

XHTML™ Events

An updated events syntax for XHTML

W3C Working Draft 28 August 2000

This version:
http://www.w3.org/TR/2000/WD-xhtml-events-20000828

Latest version:
http://www.w3.org/TR/xhtml-events

Previous version:
http://www.w3.org/TR/1999/WD-xhtml-events-19991221

Editors:
Ted Wugofski, Phone.com (previously with Gateway)

Copyright ©1999-2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C
liability, trademark, document use and software licensing rules apply.

Abstract

This specification defines the XHTML Event Module, a module that provides
XHTML host languages [XMOD] with the ability to uniformly integrate behaviors
with Document Object Model (DOM) Level 2 event interfaces [DOM2].

This specification also defines the XHTML Basic Event Module, a module which
subsets the XHTML Event Module for simpler applications and simpler client
devices, and the XHTML Event Types Module, a module defining XHTML
language event types.

The DOM specifies an event model that provides the following features:

l the event system is generic,
l a means is provided for registering event handlers,
l events may be routed through a tree structure, and
l context information for each event is available.

In addition, the DOM provides an event flow architecture that describes how
events are captured, bubbled, and canceled. In summary, event flow is the

process through which an event originates from the DOM implementation and is
passed into the document object model. The methods of event capture and event
bubbling, along with various event listener registration techniques, allow the event
to then be handled in a number of ways. It can be handled locally at the target
node level or centrally from a node higher in the document tree.

The XHTML Event Module contains an onevent element is used to represent the
DOM event listener. As with the DOM Level 2 event interfaces, the XHTML Event
Module provides a means for authors to listen to events during the capturing and
bubbling phases, as well as when an event reaches its target node.

Status of this document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this
document series is maintained at the W3C.

This is the second public working draft of the of the XHTML Event Module
specification. It is guaranteed to change; anyone implementing it should realize
that we will not allow ourselves to be restricted by experimental implementations
when deciding whether to change the specifications.

This specification is a Working Draft of the HTML Working Group for review by
W3C members and other interested parties. Publication as a Working Draft does
not imply endorsement by the W3C membership, nor of members of the HTML,
SYMM, nor DOM working groups.

This document may be updated, replaced, or obsoleted by other documents at
any time. It is inappropriate to use W3C Working Drafts as reference material or to
cite them as other than "work in progress".

This document has been produced as part of the W3C HTML Activity.

This document is for public review. Comments on the normative aspects of this
document or the integration with XHTML should be sent to the public mailing list
www-html@w3.org.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

Special acknowledgements to: Mark Baker (Sun Microsystems), Wayne Carr (Intel
Corporation), Warner ten Kate (Philips Electronics), Shane P. McCarron (Applied
Testing and Technology), Patrick Schmitz (Microsoft), and Peter Stark (Ericsson)
for their significant contributions to the evolution of this specification.

Contents

1. The XHTML Basic Events Module
2. Event Module Elements

2.1. The onevent Element
2.2. The action Element
2.3. The stopevent Element
2.4. The XHTML Events Namespace

3. Naming Event Types
4. The XHTML Event Types Module
5. Using the XHTML Events

5.1. Registering an Event Listener
5.2. Listening to a Bubbling Event
5.3. Overriding Event Handlers

A. References
A.1. Normative References
A.2. Other References

1. The XHTML Basic Events Module

This section is normative.

This working draft proposes two event processing modules (in addition to the
event types): an XHTML Basic Events Module and an XHTML Events Module.
The XHTML Basic Events Module provides simple DOM2 event model support for
simple applications and simple devices. The XHTML Events Module provides full
DOM Level 2 event model support.

These two modules differ in that the XHTML Basic Events Module does not
include all of the onevent element's attributes:

The XHTML Basic Events Module does not support the eventsource and the
registerwith attributes in order to simplify the binding of event listeners to target
nodes.

Binding is simplified because event listeners, as embodied by the onevent
element, only appear as child elements of the target node. Therefore, there is no
reason to resolve bindings with elements that have not yet been loaded into the
document tree.

Attribute
XHTML
Basic

Events

XHTML
Events

id Yes Yes
type Yes Yes

eventsource No Yes
registerwith No Yes

onphase Yes Yes
capture Yes Yes

2. Event Module Elements

This section is normative.

The onevent element supports a subset of the DOM’s eventlistener interface.

The requirements for the XHTML Event Module are defined as:

l Expose the DOM event model to an XML document [XML]
l Provide for new event types without requiring modification to the DOM or the

DTD.
l Don’t require non-XML parsers.
l Be able to integrate with other XML languages

2.1 The onevent Element

<!ENTITY % Boolean "(true | false)" >
<!ENTITY % onevent-content "((action,stopevent?)|(script,stopevent?)|stop
<!ELEMENT onevent %onevent-content;>
<!ATTLIST onevent
 id ID #IMPLIED
 type NMTOKEN #REQUIRED
 eventsource IDREF #REQUIRED
 registerwith IDREF #IMPLIED
 onphase (capturing|bubbling|target) #IMPLIED
 capture %Boolean; #IMPLIED
>

The onevent element provides a means for a document to declaratively specify an
event listener that is registered to either the onevent element’s parent element or
the element refered to by the onevent element’s registerwith attribute. The
onevent element is said to be registered to the onevent element’s target node.

Following the DOM2 convention, when multiple, identical event listeners register to
the same target node, only the last registration will be kept and the previous will be
discarded. No specification is made to the order in which multiple non-identical
event listeners are processed.

As specified in DOM2, an event of a given type is dispatched from the top of the
document tree and propagates in a direct line between the top of the document
tree and the event’s target node. When the event reaches its target node, the
event propagates back to the top of the document tree in a direct line.

Therefore, an onevent element may "see" an event in three conditions:

1. When the event is propagating down the document tree and the event
propagates through the onevent element’s target node on its way to the
event’s target node. This condition occurs during the event’s capturing
phase.

2. When the event’s target node is the same as the onevent element’s target

node and the event reaches its target node.
3. When the event is propagating back up the document tree and the event

propagates through the onevent element’s target node on its way from the
event’s target node up to the document’s root node. This condition occurs
during the event’s bubbling phase.

If the onevent element’s onphase attribute is "bubbling" or "target", it will not see
the event during the capturing phase.

If the onevent element’s onphase attribute is "capturing" or "target", it will not see
the event during the bubbling phase.

The semantics of the onevent element are such that when the onevent element
sees the event, the host language bindings to the onevent element should process
the event.

Note that even though an onevent element may register with a target node as a
child of the target node or using the onevent element’s registerwith attribute,
these two mechanisms do not result in the same document tree structure. This
means that the user agent must rely on the DOM interfaces for managing events,
rather than simply relying on the natural flow of events through the document tree.
If a user only relied on the natural flow of events through the document tree, the
onevent element would never see an event targeting the onevent element’s target
node.

Certain event types may restrict whether the event participates in all phases of
propagation.

In XHTML, the onevent element may contain an action element or a script
element. The action element specifies a link to an event handler external to the
onevent element. The script element contains a fragment of script that serves as
the event handler.

It is not required that a language using the XHTML Event Module support the
script child element if that language does not support the XHTML Scripting Module
[XMOD].

The onevent element has the following attributes:

id
The id attribute is a document-unique identifier. The value of this identifier is
often used to manipulate the element through a DOM interface.

type
The type attribute specifies the event type for which the content author is
registering. As specified by [DOM2], the value of the type attribute should be
an XML Name [XML]. The onevent element’s desired event is an event
whose event type matches the value of type attribute.

eventsource
The eventsource attribute specifies the source of an event (i.e., which node
in the document dispatched the event into the document tree). If the

eventsource attribute is specified, only events that match both the type
attribute value and the eventsource value are considered.

registerwith
The onevent element registers an event listener with the element specified
by the registerwith attribute. The default value for the registerwith
attribute is "empty", which means that the onevent element registers an
event listener with the onevent element’s parent. Otherwise, registerwith is
the value of desired target element’s id attribute.

onphase
The onphase attribute specifies when (during which DOM 2 event
propagation phase) the onevent element may see the desired event. If the
value of the onphase attribute is "oncapture", the onevent element will only
see an event during the capturing phase. If the value of the onphase attribute
is "bubbling", the onevent element will only see an event during the bubbling
phase. If the value of the onphase attribute is "target", the onevent element
will only see an event when the event reaches the event’s target node (and
this is the same node as the onevent element’s target node). The default
behavior is for the onevent element to see events when they reach the target
node (i.e., target).

2.2 The action Element

<!ENTITY % action-content EMPTY>
<!ELEMENT action %action-content;>
<!ATTLIST action
 id ID #IMPLIED
 href %URI #REQUIRED
 type %ContentType #IMPLIED
>

The action element provides a generic means of binding an event handler to an
event listener. The action element is always a child element of an onevent
element. When the onevent element sees a desired event, it will invoke the
behaviour linked to by the enclosed action element.

The language integrating the Event Module will determine what content types may
serve as appropriate behaviours.

The action element has the following attributes:

id
The id attribute is a document-unique identifier. The value of this identifier is
often used to manipulate the element through a DOM interface.

href
The href attribute is a link to the associated behavior. This link may be a to
an internal or external behavior. If the link is to an external behavior, it is
processed as if the behavior was imported into the current document at the
location of the action element.

type
The type attribute is a hint of the content type at the other end of the link
specified by the href attribute. If the type attribute is not specified, the

default content type is the same as the default scripting content type.

2.3 The stopevent Element

<!ENTITY % stopevent-content EMPTY>
<!ELEMENT stopevent %stopevent-content;>
<!ATTLIST stopevent
 id ID #IMPLIED
>

The stopevent element provides a means of stopping the propagation of an event
after it has been handled. The stopevent element is equivalent to the
stopPropagation method in DOM2.

The stopevent element is useful if a descendent event handler wishes to stop an
event from bubbling back to an ancestral event handler (i.e., the descendent
effectively overrides the ancestor’s behaviour).

id
The id attribute is a document-unique identifier. The value of this identifier is
often used to manipulate the element through a DOM interface.

2.4 The XHTML Event Module Namespace

The XHTML Event Module will use the "http://www.w3.org/1999/xhtml"
namespace as specified in XML Namespaces [NAME].

3. Naming Event Types

This section is informative

While, the XHTML Event Module does not normatively specify how a language
designer should name their events (i.e., the values stored in the onevent element’s
type attribute). However, this specification does make a recommendation on how
these events should be named.

It is recommended that event types be a string containing a prefix followed with a
hyphen character ("-") followed with the name of the event:

event_prefix-event_type_name

The event’s prefix is a lightweight mechanism for qualifying event types.

To avoid confusion between event type names and the syntax for qualified names,
-according to XML namespaces [NAME]-, that sometimes are used in attribute
values, it is recommended that the event type names not include the colon (’:’).

4. XHTML Event Types Module

This section is informative

The XHTML Event Types Module defines the following event names. Refer to
[DOM2] for the semantics of these HTML events.

5. Using the XHTML Event Module in XHTML

This section is informative.

The XHTML Event Module may be integrated into XHTML to add extensibility to
the event handling already present through a variety of properties. This section is
informative: it is provided as a way of explaining how the Event Module may be
used with XHTML.

This section describes how to use the XHTML Event Module in XHTML. This
section does not formalize how the XHTML Event Module is integrated into the
XHTML DTD or schema.

5.1 Registering an Event Listener

XHTML Event
Name

DOM2 Event
Name

html-load load

html-unload unload

html-abort abort

html-error error

html-select select

html-change change

html-submit submit

html-reset reset

html-focus focus

html-blur blur

html-resize resize

html-scroll scroll

dom-click click

html-dblclick not specified
dom-mousedown click

dom-mouseup click

dom-mouseover click

dom-mousemove click

dom-mouseout click

html-keypress not specified
html-keydown not specified
html-keyup not-specified

The onevent element provides a means of registering an event listener to an
element, and in the process, associating an event hander with that listener. For
example, if you wanted to associate an event listener to an img element, you
would write:

 <onevent id="a" type="dom-click">
 ... the desired event handler ...
 </onevent>

In this example, an onevent element is registered with the img element by making
the onevent element a child of the img element. A second approach would have
been to use the onevent element’s registerwith attribute:

<onevent id="a" registerwith="b" type="dom-click">
 ... the desired event handler ...
</onevent>
...

...

In this example, the onevent element is registered to the img element by setting
the onevent element’s registerwith attribute to "b".

In both examples, the "desired event handler" will be processed when, and only
when, an "dom-click" event targets the img element. This is because the default
behavior is for the onevent element to only see a desired event when it reaches
the target node (i.e., the same behavior that would occur had the onevent
element’s onphase attribute been set to "target").

5.2. Listening to a Bubbling Event

If you want to see an event after it is processed by an element, you should make
the onevent element a child of an ancestor to the event’s target node. This is quite
useful if you want to invoke the same behavior for an event that could target
several child elements. For example:

<div id="a">
 <onevent id="b" type="dom-click" onphase="bubbling">
 ... the desired event handler ...
 </onevent>
 ...

 <div id="c">

 </div>
</div>

In this example, the onevent element is implicitly registered with the div element
because the onevent element is a child of the div element. The onevent element’s
onphase attribute is set to "bubbling" so that it will only see events during the
bubbling phase of event propagation.

The two img elements are also descendents of the "a" div element. Therefore,
when a dom-click event targets the "foo" image, the event propagates from "a" to
"foo" and then back to "a" (before working its way back to the top of the
document). Likewise, when a dom-click event targets the "bar" image, the event
propagates from "a" to "c" to "bar" and then back to "a".

5.3. Overriding Event Handlers

Sometimes you will want to have a default behaviour in which you occassionally
override. Consider the previous example in which you had two images and a
default handler:

<div id="a">
 <onevent id="b" type="dom-click" onphase="bubbling">
 ... the desired event handler ...
 </onevent>
 ...

 <div id="c">

 </div>
</div>

If you wanted to add a third image you might write:

<div id="a">
 <onevent id="b" type="dom-click" onphase="bubbling">
 ... the desired event handler ...
 </onevent>
 ...

 <div id="c">

 </div>

</div>

As written, the "b" onevent element will handle dom-click events that target any of
the three images. If you wanted to have a different behavior for the "new" img
element, you could write:

<div id="a">
 <onevent id="b" type="dom-click" onphase="bubbling">
 ... the desired event handler ...
 </onevent>
 ...

 <div id="c">

 </div>

 <onevent id="c" type="dom-click">
 ... the desired event handler ...
 <stopevent/>
 </onevent>

</div>

In this example, the "c" onevent element will see the dom-click event when the
event targets the "new" img element. After the onevent element’s behaviour is
invoked, the event stopevent element causes the dom-click event to stop
propagating through the document.

A. References

A.1 Normative References

[XML]
"Extensible Markup Language (XML) 1.0". W3C Recommendation. See
http://www.w3.org/TR/1998/REC-xml-19980210

[NAME]
"Namespaces in XML", . Bray T., et.al. W3C Recommendation. See
http://www.w3.org/TR/1999/REC-xml-names-19990114

A.2 Other References

[DOM2]
"Document Object Model (DOM) Level 2 Specification", Wood L., et.al. See
http://www.w3.org/TR/2000/CR-DOM-Level-2-20000510 (This document is a
work in progress).

[XHTML]
"XHTML™ 1.0: The Extensible HyperText Markup Language". Pemberton S.,
et.al. W3C Recommendation. See http://www.w3.org/TR/2000/REC-xhtml1-
20000216

[XMOD]
"Modularization of XHTML™". Altheim M., et.al. See
http://www.w3.org/TR/xhtml-modularization (This document is a work in
progress).

	XHTML Events
	Working Draft, August 28, 2000
	Abstract
	Status of this document
	Contents
	1. The XHTML Basic Events Module
	2. Event Module Elements
	2.1 The onevent Element
	2.2 The action Element
	2.3 The stopevent Element
	2.4 The XHTML Event Module Namespace

	3. Naming Event Types
	4. XHTML Event Types Module
	5. Using the XHTML Event Module in XHTML
	5.1 Registering an Event Listener
	5.2 Listening to a Bubbling Event
	5.3 Overriding Event Handlers

	A. References
	A.1 Normative References
	A.2 Other References

	
	World Wide Web Consortium Title Page

