that is, without any subelements. Every simple value must have a
typethat is either listed in the XML Schemas Specification, part 2 [11] or whose source type is listed therein (see also

section 5.2).

4. A Compound Valueis encoded as a sequence of elements, each accessor represented by an embedded element whose
name corresponds to the name of the accessor. Accessors whose names are local to their containing types have
unqualified element names; all others have qualified names (see also section 5.4).

5. A multi-reference simple or compound value is encoded as an independent element containing alocal, unqualified
attribute named "id" and of type "ID" per the XML Specification [7]. Each accessor to this value is an empty element

having alocal, unqualified attribute named "href" and of type "uri-reference” per the XML Schema Specification
[11], with a"href" attribute value of a URI fragment identifier referencing the corresponding independent element.

6. Strings and byte arrays are represented as multi-reference simple types, but special rules allow them to be represented
efficiently for common cases (see also section 5.2.1 and 5.2.3). An accessor to a string or byte-array value MAY have

an attribute named "id" and of type "ID" per the XML Specification [7]. If so, all other accessors to the same value

are encoded as empty elements having alocal, unqualified attribute named "href" and of type "uri-reference” per the
XML Schema Specification [11], with a"href" attribute value of a URI fragment identifier referencing the single

element containing the value.

7. Itispermissible to encode several references to a value as though these were references to several distinct values, but
only when from context it is known that the meaning of the XML instance is unaltered.

8. Arraysare compound values (see also section 5.4.2). SOAP arrays are defined as having atype of "enc:Array" or a
type derived there from.

SOAP arrays have one or more dimensions (rank) whose members are distinguished by ordinal position. An array
valueis represented as a series of elements reflecting the array, with members appearing in ascending ordinal
sequence. For multi-dimensional arrays the dimension on the right side varies most rapidly. Each member element is
named as an independent element (seerule 2).

SOAP arrays can be single-reference or multi-reference values, and consequently may be represented as the content
of either an embedded or independent element.

SOAP arrays MUST contain a"enc.array Type" attribute whose val ue specifies the type of the contained elements as
well as the dimension(s) of the array. The value of the "enc.arrayType" attribute is defined as follows:

arrayTypeVaue = atype asize

atype = QName*(rank)
rank =)
asize = "[" #length"]"
length = 1*DIGIT

The "atype" construct is the type name of the contained elements expressed as a QName as would appear in the
"type" attribute of an XML Schema element declaration and acts as a type constraint (meaning that al values of
contained elements are asserted to conform to the indicated type; that is, the type cited in enc.array Type must be the
type or a supertype of every array member). In the case of arrays of arrays or "jagged arrays", the type component is
encoded as the "innermost” type name followed by arank construct for each level of nested arrays starting from 1.
Multi-dimensional arrays are encoded using a comma for each dimension starting from 1.

The "asize" construct contains a comma separated list of zero, one, or more integers indicating the lengths of each
dimension of the array. A value of zero integers indicates that no particular quantity is asserted but that the size may
be determined by inspection of the actual members.

For example, an array with 5 members of type array of integers would have an array TypeVaue value of "int[][5]" of
which the atype valueis "int[]" and the asize value is "[5]". Likewise, an array with 3 members of type
two-dimensional arrays of integers would have an array TypeVaue value of "int[,][3]" of which the atype valueis

http://iwww.w3.0rg/TR/2001/WD-so0ap12-20010709/ (18 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

"int[,]" and the asize valueis"[3]".

A SOAP array member MAY contain a"enc:offset” attribute indicating the offset position of that item in the
enclosing array. This can be used to indicate the offset position of a partially represented array (see section 5.4.2.1).

Likewise, an array member MAY contain a"enc:position™ attribute indicating the position of that item in the
enclosing array. This can be used to describe members of sparse arrays (see section 5.4.2.2). The value of the

"enc:offset” and the "enc:position” attribute is defined as follows:
arrayPoint = "[" #length "]"
with offsets and positions based at 0.

9. A NULL value or adefault value MAY be represented by omission of the accessor element. A NULL value MAY
also be indicated by an accessor element containing the attribute xsi:null with value '1' or possibly other
application-dependent attributes and values.

Note that rule 2 allows independent elements and also elements representing the members of arrays to have names which
are not identical to the type of the contained value.

5.2 Simple Types

For simple types, SOAP adopts all the types found in the section "Built-in datatypes" of the "XML Schema Part 2:
Datatypes' Specification [11], both the value and lexical spaces. Examplesinclude:

| Type | Example

fint 58502

|f| oat |314159265358979E+1
Inegativel nteger |-32768

|string Louis " Satchmo" Armstrong

The datatypes declared in the XML Schema specification may be used directly in element schemas. Types derived from
these may also be used. For example, for the following schema:

Example 7

<!-- scherma docunent -->
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >

<xs: el enent name="age" type="xs:int" />
<xs: el enent name="hei ght" type="xs:float" />
<xs: el enent nanme="di spl acenent"” type="xs:negativelnteger" />
<xs: el enent name="col or" >
<xs:si npl eType base="xsd: string">
<xs:restriction base="xs:string" >
<xs:enuneration val ue="Geen"/>
<xs:enuneration val ue="Bl ue"/>
</xs:restriction>
</ xs: si npl eType>
</ xs: el enent >

</ xs: schema>
Schema with simple types

the following elements would be valid instances:
Example 8
<!-- Exanpl e instance el enents -->

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (19 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

<age>45</ age>

<hei ght >5. 9</ hei ght >

<di spl acenent >- 450</ di spl acenent >
<col or >Bl ue</ col or >

Message fragment corresponding to the schemain Example 7

All simple values MUST be encoded as the content of elements whose type is either defined in " XML Schema Part 2:
Datatypes' Specification [11], or is based on atype found there by using the mechanisms provided in the XML Schema

specification.

If asimple value is encoded as an independent element or member of a heterogenous array it is convenient to have an
element declaration corresponding to the datatype. Because the "XML Schema Part 2: Datatypes' Specification [11]

includes type definitions but does not include corresponding element declarations, the enc schema and namespace declares
an element for every simple datatype. These MAY be used.

Example 9
<enc:int xmns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng" id="int1l">45</enc:int>

5.2.1 Strings

The datatype "string" is defined in "XML Schema Part 2: Datatypes' Specification [11]. Note that thisis not identical to the

type called "string" in many database or programming languages, and in particular may forbid some characters those
languages would permit. (Those values must be represented by using some datatype other than xsd:string.)

A string MAY be encoded as a single-reference or a multi-reference value.

The containing element of the string value MAY have an "id" attribute. Additional accessor elements MAY then have
matching "href" attributes.

For example, two accessors to the same string could appear, as follows:

Example 10

<greeting id="String-0">Hel | o</ greeting>
<salutation href="#String-0"/>

Two accessors for the same string

However, if the fact that both accessors reference the same instance of the string (or subtype of string) isimmaterial, they
may be encoded as two single-reference values as follows:

Example 11

<greeting>Hel | o</ greeti ng>
<sal ut ati on>Hel | o</ sal ut ati on>

Two accessors for the same string

Schema fragments for these examples could appear similar to the following:
Example 12

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: enc="http://ww.w3. org/ 2001/ 06/ soap- encodi ng" >

<xs:inport nanespace="http://ww. w3. org/ 2001/ 06/ soap- encodi ng" />

<xs: el enent name="greeting" type="enc:string" />
<xs: el enent nanme="sal utation" type="enc:string" />

</ xs: schenma>
Schema for Example 11

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (20 of 47) [7/18/2001 10:21:54 AM]

SOAP Version 1.2

(In this example, the type enc:string is used as the element's type as a convenient way to declare an element whose datatype
is"xsd:string" and which aso allows an "id" and "href" attribute. See the SOAP Encoding schemafor the exact definition.
Schemas MAY use these declarations from the SOAP Encoding schema but are not required to.)

5.2.2 Enumerations

The"XML SchemaPart 2: Datatypes" Specification [11] defines a mechanism called "enumeration.” The SOAP data model

adopts this mechanism directly. However, because programming and other languages often define enumeration somewhat
differently, we spell-out the concept in more detail here and describe how avalue that is a member of an enumerated list of
possible valuesisto be encoded. Specifically, it is encoded as the name of the value.

"Enumeration” as a concept indicates a set of distinct names. A specific enumeration is a specific list of distinct values
appropriate to the base type. For example the set of color names ("Green", "Blue", "Brown™) could be defined as an
enumeration based on the string built-in type. The values ("1", "3", "5") are a possible enumeration based on integer, and so
on. "XML Schema Part 2: Datatypes’ [11] supports enumerations for all of the simple types except for boolean. The
language of "XML Schema Part 1: Structures" Specification [10] can be used to define enumeration types. If aschemais
generated from another notation in which no specific base type is applicable, use "string”. In the following schema example
"EyeColor" is defined as a string with the possible values of "Green”, "Blue”, or "Brown" enumerated, and instance datais
shown accordingly.
Example 13
<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns:tns="http://exanpl e. org/ 2001/ 06/ sanpl es"

t ar get Nanmespace="htt p: // exanpl e. or g/ 2001/ 06/ sanpl es" >

<xs: el enent nanme="EyeCol or" type="tns: EyeColor" />
<xs:si npl eType nane="EyeCol or" >
<xs:restriction base="xs:string" >
<xs:enuneration val ue="Geen" />
<xs:enuneration val ue="Blue" />
<xs:enuneration val ue="Brown" />
</xs:restriction>
</ xs: si npl eType>

</ xs: schema>
Schema with enumeration

Example 14
<p: EyeCol or xm ns: p="http://exanpl e. org/ 2001/ 06/ sanpl es" >Br own</ p: EyeCol or >
M essage fragment corresponding to the schemain Example 13

5.2.3 Array of Bytes

An array of bytesMAY be encoded as a single-reference or a multi-reference value. The rules for an array of bytes are
similar to those for a string.

In particular, the containing element of the array of bytesvalue MAY have an "id" attribute. Additional accessor elements
MAY then have matching "href" attributes.

The recommended representation of an opague array of bytesis the 'base64' encoding defined in XML Schemas[10][11],
which uses the base64 encoding algorithm defined in 2045 [13]. However, the line length restrictions that normally apply to
base64 datain MIME do not apply in SOAP. A "enc:base64" subtype is supplied for use with SOAP.

Example 15

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (21 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<pi cture xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
Xsi:type="enc: base64" >
a®931 GbvDyBi cni73bi Bj b3cNCg==
</ pi cture>

Image with base64 encoding

5.3 Polymorphic Accessor

Many languages allow accessors that can polymorphically access values of severa types, each type being available at run
time. A polymorphic accessor instance MUST contain an "xsi:type" attribute that describes the type of the actual value.

For example, a polymorphic accessor named "cost" with avalue of type "xsd:float" would be encoded as follows:
Example 16

<cost xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"
xsi:type="xs: fl oat">29. 95</ cost >

Polymorphic accessor

as contrasted with a cost accessor whose value's type is invariant, as follows:
Example 17

<cost >29. 95</ cost >

Accessor whose value type is invariant

5.4 Compound types

SOAP defines types corresponding to the following structural patterns often found in programming languages:
Struct

A "struct” is a compound value in which accessor name is the only distinction among member values, and no
accessor has the same name as any other.

Array
An"array" is acompound value in which ordinal position serves as the only distinction among member values.

SOAP also permits serialization of datathat is neither a Struct nor an Array, for example data such asisfound in a
Directed-L abeled-Graph Data Model in which a single node has many distinct accessors, some of which occur more than
once. SOAP serialization does not require that the underlying data model make an ordering distinction among accessors, but
if such an order exists, the accessors MUST be encoded in that sequence.

5.4.1 Compound Values, Structs and References to Values

The members of a Compound Value are encoded as accessor elements. When accessors are distinguished by their name (as
for example in a struct), the accessor name is used as the element name. Accessors whose names are local to their
containing types have unqualified element names; all others have qualified names.

The following is an example of a struct of type "Book™:

Example 18

<e: Book xm ns:e="http://exanpl e.org/ 2001/ 06/ books" >
<aut hor >Henry For d</ aut hor >
<preface>Prefactory text</preface>
<intro>This is a book.</intro>

</ e: Book>

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (22 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

Book structure

And thisis a schema fragment describing the above structure:
Example 19

<xs: el enment nanme="Book"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schema' >
<xs: conpl exType>
<Xs:sequence>
<xs: el enent nanme="aut hor" type="xs:string" />
<xs: el enent name="preface" type="xs:string" />
<xs:el enent name="intro" type="xs:string" />
</ Xxs: sequence>
</ xs: conpl exType>
</ xs: el ement >

Schemafor Example 18

Below is an example of atype with both smple and complex members. It shows two levels of referencing. Note that the
"href" attribute of the "Author" accessor element is areference to the value whose "id" attribute matches. A similar
construction appears for the "Address".

Example 20

<e: Book xm ns:e="http://exanpl e.org/ 2001/ 06/ books" >
<title>My Life and Work</title>
<aut hor href="#Person-1"/>
</ e: Book>
<e: Person xm ns:e="http://exanpl e.org/ 2001/ 06/ books"
i d="Person-1" >
<nane>Henry For d</ name>
<addr ess href="#Address-2"/>
</ e: Person>
<e: Address xm ns:e="http://exanpl e. org/ 2001/ 06/ books"
i d=" Addr ess-2" >
<emui | >mai | t o: henryf ord@ot nai |l . conx/ emai | >
<web>ht t p: / / www. henr yf or d. conx/ web>
</ e: Addr ess>

Book with muli-reference addresses

The form above is appropriate when the "Person” value and the "Address' value are multi-reference. If these were instead
both single-reference, they SHOULD be embedded, as follows:

Example 21

<e: Book xm ns:e="http://exanple.org/ 2001/ 06/ books" >
<title>My Life and Work</title>
<aut hor >
<nane>Henry For d</ nanme>
<addr ess>
<emai | >mai | t o: henryford@ot mai |l . conx/ enai | >
<web>htt p: // ww. henryford. cons/ web>
</ addr ess>
</ aut hor >
</ e: Book>

Book with single-reference addresses

If instead there existed arestriction that no two persons can have the same address in a given instance and that an address
can be either a Street-address or an Electronic-address, a Book with two authors would be encoded as follows:

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (23 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

Example 22

<e: Book xm ns:e="http://exanpl e.org/ 2001/ 06/ books" >
<title>My Life and Work</title>
<firstauthor href="#Person-1"/>
<secondaut hor href ="#Person-2"/>
</ e: Book>
<e: Person xm ns:e="http://exanpl e. org/ 2001/ 06/ books"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
i d="Person-1" >
<nane>Henry For d</ name>
<address xsi:type="e: El ectroni cAddr essType" >
<emai | >mai | t o: henryford@ot mai |l . conx/ emai | >
<web>htt p: // ww. henr yf or d. conx/ web>
</ addr ess>
</ e: Per son>
<e: Person xm ns:e="http://exanpl e. org/ 2001/ 06/ books"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
i d="Per son-2">
<nanme>Sanuel Crow her </ nane>
<address xsi:type="e: Street Addr essType" >
<street>Martin Luther King Rd</street>
<ci ty>Ral ei gh</city>
<state>North Carolina</state>
</ addr ess>
</ e: Per son>

Book with two authors having different addresses

Serializations can contain references to values not in the same resource:
Example 23

<e: Book xm ns:e="http://exanple.org/ 2001/ 06/ books" >
<title>Paradi se Lost</title>
<firstAuthor href="http://ww.dartnouth.edu/~nmilton/" />
</ e: Book>

Book with external references

And thisis a schema fragment describing the above structures:
Example 24

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns:tns="http://exanpl e. org/ 2001/ 06/ books"
t ar get Nanespace="http:// exanpl e. org/ 2001/ 06/ books" >

<xs: el enent name="Book" type="tns: BookType" />
<xs: conpl exType name="BookType" >
<xs:annot ati on>
<xs: docunent ati on>
<i nf o>
Either the follow ng group nmust occur or else the
href attribute nust appear, but not both.
</info>
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:sequence m nCccurs="0" nmaxCccurs="1" >
<xs: el enent nane="title" type="xs:string" />

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (24 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<xs: el enment name="firstAuthor" type="tns: PersonType" />

<xs: el enent nanme="secondAut hor" type="tns: PersonType" />

</ Xxs: sequence>
<xs:attribute name="href" type="xs:anyURl " />
<xs:attribute name="id" type="xs:I1D" />
<xs:anyAttribute nanespace="##other" />

</ xs: conpl exType>

<xs: el enent nanme="Person" type="tns:PersonType" />
<xs: conpl exType nane="PersonType" >
<xs:annot ati on>
<xs: docunent ati on>
<i nf 0>
Either the follow ng group nust occur or else the
href attribute nust appear, but not both.
</info>
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:sequence m nCccurs="0" maxCccurs="1" >
<xs: el enent name="nane" type="xs:string" />
<xs: el enent nanme="address" type="tns: AddressType" />
</ Xxs: sequence>
<xs:attribute name="href" type="xs:anyURl " />
<xs:attribute name="id" type="xs:I1D" />
<xs:anyAttribute nanespace="##other" />
</ xs: conpl exType>

<xs: el enent name="Address" base="tns: AddressType" />
<xs: conpl exType name="AddressType" abstract="true" >
<xs:annot ati on>
<xs: docunent ati on>
<i nf o>
Ei ther one of the foll ow ng sequences nust occur or
el se the href attribute nust appear, but not
</info>
</ xs: docunent ati on>
</ xs: annot ati on>
<xs: choi ce>
<xs:sequence m nCccurs="0" maxCccurs="1" >
<xs: el enent name="email" type="xs:string" />
<xs: el enent name="web" type="xs:anyURI" [>
</ Xs: sequence>
<xs:sequence m nCccurs="0" maxCccurs="1" >
<xs: el enent nane="street" type="xs:string" />
<xs:el enent name="city" type="xs:string" />
<xs: el enent nane="state" type="xs:string"/>
</ Xs: sequence>
</ xs: choi ce>
<xs:attribute name="href" type="xs:anyURlI"/>
<xs:attribute name="id" type="xs:1D'/>
<xs:anyAttribute nanespace="##other"/>
</ xs: conpl exType>

<xs: conpl exType nanme="Street AddressType" >

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (25 of 47) [7/18/2001 10:21:55 AM]

bot h.

SOAP Version 1.2

<xs:annot ati on>
<xs: docunent ati on>
<i nf o>
Ei ther the second sequence in the follow ng group
must occur or else the href attribute nmust appear,
but not both.
</i nfo>
</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exCont ent >
<xs:restriction base="tns: AddressType" >
<XS:sequence>
<xs:sequence m nCccurs="0" nmaxCccurs="0" >
<xs: el enent nane="email" type="xs:string" />
<xs: el enent nane="web" type="xs:anyURI" />
</ Xxs: sequence>
<xs:sequence m nCccurs="0" nmaxCccurs="1">
<xs: el enent nane="street" type="xs:string" />
<xs: el enent name="city" type="xs:string" />
<xs: el enent nanme="state" type="xs:string"/>
</ Xs: sequence>
</ xs: sequence>
<xs:attribute name="href" type="xs:anyURl "/>
<xs:attribute nanme="id" type="xs:1D'/>
<xs:anyAttribute nanespace="##ot her"/>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: conpl exType nanme="El ectroni cAddr essType" >
<xs:annot ati on>
<xs: docunent ati on>
<i nf 0>
Either the first sequence in the follow ng group
must occur or else the href attribute nust appear,
but not both.
</info>
</ xs: docunent ati on>
</ xs:annot ati on>
<xs: conpl exCont ent >
<xs:restriction base="tns: AddressType" >
<XS:sequence>
<xs:sequence m nCccurs="0" nmaxCccurs="1">
<xs: el enent nane="email" type="xs:string" />
<xs: el enent name="web" type="xs:anyURl" />
</ Xxs: sequence>
<xs:sequence m nCccurs="0" nmaxCccurs="0">
<xs: el enent nane="street" type="xs:string" />
<xs: el enent nane="city" type="xs:string" />
<xs: el enent name="state" type="xs:string"/>
</ Xxs: sequence>
</ Xs: sequence>
<xs:attribute name="href" type="xs:anyURl "/>
<xs:attribute nanme="id" type="xs:1D'/>

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (26 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<xS:anyAttribute nanespace="##other"/>
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

</ xs: schema>
Schema for example 22

5.4.2 Arrays

SOAP arrays are defined as having atype of enc:Array or aderived type having that type in its derivation hierarchy (see
also rule 8). Such derived types would be restrictions of the enc:Array type and could be used to represent, for example,
arrays limited to integers or arrays of some user-defined enumeration. Arrays are represented as element values, with no
specific constraint on the name of the containing element (just as values generally do not constrain the name of their
containing element). The elements which make up the array can themselves can be of any type, including nested arrays.

The representation of the value of an array is an ordered sequence of elements constituting the items of the array. Within an
array value, element names are not significant for distinguishing accessors. Elements may have any name. In practice,
elements will frequently be named so that their declaration in a schema suggests or determines their type. Aswith
compound types generally, if the value of an item in the array is a single-reference value, the item contains its value.
Otherwise, the item referencesits value viaan "href" attribute.

The following example is a schema fragment and an array containing integer array members:
Example 25

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng" >
<xs:inport nanespace="http://ww. w3. org/ 2001/ 06/ soap- encodi ng" />
<xs: el enent nanme="nyFavoriteNunbers" type="enc: Array" />

</ xs: schema>

Schema declaring an array of integers

Example 26

<nyFavoriteNunbers xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: enc="http://ww.w3. org/ 2001/ 06/ soap- encodi ng"
enc: arrayType="xs:int[2]" >
<nunber >3</ nunber >
<nunber >4</ nunber >
</ myFavorit eNunber s>

Array conforming to the schemain Example 25

In that example, the array myFavoriteNumbers contains severa members each of which isavalue of type xs.int. This can
be determined by inspection of the enc:array Type attribute. Note that the enc:Array type alows both unqualified element
names and qualified element names from any namespace. These convey no type information, so when used they must either
have an xsi:type attribute or the containing element must have a enc:array Type attribute. Naturally, types derived from
enc:Array may declare local elements, with type information.

As previously noted, the enc schema contains declarations of elements with names corresponding to each simple type in the
"XML Schema Part 2: Datatypes' Specification [11]. It also contains a declaration for "Array". Using these, we might

write:
Example 27

<enc: Array xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (27 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

enc: ArrayType="xs:int[2]" >
<enc:int>3</enc:int>
<enc:int>4</enc:int>
</ enc: Array>

Using the enc:Array element

Arrays can contain instances of any subtype of the specified arrayType. That is, the members may be of any typethat is
substitutable for the type specified in the array Type attribute, according to whatever substitutability rules are expressed in
the schema. So, for example, an array of integers can contain any type derived from integer (for example "int" or any
user-defined derivation of integer). Similarly, an array of "address" might contain arestricted or extended type such as
"international Address". Because the supplied enc:Array type admits members of any type, arbitrary mixtures of types can
be contained unless specificaly limited by use of the array Type attribute.

Types of member elements can be specified using the xsi:type attribute in the instance, or by declarations in the schema of
the member elements, as the following two arrays demonstrate respectively:

Example 28

<enc: Array xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"
enc: arrayType="xs: anyType[4] ">
<thing xsi:type="xs:int">12345</t hi ng>
<t hing xsi:type="xs: deci mal ">6.789</t hi ng>
<thing xsi:type="xs:string">
O Mans First Disobedience, and the Fruit
O that Forbidden Tree, whose nortal tast
Brought Death into the Wrld, and all our woe,
</ t hi ng>
<thing xsi:type="xs:anyURl ">
http://ww. dart nout h. edu/ ~m | t on/ r eadi ng_r oom
</ t hi ng>
</ enc: Array>

Array with elements of varying types

example 29

<enc: Array xmns:xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
enc: arrayType="xs: anyType[4]" >
<enc:int>12345</enc:int>
<enc: deci mal >6. 789</ enc: deci mal >
<enc:string>
O Mans First Disobedience, and the Fruit
O that Forbidden Tree, whose nortal tast
Brought Death into the Wrld, and all our woe,
</ enc:string>
<enc: anyURI >
http://ww. dart nout h. edu/ ~m | t on/ r eadi ng_r oom
</ enc:anyURl >
</enc: Array>

Array with elements of varying types

Array values may be structs or other compound values. For example an array of "xyz:Order" structs :
Example 30

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (28 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<enc: Array xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns: xyz="http://exanpl e. org/ 2001/ 06/ Or der s"
enc: arrayType="xyz: Order[2] ">
<Order>
<Pr oduct >Appl e</ Pr oduct >
<Price>1.56</Price>
</ Order >
<Or der >
<Pr oduct >Peach</ Pr oduct >
<Price>1.48</Price>
</ Order >
</ enc: Array>

Arrays containing structs and other compound values

Arrays may have other arrays as member values. The following is an example of an array of two arrays, each of which isan
array of strings.

Example 31

<enc: Array xm ns:xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns:enc="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
enc: arrayType="xs:string[][2]" >
<item href="#array-1"/>
<item href="#array-2"/>
</enc: Array>
<enc: Array xm ns:xs="http://ww. w3. org/ 2001/ XM_Schema"
xm ns: enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
I d="array-1"
enc: arrayType="xs:string[2]">
<itenprlcl</itenp
<itenprlc2</itenr
<itenprlc3</itenr
</enc: Array>
<enc: Array xm ns:xs="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: enc="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
i d="array-2"
enc: arrayType="xs:string[2]">
<itenpr2cl</itenr
<itenpr2c2</itenpr
</enc: Array>

Array containing other arrays

The element containing an array value does not need to be named "enc:Array". It may have any name, provided that the
type of the element is either enc:Array or is derived from enc:Array by restriction. For example, the following is a fragment
of aschema and a conforming instance array:

Example 32
<xs:schema xm ns: xs="http://ww. wW3. or g/ 2001/ XM_Schema"
xm ns: enc="http://ww.w3. org/ 2001/ 06/ soap- encodi ng"

xm ns:tns="http://exanpl e. org/ 2001/ 06/ nunber s"
t ar get Nanespace="htt p: // exanpl e. or g/ 2001/ 06/ nunbers" >

<xs:si npl eType nane="phoneNunber Type" >

<xs:restriction base="xs:string" />
</ xs:si npl eType>

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (29 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<xs: el enent nanme="ArrayO PhoneNunbers" type="tns: ArrayCf PhoneNunber sType" />

<xs: conpl exType name="ArrayO PhoneNunber sType" >
<xs: conpl exCont ent >
<xs:restriction base="enc: Array" >
<XSs:sequence>
<xs: el enent name="phoneNunber" type="tns: phoneNunber Type"
maxQccur s="unbounded" />
</ Xs: sequence>
<xs:attributeGoup ref="enc:arrayAttri butes" />
<xs:attributeG oup ref="enc: commonAttributes" />
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

</ xs: schema>
Schema for an array

Example 33

<abc: ArrayOf PhoneNunbers xm ns: abc="htt p://exanpl e. or g/ 2001/ 06/ nunber s"
xm ns: enc="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
enc: arrayType="abc: phoneNunber Type[2] " >
<phoneNunber >206- 555- 1212</ phoneNunber >
<phoneNunber >1- 888- 123- 4567</ phoneNunber >
</ abc: ArrayOf PhoneNunber s>

Array conforming to the schemain Example 32

Arrays may be multi-dimensional. In this case, more than one size will appear within the asize part of the array Type
attribute:

Example 34

<enc: Array xm ns:xs="http://ww. w3. org/ 2001/ XM_Schena"
xm ns: enc="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
enc: arrayType="xs:string[2,3]" >
<itenprlcl</itenp
<itenprlc2</itenp
<itenprlc3</itenr
<itenpr2cl</itenr
<itenpr2c2</itenr
<itenpr2c3</itenr
</ enc: Array>

Multi-dimensonal array

While the examples above have shown arrays encoded as independent elements, array values MAY also appear embedded

and SHOUL D do so when they are known to be single reference.

The following is an example of a schema fragment and an array of phone numbers embedded in a struct of type "Person”

and accessed through the accessor "phone-numbers’:
Example 34

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns:tns="http://exanpl e. org/ 2001/ 06/ nunber s"
t ar get Nanmespace="htt p: // exanpl e. or g/ 2001/ 06/ nunbers" >

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (30 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<xs:inport nanespace="http://ww. w3. org/ 2001/ 06/ soap- encodi ng" />

<xs: si nmpl eType nane="phoneNunber Type" >
<xs:restriction base="xs:string" />
</ xs:sinpl eType>

<xs: el enent name="ArrayO PhoneNunbers" type="tns: ArrayO PhoneNunber sType" />

<xs: conpl exType name="ArrayOd PhoneNunber sType" >
<xs: conpl exCont ent >
<xs:restriction base="enc: Array" >
<XS:sequence>
<xs: el enment nane="phoneNunber"” type="tns: phoneNunber Type"
maxCccur s="unbounded" />
</ Xs: sequence>
<xs:attributeGoup ref="enc:arrayAttributes" />
<xs:attributeG oup ref="enc:commonAttributes"” />
</xs:restriction>
</ xs: conpl exCont ent >
</ xs: conpl exType>

<xs: el enent nane="Person">
<xs: conpl exType>
<XS:sequence>
<xs: el enent name="nanme" type="xs:string" />
<xs: el enent name="phoneNunbers"” type="tns: ArrayO PhoneNunber sType" />
</ Xxs: sequence>
</ xs: conpl exType>
</ xs: el emrent >

</ xs: schema>
Schema fragment for array of phone numbers embedded in a struct

Example 35

<def: Person xm ns: def="http://exanpl e. org/ 2001/ 06/ nunber s"
xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng" >
<nanme>John Hancock</ name>
<phoneNunbers enc: arrayType="def: phoneNunber[2] ">
<phoneNunber >206- 555- 1212</ phoneNunber >
<phoneNunber >1- 888- 123- 4567</ phoneNunber >
</ phoneNunber s>
</ def : Per son>

Array of phone numbers embedded in a struct conforming to the schemain Example 34

Hereis another example of a single-reference array value encoded as an embedded element whose containing element name
IS the accessor name:

Example 36

<xyz: PurchaseOrder xm ns:xyz="http://exanple.org/ 2001/ 06/ Orders" >
<Cust onmer Nane>Henry For d</ Cust oner Name>
<Shi pTo>

http://iwww.w3.0rg/TR/2001/WD-s0ap12-20010709/ (31 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

<Street>5th Ave</Street>
<City>New York</City>
<St at e>NY</ St at e>
<Zi p>10010</ Zi p>
</ Shi pTo>
<Pur chaseLi neltenms xm ns:enc="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
enc: arrayType="xyz: Order[2]">
<Or der >
<Pr oduct >Appl e</ Pr oduct >
<Price>1.56</Price>
</ Order>
<Order >
<Pr oduct >Peach</ Pr oduct >
<Price>1.48</Price>
</ Order>
</ Pur chaseLi nel t ens>
</ xyz: Pur chaseOr der >

Single-reference array encoded as en embedded element
5.4.2.1 Partially Transmitted Arrays

SOAP provides support for partially transmitted arrays, known as "varying" arrays in some contexts [12]. A partialy

transmitted array indicates in an "enc:offset” attribute the zero-origin offset of the first element transmitted. If omitted, the
offset is taken as zero.

The following is an example of an array of size five that transmits only the third and fourth element counting from zero:
Example 37

<enc: Array xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
enc: arrayType="xs:string[6]"
enc:offset="[3]" >
<itenmpThe fourth elenment</itenp
<itenrThe fifth elenment</itenr
</enc: Array>

Array of sizefive that transmits only the third and fourth element
5.4.2.2 Sparse Arrays

SOAP provides support for sparse arrays. Each element representing a member value contains a "enc:position” attribute that
indicates its position within the array. The following is an example of a sparse array of two-dimensional arrays of strings.
Thesizeis4 but only position 2 is used:

Example 38

<enc: Array xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
enc: arrayType="xs:string[,][4]" >
<enc: Array href="#array-1" enc:position="[2]" />
</enc: Array>
<enc: Array id="array-1"
enc: arrayType="xs:string[10, 10]" >
<itemenc:position="[2,2]">Third row, third col</itenp
<itemenc:position="[7,2]">Eighth row, third col</itenp
</enc: Array>

Sparse array

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (32 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

If the only reference to array-1 occursin the enclosing array, this example could also have been encoded as follows:
Example 39

<enc: Array xm ns:enc="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
xm ns: xs="http://ww.w3. org/ 2001/ XM_Schema"
enc: arrayType="xs:string[,][4]" >
<enc: Array enc:position="[2]" enc:arrayType="xs:string[10, 10]" >
<itemenc:position="[2,2]">Third row, third col</itenpr
<itemenc:position="[7,2]">Eighth row, third col</itenp
</enc: Array>
</ enc: Array>

Another sparse array
5.4.3 Generic Compound Types

The encoding rules just cited are not limited to those cases where the accessor names are known in advance. If accessor
names are known only by inspection of the immediate values to be encoded, the same rules apply, namely that the accessor
Is encoded as an element whose name matches the name of the accessor, and the accessor either contains or referencesits
value. Accessors containing values whose types cannot be determined in advance MUST always contain an appropriate
Xsi:type attribute giving the type of the value.

Similarly, the rules cited are sufficient to allow serialization of compound types having a mixture of accessors distinguished
by name and accessors distinguished by both name and ordinal position. (That is, having some accessors repeated.) This
does not require that any schema actually contain such types, but rather saysthat if atype-model schema does have such
types, a corresponding XML syntactic schema and instance may be generated.

Example 40

<xyz: PurchaseOrder xm ns:xyz="http://exanple.org/ 2001/ 06/ O ders" >
<Cust omer Nane>Henry For d</ Cust oner Nane>
<Shi pTo>
<Street >5th Ave</ Street>
<Ci ty>New York</City>
<St at e>NY</ St at e>
<Zi p>10010</ Zi p>
</ Shi pTo>
<Pur chaseLi nel t ens>
<Order>
<Pr oduct >Appl e</ Pr oduct >
<Price>1.56</Price>
</ Order>
<Order>
<Pr oduct >Peach</ Pr oduct >
<Price>l.48</Price>
</ Order >
</ Pur chaselLi nel t ens>
</ xyz: Pur chaseOr der >

Generic compound types

Similarly, it isvalid to serialize a compound value that structurally resembles an array but is not of type (or subtype)
enc:Array. For example:

Example 41

<Pur chaselLi nel t ens>
<Order >
<Pr oduct >Appl e</ Pr oduct >
<Price>1.56</Price>

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (33 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

</ Order>
<Order >
<Pr oduct >Peach</ Pr oduct >
<Price>1.48</Price>
</ Order>
</ Pur chaselLi nel t ens>

Compound value

5.5 Default Values

An omitted accessor el ement implies either adefault value or that no value is known. The specifics depend on the accessor,
method, and its context. For example, an omitted accessor typically implies a Null value for polymorphic accessors (with
the exact meaning of Null accessor-dependent). Likewise, an omitted Boolean accessor typically implies either aFalse
value or that no value is known, and an omitted numeric accessor typically implies either that the value is zero or that no
valueis known.

5.6 SOAP root Attribute

The SOAP root attribute can be used to label serialization roots that are not true roots of an object graph so that the object
graph can be deserialized. The attribute can have one of two values, either "1" or "0". True roots of an object graph have the
implied attribute value of "1". Serialization roots that are not true roots can be labeled as serialization roots with an attribute
value of "1" An element can explicitly be labeled as not being a serialization root with avalue of "0".

The SOAP root attribute MAY appear on any subelement within the SOAP Header and SOAP Body elements. The attribute
does not have a default value.

6. Using SOAP in HTTP

This section describes how to use SOAP within HTTP with or without using the experimental HT TP Extension Framework.
Binding SOAP to HTTP provides the advantage of being able to use the formalism and decentralized flexibility of SOAP
with the rich feature set of HTTP. Carrying SOAP in HTTP does not mean that SOAP overrides existing semantics of
HTTP but rather that SOAP over HTTP inherits HT TP semantics.

SOAP naturaly follows the HTTP request/response message model by providing a SOAP request messageinaHTTP
request and SOAP response message in aHTTP response. Note, however, that SOAP intermediaries are NOT the same as
HTTPintermediaries. That is, an HTTP intermediary addressed with the HTTP Connection header field cannot be expected
to inspect or process the SOAP entity body carried in the HTTP request.

HTTP applications MUST use the mediatype "text/xml" according to RFC 2376 [3] when including SOAP messagesin
HTTP exchanges.

6.1 SOAP HTTP Request

Although SOAP might be used in combination with avariety of HTTP request methods, this binding only defines SOAP
within HTTP POST requests (see section 7 for how to use SOAP for RPC and section 6.3 for how to usethe HTTP
Extension Framework).

6.1.1 The SOAPAction HTTP Header Field

The SOAPAction HTTP request header field can be used to indicate the intent of the SOAP HTTP request. Thevalueisa
URI identifying the intent. SOAP places no restrictions on the format or specificity of the URI or that it isresolvable. An
HTTP client MUST use this header field when issuing a SOAP HTTP Request.

soapaction = "SOAPAction" ":" [<"> URI-reference <"> |
URI-reference = <asdefined in RFC 2396 [4]>

http://iwww.w3.0rg/TR/2001/WD-s0ap12-20010709/ (34 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

The presence and content of the SOAPAction header field can be used by servers such asfirewalls to appropriately filter
SOAP request messagesin HTTP. The header field value of empty string ("") means that the intent of the SOAP messageis
provided by the HTTP Request-URI. No value means that there is no indication of the intent of the message.

Examples:

Example 42

SQAPAction: "http://el ectroconmerce. or g/ abc#MyMessage”
SQAPAct i on: "nyapp. sdl "

SCAPAction: ""

SQAPAct i on:

Examples of values for SOAPAction

6.2 SOAP HTTP Response

SOAP over HTTP follows the semantics of the HTTP Status codes for communi cating status information in HTTP. For
example, a 2xx status code indicates that the client's request including the SOAP component was successfully received,
understood, and accepted etc.

If an error occurs while processing the request, the SOAP HTTP server MUST issue an HTTP 500 "Internal Server Error"
response and include a SOAP message in the response containing a SOAP fault (see section 4.4) indicating the SOAP

processing error.

6.3 The HTTP Extension Framework

A SOAP message MAY be used together with the experimental HTTP Extension Framework [6] in order to identify the
presence and intent of a SOAP HTTP request.

Whether to use the Extension Framework or plain HTTP is a question of policy and capability of the communicating
parties. Clients can force the use of the experimental HT TP Extension Framework by using a mandatory extension
declaration and the "M-" HTTP method name prefix. Servers can force the use of the HTTP Extension Framework by using
the 510 "Not Extended" HTTP status code. That is, using one extraround trip, either party can detect the policy of the other
party and act accordingly.

The extension identifier used to identify SOAP using the Extension Framework is
http://ww. w3. org/ 2001/ 06/ soap- envel ope

6.4 SOAP HTTP Examples

Example 43

POST / St ockQuote HTTP/ 1.1

Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: nnnn

SQAPAction: "http://el ectroconmerce. or g/ abc#MyMessage”

<env: Envel ope xm ns: env="http://ww. w3. org/ 2001/ 06/ soap- envel ope" >
<) eﬁv; Envel ope>

SOAP HTTP Request Using POST

Example 44

HTTP/ 1.1 200 K
Content - Type: text/xm; charset="utf-8"

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (35 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

Cont ent - Lengt h: nnnn
<env: Envel ope xm ns:env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >

</ env: Envel ope>
SOAP HTTP Response to Example 43

Example 45

M POST / St ockQuote HITP/ 1.1

Man: "http://ww. w3. org/ 2001/ 06/ soap- envel ope"; ns=NNNN
Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: nnnn

NNNN- SOAPAct i on: "http://el ectrocomrerce. or g/ abc#M/Message”

<env: Envel ope xm ns:env="http://ww. wW3. or g/ 2001/ 06/ soap- envel ope" >

</ env: Envel ope>
SOAP HTTP Request using the experimental HTTP Extension Framework

Example 46

HTTP/ 1.1 200 K

Ext :

Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<env: Envel ope xm ns:env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >

</ env: Envel ope>
SOAP HTTP Response to Example 45

7. Using SOAP for RPC

One of the design goals of SOAP is to encapsulate remote procedure call functionality using the extensibility and flexibility
of XML. This section defines a uniform representation of RPC invocations and responses.

Although it is anticipated that this representation is likely to be used in combination with the encoding style defined in
section 5, other representations are possible. The SOAP encodingStyle attribute (see section 4.3.2) can be used to indicate

the encoding style of the RPC invocation and/or the response using the representation described in this section.

Using SOAP for RPC is orthogonal to the SOAP protocol binding (see section 6). In the case of using HTTP as the protocol

binding, an RPC invocation maps naturally to an HT TP request and an RPC response maps to an HT TP response. However,
using SOAP for RPC is not limited to the HTTP protocol binding.

To invoke an RPC, the following information is needed:
« TheURI of thetarget SOAP node
« A procedure or method name
« An optiona procedure or method signature

« The parameters to the procedure or method

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (36 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

« Optiona header data

SOAP relies on the protocol binding to provide a mechanism for carrying the URI. For example, for HTTP the request URI
indicates the resource that the invocation is being made against. Other than it be avalid URI, SOAP places no restriction on
the form of an address (see [4] for more information on URIS).

7.1 RPC and SOAP Body

RPC invocations and responses are both carried in the SOAP Body element (see section 4.3) using the following
representation:

e An RPC invocation is modeled as a struct.

« Theinvocation isviewed as asingle struct containing an accessor for each [in] or [in/out] parameter. The struct is
both named and typed identically to the procedure or method name.

« Each[in] or [infout] parameter is viewed as an accessor, with a name corresponding to the name of the parameter and
type corresponding to the type of the parameter. These appear in the same order as in the procedure or method
signature.

« An RPC responseis modeled as a struct.

» Theresponseisviewed as asingle struct containing an accessor for the return value and each [out] or [in/out]
parameter. The first accessor is the return value followed by the parametersin the same order as in the procedure or
method signature.

« Each parameter accessor has a name corresponding to the name of the parameter and type corresponding to the type
of the parameter. The name of the return value accessor is not significant. Likewise, the name of the struct is not
significant. However, a convention isto name it after the procedure or method name with the string "Response”
appended.

« Aninvocation fault is encoded using a SOAP fault (see section 4.4). If aprotocol binding adds additional rules for
fault expression, those MUST also be followed.

As noted above, RPC invocation and response structs can be encoded according to the rulesin section 5, or other encodings
can be specified using the encodingStyle attribute (see section 4.1.1).

Applications MAY process invocations with missing parameters but also MAY return a fault.

Because aresult indicates success and afault indicates failure, it is an error for an RPC response to contain both aresult and
afault.

7.2 RPC and SOAP Header

Additional information relevant to the encoding of an RPC invocation but not part of the formal procedure or method
signature MAY be expressed in the RPC encoding. If so, it MUST be expressed as a header block.

An example of the use of a header block isthe passing of atransaction ID along with a message. Since the transaction ID is
not part of the signature and istypically held in an infrastructure component rather than application code, there is no direct
way to pass the necessary information with the invocation. By adding a header block with afixed name, the transaction
manager on the receiving side can extract the transaction 1D and use it without affecting the coding of remote procedure
cals.

8. Security Considerations

Not described in this document are methods for integrity and privacy protection. Such issues will be addressed more fully in
afuture version(s) of this document.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (37 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

9. References

9.1. Normative references

[2] IETF "REC 2119: Key words for use in RFCs to Indicate Requirement Levels', S. Bradner, March 1997. Available at
http://www.ietf.org/rfc/rfc2119.txt

[3] IETF"RFC 2376: XML Media Types', E. Whitehead, M. Murata, July 1998. Available at
http://www.ietf.org/rfc/rfc2376.txt

[4] IETF "REC 2396: Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee, R. Fielding, L. Masinter,
August 1998. Available at http://www.ietf.org/rfc/rfc2396.txt

[5] IETF "RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T.
Berners-Lee, January 1997. Available at http://www.ietf.org/rfc/rfc2616.txt

[6] IETF"RFC 2774: An HTTP Extension Framework", H. Nielsen, P. Leach, S. Lawrence, February 2000. Available at
http://www.ietf.org/rfc/rfc2774.txt

[7] W3C Recommendation "Extensible Markup Language (XML) 1.0 (Second Edition)", Tim Bray, Jean Paoli, C. M.
Sperberg-McQueen, Eve Maler, 6 October 2000. Available at http://www.w3.0rg/TR/2000/REC-xml-20001006

[8] W3C Recommendation "Namespacesin XML", Tim Bray, Dave Hollander, Andrew Layman, 14 January 1999.
Available at http://www.w3.0rg/TR/1999/REC-xml-names-19990114/

[9] W3C Proposed Recommendation "XML Linking Language (XLink) Version 1.0", Steve DeRose, Eve Maler, David
Orchard, 20 December 2000. Available at http://www.w3.org/TR/2000/PR-xlink-20001220/

[10] W3C Recommendation "XML Schema Part 1: Structures”, Henry S. Thompson, David Beech, Murray Maloney, Noah
Mendelsohn, 2 May 2001. Available at http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502/

[11] W3C Recommendation "XML Schema Part 2: Datatypes', Paul V. Biron, Ashok Mahotra, 2 May 2001. Available at
http://www.w3.0rg/TR/2001/REC-xml schema-2-20010502/

9.2. Informative references
[12] Transfer Syntax NDR, in Open Group Technical Standard "DCE 1.1: Remote Procedure Call", August 1997. Available
at http://www.opengroup.org/public/pubs/catal og/c706.htm

[13] IETF "RFC2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies', N.
Freed, N. Borenstein, November 1996. Available at http://www.ietf.org/rfc/rfc2045.txt

A. SOAP Envelope Examples

A.1 Sample Encoding of Call Requests

Example 47

POST / St ockQuote HITP/ 1.1

Host: www. st ockquot eserver.com

Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: nnnn

SQAPAction: "http://exanpl e.org/ 2001/ 06/ quot es”

<env: Envel ope

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (38 of 47) [7/18/2001 10:21:55 AM]

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2000/PR-xlink-20001220/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.ietf.org/rfc/rfc2045.txt

SOAP Version 1.2

xm ns: env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >
<env: Header >
<t: Transacti on
xm ns:t="http://exanpl e. org/ 2001/ 06/ t x"
env: encodi ngStyl e="http://ww. w3. org/ 2001/ 06/ soap- encodi ng"
env: must Under st and="1" >
5
</t:Transacti on>
</ env: Header >
<env: Body >
<m Cet Last TradePri ce
env: encodi ngStyl e="htt p://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
xm ns: me"http://exanpl e. org/ 2001/ 06/ quot es” >
<m synbol >DEF</ m synbol >
</ m Get Last Tr adePri ce>
</ env: Body>
</ env: Envel ope>

Similar to Example 1 but with a Mandatory Header

Example 48

POST / St ockQuote HITP/ 1.1

Host: www. st ockquot eserver. com

Content - Type: text/xm; charset="utf-8"

Cont ent - Lengt h: nnnn

SOAPAction: "http://exanple.org/ 2001/ 06/ quot es”

<env: Envel ope xm ns:env="http://ww. wW3. or g/ 2001/ 06/ soap- envel ope" >
<env: Body>
<m Cet Last TradePri ceDet ai | ed
env: encodi ngStyl e="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng
xm ns: me"http://exanpl e. org/ 2001/ 06/ quot es” >
<Synbol >DEF</ Synbol >
<Conpany>DEF Cor p</ Conpany>
<Price>34. 1</ Pri ce>
</ m Get Last TradePri ceDet ai | ed>
</ env: Body>
</ env: Envel ope>

Similar to Example 1 but with multiple request parameters

A.2 Sample Encoding of Response

Example 49

HTTP/ 1.1 200 K
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<env: Envel ope xm ns:env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >
<env: Header >
<t:Transaction xmns:t="http://exanpl e.org/ 2001/ 06/t x"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schena"
XSi:type="xs:int"

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (39 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

env: encodi ngStyl e="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
env: must Under st and="1" >
5
</t:Transacti on>
</ env: Header >
<env: Body>
<m Cet Last TradePri ceResponse
env: encodi ngStyl e="htt p://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
xm ns: me"http://exanpl e. org/ 2001/ 06/ quot es” >
<Price>34.5</Price>
</ m Get Last TradePri ceResponse>
</ env: Body>
</ env: Envel ope>

Similar to Example 2 but with a Mandatory Header

Example 50

HTTP/ 1.1 200 K
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<env: Envel ope xm ns:env="http://ww. wW3. or g/ 2001/ 06/ soap- envel ope" >
<env: Body>
<m Cet Last Tr adePri ceResponse
env: encodi ngStyl e="http://ww. w3. or g/ 2001/ 06/ soap- encodi ng"
xm ns: ne"http://exanpl e. org/ 2001/ 06/ quot es" >
<Pri ceAndVol une>
<Last Tr adePri ce>34. 5</ Last TradePri ce>
<DayVol unme>10000</ Day Vol une>
</ Pri ceAndVol une>
</ m Get Last Tr adePri ceResponse>
</ env: Body>
</ env: Envel ope>

Similar to Example 2 but with a Struct

Example 51

HTTP/ 1.1 500 Internal Server Error
Content - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: nnnn

<env: Envel ope xm ns:env="http://ww. w3. or g/ 2001/ 06/ soap- envel ope" >
<env: Body>
<env: Faul t >
<f aul t code>env: Must Under st and</ f aul t code>
<faul tstring>SOAP Must Understand Error</faultstring>
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

Similar to Example 2 but Failing to honor Mandatory Header

Example 52

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (40 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

HTTP/ 1.1 500 Internal Server Error
Content - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<env: Envel ope xm ns:env="htt p://ww. wW3. or g/ 2001/ 06/ soap- envel ope" >
<env: Body>
<env: Faul t >
<f aul t code>env: Server </ faul t code>
<faul tstring>Server Error</faultstring>
<det ai | >
<e:nyfaultdetails xmns:e="http://exanple.org/2001/06/faults" >
<message>My application didn't work</nessage>
<errorcode>1001</ error code>
</e:nyfaul tdetail s>
</detail >
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

Similar to Example 2 but Failing to handle Body

B. Acknowledgements

This document is the work of the W3C XML Protocol Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical order): Yasser a Safadi (Philips Research),
Vidur Apparao (Netscape), Don Box (DevelopMentor), David Burdett (Commerce One), Charles Campbell (Informix
Software), Alex Ceponkus (Bowstreet), Michael Champion (Software AG), David Clay (Oracle), Ugo Corda (Xerox), Paul
Cotton (Microsoft Corporation), Ron Daniel (Interwoven), Glen Daniels (Allaire), Doug Davis (IBM), Ray Denenberg
(Library of Congress), Paul Denning (MITRE Corporation), Frank DeRose (TIBCO Software, Inc.), Brian Eisenberg (Data
Channel), David Ezell (Hewlett-Packard), James Falek (TIBCO Software, Inc.), David Fallside (IBM), Chris Ferris (Sun
Microsystems), Daniela Florescu (Propel), Dan Frantz (BEA Systems), Dietmar Gaertner (Software AG), Scott Golubock
(Epicentric), Rich Greenfield (Library of Congress), Martin Gudgin (Develop Mentor), Hugo Haas (W3C), Marc Hadley
(Sun Microsystems), Mark Hale (Interwoven), Randy Hall (Intel), Gerd Hoelzing (SAP AG), Oisin Hurley (IONA
Technologies), Yin-Leng Husband (Compaq), John Ibbotson (IBM), Ryuji Inoue (Matsushita Electric Industrial Co., Ltd.),
Scott Isaacson (Novell, Inc.), Kazunori Iwasa (Fujitsu Software Corporation), Murali Janakiraman (Rogue Wave), Mario
Jeckle (Daimler-Chrysler Research and Technology), Eric Jenkins (Engenia Software), Mark Jones (AT&T), Jay Kasi
(Commerce One), Jeffrey Kay (Engenia Software), Richard Koo (Vitria Technology Inc.), Jacek Kopecky (IDOOX s.r.0.),
Alan Kropp (Epicentric), Yves Lafon (W3C), Tony Lee (Vitria Technology Inc.), Michah Lerner (AT&T), Richard Martin
(Active Data Exchange), Noah Mendel sohn (Lotus Development), Nilo Mitra (Ericsson Research Canada), Jean-Jacques
Moreau (Canon), Masahiko Narita (Fujitsu Software Corporation), Mark Needleman (Data Research Associates), Eric
Newcomer (IONA Technologies), Henrik Frystyk Nielsen (Microsoft Corporation), Mark Nottingham (Akamai
Technologies), David Orchard (JamCracker), Kevin Perkins (Compaq), Jags Ramnaryan (BEA Systems), Andreas Riegg
(Daimler-Chrysler Research and Technology), Hervé Ruellan (Canon), Marwan Sabbouh (MITRE Corporation), Shane
Sesta (Active Data Exchange), Miroslav Simek (IDOOX s.r.0.), Simeon Simeonov (Allaire), Nick Smilonich (Unisys),
Soumitro Tagore (Informix Software), James Tauber (Bowstreet), Lynne Thompson (Unisys), Patrick Thompson (Rogue
Wave), Randy Waldrop (WebMethods), Ray Whitmer (Netscape), Volker Wiechers (SAP AG), Stuart Williams
(Hewlett-Packard), Amr Y assin (Philips Research) and Dick Brooks (Group 8760). Previous members were: Eric Fedok (Active
Data Exchange) Susan Y ee (Active Data Exchange) Alex Milowski (Lexica), Bill Anderson (Xerox), Ed Mooney (Sun Microsystems), Mary
Holstege (Calico Commerce), Rekha Nagarajan (Calico Commerce), John Evdemon (XML Solutions), Kevin Mitchell (XML Solutions), Yan
Xu (DataChannel) Mike Dierken (DataChannel) Julian Kumar (Epicentric) Miles Chaston (Epicentric) Bjoern Heckel (Epicentric) Dean Moses
(Epicentric) Michael Freeman (Engenia Software) Jim Hughes (Fujitsu Software Corporation) Francisco Cubera (IBM), Murray Maoney
(Commerce One), Krishna Sankar (Cisco), Steve Hole (MessagingDirect Ltd.) John-Paul Sicotte (MessagingDirect Ltd.) Vilhelm Rosengvist

(NCR) Lew Shannon (NCR) Henry Lowe (OMG) Jim Trezzo (Oracle) Peter Lecuyer (Progress Software) Andrew Eisenberg (Progress
Software) David Cleary (Progress Software) George Scott (Tradia Inc.) Erin Hoffman (Tradia Inc.) Conleth O'Connell (Vignette) Wagar Sadiq

http://iwww.w3.0rg/TR/2001/WD-s0ap12-20010709/ (41 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

(VitriaTechnology Inc.) Tom Breuel (Xerox) David Webber (XML Global Technologies) Matthew MacKenzie (XMLGIlobal Technologies) and
Mark Baker (Sun Microsystems).

This document is based on the SOAP/1.1 specification whose authors were: Don Box (Develop Mentor), David Ehnebuske

(IBM), Gopal Kakivaya (Microsoft Corp.), Andrew Layman (Microsoft Corp.) Noah Mendel sohn (L otus Devel opment
Corp.), Henrik Frystyk Nielsen (Microsoft Corp.), Satish Thatte (Microsoft Corp.) and Dave Winer (UserLand Software,

Inc.).

We also wish to thank all the people who have contributed to discussions on xml-dist-app@w3.0rg.

C. Version Transition From SOAP/1.1 to SOAP Version 1.2

EdNote: The scope of the mechanism provided in this section is for transition between SOAP/1.1 and SOAP version 1.2.
The Working Group is considering providing a more general transition mechanism that can apply to any version. Such a
general mechanism may or may not be the mechanism provided here depending on whether it is deemed applicable.

The SOAP/1.1 specification says the following on versioning in section 4.1.2:

"SOAP does not define atraditional versioning model based on major and minor version numbers. A SOAP
message MUST have an Envel ope element associated with the "http://schemas.xml soap.org/soap/envel ope/”
namespace. If amessage is received by a SOAP application in which the SOAP Envelope element is associated
with a different namespace, the application MUST treat this as aversion error and discard the message. If the
message is received through a request/response protocol such as HTTP, the application MUST respond with a
SOAP VersionMismatch faultcode message (see section 4.4) using the SOAP

"http://schemas.xml soap.org/soap/envel ope/" namespace.”

That is, rather than a versioning model based on shortnames (typically version numbers), SOAP uses a declarative extension
model which allows a sender to include the desired features within the SOAP envel ope construct. SOAP says nothing about
the granularity of extensions nor how extensions may or may not affect the basic SOAP processing model. It isentirely up
to extension designers be it either in a central or a decentralized manner to determine which features become SOAP
extensions.

The SOAP extensibility model is based on the following four basic assumptions:

1

2.

SOAP versioning is directed only at the SOAP envelope. It explicitly does not address versioning of blocks,
encodings, protocol bindings, or otherwise.

A SOAP node must determine whether it supports the version of a SOAP message on a per message basis. In the
following, "support” means understanding the semantics of the envelope version identified by the QName of the
Envelope element:

o A SOAP node receiving an envelope that it doesn't support must not attempt to process the message according
to any other processing rules regardless of other up- or downstream SOAP nodes.

o A SOAP node may provide support for multiple envelope versions. However, when processing a message a
SOAP node must use the semantics defined by the version of that message.

Itisessential that the envelope remains stable over time and that new features are added using the SOAP extensibility
mechanism. Changing the envelope inherently affects interoperability, adds complexity, and requires central control
of extensions -- al of which directly conflicts with the SOAP requirements.

No versioning model or extensibility model can prevent buggy implementations. Even though significant work has
been going into clarifying the SOAP processing model, there is no guarantee that a SOAP 1.2 implementation will
behave correctly. Only extensive testing within the SOAP community and design simplicity at the core can help
prevent/catch bugs.

The rulesfor dealing with the possible SOAP/1.1 and SOAP Version 1.2 interactions are as follows:

1

Because of the SOAP/1.1 rules, acompliant SOAP/1.1 node receiving a SOAP Version 1.2 message will generate a
VersionMismatch SOAP fault using an envelope qualified by the "http://schemas.xml soap.org/soap/envel ope/*
namespace identifier.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (42 of 47) [7/18/2001 10:21:55 AM]

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
mailto:xml-dist-app@w3.org
http://www.w3.org/TR/SOAP/#_Toc478383496

SOAP Version 1.2

2. A SOAP Version 1.2 node receiving a SOAP/1.1 message may either process the message as SOAP/1.1 or generate a
SOAP VersionMismatch fault using the "http://schemas.xmlsoap.org/soap/envelope/" namespace identifier. As part
of the SOAP VersionMismatch fault, a SOAP Version 1.2 node should include the list of envelope versions that it
supports using the SOAP upgrade extension identified by the "http://www.w3.0rg/2001/06/soap-upgrade” identifier.

The upgrade extension contains an ordered list of namespace identifiers of SOAP envelopes that the SOAP node supportsin
the order most to least preferred. Following is an example of aVersionMismatch fault generated by a SOAP Version 1.2
node including the SOAP upgrade extension:

Example 53

<env: Envel ope xm ns: env="http://schenas. xnl soap. or g/ soap/ envel ope/ " >
<env: Header >
<V: Upgrade xm ns: V="http://ww. w3. org/ 2001/ 06/ soap- upgr ade" >
<envel ope gnane="nsl: Envel ope”
xm ns: nsl="http://ww. w3. org/ 2001/ 06/ soap- envel ope"/ >
</ V: Upgr ade>
</ env: Header >
<env: Body>
<env: Faul t >
<f aul t code>env: Ver si onM smat ch</f aul t code>
<faul tstring>Version Msmatch</faultstring>
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

VersionMismatch fault generated by a SOAP Version 1.2 node, and including a SOAP upgrade extension

Note that existing SOAP/1.1 nodes are not likely to indicate which envel ope versions they support. If nothing is indicated
then this means that SOAP/1.1 isthe only supported envel ope.

D. Change Log

D.1 SOAP Specification Changes

| Date |Author | Description

120010629|MJG |[Amended description of routing and intermediariesin Section 2.1
|20010629|JIM |Changed "latest version” URI to end with soap12

|20010629(J0M |Remove "previous version” URI

|20010629|JIM |Removed "Editor copy" in <title>

120010629|JIM |Removed "Editor copy” in thetitle.

20010629 [JIM |Added "Previous version" to either point to SOAP/1.1, or explicitly mention there was no prior draft.
20010629 (M |Pre-fi|ed publication URIs.

|20010629|JIM |Incorporated David's suggested changes for the examplesin section 4.1.1to 4.4.2
|20010629|JIM |Fixed some remaining typos.

20010629|MJH |Fixed a couple of typos.

20010628 (MJG |Made various formatting, spelling and grammatical fixes.

20010628|MIG Moved soap:encodingStyle from soap:Envelope to children of soap:Header/soap:Body in examples 1,
2, 47, 48, 49 and 50

Changed text in Section 2.1 from 'it is both a SOAP sender or a SOAP receiver' to ‘it is both a SOAP

sender and a SOAP receiver'

120010628|MJG |Fixed caption on Example 24

20010628 (M JG

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (43 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

20010628 MIH Fixed a couple of capitalisation errors where the letter A appeared as a capital in the middle of a
sentence.

|20010628|MJH [Updated figure 1, removed ednote to do so.

20010622 |HEN Removed the introductory text in terminology section 1.4.3 as it talks about model stuff that is covered
in section 2. It was |eft over from original glossary which also explained the SOAP model.

|20010622|HFN [Moved the definition of block to encapsulation section in terminology

20010622 |HEN Remoyed mtro@ctory sectioniin 1.4.1 as this overlaps with the model description in section 2 and
doesn't belong in aterminology section

20010622 |HEN Removed refer.ence to ng Characterization Terminology & Definitions Sheet" in terminology
section asthisis not an active WD

20010622|HFN |Added revised glossary

20010622 |HEN Added _example 0 to section 1.3 _and dightly modified text for example 1 and 2 to make it clear that
HTTPis used as a protocol binding

120010622|MJG |Added http://example.cony... to list of application/context specific URIsin section 1.2

20010622 |MIG ;Jttprtlj;tﬁgs examplesin section 4.1.1 to be encodingStyle attributes rather than just the values of

20010622 MG Added tabl e._norm,_td.normltem and td.normtext stylesto stylesheet. Used said styles for table of fault
code valuesin section 4.4.1
In Appendix C, changed upgrade element to Upgrade and env to envel ope. Made envel ope unqualified.

20010622 |MJG
Updated schema document to match.
Moved MisunderstoodHeader from envel ope schema into seperate faults schema. Removed entry in

20010622(MJG |envelope schema change table in Appendix D.2 that refered to additon of said element. Modified
examplein section 4.4.2 to match. Added reference to schema document to section 4.4.2

20010622 |MIH Added binding as a component of SOAP in introduction. Fixed a couple of typos and updated a couple
of example captions.

20010622 (M JG |Made BNF in section 6.1.1 into atable.

20010622 MG Made BNFsin section 5.1 clause 8 into tables. Added associated 'bnf' style for table and td elements to
stylesheet

20010622 (M JG |Amended text regarding namespace prefix mappings in section 1.2
Added link to schema for the http://www.w3.0rg/2001/06/soap-upgrade namespace to Appendix C.

20010622 (M JG .
Updated associated ednote.

20010622 |MIG Added reference numbers for XML Schema Recommendation to text prior to schema change tablesin
Appendix D.2 and linked said numbers to local references in this document

120010622|MJG |Reordered entries in schema change classification table in Appendix D.2
Changed type of mustUnderstand and root attributes to standard boolean and updated schema change

20010622 |MJG . . i
tablesin Appendix D.2 accordingly

20010622 [JIM |Manua||y numbered all the examples (53 in total!)

20010622|JJM |Added caption text to all the examples

|20010622|JIM |Replaced remaining occurrences of SOAP/1.2 with SOAP Version 1.2 (including <title>)

120010621 |HFN [Added ednote to section 4.2.2 and 4.2.3 that we know they have to be incorporated with section 2

20010621 [HFN |Added version transition appendix C

20010621|HFN |Applied new stylesto examples

|20010621 HFN |Changed term "transport” to "underlying protocol

120010621 |HFN |Changed example URNs to URLSs of the style http://example.org/...

120010621 [MJH |Updated the Acknowledgements section.

20010621 13M Qndddgd new style sheet definitions (from XML Schema) for examples, and used them for example 1

120010621 JIM [Incorporated David Fallside's comments on section Status and Intro sections.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (44 of 47) [7/18/2001 10:21:55 AM]

http://www.w3.org/1999/05/WCA-terms/#PRIMITIVE

SOAP Version 1.2

|20010620|HFN |Changed the status section

|20010620|HFN |Changed titleto SOAP Version 1.2 and used that first time in abstract and in body

20010620 (HFN |Removed question from section 2.4 asthisis an issue and isto be listed in the issues list

20010620 [HFN |M oved change log to appendix

|20010615 JIM |Renamed default actor to anonymous actor for now (to be consistent)

|20010615{JIM |Fixed typos in section 2

120010614 (J0M [Updated section 2 to adopt the terminology used elsewhere in the spec.

|20010613[MJH [Updated mustUnderstand fault text with additions from Martin Gudgin.

|20010613|MJH |Added schema changes appendix from Martin Gudgin.

|20010613|MJH |Added mustUnderstand fault text from Glen Daniels.

|20010612|MJH |Fixed document <title>.

|20010612 MJH |M oved terminology subsection from message exchange model section to introduction section.

|20010612|MJH |Fixed capitalisation errors by replacing "... A SOAP ..." with "... aSOAP ..." where appropriate.

|20010612|MJH [Removed trailing "/* from encoding namespace URI.

|20010612 MJH |Fixed links under namespace URIs to point to W3C space instead of schemas.xmlsoap.org.

20010612 |MIH Removed some odd additional links with text of "/* pointing to the encoding schema following the text
of the encoding namespace URI in several places.

|20010611|MJH [Incorporated new text for section 2.

|20010611|{JIM |Changed remaining namespaces, in particular next.

20010609 [JIM |Changed the spec name from XMLP/SOAP to SOAP.

20010609 (Jm |Changed the version number from 1.1to 1.2.

|20010609 JIM |Changed the namespaces from http://schemas.xmlsoap.org/soap/ to http://www.w3.0rg/2001/06/soap-.

|20010609|JIM |Replaced the remaining XS and XE prefixes to env and enc, respectively.

20010601 MK Updated the examplesin section 1_, 6 and appendix A with text suggested by Martin Gudgin to comply
with XML Schema Recommendation.

20010601 133M Updated the examples i_n section 4 and 5 with text suggested by Martin Gudgin, to comply with XML
Schema Recommendation.

120010531 |HFN [Removed appendices C and D and added links to live issueslist and separate schemafiles.

20010531 |MJIH Added this chgnge log and updated schemas in appendix C to comply with XML Schema
Recommendeation.

D.2 XML Schema Changes

The envelope and encoding schemas have been updated to be compliant with the XML Schema Recomendation[10,11]. The
table below shows the categories of change.

Class
Addition

Deletion
Name

Semantic
Style
Syntax

Meaning

New constructs have been added to the schema

Clarification The meaning of the schema has been changed to more accurately match the specification
Constructs have been removed from the schema

The schema has been changed due to a datatype name change in the XML Schema specification
Namespace A namespace name has been changed

The meaning of the schema has been changed

Style changes have been made to the schema

The syntax of the schema has been updated due to changes in the XML Schema specification

The table below lists the changes to the envel ope schema.

Class

Description

Namespace Updated to use the http://www.w3.0rg/2001/X ML Schema namespace

http://www.w3.0rg/TR/2001/WD-so0ap12-20010709/ (45 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

Namespace Vaue of targetNamespace attribute changed to http://www.w3.0rg/2001/06/soap-envel ope
Clarification Changed element and attribute wildcards in Envelope complex type to namespace="##other"
Clarification Changed element and attribute wildcards in Header complex type to namespace="##other"
Clarification Added explicit namespace="##any" to element and attribute wildcards in Body complex type
Clarification Added explicit namespace="##any" to element and attribute wildcards in detail complex type
Clarification Added an element wildcard with namespace="##other" to the Fault complex type

Name
Name
Name
Semantic

Semantic

Style

Syntax
Syntax
Syntax

Changed item type of encodingStyle from uri-reference to anyURI

Changed type of actor attribute from uri-reference to anyURI

Changed type of faultactor attribute from uri-reference to anyURI

Added processContents="lax" to all element and attribute wildcards

Changed type of the mustUnderstand attribute from restriction of boolean that only alowed 0 or 1 as lexical
values to the standard boolean in the http://www.w3.0rg/2001/X M L Schema namespace. The lexical forms O,
1, false, true are now allowed.

Where possible comments have been changed into annotations

Changed all occurences of maxOccurs="*" to maxOccurs="unbounded"

Added <xs.sequence> to all complex type definitions derived implicitly from the ur-type

Added <xs:sequence> to al named model group definitions

The table below lists the changes to the encoding schema.

Class

Description

Namespace Updated to use the http://www.w3.0rg/2001/X ML Schema namespace
Namespace Value of targetNamespace attribute changed to http://www.w3.0rg/2001/06/soap-encoding

Semantic

Addition

Syntax

Syntax
Syntax

Syntax
Deletion

Addition
Deletion
Addition

Addition
Addition
Addition
Addition

Addition
Deletion
Addition

Changed type of the root attribute from restriction of boolean that only alowed 0 or 1 aslexical valuesto the
standard boolean in the http://www.w3.0rg/2001/X M L Schema namespace. The lexical forms0, 1, false, true
are now allowed.

Added processContents="lax" to all element and attribute wildcards

Changed base64 simple type to be a vacuous restriction of the base64Binary type in the
http://www.w3.0rg/2001/X M L Schema namespace

Updated all complex type definitions with simple base types to new syntax

Added <xs.sequence> to all complex type definitions derived implicitly from the ur-type
Added <xs:sequence> to all named model group definitions

Removed the timeDuration datatype

Added duration datatype derived by extension from the duration datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Removed the timelnstant datatype

Added dateTime datatype derived by extension from the dateTime datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Added gY earMonth datatype derived by extension from the gY earMonth datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Added gY ear datatype derived by extension from the gY ear datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Added gMonthDay datatype derived by extension from the gMonthDay datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Added gDay datatype derived by extension from the gDay datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Added gDay datatype derived by extension from the gDay datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Removed the binary datatype

Added hexBinary datatype derived by extension from the hexBinary datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (46 of 47) [7/18/2001 10:21:55 AM]

SOAP Version 1.2

Addition Added base64Binary datatype derived by extension from the base64Binary datatypein the
http://www.w3.0rg/2001/X M L Schema namespace.

Deletion Removed the uriReference datatype

Added anyURI datatype derived by extension from the anyURI datatype in the

Addition http://www.w3.0rg/2001/X M L Schema namespace.

Addition Added normalizedString datatype derived by extension from the normalizedString datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Addition Added token datatype derived by extension from the token datatype in the
http://www.w3.0rg/2001/X M L Schema namespace.

Clarificati Added explicit namespace="##any" to all element and attribute wildcards which did not previously have an

arification gy .

explicit namespace attribute

Style Where possible comments have been changed into annotations

In addition several changes occured in the names of datatypesin the XML Schema specification and some datatypes were
removed. The following table lists those changes.

Datatype Class Description
timeDuration Renamed New name is duration
timel nstant Renamed New nameis dateTime

recurringDuration Removed The recurringDuration datatype no longer exists.
recurringlnstant Removed The recurringlnstant datatype no longer exists.

binary Removed The binary datatype has been replaced by the hexBinary and base64Binary datatypes.
month Renamed New nameis gY earMonth

timePeriod Removed The timePeriod datatype no longer exists

year Renamed New nameis gY ear

century Removed The century datatype no longer exists

recurringDate Renamed New name is gMonthDay
recurringDay Renamed New name is gDay

Last Modified: $Date: 2001/07/09 13:39:15$ UTC

http://www.w3.0rg/TR/2001/WD-s0ap12-20010709/ (47 of 47) [7/18/2001 10:21:55 AM]

	SOAP Version 1.2
	W3C Working Draft 9 July 2001
	Abstract
	Status of this Document
	Table of Contents
	1. Introduction
	1.1 Design Goals
	1.2 Notational Conventions
	1.3 Examples of SOAP Messages
	1.4 SOAP Terminology
	1.4.1 Protocol Concepts
	1.4.2 Data Encapsulation Concepts
	1.4.3 Message Sender and Receiver Concepts
	1.4.4 Data Encoding Concepts

	2. The SOAP Message Exchange Model
	2.1 SOAP Nodes
	2.2 SOAP Actors and SOAP Nodes
	2.3 Targeting SOAP Header Blocks
	2.4 Understanding SOAP Headers
	2.5 Processing SOAP Messages

	3. Relation to XML
	4. SOAP Envelope
	4.1.1 SOAP encodingStyle Attribute
	4.1.2 Envelope Versioning Model
	4.2 SOAP Header
	4.2.1 Use of Header Attributes
	4.2.2 SOAP actor Attribute
	4.2.3 SOAP mustUnderstand Attribute

	4.3 SOAP Body
	4.3.1 Relationship between SOAP Header and Body

	4.4 SOAP Fault
	4.4.1 SOAP Fault Codes
	4.4.2 MustUnderstand Faults

	5. SOAP Encoding
	5.1 Rules for Encoding Types in XML
	5.2 Simple Types
	5.2.1 Strings
	5.2.2 Enumerations
	5.2.3 Array of Bytes

	5.3 Polymorphic Accessor
	5.4 Compound types
	5.4.1 Compound Values, Structs and References to Values
	5.4.2 Arrays

	5.5 Default Values
	5.6 SOAP root Attribute

	6. Using SOAP in HTTP
	6.1 SOAP HTTP Request
	6.1.1 The SOAPAction HTTP Header Field

	6.2 SOAP HTTP Response
	6.3 The HTTP Extension Framework
	6.4 SOAP HTTP Examples

	7. Using SOAP for RPC
	7.1 RPC and SOAP Body
	7.2 RPC and SOAP Header

	8. Security Considerations
	9. References
	9.1. Normative references
	9.2. Informative references

	A. SOAP Envelope Examples
	A.1 Sample Encoding of Call Requests
	A.2 Sample Encoding of Response

	B. Acknowledgements
	C. Version Transition From SOAP/1.1 to SOAP Version 1.2
	D. Change Log
	D.1 SOAP Specification Changes
	D.2 XML Schema Changes

	
	World Wide Web Consortium Title Page

