
 

XQuery 1.0: An XML Query Language

W3C Working Draft 07 June 2001

This version: 
http://www.w3.org/TR/2001/WD-xquery-20010607 

Latest version: 
http://www.w3.org/TR/xquery 

Previous version: 
http://www.w3.org/TR/2001/WD-xquery-20010215/ 

Editors: 
Don Chamberlin (IBM Almaden Research Center) 
<chamberlin@almaden.ibm.com> 
James Clark (Independent Consultant) <jjc@jclark.com> 
Daniela Florescu (Propel) <DanaF@propel.com> 
Jonathan Robie (Software AG) <Jonathan.Robie@SoftwareAG-USA.com> 
Jérôme Siméon (Bell Labs, Lucent Technologies) <simeon@research.bell-
labs.com> 
Mugur Stefanescu (BroadVision) <mugur.stefanescu@broadvision.com> 

Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, 
trademark, document use and software licensing rules apply.

Abstract 

XML is an extremely versatile markup language, capable of labeling the 
information content of diverse data sources including structured and semi -
structured documents, relational databases, and object repositories. A query 
language that uses the structure of XML intelligently can express queries across 
all these kinds of data, whether physically stored in XML or viewed as XML via 
middleware. Because query languages have traditionally been designed for 
specific kinds of data, most existing proposals for XML query languages are 
robust for particular types of data sources but weak for other types. This 
specification describes a new query language called XQuery, which is designed to 
be broadly applicable across all types of XML data sources.

Status of this document 

This document is a W3C Working Draft of XQuery, for review by W3C members 
and other interested parties. It is a draft document and may be updated, replaced, 
or made obsolete by other documents at any time. It is inappropriate to use W3C 



Working Drafts as reference material. Citations to W3C Working Drafts should 
clearly label them as "work in progress".

Comments on this document should be sent to the W3C mailing list www-xml-
query-comments@w3.org (archived at http://lists.w3.org/Archives/Public/www-xml-
query-comments/). 

This document was produced by the W3C XML Query Working Group in 
collaboration with the W3C XSL Working Group. These Working Groups are part 
of the W3C XML Activity. A list of current W3C Recommendations and other 
technical documents can be found at http://www.w3.org/TR/. 

Table of contents 

1 Introduction 
2 The XQuery Language 

2.1 Path Expressions 
2.2 Element Constructors 
2.3 FLWR Expressions 
2.4 Sorting 
2.5 Operators in Expressions 

2.5.1 Arithmetic operators 
2.5.2 Comparison operators 
2.5.3 Logical operators 
2.5.4 Sequence-related Operators 

2.6 Conditional Expressions 
2.7 Quantified Expressions 
2.8 Datatypes 
2.9 Functions 
2.10 User-Defined Datatypes 
2.11 Operations on Datatypes 
2.12 Structure of a Query Module 

3 Example Applications 
3.1 Filtering 
3.2 Joins 
3.3 Grouping 

4 Conclusion 

Appendices

A References 
B XQuery Grammar 
C XQuery Issues (Non-Normative)

C.1 Issue List 
C.2 XQuery Issues 

D Revision Log (Non-Normative)

1 Introduction

As increasing amounts of information are stored, exchanged, and presented using 
XML, the ability to intelligently query XML data sources becomes increasingly 



important. One of the great strengths of XML is its flexibility in representing many 
different kinds of information from diverse sources. To exploit this flexibility, an 
XML query language must provide features for retrieving and interpreting 
information from these diverse sources.

XQuery is designed to meet the requirements identified by the W3C XML Query 
Working Group [XML Query 1.0 Requirements]. It is designed to be a small, easily 
implementable language in which queries are concise and easily understood. It is 
also flexible enough to query a broad spectrum of XML information sources, 
including both databases and documents. The Query Working Group has 
identified a requirement for both a human-readable query syntax and an XML-
based query syntax. XQuery is designed to meet the first of these requirements. 
For an alternative, XML-based syntax for the XQuery semantics, see [XQueryX
1.0] 

XQuery is derived from an XML query language called Quilt [Quilt], which in turn 
borrowed features from several other languages. From XPath [XPath 1.0] and 
XQL [XQL] it took a path expression syntax suitable for hierarchical documents. 
From XML-QL [XML-QL] it took the notion of binding variables and then using the 
bound variables to create new structures. From SQL [SQL] it took the idea of a 
series of clauses based on keywords that provide a pattern for restructuring data 
(the SELECT-FROM-WHERE pattern in SQL). From OQL [ODMG] it took the 
notion of a functional language composed of several different kinds of expressions 
that can be nested with full generality. Quilt was also influenced by other XML 
query languages such as Lorel [Lorel] and YATL [YATL].

Important issues remain open in the design of XQuery. Some of these issues deal 
with relationships between XQuery and other XML activities, for example:

l The semantics of XQuery are defined in the XML Query Formal Semantics 
[XQuery 1.0 Formal Semantics]. This document defines the semantics of a 
subset of XQuery called the XQuery Core, and defines the mapping of the 
full XQuery language into this Core subset. This mapping is still preliminary, 
and may result in some changes to XQuery and/or the Core.

l XQuery has a type system that is based on XML Schema. Work is in 
progress to ensure that the type systems of XQuery, the XQuery Core, and 
XML Schema are completely aligned.

l The details of the operators supported on simple XML Schema datatypes 
will be defined by a joint XSLT/Schema/Query task force and will be defined 
in a separate Functions and Operators document (to appear).

l XQuery relies on path expressions for navigating in hierarchic documents. 
XQuery expects these path expressions to conform to the semantics of 
XPath 2.0, as defined by a joint XSLT/Query task force. The exact split 
between what is in XPath 2.0 and what is only in XQuery remains to be 
determined. Issues involving syntax that is shared between XQuery and 
XPath 2.0 must be resolved jointly by the Query and XSL Working Groups.

For more details on open issues, see Appendix C.



2 The XQuery Language

Like OQL, XQuery is a functional language in which a query is represented as an 
expression. XQuery supports several kinds of expressions, and the structure and 
appearance of a query may differ significantly depending on which kinds of 
expressions are used. The various forms of XQuery expressions can be nested 
with full generality. 

The input and output of a query are instances of a data model which is used by 
both XQuery 1.0 and XPath 2.0 [XQuery 1.0 and XPath 2.0 Data Model]. This data 
model is a refinement of the data model described in the XPath Version 1 
specification [XPath 1.0], in which a document is modeled as a tree of nodes. The 
data model is capable of modeling not only an XML document but also a well-
formed fragment of a document, a sequence of documents, or a sequence of 
document fragments. An instance of the data model is an ordered sequence of 
nodes, each of which may contain nested sequences of nodes. There is no 
distinction between a single node and a node sequence of length one. Although 
sequences are always ordered, an unordered function is provided which randomly 
reorders a sequence; this function effectively permits a query optimizer to 
generate the sequence in whatever order it finds most efficient.

The principal forms of XQuery expressions are as follows:

1. Path expressions

2. Element constructors

3. FLWR expressions

4. Expressions involving operators and functions

5. Conditional expressions

6. Quantified expressions

7. Expressions that test or modify datatypes

The following sections introduce and explain each of the expression types listed 
above. Each section contains a specification of the relevant part of the XQuery 
syntax, and the syntax is repeated in its entirety in Appendix B. In general, when 
the syntax for an expression calls for a nested expression, any of the XQuery 
expression types may be used. The grammar in this document is designed to be 
readable and as a result it is rather permissive. An implementation of XQuery will 
need to augment the syntax given here with some semantic rules. For example, 
the syntax permits any expression to be used in an IF-clause, but semantically an 
IF-expression is valid only if it returns a Boolean result.

The semantics of the various types of XQuery expressions are described 
informally in this document and more formally in [XQuery 1.0 Formal Semantics]. 
However, XQuery is a declarative language, and its semantic specification is not 
intended to prescribe an implementation strategy. It is expected that 



implementations will use a variety of optimization algorithms to achieve the 
specified results.

This document introduces all the operators of XQuery, specifies the syntax of a 
function call, and gives several examples of built-in functions. An enumeration of 
all the functions supported by XQuery, and a detailed description of how the 
operators apply to the various primitive datatypes, are provided in a separate 
document called XQuery Functions and Operators (to appear).

In XQuery, keywords (such as FOR and LET) are case-insensitive, whereas 
identifiers (such as myBigBook) are case-sensitive. In this document, keywords 
are capitalized to make them easy to distinguish from identifiers. Keywords in 
XQuery are not reserved (the grammar has been designed in such a way that 
keywords may be used as names, and their role is resolved by context.)

A query may contain a comment, which is ignored during query processing. The 
beginning delimiter of a comment is a pound symbol ("#") and the ending delimiter 
is a newline character, as illustrated in the following example:

  # This is a comment.

2.1 Path Expressions

One of the forms of an XQuery expression is a path expression, based on the 
syntax of XPath [XPath 1.0]. XPath is a notation for navigating along "paths" in an 
XML document, and is used in several XML-related applications including XSLT 
[XSLT] and XPointer [XPointer].

The XML Query and XSL Working Groups are cooperatively working on both the 
syntax and the semantics for an extended version of XPath, to be known as XPath 
Version 2.0, based on the [XPath 2.0 Requirements]. One of these requirements 
states that "XPath 2.0 should maintain backward compatibility with XPath 1.0." 
XQuery is expected to be a superset of XPath 2.0.

This document relies on [XPath 1.0] as a specification of XPath 1.0, and focuses 
mainly on the extensions introduced by XPath 2.0 and XQuery.

Syntax

PathExpr ::= RelativePathExpr
| ("/" RelativePathExpr?)
| ("//" RelativePathExpr?)

RelativePathExpr ::= StepExpr ( ("/" | "//") StepExpr)*
StepExpr ::= AxisStepExpr | OtherStepExpr
AxisStepExpr ::= Axis NodeTest StepQualifiers
OtherStepExpr ::= PrimaryExpr StepQualifiers
StepQualifiers ::= ( ("[" Expr "]") | ("=>" NameTest) )*
Axis ::= (NCName "::") | "@"
PrimaryExpr ::= "."

| ".."



A path expression can begin with an expression that identifies a specific node or 
sequence of nodes in a document. For example, the function document(string) 
returns the root node of a named document. A path expression can also begin 
with "/" or "//" which represents an implicit root node, determined by the 
environment in which the path expression is executed. The execution environment 
of a path expression also defines a "context node," which can be referenced by 
dot (".") inside the path expression.

A path expression consists of a series of "steps". Each step represents movement 
through a document along a specified "axis", and each step can apply one or 
more predicates to eliminate nodes that fail to satisfy a given condition. The result 
of each step is a sequence of nodes that serves as a starting point for the next 
step. The default axis is the "child" axis, and unless otherwise specified, the first 
step in a path returns nodes from among the immediate children of the context 
node.

Ed. Note: The XQuery grammar used in this document includes full 
axis syntax, but the examples use abbreviated syntax. Priority 
feedback is requested on whether XQuery should support full axis 
syntax and on which axes should be supported. See issue xquery-
xpath-axes in Appendix C. 

The result of a path expression is a sequence of nodes or primitive values. The 
nodes in a path expression result are ordered according to their position in the 
original hierarchy, in document order (as defined in [XPath 1.0].) If the result of a 
path expression includes nodes that are in different documents, the ordering of 
these nodes is implementation-dependent. The result of a path expression may 
contain duplicate values (i.e., multiple nodes with the same name, type, and 
content), but it will not contain duplicate nodes (i.e., multiple occurrences of the 
same node).

The following example uses a path expression consisting of three steps. The first 
step locates the root node of a document. The second step locates the second 

| NodeTest
| Variable
| Literal
| FunctionCall
| ParenthesizedExpr
| CastExpr
| ElementConstructor

Literal ::= NumericLiteral | StringLiteral
NodeTest ::= NameTest | KindTest
NameTest ::= QName | Wildcard
KindTest ::= PITest | CommentTest | TextTest | AnyKindTest
PITest ::= "processing-instruction" "(" StringLiteral? ")"
CommentTest ::= "comment" "(" ")"
TextTest ::= "text" "(" ")"
AnyKindTest ::= "node" "(" ")"



chapter of the document (more formally, it locates <chapter> descendants of the 
root node that are the second such element within their respective parents.) The 
third step finds figure elements occurring anywhere within the chapter, but retains 
only those figure elements that have a caption with the value "Tree Frogs."

(Q1) In the second chapter of the document named "zoo.xml", find the figure(s) 
with caption "Tree Frogs". 

document("zoo.xml")//chapter[2]//figure[caption = "Tree Frogs"]

XPath allows a node to be selected from a sequence of nodes by a specifying its 
ordinal number in the sequence (as in the step chapter[2] in Q1.) XQuery allows 
the selection condition to contain a sequence of integers that specify the ordinal 
numbers of the nodes to be selected. The sequence can be specified by literal 
numbers (as in 1, 3, 5, 7) or by an expression that generates a sequence of 
consecutive integers (as in 1 TO 8). The first node in a sequence is considered to 
have ordinal number 1.

(Q2) Find all the figures in chapters 2 through 5 of the document named "zoo.xml."  

document("zoo.xml")//chapter[2 TO 5]//figure

In addition to the usual operators of XPath, XQuery introduces an operator called 
the dereference operator ("=>"). The operand on the left side of the dereference 
operator must be a node of type IDREF or IDREFS. The dereference operator 
returns the element(s) that are referenced by the attribute. A dereference operator 
is followed by a "name test" that specifies the name of the target element. Target 
elements not matching the given name are not returned. Following the usual 
XPath convention, a name test of "*" allows the target element to have any name. 

A dereference operator can be used only with documents that have schemas or 
DTD’s, since the operator needs to find nodes of type ID, IDREF, and IDREFS, 
which can be done only by reference to a schema or DTD.

Dereference operators can be used in the steps of a path expression. For 
example, the following query uses a dereference operator to find the caption of 
the "fig" element referenced by the "refid" attribute of a "figref" element.

(Q3) Find captions of figures that are referenced by <figref> elements in the 
chapter of "zoo.xml" with title "Frogs". 

document("zoo.xml")//chapter[title = "Frogs"]
   //figref/@refid=>fig/caption

The XQuery dereference operator is similar in purpose to the id function of XPath. 
However, the right-arrow notation is designed to be easier to read, especially in 
path expressions that involve multiple dereferences. For example, suppose that a 
given document contains a set of <emp> elements, each of which contains a 
"mgr" attribute. The "mgr" attribute is of type IDREF, and it references another 
<emp> element that represents the manager of the given employee. The name of 
each employee is represented by a <name> element nested inside the <emp> 
element.



(Q4) List the names of the second-level managers of all employees whose rating 
is "Poor". 

//emp[rating = "Poor"]/@mgr=>emp/@mgr=>emp/name

In XPath, each step selects a set of nodes relative to a context node. Each node 
in that set is then used in turn as a context node for the following step. The sets of 
nodes selected in this way are combined, as though by the UNION operator 
(defined in Section 2.5.4), to obtain the result of the following step. XQuery 
extends XPath 1.0 by allowing each step in a path expression to contain any 
XQuery expression, enclosed in parentheses as needed to avoid ambiguity. As 
usual, the nodes selected by one step are used as context nodes for the 
expression in the following step. The following example shows how an expression 
containing a UNION (denoted in this query by the "|" operator) can be used in one 
step of a path expression.

(Q5) Find all captions of figures and tables in the chapter of "zoo.xml" with title 
"Monkeys". 

document("zoo.xml")//chapter[title = "Monkeys"]
   //(figure | table)/caption

Ed. Note: This query uses a union within a step. In our current 
grammar, this requires the use of full expression syntax within the 
steps of a path, which been recommended by the joint Query/XSLT 
Task Force but has not yet been approved by the respective Working 
Groups. See issue xquery-full-expression-syntax in Appendix C. 

Path expressions often contain operators, such as arithmetic operators, that are 
defined over simple datatypes. When such an operator is used with an operand 
that is a node, the built-in data function is implicitly invoked to extract the content 
of the node as a typed value. If data is invoked with no argument, its implicit 
argument is the current (context) node. For example, if the content of the current 
node is the integer 47, then data() has type integer and value 47. If the content of 
its argument node cannot be expressed as a value of a simple type, the data 
function raises an error.

When an operator defined over simple datatypes is used with an operand that is a 
sequence of nodes, the data function is invoked repeatedly to extract the contents 
of the nodes, resulting in a sequence of simple values. The semantics of various 
operators, when applied to sequences of simple values, are described in Section 
2.5, and in more detail in XQuery Functions and Operators (to appear).

The following example illustrates implicit and explicit invocations of the data 
function. If the query selects a single employee who has a single salary, the result 
of the query will be an integer. If the query selects multiple employees, or a single 
employee with multiple salaries, the result of the query will be a sequence of 
integers.

(Q6) From a document that contains employees and their monthly salaries, extract 
the annual salary of the employee named "Fred". 



//emp[name="Fred"]/salary * 12

(Q6, alternate form) (Equivalent to Q6, with explicit invocation of data.) 

//emp[name="Fred"]/salary/data() * 12

Note the difference between the result-type of the expression //emp/salary, which 
returns zero or more elements, and the expression //emp/salary*12, which 
returns zero or more integers.

2.2 Element Constructors

In addition to searching for elements in existing documents, a query often needs 
to generate new elements. The simplest way to generate a new element is to 
embed the element directly in a query using XML notation. In other words, one of 
the permitted forms of an XQuery expression is an XML element that represents 
itself. This type of an XQuery expression is called an element constructor. By 
adopting XML notation for element constructors, XQuery allows literal XML 
fragments to be "pasted" into queries (with some limitations--for example, the 
handling of entity references is still under discussion.)

In most parts of the XQuery language, white space is not significant. However, 
according to the definition of XML, white space is significant under certain 
circumstances inside an XML tag. Therefore, in the following fragment of the 
XQuery grammar, white space is significant and is represented by the nonterminal 
symbol "S".

Syntax

ElementConstructor ::= "<" NameSpec AttributeList ("/>" | 
 (">" ElementContent* "</" (QName S?)? 

">") )
NameSpec ::= QName | ( "{" Expr "}" )
AttributeList ::= (S (NameSpec S? "=" S? (AttributeValue 

 | EnclosedExpr) AttributeList)? )?
AttributeValue ::= ( ["] AttributeValueContent* ["] )

| ( ['] AttributeValueContent* ['] )
ElementContent ::= Char

| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef

AttributeValueContent ::= Char
| CharRef
| EnclosedExpr
| PredefinedEntityRef

CdataSection ::= "<![CDATA[" Char* "]]>"



The simplest example of an element constructor in XQuery uses pure XML 
notation, as in Q7:

(Q7) Generate an <emp> element that has an "empid" attribute and nested 
<name> and <job> elements. 

<emp empid = "12345">
   <name>John Smith</name> 
   <job>Anthropologist</job>
</emp>

Often the content of an element or the value of an attribute needs to be computed 
by some expression. An XQuery expression that is used inside an element 
constructor is enclosed in curly braces to indicate that the expression is to be 
evaluated rather than treated as text. In the following example, attribute values 
and element contents are specified in the form of variables named $id, $name, 
and $job. From the context of the query, we might expect $id to be bound to a 
string, and $name and $job to be bound to nodes or node sequences (though they 
could also be bound to strings). When a variable used in an element constructor is 
bound to a node, the newly constructed element receives a copy of that node and 
all its descendants.

(Q8) Generate an <emp> element that has an "empid" attribute. The value of the 
attribute and the content of the element are specified by variables that are bound 
in other parts of the query. 

<emp empid = {$id}>
   {$name} 
   {$job}
</emp>

In the above example, curly braces ("{" and "}") are used in places where they 
would ordinarily be considered to be part of a character string. Since XQuery uses 
curly braces as delimiters to identify an expression to be evaluated, some other 
means is needed to denote a curly brace used as an ordinary character. For this 
purpose, XQuery adopts the same convention as XSLT: Two adjacent curly 
braces in an XQuery character string are interpreted as a single curly brace 
character.

Ed. Note: The above example could not be parsed by an off-the-shelf 
XML parser because of the curly braces around the attribute value. An 
alternative would be to require the attribute value to be enclosed in 
quotes, and use curly braces inside the quoted value to denote an 
expression to be evaluated. See issue xquery-quote-computed-
attribute-value in Appendix C. 

Occasionally it is necessary for the name of an element or attribute to be 
computed by an expression. For this purpose, XQuery allows the name of an 
element or attribute to be an XQuery expression enclosed in curly braces. When 
the name in a start-tag is an expression, the name must be omitted from the 
corresponding end-tag (however, when a start-tag contains a constant name, the 
same name must be specified in the matching end-tag.)

EnclosedExpr ::= "{" ExprSequence "}"



The following example uses the XPath functions name(element), which returns the 
tagname of an element, and number(element), which returns the content of an 
element expressed as a number. When an expression inside the body of an 
element constructor evaluates to one or more attributes, those attributes are 
considered to be attributes of the element that is being constructed.

(Q9) Variable $e is bound to some element with numeric content. Construct a new 
element having the same name and attributes as $e, and with numeric content 
equal to twice the content of $e. 

<{name($e)}>   # replicates the name of $e
   {$e/@*}            # replicates the attributes of $e
   {2 * number($e)}   # doubles the content of $e
</>

Ed. Note: name($e) may not be the right function to use here, since 
name() returns a string and we need a QName. 

Like elements, XML comments and processing instructions can be generated 
simply by embedding them in a query using the usual XML notation, as in the 
examples below. It is important to note that XML comment notation generates a 
comment in the query result, whereas XQuery comment notation (delimited by "#" 
and end-of-line) serves as a comment in the query itself but has no effect on the 
query result.

(Q10) Generate an XML comment and a processing instruction. 

<!-- Houston, we have a problem. -->

<?MyFormatter fontsize=47 ?> 

Ed. Note: Comments and processing instructions have not yet been 
added to the XQuery grammar. See issue xquery-comment-pi-
productions in Appendix C. 

2.3 FLWR Expressions

Syntax

A FLWR (pronounced "flower") expression is constructed from FOR, LET, 
WHERE, and RETURN clauses, which must appear in a specific order. A FLWR 
expression binds values to one or more variables and then uses these variables to 
construct a result. The overall flow of data in a FLWR expression is illustrated in 
Figure 1.

The first part of a FLWR expression consists of FOR-clauses and/or LET-clauses, 

FLWRExpr ::= (ForClause | LetClause)+ WhereClause? "return" Expr
ForClause ::= "for" Variable "in" Expr ("," Variable "in" Expr)*
LetClause ::= "let" Variable ":=" Expr ("," Variable ":=" Expr)*
WhereClause ::= "where" Expr



which serve to bind values to one or more variables. The values to be bound to 
the variables are represented by expressions (for example, path expressions).

A FOR-clause is used whenever iteration is needed. The FOR-clause introduces 
one or more variables, associating each variable with an expression. For example, 
a FOR-clause might contain a path expression that returns a sequence of nodes. 
The result of the FOR-clause is a sequence of tuples, each of which contains a 
binding for each of the variables in the FOR-clause. The variables are bound to 
individual values returned by their respective expressions. Each variable in a 
FOR-clause can be thought of as iterating over the values returned by its 
respective expression, in order.

A LET-clause is also used to bind one or more variables to one or more 
expressions. Unlike a FOR-clause, however, a LET-clause simply binds each 
variable to the value of its respective expression without iteration, resulting in a 
single binding for each variable. The difference between a FOR-clause and a LET-
clause can be illustrated by a simple example. The clause FOR $x 
IN /library/book results in many bindings, each of which binds the variable $x to 
one book in the library. On the other hand, the clause LET $x := /library/book 
results in a single binding which binds the variable $x to a sequence containing all 
the books in the library.

A FLWR expression may contain several FOR and LET-clauses. Expressions 
used in FOR and LET-clauses may contain references to variables bound earlier 
in the FLWR expression. The result of the FOR and LET clauses is an ordered 
sequence of tuples of bound variables. If all the FOR-clause expressions are 
independent, the number of tuples generated is the product of the cardinalities of 
all the FOR-clause expressions. A FLWR expression that contains no FOR-
clauses generates exactly one binding-tuple. The order of the tuples generated by 
the FOR and LET clauses is determined by the order in which values are returned 
by the FOR-clause expressions. The order in which the variables are bound 
determines the order of nested iteration of the FLWR expression.



The binding-tuples generated by the FOR and LET clauses are subject to further 
filtering by an optional WHERE-clause. Only those tuples for which the condition 
in the WHERE-clause is true are used to invoke the RETURN clause. The 
WHERE-clause may contain several predicates, connected by AND and OR. 
These predicates usually contain references to the bound variables. Variables 
bound by a FOR-clause are usually bound to individual nodes and so they are 
typically used in scalar predicates such as $p/color = "Red". Variables bound by 
a LET-clause, on the other hand, often represent sequences of nodes, and can be 
used in set-oriented predicates such as avg($p/price) > 100. The ordering of the 
binding-tuples generated by the FOR and LET clauses is preserved by the 
WHERE-clause.

The RETURN-clause generates the output of the FLWR expression, which may 
be any sequence of nodes or primitive values. The RETURN-clause is executed 
once for each tuple of bindings that is generated by the FOR and LET-clauses 
and satisfies the condition in the WHERE-clause, preserving the order of these 
tuples. The RETURN-clause contains an expression that often contains element 
constructors, references to bound variables, and nested subexpressions. The 
results generated by the individual executions of the RETURN clause are 
concatenated together, preserving their order (therefore, unlike a path expression, 
the result of a FLWR expression may contain duplicate nodes based on node-
identity.)

We will consider some examples of FLWR expressions based on a document 
named "bib.xml" that contains a sequence of <book> elements. Each <book> 
element, in turn, contains a <title> element, one or more <author> elements, a 
<publisher> element, a <year> element, and a <price> element. The first example 
is so simple that it could have been expressed using a path expression, but it is 
perhaps more readable when expressed as a FLWR expression.

(Q11) List the titles of books published by Morgan Kaufmann in 1998.  

FOR $b IN document("bib.xml")//book
WHERE $b/publisher = "Morgan Kaufmann"
AND $b/year = "1998"
RETURN $b/title

The above example returns titles of books in the order in which they appeared in 
the original document ("bib.xml"). If the ordering of the query result is not 
important, the unordered function can be used to indicate that books can be 
processed in any order, possibly resulting in a more efficient execution, as in the 
following example:

(Q11, alternate form) (Equivalent to Q11, relaxing constraint on order of result)  

FOR $b IN unordered(document("bib.xml")//book)
WHERE $b/publisher = "Morgan Kaufmann"
AND $b/year = "1998"

 
Figure 1: Flow of data in a FLWR expression



RETURN $b/title

The next example uses a distinct function in the FOR-clause to eliminate 
duplicate values from the set of publishers found in the input document. Two 
elements are considered to have duplicate values if their names, attributes, and 
normalized content are equal. From each set of nodes with duplicate values, the 
distinct function retains one node (the node that is retained is implementation-
defined.) The distinct function also includes the semantics of the unordered 
function (that is, the ordering of the sequence returned by a distinct function is 
not significant or deterministic.) The example uses a LET-clause to bind a variable 
to the average price of books published by each of the publishers bound in the 
FOR-clause.

(Q12) List each publisher and the average price of its books.  

FOR $p IN distinct(document("bib.xml")//publisher)
LET $a := avg(document("bib.xml")//book[publisher = $p]/price)
RETURN 
   <publisher>
      <name> {$p/text()} </name> 
      <avgprice> {$a} </avgprice>
   </publisher>

The next example uses a LET-clause to bind a variable $b to a set of books, and 
then uses a WHERE-clause to apply a condition to the set, retaining only bindings 
in which $b contains more than 100 elements. This query also illustrates the 
common practice of enclosing a FLWR expression inside an element constructor, 
which provides an enclosing element for the query result.

(Q13) List the publishers who have published more than 100 books.  

<big_publishers>
   {
    FOR $p IN distinct(document("bib.xml")//publisher)
    LET $b := document("bib.xml")//book[publisher = $p]
    WHERE count($b) > 100
    RETURN $p
   }
</big_publishers>

FLWR expressions are often useful for performing structural transformations on 
documents, as illustrated by the next query, which inverts a hierarchy. This 
example also illustrates how one FLWR expression can be nested inside another.

(Q14) Invert the structure of the input document so that, instead of each book 
element containing a sequence of authors, each distinct author element contains a 
sequence of book-titles. 

<author_list>
   {
    FOR $a IN distinct(document("bib.xml")//author)
    RETURN
      <author>
         <name> {$a/text()} </name>
         {
          FOR $b IN document("bib.xml")//book[author = $a]
          RETURN $b/title
         }



      </author>
   }
</author_list>

LET-clauses are useful for breaking up long expressions, making queries more 
readable. They can also be helpful in simplifying a query that makes multiple uses 
of the same subexpression. In the following example, the average price of books 
is a common subexpression that is bound to variable $a and then used repeatedly 
in the body of the query.

(Q15) For each book whose price is greater than the average price, return the title 
of the book and the amount by which the book’s price exceeds the average price.  

<result>
   {
    LET $a := avg(document("bib.xml")//book/price)
    FOR $b IN document("bib.xml")//book
    WHERE $b/price > $a
    RETURN
       <expensive_book>
          {$b/title}
          <price_difference>
             {$b/price - $a}
          </price_difference>
       </expensive_book>
   }
</result>

Computed element names and attribute names can sometimes be used with 
FLWR expressions to perform a transformation on the structure of a document. In 
the following example, variable $e is bound to an element that has some attributes 
and some subelements. The content of each subelement is simple text. The 
example uses the attribute function, which constructs an attribute from two 
strings that contain the name and value of the attribute. 

(Q16) Construct a new element having the same name as the element bound to 
$e. Transform all the attributes of $e into subelements, and all the subelements of 
$e into attributes. 

<{name($e)}>
   {
    FOR $c IN $e/*
    RETURN attribute(name($c), string($c))
   }
   {
    FOR $a IN $e/@*
    RETURN
       <{name($a)}>
          {string($a)}
       </>
   }
</> 

2.4 Sorting

Syntax



It is sometimes necessary to control the order of elements in a sequence. The 
sequence to be ordered might be a represented by a whole query or by a 
subexpression within a query. A sequence can be ordered by means of a 
SORTBY clause that contains one or more "ordering expressions." Each ordering 
expression is evaluated for each member of the sequence (that is, the ordering 
expression is evaluated with each member of the sequence as context node). For 
each member of the sequence, the ordering expression must return a single value 
of some type for which the ">" operator is defined (for example, a number or a 
string); otherwise an error results. The members of the sequence are ordered 
according to the values of their respective ordering expressions. If more than one 
ordering expression is specified, the leftmost ordering expression controls the 
primary sort, followed by the remaining ordering expressions from left to right. 
Each ordering expression can be followed by the word ASCENDING or 
DESCENDING, which specifies the direction of the sort (ASCENDING is the 
default). The following query uses a SORTBY clause with two ordering 
expressions:

(Q17)List all books with price greater than $100, in order by first author; within 
each group of books with the same first author, list the books in order by title.  

document("bib.xml")//book[price > 100] SORTBY (author[1], title)

If a query result contains several levels of nested elements, an ordering may be 
specified among the elements at each level. This is often accomplished by nested 
FLWR expressions and sorting expressions. It is important to remember that 
SORTBY is not a part of a FLWR expression, but is a separate form of expression 
that can be used in many different contexts.

(Q18) Make an alphabetic list of publishers. Within each publisher, make a list of 
books, each containing a title and a price, in descending order by price.  

<publisher_list>
   {FOR $p IN distinct(document("bib.xml")//publisher)
    RETURN
       <publisher>
          <name> {$p/text()} </name> 
          {FOR $b IN document("bib.xml")//book[publisher = $p]
           RETURN
              <book>
                 {$b/title}
                 {$b/price}
              </book> 
           SORTBY(price DESCENDING)
          }
       </publisher> 
    SORTBY(name)
   }
</publisher_list>

2.5 Operators in Expressions

Like most query languages, XQuery provides a variety of operators that can be 

SortExpr ::= Expr "sortby" "(" SortSpecList ")"
SortSpecList ::= Expr ("ascending" | "descending")? ("," SortSpecList)?



used in expressions, and allows parenthesized expressions to serve as operands. 
The following sections summarize the categories of operators that are provided by 
XQuery. For details of operator precedence, see Appendix B. For details of the 
semantics of operators and the datatypes to which they apply, see XQuery 
Functions and Operators (to appear).

2.5.1 Arithmetic operators

Syntax

XQuery provides the usual arithmetic operators for addition, subtraction, 
multiplication, division, and modulus, in the usual binary and unary forms and with 
the usual meanings.

When both operands of an arithmetic operator are numeric, the result is 
straightforward. When one or more operands is a node, the content of the node is 
extracted by an implicit call to the data function and converted to a number before 
the operation is performed; if this conversion is not possible, an error results. 
When one operand is a number and the other is a sequence of numbers, the 
result of the operator is a sequence that is created by applying the operator 
pairwise to the numeric operand and each individual member of the sequence 
operand, preserving the original order.

Ed. Note: The semantics of arithmetic between two sequences is an 
open issue. See issue xquery-arithmetic-among-sequences in 
Appendix C. 

2.5.2 Comparison operators

Syntax

XQuery supports several comparison operators, each of which takes two 
operands and returns a Boolean result. If one operand is a single value and the 
other is a sequence, the result of the comparison is true if there exists some 
member of the sequence for which the comparison with the single operand is true. 
If both operands are sequences, the comparison is true if there exists some 
member of the first sequence and some member of the second sequence for 
which the comparison is true.

The =, !=, <, <=, >, and >= operators perform value comparisons. If both operands 
are simple values of the same type, the result is straightforward. If the operands 
are simple values of compatible types, the operand of the less-inclusive type is 
converted to the more-inclusive type for the purpose of comparison (for example, 
an integer might be converted to a float in order to be compared with a float.) If 

AdditiveExpr ::= Expr ("+" | "-") Expr
MultiplicativeExpr ::= Expr ("*" | "div" | "mod") Expr
UnaryExpr ::= ("-" | "+") Expr

EqualityExpr ::= Expr ("=" | "!=" | "==" | "!==") Expr
RelationalExpr ::= Expr ("<" | "<=" | ">" | ">=") Expr



one operand is a node and the other is a simple value, the content of the node is 
extracted by an implicit invocation of the data function before the comparison is 
performed. If both operands are nodes, the string-values of the nodes are 
compared, as defined in [XPath 1.0].

The == and !== operators perform "node identity" comparisons that are defined 
only for nodes or sequences of nodes. If both operands of == are nodes, the 
comparison is true only if both operands are the same node (not just nodes with 
the same name and value). If either or both operands is a node sequence, the 
rules stated above apply. The !== comparison is true whenever the == comparison 
is not true.

Ed. Note: There is currently no way to specify a collation sequence to 
specify the semantics of the inequality operators. See issue xquery-
collation-sequences in Appendix C. 

2.5.3 Logical operators

Syntax

The AND and OR operators of XQuery take two Boolean operands and return a 
Boolean result, using the usual semantics for these operators. Unlike many query 
languages, XQuery does not support a logical NOT operator. However, it does 
provide a function not() that takes a Boolean value as its argument and returns 
the logical negation of the argument.

Ed. Note: XQuery has not yet defined how it handles missing or 
absent values. See issue xquery-three-value-logic in Appendix C. 

2.5.4 Sequence-related Operators

Syntax

As described earlier, the XPath 2.0 Data Model [XQuery 1.0 and XPath 2.0 Data
Model] supports ordered sequences of values, and does not distinguish between a 
single value and a sequence of one value. Values in sequences may be either 
nodes or primitive values such as numbers or strings. Sequences are always one 
level deep--that is, a sequence never appears as a member of another sequence. 
All operators that generate sequences automatically "flatten" their operands. For 
example, if two sequences are combined to form a new sequence, the new 

OrExpr ::= Expr "or" Expr
AndExpr ::= Expr "and" Expr

ParenthesizedExpr ::= "(" ExprSequence? ")" 
ExprSequence ::= Expr ("," Expr)*
RangeExpr ::= Expr "to" Expr
UnionExpr ::= Expr ("union" | "|") Expr
IntersectExceptExpr ::= Expr ("intersect" | "except") Expr
BeforeAfterExpr ::= Expr ("before" | "after") Expr



sequence is a one-level sequence derived from the individual members of the 
original sequences.

The basic XQuery operator for forming sequences is the comma operator (","). 
The comma operator can be applied to any two expressions to combine them into 
a sequence. The length of the resulting sequence is the sum of the lengths of the 
original sequences (scalar values are considered to be sequences of length one.) 
The new sequence consists of all the members of the left-hand sequence, 
followed in order by all the members of the right-hand sequence, with duplicates 
preserved. A sequence of zero values is represented by empty parentheses.

Since the comma operator is also used to separate the arguments of a function 
call, parentheses may be needed when a sequence is used as the argument of a 
function, as illustrated in the following examples:

Another way to generate a sequence is by means of the TO operator. TO is a 
binary operator that converts both of its operands to integers. It then generates a 
sequence containing all the integers from the left-hand operand to the right-hand 
operand, inclusive. If either of the operands cannot be converted to an integer, an 
error results. If the left-hand operand is larger than the right-hand operand, the 
sequence of integers is generated in descending order. For example, the 
expression 12 TO 8 is equivalent to the expression 12, 11, 10, 9, 8.

The operators UNION, INTERSECT, and EXCEPT can be used to combine node 
sequences to form new node sequences. UNION (equivalent to "|") returns a 
sequence containing those nodes that are members of either the left-hand or the 
right-hand operand. (The "|" form of this operator is retained for compatibility with 
XPath 1.0, and the same operator can be invoked by the UNION keyword for 
consistency with INTERSECT and EXCEPT.) INTERSECT returns a sequence 
containing those nodes that are members of both the left-hand and right-hand 
operands. EXCEPT returns a sequence containing those nodes that are members 
of the left-hand but not the right-hand operand. The result of UNION, 
INTERSECT, or EXCEPT contains no duplicate nodes, based on node identity--in 
other words, the same node will not appear more than once in the result, but 
different nodes may appear that have the same name and value. The result of 
UNION, INTERSECT, or EXCEPT is a sequence in which all the nodes appear in 
document order if they are all in the same document; if the resulting nodes are not 
in the same document, their order is implementation-defined.

Ed. Note: The definitions of UNION, INTERSECT, and EXCEPT for 
simple values are still under discussion. See xquery-set-operators-on-
values in Appendix C. 

f(1, 2, 3) Denotes a function call with three scalar arguments.

f((1, 2), 
3)

Denotes a function call with two arguments, the first of which is a 
sequence of two values.

f((1, 2, 
3))

Denotes a function call with one argument that is a sequence of three 
values.

f(1, ( )) Denotes a function call with two arguments, the second of which is an 
empty sequence.



From XQL [XQL], XQuery inherits the infix operators BEFORE and AFTER, which 
are useful in searching based on position in a sequence. BEFORE operates on 
two sequences of nodes and returns those nodes in the first sequence that occur 
before at least one node in the second sequence in document order (of course, 
this is possible only if the two sequences are subsets of the same document.) 
AFTER is defined in a similar way. Since BEFORE and AFTER are based on 
global document ordering, they can compare the positions of nodes that do not 
have the same immediate parent. The next two examples illustrate the use of 
BEFORE and AFTER by retrieving excerpts from a surgical report that includes 
<procedure>, <incision>, and <anesthesia> elements.

(Q19) Prepare a "critical sequence" report consisting of all elements that occur 
between the first and second incision in the first procedure.  

<critical_sequence>
{
   LET $p := //procedure[1]
   FOR $e IN //* AFTER ($p//incision)[1] 
          BEFORE ($p//incision)[2]
   RETURN shallow($e)
 }
</critical_sequence>

The shallow function makes a shallow copy of a node, including attributes but not 
including subelements.

(Q20) Find procedures in which no anesthesia occurs before the first incision.  

# Finds potential lawsuits
FOR $p in //procedure
WHERE not(empty($p//incision))
AND empty($p//anesthesia BEFORE ($p//incision)[1])
RETURN $p

The empty function returns True if and only if its argument is an empty sequence.

2.6 Conditional Expressions

Syntax

A conditional expression evaluates a test expression and then returns one of two 
result expressions. If the value of the test expression is True, the value of the first 
result expression is returned; otherwise, the value of the second result expression 
is returned.

Ed. Note: The grammar for XQuery allows any expression as a 
conditional. We have not yet determined which types of test 
expressions can be implicitly converted to Boolean, and which raise 
errors. See xquery-anything-to-boolean in Appendix C. 

As an example of a conditional expression, consider a library that has many 

IfExpr ::= "if" "(" Expr ")" "then" Expr "else" Expr



holdings, each described by a <holding> element with a "type" attribute that 
identifies its type: book, journal, etc. All holdings have a title and other nested 
elements that depend on the type of holding.

(Q21) Make a list of holdings, ordered by title. For journals, include the editor, and 
for all other holdings, include the author. 

FOR $h IN //holding
RETURN
   <holding>
      {$h/title,
       IF ($h/@type = "Journal")
       THEN $h/editor
       ELSE $h/author
      }
   </holding> 
SORTBY (title)

Note the syntactic structure of the above query. The query consists of a SORTBY 
applied to a FLWR-expression that contains an element constructor. The element 
constructor generates <holding> elements. The content of these elements is 
specified by a sequence that consists of a path expression and a conditional 
expression, separated by a comma. The following is an equivalent formulation of 
the same query in which the element constructor contains two separate XQuery 
expressions rather than a single sequence expression. Note that no comma is 
used in the alternative form.

(Q21, alternate form) 

FOR $h IN //holding
RETURN
   <holding>
      {$h/title}
      {IF ($h/@type = "Journal")
       THEN $h/editor
       ELSE $h/author
      }
   </holding>
SORTBY (title)

2.7 Quantified Expressions

Occasionally it is necessary to test for existence of some element that satisfies a 
condition, or to determine whether all elements in some collection satisfy a 
condition. For this purpose, XQuery provides two forms of expression called the 
"some" expression and the "every" expression. These forms of expression are 
also known as quantified expressions. The "some" expression uses an existential 
quantifier, and the "every" expression uses a universal quantifier.

Syntax

The "some" expression is illustrated in the next example. The value of a "some" 
expression is always True or False. Like the FOR-clause of a FLWR expression, a 

SomeExpr ::= "some" Variable "in" Expr "satisfies" Expr
EveryExpr ::= "every" Variable "in" Expr "satisfies" Expr



"some" expression generates multiple bindings for a variable, using values 
returned by the expression in the IN-clause. For each of these bindings, the 
expression in the SATISFIES expression is executed. If at least one execution of 
the SATISFIES expression returns the Boolean value True, then the value of the 
"some" expression is True; otherwise the value of the "some" expression is False. 
Of course, if the expression in the IN-clause does not return any nodes, the 
SATISFIES expression is not evaluated and the result of the "some" expression is 
False.

(Q22) Find titles of books in which both sailing and windsurfing are mentioned in 
the same paragraph. 

FOR $b IN //book
WHERE SOME $p IN $b//para SATISFIES
   (contains($p, "sailing") AND contains($p, "windsurfing"))
RETURN $b/title

The "every" expression is illustrated in the next example. Like the "some" 
expression, the "every" expression always returns True or False, and it executes 
the SATISFIES-clause once for each node returned by the IN-clause. If at least 
one execution of the SATISFIES expression returns the Boolean value False, then 
the value of the "every" expression is False; otherwise the value of the "every" 
expression is True. Of course, if the expression in the IN-clause does not return 
any nodes, the SATISFIES expression is not evaluated and the result of the 
"every" expression is True.

(Q23) Find titles of books in which sailing is mentioned in every paragraph.  

FOR $b IN //book
WHERE EVERY $p IN $b//para SATISFIES
   contains($p, "sailing")
RETURN $b/title

Q23 also returns books that contain no paragraphs.

It is sometimes useful to nest quantified expressions, as in the following example:

(Q24) Assume that employees can have multiple skills and multiple duties. Find 
names of employees who have some duty that is not matched by a skill.  

FOR $e IN //emp
WHERE SOME $d IN $e/duty SATISFIES
   not(SOME $s IN $e/skill SATISFIES $s = $d)
RETURN $e/name

Ed. Note: Open issue: should quantifiers be able to bind more than 
one variable? See issue xquery-quantifier-multiple-variables in 
Appendix C. 

2.8 Datatypes

XQuery has a type system that is based on XML Schema. By using the datatype 
names defined in the namespace http://www.w3.org/2001/XMLSchema (hereafter 
abbreviated as xsd), all the primitive and derived datatypes of XML Schema can 
be used in queries. Other complex types declared using XML Schema can also be 



referred to by their qualified names.

In XQuery, type names appear in function declarations where they specify the 
types of the function parameters and result. Type names are also used in CAST 
and TREAT expressions and as operands of the INSTANCEOF operator, as 
described in Section 2.11.

Certain XML Schema datatypes have literal forms that are recognized by XQuery, 
as illustrated by the following examples:

Literal values of XML Schema types other than string, integer, decimal, and float 
can be specified by means of constructor functions such as true(), false(), and 
date("2000-06-25"), or by cast expressions such as CAST AS 
xsd:positiveInteger(47).

Ed. Note: The set of constructor functions has not yet been fixed. A 
complete specification of XQuery literal formats and constructor 
functions will be provided in XQuery Functions and Operators (to 
appear.) 

2.9 Functions

Syntax

XQuery provides a core library of built-in functions. We have already introduced 
some of these core functions, such as document, which returns the root node of a 
named document. The XQuery core function library contains all the functions of 
the XPath core function library, as well as aggregation functions such as avg, sum, 
count, max, and min, and many other useful functions. For example, the distinct 
function eliminates duplicate nodes from a sequence, and the empty function 
returns True if and only if its argument is an empty sequence. A complete 
specification of the XQuery core function library is provided in XQuery Functions 
and Operators (to appear.)

In addition to the core functions, XQuery allows users to define functions of their 
own. A function definition specifies the name of the function, the names and 
datatypes of the parameters, and the datatype of the result. Datatypes are 

Type Example of literal

xsd:string "Hello"

xsd:integer 47, -369

xsd:decimal -2.57

xsd:float -3.805E-2

FunctionDefn ::= "define" "function" QName "(" ParamList? ")"
 ("returns" Datatype)? EnclosedExpr

ParamList ::= Param ("," Param)*
Param ::= Datatype? Variable
FunctionCall ::= QName "(" (Expr ("," Expr)*)? ")"



specified by their qualified names. A function definition also provides an 
expression (called the "function body") that defines how the result of the function 
is computed from its parameters. When a function is invoked, its arguments must 
be valid instances of the declared parameter types. The result of a function must 
also be a valid instance of the declared result type.

If a function parameter is declared using a name but no type, it is considered to 
have the default type "any node." If the RETURNS clause is omitted from a 
function definition, the result-type of the function is considered to be "any 
sequence of nodes."

Ed. Note: The syntax for declaring types in a function definition is still 
under discussion. A notation is needed to distinguish element-names 
from type-names. A notation is also needed to distinguish a single 
node from a sequence of nodes. A "wildcard" notation is also needed 
to denote "any element" or "any node." Various alternatives have been 
proposed for these notations. In this document, function definitions that 
need "wildcard" types will use the defaults described above (no explicit 
type declaration). See issue xquery-function-definition in Appendix C. 

XQuery Version 1 does not allow user-defined functions to be overloaded--that is, 
it does not allow multiple functions to be declared with the same name. We 
consider function overloading to be a useful and important feature that deserves 
further study in future versions of XQuery. Although XQuery does not allow 
overloading of user-defined functions, some of the built-in functions in the XQuery 
core library are overloaded--for example, the string function of XPath can convert 
an instance of almost any type into a string, and it can be invoked with either one 
argument or zero arguments.

Ed. Note: The XQuery rules for function calls need to allow for 
functions with optional arguments that default to the current node, such 
as data(). Many XPath functions behave like this. Should this apply to 
all functions? All unary functions? Only certain functions? See issue 
xquery-implicit-current-node in Appendix C. 

It is possible in XQuery to invoke a function with arguments whose types do not 
exactly match the declared parameter types of the function, under the following 
circumstances:

1. A fixed "promotion hierarchy" is defined among the primitive and derived 
types of XML Schema. A function whose declared parameter type is in this 
hierarchy can be invoked with an argument whose type is lower in the 
hierarchy. For example, a function with a declared parameter-type of Float 
can be invoked with an integer argument. In such a case, the argument is 
converted to the declared type of the parameter. 

Ed. Note: The promotion hierarchy for function parameters 
needs to be defined. See issue xquery-schema-type-promotion in 
Appendix C. 

2. A function whose declared parameter is a Schema complex type can be 
called with an argument of another complex type that is derived from the 



parameter type by extension or by restriction. This is called the principle of 
subtype substitutability.

Ed. Note: This rule is still under discussion. It is possible that 
subtype substitutability may not be supported in the first version 
of XQuery. See issue xquery-subtype-substitutability in Appendix 
C. 

3. A function whose declared parameter is a Schema element can be called 
with an argument that is any element in a substitution group whose head is 
the declared parameter element. 

Ed. Note: This rule is still under discussion. It is possible that 
substitution groups may not be supported in the first version of 
XQuery. See issue xquery-substitution-groups in Appendix C. 

4. A function whose declared parameter is a sequence of a given type can be 
invoked with an argument that is a single instance of the given type (this is 
obvious, since there is no distinction between a single object and an object 
sequence of length one.)

5. A function whose declared parameter is a given type can be invoked with an 
argument that is a sequence of the given type. In this case, the function is 
invoked on each of the members of the argument sequence, in order, and 
the results are concatenated into a result sequence. For example, suppose 
that the function price(Book) is declared to take a Book and return an 
integer. If this function is invoked on a path expression, as in price(//Book
[author="Mark Twain"]), the result is a sequence of integers representing 
the prices of the Books returned by the path expression, in order. This rule is 
intended to be consistent with XPath, in which each step in a path 
expression iterates over the nodes returned by the previous step without 
requiring an explicit iteration operator.

This rule generalizes to functions with multiple parameters in the following 
way: suppose that N arguments of a function-call are sequences that match 
function-parameters where single elements are expected. Then the result of 
the function-call is a sequence whose members are formed by invoking the 
function on tuples of arguments taken from the Cartesian product of the N 
input sequences. The Cartesian product is formed by nested iteration over 
the input sequences, working from left to right.

Ed. Note: This rule is still under discussion. If implicit iteration 
over argument-sequences is not supported in XQuery, the same 
result can be obtained by explicit iteration using either a FLWR-
expression or a path-expression. See issue xquery-sequence-for-
single in Appendix C. 

A function may be defined recursively--that is, it may reference its own definition. 
Mutually recursive functions, whose bodies reference each other, are also 
allowed. The next query contains an example of a recursive function that 
computes the depth of an element hierarchy. In its definition, the user-defined 
function depth calls the built-in functions empty and max. 



(Q25) Find the maximum depth of the document named "partlist.xml." 

NAMESPACE xsd = "http://www.w3.org/2001/XMLSchema"

DEFINE FUNCTION depth($e) RETURNS xsd:integer
{
   # An empty element has depth 1
   # Otherwise, add 1 to max depth of children
   IF (empty($e/*)) THEN 1
   ELSE max(depth($e/*)) + 1
}

depth(document("partlist.xml"))

In the above example, since no explicit type is declared for the function parameter, 
the function accepts any node as its argument. The expression $e/* returns all the 
children of the argument node, and the expression depth($e/*) implicitly iterates 
over these children, returning their respective depths as a sequence of integers. 
The expression max(depth($e/*)) finds the maximum depth of any child of the 
argument node.

Ed. Note: If implicit iteration over argument sequences is not 
supported, the expression max(depth($e/*)) could be expressed as 
max(for $c in $e/* return depth($c)) or as max($e/*/depth(.)). 

To further illustrate the power of functions, we will write a function that returns all 
the elements that are "connected" to a given element by child or reference 
connections, and a recursive function that returns all the elements that are 
"reachable" from a given element by child or reference connections.

(Q26) In the document "company.xml", find all the elements that are reachable 
from the employee with serial number 12345 by child or reference connections.  

DEFINE FUNCTION connected($e)
{ 
    $e/* UNION $e/@*=>* 
}

DEFINE FUNCTION reachable($e)
{ 
    $e UNION reachable(connected($e)) 
}

reachable(document("company.xml")/emp[serial="12345"])

The connected and reachable functions each take (by default) a node as 
parameter and return a sequence of nodes as result. The reachable function 
invokes itself recursively to find all the elements that are reachable from the 
elements that are directly connected to its parameter node.

Ed. Note: If implicit iteration over argument sequences is not 
supported, the expression reachable(connected($e)) could be 
expressed as connected($e)/reachable(.). 

The filter function (described more fully in Section 3.1) can be used to select a 
set of nodes from a hierarchy while preserving the original relationships among 



these nodes. In the following example, filteris used together with the reachable 
function defined in the previous example to return all the elements that are 
reachable from a specific employee element, while preserving their hierarchic and 
sequential relationships.

(Q27) Return a fragment of the document "company.xml" consisting of all nodes 
reachable from employee no. 12345, preserving the original relationships among 
the reachable nodes. 

filter(reachable(document("company.xml")/emp[empno="12345"]))

Of course, it is possible to write a recursive function that fails to terminate for 
some set of arguments. In fact, the reachable function in the previous example will 
fail to terminate if called on an element that references one of its ancestors. It is 
the user’s responsibility to avoid writing a nonterminating function call.

2.10 User-Defined Datatypes

In addition to the primitive and derived datatypes of XML Schema, any datatype 
that can be constructed using the definition facilities of XML Schema can be used 
as an XQuery datatype. XML Schema language can be used to define an element 
or datatype and to give it a qualified name, which can then be used in an XQuery 
function declaration. For example, a schema might define an element named 
PurchaseOrder by specifying a set of attributes and a content model based on 
sequences and alternations of various other elements. PurchaseOrder could then 
be used as the type of a function parameter in a query.

A query can refer to element-names and type-names that are defined in any of the 
following schemas:

1. Schemas that are referenced by documents used in the query; i.e., the 
implicit input document(s) or any document referenced by the document 
function.

2. Schemas that are explicitly referenced by NAMESPACE and SCHEMA 
declarations, as described in Section 2.12.

In the following examples, a schema defines complex types named emp_sequence 
and dept_sequence in the target namespace 
http://www.bigcompany.example.com/BigNames . A query then uses these 
datatypes to define and invoke a function.

(Q28) Using XML Schema language, define complex types named emp_sequence 
and dept_sequence in a target namespace. 

<?xml version="1.0">
<schema xmlns="http://www.w3.org/2001/XMLSchema"
   targetNamespace="http://www.bigcompany.example.com/BigNames">

   <complexType name="emp_sequence">
      <sequence>
         <element name="emp" minOccurs="0" maxOccurs="unbounded">
            <complexType>
               <sequence>



                  <element name="name" type="string"/>
                  <element name="deptno" type="string"/>
                  <element name="salary" type="decimal"/>
                  <element name="location" type="string"/>
               </sequence>
            </complexType>
         </element>
      </sequence>
   </complexType>

   <complexType name="dept_sequence">
      <sequence>
         <element name="dept" minOccurs="0" maxOccurs="unbounded">
            <complexType>
               <sequence>
                  <element name="deptno" type="string"/>
                  <element name="headcount" type="integer"/>
                  <element name="payroll" type="decimal"/>
               </sequence>
            </complexType>
         </element>
      </sequence>
   </complexType>

</schema>

(Q29) Using the datatypes defined in Q28, create a function that summarizes 
employees by department, and use this function to summarize all the employees 
of Acme Corp. that are located in Denver. 

DEFAULT NAMESPACE = "http://www.bigcompany.example.com/BigNames"
SCHEMA "http://www.bigcompany.example.com/BigNames" 
                "http://www.bigcompany.example.com/schemas/names.xsd"

DEFINE FUNCTION summary(emp_sequence $emps) RETURNS dept_sequence
   {
   FOR $d IN distinct($emps/deptno)
   LET $e := $emps[deptno = $d]
   RETURN
      <dept>
         {$d}
         <headcount> {count($e)} </headcount>
         <payroll> {sum($e/salary)} </payroll>
      </dept>
   }

summary(document("acme_corp.xml")//emp[location = "Denver"] )

It is sometimes desirable to validate that the result of a query conforms to a 
specific datatype. This can be done by taking advantage of the fact that XQuery 
functions validate the datatypes of their parameters and results. For example, 
suppose that some query Q is intended to generate output that conforms to the 
datatype abc:PurchaseOrder (for some suitable binding of the namespace prefix 
abc). The query Q can be type-validated by "wrapping" it in a function that takes 
an instance of the desired type as a parameter and simply returns it, as in the 
following example:

(Q30) Validate that the result of a query Q conforms to the datatype 
abc:PurchaseOrder (Q may be arbitrarily complex). 

DEFINE FUNCTION check(abc:PurchaseOrder $po) RETURNS abc:PurchaseOrder
   { $po }



   
check(Q)

2.11 Operations on Datatypes

Syntax

The Boolean operator INSTANCEOF returns True if its first operand is an instance 
of the type named in its second operand; otherwise it returns False. For example, 
$x INSTANCEOF zoonames:animal returns True if the dynamic type of $x is 
zoonames:animal or a subtype of zoonames:animal. If the keyword ONLY is 
specified, INSTANCEOF returns True only if the dynamic type of its first operand 
exactly matches the specified type, excluding subtypes from consideration. For 
example, $x INSTANCEOF ONLY zoonames:animal returns True if the dynamic type 
of $x is zoonames:animal but not a subtype of zoonames:animal.

The datatype that can be associated with an expression by static analysis of a 
query is called the static type of the expression. During execution, the actual value 
of an expression may have a type (called its dynamic type) that is a subtype of its 
static type. For example, a variable named $mypet whose static type is Animal 
may contain a value of type Duck, a subtype of Animal. The dynamic type of an 
expression may influence the processing of a query. For example, if the variable 
$mypet contains a value of dynamic type Duck, a query might invoke the function 
quack($mypet), which is defined only for values of type Duck. The typeswitch 
expression of XQuery allows users to write queries that are sensitive to dynamic 
type.

In a typeswitch expression, the TYPESWITCH keyword is followed by an 
expression enclosed in parentheses, called the operand expression. This is the 
expression whose dynamic type is being tested. The operand expression can be 
followed by an AS clause that defines a variable, called the operand variable, to 
represent the value of the operand expression. The remainder of the typeswitch 
expression consists of one or more CASE clauses and a DEFAULT clause.

Each CASE clause specifies the name of a type, which must be a subtype of the 
static type of the operand expression, followed by a RETURN expression. The 
effective case is the first CASE clause such that the value of the operand 
expression is an instance of the type named in the CASE clause. The value of the 
typeswitch expression is the value of the RETURN expression in the effective 
case. If the value of the operand expression is not an instance of any type named 
in a CASE clause, the value of the typeswitch expression is the value of the 
RETURN expression in the DEFAULT clause.

The RETURN expressions in CASE and DEFAULT clauses typically contain 

InstanceofExpr ::= Expr "instanceof" "only"? Datatype
TypeSwitchExpr ::= "typeswitch" "(" Expr ")" ("as" Variable)?

 CaseClause+ "default" "return" Expr
CaseClause ::= "case" Datatype "return" Expr
CastExpr ::= (("cast" "as") | ("treat" "as")) Datatype "(" Expr ")"
Datatype ::= QName



references to the operand variable (defined in the AS clause). If the operand 
expression consists of a single variable, it can serve as the operand variable and 
the AS clause can be omitted. The AS clause can also be omitted if the RETURN 
expressions do not contain references to the operand variable.

The following example shows how a typeswitch expression can be used to 
simulate a primitive form of subtype polymorphism. A more robust treatment of 
polymorphic functions is deferred to a later version of XQuery.

(Q31) Define a function named sound(animal) that returns different strings for 
various types of animals. Use the function in a query that returns the sounds made 
by all of Billy’s pets. 

# First define some functions to set the stage
NAMESPACE xsd = "http://www.w3.org/2001/XMLSchema"
DEFAULT NAMESPACE = "http://www.abc.example.com/names"
SCHEMA "http://www.abc.example.com/names" 
                "http://www.abc.example.com/schemas/names.xsd"

DEFINE FUNCTION quack(duck $d) RETURNS xsd:string
   { "String depends on properties of duck" }

DEFINE FUNCTION woof(dog $d) RETURNS xsd:string
   { "String depends on properties of dog" }

# This function illustrates simulated subtype polymorphism

DEFINE FUNCTION sound(animal $a) RETURNS xsd:string
   {
   TYPESWITCH ($a)
      CASE duck RETURN quack($a)
      CASE dog RETURN woof($a)
      DEFAULT RETURN "No sound"
   }

# This query returns the sounds made by all of Billy’s pets

FOR $p IN //kid[name="Billy"]/pet
RETURN sound($p)

Ed. Note: If subtype substitutability is not supported in XQuery Version 
1, the motivation for TYPESWITCH is weakened and the decision to 
support TYPESWITCH should be revisited. See issue xquery-subtype-
substitutability in Appendix C. 

Occasionally it is necessary to explicitly convert a value from one datatype to 
another. For the primitive and derived types of XML Schema, a CAST notation is 
supported that provides conversions between certain combinations of types. For 
example, the notation CAST AS xsd:integer (x DIV y) converts the result of x 
DIV y into the xsd:integer type. The set of type conversions that are supported 
by the CAST operator are specified in XQuery Functions and Operators (to 
appear.) Conversions among user-defined datatypes are not supported by the 
CAST notation, but user-defined functions can be written for this purpose.

In addition to CAST, XQuery provides a notation called TREAT. Rather than 
converting an expression from one datatype to another, TREAT causes the query 
processor to treat an expression as though its datatype were a subtype of its static 
type. For example, TREAT AS Cat($mypet) tells the query processor to treat the 



variable $mypet as though it were an instance of the type Cat, even though the 
static type of $mypet is a supertype of Cat such as Animal. This notation allows 
functions that require an argument of type Cat to be invoked on the variable 
$mypet. At query execution time, if the dynamic type of $mypet is not Cat, an error 
results.

Ed. Note: The functionality of TREAT can also be expressed using 
TYPESWITCH. A proposal to remove the TREAT expression is under 
consideration. See issue xquery-remove-treat in Appendix C. 

2.12 Structure of a Query Module

The XQuery language consists of units called query modules. Each query module 
is independent, but for convenience, multiple query modules, separated by 
semicolons, can be parsed together. For example, a test suite for an XQuery 
parser might consist of a file containing several query modules.

Ed. Note: The definition and syntax of a query module are still under 
discussion in the working group. The specifications in this section are 
pending approval by the working group. See issue xquery-module-
syntax in Appendix C. 

Syntax

QueryModuleList ::= QueryModule ( ";" QueryModule)*
QueryModule ::= ContextDecl* FunctionDefn* ExprSequence?
ContextDecl ::= ("namespace" NCName "=" StringLiteral)

| ("default" "namespace" "=" StringLiteral)
| ("schema" StringLiteral StringLiteral)

Expr ::= SortExpr
| OrExpr
| AndExpr
| BeforeAfterExpr
| FLWRExpr
| IfExpr
| SomeExpr
| EveryExpr
| TypeSwitchExpr
| EqualityExpr
| RelationalExpr
| InstanceofExpr
| RangeExpr
| AdditiveExpr
| MultiplicativeExpr
| UnaryExpr
| UnionExpr
| IntersectExceptExpr



The first part of a query module consists of declarations of namespace prefixes 
and external schemas that are used in the remainder of the query module. Each 
namespace prefix used in a query module must be defined in a namespace 
declaration that associates it with a Universal Resource Identifier (URI), as in the 
following example:

(Q32) In the document "zoo.xml", find <tiger> elements in the 
http://www.abc.example.com/names namespace that contain any subelement in 
the http://www.xyz.example.com/names namespace. 

NAMESPACE abc = "http://www.abc.example.com/names"
NAMESPACE xyz = "http://www.xyz.example.com/names"
document("zoo.xml")//abc:tiger[xyz:*]

A namespace declaration can also be used to declare a default namespace that 
applies to all unqualified element names used in a query, as shown in the 
following example:

(Q32, alternate form) (Equivalent to Q32) 

DEFAULT NAMESPACE = "http://www.abc.example.com/names"
NAMESPACE xyz = "http://www.xyz.example.com/names"
document("zoo.xml")//tiger[xyz:*]

If no default namespace is declared for a query, names without prefixes used in 
the query module match nodes with unqualified names.

A query module may also contain schema declarations, which specify the URIs of 
schemas that are associated with particular namespaces. In the following 
example, each of the namespace declarations is followed by a schema 
declaration giving the URI of the schema that is associated with the namespace:

(Q32, second alternate form) (Equivalent to Q32, with explicit schemas) 

DEFAULT NAMESPACE = "http://www.abc.example.com/names"

SCHEMA "http://www.abc.example.com/names" 
       "http://www.abc.example.com/schemas/names.xsd"

NAMESPACE xyz = "http://www.xyz.example.com/names"
SCHEMA "http://www.xyz.example.com/names" 
       "http://www.xyz.example.com/schemas/names.xsd"

document("zoo.xml")//tiger[xyz:*]

Following the namespace and schema declarations, a query module may contain 
one or more function definitions. Each function defined in a query module can be 
invoked anywhere in that query module. A query module that consists only of 
declarations and function definitions is called a function library.

Ed. Note: The means by which a query module gains access to the 
functions defined in an external function library remains to be defined. 
See issue xquery-import in Appendix C. 

| PathExpr



Following the declarations and function definitions, a query module may contain 
an expression or sequence of expressions that represents the query itself. The 
result of the query is the value of this expression or sequence.

3 Example Applications

This section describes several interesting types of queries that can be expressed 
using the syntax introduced in the previous section.

3.1 Filtering

One of the functions in the XQuery core function library is called filter. This 
function takes a single parameter which can be any expression. The function 
evaluates its argument and returns a shallow copy of the nodes that are selected 
by the argument, preserving any relationships that exist among these nodes. For 
example, suppose that the argument to filter is a path expression that selects 
nodes X, Y, and Z from some document. Suppose that, in the original document, 
nodes Y and Z are descendants (at any level) of node X. Then the result of filter 
is a copy of node X, with copies of nodes Y and Z as its immediate children. Any 
other intervening nodes from the original document are not present in the result. 
The name filter suggests a function that operates on a document to extract the 
parts that are of interest and discard the remainder, while retaining the structure of 
the original document.

The semantics of filter are illustrated by Figure 2. Suppose that the left side of 
Figure 2 represents a node hierarchy that is bound to the variable $doc. The right 
side of Figure 2 shows the result of the function filter($doc // (A | B)). The 
result contains copies of all nodes of type A and B in the original hierarchy, with 
their original relationships preserved. Note that the action of the filterfunction 
may split a node hierarchy into multiple hierarchies (preserving the sequential 
relationships among the root nodes of the resulting hierarchies.)

The following example illustrates how filter might be used to compute a table of 

 
Figure 2: Action of the filter function



contents for a document that contains many levels of nested sections. The query 
filters the document, retaining only section elements, title elements nested directly 
inside section elements, and the text of those title elements. Other elements, such 
as paragraphs and figure titles, are eliminated, leaving only the "skeleton" of the 
document.

(Q33) Prepare a table of contents for the document "cookbook.xml", containing 
nested sections and their titles. 

<toc>
   {
   filter(document("cookbook.xml") //
      (section | section/title | section/title/text()))
   }
</toc>

3.2 Joins

Joins, which combine data from multiple sources into a single result, are a very 
important type of query. In this section we will illustrate how several types of joins 
can be expressed in XQuery. We will base our examples on the following three 
documents:

1. A document named "parts.xml" that contains many <part> elements; each 
<part> element in turn contains <partno> and <description> subelements.

2. A document named "suppliers.xml" that contains many <supplier> elements; 
each <supplier> element in turn contains <suppno> and <suppname> 
subelements.

3. A document named "catalog.xml" that contains information about the 
relationships between suppliers and parts. The catalog document contains 
many <item> elements, each of which in turn contains <partno>, <suppno>, 
and <price> subelements.

A conventional ("inner") join returns information from two or more related sources, 
as illustrated by the following example, which combines information from three 
documents:

(Q34) Generate a "descriptive catalog" derived from the catalog document, but 
containing part descriptions instead of part numbers and supplier names instead 
of supplier numbers. Order the new catalog alphabetically by part description and 
secondarily by supplier name. 

<descriptive-catalog>
   { 
     FOR $i IN document("catalog.xml")//item,
         $p IN document("parts.xml")//part[partno = $i/partno],
         $s IN document("suppliers.xml")//supplier[suppno = $i/suppno]
     RETURN
        <item>
           {
           $p/description,
           $s/suppname,
           $i/price
           }



        </item>
     SORTBY(description, suppname)
   }
</descriptive-catalog>

Q34 returns information only about parts that have suppliers and suppliers that 
have parts. An "outer join" is a join that preserves information from one or more of 
the participating sources, including elements that have no matching element in the 
other source. For example, a "left outer join" between suppliers and parts might 
return information about suppliers that have no matching parts. Q35 is an example 
of a left outer join. 

(Q35) Return names of all the suppliers in alphabetic order, including those that 
supply no parts; inside each supplier element, list the descriptions of all the parts it 
supplies, in alphabetic order. 

FOR $s IN document("suppliers.xml")//supplier
RETURN
   <supplier>
      { 
        $s/suppname,
        FOR $i IN document("catalog.xml")//item
                 [suppno = $s/suppno],
            $p IN document("parts.xml")//part
                 [partno = $i/pno]
        RETURN $p/description 
        SORTBY(.)
      }
   </supplier>
SORTBY(suppname)

Q35 preserves information about suppliers that supply no parts. Another type of 
join, called a "full outer join", might be used to preserve information about both 
suppliers that supply no parts and parts that have no supplier. The result of a full 
outer join can be structured in any of several ways. The example in Q36 uses a 
format of parts nested inside suppliers, followed by a sequence of parts that have 
no supplier. This might be thought of as a "supplier-centered" full outer join. A 
"part-centered" full outer join, on the other hand, might return a sequence of 
suppliers nested inside parts, followed by a sequence of suppliers that have no 
parts. Other forms of outer join queries are also possible.

(Q36) Return names of suppliers and descriptions and prices of their parts, 
including suppliers that supply no parts and parts that have no suppliers.  

<master_list>
 {
    FOR $s IN document("suppliers.xml")//supplier
    RETURN
        <supplier>
           { 
             $s/suppname,
             FOR $i IN document("catalog.xml")//item
                     [suppno = $s/suppno],
                 $p IN document("parts.xml")//part
                     [partno = $i/partno]
             RETURN
                <part>
                   {
                     $p/description,
                     $i/price



                   }
                </part> 
             SORTBY (description)
           }
        </supplier> 
    SORTBY(suppname) 
    ,
    # parts that have no supplier
    <orphan_parts>
       { FOR $p IN document("parts.xml")//part
         WHERE empty(document("catalog.xml")//item
               [partno = $p/partno] )
         RETURN $p/description 
         SORTBY(.)
       }
    </orphan_parts>
 }
</master_list>

Q36 uses an element constructor to enclose its output inside a <master_list> 
element. The concatenation operator (",") is used to combine the two main parts 
of the query. The result is an ordered sequence of <supplier> elements followed 
by an <orphan_parts> element that contains descriptions of all the parts that have 
no supplier.

3.3 Grouping

Many queries involve forming data into groups and applying some aggregation 
function such as count or avg to each group. The following example shows how 
such a query might be expressed in XQuery, using the catalog document defined 
in the previous section:

(Q37) Find the part number and average price for parts that have at least 3 
suppliers. 

FOR $pn IN distinct(document("catalog.xml")//partno)
LET $i := document("catalog.xml")//item[partno = $pn]
WHERE count($i) >= 3
RETURN 
   <well_supplied_item>
      {$pn}
      <avgprice> {avg($i/price)} </avgprice>
   </well_supplied_item> 
SORTBY(partno)

The distinct function in this query eliminates duplicate part numbers from the set 
of all part numbers in the catalog document. The result of distinct is a sequence 
in which order is not significant.

Note that $pn, bound by a FOR-clause, represents an individual part number, 
whereas $i, bound by a LET-clause, represents a set of items which serves as 
argument to the aggregate functions count($i) and avg($i/price). The query 
uses an element constructor to enclose each part number and average price in a 
containing element called <well_supplied_item>.

4 Conclusion

With the emergence of XML, the distinctions among various forms of information, 



such as documents and databases, are quickly disappearing. XQuery is designed 
to support queries against a broad spectrum of information sources. The versatility 
of XQuery will help XML to realize its potential as a universal medium for data 
interchange.

This specification describes XQuery Version 1. Future versions of XQuery may 
include additional features such as the following:

1. Data definition facilities for persistent views.

2. Function overloading and polymorphic functions.

3. Facilities for updating XML data.

4. An extensibility mechanism whereby function libraries can be created, 
containing functions implemented in various programming languages.

A References

XML 1.0 
World Wide Web Consortium. Extensible Markup Language (XML) 1.0 
(Second Edition). W3C Recommendation, 6 October 2000. See 
http://www.w3.org/TR/2000/WD-xml-2e-20000814. 

XML Schema 
World Wide Web Consortium. XML Schema, Parts 0, 1, and 2. W3C 
Recommendation, 2 May 2001. See http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/ , http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/ , and http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/. 

XML Query 1.0 Requirements 
World Wide Web Consortium. XML Query 1.0 Requirements. W3C Working 
Draft, 15 Feb 2001. See http://www.w3.org/TR/xmlquery-req. 

XQuery 1.0 Formal Semantics 
World Wide Web Consortium. XQuery 1.0 Formal Semantics. W3C Working 
Draft, 7 June 2001. See http://www.w3.org/TR/query-semantics/. 

XPath 1.0 
World Wide Web Consortium. XML Path Language (XPath) Version 1.0. 
W3C Recommendation, Nov. 16, 1999. See 
http://www.w3.org/TR/xpath.html 

XQL 
J. Robie, J. Lapp, D. Schach. XML Query Language (XQL). See 
http://www.w3.org/TandS/QL/QL98/pp/xql.html. 

XML-QL 
Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. 
A Query Language for XML. See 
http://www.research.att.com/~mff/files/final.html 

SQL 
International Organization for Standardization (ISO). Information 
Technology-Database Language SQL. Standard No. ISO/IEC 9075:1999. 
(Available from American National Standards Institute, New York, NY 10036, 
(212) 642-4900.) 

ODMG 



Rick Cattell et al. The Object Database Standard: ODMG-93, Release 1.2. 
Morgan Kaufmann Publishers, San Francisco, 1996. 

Lorel 
Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet 
L. Wiener. The Lorel Query Language for Semistructured Data. International 
Journal on Digital Libraries, 1(1):68-88, April 1997. See "http://www-
db.stanford.edu/~widom/pubs.html 

YATL 
S. Cluet, S. Jacqmin, and J. Simeon. The New YATL: Design and 
Specifications. Technical Report, INRIA, 1999. 

Quilt 
Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: an XML 
Query Language for Heterogeneous Data Sources. In Lecture Notes in 
Computer Science, Springer-Verlag, Dec. 2000. Also available at 
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_lncs.pdf . See also 
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html. 

XQuery 1.0 and XPath 2.0 Data Model 
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model. W3C 
Working Draft, 7 June 2001. See http://www.w3.org/TR/query-datamodel/. 

XSLT 
World Wide Web Consortium. XSL Transformations (XSLT). W3C 
Recommendation, Nov. 16, 1999. See http://www.w3.org/TR/xslt. 

XPointer 
World Wide Web Consortium. XML Pointer Language (XPointer) Version 
1.0. W3C Last Call Working Draft 8 January 2001. See 
http://www.w3.org/TR/WD-xptr. 

Namespaces 
World Wide Web Consortium. Namespaces in XML. W3C 
Recommendation, Jan. 14, 1999. See http://www.w3.org/TR/REC-xml-
names/. 

XPath 2.0 Requirements 
World Wide Web Consortium. XPath Requirements, Version 2.0. W3C 
Working Draft, Feb. 14, 2001. See http://www.w3.org/TR/2001/WD-
xpath20req-20010214. 

XQueryX 1.0 
World Wide Web Consortium. XQueryX, Version 1.0. W3C Working Draft, 7 
June 2001. See http://www.w3.org/TR/xqueryx/

B XQuery Grammar

This appendix contains an LL(1) grammar for XQuery. We will be collecting 
grammars for specific parser generators, executable parsers, and collections of 
queries from the XML Query documents on the XML Query Working Group’s 
public home page (http://www.w3.org/XML/Query). 

[1] QueryModuleList ::= QueryModule ( ";" QueryModule)*
[2] QueryModule ::= ContextDecl* FunctionDefn* ExprSequence?
[3] ContextDecl ::= ("namespace" NCName "=" StringLiteral)

| ("default" "namespace" "=" StringLiteral)
| ("schema" StringLiteral StringLiteral)

[4] FunctionDefn ::= "define" "function" QName "(" ParamList? ")"



 ("returns" Datatype)? EnclosedExpr
[5] ParamList ::= Param ("," Param)*
[6] Param ::= Datatype? Variable
[7] Expr ::= SortExpr

| OrExpr
| AndExpr
| BeforeAfterExpr
| FLWRExpr
| IfExpr
| SomeExpr
| EveryExpr
| TypeSwitchExpr
| EqualityExpr
| RelationalExpr
| InstanceofExpr
| RangeExpr
| AdditiveExpr
| MultiplicativeExpr
| UnaryExpr
| UnionExpr
| IntersectExceptExpr
| PathExpr

[8] SortExpr ::= Expr "sortby" "(" SortSpecList ")"
[9] SortSpecList ::= Expr ("ascending" | "descending")? ("," 

SortSpecList)?
[10] OrExpr ::= Expr "or" Expr
[11] AndExpr ::= Expr "and" Expr
[12] BeforeAfterExpr ::= Expr ("before" | "after") Expr
[13] FLWRExpr ::= (ForClause | LetClause)+ WhereClause? 

"return" Expr
[14] ForClause ::= "for" Variable "in" Expr ("," Variable "in" Expr)

*
[15] LetClause ::= "let" Variable ":=" Expr ("," Variable ":=" Expr)

*
[16] WhereClause ::= "where" Expr
[17] IfExpr ::= "if" "(" Expr ")" "then" Expr "else" Expr
[18] SomeExpr ::= "some" Variable "in" Expr "satisfies" Expr
[19] EveryExpr ::= "every" Variable "in" Expr "satisfies" Expr
[20] TypeSwitchExpr ::= "typeswitch" "(" Expr ")" ("as" Variable)?

 CaseClause+ "default" "return" Expr
[21] CaseClause ::= "case" Datatype "return" Expr
[22] EqualityExpr ::= Expr ("=" | "!=" | "==" | "!==") Expr
[23] RelationalExpr ::= Expr ("<" | "<=" | ">" | ">=") Expr
[24] InstanceofExpr ::= Expr "instanceof" "only"? Datatype



[25] RangeExpr ::= Expr "to" Expr
[26] AdditiveExpr ::= Expr ("+" | "-") Expr
[27] MultiplicativeExpr ::= Expr ("*" | "div" | "mod") Expr
[28] UnaryExpr ::= ("-" | "+") Expr
[29] UnionExpr ::= Expr ("union" | "|") Expr
[30] IntersectExceptExpr ::= Expr ("intersect" | "except") Expr
[31] PathExpr ::= RelativePathExpr

| ("/" RelativePathExpr?)
| ("//" RelativePathExpr?)

[32] RelativePathExpr ::= StepExpr ( ("/" | "//") StepExpr)*
[33] StepExpr ::= AxisStepExpr | OtherStepExpr
[34] AxisStepExpr ::= Axis NodeTest StepQualifiers
[35] OtherStepExpr ::= PrimaryExpr StepQualifiers
[36] StepQualifiers ::= ( ("[" Expr "]") | ("=>" NameTest) )*
[37] Axis ::= (NCName "::") | "@"
[38] PrimaryExpr ::= "."

| ".."
| NodeTest
| Variable
| Literal
| FunctionCall
| ParenthesizedExpr
| CastExpr
| ElementConstructor

[39] Literal ::= NumericLiteral | StringLiteral
[40] NodeTest ::= NameTest | KindTest
[41] NameTest ::= QName | Wildcard
[42] KindTest ::= PITest | CommentTest | TextTest | 

AnyKindTest
[43] PITest ::= "processing-instruction" "(" StringLiteral? ")"
[44] CommentTest ::= "comment" "(" ")"
[45] TextTest ::= "text" "(" ")"
[46] AnyKindTest ::= "node" "(" ")"
[47] ParenthesizedExpr ::= "(" ExprSequence? ")" 
[48] ExprSequence ::= Expr ("," Expr)*
[49] FunctionCall ::= QName "(" (Expr ("," Expr)*)? ")"
[50] CastExpr ::= (("cast" "as") | ("treat" "as")) Datatype "(" 

Expr ")"
[51] Datatype ::= QName
[52] ElementConstructor ::= "<" NameSpec AttributeList ("/>" | 

 (">" ElementContent* "</" (QName 
S?)? ">") )

[53] NameSpec ::= QName | ( "{" Expr "}" )
[54] AttributeList ::= (S (NameSpec S? "=" S? (AttributeValue



Precedence order of expressions, from highest precedence to lowest precedence 
(within each precedence level, operators are applied from left to right):

l PathExpr

l IntersectExceptExpr

l UnionExpr

l UnaryExpr

l MultiplicativeExpr

l AdditiveExpr

l RangeExpr

l RelationalExpr, InstanceofExpr

l EqualityExpr

l FLWRExpr, IfExpr, SomeExpr, EveryExpr, TypeswitchExpr

l BeforeAfterExpr

l AndExpr

l OrExpr

l SortExpr

Lexical structure

 | EnclosedExpr) AttributeList)? )?
[55] AttributeValue ::= ( ["] AttributeValueContent* ["] )

| ( ['] AttributeValueContent* ['] )
[56] ElementContent ::= Char

| ElementConstructor
| EnclosedExpr
| CdataSection
| CharRef
| PredefinedEntityRef

[57] AttributeValueContent ::= Char
| CharRef
| EnclosedExpr
| PredefinedEntityRef

[58] CdataSection ::= "<![CDATA[" Char* "]]>"
[59] EnclosedExpr ::= "{" ExprSequence "}"



Char and S are defined in [XML 1.0]. QName and NCName are defined in 
[Namespaces].

C XQuery Issues (Non-Normative)

This section contains the current issues for XQuery. The individual issues are 
shown in detail after an abbreviated issues list.

C.1 Issue List

[60] StringLiteral ::= (["] [^"]* ["]) | (['] [^']* ['])
[61] NumericLiteral ::= (("." [0-9]+) | ([0-9]+ ("." [0-9]+?)?)) ([eE] [+-]? 

[0-9]+)?
[62] Wildcard ::= "*" | (NCName ":") | ("*:" NCName)
[63] Variable ::= "$" QName
[64] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp" | "quot" | "apos") ";"
[65] CharRef ::= "&#" ([0-9]+ | ("x" [0-9a-fA-F]+)) ";"

Issue Priority Status ID

1: Collection types (xquery-collection-types)

2: Definitions of Operators (xquery-definition-of-operators)

3: Operators and functions (xquery-operators-and-functions)

4: External Functions (xquery-external-functions)

5: Function Definition (xquery-function-definition)

6: Function Resolution (xquery-function-resolution)

7: CAST expression (xquery-cast-expression)

8: Type Guard (xquery-type-guard)

9: Separation of clauses in FLWR (xquery-separation-of-
flowers)

10: Alignment of Syntax (xquery-alignment-of-syntax)

11: Alternative syntax for element construction (xquery-
element-construction)

12: Fusion (xquery-fusion)

13: Filter as a Function (xquery-filter-function)

14: TRY/CATCH and error() (xquery-try-catch-error)

15: Updates (xquery-updates)

16: Algebra Mapping (xquery-algebra-mapping)

17: XPath Productions (xquery-xpath-productions)

18: Abstract Syntax (xquery-abstract-syntax)

19: Recursion (xquery-recursion)

20: Copy and Reference Semantics (xquery-copy-reference)

21: View Definition (xquery-persist-views-functions)



22: Human-Readable Syntax for Types (xquery-type-syntax)

23: What is a Query (xquery-query)

24: XPath Type Coercions (xquery-xpath-coercions)

25: Support for Unordered Collections (xquery-unordered-
collections)

26: Identity-based equality operator (xquery-equality-identity)

27: Deep equality (xquery-deep-equality)

28: Reference Constructor (xquery-reference-constructor)

29: Precedence of Operators (xquery-precedence)

30: Queries with Invalid Content (xquery-invalid-content)

31: Function Libraries (xquery-function-library)

32: Correspondence of Types (xquery-type-correspondence)

33: Excluding Undesired Elements (xquery-exclude-
undesireables)

34: Alignment of Precedence (xquery-align-precedence)

35: Escape to ABQL (xquery-escape-to-abql)

36: CAST and TREAT AS Syntax (xquery-cast-syntax)

37: XML Schema Datatypes Constructors (xquery-datatype-
constructors)

38: Attribute Constructor Function (xquery-attribute-
constructor-function)

39: Attribute Name, Attribute Content (xquery-attribute-name-
content)

40: Dereference Operator and Links (xquery-dereference-
links)

41: XML Constructor (xquery-literal-xml-constructor)

42: Eval (xquery-eval)

43: Inline XML Schema Declarations (xquery-inline-xml-
schema)

44: Encoding (xquery-encoding)

45: Typing of Filter (xquery-filter-typing)

46: Typeswitch (xquery-typeswitch)

47: Mapping Input Context (xquery-mapping-input-context)

48: Accessing Element Data (xquery-data-function)

49: Embedding XML in XQuery (xquery-embedding-xml)

50: Embedding XQuery in XML (xquery-embedding-xquery-in-
xml)

51: Naive Implementation Strategy (xquery-naive-
implementation)

52: XML-based Syntax (xquery-abql)

53: Mapping CAST AS (xquery-mapping-cast)



54: Defining Behavior for Well Formed, DTD, and Schema 
Documents (xquery-define-schema-variants)

55: Comments to end-of-line (xquery-comment-to-end-of-line)

56: XPath Axes (xquery-xpath-axes)

57: Quotes for computed attribute values (xquery-quote-
computed-attribute-value)

58: Computed element and attribute names (xquery-
computed-element-names)

59: Productions for Comments and Processing Instructions 
(xquery-comment-pi-productions)

60: Arithmetic operators among sequences (xquery-arithmetic-
among-sequences)

61: Collation Sequences (xquery-collation-sequences)

62: Nulls, nil, and three-valued logic (xquery-three-value-logic)

63: Set operations based on value (xquery-set-operators-on-
values)

64: Converting general expressions to Boolean (xquery-
anything-to-boolean)

65: Quantifiers with multiple bindings? (xquery-quantifier-
multiple-variables)

66: Implicit current node for functions? (xquery-implicit-current-
node)

67: Subtype Substitutability (xquery-subtype-substitutability)

68: Substitution Groups (xquery-substitution-groups)

69: Sequences for single parameters (xquery-sequence-for-
single)

70: Is TREAT AS necessary? (xquery-remove-treat)

71: Module syntax (xquery-module-syntax)

72: Importing Modules (xquery-import)

73: General discussion of errors (xquery-general-errors)

74: Cutting and pasting XML into XQuery (xquery-cut-and-
paste-xml)

75: Normalized Equality (xquery-normalized-equality)

76: CASE not a subtype (xquery-typeswitch-case-not-subtype)

77: Namespace Prefix Redefine (xquery-namespace-prefix-
redefine)

78: Namespace Attributes in Element Constructors (xquery-
namespace-attribute-declaration)

79: Static versus Dynamic Errors (xquery-errors-static-
dynamic)

80: Empty End Tags in Element Constructors (xquery-empty-
end-tag)

81: Sorting by Non-exposed Data (xquery-phantom-sortby)

82: Semicolon as Query Module Separator (xquery-semicolon)



C.2 XQuery Issues 

Issue 1 : Collection types (xquery-collection-types) 

Description:

XQuery currently considers book and list(book) to be different types. List is an 
abbreviation of the facets minoccurs=0, maxoccurs = unbounded. We need to 
confirm that this accurately reflects the type system of XML Schema.

83: Escaping Quotes and Apostrophes (xquery-escaping-
quotes-and-apostrophes)

84: Unqualified Function Names (xquery-unqualified-function-
names)

85: Leading Minus (xquery-leading-minus)

86: Case-Sensitivity in Keywords (xquery-case-sensitive-
keywords)

87: GROUPBY (xquery-groupby)

88: General Expressions in Path Steps (xquery-step-
expressions)

89: Comparing Collections (xquery-comparing-collections)

90: Meaning of BEFORE and AFTER (xquery-before-after)

91: Lists of Element Constructors (xquery-list-element-
constructor)

92: Static Type Assertions (xquery-static-type-assertion)

93: Names in Type Definitions (xquery-names-type-definition)

94: Path Expression Order (xquery-path-expression-order)

95: Full Expression Syntax in Steps (xquery-full-expression-
syntax)

96: Promotion Hierarchy for XML Schema Types (xquery-
schema-type-promotion)

97: Importing Schemas and DTDs into query (xquery-schema-
import)

98: Support for schema-less and incompletely validated 
documents (xquery-schemaless)

99: Static type-checking vs. Schema validation (xquery-static-
versus-validate)

100: Implementation of and conformance levels for static type 
checking (xquery-type-conformance)

101: Missing conformance section (xquery-conformance)

102: typeof() function (xquery-typeof)

Originator: XQuery Editors
Locus: requirements



Issue 2 : Definitions of Operators (xquery-definition-of-operators) 

Description:

XPath defines some operators on lists in ways that differ from most commonly 
used languages. For example, if $X is a list, $X+1 is defined as the result of 
adding 1 to the first element in $X (ignoring the other elements.) XQuery takes a 
more regular approach to operations on lists, as described in the section on 
functions. For example, if the function increment(integer) is defined to add 1 to its 
argument, then the function call increment($X) where $X is a list of integers will 
return a list in which every member has been incremented by 1.

This issue needs more study, which should probably occur on the joint task force 
between XML Query and XSL. Operations on lists may be one area in which work 
is needed to evolve the XPath specification toward Version 2.0.

It is very desirable that operators such as "+" occur only once in the grammar, not 
separately in the "XPath" and "non-XPath" parts of the language. This probably 
means that path expressions should be integrated into the XQuery grammar and 
not treated as a "terminal symbol." This is the approach that has been taken in the 
current CUP and JavaCC grammars.

Expressions involving operators must also be carefully defined. We expect this to 
be handled by the task force on operators and the XPath 2.0 task force.

Issue 3 : Operators and functions (xquery-operators-and-functions) 

Description:

A complete list of XQuery operators and core functions is needed, with their 
signatures (datatypes of operands and results). 

Sources of information: XPath specification, operator lists presented at recent F2F 
meetings by Frank Olken and others.

Note: The Query Working Group and the Schema Working Group have agreed to 
spawn a joint task force to investigate this issue. The XQuery language will 
integrate the results of that work.

Issue 4 : External Functions (xquery-external-functions) 

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editorial Team
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra



Description:

An extensibility mechanism needs to be defined that permits XQuery to access a 
library of functions written in some other programming language such as Java.

Some sources of information: the definition of external functions in SQL, the 
implementation of external functions in Kweelt.

Issue 5 : Function Definition (xquery-function-definition) 

Description:

We need more thought about what constitutes a valid parameter-type for a 
function. Attribute-types as well as element-types? Type-names vs. element-
names? Should all the MSL symbol spaces be represented? Wildcards? 
Sequences?

It is probably important to have NODE as a type, to allow functions to take any 
XML node as a parameter, or to return any XML node as a result.

Using univeral names similar to those found in the MSL document, but with a 
different syntax, would allow us to reference any schema type in XQuery function 
definitions.

Issue 6 : Function Resolution (xquery-function-resolution) 

Description:

More detailed rules need to be developed for function resolution. What kinds of 
function overloading are allowed? A promotion hierarchy of basic types needs to 
be specified. The issue of polymorphic functions with dynamic dispatch needs to 
be studied. Can overloaded functions be defined such that the parameter-type of 
one function is a subtype of the parameter-type of another function? If so, what 
are the constraints on the return-types of these functions? Is function selection 
based on the static type of the argument or on the dynamic type of the argument 
(dynamic dispatch, performed at execution time)? If XQuery supports dynamic 
dispatch, is it based on all the arguments of a function or on only one 
distinguished argument?

Observation: This is a very complex area of language design. If it proves too 
difficult to solve in the available time, it may be wise to take a simple approach 
such as avoiding dynamic dispatch in Version 1 of XML Query.

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra



Proposal: 

The XML Query Formal Semantics does not support overloading or dynamic 
dispatch. We will attempt to simplify XML Query Level 1 by omitting these, unless 
it becomes clear that they are needed. We realize that this might happen.

Issue 7 : CAST expression (xquery-cast-expression) 

Description:

Does XQuery need a CAST expression for casting an instance of one type into 
another type?

Proposal: 

A "CAST AS" operator has been added to this current Working Draft. We solicit 
feedback on this operator.

Issue 8 : Type Guard (xquery-type-guard) 

Description:

Does XQuery require a syntax for type guards?

Proposal: 

We have added the "TREAT AS" operator to this current Working Draft. This is 
especially helpful for function arguments, since we do not have function 
polymorphism in the current specification. We solicit feedback on this operator. 

Issue 9 : Separation of clauses in FLWR (xquery-separation-of-
flowers) 

Description:

A FOR clause can stand alone: FOR $var IN expr1 RETURN expr2. A LET clause 
can stand alone: LET $var := expr1 EVAL expr2. It has been suggested that a 
WHERE clause should also be able to stand alone: WHERE expr1 RETURN 
expr2.

Originator: XQuery Editors
Locus: xquery-algebra

Originator: Michael Rys
Locus: xquery-algebra

Originator: Algebra Editors
Locus: xquery-algebra



Note: in the current BNF, at least one FOR or LET clause must occur, but it is not 
necessary to have a FOR. 

Observation: This functionality is already provided by the conditional expression, 
IF expr1 THEN expr2 ELSE [ ]. There does not seem to be a compelling reason to 
provide a second way to write this expression. However, making the ELSE clause 
optional might be a slight improvement.

Proposal: 

The following content model should be adopted for FLWR expressions:

FlwrExpr ::= (ForClause | LetClause)+ [WhereClause] ReturnClause

This allows us also to remove the separate LET/EVAL expression, which can now 
be expressed using LET/RETURN.

Issue 10 : Alignment of Syntax (xquery-alignment-of-syntax) 

Description:

Should the syntaxes of XQuery and the XML Query Formal Semantics be more 
closely aligned?

At the time this issue was originally proposed, XQuery and the Formal Semantics 
used distinctly different languages. We are now in the process of aligning these 
languages. The current Working Draft shows significant progress in this direction. 
However, more work is to be done with respect to type declarations and the use of 
type in the language.

Issue 11 : Alternative syntax for element construction (xquery-
element-construction) 

Description:

(From Algebra team): We think it would be helpful to have two syntaxes for 
construction, xquery-algebra a[. . .] as used in the Algebra and <a> . . . </a> as 
used in XQuery. Not least, the a[. . .] syntax matches the syntax used in the 
Algebra for types.

Proposal: 

We do not believe it is helpful to have two syntaxes for the same thing, and we do 

Originator: Algebra Editors
Locus: xquery-algebra

Originator: Algebra Editors
Locus: xquery-algebra



not feel that this suggestion would make XQuery easier to read or use. In any 
case, square brackets are used in XQuery to enclose predicates and are not 
available for the suggested purpose.

Issue 12 : Fusion (xquery-fusion) 

Description:

Consider adding a fusion operator to XQuery. Michael has supplied us with a few 
queries in which fusion would be helpful, and fusion seems promising as a 
feature, but we have not yet done adequate study of this issue. We would like to 
explore a wider set of use cases to make sure that we take a general approach to 
the problems related to fusion.

This requires further study. Use cases will need to be developed to determine 
precisely what forms of a fusion operator are actually helpful for data integration. 
An extensive and informative thread on this topic can be found in the W3C 
archives, starting at lists.w3.org/Archives/Member/w3c-
archive/2000Dec/0132.html.

Proposal: 

Fusion is still not well motivated by use cases, despite fairly extensive discussion. 
External functions may be important, but we do not think it is worth doing right 
now. There is also an argument for omitting them because they limit the 
optimizations that can be done in the rest of the language.

Issue 13 : Filter as a Function (xquery-filter-function) 

Description:

Dana has observed that Filter can be a function rather than an operator, if nodes 
have identity.

Resolution: 

Filter is now a function, where the first parameter is the expression to be filtered, 
and the second parameter is the filter expression. We find this more elegant.

Issue 14 : TRY/CATCH and error() (xquery-try-catch-error) 

Originator: Michael Rys
Locus: xquery-algebra

Originator: Dana
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra



Description:

We believe the following approach to error handling would be very useful - (1) 
introduce TRY <expression> CATCH <expression>, similar to try/catch in OO 
languages. Instead of having "throw" to throw objects, use error(<expression>), 
bind the result of the expression to the variable $err, and allow $err to be used in 
the CATCH clause. 

Proposal: 

Dana Florescu has been assigned the task of writing a proposal for this.

Issue 15 : Updates (xquery-updates) 

Description:

We believe that a syntax for update would be extremely useful, allowing inserts, 
updates, and deletion. This might best be added as a non-normative appendix to 
the syntax proposal, since the algebra is not designed for defining this portion of 
the language.

Proposal: 

Jonathan is working on a proposal for this.

Issue 16 : Algebra Mapping (xquery-algebra-mapping) 

Description:

The algebra mapping is incomplete and out of date.

Proposal: 

Jerome has created a new version of the mapping, with help from Mary, Dana and 
Mugur.

Issue 17 : XPath Productions (xquery-xpath-productions) 

Description:

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra



XPath can’t be treated as a terminal symbol in our grammar. We intend XQuery to 
be a superset of the abbreviated syntax of XPath. We do not use the grammar of 
XPath directly because it needs to be integrated into our other productions. For 
example, operators like the union operator, which occur in path expressions, also 
occur in other contexts in XQuery, and it makes little sense to define two different 
operators. This raises issues of coordination with XPath.

Issue 18 : Abstract Syntax (xquery-abstract-syntax) 

Description:

Jerome and Mary have suggested that we abandon the separate abstract syntax 
for XQuery, in favor of a higher-level BNF.

Proposal: 

This is the BNF that now appears in Appendix B. 

Issue 19 : Recursion (xquery-recursion) 

Description:

Should XQuery support general recursion, or should it be limited in some way? 
Status quo: XQuery currently supports general recursion.

Reference: XML Query Algebra Issues

[Issue-0008] Fixed point operator or recursive functions]

[Issue-0032] Full regular path expressions]

Issue 20 : Copy and Reference Semantics (xquery-copy-reference) 

Description:

Copy and reference semantics must be defined properly for updates to work. This 
must be coordinated with the algebra team.

Issue 21 : View Definition (xquery-persist-views-functions) 

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra



Description:

Do we need a way to define views?

Resolution: 

While a mechanism for view definition is desirable, we do not currently intend to 
provide one in Level 1.

Issue 22 : Human-Readable Syntax for Types (xquery-type-syntax) 

Description:

The Algebra has a syntax for declaring types. Up to now, XQuery uses XML 
Schema for declaring types. Is this sufficient? Some important questions:

1. Are type names sufficient, or does XQuery really need its own syntax for 
declaring types?

2. Would Normalized Universal Names (derived from MSL) be sufficient for 
type names?

3. How will type names be bound to definitions?

Issue 23 : What is a Query (xquery-query) 

Description:

What is a query? 

According the the algebra: any number of type declarations, function definitions, 
variable definitions and expressions.

According to XQuery: any number of namespace declarations, function definitions 
and a unique expression.

These definitions should be coordinated.

Issue 24 : XPath Type Coercions (xquery-xpath-coercions) 

Originator: Mugur
Locus: xquery-algebra

Originator: Algebra Editors
Locus: xquery-algebra

Originator: Dana
Locus: xquery-algebra



Description:

XPath has a number of implicit type coercions, and also has implied existential 
quantification in some places. In XML 1.0, which had a small and loose type 
system, this was less problematic than it is with XML Schema, which introduces 
many types and relationships among types. If XQuery is to be compatible with 
XPath, we need to study these rules carefully, and adapt them to be rational and 
intuitive when used with the XML Schema type system.

Also, there are interactions between quantification and type coercion in XPath, 
sometimes causing non-intuitive results.

Issue 25 : Support for Unordered Collections (xquery-unordered-
collections) 

Description:

Does XQuery need features to add support for unordered collections? If so, what 
features are required? In the current draft, "unordered" is a property of a list. The 
user can create an ordered list from an unordered list by using SORTBY. The 
distinct() function not only removes duplicates from a list, it also renders the list 
unordered. 

Do we need a function that merely removes the ordered property of a list?

How does the ordered/unordered property of a list affect the semantics of 
operators applied to it?

Issue 26 : Identity-based equality operator (xquery-equality-identity) 

Description:

Do we need an identity-based equality operator? Please justify your answer with 
sample queries. Note that XPath gets along without it.

Issue 27 : Deep equality (xquery-deep-equality) 

Originator: XQuery Editors
Locus: xquery-algebra

Originator: Algebra Editors
Locus: xquery

Originator: Algebra Editors
Locus: xquery-algebra

Originator: Jonathan
Locus: xquery-algebra



Description:

In XPath, <book><title> Mark Twain </title></book> and <book><author> Mark 
Twain </author></book> are treated as equal in comparisons. Is this acceptable 
for us? Do we need another notion of deep equality? If so, what are the 
compatibility issues with XPath?

Issue 28 : Reference Constructor (xquery-reference-constructor) 

Description:

Queries should be able to return references; for instance, a query that generates a 
table of contents should also be able to create references to the items in the 
content itself. How can we extend the syntax to support this?

Issue 29 : Precedence of Operators (xquery-precedence) 

Description:

The XQuery editorial team is working through a number of cases to determine the 
best precedence of operators. Our current precedence rules are shown in 
Appendix B.

Issue 30 : Queries with Invalid Content (xquery-invalid-content) 

Description:

Is it an error for a query to specify content that may not appear, according to the 
schema definition? Consider the following query:

invoice//nose

If the schema does not allow a nose to appear on an invoice, is this query an 
error, or will it simply return an empty list?

Issue 31 : Function Libraries (xquery-function-library) 

Originator: Jonathan
Locus: xquery

Originator: Dana
Locus: xquery

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery



Description:

XQuery needs a mechanism to allow function definitions to be shared by multiple 
queries. The XQuery grammar allows function definitions to occur without a query 
expression.

We must provide a way for queries to access functions in libraries. For instance, 
we might add an IMPORT statement to XQuery, with the URI of the functions to 
be imported. It must be possible to specify either that (1) local definitions replace 
the imported definitions, or (2) imported definitions replace the local ones.

Issue 32 : Correspondence of Types (xquery-type-correspondence) 

Description:

Section 2.9, on functions, portrays XQuery as a statically typed language, but the 
mechanisms by which static typing is established are still being developed by the 
XML Query Algebra editorial team. A complete accounting for type requires that 
the XML Query Algebra conform completely to the XML Schema type system, and 
that many open issues be resolved.

The semantics of XQuery are defined in terms of the operators of the XML Query 
Algebra (see [XQuery 1.0 Formal Semantics]. The mapping of XQuery operators 
into Algebra operators is still being designed, and may result in some changes to 
XQuery and/or the Algebra. The type system of XQuery is the type system of XML 
Schema. Work is in progress to ensure that the type systems of XQuery, the XML 
Query Algebra, and XML Schema are completely aligned. The details of the 
operators supported on simple XML Schema datatypes will be defined by a joint 
XSLT/Schema/Query task force.

Issue 33 : Excluding Undesired Elements (xquery-exclude-
undesireables) 

Description:

How do we exclude undesired elements from the results of joins?

This need came out of a thread exploring data integration scenarios, starting with 
http://lists.w3.org/Archives/Member/w3c-archive/2000Dec/0132.html.

Issue 34 : Alignment of Precedence (xquery-align-precedence) 

Originator: Jerome Simeon
Locus: xquery-algebra

Originator: Don Chamberlin
Locus: xquery



Description:

The precedence rules of XQuery and the algebra are not completely aligned. This 
needs to be fixed by the time both specifications are finished.

Issue 35 : Escape to ABQL (xquery-escape-to-abql) 

Description:

Is there a need to be able to escape to ABQL?

Issue 36 : CAST and TREAT AS Syntax (xquery-cast-syntax) 

Description:

Various approaches to the syntax of CAST AS and TREAT AS have been 
proposed. Java and SQL have both been sources used to discuss these 
approaches. We are still exploring other syntactic approaches.

Issue 37 : XML Schema Datatypes Constructors (xquery-datatype-
constructors) 

Description:

The set of constructor functions for XML Schema simple datatypes has not yet 
been established. A joint task force with XML Schema has been chartered to 
determine the operators on datatypes, and we expect them to also determine the 
set of constructors for datatypes.

Issue 38 : Attribute Constructor Function (xquery-attribute-
constructor-function) 

Originator: Jerome Simeon
Locus: xquery-algebra

Originator: Jerome Simeon
Locus: xquery

Originator: Jonathan Robie
Locus: xquery

Originator: Paul Cotton
Locus: xquery

Originator: Don Chamberlin
Locus: xquery



Description:

We need a function for constructing attributes.

Proposal: 

The attribute function takes two parameters. The first is the name of the attribute 
to be constructed. The second is the value of the attribute to be constructed. If an 
attribute function occurs within an element constructor, the attribute is added to 
the set of attributes for that element.

<foo>
   IF $f/temp > 200
     THEN make_attribute("warning", "about to explode!!")
     ELSE []
</foo></foo>

Note Dana and Phil’s exchange re: typing when attribute names are not statically 
known. 

Issue 39 : Attribute Name, Attribute Content (xquery-attribute-name-
content) 

Description:

We need functions to return the name of an attribute and the content of an 
attribute.

Proposal: 

attribute_name($b)
attribute_content($b)

Issue 40 : Dereference Operator and Links (xquery-dereference-
links) 

Description:

Does the dereference operator work on links, such as XLink or HTML href? 
Should we also support KEY/KEYREF? In general, our handling of references 
needs a lot of work.

In general, how are the semantics of the dereference operator defined?

Originator: Don Chamberlin
Locus: xquery

Originator: Jonathan Robie
Locus: xquery



Issue 41 : XML Constructor (xquery-literal-xml-constructor) 

Description:

Is there a need for a constructor that creates an instance of the XML Query Data 
Model from a string that contains XML text?

Proposal: 

Close the issue, pending convincing use cases. When do we need to be able to 
create a string of XML text, then convert it into an instance of the XML data 
model? Can’t there always be an intervening parser or other tool to create the 
XML data model instance?

Issue 42 : Eval (xquery-eval) 

Description:

Is there a need to be able to execute a string that contains the text of an XQuery 
query? (This is similar to the eval function in Lisp.)

Issue 43 : Inline XML Schema Declarations (xquery-inline-xml-
schema) 

Description:

Do we need to allow inline XML schema declarations in the prolog of a query? The 
following example shows one potential syntax for this. It extends the namespace 
declaration to allow literal XML Schema text to occur instead of a URI in a 
namespace declaration. The implementation would then assign an internal URI to 
the namespace.

  NAMESPACE fid = "http://www.example.com/fiddlefaddle.xsd"

  NAMESPACE loc =  [[
    <xsd:schema xmlns:xsd = "http://www.w3.org/2000/10/XMLSchema">
      <xsd:simpleType name="myInteger">
        <xsd:restriction base="xsd:integer">
          <xsd:minInclusive value="10000"/>
          <xsd:maxInclusive value="99999"/>
        </xsd:restriction>

Originator: Jonathan Robie
Locus: xquery-algebra

Originator: Jonathan Robie
Locus: xquery-algebra

Originator: Don Chamberlin
Locus: xquery



      </xsd:simpleType>
    </xsd:schema>
  ]]

  FUNCTION string-to-myInteger ($s STRING) RETURNS loc:myInteger
  {
  -- If the facets of loc:myInteger are not satisfied,
  -- this function raises an error.
  
    LET $t := round(number($s))
    RETURN TREAT AS loc:myInteger($t)
  }

  string-to-myInteger("1023")

Issue 44 : Encoding (xquery-encoding) 

Description:

Does XQuery need a way to specify the encoding of a query? For instance, should 
the prolog allow statements like the following?

ENCODING utf-16

Issue 45 : Typing of Filter (xquery-filter-typing) 

Description:

The current mapping of filter to the algebra does not preserve much useful type 
information. Can the mapping be improved? Is there another approach to filter that 
would yield better type information?

Issue 46 : Typeswitch (xquery-typeswitch) 

Description:

Do we need an expression similar to the MATCH expression in the algebra? One 
proposed syntax looks like this:

TYPESWITCH expr 
  CASE typename1: expr1 
  CASE typename2: expr2 

Originator: Jonathan Robie
Locus: xquery

Originator: Jerome Simeon
Locus: xquery-algebra

Originator: Mary Fernandez
Locus: xquery



Since this syntax corresponds more closely to the syntax of the algebra, it can be 
mapped more easily. Alternatively, the match expression in the algebra could be 
made to resemble the INSTANCEOF expression of XQuery.

Issue 47 : Mapping Input Context (xquery-mapping-input-context) 

Description:

Do we need a way to specify the nodes in the input context? Many queries do not 
specifically state the input to which they will be applied. This allows the same 
query, for instance, to be applied to a number of databases. It may be helpful for 
the mapping to introduce a global variable, eg $input, to represent the input nodes 
for a query. This variable might even be useful in the syntax of XQuery itself.

Issue 48 : Accessing Element Data (xquery-data-function) 

Description:

There is no operator to access the typed constant content of an element. In the 
Algebra, the data() operator does this. Should XQuery do the same? 

Issue 49 : Embedding XML in XQuery (xquery-embedding-xml) 

Description:

Do we need a way to embed literal XML content in a query? For instance, should 
there be a way to construct an XML element using the native syntax of XML?

Issue 50 : Embedding XQuery in XML (xquery-embedding-xquery-in-
xml) 

Description:

Do we need a way to escape from XML to XQuery syntax? This could be used to 
provide functionality similar to that of ASP or JSP.

Originator: Jerome Simeon
Locus: xquery-algebra

Originator: Mary Fernandez
Locus: xquery

Originator: XQuery Editors
Locus: xquery

Originator: Steve Tolkin
Locus: xquery-algebra



Issue 51 : Naive Implementation Strategy (xquery-naive-
implementation) 

Description:

Marton Nagy has suggested that it would be helpful to describe a naive 
implementation strategy for XQuery.

A naive XQuery implementation might parse the query, map it to Algebra syntax, 
and pass it to an Algebra implementation to request type checking from the 
algebra, returning an error if there were static type errors. A naive implementation 
might then request query execution from the algebra, get the results from the 
algebra and return it to the user. 

Alternatively, the implementation might have its own algebra for execution, or it 
might generate statements in a specific implementation language such as XPath 
or SQL.We expect a wide variety of implementation approaches to be used in 
practice.

Issue 52 : XML-based Syntax (xquery-abql) 

Description:

XQuery needs an XML representation that reflects the structure of an XQuery 
query. Drafts of such a representation have been prepared, but it is not yet ready 
for publication.

Issue 53 : Mapping CAST AS (xquery-mapping-cast) 

Description:

The algebra does not have coercion functions between values. The mapping 
requires this for CAST AS.

Issue 54 : Defining Behavior for Well Formed, DTD, and Schema 
Documents (xquery-define-schema-variants) 

Originator: Marton Nagy
Locus: xquery

Originator: XML Query WG
Locus: xquery

Originator: Jerome Simeon
Locus: xquery-algebra



Description:

We should specify the behavior of XQuery for well formed XML, XML validated by 
a schema, and XML validated by a DTD.

Issue 55 : Comments to end-of-line (xquery-comment-to-end-of-line) 

Description:

Since an XQuery may physically reside in an XML document, comments that rely 
on the concept of end-of-line can result in anomalies due to XML whitespace 
normalization. We should probably use bounded comments.

One possible syntax for comments:

  {-- This is reminiscent of XML, but without angle brackets. --} 

Issue 56 : XPath Axes (xquery-xpath-axes) 

Description:

XPath supports 13 axes. The current Working Draft says that XQuery will support 
a subset of these axes, including at least those axes required by the abbreviated 
syntax. The definitive set of axes to be supported by XQuery has not yet been 
determined. In the current Working Draft, the examples use abbreviated syntax, 
but the grammar supports unabbreviated syntax.

For the axes required by the abbreviated syntax, should XQuery allow both the 
unabbreviated and abbreviated syntax? If we decide not to support additional 
axes, no new functionality would be added by supporting the unabbreviated 
syntax. Opinions vary as to whether the unabbreviated syntax is clearer.

Issue 57 : Quotes for computed attribute values (xquery-quote-
computed-attribute-value) 

Description:

Originator: Don Chamberlin
Locus: xquery-algebra

Originator: Michael Rys
Locus: xquery

Originator: XQuery Editors
Locus: xquery-algebra

Originator: James Clark
Locus: xquery



XQuery currently allows computed attribute values without quotes, which is not 
well-formed XML:

<foo bar={//baz} />

In XSLT, the equivalent syntax uses quotes:

<foo bar="{//baz}" />

Should XQuery adopt the XSLT convention? This would make it easier for XQuery 
to reside in well formed XML documents.

Issue 58 : Computed element and attribute names (xquery-
computed-element-names) 

Description:

The current syntax for computed elements and attributes uses a syntax that looks 
like XML but is not well-formed XML.

<{name($e)}>   # replicates the name of $e
   {$e/@*}            # replicates the attributes of $e
   {2 * number($e)}   # doubles the content of $e
</>

This makes it hard to embed queries that use this syntax in well-formed XML 
documents. Also, the Formal Description uses a syntax for element and attribute 
construction that is more suitable for use with inference notation. Should an 
alternative construction syntax be used that eliminates both problems?

Issue 59 : Productions for Comments and Processing Instructions 
(xquery-comment-pi-productions) 

Description:

The current EBNF lacks productions for comments and processing instructions.

Issue 60 : Arithmetic operators among sequences (xquery-
arithmetic-among-sequences) 

Originator: XQuery Editors
Locus: xquery

Originator: Don Chamberlin
Locus: xquery

Originator: XQuery Editors
Locus: xquery-algebra



Description:

If two sequences are combined with an arithmetic operator, what are the 
semantics? Should a Cartesian product be used? Should the operator be applied 
to pairs? Should an error be raised?

Issue 61 : Collation Sequences (xquery-collation-sequences) 

Description:

How are collation sequences created to define inequality and sort orders?

Issue 62 : Nulls, nil, and three-valued logic (xquery-three-value-logic) 

Description:

Does XQuery need three-valued logic? How should XQuery deal with missing or 
absent values? What are the semantics of XML Schema’s xsi:nil?

Issue 63 : Set operations based on value (xquery-set-operators-on-
values) 

Description:

The definitions of UNION, INTERSECT, and EXCEPT for simple values are still 
under discussion. It is not clear that these operators should apply to simple 
values, because simple values do not have a concept of node identity. If these 
operators are defined for simple values, perhaps they should have a lower 
precedence than arithmetic operators. 

Issue 64 : Converting general expressions to Boolean (xquery-
anything-to-boolean) 

Description:

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: requirements

Originator: XQuery Editors
Locus: requirements

Originator: XQuery Editors
Locus: xquery



Conditionals in XQuery allow any expression in the grammar. Which kinds of 
expressions are actually converted to Boolean values, and how is this done? 
Which kinds of expressions raise errors?

Issue 65 : Quantifiers with multiple bindings? (xquery-quantifier-
multiple-variables) 

Description:

We have considered forms of quantified expressions that bind several variables at 
once, as in SOME $x IN expr1, $y IN expr2. Are such quantifiers desireable? If so, 
what are their semantics, and what use cases support them? Note that there is no 
additional expressive power over the current single-variable syntax, this is purely a 
question of convenience.

Issue 66 : Implicit current node for functions? (xquery-implicit-
current-node) 

Description:

Many XPath functions and node-tests implicitly operate on the current node if no 
argument is specified. Should this apply to all functions? All unary functions? Only 
certain functions? 

Issue 67 : Subtype Substitutability (xquery-subtype-substitutability) 

Description:

Should XQuery 1.0 support subtype substitutability for function parameters?

If subtype substitutability is not supported in XQuery Version 1, the motivation for 
TYPESWITCH is weakened and the decision to support TYPESWITCH should be 
revisited. 

Issue 68 : Substitution Groups (xquery-substitution-groups) 

Originator: Don Chamberlin
Locus: xquery

Originator: XQuery Editors
Locus: xquery

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra



Description:

How should XQuery handle XML Schema substitution groups with respect to 
name tests in paths? With respect to parameter types and return types in 
functions?

Issue 69 : Sequences for single parameters (xquery-sequence-for-
single) 

Description:

If a sequence is passed as a function parameter where a singleton was declared 
as the parameter type, should the function call operate on tuples of the Cartesian 
cross product, as in the current draft, raise an error, or do something else?

Issue 70 : Is TREAT AS necessary? (xquery-remove-treat) 

Description:

The functionality of TREAT can also be expressed using TYPESWITCH. A 
proposal to remove the TREAT expression is under consideration. 

Issue 71 : Module syntax (xquery-module-syntax) 

Description:

The definition and syntax of a query module are still under discussion in the 
working group. The specifications in this section are pending approval by the 
working group. 

Future versions of the language may support other forms of query modules, such 
as update statements and view definitions. 

Issue 72 : Importing Modules (xquery-import) 

Description:

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery-algebra

Originator: XQuery Editors
Locus: xquery

Originator: XQuery Editors
Locus: xquery



The means by which a query module gains access to the functions defined an an 
external function library remains to be defined.

Issue 73 : General discussion of errors (xquery-general-errors) 

Description:

This document does not have a general discussion of errors, when they are 
raised, and how they are processed. This is needed.

Issue 74 : Cutting and pasting XML into XQuery (xquery-cut-and-
paste-xml) 

Description:

A variety of XML constructs can not be cut and paste into XQuery, including the 
internal subset, entities, notations, etc. Should we attempt to ameliorate this?

Issue 75 : Normalized Equality (xquery-normalized-equality) 

Description:

When elements are compared, are comments and PIs considered in the 
comparison? How is whitespace handled? Do we need to allow more than one 
way to handle these in comparisons?

Issue 76 : CASE not a subtype (xquery-typeswitch-case-not-subtype) 

Description:

If the types in the CASE branches are not subtypes of the TYPESWITCH, is this 
an error, or are these branches simply never executed? If the latter, should we 
require a warning?

Issue 77 : Namespace Prefix Redefine (xquery-namespace-prefix-

Originator: XML Query WG
Locus: xquery

Originator: XQuery Editors
Locus: xquery

Originator: Mary Fernandez
Locus: xquery-algebra

Originator: XML Query
Locus: xquery-algebra



redefine) 

Description:

Can a namespace prefix be redefined, as in XML? 

Issue 78 : Namespace Attributes in Element Constructors (xquery-
namespace-attribute-declaration) 

Description:

If an element constructor contains a namespace declaration in XML syntax, is the 
namespace declared in the query?

 <foo:bar xmlns:foo="//www.foo.com/foo.xsd">
    <foo:baz> 
      Is this baz in the ’www.foo.com’ namespace?  
    </foo:baz>
  </foo>

Issue 79 : Static versus Dynamic Errors (xquery-errors-static-
dynamic) 

Description:

As part of the general description of errors, which is largely still to be done, we 
must carefully distinguish static from dynamic errors. In general, we should 
probably attempt to catch errors as early as possible. The following examples 
have been suggested by the Algebra team:

"If the content of its argument node cannot be expressed as a value of a simple 
type, the data function raises an error." This could be a static error, since the data 
function makes most sense for schema valid documents or nodes that have type 
assigned via xsi:type.

"For each member of the sequence, the ordering expression must return a single 
value of some type for which the ">" operator is defined (for example, a number or 
a string); otherwise an error results." This could also be a static error.

"When one or more operands is a node, the content of the node is extracted by an 
implicit call to the data function and converted to a number before the operation is 

Originator: XML Query
Locus: xquery-algebra

Originator: XML Query
Locus: xquery-algebra

Originator: Algebra
Locus: xquery-algebra



performed; if this conversion is not possible, an error results." This could be a 
static or a dynamic error. 

"TO is a binary operator that converts both of its operands to integers. It then 
generates a sequence containing all the integers from the left-hand operand to the 
right-hand operand, inclusive. If either of the operands cannot be converted to an 
integer, an error results." In the presence of type info, this could be a static error. 
In a well-formed document, in which arbitrary strings may be converted to 
integers, it could be dynamic. 

Issue 80 : Empty End Tags in Element Constructors (xquery-empty-
end-tag) 

Description:

Our current syntax uses an empty end tag ("</>") as the end tag for element 
constructors that use computed element names. Should we allow this for element 
constructors with literal element names?

Issue 81 : Sorting by Non-exposed Data (xquery-phantom-sortby) 

Description:

Should we make it easier to sort by data that is not exposed in the result? 
Although the current language allows this, it is difficult to define complex sort 
orders in which some items are not exposed in the result and others are computed 
in the expression that is sorted. Is there a more convenient syntax for this that 
would be useful in XQuery?

Issue 82 : Semicolon as Query Module Separator (xquery-
semicolon) 

Description:

The syntax currently uses a semicolon as a query module separator. What are the 
semantics of the query module separator? Is the semicolon the best character for 
this?

Issue 83 : Escaping Quotes and Apostrophes (xquery-escaping-
quotes-and-apostrophes) 

Originator: Michael Rys
Locus: xquery-algebra

Originator: Michael Rys
Locus: xquery-algebra

Originator: XML Query
Locus: xquery



Description:

In attribute constructors and string constructors, XQuery uses quotes or 
apostrophes as delimiters. How are these characters escaped when they occur 
within strings that are created by one of these constructors? 

Issue 84 : Unqualified Function Names (xquery-unqualified-function-
names) 

Description:

If a function name is not qualified by a namespace prefix, what namespace is the 
function in? Some options that have been suggested: the function might be 
considered to be in no namespace, in a default namespace, or in the namespace 
of XQuery’s built-in functions.

Issue 85 : Leading Minus (xquery-leading-minus) 

Description:

Should leading minus/plus be treated as unary operators or as part of a numeric 
literal? Or should both be supported?

Issue 86 : Case-Sensitivity in Keywords (xquery-case-sensitive-
keywords) 

Description:

Should keywords in XQuery be case-sensitive?

Issue 87 : GROUPBY (xquery-groupby) 

Originator: XML Query
Locus: xquery

Originator: XML Query
Locus: xquery

Originator: XML Query
Locus: xquery

Originator: XML Query
Locus: xquery

Originator: XML Query
Locus: xquery-algebra



Description:

Does XQuery need an explicit GROUPBY expression? This would not add 
expressive power, but would be convenient, and may be easier to optimize.

Issue 88 : General Expressions in Path Steps (xquery-step-
expressions) 

Description:

The XPath task force has recommended that we allow any expression in a path 
step. Proponents note that this adds to the symmetry of the language. Opponents 
note that this allows queries to be written that are very difficult to read, and may 
raise some issues for optimization. This needs further study.

Issue 89 : Comparing Collections (xquery-comparing-collections) 

Description:

How are collections compared? Note that we need to be able to compare 
unordered collections as well as ordered collections.

Issue 90 : Meaning of BEFORE and AFTER (xquery-before-after) 

Description:

Which of the following meanings is preferred for X BEFORE Y? (In each case, X 
AFTER Y would have the symmetric meaning.)

(1) X and Y are node sequences. Return the nodes in X that occur before some 
node in Y. This is the current definition.

(2) X and Y are node sequences. Return the nodes in X that occur before all 
nodes in Y. This is similar to the current definition and may be a better match for 
our use cases.

(3) X is a node sequence and Y is an individual node. Return the nodes in X that 
occur before Y. If YS is a node sequence, the meanings in (1) and (2) can be 
expressed as "X BEFORE YS[last()]" and "X BEFORE YS[1]".

Originator: 
Locus: xquery-algebra

Originator: XML Query
Locus: xquery-algebra

Originator: Jonathan
Locus: xquery-algebra



(4) X and Y are both individual nodes. Return True if X occurs before Y in 
document order, otherwise False. If XS and YS are node sequences, the meaning 
in (1) can be expressed as "FOR $x IN XS [SOME $y IN YS SATISFIES $x 
BEFORE $y] RETURN $x". The meaning in (2) can be expressed similarly, 
substituting "EVERY" for "SOME".

Issue 91 : Lists of Element Constructors (xquery-list-element-
constructor) 

Description:

If a list of expressions contains adjacent element constructors, should a comma 
appear between these element constructors?

Issue 92 : Static Type Assertions (xquery-static-type-assertion) 

Description:

In the XQuery Formalism document, there is a static type-assertion expression:

Expr : Type

This is often useful in an expression like:

LET bib0 : Bib := <bib>...some literal data...</bib>

which asserts statically that the type of bib0 is Bib, i.e., that the literal data is a 
value contained in the Bib type. If this is not true, a static, compile-time error is 
raised.

This semantics is not the same as :

LET bib0 := TREAT AS Bib (<bib>...</bib>)

which will raise a run-time error if the literal data is not a value in Bib.

Issue 93 : Names in Type Definitions (xquery-names-type-definition) 

Description:

Originator: Michael Rys
Locus: xquery

Originator: Mary
Locus: xquery

Originator: Don
Locus: xquery-algebra



Does the definition of a type include both element-names and element-contents 
(as in the Formal Semantics document), or only element-contents (as in XML 
Schema)?

Issue 94 : Path Expression Order (xquery-path-expression-order) 

Description:

Does a path expression preserves the order of its input or document order? When 
do these differ? We need to make our discussion of this more precise.

Issue 95 : Full Expression Syntax in Steps (xquery-full-expression-
syntax) 

Description:

The use of full expression syntax in a step of a path expression has been 
recommended by the joint Query/XSLT Task Force but has not yet been approved 
by the respective Working Groups. In the examples and use cases we have, this 
is currently used mainly to allow union at any level in a path expression. The use 
of full expression syntax in this document is subject to Working Group approval.

Issue 96 : Promotion Hierarchy for XML Schema Types (xquery-
schema-type-promotion) 

Description:

A fixed "promotion hierarchy" must be defined among the primitive and derived 
types of XML Schema. A function whose declared parameter type is in this 
hierarchy can be invoked with an argument whose type is lower in the hierarchy. 
For example, a function with a declared parameter-type of Float can be invoked 
with an integer argument. In such a case, the argument is converted to the 
declared type of the parameter. 

The promotion hierarchy will be defined by the Operators and Functions Task 
Force.

Issue 97 : Importing Schemas and DTDs into query (xquery-schema-
import) 

Originator: Michael Rys
Locus: xquery

Originator: XML Query
Locus: xquery-algebra

Originator: Jonathan
Locus: xquery



Description:

We do not specify how a Schema or DTD is ’imported’ into a query so that its 
information is available during type checking. Schema and DTDs can either be 
named explicitly (e.g., by an ’IMPORT SCHEMA’ clause in a query) or implicitly, by 
accessing documents that refer to a Schema or DTD. The mechanism for 
statically accessing a Schema or DTD is unspecified. 

This item is a duplicate of the Formal Semantics issue 0095.

Issue 98 : Support for schema-less and incompletely validated 
documents (xquery-schemaless) 

Description:

This is related to xquery-schema-import. We do not specify what is the effect of 
type checking a query that is applied to a document without a DTD or Schema. In 
general, a schema-less document has type xs:AnyType and type checking can 
proceed under that assumption. A related issue is what is the effect of type 
checking a query that is applied to an incompletely validated document. As above, 
we can make *no* assumptions about the static type of an incompletely validated 
document and must assume its static type is xs:AnyType. 

This item is a duplicate of the Formal Semantics issue 0096.

Issue 99 : Static type-checking vs. Schema validation (xquery-static-
versus-validate) 

Description:

Static type checking and schema validation are not equivalent, but we might want 
to do both in a query. For example, we might want to assert statically that an 
expression has a particular type and also validate dynamically the value of an 
expression w.r.t a particular schema. 

The differences between static type checking and schema validation must be 
enumerated clearly (the XSFD people should help us with this). 

This item is a duplicate of the Formal Semantics issue 0097.

Originator: Don Chamberlin
Locus: requirements

Originator: Don Chamberlin/Mary Fernandez 
Locus: xquery-algebra

Originator: Mary Fernandez 
Locus: xquery-algebra



Issue 100 : Implementation of and conformance levels for static type 
checking (xquery-type-conformance) 

Description:

Static type checking may be difficult and/or expensive to implement. Some 
discussion of algorithmic issues of type checking are needed. In addition, we may 
want to define "conformance levels" for XQuery, in which some processors (or 
some processing modes) are more permissive about types. This would allow 
XQuery implementations that do not understand all of Schema, and it would allow 
customers some control over the cost/benefit tradeoff of type checking. 

This item is a duplicate of the Formal Semantics issue 0098.

Issue 101 : Missing conformance section (xquery-conformance) 

Description:

The final XQuery recommendation must have a conformance section. The XML 
Query Working Group has not yet decided what should go into this section.

Issue 102 : typeof() function (xquery-typeof) 

Description:

Do we need a function that returns the type name of its operand? If so, what 
should it return if the operand is an element with a given xsi:type - the element 
name? the name of the type denoted by xsi:type? Specification of this function 
requires more work on types in XQuery.

D Revision Log (Non-Normative)

Jonathan, 29 Nov 2000: 

l Changed the name of the language from "Quilt" to "XQuery", to reflect the 
fact that the proposal has been accepted as the basis of the W3C XML 
Query Working Group. 

Changed the introduction to reflect this new status. 

Originator: Don
Locus: xquery-algebra

Originator: Jonathan
Locus: xquery

Originator: Jonathan
Locus: xquery-algebra



Added Jerome and Mugur’s names to the list of editors.

Don, 3 January 2001: 

l Changed FILTER to a function.

l Allowed a FLWR to contain LET without FOR.

l Added INSTANCEOF, CAST, and TREAT operators.

l Expanded descriptions of types and functions.

Jonathan, 2 February 2000:

l BNFs from Don and Dana, new mapping from Jerome, revised issues list.

Jonathan, 1 May 2001:

l Replaced the terms "list" and "forest" with "sequence" throughout, as in the 
Formal Description.

Don, 4 May 2001: 

l Changed element constructors to use XML syntax with nested expressions 
delimited by curly braces. Name may be omitted from an end-tag if the name 
in the start-tag is computed by an expression.

l Replaced grammar with James Clark grammar that avoids reserved words; 
placed fragments of this grammar in each section of the document as 
applicable.

l Added full axis syntax of XPath (with note indicating that we will support only 
a subset of the 13 axes).

l Added TYPESWITCH expression.

l New syntax for RANGE expression: m TO n.

l Required parentheses around conditional expression in IF...THEN...ELSE 
(to avoid reserved words).

l Changed NOT, TRUE, and FALSE into functions (to avoid reserved words).

l Increased the precedence of UNION, INTERSECT, and EXCEPT (for 
compatibility with XPath 1.0). 

l Changed dereference operator to => (because a name can contain a 
hyphen).

l Revised syntax for default namespace declaration (DEFAULT comes before 
NAMESPACE).



l Added syntax for declaring an external schema.

l Allowed any expression in a step of a path expression (subject to approval 
by WG).

l Changed syntax for sequence constructors; eliminated square-bracket 
delimiters.

l Added descriptions of unordered() and data() functions (subject to approval 
by WG).

l Changed comment delimiter from "--" to "#" (because hyphens can occur in 
names).

l Removed keywords LIST and ELEMENT from type syntax.

l Added semicolon as separator for query modules (subject to approval by 
WG).

l Made parameter types and return type optional in function definitions.

l Added more complete descriptions of various expressions and operators.

l Eliminated references to relational databases and SQL from the sections on 
joins and grouping.

l Added James Clark as an editor of the document.

Jonathan, 1 June 2001.

l Changed namespaces in examples to use example.com domain.

l Parsed all examples from body of text, modified to match current grammar.

l Added latest issues list, with new issues appended.

l Modified stylesheet to display revision log.

l Modified document titles and URLs to reflect the new batch of XML Query 
and XPath documents.


	XQuery 1.0: An XML Query Language
	W3C Working Draft 07 June 2001
	Abstract
	Status of this document
	Table of contents
	1 Introduction
	2 The XQuery Language
	2.1 Path Expressions
	2.2 Element Constructors
	2.3 FLWR Expressions
	2.4 Sorting
	2.5 Operators in Expressions
	2.5.1 Arithmetic operators
	2.5.2 Comparison operators
	2.5.3 Logical operators
	2.5.4 Sequence-related Operators

	2.6 Conditional Expressions
	2.7 Quantified Expressions
	2.8 Datatypes
	2.9 Functions
	2.10 User-Defined Datatypes
	2.11 Operations on Datatypes
	2.12 Structure of a Query Module

	3 Example Applications
	3.1 Filtering
	3.2 Joins
	3.3 Grouping

	4 Conclusion
	Appendices
	A References
	XML 1.0
	XML Schema
	XML Query 1.0 Requirements
	XQuery 1.0 Formal Semantics
	XPath 1.0
	XQL
	XML-QL
	SQL
	ODMG
	Lorel
	YATL
	Quilt
	XQuery 1.0 and XPath 2.0 Data Model
	XSLT
	XPointer
	Namespaces
	XPath 2.0 Requirements
	XQueryX 1.0

	B XQuery Grammar
	C XQuery Issues (Non-Normative)
	C.1 Issue List
	C.2 XQuery Issues
	Issue 1 : Collection types (xquery-collection-types)
	Issue 2 : Definitions of Operators (xquery-definition-of-operators)
	Issue 3 : Operators and functions (xquery-operators-and-functions)
	Issue 4 : External Functions (xquery-external-functions)
	Issue 5 : Function Definition (xquery-function-definition)
	Issue 6 : Function Resolution (xquery-function-resolution)
	Issue 7 : CAST expression (xquery-cast-expression)
	Issue 8 : Type Guard (xquery-type-guard)
	Issue 9 : Separation of clauses in FLWR (xquery-separation-of-flowers)
	Issue 10 : Alignment of Syntax (xquery-alignment-of-syntax)
	Issue 11 : Alternative syntax for element construction (xquery-element- construction)
	Issue 12 : Fusion (xquery-fusion)
	Issue 13 : Filter as a Function (xquery-filter-function)
	Issue 14 : TRY/CATCH and error() (xquery-try-catch-error)
	Issue 15 : Updates (xquery-updates)
	Issue 16 : Algebra Mapping (xquery-algebra-mapping)
	Issue 17 : XPath Productions (xquery-xpath-productions)
	Issue 18 : Abstract Syntax (xquery-abstract-syntax)
	Issue 19 : Recursion (xquery-recursion)
	Issue 20 : Copy and Reference Semantics (xquery-copy-reference)
	Issue 21 : View Definition (xquery-persist-views-functions)
	Issue 22 : Human-Readable Syntax for Types (xquery-type-syntax)
	Issue 23 : What is a Query (xquery-query)
	Issue 24 : XPath Type Coercions (xquery-xpath-coercions)
	Issue 25 : Support for Unordered Collections (xquery-unordered-collections)
	Issue 26 : Identity-based equality operator (xquery-equality-identity)
	Issue 27 : Deep equality (xquery-deep-equality)
	Issue 28 : Reference Constructor (xquery-reference-constructor)
	Issue 29 : Precedence of Operators (xquery-precedence)
	Issue 30 : Queries with Invalid Content (xquery-invalid-content)
	Issue 31 : Function Libraries (xquery-function-library)
	Issue 32 : Correspondence of Types (xquery-type-correspondence)
	Issue 33 : Excluding Undesired Elements (xquery-exclude-undesireables)
	Issue 34 : Alignment of Precedence (xquery-align-precedence)
	Issue 35 : Escape to ABQL (xquery-escape-to-abql)
	Issue 36 : CAST and TREAT AS Syntax (xquery-cast-syntax)
	Issue 37 : XML Schema Datatypes Constructors (xquery-datatype-constructors)
	Issue 38 : Attribute Constructor Function (xquery-attribute-constructor- function)
	Issue 39 : Attribute Name, Attribute Content (xquery-attribute-name-content)
	Issue 40 : Dereference Operator and Links (xquery-dereference-links)
	Issue 41 : XML Constructor (xquery-literal-xml-constructor)
	Issue 42 : Eval (xquery-eval)
	Issue 43 : Inline XML Schema Declarations (xquery-inline-xml-schema)
	Issue 44 : Encoding (xquery-encoding)
	Issue 45 : Typing of Filter (xquery-filter-typing)
	Issue 46 : Typeswitch (xquery-typeswitch)
	Issue 47 : Mapping Input Context (xquery-mapping-input-context)
	Issue 48 : Accessing Element Data (xquery-data-function)
	Issue 49 : Embedding XML in XQuery (xquery-embedding-xml)
	Issue 50 : Embedding XQuery in XML (xquery-embedding-xquery-in-xml)
	Issue 51 : Naive Implementation Strategy (xquery-naive-implementation)
	Issue 52 : XML-based Syntax (xquery-abql)
	Issue 53 : Mapping CAST AS (xquery-mapping-cast)
	Issue 54 : Defining Behavior for Well Formed, DTD, and Schema Documents (xquery- define- schema- variants)
	Issue 55 : Comments to end-of-line (xquery-comment-to-end-of-line)
	Issue 56 : XPath Axes (xquery-xpath-axes)
	Issue 57 : Quotes for computed attribute values (xquery-quote-computed- attribute- value)
	Issue 58 : Computed element and attribute names (xquery-computed- element- names)
	Issue 59 : Productions for Comments and Processing Instructions (xquery- comment- pi- productions)
	Issue 60 : Arithmetic operators among sequences (xquery-arithmetic- among- sequences)
	Issue 61 : Collation Sequences (xquery-collation-sequences)
	Issue 62 : Nulls, nil, and three-valued logic (xquery-three-value-logic)
	Issue 63 : Set operations based on value (xquery-set-operators-on-values)
	Issue 64 : Converting general expressions to Boolean (xquery-anything- to- boolean)
	Issue 65 : Quantifiers with multiple bindings? (xquery-quantifier-multiple- variables)
	Issue 66 : Implicit current node for functions? (xquery-implicit-current- node)
	Issue 67 : Subtype Substitutability (xquery-subtype-substitutability)
	Issue 68 : Substitution Groups (xquery-substitution-groups)
	Issue 69 : Sequences for single parameters (xquery-sequence-for-single)
	Issue 70 : Is TREAT AS necessary? (xquery-remove-treat)
	Issue 71 : Module syntax (xquery-module-syntax)
	Issue 72 : Importing Modules (xquery-import)
	Issue 73 : General discussion of errors (xquery-general-errors)
	Issue 74 : Cutting and pasting XML into XQuery (xquery-cut-and-paste- xml)
	Issue 75 : Normalized Equality (xquery-normalized-equality)
	Issue 76 : CASE not a subtype (xquery-typeswitch-case-not-subtype)
	Issue 77 : Namespace Prefix Redefine (xquery-namespace-prefix-
	Issue 78 : Namespace Attributes in Element Constructors (xquery-namespace- attribute- declaration)
	Issue 79 : Static versus Dynamic Errors (xquery-errors-static-dynamic)
	Issue 80 : Empty End Tags in Element Constructors (xquery-empty-end- tag)
	Issue 81 : Sorting by Non-exposed Data (xquery-phantom-sortby)
	Issue 82 : Semicolon as Query Module Separator (xquery-semicolon)
	Issue 83 : Escaping Quotes and Apostrophes (xquery-escaping-quotes- and- apostrophes)
	Issue 84 : Unqualified Function Names (xquery-unqualified-function-names)
	Issue 85 : Leading Minus (xquery-leading-minus)
	Issue 86 : Case-Sensitivity in Keywords (xquery-case-sensitive-keywords)
	Issue 87 : GROUPBY (xquery-groupby)
	Issue 88 : General Expressions in Path Steps (xquery-step-expressions)
	Issue 89 : Comparing Collections (xquery-comparing-collections)
	Issue 90 : Meaning of BEFORE and AFTER (xquery-before-after)
	Issue 91 : Lists of Element Constructors (xquery-list-element-constructor)
	Issue 92 : Static Type Assertions (xquery-static-type-assertion)
	Issue 93 : Names in Type Definitions (xquery-names-type-definition)
	Issue 94 : Path Expression Order (xquery-path-expression-order)
	Issue 95 : Full Expression Syntax in Steps (xquery-full-expression-syntax)
	Issue 96 : Promotion Hierarchy for XML Schema Types (xquery-schema- type- promotion)
	Issue 97 : Importing Schemas and DTDs into query (xquery-schema-import)
	Issue 98 : Support for schema-less and incompletely validated documents (xquery- schemaless)
	Issue 99 : Static type-checking vs. Schema validation (xquery-static-versus- validate)
	Issue 100 : Implementation of and conformance levels for static type checking (xquery- type- conformance)
	Issue 101 : Missing conformance section (xquery-conformance)
	Issue 102 : typeof() function (xquery-typeof)

	D Revision Log (Non-Normative)

	 
	World Wide Web Consortium Title Page

