
XForms 1.0

W3C Working Draft 08 June 2001

This version:
http://www.w3.org/TR/2001/WD-xforms-20010608 (One big file, Zip archive)

Latest version:
http://www.w3.org/TR/xforms/

Previous versions:
http://www.w3.org/TR/2001/WD-xforms-20010216

Editors:
Micah Dubinko, Cardiff <mdubinko@Cardiff.com>
Josef Dietl, Mozquito Technologies <josef@mozquito.com>
Roland Merrick, IBM <Roland_Merrick@uk.ibm.com>
Dave Raggett, W3C/Openwave <dsr@w3.org>
T. V. Raman, IBM <tvraman@almaden.ibm.com>
Linda Bucsay Welsh, Intel <linda@intel.com>

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract

Forms were introduced into HTML in 1993. Since then they have become a critical
part of the Web. The existing mechanisms in HTML for forms are now outdated,
and W3C has started work on developing an effective replacement. This
document outlines the requirements for "XForms", W3C’s name for the next
generation of Web forms.

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this
document series is maintained at the W3C.

This is a Working Draft that incorporates new material agreed upon at the Boston
face to face meeting, including the adoption of XML Schema replacing XForms
Simple Syntax, as well as initial efforts at modularizing XForms and additional
feedback from outside sources. Interested parties are encouraged to provide
additional feedback and comments.

This document is a W3C Working Draft for review by W3C members and other

interested parties. It is a draft document and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use W3C Working
Drafts as reference material or to cite them as other than "work in progress". A list
of current public W3C Working Drafts can be found at http://www.w3.org/TR.

This document has been produced as part of the W3C HTML Activity.

Please send detailed comments on this document to www-forms@w3.org, the
public forum for discussion of W3C’s work on Web forms. To subscribe, send an
email to the above address with the word subscribe in the subject line (include the
word unsubscribe if you want to unsubscribe). The archive for the list is accessible
online.

Table of Contents

1 About the XForms 1.0 Specification
1.1 Background
1.2 Reading the Specification
1.3 How the Specification is Organized
1.4 Documentation Conventions

2 Concepts
2.1 Purpose and Presentation
2.2 Current Approach: XHTML
2.3 Stepping Up to XForms
2.4 Providing XML Instance Data
2.5 The XForms Model
2.6 Multiple Forms per Document
2.7 Additional User Interface Capabilities
2.8 Complete Document

3 Terminology
4 Datatypes

4.1 XML Schema Datatypes
4.2 XForms Datatypes

4.2.1 currency
4.2.2 monetary

5 The XForms Model
5.1 Introduction
5.2 Model Item Properties

5.2.1 name
5.2.2 type
5.2.3 readOnly
5.2.4 required
5.2.5 relevant
5.2.6 calculate
5.2.7 priority
5.2.8 validate

5.3 Using Datatypes in the XForms Model
5.3.1 Atomic Datatype
5.3.2 Closed Enumeration
5.3.3 Open Enumeration
5.3.4 Union
5.3.5 Multiple Selection

5.3.6 Repeating Line Item
5.3.7 Alternate Representation

6 XPath Expressions in XForms
6.1 Datatypes
6.2 Instance Data
6.3 Evaluation Context
6.4 Canonical Binding Expressions
6.5 Forms Core Function Library

6.5.1 Number Methods
6.5.2 String Methods
6.5.3 Miscellaneous Methods

6.6 Extensibility
7 Form Controls

7.1 Introduction
7.2 textbox
7.3 secret
7.4 uploadMedia
7.5 selectOne
7.6 selectMany
7.7 selectBoolean
7.8 range
7.9 button
7.10 output
7.11 submit
7.12 reset
7.13 Common Markup

7.13.1 Common Attributes
7.13.2 Common Child Elements

7.13.2.1 caption
7.13.2.2 help
7.13.2.3 hint
7.13.2.4 onevent
7.13.2.5 item
7.13.2.6 choices

8 XForms User Interface
8.1 Conditional Constructs For Dynamic User Interfaces

8.1.1 switch
8.2 Repeating Structures

8.2.1 Design Rationale
8.2.2 Special Event Handlers For Element repeat
8.2.3 repeat
8.2.4 Design Consequences

8.3 Reusable Form Controls
8.3.1 Creating User Interface Templates
8.3.2 DTD For uiTemplate And useUITemplate

8.4 Layout in XForms
8.4.1 Orientation and Direction
8.4.2 Alignment
8.4.3 Controlling Automatic Sizing
8.4.4 Preferred, Minimum, and Maximum Sizes
8.4.5 Packing Controls
8.4.6 Overflow
8.4.7 Inlines and Blocks

8.5 Multiple Sub-forms Or Sub-pages
8.5.1 Subpages

9 Binding
9.1 Introduction
9.2 Binding Attributes
9.3 Direct Binding
9.4 Indirect Binding
9.5 Multiple Forms per Page

10 Document Structure
10.1 The XForms Namespace
10.2 XForms Elements

10.2.1 xform
10.2.2 model
10.2.3 instance
10.2.4 submitInfo
10.2.5 bind

10.3 Integration with XLink
10.3.1 XLink role for XForms
10.3.2 XLink role for the XForms Model
10.3.3 XLink role for the Instance Data
10.3.4 XLink role for the XForms User Interface

11 Processing Model
11.1 Introduction

11.1.1 Design Rationale
11.2 XForms Properties
11.3 Events
11.4 XForms Processing

11.4.1 Initialization/Resume
11.4.2 Instance Data Construction
11.4.3 Navigation Sequence Algorithm
11.4.4 Interactivity
11.4.5 Recalculation Algorithm
11.4.6 UI Refresh Algorithm
11.4.7 Revalidation Algorithm

11.5 Submit and Reset
11.5.1 Submit
11.5.2 Reset

11.6 Serialization Formats for Instance Data
11.6.1 application/x-www-form-urlencoded
11.6.2 multipart/form-data
11.6.3 text/xml

11.6.3.1 Binary Content
11.7 Conformance

11.7.1 XForms Basic
11.7.2 XForms Full

Appendices

A Schema for XForms
B References

B.1 Normative References
B.2 Informative References

C Changes from Previous Release (Non-Normative)

C.1 Changes since the 16-Feb-2001 release
C.2 Changes to Chapter 1 'About XForms'
C.3 Changes to Chapter 2 'Concepts'
C.4 Changes to Chapter 3 'Terminology'
C.5 Changes to Chapter 4 'Datatypes'
C.6 Changes to Chapter 5 'XForms Model'
C.7 Changes to Chapter 6 'XPath Expressions in XForms'
C.8 Changes to Chapter 7 'Form Controls'
C.9 Changes to Chapter 8 'XForms User Interface'
C.10 Changes to Chapter 9 'Binding'
C.11 Changes to Chapter 10 'Document Structure'
C.12 Changes to Chapter 11 'Processing Model and Conformance'
C.13 Changes to Appendix 'Schema for XForms'
C.14 Changes to Appendix 'XSLT from Simple Syntax'
C.15 Change to Appendix 'Sample Forms'
C.16 Changes to Appendix 'Optional Function Library'
C.17 Changes to Appendix 'References'

D Acknowledgements (Non-Normative)
E Production Notes (Non-Normative)

1 About the XForms 1.0 Specification

1.1 Background

Forms are an important part of the Web, and they continue to be the primary
means of interactivity used by many Web sites. Web applications and
eCommerce solutions have sparked the demand for better Web forms with richer
interactions. XForms are the response to this demand--extended analysis,
followed by the creation of a new platform-independent markup language for
online interaction between an XForms Processor and a remote entity. XForms are
the successor to XHTML forms, and benefit from the lessons learned in the years
of HTML forms implementation experience.

Further background information on XForms can be found at
http://www.w3.org/MarkUp/Forms.

1.2 Reading the Specification

This specification has been written with various types of readers in mind--in
particular XForms authors and XForms implementors. We hope the specification
will provide authors with the tools they need to write efficient, attractive, and
accessible documents, without overexposing them to the XForms implementation
details. Implementors, however, should find all they need to build conforming
XForms Processors. The specification begins with a general presentation of
XForms and becomes more and more technical and specific towards the end. For
quick access to information, a general table of contents, specific tables of contents
at the beginning of each section, and an index provide easy navigation, in both the
electronic and printed versions.

The specification has been written with two modes of presentation in mind:
electronic and printed. In case of a discrepancy, the electronic version is

considered the authoritative version of the document.

1.3 How the Specification is Organized

The specification is organized into the following chapters:

Chapters 1 and 2

An introduction to XForms The introduction includes a brief tutorial on
XForms and a discussion of design principles behind XForms.

Chapters 3 and up

XForms reference manual. The bulk of the reference manual consists of the
specification of XForms. This reference defines what may go into XForms
and how XForms Processors must interpret the various components in order
to claim conformance.

Appendixes

Appendixes contain a normative description of XForms described in XML
Schema, information on optional function libraries, references, a change
history, and other useful information.

1.4 Documentation Conventions

The following highlighting and typography is used to present technical material in
this document and other documents from the XForms Working Group:

Special terms are defined in their own chapter; hyperlinks connect uses of the
term to the definition.

Throughout this document, the namespace prefixes "xform:", "xsd:", and "xsi:"
are used to denote the XForms, XML Schema, and XML Schema for Instances
namespaces respectively. This is by convention only; any namespace prefix may
be used in practice.

Official terms are defined in the following manner: [Definition: You can find most
terms in the chapter 3 Terminology]. Links to terms may be specially highlighted
in the text.

The XML representations of various elements within XForms are presented as
follows: Listed are the element name, names of all attributes, allowed values of
attributes appearing after a "=" character, default values of attributes appearing
after a ":" character, and allowed content. One or more headings below the table
provide additional explanatory information.

Example: XML Syntax Representation <example>

count = integer - description of this attribute
size = (small | medium | large) : medium - description of this attribute

Non-normative short examples are set off typographically:

Example Item

or

References to external documents appear as follows: [Sample Reference] with
links to the references section of this document.

Sample Reference
Reference - linked to from above.

The following highlighting is used for non-normative commentary:

Note:

A general admonition to readers.

Issue (issue-id):

Issue-Name

A specific issue to which input from readers is requested.

2 Concepts

This informative chapter provides an easily approachable description of the design
of XForms, describing the major components and how they relate. Not every
feature of XForms is covered here. For a complete, normative description of
XForms, refer to the remainder of this document.

2.1 Purpose and Presentation

<example
 count = integer
 size = (small | medium | large) : medium
>
 <!-- Content: (allowed-content) -->
</example>

Example Item

Editorial note: Editorial Note Name

Editorial commentary.

For explanatory purposes, a form can be considered to consist of ’purpose’,
’presentation’, and ’data’. Some examples:

The design of existing Web forms didn’t separate the purpose from the
presentation of a form, and additionally offered only a restricted representation for
data captured through the form. This is the primary difference between XForms
and previous form technologies.

2.2 Current Approach: XHTML

Take for instance a simple eCommerce form authored in XHTML 1.0:

A browser might render this form as follows:

This form makes no effort to separate purpose (data collection semantics) from
presentation (the <input> form controls), and offers no control over the basic
name/value formatting of the resulting data. XForms greatly improves the
expressive capabilities of electronic forms.

Purpose Presentation Data
Data collection Arrangement of form controls Registration information
Time card How dates are entered Days and hours worked

Order form How to render the form controls on
small devices

Order, shipping, and
payment info

Information
Please

How the form integrates with a Web
site User contact information

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<body>
<form action="http://example.com/submit" method="post">
 Select Payment Method:
 <input type="radio" name="paytype" value="cash">Cash</input>
 <input type="radio" name="paytype" value="credit">Credit</input>

 <label>Credit Card Number: <input type="text" name="cc"/></label><br/
 <label>Expiration Date: <input type="text" name="exp"/></label>

 <input type="submit"/>
</form>
</body>
</html>

2.3 Stepping Up to XForms

XForms are comprised of separate sections that describe what the form does, and
how the form is to be presented. This allows for flexible presentation options,
making it possible for classic XHTML form controls, as well as other form control
sets such as WML to be leveraged, as shown here.

The simplest case involves authoring only the new XForms form controls, leaving
out the other sections of the form. To convert the previous form into XForms this
way, an xform element is needed in the head section of the document:

With these changes to the containing document, the previous example could be
rewritten like this:

<xform:xform>
 <xform:submitInfo target="http://example.com/submit" method="..."/>
</xform:xform>

<selectOne xmlns="http://www.w3.org/2001/06/xforms" ref="paytype">
 <caption>Select Payment Method</caption>
 <choices>
 <item value="cash">Cash</item>
 <item value="credit">Credit</item>
 </choices>
</selectOne>
<textbox xmlns="http://www.w3.org/2001/06/xforms" ref="cc">
 <caption>Credit Card Number</caption>
</textbox>
<textbox xmlns="http://www.w3.org/2001/06/xforms" ref="exp">

Notice the following features of this design:

l The user interface is not hard-coded to use radio buttons. Different devices
(such as a voice browser) can render the concept of "selectOne" as
appropriate.

l Form controls always have captions directly associated with them, as child
elements.

l There is no need for an enclosing form element.
l Element names for form controls have been changed: textbox is a specific

element, rather than a type attribute on input, as in XHTML.
l Data entered through the form controls ends up submitted as XML.

With these changes, the XForms Processor will be able to directly submit XML
instance data. The XML is constructed by creating a root element with child
elements reflecting the names given to each form control. For instance, the
submitted data might look like this:

2.4 Providing XML Instance Data

Understandably, authors will often desire greater control over exact construction of
the submitted instance data. One common case might be submitting to a server
XML data that is validated against a predefined DTD or XML Schema.

XForms keeps track of the state of the partially filled form through instance data,
which provides an outline of the desired XML data, including namespace
information. The instance data starts off with the initial values for the form, is
updated as the user fills the form, and eventually is serialized and submitted. The
initial instance data is taken from the instance element inside the xform element,
defined as follows:

 <caption>Expiration Date</caption>
</textbox>
<submit xmlns="http://www.w3.org/2001/06/xforms"/>

<!-- envelope, generated separately -->
<Envelope>
 <Body>

 <!-- serialized instance data -->
 <paytype>Credit</paytype>
 <cc>12354677890123456</cc>
 <exp>04-2001</exp>

 <!-- envelope, generated separately -->
 </Body>
</Envelope>

This design has features worth calling out:

l There is complete flexibility in the structure of the XML. Notice that the item
paytype is now expressed as an attribute type of the element payment.

l Empty elements cc and exp serve as placeholders in the XML structure, and
will be filled in with form data provided by the user.

l An initial value ("credit") for the form control is provided through the type
attribute in the instance data. In the submitted XML, this initial value will be
replaced by the user input, if any.

l The instance data provides a unique namespace, which will be used when
the XML gets submitted.

To connect this instance data with form controls, the ref attributes on the form
controls need to point to the proper part of the instance data, using binding
expressions:

Binding expressions are based on XPath [XPath 1.0], including the use of the ’@’
character to refer to attributes, as seen here.

2.5 The XForms Model

The earlier XHTML form in 2.2 Current Approach: XHTML. Even in this short
form, there are several aspects that would be desirable to express, but would only
be possible through the addition of unstructured script code:

l The credit card information fields cc and exp are only relevant if the "Credit"
option is chosen in the paytype field.

l The credit card information fields cc and exp should be required when the
"Credit" option is chosen in the paytype field.

l The field cc should accept digits only, and should have exactly 14, 15, or 16
digits.

l The field exp should accept only valid month/date combinations.

<xform:xform>
 <xform:submitInfo target="http://example.com/submit" method="..."/>
 <xform:instance>
 <payment type="credit" xmlns="http://commerce.example.com/payment">
 <cc/>
 <exp/>
 </payment>
 </xform:instance>
</xform:xform>

 <selectOne ref="payment/@type">
 ...
 <inputText ref="payment/cc">
 ...
 <inputText ref="payment/exp">

By specifying a 3rd component, the XForms Model, authors can include rich
declarative datatype and validation information in forms.

An XForms Model consists of model items, which include XML Schema datatype
information [XML Schema part 2] as well as properties specific to XForms.

2.6 Multiple Forms per Document

XForms places no limits on the number of individual forms that can be placed in a
single containing document. When multiple forms share the same containing
document, multiple xform elements are needed. The first xform element may skip
a unique id attribute (as have all the examples above), but subsequent xform
elements require an id so that they can be referenced from elsewhere in the
containing document.

The other side of the equation is that form controls throughout the document need
to specify which xform element is associated with the instance data to which they
bind. This is accomplished through an xform attribute alongside the ref attribute.
The default for the xform attribute is to refer to the first xform element in document
order.

To add a second form, an opinion poll, to our commerce example, the following
would be authored in the head section of the XHTML:

Editorial note: MJD

The examples here are sketchy out of necessity; this section will need to be
rewritten after the Schema Basic task force delivers its syntax recommendations.

<!-- add to the cc model item the following: -->
relevant="value(’payment/@type’) == ’credit’"
required="true"
datatype of "xform:string"
facet pattern of "\d{14,16}"

<!-- add to the exp model item the following: -->
relevant="value(’payment/@type’) == ’credit’"
required="true"
datatype of "xform:gYearMonth"

<xform:xform>
 <xform:submitInfo target="http://example.com/submit" method="..."/>
 <xform:instance>
 ...payment instance data...
 </xform:instance>
</xform:xform>

<xform:xform id="poll">
 <xform:submitInfo target="http://example.com/poll" method="..."/>
</xform:xform>

Additionally, the following form control markup in the body:

The main difference to note here is the use of xform="poll", which identifies
which form the form control binds to.

2.7 Additional User Interface Capabilities

The visual layout appearance of the initial XHTML forms such as the above
example (2.2 Current Approach: XHTML) leaves much to be desired.

2.8 Complete Document

This chapter presented various bits and pieces of XForms as a tool to help
readers understand the design. Presented here is the entire XHTML+XForms
document presented in one segment.

<selectOne ref="pollOption" xform="poll" xmlns="http://www.w3.org/2001
 <caption>How useful is this page to you?</caption>
 <choices>
 <item value="0">Not at all helpful</item>
 <item value="1">Barely helpful</item>
 <item value="2">Somewhat helpful</item>
 <item value="3">Very helpful</item>
 </choices>
</selectOne>
<submit xform="poll" xmlns="http://www.w3.org/2001/06/xforms"/>

Need extended UI example here

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xform="http://www.w3.org/2001/06/xforms"
 xml:lang="en">
<head>
 <title>XForms in XHTML</title>

 <xform:xform>
 <xform:submitInfo target="http://example.com/submit" method="..."/>
 <xform:instance>
 <payment type="credit" xmlns="http://commerce.wizard">
 <cc/>
 <exp/>
 </payment>
 </xform:instance>
 </xform:xform>

 <xform:xform id="poll">
 <xform:submitInfo target="http://example.com/poll" method="..."/>
 </xform:xform>

</head>
<body>

3 Terminology

binding

[Definition: The connection between a form control and a model item and an
instance data item, represented as a binding expression.]

binding expression

[Definition: An XPath addressing expression used by the binding to connect
form controls to other parts of XForms.]

computed expression

[Definition: An XPath expression used by model item properties such as
relevant and calculate to include dynamic functionality in XForms.]

containing document

[Definition: A specific document, for example an XHTML document, in which
one or more <xform> elements are found.]

datatype

[Definition: A 3-tuple, consisting of a) a set of distinct values, called its value
space, b) a set of lexical representations, called its lexical space, and c) a
set of facets that characterize properties of the value space, individual
values or lexical items. This definition is taken from XML Schema [XML
Schema part 2].]

facet

[Definition: A single defining aspect of a value space. Generally speaking,
each facet characterizes a value space along independent axes or
dimensions. This definition is taken from XML Schema [XML Schema part
2].]

form control

[Definition: A user interface control or "widget" that serves as a point of user
interaction.]

instance data

[Definition: An internal tree representation of the values and state of all the
instance data items associated with a particular form.]

 ... include advanced UI markup here ...
</body>
</html>

instance data item

[Definition: An internal representation of the value and state of a single piece
of data corresponding to a Schema simpleType, constrained by the
definition of a model item.]

lexical space

[Definition: A lexical space is the set of valid literals for a datatype. This
definition is taken from XML Schema [XML Schema part 2].]

model item

[Definition: An abstract unit of data-collection within the XForms Model,
which defines a XML Schema datatype and possibly other form-specific
constraints on a single piece of collected data.]

model item property

[Definition: A single, XForms-specific defining aspect of a model item..]

value space

[Definition: A set of values for a given datatype. Each value in the value
space of a datatype is denoted by one or more literals in its lexical space.
This definition is taken from XML Schema [XML Schema part 2].]

XForms Model

[Definition: The non-visible definition of an XML form as specified by
XForms. The XForms Model defines the individual model items and
constraints and other run-time aspects of XForms.]

XForms Processor

[Definition: A software application or program that implements the XForms
specification.]

4 Datatypes

4.1 XML Schema Datatypes

XForms includes all XML Schema datatypes, including the concepts of value
space and lexical space, and all constraining facets, as specified in [XML Schema
part 2]. For reference, these are

Built-in primitive types:

duration
dateTime

time
date
gYearMonth
gYear
gMonthDay
gDay
gMonth
string
boolean
base64Binary
hexBinary
float
decimal
double
anyURI
QName
NOTATION

Built-in derived types:

normalizedString
token
language
Name
NCName
ID
IDREF
IDREFS
ENTITY
ENTITIES
integer
nonPositiveInteger
negativeInteger
long
int
short
byte
nonNegativeInteger
unsignedLong
unsignedInt
unsignedShort
unsignedByte
positiveInteger

The Schema for XForms derives new types for all the above datatypes, placing no
additional restrictions on the allowed value space, but including them in the
XForms namespace.

Issue (datatype-identifiers):

One requirement is for XForms to include unique identifiers for each datatype
listed here. We believe the facilities in XML Schema are sufficient for this, but
welcome feedback on this issue.

Issue (ieee-datatypes):

There is concern that IEEE floating point, as used by the datatypes xsd:float
and xsd:double may be difficult or impossible to implement on small devices.
XPath (see 6 XPath Expressions in XForms) also uses IEEE representation
for numbers, and must be taken into consideration as to resolution of this
conflict.

Issue (xml-datatypes):

Several datatypes, namely xsd:QName, xsd:NOTATION, xsd:Name, xsd:NCName,
xsd:ID, xsd:IDREF, xsd:IDREFS, xsd:ENTITY, and xsd:ENTITES are highly
specific to XML, and perhaps not as useful in XForms. Particularly on small
devices, the incremental cost of supporting these datatypes might be
excessive.

Issue (pattern-facet):

Fully implementing the pattern facet might be too expensive on small
devices.

Issue (mask-facet):

Previous Working Drafts of XForms specified a mask facet, with less
implementation cost than the Schema pattern facet. What are our options for
adding an entirely new facet not defined in XML Schema?

The mask facet was defined as follows:

Example: Mask Facet

XML Schema has defined a Regular Expression language which is "similar to
the regular expression language used in the Perl Programming language",
and can be applied to most built-in datatypes. Regular expression syntax,
however, is considered complex by some. Therefore, XForms defines the
concept of a mask facet. All mask facets are convertible into patterns.

XML schema allows multiple pattern facets to be specified. Similarly, multiple
mask or pattern facets, but not a mixture, are permitted.

XForms mask uses the syntax and processing from [WML1.3] format. Some
examples:

l A matches "A", "X", "$", "%", or "."
l a matches "a", "x", "$", "%", or "."
l X matches "A", "X", "$", "%", ".", or "4"
l x matches "a", "x", "$", "%", ".", or "4"
l N matches "0", "4", or "7"
l 3N matches "0", "63", or "999" but not "1234" (Note: only allowed at end

of mask)

l *X matches "$", "3.0", or "ABCDEFG" (Note: only allowed at end of
mask)

l \ causes the next literal character to be inserted into the mask
l NNN\-NNNN matches "123-4567" but not "1234567"

As with WML format processing, an XForms Processor must ignore invalid
masks.

Issue (now-facet):

Previous Working Drafts of XForms specified "dynamic facets" that could be
reevaluated at arbitrary times. One benefit of that approach was that a now()
expression could be used as a constraining facet on date/time datatypes.
What are our options for including similar functionality within the framework of
XML Schema datatypes?

4.2 XForms Datatypes

The Schema for XForms derives the following types for use within forms:

4.2.1 currency

The XForms datatype currency is derived from the XForms datatype
xform:string. A pattern facet with a value of [A-Z]{3} is specified.

Valid currency values are specified in [ISO 4217].

Note:

Since new currencies may appear at any time, the currency values as defined
in [ISO 4217] are not strictly enforced.

l Examples:A value of ’Japanese Yen’ would be represented as:

JPY

l A value ’US Dollars’ would be represented as:

USD

4.2.2 monetary

Forms often deal with monetary values. In many cases the currency type in use is
well-known, and not even needed in the instance data. When an explicit currency
identifier is needed, authors can freely use separate xform:decimal and
xform:currency values to accomplish this. For a unified approach, a monetary
datatype would combine, in a single lexical space, both a currency code and a
decimal value.

Issue (monetary-datatype):

Is such a datatype needed in XForms? If yes, how can it be defined in terms
of XML Schema?

l Examples: A value of 42 Indonesian Rupiahs would be represented as:

42IDR

l A value of 4.37 Euro would be represented as:

4.37EUR

5 The XForms Model

5.1 Introduction

Chapter 4 Datatypes described how XForms uses the XML Schema datatyping
system, which can constrain the value space of datatypes that can be used in data
collection. This chapter introduces a different set of properties, called model item
properties, which define XForms-specific behaviors and metadata useful for data
collection.

5.2 Model Item Properties

Model item properties fall into two basic categories:

l Computed expressions are XPath expressions that provide a value to the
XForms Processor. The value is recomputed at certain times, according to
the XForms Processing Model (see 11 Processing Model).

l All other properties are fixed, static values that the XForms Processor
evaluates only once.

The following properties are available for all model items, and their syntax is
explained throughout this chapter. For each property the following information is
provided:

Description
Computed Expression (yes or no)
Legal Values
Default Value
Additional descriptive text

5.2.1 name

Description: provides a specific name for the model item.

Computed Expression: No

Legal Values: only values of type xsd:NCName

Default Value: none.

Authors can associate a human-readable name with a model item through the use
of the name property. Each name should be unique within the scope of the XForms
Model where it is declared.

5.2.2 type

Description: assigns a Schema datatype.

Computed Expression: No

Legal Values: any xsd:QName representing a Schema datatype.

Default Value: xsd:anyType

The concept of typed data is important to forms. The assignment of a particular
datatype to a model item affects validation of the data it can accept, as well as
affecting which form controls to which it can bind.

Note:

The XForms Model uses properties "name" and "type" as in XML Schema;
the concrete syntax used to define XForm Models, and consequently the use
of these properties will be made concrete in a forthcoming revision of this
Working Draft.

5.2.3 readOnly

Description: describes whether the value is restricted from changing. The ability of
form controls to have focus and appear in the navigation order is unaffected by
this property.

Computed Expression: Yes

Legal Values: any expression is convertible to boolean.

Default Value: false.

When evaluating to true, this property indicates that the XForms Processor
should not allow any changes to the bound instance data item.

In addition to restricting value changes, the readOnly property provides a hint to
the XForms User Interface. Form controls bound to a model item with the
readOnly property should indicate that entering or changing the value is not
allowed. The hint provided has no effect on visibility, focus, or navigation order.

5.2.4 required

Description: describes whether a value is required before the instance data is
submitted.

Computed Expression: Yes

Legal Values: any expression that is convertible to boolean

Default Value: false.

Often forms require certain values to be entered. This may be a static
requirement, or may only be the case if some condition is satisfied. When
evaluating to true, this property indicates that a non-empty instance data item is
required before a submission of instance data can occur. Non-empty is defined
as:

1. If the bound instance data item is the text content of an element, the
element must not have the xsi:nil attribute set to true.

2. The bound instance data item must be convertible to an XPath string with a
length greater than zero.

Except as noted below, the required property does not provide a hint to the
XForms User Interface regarding visibility, focus, or navigation order. XForms
authors are strongly encouraged to make sure that form controls that accept
required data are visible. An XForms Processor may provide a unique indication
that a form control is required, and may provide immediate feedback, including
limiting navigation, for required form controls.

Issue (issue-default-default):

It might be useful to set the default for the required attribute for an entire
XForms Model. What should the default default be? How could we assign a
default for a single XForms Model? This could apply to other attributes as
well, e.g. readOnly, etc...

The chapter 11 Processing Model contains details on how the XForms Processor
enforces required values.

5.2.5 relevant

Description: indicates whether the model item is currently relevant to the rest of
the XForms Model. XForms Processors would typically not render an associated
form control, including children, when the value is false.

Computed Expression: Yes

Legal Values: any expression is convertible to boolean

Default Value: true.

Many forms have fields dependent on other conditions. For example, a form might
ask whether the respondent owns a car. It is only appropriate to ask for further
information about their car if they have indicated that they own one.

When evaluating to true, this property indicates that the XForms Processor
should render a form control, and conversely, when evaluating to false, indicates
that the form control should not be rendered.

The relevant property provides hints to the XForms User Interface regarding
visibility, focus, and navigation order. In general, when true, associated form
controls should be made visible. When false, associated form controls should be
made unavailable, removed from the navigation order, and not allowed focus.

The following table shows the user interface interaction between required and
relevant.

5.2.6 calculate

Description: indicates that the instance data item associated with the model item is
to be dynamically calculated.

Computed Expression: Yes

Legal Values: any expression is convertible to an XPath datatype compatible with
the associated XML Schema datatype.

Default Value: none.

An XForms Model may include model items that are computed from the other
values elsewhere. For example, the sum over line items for quantity times unit
price, or the amount of tax to be paid on an order. The computed value can be
represented as a computed expression using the values of other model items. The
XForms Processing Model indicates how and when the calculation is recomputed.

5.2.7 priority

Description: indicates the relative priority for calculations of the model item.

Computed Expression: No

required="true" required="false"

relevant="true"

The form control (and any
children) should be visible or
available to the user. The
XForms User Interface may
indicate that a value is required.

The form control (and any
children) should be visible
or available to the user.
The XForms User
Interface may indicate
that a value is optional.

relevant="false"

The form control (and any
children) should be hidden or
unavailable to the user. Entering
a value or obtaining focus
should not be allowed. The
XForms User Interface may
indicate that should the form
control become relevant, a value
would be required.

The form control (and any
children) should be
hidden or unavailable to
the user. Entering a value
or obtaining focus should
not be allowed.

Legal Values: any expression that is convertible to an integer in the range 0-
32767.

Default Value: 0.

For model items that are calculated, this optional property specifies a calculation
order. The XForms Processing Model uses this property to determine the
calculation order for multiple calculations.

5.2.8 validate

Description: specifies the predicate that needs to be satisfied for the associated
instance data item to be considered valid.

Computed Expression: Yes

Legal Values: any expression that is convertible to boolean

Default Value: true.

An XForms Model may include model items that need to be validated. When
evaluating to true, indicates that the model item is considered valid. The chapter
11 Processing Model describes details such as immediate validation vs.
onsubmit validation.

Computed expressions used here are not restricted to examining the instance
data item they are invoked on. XPath, plus the extensions in this chapter, provide
the means to traverse the instance data, as well as call-outs to external script,
enabling potentially complex validations.

The XForms User Interface may indicate whether a form control is currently valid
or invalid.

Issue (issue-cascade):

Will the validate property be evaluated on all the parent or child model items
whenever a value changes? We need to make sure that inter-model item
constraints will get evaluated.

5.3 Using Datatypes in the XForms Model

The following section is being rewritten with the guidance of the XML Schema
Working Group. In its current state, it is an informative listing of the functionality
that we are planning in XForms 1.0, with illustrative examples of similar
functionality in XML Schema. A subsequent Working Draft will contain normative
details on how the functionality is described in terms of XForms.

5.3.1 Atomic Datatype

At the simplest level, it is necessary to associate a datatype with a model item.
This has the effect of restricting the allowable values of the associated instance

data item to valid representations of the lexical space of the datatype, including
enforcing of any constraining facets.

Example Schema Syntax: declaring a datatype based on an xsd:string plus
additional constraining facet would be accomplished as follows:

5.3.2 Closed Enumeration

Often it is necessary to restrict the allowable values of the associated instance
data item to a closed list of alternatives. Also under consideration is a method to
obtain a list at runtime, for example, from an XPath node-set.

Example Schema Syntax: declaring a datatype allowing enumerated values of an
xsd:string would be accomplished as follows:

5.3.3 Open Enumeration

A special case of enumerated datatypes is the common form design pattern of a
list, with an ’other, please specify’ choice. This is referred to as an open
enumeration.

Example Schema Syntax: declaring an open enumeration is possible through a
combination of union and enumeration features, as follows:

5.3.4 Union

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Mastercard"/>
 <xsd:enumeration value="Diner’s Club"/>
 <xsd:enumeration value="American Express"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType>
 <xsd:union memberTypes="xsd:string">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Mastercard"/>
 <xsd:enumeration value="Diner’s Club"/>
 <xsd:enumeration value="American Express"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
</xsd:simpleType>

It may be desirable for data collection purpose to allow an instance data item to be
a valid lexical value of one among several datatypes. Unions are defined in XML
Schema.

Example Schema Syntax: declaring a datatype allowing either a creditCardType
or bonusProgramType value would be as follows:

5.3.5 Multiple Selection

Some form controls, such as selectMany, have the notion of supporting more than
one simpleType value at any given time. This corresponds with Schema list
datatypes.

Example Schema Syntax: declaring a list-derived datatype would be as follows:

5.3.6 Repeating Line Item

It is common for certain types of forms, such as order forms, to contain repeating
structures, typically line items. If each individual structure were represented as a
Schema complexType, a line item group would be analogous to the sequence
construct.

Example Schema Syntax: a datatype allowing a sequence of child elements would
be declared as follows:

Chapter 8 XForms User Interface contains details on representing this with
XForms User Interface form controls, as well as details for how this relates to the
instance data in chapter 11 Processing Model.

5.3.7 Alternate Representation

In some forms, alternate representations might be necessary for underlying
instance data structures.

<xsd:simpleType>
 <xsd:union memberTypes="creditCardType bonusProgramType"/>
</xsd:simpleType>

<xsd:simpleType name="listOfMyIntType">
 <xsd:list itemType="xsd:int"/>
</xsd:simpleType>

<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="child" type="xform:string" minOccurs="0" maxOccu
 </xsd:sequence>
</xsd:complexType>

Example Schema Syntax: a Schema choice element is roughly analogous to this,
although XForms uses a more dynamic version. Examples of this are found in 8
XForms User Interface

6 XPath Expressions in XForms

XPath is used within XForms to address instance data, as well as to perform basic
operations, such as declaratively stating when a form control needs to be filled
out, or defining a computation over other values such as unit prices, quantities,
discounts, and tax and shipping costs. This chapter describes how XForms uses
XPath, and additional XForms functions for use in forms.

6.1 Datatypes

In general, XPath uses a smaller set of datatypes than XML Schema. XForms
allows arbitrary Schema datatypes, including those defined in 4 Datatypes, while
XPath datatypes are limited to boolean, string, number, and node-set. (For
completeness, XPath additionally has external objects and result tree fragments,
but there is no special treatment for these types in the XForms specification.)

Note:

Resource-limited XForms Processors may define implementation limits on the
maximum size of a node-set.

The XForms specification is defined such that it is always clear whether XPath or
XML Schema datatypes are used within a particular context. Binding expressions
and computed expressions always use XPath datatypes, while everything else
uses XML Schema datatypes.

Note:

A future version of XForms is expected to use XPath 2.0, which includes
support for XML Schema datatypes, which will make the above distinction
moot.

6.2 Instance Data

Every form has a current state, representing the values entered at any particular
point in time. Within XForms, for each xform element, the XForms Processor must
behave as if it internally maintains an XML data structure modeled as a tree to
represent the state of the form. This data structure is called instance data and
conforms to the XPath Data Model [XPath 1.0]. Additionally, each node in the tree
contains a boolean "dirty" flag, which is referenced elsewhere by the XForms
Processing Model. In this context, "dirty" indicates that the data value might need
to be refreshed in the presentation.

Elements and attributes in the instance data may have namespace information
associated with them, as defined in the XPath Data Model. Unless otherwise
specified, all instance data elements and attributes are unqualified. Instance data

elements and attributes may not belong to the XForms namespace.

Issue (issue-instance-data-access):

Should there be specified a DOM form of access (perhaps a document
fragment), that maps to the instance data? If so, should it be read-only or
read-write access? What are possible security implications here?

The rules for defining the root and context nodes of the instance data are found in
in the following section.

6.3 Evaluation Context

Applied to XForms, XPath references abstract instance data (using the "path"
portion of XPath), instead of a discrete XML document. This reference is called a
binding expression in this specification.

The following context is used for evaluating all XPath expressions in XForms:

1. The context node for outermost binding elements (such as XForms UI
elements) is the XPath root (/). A "binding element" is any element that is
explicitly allowed to have an xform:ref attribute. An XForms element is
"outermost" when the node-set returned by the XPath expression
ancestor::* includes no binding element nodes.

Note:
The contents of the instance data below the XPath root node (/) are
dependent on how the instance data was constructed, which is defined
in 11.4.2 Instance Data Construction.

2. The context node for non-outermost binding elements is determined by
evaluating the binding expression of the immediately enclosing element.
An element is "immediately enclosing" when it is the first binding element
node in the node-set returned by the XPath expression ancestor::*. This is
also referred to as "scoped resolution".

3. The context size and position are both exactly 1.
4. No variable bindings are in place.
5. The available function library is defined below.
6. Any namespace declarations in scope for the attribute that defines the

expression are applied to the expression.

Example:

In this example, the repeat has a binding expression of element1/foo/bar.
According to the rules above, this outermost element would have a context node
of /, which is the root of the instance data, or the parent to the element1 element.

<repeat ref="element1/foo/bar">
 <selectOne ref="element2" ... />
 <selectOne ref="@attr" ... />
</repeat>

Both of the selectOnes then inherit a context node from their parent, the context
node being /element1/foo/bar. Based on this, the selectOne binding expressions
evaluate respectively to /element1/foo/bar/element2
and /element1/foo/bar/@attr. Matching instance data follows:

6.4 Canonical Binding Expressions

As with XPath, it is possible to construct many different binding expressions that
end up returning the same node-set. That said, it is often useful to express a
binding expression in a standard, compact representation, defined as a canonical
binding expression.

Canonical binding expressions are represented as an AbsoluteLocationPath as
defined in [XPath 1.0]. Additionally, canonical binding expressions use only default
abbreviated axis-specifiers (for elements) or the ’@’ abbreviation (for attributes).
Examples:

l (canonical) /a/b/c
l (canonical) /a/b/@c
l (non-canonical) a/b/c (not an absolute path)
l (non-canonical) child::a/child::b/child::c
l (non-canonical) /a/b/c/d/ancestor::c

6.5 Forms Core Function Library

The XForms Core Function Library includes the entire [XPath 1.0] Core Function
Library, including operations on node-sets, strings, numbers, and booleans.

This section defines a set of required functions for use within XForms.

Issue (xpath-core-lib):

Further input is required on the ability for resource-constrained devices to
implement the complete XPath Core Function Library.

6.5.1 Number Methods

number average(node-set)

The average function returns the arithmetic average value, for each node in the
argument node-set, of the result of converting the string-values of each node to a
number. The sum is computed with sum(), and divided with div by the value

<element1>
 <foo>
 <bar attr="xyz">
 <element2>xyz</element2>
 </bar>
 </foo>
</element1>

computed with count().

number min(node-set)

The min function returns the minimum value, for each node in the argument node-
set, of the result of converting the string-values of the node to a number.
"Minimum" is determined with the < operator.

number max(node-set)

The max function returns the maximum value, for each node in the argument node-
set, of the result of converting the string-values of the node to a number.
"Maximum" is determined with the < operator.

number count-non-empty(node-set)

The count-non-empty function returns the number of non-empty nodes in the
argument node-set. A node is considered non-empty if it is convertible into a string
with a greater-than zero length.

Note:

The following core functions are defined within [XPath 1.0] - number(), sum
(), floor(), ceiling(), and round()

Note:

The following useful numeric and boolean operators are defined within [XPath
1.0] - "+", "-", "*", "div", "mod", unary "-" ,"=", "!=", "<", ">", "<=", ">=", "or",
"and".

6.5.2 String Methods

string now()

The now function returns the current system time as a string value, in the canonical
format defined within the XForms specification. If local time zone information is
available, it is included in the string.

Note:

Note: the following are defined within [XPath 1.0] - string(), concat(),
starts-with(), contains(), substring-before(), substring-after(),
substring(), string-length(), normalize-space(), and translate().

6.5.3 Miscellaneous Methods

boolean submit()

The submit function immediately submits the instance data bound to the node that
contains the expression by triggering an xforms-submit event.

boolean reset()

The reset function immediately resets the instance data bound to the node that
contains the expression by triggering an xforms-reset event.

string xforms-property(string)

The xforms-property function accesses the XForms Property (defined in 11
Processing Model) named by the string parameter, and returns the value of the
property.

6.6 Extensibility

Issue (user-extensions):

This section will be expanded in future revisions, to cover extension functions
and methods for calling out to script, perhaps something along the lines of
element-available and function-available.

7 Form Controls

7.1 Introduction

XForms User Interface controls, also called form controls, are declared using
markup elements, and their behavior refined via markup attributes. This markup
may be further decorated with style properties that can be set using CSS
stylesheets to deliver a customized look and feel. Form controls defined here are
bound to the underlying instance data using the binding attributes as defined in
the chapter 9 Binding.

The XForms form controls enable accessibility by taking a uniform approach to
such features as captions, help text, tabbing and keyboard shortcuts.
Internationalization issues are being addressed in conjunction with the
Internationalization Working Group and are addressed by following the same
design principles as within the rest of XHTML. All form controls defined here are
suitable for implementation as Aural CSS (ACSS) form controls.

Several XForms form controls are of a general class that represent the concept of
selecting from available choices. Such selection controls can be characterized
along a presentational dimension that is completely orthogonal to the functional
distinction. Distinguishing the presentational from the functional dimension allows
the expression of the meaning of a particular form control--see [AUI97] for a
definition of such high-level user interaction primitives.

This chapter includes non-normative graphical examples of many form controls.
The CSS Working Group is providing assistance with creating default CSS rules
for producing visual renderings of standard XForms form controls. This
specification will also include non-normative rules for how these same controls
might be rendered to alternative access modalities.

Issue (control-names):

All form control names listed here should be considered advisory until further
consensus is reached in the Working Group.

For each form control, the following aspects will be defined:

Description
Examples
Data Binding Restrictions
Implementation Hints
XML Representation

The form controls defined here use common attributes and elements that are
defined later in this chapter (7.13 Common Markup).

7.2 textbox

Description: This form control enables free-form data entry.

Examples:

In the above, CSS style attributes height and width specify the display size of the
form control. Note that the constraints on how much text can be input are obtained
from the underlying XForms Model definition and not from these display
properties.

A graphical browser might render the above example as follows:

Data Binding Restrictions: The entered value of the form control (after processing
as described in 11 Processing Model) is treated as a lexical value. A datatype
bound to this form control will be treated as a restriction upon the allowed entered
value.

Implementation Hints: Implementations may represent this form control with more
than one native user interface control, for example a form control that appears to
be three separate smaller entry fields for "day", "month", and "year" for a date
datatype. Further, for date datatypes, a calendar system for data entry may be
used, including non-Gregorian calendar systems. For numeric datatypes,
additional features might include spin buttons or other conveniences. When bound

<textbox ref="order/shipTo/street" style="width:xx; height:xx">
 <caption>Street<caption>
 <help>Please enter the number and street name</help>
</textbox>

to a datatype that accepts newline characters, this form control should accept
multi-line input.

Example: XML Representation: <textbox>

common attributes defined in 7.13.1 Common Attributes

7.3 secret

Description: This form control is used for obtaining information that is considered
sensitive, and thus not echoed to a visual or aural display as it is being entered,
e.g., password entry.

Example:

In the above, CSS style attributes height and width specify the display size of the
form control. Note that the constraints on how much text can be input are obtained
from the underlying XForms model definition and not from these display
properties.

A graphical browser might render this form control as follows:

Data Binding Restrictions: Identical to textbox.

Implementation Hints: In general, implementations, including accessibility aids,
would render a "*" or similar character instead of the actual characters entered,
and thus would not render the entered value of this form control. Note that this
provides only a casual level of security; truly sensitive information will require
additional security measures outside the scope of XForms.

Example: XML Representation <secret>

<textbox
 (common attributes)
>
 <!-- caption, help?, hint?, onevent? -->
</textbox>

<secret ref="/login/password" style="width:xx; height:xx">
 <caption>Please enter your password --it will not be visible as you ty
</secret>

common attributes defined in 7.13.1 Common Attributes

7.4 uploadMedia

Description: This form control enables the common feature of Web sites to upload
a file from the local file system, as well as accepting input from various devices
including microphones, pens, and digital cameras.

Example:

A graphical browser might render this form control as follows:

Data Binding Restrictions: This form control can only be bound to datatypes
xsd:base64Binary or xsd:hexBinary, or types derived by restriction from these.

Implementation Hints:

l Implementations with a file system SHOULD support "file upload"--selecting
a specific file, for all mediaTypes. The types of files presented by default
MUST reflect the mediaType specified in the XForms Model, for example
defaulting to only audio file types in the file dialog when the mediaType is
"audio/*". In XForms 1.0, there is a 1:1 binding between a uploadMedia form
control and one of the xform:binary datatypes, although that single file may
be compound (e.g. application/zip).

l Implementations with specific pen/digitizer hardware SHOULD (and
implementations with other pointing devices MAY) support "scribble"--
allowing in-place creation of pen-based PNG image data, when the
mediaType is "image/*" or "image/png". Other mediaTypes besides
image/png MAY share this input method.

Note:
Commonly, people have trouble drawing recognizable figures or
signatures with a conventional pointing device like a mouse or track ball.
Hence, a reasonable implementation of XForms might not want this

<secret
 (common attributes)
>
 <!-- caption, help?, hint?, onevent? -->
</secret>

<uploadMedia ref="mail/attach1" mediaType="image/*">
 <caption>Select image:</caption>
</upload>

feature, hence the "MAY" here for generic pointing devices
l Implementations with specific audio recording capabilities SHOULD support

record--in-place recording of an audio clip, when the mediaType is "audio/*"
or "audio/basic". Other mediaTypes besides "audio/basic" MAY share this
input method.

l Implementations with a digital camera/scanner interface SHOULD support
send image--in-place upload of images from an attached device, when the
mediaType is "image/*" or "image/jpeg". Other mediaTypes besides
"image/jpg" MAY share this input method.

l Implementations with video recording capability SHOULD provide a "record"
option for video/* mediaTypes.

l Implementations with 3d capabilities SHOULD provide a 3d interface option
for model/* mediaTypes.

l Implementations MAY provide proprietary implementations (for example, a
mediaType of text/rtf could invoke an edit window with a proprietary word
processing application)

l Implementations are encouraged to support other input devices not
mentioned here.

Example: XML Representation: <uploadMedia>

common attributes defined in 7.13.1 Common Attributes
mediaType = list of media types - list of suggested media types,
used by the XForms Processor to determine which input methods
apply.

7.5 selectOne

Description: This form control allows the user to make a single selection from
multiple choices.

Typically, a stylesheet would be used to determine the exact appearance of form
controls, though a means is provided to make a concrete selection through an
attribute. The value of the attribute consists of one of the following values, each of
which may have a platform-specific behavior:

radioGroup
checkboxGroup
pulldown
listbox
comboGroup

Example:

<uploadMedia
 (common attributes)
 mediaType = list of content types
>
 <!-- caption, help?, hint?, onevent? -->
</uploadMedia>

In the above example, selecting one of the choices will result in the associated
value given by attribute value on the selected item being set in the underlying
data instance at the location icecream/flavor. The values given in the user
interface shown above may be used in constructing a default schema if no
schema is provided by the XForms author.

A graphical browser might render this form control as any of the following:

Data Binding Restrictions: This form control will select the lexical value from the
value attribute (or in the absence of such an attribute, the text content of the item
element) of the single item selected. If the datatype bound to this form control
does not permit the selected value (for instance a datatype of xsd:decimal with an
attribute value="abc"), the form control with that selection will be perpetually
considered invalid and it will not be possible to submit the form. Authors are
encouraged to avoid this situation.

If the datatype bound to this form control includes a non-enumerated value space
(for instance xsd:string, or xsd:string as part of a union), or if the
"comboGroup" UI hint is specified, the form control then should allow free data
entry, as described in 7.2 textbox, in addition to the behavior defined here.

Issue (items-specified-elsewhere):

Yet to be decided is allowing display and/or storage values located elsewhere
to be retrieved from a binding expression.

Some user interface combinations may allow a state of zero selected items, in
which case the lexical value of a zero-length string is selected.

Implementation Hints: User interfaces may choose to render selectOne as a
pulldown list or group of radio buttons, among other options. The selectUI attribute
offers a hint as to which rendering might be most appropriate, although any styling
information (such as CSS) should take precedence.

<selectOne ref="icecream/flavor">
 <caption>Flavor</caption>
 <choices>
 <item value="vanilla">Vanilla</item>
 <item value="strawberry">Strawberry</item>
 <item value="chocolate">Chocolate</item>
 </choices>
</selectOne>

listbox checkboxGroup radioGroup pulldown

Example: XML Representation: <selectOne>

common attributes defined in 7.13.1 Common Attributes
selectUI = ("radioGroup" | "checkboxGroup" | "pulldown" |
"listbox" | "comboGroup") - appearance override

7.6 selectMany

Description: This form control allows the user to make multiple selections from
multiple choices.

Example:

In the above example, more than one flavor can be selected, populating the
instance data with multiple selections.

A graphical browser might render form control selectMany as any of the following:

Data Binding Restrictions: When zero or one items are selected, this form control
behaves exactly like selectOne with regard to the lexical value that is selected.
When multiple items are selected, the lexical value is a space-separated list of the
selected values. The datatype bound to this form control must be capable of
supporting this format, typically a Schema list type. Cases where each of the
multiple selections appear in the instance data attached to a separate element are
handled through the repeat construction (8.2 Repeating Structures).

<selectOne
 (common attributes)
 selectUI = ("radioGroup" | "checkboxGroup" | "pulldown" | "listbox" |
>
 <!-- caption, help?, hint?, onevent?, choices* -->
</selectOne>

<selectMany ref="icecream/flavors">
 <caption>Flavors</caption>
 <choices>
 <item value="v">Vanilla</item>
 <item value="s">Strawberry</item>
 <item value="c">Chocolate</item>
 </choices>
</selectMany>

listbox checkboxGroup radioGroup pulldown

N/A

Note:

A limitation of the Schema list datatypes is that whitespace characters in the
storage values (the value="..." attribute of the item element) are always
interpreted as separators between individual data values. Therefore, authors
should avoid using whitespace characters within storage values.

For instance, the following incorrect item declaration:

when selected, would introduce not one but four additional selection values:
"America", "of", "States", and "United".

Implementation Hints: An accessibility aid might allow the user to browse through
the available choices and leverage the grouping of choices in the markup to
provide enhanced navigation through long lists of choices.

Example: XML Representation: <selectMany>

common attributes defined in 7.13.1 Common Attributes
selectUI = ("radioGroup" | "checkboxGroup" | "pulldown" |
"listbox" | "comboGroup") - appearance override

7.7 selectBoolean

Description: This form control represents an on/off or true/false or yes/no (or
similar) choice.

Example:

Data Binding Restrictions: This form control produces only two possible lexical

<item value="United States of America">USA</item>

<selectMany
 (common attributes)
 selectUI = ("radioGroup" | "checkboxGroup" | "pulldown" | "listbox" |
>
 <!-- caption, help?, hint?, onevent?, choices* -->
</selectMany>

<selectBoolean ref="questionnaire/married">
 <caption>Are you married?</caption>
 <help>We need this to determine your tax allowance</help>
 <choices>
 <item value="true">Yes</item>
 <item value="false">No</item>
 </choices>
</selectBoolean>

values: true or false. To be considered valid, the datatype bound to this form
control (typically xform:boolean) must be able to accept these two lexical values.

Note:

Scenarios where the desired lexical value is anything other than ’true’/’false’
are not suitable for the selectBoolean form control.

For example, if the values placed into the instance data were required to be
either "male" or "female", the selectOne form control should be used instead.

Implementation Hints: Visual implementations would typically render this as a
checkbox. In some cases, like the above example or in aural environments, it may
be helpful to provide labels for the respective choices. This is accomplished
through the choices mechanism, similar to the other select... form controls.

Example: XML Representation: <selectBoolean>

common attributes defined in 7.13.1 Common Attributes
selectUI = (TBD)

7.8 range

Description: This form control allows selection from a continuous range of values.

Example:

A graphical browser might render this as follows:

Data Binding Restrictions: Only datatypes which represent a continuous range
where it is possible to express a difference value can be bound to this form
control. (For instance, xform:decimal would be fine, while xform:string or
xform:..Binary would not). In terms of Schema datatypes, the datatype must be
either 1) have a total order relationship, or 2) an overall partial order relationship,

<selectBoolean
 (common attributes)
 selectUI = ("radioGroup" | "checkboxGroup" | "pulldown" | "listbox" |
>
 <!-- caption, help?, hint?, onevent?, choices* -->
</selectBoolean>

<range ref="/stats/balance" start="-2.0" end="2.0" stepSize="0.5">
 <caption>Balance:</caption>
</range>

but totally ordered within the range specified between the start and end attributes.

Issue (enum-range):

Should an enumeration be allowed to bind to this form control? If yes, how
should it be ordered?

Implementation Hints: In graphical environments, this form control would typically
be rendered as a "slider" or "volume control".

Notice that the attributes of this element encapsulate sufficient metadata that in
conjunction with the type information available from the XForms Model proves
sufficient to produce meaningful prompts when using modalities like speech, e.g.,
when using an accessibility aid. Thus, an Aural CSS enabled user agent might
speak a prompt of the form Please pick a date in the range January 1, 2001
through December 31, 2001.

Example: XML Representation: <range>

common attributes defined in 7.13.1 Common Attributes
start = datavalue - Lexical starting bound for the range, of the same
datatype bound to the form control
end = datavalue - Lexical ending bound for the range, of the same
datatype bound to the form control
stepSize = datatype-difference - Prefered step-size to use for
incrementing or decrementing the value within the form control, of a
datatype that can express the difference between two values of the
datatype bound to the form control

7.9 button

Description: This form control is similar to the XHTML element of the same name
and allows for user-triggered actions. This form control may also be used to
advantage in realizing other custom form controls.

Example:

<range
 (common attributes)
 start = datavalue
 end = datavalue
 stepSize = datavalue-difference
>
 <!-- caption, help?, hint?, onevent? -->
</range>

<button>
Example unavailable at time of publication
</button>

Data Binding Restrictions:

Note:

Binding a model item has no direct effect on a button, but provides a context
for any event handlers that are attached.

Implementation Hints: Graphical implementations would typically render this form
control as a push-button.

Example: XML Representation: <button>

common attributes defined in 7.13.1 Common Attributes

7.10 output

Description: This form control renders a value from the instance data, but provides
no means for entering or changing data. This form control may be used in a
caption, for instance, when authors want to say: "I charged you value - and here
is why.

Example:

A graphical browser might render an output form control as follows:

Data Binding Restrictions: The lexical value of the datatype bound to this form
control is displayed, after processing as described in 11 Processing Model.

Implementation Hints: An audio browser might apply properties to this form control
to aurally highlight the displayed value to provide audio formatted output.

Example: XML Representation: <output>

<button
 (common attributes)
>
 <!-- caption, help?, hint?, onevent? -->
</button>

I charged you
<output ref="order/totalPrice"/>
and here is why:

id = xsd:ID - Optional unique identifier used for linking.
ref = binding-expression - Binding expression
xform = xsd:IDREF - Optional instance data selector. Details in the
chapter 9 Binding.
format = formatting-expression - Optional format specifier

7.11 submit

Description: This form control submits all or part of the instance data to which it is
bound.

Example:

Implementation Hints: The default handling for this controls is equivalent to the
submit() method.

Example: XML Representation: <submit>

common attributes defined in 7.13.1 Common Attributes

7.12 reset

Description: This form control resets to the initial values all or part of the instance
data to which it is bound.

<output
 id = xsd:ID
 ref = binding-expression
 xform = instance data selector
 format = formatting-expression
>
 <!-- empty content -->
</output>

Editorial note

We need to decide on how we define attribute format on form control output.
The functionality needed is similar to what functions like printf typically take.

<submit xform="timecard">
 <caption>Submit</caption>
</submit>

<submit
 (common attributes)
>
 <!-- caption, help?, hint?, onevent? -->
</submit>

Example:

Implementation Hints: The default handling for this controls is equivalent to the
reset() method.

Example: XML Representation: <reset>

common attributes defined in 7.13.1 Common Attributes

7.13 Common Markup

The preceding form control definitions make reference to several child elements
and attributes that are common to several of the XForms form controls. This
section defines these common markup components.

7.13.1 Common Attributes

Issue (XHTML-attrs):

XHTML defines two attributes on element html:form--accept and accept-
charset. Additionally, attribute accept-charset also appears on element
html:input. We need to bring the equivalent to these into the XForms
specification.

Example: XML Representation: Common Attributes

xmlns = xsd:anyURI - Optional standard XML attribute for identifying
an XML namespace.

<reset ref="/tcard/data" xform="timecard">
 <caption>Reset totals</caption>
</reset>

<reset
 (common attributes)
>
 <!-- caption, help?, hint?, onevent? -->
</reset>

xmlns = xsd:anyURI
xml:lang = xsd:language
id = xsd:ID
class = space separated list of classes
style = associated style info
ref = binding-expression
xform = xsd:IDREF
navIndex = xsd:nonNegativeInteger : 0
accessKey = xsd:token

xml:lang = xsd:language - Optional standard XML attribute to specify
a human language for this element.
id = xsd:ID - Optional unique identifier used for linking.
class = space separated list of classes - Optional selector for a style
rule.
style = associated style info - Optional inline style specification.
ref = binding-expression - Binding expression. Details in the chapter
9 Binding.
xform = xsd:IDREF - Optional instance data selector. Details in the
chapter 9 Binding.
navIndex = xsd:nonNegativeInteger : 0 - Optional attribute is a non-
negative integer in the range of 0-32767 used to define the navigation
sequence. This gives the author control over the sequence in which
form controls are traversed. The default navigation order is specified in
the chapter 11 Processing Model.
accessKey = xsd:string - Optional attribute defines a shortcut for
moving the input focus directly to a particular form control. The value of
this is typically a single character which when pressed together with a
platform specific modifier key (e.g. the alt key) results in the focus
being set to this form control.

CSS properties for controlling the look and feel of XForms form controls are being
defined in conjunction with the CSS Working Group. This version of the XForms
working draft defines the XForms form controls independent of visual
presentation. Additionally, sample default visual presentations are shown for each
form control defined in this Working Draft. The CSS Working Group has agreed to
help us develop a default CSS stylesheet capable of producing the sample default
renderings illustrated in this working draft. The results of the above will be used to
document the use of CSS properties within XForms user interface elements for
the final version of the XForms specification.

7.13.2 Common Child Elements

Child elements caption, help and hint detailed below provide the ability to attach
human-readable metadata to XForms form controls.

Instead of supplying such metadata e.g., the label for a form control, as inline
content of the contained element caption, the metadata can be pointed to by
using a simple XLink attribute xlink:href on element caption (or hint or help).
Notice that systematic use of this feature can be exploited in internationalizing
XForms user interfaces by:

l Factoring all human readable messages to a separate resource XML file.
l Using URIs into this XML resource bundle within individual caption elements
l Finally, an XForms processor can use content negotiation to obtain the

appropriate XML resource bundle, e.g., based on the accept-language
headers from the client, to serve up the user interface with messages
localized to the client’s locale.

7.13.2.1 caption

The required element caption labels the containing form control with a descriptive

label. Additionally, the caption makes it possible for someone who can’t see the
form control to obtain a short description while navigating between form controls.

Example: XML Representation: <caption>

common attributes defined in 7.13.1 Common Attributes

An accessibility aid would typically speak the metadata encapsulated in element
caption when the containing form control gets focus.

7.13.2.2 help

The optional element help provides a longer description that will help users
understand how to fill out this form control. The help text will be shown only on
request.

Example: XML Representation: <help>

common attributes defined in 7.13.1 Common Attributes

A graphical browser might render help as follows:

An accessibility aid might speak this information upon request.

7.13.2.3 hint

The optional element hint provides a short hint for the user, typically represented

<caption
 (common attributes)
>
 <!-- mixed content -->
</caption>

<help
 (common attributes)
>
 <!-- mixed content -->
</help>

as a tooltip by graphical user agents. The tooltip text will normally be shown when
the user remains on the form control for more than a certain length of time.
Accessibility aids might render such tooltips using speech. This element is
optional, and its content model is mixed.

Example: XML Representation: <hint>

common attributes defined in 7.13.1 Common Attributes

A graphical browser might render hints as follows:

7.13.2.4 onevent

This element can be used to bind event handlers to form controls. It is defined in
[XHTML Events]. Details on XForms events can be found in the chapter 11
Processing Model.

Example: XML Representation: <onevent>

Element onevent is defined in the XHTML Events module. It declares an event
listener by specifying the event to handle and the event handler to invoke.

7.13.2.5 item

This element is used within list form controls to represent a single item of the list.

Issue (onevent-for-item):

Should onevent handlers be allowed here for individual items in a list?

Example: XML Representation: <item>

<hint
 (common attributes)
>
 <!-- mixed content -->
</hint>

<onevent
 (attributes defined in XHTML Events)
>
 <!-- Action handlers -->
</onevent>

value = lexical-representation - the "storage value" for the item, to be
placed in the instance data when this item is chosen.

7.13.2.6 choices

This element is used within list form controls to group items. This provides the
same functionality as element optgroup in HTML 4.0.

Example: XML Representation: <choices>

8 XForms User Interface

8.1 Conditional Constructs For Dynamic User Interfaces

The XForms User Interface allows the authoring of dynamic user interfaces, i.e.,
user interfaces that vary based on the current state of the instance data being
populated. As an example, portions of a questionnaire pertaining to the user’s
automobile may become relevant only if the user has answered in the affirmative
to the question ’Do you own a car?’. Another use case for such dynamic user
interfaces is when the underlying XForms Model contains conditional structures.

8.1.1 switch

This element contains one or more case elements. Each case has an id attribute
that is used within event handlers appearing within the form controls to activate or
deactivate that portion of the user interface created by the markup contained
within that case element.

<item
 value = lexical-representation
>
 <!-- #PCDATA -->
</item>

<choices>
 <!-- (item | choices)+ -->
</choices>

Editorial note: Raman

Please do not attach semantics to the element name to prejudge the design.

The above will result in the portion of the user interface contained within the
default case being initially displayed. Next, we define an XForms event handler
toggle below for activating and deactivating different portions of this conditional
construct.

Example: XML Representation: Action <toggle>

Attribute switch identifies the switch constructor to be affected.
Attribute case identifies the portion of the switch construct to activate.

In addition to event handler toggle, event handler scroll might be used within
construct switch to cycle through the various contained case clauses.

8.2 Repeating Structures

The XForms Model allows the definition of repeating structures such as multiple
items being purchased within a purchase order. When defining the XForms Model,
such higher-level aggregations are constructed out of basic building blocks;
similarly, here we define higher-level user interface constructs that build on the
form controls defined previously, that can bind to data structures such as lists and
collections.

8.2.1 Design Rationale

The basic XForms form controls defined so far permit populating data instances
conforming to Schema simpleTypes. These form controls can be aggregated
using group(see 8.4 Layout in XForms) to form higher-level user interface form
controls. As an extension to this, the user interface markup for repeating
structures only adds encapsulation metadata about the collection being populated,
as well as the necessary controls needed for adding, deleting and navigating the
items in the repeating structure. Finally, this section also defines relevant portions

<switch id="01" default="initial">
 <case id="us">
 <group>
 <caption>Please Specify a US Shipping Address.</caption>
 </group>
 </case>
 <case id="uk">
 <group >
 <caption>Please specify a UK shipping address.</caption>
 </group>
 </case>
 <case id="initial">
 <group >
 ...
 </group>
 </case>
</switch>

<toggle switch="switchID" case="caseID" />

of the processing model that track the item that is current in a repeat structure..

Element repeat encapsulates the following pieces of metadata:

l Binding expression specifying the collection to be populated by the
contained XForms form controls. This binding expression returns a node-set
that represents the collection of items over which this repeat will iterate.

Issue (nodeset-vs-ref):
Question: should we call this binding attribute node-set as opposed to
ref to highlight that we use the returned node-set rather than the single
desired node as in most other usages of the ref attribute? Note that
submit and reset also use full node-set processing.

l Starting index of the first element from the collection to be displayed to the
user.

l Number of elements from the collection to be displayed to the user.

8.2.2 Special Event Handlers For Element repeat

We define XForms-specific event handlers for use within element repeat. These
event handlers will appear within element onevent to specify the event handler to
trigger when an event is received by the containing event listener. In the examples
below, we will assume event dom-click; however, note that this specification does
not normatively define the mapping between physical events and specific
behaviors.

Construct repeat introduces the notion of a cursor that is maintained by the
XForms processing model for each repeating structure. Thus, each repeat has its
own a conceptual cursor. Event handlers are provided for querying and updating
the position of this cursor; this cursor position in turn is used for determining the
behavior of insert and delete. Thus, these event handlers can be thought of as
the markup equivalent of the additions to the XForms DOM introduced by
construct repeat.

1. setRepeatCursor for marking an item as being current.

Example: XML Representation:Action <setRepeatCursor>

Attribute repeat identifies the repeat constructor whose cursor is
to be updated.
Attribute cursor identifies the cursor position. It should be a
binding expression that evaluates to an element of the node set
being iterated over by this repeat construct.

2. getRepeatCursor for accessing position of the repeat cursor.

Example: XML Representation:Action <getRepeatCursor>

<setRepeatCursor repeat="repeatId" cursor="itemID"/>

Attribute repeat identifies the repeat constructor whose cursor
position is to be obtained.

3. scroll for changing item that is current.

Example: XML Representation:Action <scroll>

Attribute repeat identifies the repeat constructor whose cursor
position is to be updated.
Attribute step is an integer value that specifies the amount by
which the list is scrolled. Negative values may be used to scroll
the list in the reverse direction.

Issue (additional-actions):
We may add special values for scrolling to the top or bottom of the list,
as well as other needed actions.

4. insert for inserting an item at the current cursor position into the repeating
structure. This causes the instantiation of the necessary user interface for
populating a new entry in the underlying collection. It also updates the
instance data by instantiating the necessary nodes.

Example: XML Representation:Action <insert>

Attribute repeat identifies the repeat constructor being affected,
and defaults to the repeat construct within which this event
handler appears.

5. delete for deleting an item from the repeating structure. This causes the
destruction of the necessary user interface for populating the entry at the
current cursor position in the underlying collection. It also updates the
instance data by destroying the necessary nodes.

Example: XML Representation:Action <delete>

Attribute repeat identifies the repeat constructor being affected,

<getRepeatCursor repeat="repeatId" />

<scroll repeat="repeatId" step="n" />

<insert repeat="repeatId" />

<delete repeat="repeatId" />

and defaults to the repeat construct within which this event
handler appears.

The event handlers enumerated above may be used within event listeners
attached to button elements placed inside the body of construct repeat. In
combination with the facilities provided by element group and CSS layout, this
allows document authors to customize the positioning of controls for standard
actions such as insert or delete.

8.2.3 repeat

Element repeat represents a repeating homogenous collection, in other words, a
collection consisting entirely of like form controls.

Notice that the underlying schema for the collection being populated would
typically have defined attributes minOccurs and maxOccurs; these values will in turn
determine if the user agent displays appropriate UI controls for the user to add or
delete entries in the collection. Event listeners within element repeat control UI
aspects such as scrolling and insertion. This specification will not specify
normative means for displaying such add and delete controls; as with the rest of
the XForms User Interface design, we leave these to be flexible while showing a
default presentation.

Example: XML Representation: <repeat>

common attributes defined in 7.13.1 Common Attributes
startIndex = xsd:positiveInteger : 1 - 1-based hint to the XForms
Processor as to which starting element from the collection to display.
number = xsd:nonNegativeInteger - hint to the XForms Processor as
to how many elements from the collection to display.
any form control - any form control defined in 7 Form Controls

8.2.4 Design Consequences

This subsection enumerates the design consequences and is for members of the
Working Group to evaluate the above design.

<repeat ref="bindingExpr" startIndex="si" number="n">
 <caption>Shopping Cart</caption>
 <!-- XForms UI for one element of the collection -->
 <!-- controls for adding, deleting and navigating entries -->
</repeat>

<repeat
 (common attributes)
 startIndex = xsd:positiveInteger : 1
 number = xsd:nonNegativeInteger
>
 <!-- caption, help?, hint?, onevent?, (any form control)* -->
</repeat>

l Binding expression is placed on element repeat and should refer to the
collection being populated, not to an individual item of the collection. Thus, it
would be items/item in a purchase order, where element items contains one
or more item children.

l The form controls appearing inside element repeat needs to be suitable for
populating individual items of the collection. Thus, to continue the purchase
order example, the contained XForms form controls would need to be
suitable for populating a data instance conforming to item.

l A simple but powerful consequence of the above is that if the XForms Model
specifies nested collections, then we can create a corresponding user
interface by nesting repeat elements. As an example, consider the XForms
Model for a hypothetical purchase order that contains element items for
holding collection of item elements. Further, assume that element item
comprises of two atomic fields catalogNumber, partNumber and a collection
colors which in turn holds one or more color elements. The user interface
for populating this data instance would use nested repeat elements.

l Notice that the contained XForms form controls inside element repeat do not
explicitly specify the index of the collection entry being populated. This is
intentional; it keeps both authoring as well as the processing model simple.
But as a consequence, the user interface cannot bind to an element from the
underlying collection out of sequence. Notice that this is not a serious
drawback because the use interface layer can always populate a specific
member of a collection without using element repeat.

8.3 Reusable Form Controls

8.3.1 Creating User Interface Templates

User Interface templates allow the creation of reusable user interface
components. Just as we can define data types and structures that can be reused
within the XForms Model, reusable user interface components allow us to design
complex user interfaces using the basic building blocks described in the previous
section, and then reuse these components in multiple situations. As with any
component framework, this has two basic requirements:

l Components need to declare what aspects of the component are
parameterizable by the caller.

l The caller needs to be able to override the default values of the parameters
declared in the component.

Here, we describe such a component framework along with sample markup. For
this example, assume that USShippingAddress is a reusable data type that is used
in multiple places in the XForms Model, e.g. the user will be asked for a
billingAddress and shippingAddress--both of type USShippingAddress.

First, we show a simple example that is designed to bind an XForms form control
to a model item of type address with no attention to making the component
reusable.

Next, we prepare the above fragment to become a reusable component that could
be used for obtaining both the shipping and billing address. To do this, we need to
parameterize those portions of the component that the caller will wish to modify.

Note that the markup shown above does not create a user interface; user
interface is created by explicitly instantiating the component via element
useUITemplate described next.

Next, we use this component to instantiate the user interface for obtaining the
shipping and billing address.

The reusable component is instantiated by element useUITemplate; parameter
values are specified by the contained withParam elements. Attribute xform sets the
binding context relative to which binding expressions within the instantiated
template get evaluated.

8.3.2 DTD For uiTemplate And useUITemplate

TODO: convert to ’XML Representation’ consistent with rest of spec.

<group>
 <textbox ref="address/street">
 <caption>Please enter your street address</caption>
 </textbox>
 <textbox ref="address/zip">
 <caption>Zip Code</caption>
 </textbox>
</group>

<uiTemplate id="AddressWidget">
 <param name="streetPrompt"/>
 <param name="zipPrompt"/>
 <param name="border" value="line"/>
 <group border="$border">
 <textbox ref="address/street">
 <caption><value-of name="streetPrompt"/></caption>
 </textbox>
 <textbox ref="address/zip">
 <caption><value-of name="zipPrompt"/></caption>
 </textbox>
 </group>
</uiTemplate>

<useUITemplate ref="myAddress" component="AddressWidget">
 <withParam name="streetPrompt">Shipping Street Address</withParam>
 <withParam name="zipPrompt">Zip Code for shipping state</withParam>
 <withParam name="border">dotted</withParam>
</useUITemplate>

8.4 Layout in XForms

The group element is used as a container for defining a hierarchy of form controls.
Groups lay out their children using a constraint-based system that supports both
relative flexible sizing and intrinsic sizing. Groups can be nested to create complex
hierarchies. Using CSS, an inline box can be specified using the display property
with a value of inline. A block-level group can be specified with a value of block,
which is the default.

Example: XML Representation: <group>

All form controls defined so far are treated as inline text for purposes of XHTML
processing. XForms visual clients are expected to use a a box layout model as
defined by CSS for determining the overall layout of the XForms visual interface.
Grouping of form controls using element group also provides semantics about the
relationship amongst user interface controls; such knowledge can be useful in
delivering a coherent UI to small devices--e.g., if the user interface needs to be
split up amongst several screens, controls appearing inside the same group would
typically be rendered on the same screen.

Finally, the hierarchy defined by nested group elements is used to determine the
traversal order specified by attribute navindex on form controls. Setting the input
focus on a group results in the focus being set to the lowest form control in the
tabbing order within that group.

Issue (group-binding):

t is an open issue whether the binding attribute xform is allowed on element
group. It might make authoring easier but makes implementations significantly
harder. Note that this note is here because at one point in our design we said
that controls inside a group could use relative XPath expressions with the

<!-- param element for use in uiTemplate -->
<!ELEMENT param EMPTY>
<!-- name Name of parameter being declared -->
<!ATTLIST param
 name CDATA #REQUIRED>
<!-- Defines a reusable user interface template -->
<!ELEMENT uiTemplate (param*, %FormControls;+)>
<!-- id Unique ID for use when instantiating this templat
<!ATTLIST uiTemplate
 id ID #REQUIRED>
<!-- Used to pass parameter values when instantiating uiTemplate
<!ELEMENT withParam #MIXED>
<!-- name Name of parameter whose value is being specified
<!ATTLIST withParam
name CDATA #REQUIRED>

<group>
 <!-- all form controls & mixed content -->
</group>

context being set by the containing group.

8.4.1 Orientation and Direction

Containers typically have an orientation and a direction. The box-orient CSS
property specifies the orientation of the group. It has values of horizontal,
vertical, or inherit. A horizontal group lays out its children in a horizontal line,
and a vertical group stacks its children vertically.

The box-direction CSS property specifies the direction of the group. It has values
of normal, reverse, and inherit. A normal horizontal group lays out its children
from left to right, and a normal vertical group lays out its children from top to
bottom.

Direction within nested groups is inherited by default. If direction is omitted on the
outermost group, it is assumed to have a horizontal orientation and normal
direction.

When items are placed in a group without specifying any additional information
about their size, then the sizes the children intrinsically. In other words, the group
makes each child only as big as it needs to be. Notice that in the above example,
the two form controls are only as big as they need to be, and that this in turn
determines the size of the group (since we assume for simplicity that this group is
not nested).

Widths can be specified for items inside a horizontal group. When an object
specifies its width in CSS, it is telling the group that it would like to be that width.
Similarly, heights can be specified in CSS for items in a vertical group. A non-
nested group placed inside an enclosing CSS block will obey all the usual sizing
rules of the block. For example, setting the width of a non-nested group to 100%
ensures that the group is the maximum width permitted by the enclosing CSS
block.

8.4.2 Alignment

The box-align property specifies how controls are aligned along the orientation of
the group. Its possible values are left, center, right, top, bottom, baseline,
stretch and inherit. The default value is stretch.

By default a horizontal group ensures that all children are the same height. Once a
height is computed for a horizontal group, all of the children are stretched
vertically to the height of the group (minus the CSS border and padding on the
group). Similarly, a vertical group ensures that all its children are the same width.

<group>
 <textbox ref="/person/name">
 <caption>Please enter your name</caption>
 </textbox>
 <textbox ref="/person/ssid">
 <caption>Enter your SSID</caption>
 </textbox>
</group>

The stretch policy overrides any specified width or height values.

In addition to stretch, a horizontal group can also align its children using the
values top, center, baseline and bottom. A vertical group can align its children
using the values left, center, and right. When these values are used, the items
are no longer stretched. They are sized intrinsically and then aligned on the group
axis according to the specified property value on the containing group.

8.4.3 Controlling Automatic Sizing

The layout algorithm can be controlled by specifying the degree to which items
may flex i.e., the degree to which an item allows itself to be auto-sized. Items in
groupes fall into two categories: flexible and inflexible. Inflexible objects will
not grow, even when there is extra space left over in the group. When several
objects in a group are flexible, the extra space is divided among the objects based
on how flexible they are. The group determines how much space to give an object
by adding up the flex values on all of its children. An object gets an amount of
extra space equal to the percentage of flex that it is responsible for.

For example, if two objects have a flex of 1, then after both objects are given their
preferred sizes, the first object gets 1/(1+1) = 1/2 of the extra space, and the
second object also gets 1/2 of the extra space.

8.4.4 Preferred, Minimum, and Maximum Sizes

For inflexible objects, the specification of the width and height CSS properties
can be used to specify a preferred size. If these properties are omitted, an
inflexible object will be sized intrinsically, i.e., it will be given the minimum amount
of space required to lay out the item.

With flexible objects, there are more options. Just as with inflexible objects, the
width and height properties can be used to specify a preferred size. Unlike
inflexible objects, however, this size is only a guideline. A flexible object will
stretch as necessary. It will also shrink if required until it can shrink no more (e.g.,
when the object hits its minimum required intrinsic size).

<group style="box-orient: vertical">
 <output ref="/person/name"/>
 <output ref="/person/age"/>
 <output ref="/person/country"/>
</group>

<group style="box-orient: horizontal; width: 200px">
 <textbox style="box-flex: 1" ref="/person/name>
 <caption>Please enter your full name: </caption>
 </textbox>
 <textbox style="box-flex: 1.5" ref="/person/age>
 <caption>How young?</caption>
 </textbox>
</group>

In the above example if the group were to shrink, the textbox being flexible would
shrink--despite its preferred height of 1000px. The group continues to shrink
minimum required height for the textbox is reached. After that, the textbox can
shrink no further. If the group were to continue to shrink, the form control’s
contents would be clipped, and a portion of the control would no longer be visible.

For a more fine-grained control of minimum and maximum sizes, the min-width,
min-height, max-width, and max-height CSS properties can be used. When
specified, these properties provide extra information to the group as it shrinks and
grows the object in question.

In a horizontal group, for example, if a minimum width is specified, then the
flexible object will not be allowed to shrink below that width. If a maximum width is
specified, then the flexible object will not be allowed to grow beyond that width.

The above example demonstrates the use of min-height and max-height within a
vertical group. In the first image the group has been shrunk until it is smaller than
100 pixels in height. Because the iframe has a specified minimum height of 100
pixels, it is not allowed to shrink any further, and so as the group falls below 100
pixels, the iframe gets clipped, and portions of it become invisible.

In the second image, the group has been expanded past 300 pixels in height.
Even though the group is getting bigger, the extra space is not being consumed by
the iframe, because its maximum height of 300 pixels has been reached. It will
grow no further.

Below is another example illustrating min and max width.

In the above example, the group has been stretched so that it is very wide. The
first child has a maximum width of 50 pixels, and it divides the excess space
equally with the second child until its maximum width has been reached. After
that, since it is not allowed to grow any further, the remaining space all goes to the
second child.

8.4.5 Packing Controls

When all of the items within a group element are inflexible or when all objects
have grown to their maximum sizes and can stretch no further, extra space may
be left over in the group. An additional property can be used to dictate how any
additional space should be distributed between objects. The CSS property box-

 <group style="box-orient: vertical">
 <textbox style="box-flex: 1; height:1000px" ref="/person/name">
 <caption>Please enter your name:</caption>
 </textbox>
</group>

Example unavailable at publication time

pack has the possible values of left, right, top, bottom, center, justify and
inherit. The default is justify.

In the above example, the button is centered within the group using the box-align
and box-pack properties together. The former centers the button vertically, and the
latter centers the button horizontally.

8.4.6 Overflow

Items within a group may use the CSS overflow property to obtain horizontal and
vertical scrollbars as needed. Flexible objects that shrink below their minimum
intrinsic size (but that still have a size greater than a specified CSS minimum) can
display scrollbars using the overflow property. If overflow is not specified, the
object will be clipped instead.

8.4.7 Inlines and Blocks

Whether an element is inline or block when placed directly inside a group is
irrelevant. Objects will be flowed horizontally or vertically based off the box-orient
property.

When any raw text nodes are encountered directly inside a group, an anonymous
block is constructed to wrap the text. This anonymous block then participates in
the layout as a single item.

8.5 Multiple Sub-forms Or Sub-pages

8.5.1 Subpages

Subpages provide a means to present XForms one bit at a time, breaking a
complex task into smaller, simpler parts. Presentation of a subpage can occupy
the entire "page" or just part of a page. Different presentations are possible, e.g. a
stack of pages with visible name tags, or as a set of buttons for flipping through
the stack or navigating directly to a particular subpage. One possible
representation is a formset element enclosing one or more subpage elements,
each of which starts with a caption element.

As the name implies subpage is not specific to XForms--our intent is to design
subpage so that it can be used within XForms--and more generally within XHTML
to create presentations where document views are presented to progressively

Editorial note: Raman March 12, 2001

Notice that we originally started by creating an equivalent of fieldset--but given
the present design of the XForms UI layer, and given that conditional construct
case can take either group or html:div elements, there is little left in this
construct that is additional to what is in XHTML html:div. I therefore suggest
simply reusing html:div--perhaps bind XForms specific behaviors through CSS
e.g., a stack of cards for example? The way I am thinking of this is that whether it
is a stack of cards shown one at a time, or a sequence of tab dialogs is a
presentation issue and might therefore be best left to CSS as we have done with
the rest of the presentational issues in XForms.

reveal the document structure and content.

9 Binding

9.1 Introduction

Binding is the glue that connects the separate pieces of XForms--the XForms
Model, instance data, and form controls. The binding is independent of the user
interface language used.

Binding is specified through the use of binding expressions. The syntax and
details of binding expressions are defined in the chapter 6 XPath Expressions in
XForms. This chapter describes the wider topic of how binding expressions are
used within XForms.

A future revision of this chapter will address binding across XForms Models, for
instance declaring an "address" in one XForms Model and referencing it from
another.

9.2 Binding Attributes

XForms defines an attribute ref that can be placed on any form control. Note that
when placed on form controls outside of XForms, it must be appropriately
namespace-qualified. The value of the attribute is a binding expression, based on
6 XPath Expressions in XForms, that links the form control to a particular
location in the instance data (and therefore a particular model item). For example:

Example: XForms User Interface Markup with Binding Attributes

The ref attribute links the form control to the instance data and XForms Model
declared elsewhere in the containing document.

This can also be used on non-XForms form controls, for instance XHTML:

Example: XHTML with Binding Attributes

Here the ref attribute links an XHTML form control to the instance data and
XForms Model contained elsewhere in the containing document. Note that the
html: prefix is used here to represent the XHTML namespace.

Details on the operation of binding expressions are given throughout the rest of
this chapter.

<xform:textbox ref="binding-expression">
 <xform:caption>Your first name</xform:caption>
</xform:textbox>

<html:input type="text" name="..." xform:ref="binding-expression"/>

9.3 Direct Binding

When a containing document has only a single XForms Model and only a single
set of instance data, binding is simpler because there is no possibility of ambiguity
as to which XForms Model and instance data will participate. The following syntax
can be used for the binding expression:

l A binding expression that evaluates to a node-set in the instance data. If the
node-set contains more than one node, only the first node is used. If the
node-set contains zero nodes, the binding expression is invalid.

For example:

Example: Binding Expression

Here the ref attribute specifies a path through the instance data to the desired
location.

Here is the matching instance data for the above example.

A special case applies when binding to an element in the instance data that
contains an attribute of type xsd:ID. In this case, an XPath function id(), can be
used:

Example: Binding Expression with XPath id() Syntax

Here the ref attribute specifies a link to an instance data element with an id of
myfirstname.

<xform:textbox ref="orderForm/shipTo/firstName">
...

<orderForm>
 <shipTo>
 <firstName>value</firstName>
 </shipTo>
</orderForm>

<xform:textbox ref="id(’myfirstname’)">
...

<a>
 <b id="myfirstname">value

Here is the instance data for the above example.

For this syntax to be valid, the following conditions must be true:

l The instance data must be included in the same document as the XForms
User Interface

l Every referenced element in the instance data must be marked with a valid
ID (i.e. the ID is unique throughout the whole document)

Note also that:

l this method is limited, because it requires exactly one instance, decorated
with ID attributes.

l It is still legal to have elements without ID attributes in the instance data.
l Only elements can be addressed

9.4 Indirect Binding

In situations where a form is designed by collaboration (such as between a
graphic designer and a database/XML specialist) it is desirable to locate all
binding expressions in a single area in the containing document. XForms allows
the binding expression to appear in a separate element bind, a child of the xform
element.

The attributes of bind are id of type xsd:ID and ref which takes a binding
expression. When a binding expression is defined this way, the form control can
reference the id of the bind element, as seen here:

Example: Binding Expression Using Indirection

Here the ref attribute specifies a link to a binding expression defined elsewhere.

Here is the instance data for the above example.

This accomplishes the following:

<xform:textbox ref="id(’myfirstname’)">
...

<xform:bind id="myfirstname" ref="orderForm/shipTo/firstName"/>
<xform:instance>
 <orderForm>
 <shipTo>
 <firstName>value</firstName>
 </shipTo>
 </orderForm>
</xform:instance>

l It is no longer necessary to add IDs to the instance.
l The binding mechanism is independent of the schema and user interface

mechanisms.

9.5 Multiple Forms per Page

One design goal of XForms is to support multiple forms per page. This is
accomplished by having multiple xform elements within a containing document.
Each xform element might have a separate XForms Model or instance data
defined. This makes binding slightly more complex, because the correct xform
element needs to be referenced.

By default, binding expressions are based on the instance data associated with
the first xform element in document order. To refer to the contents of subsequent
xform elements, these must be decorated with id attributes of type xsd:ID.
Attached to the form control element, an additional attribute xform serves to set
the context node for the attached binding expression to the instance data or
XForms Model associated with the xform element with the matching id.

For example:

Example: Binding Expression Specifying Non-default xform Element

Here the xform and ref attributes specify a binding to the instance data and
XForms Model.

Scoped resolution of binding expressions, as defined in the chapter 6 XPath
Expressions in XForms can in some cases be used to avoid repetitive uses of
the xform attribute.

10 Document Structure

XForms are an application of XML [XML 1.0], and have been designed for use

<xform:textbox xform="b" ref="/orderForm/shipTo/firstName">
...

<xform:xform id="b">
 <xform:model>
 ...
 </xform:model>
 <xform:instance>
 <orderForm xmlns="...">
 <shipTo>
 <firstName>value</firstName>
 </shipTo>
 </orderForm>
 </xform:instance>
</xform:xform>

within other XML vocabularies, in particular XHTML [XHTML 1.0]. This chapter
discusses some of the high-level features of XForms that allow this specification to
be used with other document types.

10.1 The XForms Namespace

The XForms namespace has the URI: http://www.w3.org/2001/06/xforms. Future
revisions are expected to use a different identifier. This document uses the
convention of an xform: prefix to represent elements and attributes that are part of
the XForms Namespace.

XForms Processors must use the XML namespaces mechanism [XML Names] to
recognize elements and attributes from this namespace. Except where specifically
allowed by the Schema for XForms, foreign-namespaced elements are not
allowed as content of elements in the XForms namespace. Foreign-namespaced
attributes are, however, allowed on any XForms element. The XForms Processor
must ignore any foreign-namespaced elements or attributes that are
unrecognized.

10.2 XForms Elements

10.2.1 xform

The xform element is used as a container for other XForms elements, and can
serve as the root element of a standalone document or be embedded in other
document types such as XHTML. A single containing document may contain any
number of xform elements.

Example: XML Representation: <xform>

xmlns = namespace-identifier - Optional standard XML attribute for
identifying an XML namespace. It is often useful to include this
standard attribute at this point.
id = xsd:ID - Optional unique identifier used to refer to this particular
xform element.

For example:

Editorial note

under discussion are XLink attributes on the xform element. These are:
xlink:type="extended" and xlink:role="http://www.w3.org/2001/06/xforms" -
and they should be defaulted or even fixed in the Schema/DTD.

<xform
 xmlns = namespace-identifier
 id = xsd:ID
>
 <!-- Content: (submitInfo | bind)*, model, instance -->
</xform>

10.2.2 model

The model element is used to define the XForms Model. The content of the
XForms Model may be defined inline or obtained from a external URI.

Example: XML Representation: <model>

id = xsd:ID - Optional unique identifier.
xlink:href = xsd:anyURI - Optional link to an externally defined
XForms Model.

10.2.3 instance

The instance element is used to define initial instance data. The instance data
may be defined inline or obtained from a external URI.

Example: XML Representation: <instance>

id = xsd:ID - Optional unique identifier.
xlink:href = xsd:anyURI - Optional link to externally defined instance
data

The content of the instance element is arbitrary XML in any namespace other

<xform xmlns="http://www.w3.org/2001/06/xforms" id="Person">
 <model xlink:href="Schema-Questionnaire.xform" />
 <instance xlink:href="URL-to-retrieve-defaults" />
 ...
</xform>

<model
 id = xsd:ID
 xlink:href = xsd:anyURI
>
 <!-- Content: (schema subset syntax) -->
</model>

Editorial note

As above, we need to find a place to discuss the defaulted attributes. Here they
are xlink:role="http://www.w3.org/2001/06/xforms-model"
xlink:type="locator"

<instance
 id = xsd:ID
 xlink:href = xsd:anyURI
>
 <!-- Content: (##other) -->
</instance>

than the XForms namespace. Authors must ensure that proper namespace
declarations are used for content within the instance element.

Issue (issue-schemalocation):

Should a schemaLocation attribute, linking the instance data with a schema
definition, be present here?

10.2.4 submitInfo

The submitInfo element provides information on how and where to submit the
instance data.

Example: XML Representation: <submitInfo>

id = xsd:ID - Optional unique identifier.
xlink:href = xsd:anyURI - Required destination for submitted instance
data.
method = xsd:string - Optional indicator to provide details on the
submit protocol. With HTTP, the default is " POST".

Issue (submit-method-values):

The possible values for method, and their respective meanings, still need to be
defined.

10.2.5 bind

The bind element represents a connection between the different parts of XForms.

Example: XML Representation: <bind>

Editorial note

As above, we need to find a place to discuss the defaulted attributes. Here they
are xlink:role="http://www.w3.org/2001/06/xforms-instance"
xlink:type="locator"

<submitInfo
 id = xsd:ID
 xlink:href = xsd:anyURI
 method = xsd:string
>
 <!-- Content: (##empty) -->
</submitInfo>

id = xsd:ID - Required unique identifier.
ref = XForms binding expression - A link to an externally defined
XForms Model.

Additional details are found in the chapter 9 Binding.

10.3 Integration with XLink

XForms make good use of XLink [XLink] features. To that end, the XLink
namespace is integrated in the DTD/Schema, the majority of the attributes have
sensible defaults, including those based on XLink roles defined below.

This document uses the convention of an xlink: prefix for the XLink namespace
(informationally: as of this writing, the XLink namespace identifier is
http://www.w3.org/1999/xlink - this may change when XLink reaches W3C
Recommendation state. Please verify at [XLink])

Note that the XLink support uses a well-defined XLink failure mode: If an XLink
attribute is not provided, the element looses its XLink specific meaning. We use
this feature in order to allow application developers to either provide the model
and instance via an external reference (via an xlink:href attribute) or to provide
the data inline without the attribute. In the latter case, the XLink-specific meaning
of the element is lost and the inline content used. If both inline content and
external reference is provided, a processor must use the external reference and
ignore the inline content.

For the purposes of XForms, we suggest that XLink aware processors switch from
the xlink:type="locator" mode to the xlink:type="resource" mode. This should
be specified in the document by setting xlink:type="resource", though a
processing agent may not depend on it. In other words, the first two of the
following examples must be treated identically:

Example: Inline XForms Model, without explicit change to the xlink:type

Example: Inline XForms Model, with explicit change to the xlink:type

<bind
 id = xsd:ID
 ref = XForms binding expression
>
 <!-- Content: (##empty) -->
</bind>

<model>
 <!-- Content: (schema subset syntax) -->
</model>

Example: External XForms Model

XLink as originally specified allows users to provide arc-type elements to specify
traversal rules. The integration of arc-type elements in XForms would require
additional elements in the xform element that are otherwise not necessary for
XForms. Hence, for children of the xform element, the traversal rule is to traverse
xlink:from the current document xlink:to the document pointed to by the
external resource. The processor should behave as if xlink:actuate="onLoad"
was specified. The xlink:show attribute is meaningless in this context, anyway.

An XForms processor is not required to implement full XLink--correct behavior of
the xlink:href attribute (as defined above) is sufficient. It is permissible to
construct the additional information from the semantics of the elements. An
XForms Processor can not be XForms compliant, however, if it attempts to
implement XLink and the implementation does not conform to XLink specification
with respect to the attributes used by XForms.

The following definition of the XLink roles defines the relationship between the
various resources participating in a XForms-based form, not properties that are
inherent to the resources. It is perfectly permissible for the same resource to
participate in various XForms-based forms in different roles.

10.3.1 XLink role for XForms

The xlink-role for XForms Models is http://www.w3.org/2001/06/xforms. This
means that XLink processors encountering a link with a
xlink:role="http://www.w3.org/2001/06/xforms" must assume that the arcs
associated with the other XLink roles for XForms (see below) behave as above. In
other words, this XLink role is an additional hint beyond the element names for an
XLink processor to identify the arcs. For all roles, if element names and XLink
behavior conflict, XLink role behavior prevails.

10.3.2 XLink role for the XForms Model

The xlink-role for XForms Models is http://www.w3.org/2001/06/xforms-model.
This means that XLink processors encountering a link with a
xlink:role="http://www.w3.org/2001/06/xforms-model" must assume that the
referenced resource relates to the other resources as XForms Model as defined in
5 The XForms Model.

10.3.3 XLink role for the Instance Data

<model xlink:type="resource">
 <!-- Content: (schema subset syntax) -->
</model>

<model xlink:href="URI" />

The xlink-role for XForms Instances is http://www.w3.org/2001/06/xforms-
instance. This means that XLink processors encountering a link with a
xlink:role="http://www.w3.org/2001/06/xforms-instance" must assume that
the referenced resource is the initialization data of a form.

10.3.4 XLink role for the XForms User Interface

The xlink-role for XForms User Interfaces is http://www.w3.org/2001/06/xforms-
ui. This means that XLink processors encountering a link with a
xlink:role="http://www.w3.org/2001/06/xforms-ui" must assume that the
referenced resource is the user interface of a form. Note that this role does not
make an assertion about the content type of the referenced resource other than
that it is an XML format. For example, it can be XHTML+XForms, pure XForms,
SVG+XForms or pure SVG any other combination. This role does not correspond
to any element defined in XForms; it is defined so that XLink linkbases [XLink] can
be established containing all the information about a XForms document.

11 Processing Model

11.1 Introduction

The XForms Reference Processing Model is a normative explanation of the
components, predictive behavior, and mechanisms of XForms Processors. It is not
intended to constrain implementations. XForms Processors may be implemented
in any manner, so long as the end results are identical to that described in this
chapter.

This chapter uses the terms may, must, and should (when rendered as in this
paragraph) in accord with RFC 2119.

Issue (issue-processing):

This chapter is still at an early phase and may contain errors or omissions.
Feedback on this chapter is especially appreciated.

11.1.1 Design Rationale

The Reference Processing Model set out in this chapter will:

l Be simple enough to implement across a wide range of devices, including
resource-constrained handhelds and appliances.

l Define a predictive processing model with enough detail for implementors to
create interoperable software.

l Define a well-ordered system for calculations and dependencies
independent of processor speed or threading.

l Provide a unified addressing scheme for binding expressions, independent
of how the structure of the instance data is defined.

l Be simple enough for the existing base of HTML authors to quickly get up to
speed.

l Be compatible (to the extent reasonably possible) with existing form
processing.

11.2 XForms Properties

For each xform element, the XForms Processor maintains a set of read-write
properties, as described here. These properties are available to all expressions in
the containing document.

l immediate-refresh

l immediate-revalidate

l immediate-recalculate

l use-nil

immediate-refresh controls whether changes in the instance data are immediately
updated in the UI

immediate-revalidate controls whether changes in the instance data immediately
trigger a validation

immedate-recalculate controls whether changes in the instance data immediately
trigger a recalculation

use-nil controls whether XML Schema Instance nils are placed in the instance
data

Additionally, the following properties are available for reading (but not
modification). These properties are available to all expressions in the containing
document.

l version

l conformance-level

l timezone

version is defined as the string "1.0" for XForms 1.0

conformance-level strings are defined later in this chapter

timezone strings are signed integers representing the number of minutes offset
from GMT

11.3 Events

XForms uses an events system as defined in [DOM2 Events], with a Capture
phase, arrival at the Event Target, and then a Bubbling Phase.

Events fall into different groupings. One class of events indicates that some
processing is about to happen. That processing may be halted by the event
handler:

l xforms-submit

l xforms-reset

l xforms-value-changing

l xforms-interactive-value-changing

l xforms-instance-changed

Another class of events indicates that some processing has already happened or
is in progress. Such processing can not be halted by the event hander:

l xforms-construct

l xforms-destruct

l xforms-initialize

l xforms-exception

Finally, certain events are used by the author or the XForms Processor to cause
processing to happen:

l xforms-recalculate

l xforms-refresh

Unless otherwise noted, the target node for all events is the xform element. When
a containing document has multiple xform elements, the binding is used to
determine which xform element is used.

The Working Group is using pre-defined generic event handling, defined in
[XHTML Events], additionally defining a set of XForms-specific actions.

11.4 XForms Processing

11.4.1 Initialization/Resume

The following describes the initialization process for XForms. Initialization must
occur before any other processing. For each xform element in the containing
document, in document order, the following processing occurs:

1. An xforms-construct event is fired; this is the place for authors to handle
any initialization tasks.

2. Instance data is constructed (11.4.2 Instance Data Construction).
3. An xforms-initialize event is fired. A handler for this event could perform

form initialization tasks such as a database lookup.

4. A recalculation (11.4.5 Recalculation Algorithm) takes place.

5. A UI refresh (11.4.6 UI Refresh Algorithm) takes place.

11.4.2 Instance Data Construction

The following steps describe how the instance data associated with each xform
element is constructed. Of the following options, the first applicable option is

chosen. Only one of the following applies:

1. If an instance element is present and contains non-whitespace child nodes,
the contents of the instance element are copied into the instance data tree,
based on the infoset mappings defined in the XPath [XPath 1.0]data model.

2. If an instance element is present and contains a reference to non-local initial
instance data, it is retrieved by traversing the link to it, then copied into the
instance data as described above. A remote instance that is unretrievable for
any reason is ignored, in which case an XForms Processor may issue a
warning.

3. If an instance element is not present, then a default instance data
configuration is produced, according to the following rules:

1. Each form control bound to the xform element currently being
processed is visited in document order. Each form control’s binding
expression is evaluated.

2. If the instance data item result of evaluating the binding expression
doesn’t already exist, it is created, and if the use-nil property is true,
populated with a nil value (an xsi:nil="true" attribute). Note that only
elements can hold nil values. The form control receives a default blank
value. The algorithm for creating instance data items is as follows: For
each location step in the canonical binding expression, from left to
right, where no matching node exists in the instance data, a new node
is inserted.

Issue (creating-instance-nodes):
The algorithm for creating instance nodes is under discussion, with
one possibility being ignoring the path information, using only the
local name, in a flat list.

4. If none of the above options are fulfilled, this is an error condition, and the
XForms Processor must stop processing with an error message.

11.4.3 Navigation Sequence Algorithm

Navigation is determined on a containing document-wide basis. The navigation
sequence is determined as follows:

1. Those form controls that support navindex and assign a positive value to it
are navigated first. Navigation proceeds from the form control with the lowest
navindex value to the form control with the highest value. Values need not
be sequential nor must they begin with any particular value. form controls
that have identical navindex values should be navigated in document order.

2. Those form controls that do not supply navindex or supply a value of "0" are
navigated next. These form controls are navigated in document order.

3. Those form controls that are disabled, hidden, or on a non relevant subtree
are assigned a relative order in the overall sequence but do not participate
as navigable controls.

4. The navigation sequence past the the last form control (or before the first) is
undefined. XForms Processors may cycle back to the first/last control,
remove focus from the form, or other possibilities.

11.4.4 Interactivity

XForms provides similar processing to the HTML onChange event. As users
indicate completion of a form control by navigating away the following occurs:

1. If the display value has changed since the user last navigated to the form
control, an xforms-value-changing event is fired. If the display value hasn’t
changed, processing for this event ends.

1. Any listener may prevent default processing (one option under
consideration provides a <stopevent/> action), which will end event
processing immediately after the Capture and Bubbling phases.
Alternatively, a listener may perform a custom translation from display
value to canonical value. Any listener may have side-effects that
modify any instance data item, in which case the modified instance
data items must be marked "dirty".

2. Default processing is to convert the display value of the form control to
the canonical value as specified in the Datatypes chapter. Default
processing should automatically take into account regional settings (if
any), such as decimal character symbol, date formats, etc.

2. If the immediate-revalidate property is true, all validations (11.4.7
Revalidation Algorithm) bound to the form control are run. Note that
validation is performed against the canonical value, not the display value.

1. If any validation fails, the user must be notified, and may not be
allowed to navigate away from the control. The invalid entry in the form
control should be preserved. The associated instance data item is left
unchanged, thereby ending processing for this event.

3. The instance data item is updated with the new value, and marked "dirty".

4. If the immediate-recalculate property is true, a recalculate (11.4.5
Recalculation Algorithm) occurs to perform any defined calculations.

5. If the immediate-refresh property is true, a refresh (11.4.6 UI Refresh
Algorithm) occurs to update any form controls that might be dependent on
this newly changed value.

Certain form controls allow interactive response without finalizing on a value.
Examples of this include edit boxes (users can type various characters before
"tabbing out") and slider controls (users can be continuously adjusting the value
before releasing at a certain value). Interactive temporary values such as this are
expressly allowed to be "invalid", that is outside the permissible value space. This
is because incomplete data may be present while the user is entering transitional
values.

Example: A partially entered currency value of "U" is not valid because it doesn’t
(yet) have 3 characters. This is permitted temporarily, as long as the user remains
on the form control. XForms Processors with sufficient processing resources
would typically update/refresh on every character. Resource-constrained XForms
Processors would typically only update/refresh on the final value.

1. Any time the display value of a form control changes (such as through
character or cut/paste activities), even without indication that this is a final
value, an xforms-interactive-value-changing event is fired. Resource-
constrained XForms Processor implementations may choose to ignore all
such events.

1. Event listeners may prevent default processing.
2. Otherwise, default handling is as follows: The current form control is

revalidated (11.4.7 Revalidation Algorithm). This is for internal
purposes only, and happens regardless of the immediate-revalidate
setting. If all validations on the form control are successful, the
instance data item is updated, and marked "dirty". If any validations fail
(indicating a transitional value) all form controls bound to the same
instance data item may be directly updated with the display value.
Otherwise, the following occurs:

3. If the immediate-recalculate property is true, a recalculation (11.4.5
Recalculation Algorithm) occurs to perform any defined calculations.

4. If the immediate-refresh property is true, a refresh (11.4.6 UI Refresh
Algorithm) occurs to update any form controls that might be
dependent on this newly changed value.

Implementations that choose to respond xforms-interactive-value-changing are
expected optimize processing (for instance not flashing the entire screen for each
character entered, etc.).

11.4.5 Recalculation Algorithm

XForms Processors are free (and encouraged) to skip or change any steps in this
algorithm, as long as the end result is the same. Each form control may have a
model item property priority value, which is the main factor in determining
calculation order.

Following is the default handling for an xforms-recalculate event:

1. Each model item with a bound calculate model item property is visited in
calculation order, which is defined as follows:

1. Those model items that are bound to a priority and assign a positive
integer to it are computed first. Computation proceeds from the model
item with the lowest bound priority to the model item with the highest
bound priority. Values need not be sequential nor must they begin
with any particular value. Model items with the same bound priority
value are computed in document order.

2. Those model items not bound to a priority or bound to one with the
value "0" are computed next. These model items are computed in
document order.

2. For each model item, the expression in the calculate model item property is
evaluated. Any instance data item changes as a result of this are marked
with a "dirty" flag.

3. The instance data item bound to the model item is updated with the result of
the calculate expression, and the "dirty" flag is set.

11.4.6 UI Refresh Algorithm

Following is the default handling for an xforms-refresh event:

1. For purposes of UI refresh, the instance data as it exists at the beginning of

processing the xforms-refresh event is used.
2. Each form control is visited in refresh order, which is defined as follows:

1. Those form controls that have a given or computed navigation
sequence value are visited first, in the navigation sequence.

2. Those form controls outside the navigation sequence are visited next.
These form controls are visited in document order.

3. For each form control, the relevant constraint is evaluated, which might
result in the form control being disabled/hidden/etc. as specified in the
chapter 5 The XForms Model.

4. For each form control, the binding expression is evaluated. If the instance
data indicates that the instance data item is not "dirty", processing for that
particular form control completes.

1. Otherwise, if the instance data item is "dirty", an xforms-instance-
changed event is fired.

2. Listeners to the xforms-instance-changed event are free to compute a
new display value.

3. Listeners to the xforms-instance-changed event are prohibited from
directly updating any form controls present.

4. Listeners to the xforms-instance-changed event are prohibited from
altering any portion of the instance data. To attempt to do so results in
an xforms-exception being fired.

5. Listeners may prevent the default processing of the xforms-instance-
changed event.

6. Default processing is to convert the canonical value into a display
value, taking into account regional settings (if any) such as decimal
separator character, etc.

5. The form control is updated with the display value.
6. After all form controls have been updated, all "dirty" flags in the instance

data are cleared.

Note:

Editor’s Note: Still to be addressed is the processing when a datatype facet or
model item property are changed--what gets marked "dirty"?; what gets
recalculated?; what gets revalidated?; what gets refreshed?

11.4.7 Revalidation Algorithm

Revalildation always occurs within the scope of a context form control. Following is
the revalidation process:

1. The bound instance data item is checked against any bound XForms
Datatype constraining facets. If any fail, the context form control is
considered invalid.

2. The bound instance data item is checked against any bound Schema
Datatype constraining facets. If any fail, the context form control is
considered invalid.

3. If a validate model item property is bound to the context form control, the

expression within is evaluated. If it evaluates to false, the context form
control is considered invalid.

4. If the context form control is invalid, the XForms Processor must notify the
user. The XForms Processor may combine messages before presentation to
the user.

11.5 Submit and Reset

The form filling experience ends with submitting the form, or starting over. The
XForms processing for these events are covered here. The following sections
describe how to instance data is prepared for submission.

11.5.1 Submit

In response to an xforms-submit event, the following takes place:

1. Event listeners may prevent default processing of the submit request.
Otherwise, default handling as described below occurs.

2. Every form control is revalidated (11.4.7 Revalidation Algorithm). Any
invalid values must be reported to the user and submit processing must not
continue.

3. A subset or all of the instance data is selected based on the binding
expression used to invoke the submit request. The selected nodes and all
children are selected for serialization as submitted data. If no ref attribute is
specified, all nodes in the instance data are selected by default.

1. If the instance data selection results in an empty node-set, the submit
must be aborted and submit processing must not continue.

4. Instance data is serialized according to one of the processes defined below.
5. Instance data is delivered over the network as an HTTP POST.
6. Upon successful delivery of the submit data, an xforms-destruct event is

fired and form processing shuts down.
7. The response page sent by the server replaces the current containing

document.

Issue (method-strings):

We have yet to define the method strings (e.g. method="post" in XHTML)

11.5.2 Reset

In response to an xforms-reset event, the following takes place:

1. Event listeners may prevent default processing of the reset request.
Otherwise, default handling as described below occurs.

2. A subset or all of the instance data is selected based on the binding
expression used to invoke the suspend request. The selected nodes and all
children are selected for resetting. If no ref attribute is specified, all nodes in
the instance data are selected by default.

1. If the instance data selection results in an empty node-set, the reset

has no effect.
3. New instance data for the selected instance data is prepared, based on the

instance element associated with the current xform element, according to
the rules for initialization above.

4. The selected instance data is replaced with the new instance data.

11.6 Serialization Formats for Instance Data

11.6.1 application/x-www-form-urlencoded

This format is intended to facilitate the integration of XForms into HTML forms
processing environments, and represents an extension of the [XHTML 1.0] form
content type of the same name with extensions to expresses the hierarchical
nature of instance data.

This format is not suitable for the persistence of binary content. Therefore, it is
recommended that XForms capable of containing binary content use either the
multipart/form-data (11.6.2 multipart/form-data) or text/xml (11.6.3 text/xml)
formats.

Issue (issue-urlencoding-mods):

Modifications to urlencoding process

The urlencoding technique given here does not exactly match how legacy
implementations produce urlencoded data. (In particular, we are adding
contextual information with slashes and multiple location-steps) Will this
approach interfere with legacy implementations?

Issue (issue-utf8-encoding):

Under discussion is the intent to have the data be UTF8 encoded; however,
this is dependent upon IETF developments. Would UTF8 meet the needs of
the forms community?

The steps for building this persistence format is as follows:

1. Prepare a new UTF-8 encoded string buffer to hold the persisted instance
data.

2. Beginning with the root element of the instance data, iterate over the
selected content of the instance data in document order and build an
ordered set of strings by performing the following steps:

1. For each element with an attribute, append to the set a string of the
format "path=value" where path is the canonical binding expression
that refers to each attribute, and value is the character content of each
attribute (urlencoded if necessary).

2. For each element enclosing character content, append to the set a
string of the format "path=value" where path is the canonical binding
expression that refers to the element, and value is the character
content of the element (urlencoded if necessary).

3. For each element enclosing element content, continue the iteration.
3. Append the strings from the ordered set together, delimiting the strings with

an ampersand ’&’ character, and place the result of the append into the
UTF-8 encoded string buffer.

Example:

Example: application/x-www-form-urlencoded

This format consists of sets of a canonical binding expression paired with a value.

Here is the instance data for the above example.

11.6.2 multipart/form-data

This format is intended to facilitate the integration of XForms into HTML forms
processing environments, and represents an extension of the [XHTML 1.0] form
content type of the same name that expresses the hierarchical nature of instance
data. Unlike the application/x-www-form-urlencoded (11.6.1 application/x-www-
form-urlencoded) format, this format is suitable for the persistence of binary
content.

This format follows the rules of all multipart MIME data streams for form data as
outlined in [RFC 2388], with the "name" of each part being the canonical binding
expression that references the selected instance data item.

Example:

Example: multipart/form-data

/PersonName/@title=Mr&/PersonName/FirstName=Roland

<PersonName title="Mr">
 <FirstName>Roland</FirstName>
</PersonName>

Content-Type: multipart/form-data; boundary=AaB03x

--AaB03x
 Content-Disposition: form-data; name="/PersonName/@title"

Mr
--AaB03x
 Content-Disposition: form-data; name="/PersonName/FirstName"

Roland
--AaB03x

...Possibly more data...

--AaB03x-

This format consists of sets of a canonical binding expression paired with a value.

Here is the instance data for the above example.

11.6.3 text/xml

This format permits the expression of the instance data as an XML-based format
that is straightforward to process with off-the-shelf XML processing tools. In
addition, this format is suitable for the persistence of binary content.

The steps for building this persistence format is as follows:

1. Prepare a new empty XML document to hold the persisted instance data.
2. If the selected content of the instance data corresponds to a singly-rooted

data structure, serialize, into the XML document the entire content of the
selected instance data, beginning at the root node.

3. If the selected content of the instance data corresponds to a multiply-rooted
data structure (such as a general parsed entity), an unqualified root element
of <Envelope>, with an unqualified element <Body> is inserted into the XML
document, and the selected instance data serialized into the content of the
<Body> element.

11.6.3.1 Binary Content

Instance data items of the types xsd:base64Binary and xsd:hexBinary are
specifically allowed, and are included in the serialized data according to the rules
defined in [XML Schema part 2]

Issue (issue-instance-metadata):

Where a value within the instance data represents binary content, can we
store meta-information with an xform:mediaType attribute reflecting the
appropriate content type (e.g., "image/jpg")?

11.7 Conformance

XForms are being designed for use on hardware platforms of all sizes, from tiny
handheld devices to high-powered servers. Clearly, a one-size-fits-all approach
has its drawbacks. For this reason, the XForms Working Group has begun
specifying two conformance levels for XForms Processors, documents, and
authoring tools.

11.7.1 XForms Basic

<PersonName title="Mr">
 <FirstName>Roland</FirstName>
</PersonName>

This conformance level will be suitable for devices with limited computing power,
such as mobile phones, handheld computers, and appliances. This conformance
level will depend on a subset of XML Schema, and will not include any resource-
intensive features. Implementations of XForms Basic should return "basic" for the
conformance-level property.

11.7.2 XForms Full

This conformance level will be suitable for more powerful forms processing, such
as might be found on a standard desktop browser or a server. Implementations of
XForms Full should return "full" for the conformance-level property.

Additional details will be provided in future revisions of this chapter.

A Schema for XForms

<?xml version="1.0" encoding="utf-8"?>
<!-- edited with XML Spy v3.5 NT (http://www.xmlspy.com) by Micah (W3C X
<!-- converted with http://www.w3.org/2001/03/webdata/xsu -->
<!DOCTYPE xsd:schema
 PUBLIC "-//W3C//DTD XMLSchema 200102//EN" "http://www.w3.org/2001/XML
<!ENTITY % p ’xsd:’>
<!ENTITY % s ’:xsd’>
]>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xform="http://www.w3.org/2001/06/xforms"
targetNamespace="http://www.w3.org/2001/06/xforms"
elementFormDefault="qualified">
 <!--
structural elements
-->
 <xsd:element name="xform">
 <xsd:annotation>
 <xsd:documentation>Definition of the xform container element.</xs
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="xform:submitInfo" minOccurs="0"/>
 <xsd:element ref="xform:model" minOccurs="0"/>
 <xsd:element ref="xform:instance" minOccurs="0"/>
 <xsd:element ref="xform:bind" minOccurs="0" maxOccurs="unbounde
 <xsd:any namespace="##any"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attributeGroup ref="xform:linkingAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="model">
 <xsd:annotation>
 <xsd:documentation>Definition of model container. Content model T
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attributeGroup ref="xform:linkingAttributes"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="instance">
 <xsd:annotation>
 <xsd:documentation>Definition of instance container.</xsd:documen
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attributeGroup ref="xform:linkingAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitInfo">
 <xsd:annotation>
 <xsd:documentation>Definition of submit info container.</xsd:docum
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any"/>
 <!-- allow zero or more submitExtension elements -->
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="target" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="method" type="xform:methodType" use="optiona
 </xsd:complexType>
 </xsd:element>
 <xsd:attributeGroup name="linkingAttributes">
 <xsd:attribute name="href" type="xsd:anyURI"/>
 </xsd:attributeGroup>
 <xsd:element name="bind">
 <xsd:annotation>
 <xsd:documentation>Definition of bind container.</xsd:documentati
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="ref" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <!--
User Interface form controls and other elements
-->
 <xsd:attributeGroup name="commonUIAttributes">
 <xsd:attribute name="lang" type="xsd:language" use="optional"/>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="class" type="xsd:string" use="optional"/>
 <xsd:attribute name="style" type="xsd:string" use="optional"/>
 <xsd:attribute name="ref" type="xsd:string" use="optional"/>
 <xsd:attribute name="xform" type="xsd:IDREF" use="optional"/>
 <xsd:attribute name="accessKey" type="xsd:string" use="optional"/>
 <xsd:attribute name="navIndex" type="xsd:nonNegativeInteger" use="op
 </xsd:attributeGroup>
 <xsd:element name="caption">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##any"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attributeGroup ref="xform:linkingAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="hint">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##any"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attributeGroup ref="xform:linkingAttributes"/>
 </xsd:complexType>

 </xsd:element>
 <xsd:element name="help">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:any namespace="##any"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attributeGroup ref="xform:linkingAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="onevent">
 <xsd:annotation>
 <xsd:documentation>Defined in a different specification</xsd:docum
 </xsd:annotation>
 </xsd:element>
 <xsd:group name="choiceGroup">
 <xsd:choice>
 <xsd:element ref="xform:choices"/>
 <xsd:element ref="xform:item"/>
 </xsd:choice>
 </xsd:group>
 <xsd:element name="choices">
 <xsd:complexType>
 <xsd:sequence maxOccurs="unbounded">
 <xsd:group ref="xform:choiceGroup"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="item" type="xform:string"/>
 <xsd:group name="commonUIChildren">
 <xsd:sequence>
 <xsd:element ref="xform:caption"/>
 <xsd:element ref="xform:help" minOccurs="0"/>
 <xsd:element ref="xform:hint" minOccurs="0"/>
 <xsd:element ref="xform:onevent" minOccurs="0"/>
 <xsd:any namespace="##any"/>
 </xsd:sequence>
 </xsd:group>
 <xsd:element name="textbox">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="secret">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="uploadMedia">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attribute name="mediaType" type="xform:spaceSeparatedListTyp
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="selectOne">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:element ref="xform:choices"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attribute name="selectUI" type="xform:selectUIType" use="opt
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="selectMany">

 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:element ref="xform:choices"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attribute name="selectUI" type="xform:selectUIType" use="opt
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="selectBoolean">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:element ref="xform:choices"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attribute name="selectUI" type="xform:selectUIType" use="opt
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="range">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 <xsd:attribute name="start" type="xsd:string" use="required"/>
 <xsd:attribute name="end" type="xsd:string" use="required"/>
 <xsd:attribute name="stepSize" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="button">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="output">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attribute name="id" type="xsd:ID" use="optional"/>
 <xsd:attribute name="ref" type="xsd:string" use="optional"/>
 <xsd:attribute name="xform" type="xsd:string" use="optional"/>
 <xsd:attribute name="format" type="xsd:string" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submit">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="reset">
 <xsd:complexType>
 <xsd:group ref="xform:commonUIChildren"/>
 <xsd:attributeGroup ref="xform:commonUIAttributes"/>
 </xsd:complexType>
 </xsd:element>
 <!--
Bring over xsd simpleTypes
-->
 <xsd:simpleType name="decimal">
 <xsd:restriction base="xsd:decimal"/>
 </xsd:simpleType>
 <xsd:simpleType name="string">
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>
 <xsd:simpleType name="boolean">
 <xsd:restriction base="xsd:boolean"/>
 </xsd:simpleType>
 <xsd:simpleType name="date">

B References

B.1 Normative References

CSS2
Cascading Style Sheets, level 2 (CSS2) Specification, Bert Bos, Håkon
Wium Lie, Chris Lilley, Ian Jacobs, 1998. W3C Recommendation available
at: http://www.w3.org/TR/REC-CSS2.

DOM2 Events
Document Object Model (DOM) Level 2 Events Specification, Tom Pixley,
2000. W3C Recommendation available at: http://www.w3.org/TR/DOM-
Level-2-Events/.

ISO 4217
ISO Standards for Currency Names, International Organization for
Standardization (ISO), 1999.

RFC 2388
RFC 2388: Returning Values from Forms: multipart/form-data, L. Masinter,
1998. Available at: http://www.ietf.org/rfc/rfc2388.txt.

 <xsd:restriction base="xsd:date"/>
 </xsd:simpleType>
 <xsd:simpleType name="time">
 <xsd:restriction base="xsd:time"/>
 </xsd:simpleType>
 <!-- Note: similar for all other built-in Schema types; new schema wa

time -->
 <!--
New simpleTypes
-->
 <xsd:simpleType name="currency">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{3}"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="maskType">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="((A|a|X|x|N|n|M|m)|(\\.))*([0-9*](A|a|X|x|N|
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="spaceSeparatedListType">
 <xsd:list itemType="xsd:token"/>
 </xsd:simpleType>
 <xsd:simpleType name="selectUIType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="radioGroup"/>
 <xsd:enumeration value="checkboxGroup"/>
 <xsd:enumeration value="pulldown"/>
 <xsd:enumeration value="listbox"/>
 <xsd:enumeration value="comboGroup"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="methodType">
 <xsd:restriction base="xform:string">
 <xsd:enumeration value="postXML"/>
 <xsd:enumeration value="post"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

WML1.3
Wireless Application Protocol Wireless Markup Language Specification
Version 1.3, Wireless Application Protocol Forum, Ltd., 2000. Available at:
http://www1.wapforum.org/tech/documents/WAP-191-WML-20000219-a.pdf.

XForms Req
XForms Reqirements, Micah Dubinko, Dave Ragget, Sebastian
Schnitzenbaumer, Malte Wedel, 2001. W3C Working Draft: available at:
http://www.w3.org/TR/xhtml-forms-req.

XHTML Events
XHTML Events - An updated events syntax for XHTML, Ted Wugofski,
2000. W3C Working Draft available at: http://www.w3.org/TR/xhtml -events.

XLink
XML Linking Language (XLink) Version 1.0, Steve DeRose, Eve Maler,
David Orchard, 2000. W3C Proposed Recommendation available at:
http://www.w3.org/TR/xlink/.

XML 1.0
Extensible Markup Language (XML) 1.0 (Second Edition), Tim Bray, Jean
Paoli, C. M. Sperberg-McQueen, Eve Maler, 2000. W3C Recommendation:
available at: http://www.w3.org/TR/REC-xml

XML Names
Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, 1999.
W3C Recommendation available at: http://www.w3.org/TR/REC-xml-names.

XPath 1.0
XML Path Language (XPath) Version 1.0, James Clark, Steve DeRose,
1999. W3C Recommendation available at: http://www.w3.org/TR/xpath.

XML Schema part 1
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray
Maloney, Noah Mendelsohn, 2001. W3C Recommendation available at:
http://www.w3.org/TR/xmlschema-1/.

XML Schema part 2
XML Schema Part 2: Datatypes, Paul V. Biron, Ashok Malhotra, 2001. W3C
Recommendation available at: http://www.w3.org/TR/xmlschema-2/.

B.2 Informative References

ANSI X3-274
Information Technology - Programming Language REXX., American
National Standards Institute (ANSI), 1996. Document Number: ANSI X3.274-
1996.

AUI97
Auditory User Interfaces--Toward The Speaking Computer, T. V. Raman,
Kluwer Academic Publishers, 1997. ISBN:0-7923-9984-6.

ECMA 262
ECMA-262: ECMAScript Language Specification, European Computer
Manufacturers’ Association (ECMA), 1999. Available at
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf.

Unicode
The Unicode Standard, Version 3.0, Joan Aliprand, Julie Allen, Joe Becker,
Mark Davis, Michael Everson, Asmus Freytag, John Jenkins, Mike Ksar,
Rick McGowan, Lisa Moore, Michel Suignard, Ken Whistler. Addison-Wesley
Developers Press, , Reading, Mass., 2000.

XHTML 1.0

XHTML 1.0: The Extensible HyperText Markup Language - A Reformulation
of HTML 4 in XML 1.0, Steven Pemberton, et. al, 2000. W3C
Recommendation available at: http://www.w3.org/TR/xhtml1.

XML Schema part 0
XML Schema Part 0: Primer, David C. Fallside, 2001. W3C
Recommendation available at: http://www.w3.org/TR/xmlschema-0/.

XSLT
XSL Transformations (XSLT) Version 1.0, James Clark, 1999. W3C
Recommendation available at: http://www.w3.org/TR/xslt.

C Changes from Previous Release (Non-Normative)

C.1 Changes since the 16-Feb-2001 release

There have been significant changes to the XForms since our last public draft. In
addition, we have switched over to authoring the specification using xmlspec.dtd
from writing raw HTML (details at E Production Notes). The change from hand-
authored HTML to xmlspec has introduced changes throughout the document,
and consequently, adding diff marks for each change would be excessively
distracting and make this appendix difficult to read. Instead, this section
summarizes how things have changed so that readers familiar with the previous
draft can get up to to speed with the new specification.

C.2 Changes to Chapter 1 ’About XForms’

The typographic samples have been updated to work better with the XMLspec
publishing system.

C.3 Changes to Chapter 2 ’Concepts’

This chapter has been completely updated. The new version contains a samples
of complete forms and a step-by-step guide through the most common
functionality in XForms.

C.4 Changes to Chapter 3 ’Terminology’

Terms have been cleaned-up and brought into line with the rest of the document.
The term "datatype" has been imported from XML Schema. The terms "computed
expression", "containing document", and "model item property" are new.

C.5 Changes to Chapter 4 ’Datatypes’

The Working Group has decided to more directly reference XML Schema
datatypes, hence this chapter has been restructured to include by reference
Schema datatypes, and define any additional types. Remaining issues are listed
within the chapter.

C.6 Changes to Chapter 5 ’XForms Model’

Removed all "simple syntax". Clarified how computed model item properties
(including calculate) work. Improved terminology, consistently using terms from

chapter 3.

Open and closed enumerations are now under separate headings. Removed
’group’ to UI chapter. Renamed "Arrays" section to "Multiple Simultaneous
Values", and added section "Repeating Line Items". Renamed "Switch" to
"Alternate Representation", with a pointer to the UI section.

Significant changes to this chapter, bringing it into much closer alignment with
XML Schema, were not available for publication at this time and will appear in a
near-future Working Draft.

C.7 Changes to Chapter 6 ’XPath Expressions in XForms’

This chapter was previously named "Dynamic Constraint Language". The new title
more accurately describes both the chapter and the role of XPath within XForms.
The term "Dynamic Constraints Language" has been removed throughout the
remainder of the document as well.

New introductory material describes the various ways XPath is used throughout
XForms. The "Instance Data" section formerly residing in the Processing Model
chapter is now in this chapter. The section on Datatypes now describes which
parts of XForms use XPath datatypes and which use XML Schema datatypes.

The BNF productions have been removed, in favor of stronger wording that XPath
is to be used directly.

The section "Evaluation Context" has been more thoroughly cross-checked
against the XPath specification, with several underspecified areas now addressed.

The large set of custom operators has been replaced with a NOTE referencing the
built-in XPath operators.

New functions defined--count-non-empty(node-set), and xforms-property
(string).

Several of the functions have been specified in greater detail.

The extensibility section now makes a reference to a possible direction--the
element-available() and function-available() functions.

C.8 Changes to Chapter 7 ’Form Controls’

Originally part of the chapter "XForms User Interface". Now split into a separate
chapter. The material in this new chapter has been restructured for readability.

The "Design Input" section has been removed. Further details are available in the
XForms Requirements document.

Note that names of form controls have changed, but are not yet cast in stone. The
following changes and additions have been made to the core form controls:

hidden has been removed as a form control

output, textbox, submit, and reset have kept their same names
exclusiveSelect and multipleSelect have been renamed selectOne and
selectMany
checkbox is now selectBoolean
password is now secret
button has been fleshed out, including event listener details
uploadMedia and range are new form controls in this Working Draft

The "AnyControl" is now described in prose instead of formally. In addition, there
are minimal changes to the common elements and attributes defined in this
section. Element onevent is now taken from the XHTML Events module and is
therefore no longer defined in detail in this specification. A later section defines
XForms-specific event handlers for use within event listeners declared via element
onevent.

C.9 Changes to Chapter 8 ’XForms User Interface’

The section "Future Work" has been removed.

The specification now introduces constructs for authoring conditional user
interfaces (see switch) and a construct for authoring repeating widgets (see
repeat) for use in creating purchase orders or shopping carts that wish to create
the user interface needed for populating repeating rows from a table.

Conditional User Interfaces: This is a new section, and defines construct switch
along with its associated event handlers.

New Construct repeat: There is a new section that defines construct repeat for
authoring things like shopping carts where the user interface for populating a
structure needs to be repeated multiple times.

UI Templates: Constructs for creating and using user interface templates have
been renamed for consistency. The new element names are uiTemplate and
useUITemplate.

Constructing High-level User Interfaces: The content pertaining to creating higher-
level user interfaces from the basic building blocks has been substantially
reorganized. This portion of the specification first defines construct group used to
group user interface controls. Element group no longer defines an XForms-
specific layout model; instead all layout attributes come from CSS. This enables
XForms user interfaces to be laid out using either CSS or XSL:FO, or for that
matter languages such as SVG.

Subforms And Subpages: With the XForms constructs for authoring higher level
user interaction now fleshed out, it turns out that there is no need for an XForms-
specific subform or subpage construct --we can leverage existing mechanisms
such as group and more generally, XHTML’s div elements for this purpose.

C.10 Changes to Chapter 9 ’Binding’

Some of the text has been cleaned up with regard to the relationship with XPath,
but otherwise no significant content changes.

C.11 Changes to Chapter 10 ’Document Structure’

This chapter was previously named "Using XForms with Other Document Types".
Added new section "Integration with XLink". Updated examples to reflect xlink
namespace.

C.12 Changes to Chapter 11 ’Processing Model and Conformance’

Cleaned up terminology and brought into greater consistency with the rest of the
document.

Removed the locale property; separated the rest into those that can vary from
one xform element to the next, and those that are the same across the containing
document. Renamed use-nulls to use-nil.

The "suspend" functionality has been removed, including the xforms-suspend
event, and will appear in a post-1.0 version of XForms. The xforms-resume event
has been renamed xforms-initialize. Clarified that model items are associated
with only a single value.

The "instance data" section has moved to the XPath Expressions chapter, though
rules for constructing instance data are still in this chapter, and reworded for
clarity.

The multipart/form-data section has been replaced with a reference to RFC 2388.

An early conformance section has been added.

C.13 Changes to Appendix ’Schema for XForms’

For this release, the Schema only covers the XForms form controls and the
Document Structure markup.

Significant changes to this appendix, bringing it into much closer alignment with
XML Schema, were not available for publication at this time and will appear in a
near-future Working Draft.

C.14 Changes to Appendix ’XSLT from Simple Syntax’

Following the Working Group decision to remove the simple syntax, this appendix
has also been removed.

C.15 Change to Appendix ’Sample Forms’

Sample forms have been incorporated into 2 Concepts

C.16 Changes to Appendix ’Optional Function Library’

The Working Group has decided to remove all optional functions from XForms.

C.17 Changes to Appendix ’References’

References have been updated to refer to the changes in document status, most
notably the XML Schema recommendation. New normative reference to XLink,
RFC2388; informative reference to T. V. Raman’s book on auditory user
interfaces. Removed orphaned references to ISO 8601, RFC 2369, RFC 2141
and moved the orphaned Unicode reference to the informative section.

D Acknowledgements (Non-Normative)

The Authors of this document are:

l Steven Pemberton , CWI (co-chair)
l Sebastian Schnitzenbaumer , Mozquito Technologies (co-chair)
l Micah Dubinko , Cardiff
l Peter Stark , Ericsson
l Roland Merrick , IBM
l T. V. Raman , IBM
l Linda Bucksay Welsh , Intel (Until April 2001)
l Gavin McKenzie , JetForm Corporation
l Rob McDougall , JetForm Corporation
l John McCarthy , Lawrence Berkeley National Laboratory (Until November

2000)
l Frank Olken , Lawrence Berkeley National Laboratory (Until November

2000)
l Ray Waldin , Lexica, LLC
l Tantek Çelik , Microsoft
l Panagiotis Reveliotis , Phillips (Until December 2000)
l David Cleary , Progress Software
l Mike Mansell , PureEdge
l Josef Dietl , Mozquito Technologies
l Michael Fergusson , Softquad
l Dave Raggett , W3C/OpenWave (Until December 2000)
l Leigh Klotz , Xerox

This document was written with the participation of the XForms Working Group,
which currently consists of the following members:

l Steven Pemberton , CWI (co-chair)
l Sebastian Schnitzenbaumer , Mozquito Technologies (co-chair)
l Micah Dubinko , Cardiff
l Driss Eddaifi , Ecole Mohammadia d'Ingénieurs
l Michalis Petropoulos , Enosys Markets, Inc.
l Peter Stark , Ericsson
l Frank Boumphrey , HTML Writer's Guild
l Roland Merrick , IBM
l T. V. Raman , IBM
l Gavin McKenzie , JetForm Corporation
l Rob McDougall , JetForm Corporation
l Ray Waldin , Lexica, LLC
l Tantek Çelik , Microsoft

l Alex Hopmann , Microsoft
l Dave Hyatt , Netscape/AOL
l Eric Pollmann , Netscape/AOL
l Tom Butcher , OpenDesign
l K. P. Lee , Phillips
l Roli Wendorf , Phillips
l Ted Wugofski , Openwave
l David Cleary , Progress Software
l Mike Mansell , PureEdge
l Dave Manning , PureEdge
l Josef Dietl , Mozquito Technologies
l Michael Fergusson , Softquad
l Zoe Lacroix , SurroMed, Inc.
l Masayasu Ishikawa , W3C
l Leigh Klotz , Xerox

The XForms Working Group has benefited in its work from the participation and
contributions of Invited Experts:

l Tom Schnetlage , University of Berkeley
l Dan Gillman , Federal Bureau of Labor Statistics
l Eliot Christian , U.S. Geological Survey
l Mikko Honkala , Helsinki University Of Technology

Note:

Additional Acknowledgments: The editors would like to thank Kai Scheppe,
Malte Wedel and Götz Bock for lots of constructive criticism on early versions
of the chapter 9 Binding and their contributions to its present content.

E Production Notes (Non-Normative)

This document was encoded in the XMLspec DTD (which has documentation
available). The primary tools used for editing were SoftQuad XMetaL and EMACS
with psgml and XAE. The HTML versions were produced with the xmlspec.xsl
XSLT stylesheet using the Saxon engine.

	XForms 1.0
	W3C Working Draft, 8 June, 2001
	Abstract
	Status of this Document
	Table of Contents
	1 About the XForms 1.0 Specification
	1.1 Background
	1.2 Reading the Specification
	1.3 How the Specification is Organized
	Chapters 1 and 2
	Chapters 3 and up
	Appendixes

	1.4 Documentation Conventions

	2 Concepts
	2.1 Purpose and Presentation
	2.2 Current Approach: XHTML
	2.3 Stepping Up to XForms
	2.4 Providing XML Instance Data
	2.5 The XForms Model
	2.6 Multiple Forms per Document
	2.7 Additional User Interface Capabilities
	2.8 Complete Document

	3 Terminology
	binding
	binding expression
	computed expression
	containing document
	datatype
	facet
	form control
	instance data
	instance data item
	lexical space
	model item
	model item property
	value space
	XForms Model
	XForms Processor

	4 Datatypes
	4.1 XML Schema Datatypes
	4.2 XForms Datatypes
	4.2.1 currency
	4.2.2 monetary

	5 The XForms Model
	5.1 Introduction
	5.2 Model Item Properties
	5.2.1 name
	5.2.2 type
	5.2.3 readOnly
	5.2.4 required
	5.2.5 relevant
	5.2.6 calculate
	5.2.7 priority
	5.2.8 validate

	5.3 Using Datatypes in the XForms Model
	5.3.1 Atomic Datatype
	5.3.2 Closed Enumeration
	5.3.3 Open Enumeration
	5.3.4 Union
	5.3.5 Multiple Selection
	5.3.6 Repeating Line Item
	5.3.7 Alternate Representation

	6 XPath Expressions in XForms
	6.1 Datatypes
	6.2 Instance Data
	6.3 Evaluation Context
	6.4 Canonical Binding Expressions
	6.5 Forms Core Function Library
	Issue (xpath-core-lib):
	6.5.1 Number Methods
	6.5.2 String Methods
	6.5.3 Miscellaneous Methods

	6.6 Extensibility

	7 Form Controls
	7.1 Introduction
	7.2 textbox
	7.3 secret
	7.4 uploadMedia
	7.5 selectOne
	7.6 selectMany
	7.7 selectBoolean
	7.8 range
	7.9 button
	7.10 output
	7.11 submit
	7.12 reset
	7.13 Common Markup
	7.13.1 Common Attributes
	7.13.2 Common Child Elements
	7.13.2.1 caption
	7.13.2.2 help
	7.13.2.3 hint
	7.13.2.4 onevent
	7.13.2.5 item
	7.13.2.6 choices

	8 XForms User Interface
	8.1 Conditional Constructs For Dynamic User Interfaces
	8.1.1 switch

	8.2 Repeating Structures
	8.2.1 Design Rationale
	8.2.2 Special Event Handlers For Element
	8.2.3 repeat
	8.2.4 Design Consequences

	8.3 Reusable Form Controls
	8.3.1 Creating User Interface Templates
	8.3.2 DTD For uiTemplate And useUITemplate

	8.4 Layout in XForms
	8.4.1 Orientation and Direction
	8.4.2 Alignment
	8.4.3 Controlling Automatic Sizing
	8.4.4 Preferred, Minimum, and Maximum Sizes
	8.4.5 Packing Controls
	8.4.6 Overflow
	8.4.7 Inlines and Blocks

	8.5 Multiple Sub-forms Or Sub-pages
	8.5.1 Subpages

	9 Binding
	9.1 Introduction
	9.2 Binding Attributes
	9.3 Direct Binding
	9.4 Indirect Binding
	9.5 Multiple Forms per Page

	10 Document Structure
	10.1 The XForms Namespace
	10.2 XForms Elements
	10.2.1 xform
	10.2.2 model
	10.2.3 instance
	10.2.4 submitInfo
	10.2.5 bind

	10.3 Integration with XLink
	10.3.1 XLink role for XForms
	10.3.2 XLink role for the XForms Model
	10.3.3 XLink role for the Instance Data
	10.3.4 XLink role for the XForms User Interface

	11 Processing Model
	11.1 Introduction
	11.1.1 Design Rationale

	11.2 XForms Properties
	11.3 Events
	11.4 XForms Processing
	11.4.1 Initialization/Resume
	11.4.2 Instance Data Construction
	11.4.3 Navigation Sequence Algorithm
	11.4.4 Interactivity
	11.4.5 Recalculation Algorithm
	11.4.6 UI Refresh Algorithm
	11.4.7 Revalidation Algorithm

	11.5 Submit and Reset
	11.5.1 Submit
	11.5.2 Reset

	11.6 Serialization Formats for Instance Data
	11.6.1 application/x-www-form-urlencoded
	11.6.2 multipart/form-data
	11.6.3 text/xml
	11.6.3.1 Binary Content

	Issue (issue-instance-metadata):

	11.7 Conformance
	11.7.1 XForms Basic
	11.7.2 XForms Full

	Appendices
	A Schema for XForms
	B References
	B.1 Normative References
	CSS2
	DOM2 Events
	ISO 4217
	RFC 2388
	WML1.3
	XForms Req
	XHTML Events
	XLink
	XML 1.0
	XML Names
	XPath 1.0
	XML Schema part 1
	XML Schema part 2

	B.2 Informative References
	ANSI X3-274
	AUI97
	ECMA 262
	Unicode
	XHTML 1.0
	XML Schema part 0
	XSLT

	C Changes from Previous Release (Non-Normative)
	C.1 Changes since the 16-Feb-2001 release
	C.2 Changes to Chapter 1 About XForms
	C.3 Changes to Chapter 2 Concepts
	C.4 Changes to Chapter 3 Terminology
	C.5 Changes to Chapter 4 Datatypes
	C.6 Changes to Chapter 5 XForms Model
	C.7 Changes to Chapter 6 XPath Expressions in XForms
	C.8 Changes to Chapter 7 Form Controls
	C.9 Changes to Chapter 8 XForms User Interface
	C.10 Changes to Chapter 9 Binding
	C.11 Changes to Chapter 10 Document Structure
	C.12 Changes to Chapter 11 Processing Model and Conformance
	C.13 Changes to Appendix Schema for XForms
	C.14 Changes to Appendix XSLT from Simple Syntax
	C.15 Change to Appendix Sample Forms
	C.16 Changes to Appendix Optional Function Library
	C.17 Changes to Appendix References

	D Acknowledgements (Non-Normative)
	E Production Notes (Non-Normative)

	
	World Wide Web Consortium Title Page

