
XMSG - XML Messaging Specification Page 1 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

XMSG - XML Messaging Specification
W3C Note 13 October 2000

This version:
http://www.w3.org/TR/2000/NOTE-xmsg-20001013/

Latest version:
http://www.w3.org/TR/xmsg/

Editor:
R. Alexander Milowski (Lexica, LLC) <amilowski@lexica.net>

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use, and software licensing rules apply.

Abstract

XMSG is a specification for using XML to send messages that contain a set of
XML documents, embedded non-XML data, and references to non-XML
documents in a fashion that supports scalable transactions and operates on a
participant model.

Status of this document

This document is a submission to the World Wide Web Consortium from Lexica,
LLC (see Submission Request, W3C Staff Comment). For a full list of all
acknowledged Submissions, please see Acknowledged Submissions to W3C.

This document is a Note made available by W3C for discussion only. This work
does not imply endorsement by, or the consensus of the W3C membership, nor
that W3C has, is, or will be allocating any resources to the issues addressed by
the Note. This document is a work in progress and may be updated, replaced, or
rendered obsolete by other documents at any time.

A list of current W3C technical documents can be found at the Technical Reports
page.

Table of Contents

XMSG - XML Messaging Specification Page 2 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

1. Goals and Requirements
2. A Messaging Philosophy
3. Participants and Messages
4. The Structure of a Message
 4.1. The Message
 4.2. Recording Message Hops
 4.3. Message Properties
 4.3.1. The "from" Property
 4.3.2. The "id" Property
 4.3.3. The "generated.on" Property
 4.3.4. The "tracking.code" Property
 4.3.5. The "to" Property
 4.3.6. The "action" Property
 4.3.7. The "reply.to" Property
 4.3.8. The "originator" Property
 4.3.9. The "originator.id" Property
 4.3.10. The "priority" Property
 4.3.11. The "manifest" Property
 4.4. Documents
 4.4.1. Document Properties
 4.4.1.1. The "uri" Attribute
 4.4.1.2. The "version" Attribute
 4.4.2. XML Documents
 4.4.3. Inline Non-XML Documents
 4.4.4. Out-of-Band Documents
 4.5. Failures
 4.6. Receipts
 4.7. Forwarding and Originators
 4.8. Creating Replies
5. Validating Messages

Appendices

Appendix A. Examples
Appendix B. XML 1.0 Compatibility.
Appendix C. The Message Schema
Appendix D. DTD Validation of Namespaces

1. Goals and Requirements

The following are the goals of this specification:

1. To provide the ability to transport multiple documents and references to
associated data objects within a single document (a "message") and
preserve their identity.

2. To provide the ability to associate metadata with both the documents and
the message without modifying the original document or schemas for those

XMSG - XML Messaging Specification Page 3 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

documents.
3. To provide the ability to transport non-XML data as a document within the

message.
4. To provide a simple way to accomplish XML messaging.

2. A Messaging Philosophy

This XML messaging specification is based on the basic principle of providing a
simple way to transport multiple XML documents within one logical XML construct
without dictating any layered semantics of a messaging protocol that might be
layered on top. The general philosophy is to provide the general structure upon
which messaging protocols for specific business or technological purposes can be
layered allowing the identification of that messaging intent but not dictating the
exact syntax and semantics of the subject message. In this way, manifests,
metadata, and other messaging specific constructs can be tailored to specific
vertical markets or technology applications.

In general, the idea of an XML message presented by this specification is three-
fold:

1. A pair or triplet of participants involved in the message are identified by URI
values.

2. Metadata may be associated with the message itself.
3. A set of documents is contained and identified by URI allowing for document

specific metadata.

These concepts are described later within the specification.

3. Participants and Messages

A message is sent from one participant (the Sender) to a second participant (the
Recipient). Additionally, it might be sent on behalf of a third participant (the
Originator). Essentially, an interaction (message) between two participants might
require the Recipient to forward a similar message to some other participant. In
this case, it is often necessary for the latter to know for whom the message is
being sent. This can be modeled as follows:

XMSG - XML Messaging Specification Page 4 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

Note:

A very specific business example of this is an insurance marketplace where
Insurers and Agencies communicate through a common Market. At certain
points in time, the Agency may send messages to the Market which cascade
into new messages being sent to the Insurer (request for quote). In that
specific case, it is necessary that the Insurer know whom the message is for
so that specific business-related relationships can be enforced.

Given this requirement, these participants may have the following roles:

Sender

The participant who sends the message.

Recipient

The participant who is intended to receive the message.

Originator

The participant for whom the sender has constructed the message.

These participants can be considered to form three axes within which the
message can placed.

This space is considered to be a participant space. All messages within a domain
must exist within that space.

4. The Structure of a Message

A message is an XML document that utilizes namespaces. The top-level structure

XMSG - XML Messaging Specification Page 5 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

of the document belongs to the namespace urn:x-lexica:xmsg:message:1.0.
Within this document, other documents--which are the content of the message--
can be embedded. The message structure itself and the embedded documents
are validated via their associated schemas.

4.1. The Message

A message is the top level container for an XML message with the following
structure:

The message allows the zero or more hop elements that record any transport hops
that the message may have taken. A message may have any number of these hop
elements inserted into the message between the location where the message was
generated and where the message was received by the recipient.

Following any hop elements, there may be any number of property elements. This
element provides the ability to associate any number of arbitrary properties with
the message, in the form of name/value pairs. This allows application-specific
metadata to be associated with the message.

Following all hop or property elements there must be one or more instances of a
document element, a failure element, or a receipt element.

The message element may have the following attributes:

<message xmlns="urn:x-lexica:xmsg:message:1.0"
to="{uri}"
from="{uri}"
id="{string}"
generated.on="{datetime}"
reply.to="{uri}"
originator="{uri}"
originator.id="{string}"
priority="{lowest|low|normal|high|highest}"
expires="{datetime}"
tracking.code="{string}"
action="{string}"
manifest="{uri}"
receipt.required="{boolean}"
for.receipt="{string}"

>
<hop/> ...
<property/> ...
<document>...</document> ... | <failure/> | <receipt/>
</message>

XMSG - XML Messaging Specification Page 6 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

4.2. Recording Message Hops

A message hop occurs when an intervening system handles the transport of a
message on the behalf of the sender. Such a hop should be recorded within the
message to provide an audit trail of what systems have participated in getting the
message to the recipient. Such recording is accomplished via the hop element.

The structure of a hop tag is:

Note:

The transport.used attribute typically has as a value common codes for
standard transports like "http" or "https".

4.3. Message Properties

A message has metadata encoded as a set of properties. Some of these

Attribute Description Required
from The URI that identifies the sender of the message. Yes
to The URI that identifies the recipient of the message. Yes

reply.to The URI to use in the reply message for the "to"
property. No

originator The URI that identifies whom the message was sent
for by the actual sender of the message. No

originator.id The message identifier of the originator's initial
message. No

priority A choice of lowest, low, normal, high or highest, with a
default of "normal." No

expires A date and time that the message expires. No
id A message identifer unique to the sender. Yes
generated.on The date and time the message was generated. Yes
tracking.code An application-specific tracking code. No

action An application-specific "subject" or action for the
recipient. No

manifest A URI that identifies a description of the message's
contents. No

receipt.required An indicator that receipt message is required. No

for.receipt The value of previously received message receipt for
which this message is a match. No

<hop received.on="{datetime}" received.by="{uri}" transport.used="{stri

XMSG - XML Messaging Specification Page 7 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

properties are "first-class" properties and are identified specifically by the
message schema--where they are defined as attributes. Arbitrary properties may
be associated with the message by using the property tag.

The structure of the property tag is:

The value of the name attribute is a QName (qualified name) as defined in
Namespaces in XML. In this case, the prefix used must be declared somewhere
within the ancestry of the property tag where the qualified name is used.

4.3.1. The "from" Property

The from property is a first-class property. It identifies the sender of the message.
This value is encoded as an absolute URI value.

This is a required property.

4.3.2. The "id" Property

The id property is a first-class property. It is a unique identifier for the instance of
the message sent by the sender . The combination of the from property and this
value should create a unique pair over time for the producer of this message (as
identified by the from property value).

This is a required property.

4.3.3. The "generated.on" Property

The generated.on property is a first-class property. It is a date and timestamp for
the message. It is the date and time that the message was generated by the
sender.

This is a required property.

4.3.4. The "tracking.code" Property

The tracking.code property is a first-class property. It is an application-dependent
value that is used as an identifier to track things like transactions. This value may
be propagated through multiple messages.

This is an optional property.

4.3.5. The "to" Property

<property name="{QName}" value="{string}"/>

XMSG - XML Messaging Specification Page 8 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

The to property is a first-class property. It identifies the intended recipient of the
message. This value is encoded as an absolute URI value.

This is a required property.

4.3.6. The "action" Property

The action property is a first-class property. It is an application-dependent value
used to further qualify the message for the recipient.

This is an optional property.

4.3.7. The "reply.to" Property

The reply.to property is a first-class property. It identifies the recipient of the reply
to this message. This value is encoded as an absolute URI value.

This is an optional property.

4.3.8. The "originator" Property

The originator property is a first-class property. It identifies for whom the message
is being sent by the sender. Essentially, this property captures the originator of a
message chain.

This value is encoded as an absolute URI value.

This is an optional property.

4.3.9. The "originator.id" Property

The originator.id property is a first-class property. It is a unique identifier for the
instance of the originator's message. This value is copied from the id property
when the from is copied to the originator. The combination of the originator
property and this value should create a unique pair over time for the originator.

This is a required property if the originator property is specified.

4.3.10. The "priority" Property

The priority property is a first-class property. It specifies the priority at which the
message should be processed. The allowed values are "lowest", "low", "normal",
"high", and "highest".

This is an optional property.

4.3.11. The "manifest" Property

XMSG - XML Messaging Specification Page 9 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

The manifest property is a first-class property. It identifies a document in the
message that is to be considered the manifest for the message. This value is
encoded as an absolute URI value.

This is an optional property.

4.4. Documents

Documents can be embedded within a message by using the document tag. This
tag allows the encoding of document specific metadata as well as the document
content--which may be XML or non-XML data.

The structure of a document tag is:

4.4.1. Document Properties

A document has a set of metadata encoded as properties. Some of these
properties are considered to be "first-class" and are encoded as attributes.
Arbitrary properties may be encoded via the same property tag used for message-
level metadata (See 4.3. Message Properties).

4.4.1.1. The "uri" Attribute

The uri property is a first-class property and encodes the absolute URI to be
associated with this document. This value must be unique to the message.

This is a required property.

4.4.1.2. The "version" Attribute

The version attribute specifies the version of the document. The value is an
application-dependent value.

This is an optional property.

4.4.2. XML Documents

An XML document is embedded within a message as a child of the content tag.
The namespaces of the embedded document must be declared properly such that
the document maintains its functionally equivalent information set. It is not legal
for the message schema namespace to be used by a contained document unless

<document uri="{uri}" version="{string}">
<property/>...
<content>...</content> | <data>...</data> | <data.reference>...</dat

</document>

XMSG - XML Messaging Specification Page 10 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

it is another message instance representing an embedded message.

Effectively, when a namespaced XML document is embedded in a message, the
single element child of the content child becomes the document element
contained within the children property and the uri property becomes the base URI
of the document information item. In addition, the version property of the
document information item defaults to "1.0" and all other properties are empty.

The structure of the content tag is:

The following is an example of an embedded document:

4.4.3. Inline Non-XML Documents

Non-XML documents may be embedded within a message using the data tag
which identifies the content type and encoding of the data. Essentially, this tag
acts like an inline attachment.

The structure of a data tag is:

The encoded data must also be escaped according to the XML rules for escaping
content. That is, the '<' and '&' characters must be encoded as < and &
respectively and unicode characters must be used.

The content type of the encoded data is specified via the content.type attribute.
This value must be a valid MIME type.

In addition, the encoding of the data is specified via the encoding attribute. The
value of this attribute is the name of the encoding (e.g. base64) and must be

<content>
<!-- any single element here -->
...
</content>

<document uri="id:something">
<content>
<request.for.quote xmlns="urn:x-lexica:somemarket:request.for.quote:1.0
<item part.no="1234" quantity="1"/>
<item part.no="2234" quantity="5"/>
</request.for.quote>
</content>
</document>

<data content.type="{mime-type}" encoding="{string}">...</data>

XMSG - XML Messaging Specification Page 11 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

understood by the receiving system.

The content.type and encoding attributes are required.

4.4.4. Out-of-Band Documents

Documents not containted within the message may also be referenced by the
message. This is accomplished by use of the data.reference tag. This tag has the
following structure:

The href attribute is a URI value--relative or absolute--that specifies the document.
The resolution of the location of this content may be transport dependent. For
example, it might be the relative URI of an attached document in a MIME
message (e.g. the attached filename).

The content type of the referred data is encoded via the content.type attribute. This
value must be a valid MIME type. It is specified such that the processing system
can identify the content type before traversing to the referred data.

The encoding of the referred document may be specified as well via the encoding
attribute. Although specified, typically an transport will identify the encoding of
data when the referred data is accessed. In such a case, this value may be
ignored.

The href and content.type attributes are required but the encoding is optional.

4.5. Failures

A failure element encodes a messaging level failure to process a message.
Typically this element is used to encode a response to a message received if that
message could not be processed.

The structure of the failure tag is:

The content of this element is a textual message associated with the failure. The
time the failure was detected is encoded in the onattribute--which is required.

Optionally, the sending system can encode a specific application-dependent
reason code in the reason.code attribute.

<data.reference href="{uri}" content.type="{mime-type}" encoding="{stri

<failure on="{timeInstant}" reason.code="{string}">...</failure>

XMSG - XML Messaging Specification Page 12 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

4.6. Receipts

Receipts are returned as the reply to a message when requested by setting the
receipt.required property to true. This receipt can be used to match a message
received asynchronously at some later date which has a that matches the
message.tracking.code supplied in the receipt.

The structure of the receipt tag is:

When the receipt is generated, the time instant is recorded into the timestamp
attribute. The message tracking code--as generated by the receiving system--is
set in the message.tracking.code attribute. Both of these attributes are required.

It is necessary that the message tracking code value and the receiving system--as
identified by the to message property--create a unique pair for the sending system
which will receive the asynchronous reply.

4.7. Forwarding and Originators

When a message is forwarded on behalf of a participant, the from and id
properties must be copied into the originator and originator.id properties of the
forwarded message. This allows the receiving system to create a reply which can
be matched via these same property values to the original message.

4.8. Creating Replies

A reply message must conform to the following rules to be considered a well-
formed reply:

1. The from property of the reply message is set to the to property of the
received message.

2. The to property of the reply message is set to the reply.to property of the
received message if specified, otherwise it is set to the from property of the
received message.

3. If specified, the originator, originator.id, and tracking.code properties of the
received message are copied to the reply message.

5. Validating Messages

Messages are validated via a namespace and schema aware processor. The
message itself must conform to the DTD or XML Schema provided. Each
document embedded through the use of the content tag must be validated against
the schema mapped to the namespace.

<receipt message.tracking.code="{string}" timestamp="{timeInstant}"/>

XMSG - XML Messaging Specification Page 13 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

Note:

It is possible for a namespace to be validated against a DTD instead of an
XML Schema. See Appendix D. DTD Validation of Namespaces for more
information.

Appendix A. Examples

A single document message requesting a quote:

A multiple document message requesting storage of the documents.

<message xmlns="urn:x-lexica:xmsg:message:1.0" from="urn:x-marketplace:
<document uri="id:request">
<content>
<request.for.quote xmlns="urn:x-someone:request.for.quote:1.0">
<item part.no="1234" quantity="1"/>
<item part.no="2234" quantity="5"/>
</request.for.quote>
</content>
</document>
</message>

<message xmlns="urn:x-lexica:xmsg:message:1.0" from="urn:x-marketplace:
<document uri="id:request">
<content>
<store.to xmlns="urn:x-lexica:marketplace:verbs:store:1.0" account="A12
</content>
</document>
<document uri="id:1">
<content>
<index xmlns="urn:x-marketplace:participant:a:index:1.0">
<term href="id:2">Document</term>
<term href="id:3">XML</term>
<term href="id:4">Schema</term>
</index>
</content>
</document>
<document uri="id:2">
<content>
<termdef xmlns="urn:x-marketplace:participant:a:termdef:1.0">
<title>Document</title>
<p>...</p>
</termdef>
</content>
</document>
<document uri="id:3">
<content>
<termdef xmlns="urn:x-marketplace:participant:a:termdef:1.0">
<title>XML</title>
<p>...</p>
</termdef>
</content>
</document>
<document uri="id:4">

XMSG - XML Messaging Specification Page 14 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

Non-XML data encoded with base64:

Appendix B. XML 1.0 Compatibility.

XML 1.0 documents that are valid contain document types. This syntax is,
obviously, incompatible with being embedded in the document element of the
message schema. If such a document is to be transported in a message, one of
the following schemes must be used:

Note:

Assume the following XML 1.0 document:

1. The document is included with the doctype declaration and internal subset.
Properties are set for the document using the property element for the
system and public identifiers for the corresponding DTD. The default
namespace is undeclared using xmlns="".

<content>
<termdef xmlns="urn:x-marketplace:participant:a:termdef:1.0">
<title>Schema</title>
<p>...</p>
</termdef>
</content>
</document>
</message>

<message xmlns="urn:x-lexica:xmsg:message:1.0" from="urn:x-marketplace:
<document uri="id:request">
<content>
<store.to xmlns="urn:x-lexica:marketplace:verbs:store:1.0" account="A12
</content>
</document>
<document uri="id:foo.txt">
<data content.type="text/plain" encoding="base64">SSBhbSB0ZXh0Lg0KSGVhc
</document>
</message>

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "xhtml11.dtd" >
<html>
<head><title>An XML 1.0 document</title></head>
<body>
<p>Hello world!</p>
</body>
</html>

XMSG - XML Messaging Specification Page 15 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

2. The document is included without the doctype declaration and internal
subset. The default namespace is set to the system identifier of the DTD.

3. The document is included without the doctype declaration and internal
subset. An XML encoding is used to transport both.

Appendix C. The Message Schema

The message schema has been specified in both an XML Schema and DTD
format. These schemas are intended to be used by a processor that can associate

<!-- a message fragment -->
<document uri="id:something">
<property name="public-id" value="-//W3C//DTD XHTML 1.1//EN"/>
<property name="system-id" value="xhtml11.dtd"/>
<content>
<html xmlns="">
<head><title>An XML 1.0 document</title></head>
<body>
<p>Hello world!</p>
</body>
</html>
</content>
</document>

<!-- a message fragment -->
<document uri="id:something">
<content>
<!-- Note the problem in that the namespace must be mapped to the
<html xmlns="http://www.w3.org/TR/xhtml1">
<head><title>An XML 1.0 document</title></head>
<body>
<p>Hello world!</p>
</body>
</html>
</content>
</document>

<!-- a message fragment -->
<document uri="id:something">
<content>
<xml1.0 xmlns="urn:x-lexica:examples:xml1.0:encoding:1.0">
<doctype public.id="-//W3C//DTD XHTML 1.1//EN" system.id="xhtml11.
<internal.subset/>
</doctype>
<root>
<html xmlns="">
<head><title>An XML 1.0 document</title></head>
<body>
<p>Hello world!</p>
</body>
</html>
</root>
</xml1.0>
</content>
</document>

XMSG - XML Messaging Specification Page 16 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

the namespaced elements within the infoset of the message with the appropiate
schema for validation purposes.

The DTD and XML Schema are avaliable online and associated documentation is
provided with this specification.

Appendix D. DTD Validation of Namespaces

A DTD can be used to validate a namespace if you make the assumption that tag
and type are conflated. That is, an element name is also the name of the complex
type by which the element is being validated.

If, when the DTD is loaded, the namespace to be associated with the DTD is used
to build qualified names out of all element names and element name references in
content models, then the model can be used externally to validate the
namespace. For example, given the following element declaration:

when read associated with namespaceurn:x-lexica:examples:container:1.0
you would end up with the following interpretation:

In addition, the use of ANY allows mixing of namespaces. The keyword "ANY" is
defined in XML 1.0 as:

"The declaration matches ANY, and the types of any child elements have been
declared."

Thus, if another namespace is included as a child of an element with a declaration
of ANY and that maps to another DTD, then that child is also legal. The only
restriction is that you cannot mixed namespaces within a content model.
Essentially, the ANY keyword is the only construct you have to mix namespaces.

An example of using this methodology is as follows:

<!ELEMENT container (thing+) >
<!ELEMENT thing ANY >

{urn:x-lexica:examples:container:1.0}container -> {urn:x-lexica:example
{urn:x-lexica:examples:container:1.0}thing -> ANY

<container xmlns="urn:x-lexica:examples:container:1.0">
<thing>
<body xmlns="http://www.w3.org/1999/xhtml">
<p>Hello world!</p>
</body>
</thing>
</container>

XMSG - XML Messaging Specification Page 17 of 17

http://www.w3.org/TR/xmsg/ 6/19/2001

	XMSG - XML Messaging Specification
	W3C Note 13 October, 2000
	Abstract
	Status of this document
	Table of Contents
	Appendices

	1. Goals and Requirements
	2. A Messaging Philosophy
	3. Participants and Messages
	4. The Structure of a Message
	4.1. The Message
	4.2. Recording Message Hops
	4.3. Message Properties
	4.3.1. The "from" Property
	4.3.2. The "id" Property
	4.3.3. The "generated.on" Property
	4.3.4. The "tracking.code" Property
	4.3.5. The "to" Property
	4.3.6. The "action" Property
	4.3.7. The "reply.to" Property
	4.3.8. The "originator" Property
	4.3.9. The "originator.id" Property
	4.3.10. The "priority" Property
	4.3.11. The "manifest" Property

	4.4. Documents
	4.4.1. Document Properties
	4.4.1.1. The "uri" Attribute
	4.4.1.2. The "version" Attribute

	4.4.2. XML Documents
	4.4.3. Inline Non-XML Documents
	4.4.4. Out-of-Band Documents

	4.5. Failures
	4.6. Receipts
	4.7. Forwarding and Originators
	4.8. Creating Replies

	5. Validating Messages
	Appendix A. Examples
	Appendix B. XML 1.0 Compatibility.
	Appendix C. The Message Schema
	Appendix D. DTD Validation of Namespaces

	
	World Wide Web Consortium Title Page

