
XQuery 1.0 and XPath 2.0 Data Model

W3C Working Draft 7 June 2001

This version:
http://www.w3.org/TR/2001/WD-query-datamodel-20010607/
(available in: HTML, XML)

Latest version:
http://www.w3.org/TR/query-datamodel/

Previous version:
http://www.w3.org/TR/2001/WD-query-datamodel-20010215/

Editors:
Mary Fernández, AT&T Labs <mff@research.att.com >
Jonathan Marsh, Microsoft <jmarsh@microsoft.com>

Copyright © 2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract

This document defines the W3C XQuery 1.0 and XPath 2.0 Data Model, which is
the data model of at least [XSL Transformations], and [XQuery 1.0: A Query
Language for XML], and any other specifications that reference it. This data model
is based on the data models of [XPath] and [XML Query Data Model] and replaces
[XML Query Data Model].

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this
document series is maintained at the W3C.

This is a Public Working Draft for review by W3C Members and other interested
parties. It is a draft document and may be updated, replaced or made obsolete by
other documents at any time. It is inappropriate to use W3C Working Drafts as
reference material or to cite them as other than "work in progress". This is work in
progress and does not imply endorsement by the W3C membership.

This document has been produced as part of the [XML Activity], following the
procedures set out for the W3C Process. The document has been written by the
[XSL Working Group] and [XML Query Working Group].

Comments on this document should be sent to the W3C mailing list www-xml-
query-comments@w3.org. (archived at http://lists.w3.org/Archives/Public/www-
xml-query-comments/).

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR/.

Table of Contents

1 Introduction
2 Notation and Pseudo-code Syntax
3 Concepts

3.1 Node Identity
3.2 Document Order
3.3 XML Schemas and the XML Information Set
3.4 Schema Components and Values
3.5 Text Nodes and Simple-Typed Values
3.6 Ignoring Comments, Processing Instructions, and Whitespace

4 Nodes
4.1 Documents
4.2 Elements
4.3 Attributes
4.4 Namespaces
4.5 Processing Instructions
4.6 Comments
4.7 References
4.8 Text

5 Simple Values
5.1 Primitive Values
5.2 Derived Simple Values

6 Sequences
7 Error
8 Schema Components

8.1 Mapping PSV Infoset additions to Schema Components
9 Equality
10 Example
11 XML Information Set Conformance
12 References

Appendix

A Issues
A.1 Issues

B Open Issues (Non-normative)
C Resolved Issues (Non-normative)

1 Introduction

This document defines the XQuery 1.0 and XPath 2.0 Data Model, which is the

data model of [XSL Transformations] 2.0 and [XQuery 1.0: A Query Language for
XML] 1.0.

The XQuery 1.0 and XPath 2.0 Data Model (henceworth "data model") serves two
purposes. First, it defines precisely the information contained in the input to an
XSLT or XQuery processor. Second, it defines all permissible values of
expressions in the XSLT, XQuery, and XPath languages. A language is closed
with respect to a data model if the value of every expression in a language is
guaranteed to be in the data model. XSLT 2.0, XQuery 1.0, and XPath 2.0 are all
closed with respect to the data model.

The data model is based on the [XML Information Set] (henceforth "Infoset"), but it
requires the following new features to meet the [XPath Requirements Version 2.0]
and [XML Query Requirements]:

l Support for XML Schema types. The XML Schema Working Group is
defining features, such as structures ([XMLSchema Part 1]) and simple data
types ([XMLSchema Part 2]), that extend the XML Information Set with
precise type information.

l Representation of Collections of Documents and of Simple and Complex
Values. ([XML Query Requirements])

l Representation of References. ([XML Query Requirements])

As with the Infoset, the XQuery 1.0 and XPath 2.0 Data Model specifies what
information in the documents is accessible, but it does not specify the
programming-language interfaces or bindings used to represent or access the
data.

Values in the data model fall into five categories: nodes, simple values,
sequences, error, and schema components. A node is defined in 4 Nodes and is
one of eight node kinds. Simple values are the union of all the value spaces of
XML Schema simple types and are defined in 5 Simple Values. A sequence is an
ordered collection of nodes, simple values, or any mixture of nodes and simple
values. A sequence cannot be a member of a sequence. Sequences are defined
in 6 Sequences. The error value is defined in 7 Error. A schema component
represents the type of element nodes, attribute nodes, and simple values, and are
defined in 8 Schema Components.

In this document, we provide a precise definition of how values in the XQuery 1.0
and XPath 2.0 Data Model are constructed and accessed, and how they relate to
values in the Infoset. We note wherever the XQuery 1.0 and XPath 2.0 Data
Model differs from that of XPath 1.0.

2 Notation and Pseudo-code Syntax

In addition to using prose, we define the data model using a functional notation.
We chose this notation because it is simple and permits a precise definition of the
data model, suitable for use by the formal semantics of XQuery. Although the
notation has a functional style, we emphasize that the data model can be realized
in a variety of programming languages and styles, for example, as object classes
and methods in an object-oriented language.

Pseudo-code syntax is highlighted as follows:

f : (x) -> y

In the psuedo-code syntax, the term Node denotes the category of node values,
SimpleValue denotes the category of simple values, and Sequence<V> denotes
the category of sequence values whose members are in category V. A UnitValue
refers to a node or a simple value. In a sequence, V may be any Node or
SimpleValue, or the union (choice) of several unit values. For example, the
following denotes a sequence containing comment or processing instruction
nodes:

Sequence<CommentNode | ProcessingInstructionNode>

There are some functions in the data model that are partial functions, for example,
a node may have one parent node or no parent. We use bounded sequences,
Sequence(m,n)<V>, to denote a sequence of at least m and at most nV values.
The unbounded sequence Sequence<V> is equivalent to Sequence(0,*)<V>,
where * denotes unbounded. For example, the parent accessor returns a singleton
sequence, if its node argument has a parent, or the empty sequence, if its
argument has no parent. The signature of parent specifies that it returns an empty
sequence or a sequence containing one element or document node:

parent : Node -> Sequence(0,1)<ElementNode | DocumentNode>

A SchemaComponent denotes the category of schema-component values.

The pseudo-code syntax defines functions to construct values, called
constructors; and functions to access parts of values, called accessors.

Note: The XPath 1.0 data model defines accessors, but does not define
constructors.

The term signature of a function specifies the value category of its zero or more
inputs and the value category of its one output. The following signature denotes a
function f that takes values in the categories V1, ..., Vm and returns an output

value in the category Vn.

f : (V1, ..., Vm) -> Vn

A member of a particular category is a permissible argument to any function that
accepts the category, for example, a ProcessingInstructionNode is a permissible
argument to a function expecting a Node.

In the pseudo-code syntax describing the mapping from the Infoset to the data
model, we name accessors of the Infoset using the convention infoset-<item-
name>-<property>. For example, infoset-elem-attributes is the accessor that
returns an element item’s attributes property:

infoset-elem-attributes : ElementItem -> Sequence<AttributeItem>

3 Concepts

3.1 Node Identity

Because XML documents are tree-structured, we define the data model using
conventional terminology for trees. The data model is a node-labeled, tree-
constructor representation, but also includes a concept of node identity. Node
identity simplifies the representation of XML reference values, e.g., IDREF,
XPointer, and URI values.

Two nodes have the same identity if only if they were created by the same
application of a node constructor (see 4 Nodes).

3.2 Document Order

A document order is defined on all the nodes in a document. It corresponds to the
order in which the first character of the XML representation of each node occurs in
the XML representation of the document after expansion of general entities. Thus,
the document node is the first node. Element nodes occur before their children.
Thus, document order means that element nodes occur in the order of their start-
tag in the XML (after expansion of entities). The namespace nodes of an element
occur before its attribute nodes, and the element’s attribute nodes occur before its
children. The relative order of namespace nodes and the relative order of attribute
nodes are implementation-dependent. Reverse document order is the reverse of
document order.

The relative order of nodes in distinct documents is implementation-dependent but
stable. In other words, if n1 and n2 are in one document, and m is in a different
document, then either ’n1 before m’ is true or ’m before n2’ is true, but both may
not be true.

3.3 XML Schemas and the XML Information Set

The data model is defined in terms of the [XML Information Set] after XML
Schema validity assessment. XML Schema validity assessment is the process of
assessing an XML element information item with respect to an XML Schema and
augmenting it and some or all of its descendants with properties that provide
information about validity and type assignment. The result of schema validity
assessment is an augmented Infoset, known as the Post Schema-Validation
Infoset, or PSVI. We use the naming convention convention psvi-<item-name>-
<property> to identify the accessor functions that return the PSV Infoset additions.

The data model supports the following classes of XML documents:

l Schema-validated documents, i.e., those validated with respect to a schema,
l DTD-valid documents, i.e., those documents validated with respect to a

DTD, and
l Well-formed documents with no corresponding DTD or schema.

The data model does not support non-well-formed XML documents, nor

documents that otherwise don’t have an XML Information Set; for example, that
don’t conform to XML Namespaces.

Schema-validated documents include documents in which some elements or
attributes have been validated by "lax" or "skip" validation ([XMLSchema Part 2]).

An "incompletely validated document" is an XML document that has a
corresponding schema but whose schema-validity assessment has resulted in one
or more element or attribute information items being assigned values other than
’valid’ for the [validity] property in the PSVI.

The data model supports incompletely validated documents. 8 Schema
Components specifies how such documents are represented in the data model.

Editorial Note: JM: This implies accommodation for the case where both a
DTD and a schema are applied. This will probably require some reconciliation
of the [attribute type] property with type information from the PSVI.

3.4 Schema Components and Values

The [XML Schema: Formal Description] (henceforth "XSFD") is a formal,
declarative system for describing and naming XML Schema information,
specifying XML instance type information, and validating instances against
schemas. XSFD includes a component model that defines four schema
components (simple type , complex type, element, and attribute), and it defines
the mapping from the XML Schema component model to the XSFD model. In
addition, it specifies "normalized, universal" names for all components of an XML
Schema, so that they can be uniquely identified by URIs.

The data model provides a representation for schema components, which are
used to represent the types of values. All simple values, element nodes, and
attribute nodes have an associated schema component. We use the term
SchemaComponent to collectively refer to the data model’s schema component
values simple-type-definition, complex-type-definition, element-declaration, and
attribute-declaration. The accessors for schema components are defined in 8
Schema Components. The schema component of element and attribute nodes is
derived from the PSV Infoset additions of the nodes’ corresponding element and
attribute information items.

A schema simple type consists of a lexical space, a value space, and a set of
facets [XMLSchema Part 2]. A simple type is either primitive (e.g., xs:string,
xs:boolean, xs:float, xs:double, xs:ID, xs:IDREF) or derived (e.g., xs:language,
xs:NMTOKEN, xs:long, etc., or user defined). We say a simple value is an
instance of a schema simple type if the simple value is in the value space of the
simple type. Because the value spaces of schema simple types may overlap, a
simple value may be an instance of more than one schema simple type, e.g., an
instance of xs:integer is also an instance of a xs:long.

Note: In XPath 1.0, the data model only defines nodes. The primitive data
types (number, boolean, string, node-set) are part of the expression
language, not the data model.

A schema complex type defines the permissible structure and content of an
element [XMLSchema Part 1].

A schema attribute declaration specifies an attribute’s name and the simple type
of its value.

A schema element declaration specifies an element’s name and the simple or
complex type of its content.

3.5 Text Nodes and Simple-Typed Values

The data model supports two representations of the character data in an XML
document: text nodes and simple-typed values. An element node, for example,
has child nodes that may include text nodes, comment nodes, processing
instruction nodes, and other element nodes. A text node contains a string of
consecutive character data items and is never followed or preceded by another
text node. In addition, the text content of an element may be interpreted as a
simple-typed value, such as an integer, a date, or a sequence of prices. To
illustrate, consider an element node whose complex type is a sequence of double-
precision numbers. The element’s children are three nodes: a text node with string
contents " 12.00 ", followed by a comment node, followed by a text node with
contents " 13.0", whereas its simple-typed value is a sequence containing the
double-precision numbers 12.0 and 13.0.

We note that the data model logically supports both text nodes and simple-typed
values, but it does not specify they should be implemented. An implementation
might choose to only store simple-typed values and reconstruct text nodes on
demand, vice versa. We note, however, that a simple-typed value does not always
have a unique lexical representation ([Issue-0027: Lexical representation of
simple-typed values]).

3.6 Ignoring Comments, Processing Instructions, and Whitespace

Although the data model can preserve all comments, processing instructions, and
whitespace characters in the Infoset, preservation of these values may be
unnecessary and onerous for some applications.

The data model is parameterized by three flags, ignore-comments, ignore-
processing-instructions, and ignore-whitespace, which affect the construction of
the data model from the Infoset. If the ignore-comments flag is true, comment
nodes are not preserved in the data model. If the ignore-processing-instructions
flag is true, processing-instruction nodes are not preserved in the data model. If
the ignore-whitespace flag is true, insignificant white space is not preserved.

ignore-comments : xs:boolean
ignore-processing-instructions : xs:boolean
ignore-whitespace : xs:boolean

Insignificant whitespace is defined as a text node that:

1. contains no characters other than white space characters (as defined in XML

1.0), and

2. has a parent element with a [validity] property with the value "valid", and a
[type definition] property yielding a complex type with content-type of
element-only.

Editorial Note: JM: The data model itself might benefit from whitespace
information available in the schema. See [Issue-0028: Whitespace
handling].

4 Nodes

The category of Node values contains eight distinct kinds of nodes: document,
element, attribute, text, namespace, processing instruction, comment, and
reference. The eight kinds of nodes are defined in the following subsections.

Note: The XPath 1.0 data model does not have reference nodes. Document
nodes and XPath 1.0 root nodes serve many of the same purposes, but are
not identical. In XPath 1.0, root nodes served as containers of document
fragments. XPath 2.0 supports sequences as first-class objects in the data
model.

Each kind of node has its own constructor. The effect of a node constructor is to
create a new node with a unique identity, distinct from all other nodes.

Document nodes and element nodes have a sequence of child nodes. A
document node or an element node is the parent of each of its child nodes. Nodes
never share children: if two nodes have distinct identities, then no child of one
node will be a child of the other node.

Every node has at most one parent, which is either an element node or the
document node. A node that has no parent is regarded as the root of a tree. The
one exception is a namespace node, which never has a parent. A tree contains a
root plus all nodes that are reachable directly or indirectly from the root via the
children, attributes, and namespace accessors. Every node belongs to exactly one
tree, and every tree has exactly one root node. A tree whose root node is a
document node is referred to as a document. A tree whose root node is some
other kind of node is referred to as a fragment.

Note: In XPath 1.0, Namespace nodes have parents.

There is also a way of determining the string-value of each kind of node. For some
kinds of node, the string-value is part of the node; for other kinds of node, the
string-value is computed from the string-value of its descendant nodes.

Element and attribute nodes contain a typed value, i.e., values that have
associated schema simple type. An attribute contains a sequence of simple-typed
values. An element contains either a complex-typed value, i.e., a sequence of
nodes, a simple-typed value, or a sequence of simple-typed values. 4.2 Elements
and 4.3 Attributes specify how the simple-typed value (typed-value) of an
element or attribute is accessed.

The following accessors are defined on all eight kinds of Nodes. The node-kind
accessor returns a string value representing the node’s kind: either "document",
"element", "attribute", "text", "namespace", "processing-instruction", "comment", or
"reference". The name accessor returns the empty sequence, if the node has no
name, otherwise, it returns a sequence containing one expanded QName. An
expanded QName is in the value space of xs:QName, and contains a namespace
URI and a local name. The parent accessor returns an empty sequence, if the
node has no parent, otherwise, it returns a sequence containing one node. The
string-value accessor returns the node’s string representation.

node-kind : Node -> xs:string
name : Node -> Sequence(0,1)<xs:QName>
parent : Node -> Sequence(0,1)<ElementNode | DocumentNode>
string-value : Node -> xs:string

The basic concept in the Infoset is an InfoItem. An InfoItem is one of eleven kinds
of item: document item, element item, attribute item, processing instruction item,
unexpanded entity item, character item, comment item, doctype item, unparsed
entity item, notation item, and namespace item. Constructors are provided by an
Infoset processor.

The infoitem-kind accessor returns a string value representing the information
item’s kind:

infoitem-kind : InfoItem -> xs:string

4.1 Documents

A document is represented by a document node, which corresponds to a
document information item.

A document node does not have an expanded-QName.

The children of the document node are nodes corresponding to the information
items found in the [children] property, omitting any document type declaration
information items.

In a well-formed document, the children of the document node consist exclusively
of element, processing-instruction, or comment nodes, and exactly one of these
children is an element node. A document node in the data model is more
permissive: it permits more than one element node as a child and also permits text
nodes as children.

The base URI of the document corresponds to the [base URI] property.

The string-value of the document node is the concatenation of the string-values of
all text-node descendants of the document node in document order.

The parent of the document node is always the empty sequence. A document
node always represents the root of a tree.

A document node has the constructor document-node, which takes a base URI

value and a non-empty sequence of its children nodes:

document-node : (xs:anyURI,
 Sequence(1,*)<ElementNode | TextNode | ProcessingInst
 | CommentNode>)
 -> DocumentNode

The accessors base-uri and children return a document node’s constituent parts:

base-uri : DocumentNode -> xs:anyURI
children : DocumentNode
 -> Sequence(1,*)<ElementNode | TextNode
 | ProcessingInstructionNode | CommentNode>

The node accessors node-kind, parent, and string-value also apply to document
nodes. A document node does not have an expanded-QName; the following
signature specifies that name applied to a document node returns the empty
sequence:

name(DocumentNode) : Sequence(0,0)<xs:QName>

A document node is constructed from a Document Information Item by the dm-
document-node function:

/* Accessors for document information items: */
infoset-doc-children : DocumentItem
 -> Sequence<ElementItem | ProcessingInstructionIt
 | CommentItem | DocTypeItem>
infoset-doc-base-uri : DocumentItem -> xs:anyURI

dm-document-node : DocumentItem -> DocumentNode
function dm-document-node(d) {
 kids = dm-collapse-text-nodes(sequence-map(dm-node,
 infoset-doc-children(d)))
 return document-node(infoset-doc-base-uri(d), kids)
}

The sequence-map function applies its first function argument to each member of
its second sequence argument and returns a new sequence containing the result
of applying the function to each member of the sequence. Below, dm-node is
applied to each child of the Document Information Item value d and a new
sequence of children nodes is constructed, each of which is a Node. The
constructor document-node constructs the document node in the data model.

 sequence-map : ((UnitValue1 -> UnitValue2), Sequence<UnitValue1)
 -> Sequence<UnitValue2>

The dm-node function maps an information item to a sequence of zero or one
data-model node.

 dm-node : InfoItem -> Sequence<(0,1)Node>
 function dm-node(i) {
 return
 if (infoitem-kind(i) = "element") then
 dm-element-node(i)
 else if (infoitem-kind(i) = "character") then
 dm-char-to-text(i)
 else if (infoitem-kind(i) = "processing-instruction") then {
 if (not(ignore-processing-instructions)) then

 dm-pi-node(i)
 else empty-sequence()
 }
 else if (infoitem-kind(i) = "comment") {
 if (not(ignore-comments)) then
 dm-comment-node(i)
 else empty-sequence()
 }
 else if (infoitem-kind(i) = "doctype") then
 empty-sequence()
 else if (infoitem-kind(i) = "notation-item") then
 empty-sequence()
 else if (infoitem-kind(i) = "unparsed-entity-item") then
 empty-sequence()
 }

4.2 Elements

Each element node corresponds to an element information item.

An element node has an expanded-QName. The local part of the expanded-
QName corresponds to the [local name] property. The namespace name of the
expanded-QName of the element node corresponds to the [namespace name]
property, if it has a value.

The children nodes of the element node correspond to the element, comment,
processing instruction, and character information items appearing in the
[children] property. This correspondence is not one-to-one, as consecutive
character information item children are coalesced into a single text node.
Because the data model requires that all general entities be expanded, there will
never be unexpanded entity reference information item children.

The attributes of the element node are nodes corresponding to attribute
information items appearing in the [attributes] property. The attributes of an
element always have distinct names.

The namespaces of the element node are nodes corresponding to namespace
information items appearing in the [in-scope namespaces] property. The
namespaces of an element always have distinct prefixes.

The declaration of an element is a schema component and corresponds to the
[element declaration] PSVI property. The type of an element is a schema
component and corresponds to the [type definition] PSVI property. The
representation of schema component information is defined in 8 Schema
Components.

An element node has an associated simple typed-value, e.g., an integer, date, or
user-defined simple value. For a document with a schema, the element’s typed-
value corresponds to the [schema normalized value] PSVI property. If the
element has a complex type, the typed-value is the empty sequence. For an
element in a well-formed document with no associated schema, the element’s
typed-value is the empty sequence.

The unique ID of the element node corresponds to the [normalized value]

property of the attribute information item in the [attributes] property that has a
type ID.

Editorial Note: JM: Need to augment attribute typing to accommodate DTD
types and Schema types in a unified manner. For instance, what is the
namespace of the ID type from a DTD?

Editorial Note: JM: Not incorporated from XPath 1.0: "If an XML processor
reports two elements in a document as having the same unique ID (which is
possible only if the document is invalid) then the second element in document
order must be treated as not having a unique ID."

The parent of the element node corresponds to the node corresponding to the
[parent] property.

The string-value of an element node is the concatenation of the string-values of all
text-node descendants of the element node in document order.

An element node has a constructor element-node, which takes an expanded-
QName, a sequence of namespace nodes, a sequence of attribute nodes, a
sequence of child nodes, and the node’s element declaration, which is a schema
component. Like all other node constructors, the element-node constructor has
the effect of creating a new node with a unique identity, distinct from all other
nodes.

 element-node : (expanded-QName,
 Sequence<NamespaceNode>,
 Sequence<AttributeNode>,
 Sequence<ElementNode | TextNode | ProcessingInstruct
 | CommentNode | ReferenceNode>,
 SchemaComponent)
 -> ElementNode

Editorial Note: MF: The constructor only takes the element declaration,
because it’s possible to derive the type of an element or attribute from its
corresponding declaration. But would it be cleaner to include the type in the
constructor as well?

To guarantee that the parent-child relationship is invertible, the element
constructor logically creates a copy of all of its namespace, attribute, and children
arguments and sets the parent property of these nodes to the newly created
element node. As long as the parent-child constraint is satisfied, an
implementation of the data model may choose to use specialized techniques to
avoid creating physical copies of the arguments to an element constructor.

Editorial Note: MF: An alternative interface is suggested by James Clark:
See [Issue-0019: Element constructor that performs schema
processing].

The accessors name, namespaces, attributes, children, and declaration return an
element node’s constituent parts. The type accessor returns the schema
component corresponding to the type of the element’s content: either a complex-
type-definition or simple-type-definition. It is possible to derive the element’s type
from its declaration.

name : ElementNode -> expanded-QName
namespaces : ElementNode -> Sequence<NamespaceNode>
attributes : ElementNode -> Sequence<AttributeNode>
children : ElementNode
 -> Sequence<ElementNode | TextNode | ProcessingInstructionN
 | CommentNode | ReferenceNode>
declaration : ElementNode -> SchemaComponent
type : ElementNode -> SchemaComponent

The accessor function typed-value returns a sequence of the simple-typed values
of an element, if the element has a simple type, otherwise if the element has a
complex type, it returns the empty sequence.

typed-value : ElementNode -> Sequence<SimpleValue>

The accessor function unique-id returns a sequence containing the unique ID of a
node, if one exists, otherwise, it returns the empty sequence.

unique-id : ElementNode -> Sequence(0,1)<xs:ID>

The node accessors node, node-kind, parent, and string-value also apply to
element nodes.

An element node is constructed from an Element Information Item by the dm-
element-node function:

/* Accessors for element information items: */
infoset-elem-namespace-name : ElementItem -> Sequence(0,1)<xs:anyURI>
infoset-elem-local-name : ElementItem -> xs:string
infoset-elem-children : ElementItem -> Sequence<InfoItem>
infoset-elem-attributes : ElementItem -> Sequence<AttributeItem>
infoset-elem-in-scope-namespaces : ElementItem -> Sequence<NamespaceI
infoset-elem-base-URI : ElementItem -> xs:anyURI /* unused ? */

psvi-elem-validity : ElementItem -> xs:string
psvi-elem-element-declaration : ElementItem -> ElementItem
psvi-elem-type-definition : ElementItem -> ElementItem
psvi-elem-schema-normalized-value : ElementItem -> xs:string

dm-element-node : ElementItem -> ElementNode
function dm-element-node(e) {
 name = xfo:expanded-QName(infoset-elem-namespace-name(e),
 infoset-elem-local-name(e))
 nsnodes = sequence-map(dm-namespace-node,
 infoset-elem-in-scope-namespaces(e))
 attrnodes = sequence-map(dm-attribute-node, infoset-elem-attributes
 kids = dm-collapse-text-nodes(sequence-map(dm-node, infoset-el

 declaration = dm-schema-component(psvi-elem-validity(e),
 psvi-elem-element-declaration(e))
 type = dm-schema-component(psvi-elem-validity(e),
 psvi-elem-type-definition(e))
 return element-node(name, nsnodes, attrnodes, kids, declaration)
}

Editorial Note: MF: Even though its possible to derive the type of an element
from its corresponding element declaration, it seems cleaner to compute
explicitly the schema components for both the element declaration and its

simple or complex type.

Editorial Note: JM: Why is [base URI] discarded? [Issue-0030: Base URI is
a property of element nodes].

Editorial Note: JM: Update the above to accomodate the possibility of
schema-less and DTD validation.

4.3 Attributes

Each element node has an associated set of attribute nodes, each corresponding
to an attribute information item.

An attribute node has an expanded-QName. The local part of the expanded-
QName corresponds to the [local name] property. The namespace name of the
expanded-QName corresponds to the [namespace name] property.

An attribute node has an associated string-value, which corresponds to the
[normalized value] property.

The declaration of an attribute is a schema component and corresponds to the
[attribute declaration] PSVI property. The type of an attribute is a schema
component and corresponds to the [type definition] PSVI property. The
representation of schema component information is defined in 8 Schema
Components.

An attribute node also has a typed-value. For a document with a schema, the
attribute’s typed-value corresponds to the [schema normalized value] PSVI
property. For an attribute in a well-formed document with no associated schema,
the attribute’s typed-value is the empty sequence.

Editorial Note: JM: What about in the presence of a DTD? We need to
recognize ID attribute types at a minimum.

For convenience, the element node is called the "parent" of each of these attribute
nodes even though an attribute node is not a "child" of its parent element. The
parent of the attribute node corresponds to the [owner element] property.

An attribute node has the constructor attribute-node, which takes the attribute’s
name, a string value, and the node’s attribute declaration, which is a schema
component. Like all other node constructors, the attribute-node constructor has
the effect of creating a new node with a unique identity, distinct from all other
nodes.

attribute-node : (xs:QName, xs:string, SchemaComponent) -> AttributeNo

The accessors name and declaration return an attribute’s constituent parts. The
accesor string-value returns its value. The type accessor returns the schema
component corresponding to the simple type of the attribute’s value. It is possible
to derive the attribute’s type from its declaration.

name : AttributeNode -> xs:QName

declaration : AttributeNode -> SchemaComponent
type : AttributeNode -> SchemaComponent

The accessor function typed-value returns a sequence of the simple-typed values
of an attribute.

typed-value : AttributeNode -> Sequence<SimpleValue>

The node accessors node-kind, parent, and string-value also apply to attribute
nodes.

An attribute node is constructed from an Attribute Information Item by the dm-
attribute-node function:

/* Accessors for attribute information items: */
infoset-attr-namespace-name : AttributeItem -> Sequence(0,1)<xs:anyU
infoset-attr-local-name : AttributeItem -> xs:string
infoset-attr-normalized-value : AttributeItem -> xs:string
infoset-attr-owner-element : AttributeItem -> ElementItem

psvi-attr-validity : AttributeItem -> xs:string
psvi-attr-attribute-declaration : AttributeItem -> ElementItem
psvi-attr-type-definition : AttributeItem -> ElementItem
psvi-attr-schema-normalized-value : AttributeItem -> xs:string

dm-attribute-node : AttributeItem -> AttributeNode
function dm-attribute-node(a) {
 name = xfo:expanded-QName(infoset-attr-namespace-name(a),
 infoset-attr-local-name(a))
 declaration = dm-schema-component(psvi-attr-validity(a),
 psvi-attr-attribute-declaration(a
 type = dm-schema-component(psvi-attr-validity(a),
 psvi-attr-type-definition(a))
 return attribute-node(name, infoset-attr-normalized-value(a), decla
}

Editorial Note: JM: Update the above to accomodate the possibility of
schema-less and DTD validation.

4.4 Namespaces

Each element node has an associated set of namespace nodes, each
corresponding to a namespace information item.

A namespace node has an expanded-QName. The local part of the QName
corresponds to the [prefix] property. The namespace name of the QName is the
empty sequence.

The string-value of the namespace node corresponds to the [namespace URI]
property.

A namespace node has no parent.

Editorial Note: From XPath 1.0 : "The parent of the namespace node is the
element node in whose namespaces collection this node appears." This is still
the subject of debate.

A namespace node has the constructor namespace-node, which takes a
namespace prefix and the absolute URI of the namespace being declared, either
of which may be the empty sequence. If the URI is empty, the prefix must be
empty too. Like all other node constructors, the namespace node constructor has
the effect of creating a new node with a unique identity, distinct from all other
nodes.

namespace-node : (Sequence(0,1)<xs:string>, Sequence(0,1)<xs:anyURI>)
 -> NamespaceNode

The accessors prefix and namespace-uri return a namespace node’s constituent
parts:

prefix : NamespaceNode -> Sequence(0,1)<xs:string>
uri : NamespaceNode -> Sequence(0,1)<xs:anyURI>

The accessors name, node-kind and string-value also apply to comment nodes.
The parent accessor applied to a namespace-node returns the empty sequence:

parent(NamespaceNode) : Sequence(0,0)<ElementNode | DocumentNode>

A namespace node is constructed from a Namespace Information Item by the dm-
namespace-node function:

infoset-ns-prefix : NamespaceItem -> Sequence(0,1)<xs:string
infoset-ns-namespace-name : NamespaceItem -> Sequence(0,1)<xs:anyURI

dm-namespace-node : NamespaceItem -> NamespaceNode
function dm-namespace-node(i) {
 return namespace-node(infoset-ns-prefix(i), infoset-ns-namespace-na
}

4.5 Processing Instructions

A processing instruction node corresponds to a processing instruction
information item. There are no processing instruction nodes for processing
instructions that are children of a document type declaration information item.

A processing instruction node has an expanded-QName. The local part of the
expanded-QName corresponds to the [target] property. The namespace name of
the expanded-QName is the empty sequence. The local part is a string value that
must be an NCName.

The string ’?>’ may not occur within a processing instruction’s target value ([XML
Recommendation]).

The string-value of the processing instruction node corresponds to the [content]
property.

The parent of the processing instruction node corresponds to the [parent]
property.

A processing-instruction node has the constructor processing-instruction-node,
which takes a string representing the target and a string representing the content.
Like all other node constructors, the processing node constructor has the effect of
creating a new node with a unique identity, distinct from all other nodes.

The string-value of the processing-instruction node corresponds to the [content]
property.

processing-instruction-node : (xs:NCName, xs:string)
 -> ProcessingInstructionNode

The node accessors name, node-kind, parent, and string-value also apply to
processing-instruction nodes.

A processing-instruction node is constructed from an Processing Instruction
Information Item by the dm-pi-node function:

/* Accessors for processing instruction information items */
infoset-pi-target : ProcessingInstructionItem -> xs:string
infoset-pi-content : ProcessingInstructionItem -> xs:string

dm-pi-node : ProcessingInstructionItem -> ProcessingInstructionNode
function dm-pi-node(i) {
 return processing-instruction-node(xfo:NCName(infoset-pi-target(i)),
 infoset-pi-content(i))
}

4.6 Comments

A comment node corresponds to a comment information item. There are no
comment nodes for comments that are children of a document type declaration
information item.

A comment node does not have an expanded-QName.

The string-value of the comment node corresponds to the [content] property.

The parent of the comment node corresponds to the [parent] property.

The string "--" (double-hyphen) must not occur within a comment’s string value
([XML Recommendation]).

A comment node has the constructor comment-node, which takes a string value.
Like all other node constructors, the comment node constructor has the effect of
creating a new node with a unique identity, distinct from all other nodes.

comment-node : xs:string -> CommentNode

The node accessors node-kind, parent, and string-value also apply to comment
nodes. A comment node does not have an expanded-QName; the following
signature specifies that name applied to a comment node returns the empty
sequence:

name(CommentNode) : Sequence(0,0)<xs:QName>

A comment node is constructed from a Comment Information Item by the dm-
comment-node function:

/* Accessors for comment information items */
infoset-comment-value : CommentItem -> xs:string

dm-comment-node : CommentItem -> CommentNode
function dm-comment-node(i) {
 return comment-node(infoset-comment-value i)
}

4.7 References

The data model provides reference nodes as a general mechanism for referring to
arbitrary nodes and preserving their identity.

We assume that the representation of a reference node is defined by the query
system that implements the data model. The mechanism for implementing a
reference node is implementation dependent, for example, a reference node might
be represented by a ID or key value, an object identifier, an XPointer value [XML
Pointer Language (XPointer)], etc. Node references are not serialized, i.e., they
exist only for use by the query system. To serialize a node reference, an
implementation may require that the reference be transformed explicitly to a valid
XML value, such as an IDREF or URI reference, or the implementation may
transform a reference node automatically.

Reference nodes are not guaranteed to be globally unique or persistent, although
some implementation of the data model may choose to support persistent node
references. Multiple techniques may exist for implementing reference nodes, and
there may be multiple techniques for implementing node identity.

A reference node does not correspond to any information item.

A reference node does not have an expanded-QName.

The string-value of a reference node is implementation-defined.

A reference node has the constructor reference-node, which takes a document,
element, attribute, text, processing-instruction, or comment node. Like all other
node constructors, the reference node constructor has the effect of creating a new
node with a unique identity, distinct from all other nodes.

 reference-node : (DocumentNode | ElementNode | AttributeNode | TextN
 | ProcessingInstructionNode | CommentNode)
 -> ReferenceNode

The accessor dereference returns the node referred to by a reference node.

 dereference : ReferenceNode
 -> (DocumentNode | ElementNode | AttributeNode | TextN
 | ProcessingInstructionNode | CommentNode)

The node accessors node-kind, parent, and string-value also apply to reference
nodes. The following signature specifies that name applied to a reference node
node returns the empty sequence:

name(ReferenceNode) : Sequence(0,0)<xs:QName>

4.8 Text

A text node corresponds to a sequence of one or more consecutive character
information items. As much character data as possible is grouped into each text
node: a text node never has an immediately following or preceding sibling that is a
text node.

A text node does not have an expanded-QName.

The string-value of a text node is the character data, which corresponds to the
concatenated [character code] properties of each of the character information
items.

The parent of the text node corresponds to the [parent] property of any one of the
consecutive character information items (consecutive characters always have
the same parent).

A text node has the constructor text-node and takes a string value. Like all other
node constructors, the text constructor has the effect of creating a new node with
a unique identity, distinct from all other nodes.

The string-value of a text node is simply its content.

text-node : xs:string -> TextNode

The node accessors node-kind, parent, and string-value also apply to text nodes.

The mapping from character information items to text nodes occurs in the dm-
element-node function. The infoset-char-code accessor maps a character
information item to the ISO 10646 character code (in the range 0 to #x10FFFF,
though not every value in this range is a legal XML character code) of the
character.

infoset-char-code : CharacterItem -> Code

The function dm-char-to-text takes one character information item and maps it to a
text node with a string value of length one.

 dm-char-to-text : CharacterItem -> TextNode
 function dm-char-to-text(c) {
 /* convert character code to string of length 1 */
 text-node(code2string(infoset-char-code c))
 }

The dm-collapse-text-node function synthesizes a single text node from multiple
text nodes. It calls dm-text-nodes to collapse recursively one or more consecutive

text nodes in its argument sequence. If insignificant whitespace is ignored, any
text node containing only whitespace is eliminated. All other nodes are returned
unchanged.

 dm-collapse-text-nodes : Sequence<Node> -> Sequence<Node>
 dm-text-node : Sequence<Node> -> Sequence<Node>

 function dm-collapse-text-node(nodes) {
 let newnodes := dm-text-nodes(nodes)
 return
 if (ignore-whitespace) then
 sequence-map(delete-whitespace-node, newnodes)
 else newnodes
 }

 function dm-text-nodes(nodes) {
 if (empty(nodes)) then empty-sequence()
 else
 let h := head(nodes),
 t := tail(nodes)
 return
 if (node-kind(h) = "text") then {
 /* Collapse two consecutive text nodes and apply
 dm-text-nodes recursively */
 if (empty(t)) then h
 else if (node-kind(head(t)) = "text") then
 dm-text-nodes(
 append(
 text-node(xfo:concat(string-value(h), string-value(he
 tail(t)))
 }
 else append(h, dm-text-nodes(t))
 }

5 Simple Values

This section specifies how to construct and access simple values.

5.1 Primitive Values

A primitive value is a value contained in the union of the value spaces of the
nineteen primitive XML Schema data types [XMLSchema Part 2]. They are
named: xs:string, xs:boolean, xs:decimal, xs:float , xs:double, xs:duration,
xs:dateTime, xs:time , xs:date, xs:gYearMonth, xs:gYear, xs:gMonthDay ,
xs:gDay, xs:gMonth, xs:hexbinary, xs:base64Binary , xs:anyURI, xs:QName,
xs:NOTATION.

Constructors for primitive values are specified in a forthcoming document that
defines the functions and operators for XQuery and XPath 2.0. Each constructor
takes a string in the lexical space of the given primitive type and returns a value in
the value space of the type. For example, the constructor xfo:integer
(xfo:string) constructs an xs:integer value from a string. Analogous
constructors exist for the other primitive types above.

Two primitive values xs:IDREF and xs:anyURI have special accessors. The
function id returns the element node denoted by an xs:IDREF value:

id : xs:IDREF -> ElementNode

Similarly, the function referent returns a sequence of element nodes denoted by a
xs:anyURI:

referent : xs:anyURI -> Sequence(0,1)<ElementNode>

If a referent does not correspond to an element node in the data-model, referent
returns the empty sequence, otherwise it returns a singleton sequence containing
the referenced element node. In the data-model, every IDREF and keyref value is
guaranteed to refer to a ElementNode. This may not be the case for a URI
reference value, which could refer to an element in an arbitrary document that is
not contained in the data-model. In this case, referent may return the empty
sequence.

5.2 Derived Simple Values

A derived simple value must be in the value space of its corresponding derived
simple type. A derived simple type has a primitive base type and a set of
constraining facets. For example, a "Sku" type is derived from string and has a
pattern facet: :

<simpleType name="Sku" base="string">
 <pattern value="\d{3}-[A-Z]{2}"/>
</simpleType>

A simple value has a corresponding type, which is a schema component

A simple value has no identity. Simple values only may be compared for equality
by value.

A simple value has the constructor simple-value, which takes a primitive value and
the simple value’s type.

simple-value : (PrimitiveValue, SchemaComponent) -> SimpleValue

The accessor value returns a simple value’s primitive value and type returns its
type:

value : SimpleValue -> PrimitiveValue
type : SimpleValue -> SchemaComponent

The accessor string-value returns the string representation of a simple value. This
function can be used to recover a lexical representation of a string value. We note,
however, that not all simple-typed values have a unique lexical representation
([Issue-0027: Lexical representation of simple-typed values]).

string-value : SimpleValue -> xs:string

Since the data model supports sequences, a value of a simple type derived by list
can be represented as a sequence of the base type of the list simple type.

Note that the data model does not currently represent key values and key
reference values as described in XML Schema Part 1 : Structures [XMLSchema

Part 1]. In a future draft of this document, keys and key references will be
represented in the data model (see [Issue-0032: Keys and key references not
represented]).

6 Sequences

The data model supports a sequence collection. Unlike conventional lists,
sequences are "flat", i.e., sequences may not contain other sequences.
Sequences may contain duplicate nodes and simple values.

A sequence has no identity. Sequences only may be compared for equality by
value.

The string-value of a sequence is the concatenation of the string-values of each
member of the sequence.

Note: Sequences replace the node-sets in XPath 1.0. In XPath 1.0, node-sets
do not contain duplicates. In generalizing node-sets to sequences in XPath
2.0, duplicate removal will be provided by functions on node sequences.

An important characteristic of the data model is there is no distinction between a
unit value (i.e., a node or a simple value) and a singleton sequence containing that
value, i.e., a unit value is equivalent to a singleton sequence containing that value
and vice versa.

The constructor empty-sequence constructs the empty sequence. The n-ary
append constructor creates a new sequence containing the values in the its first
argument followed by the appended values of its second through final arguments.
Since a unit value is equivalent to a singleton sequence containing the unit value,
append may be applied to unit values.

 empty-sequence : Sequence<UnitValue>
 append : (Sequence<UnitValue>, ..., Sequence<UnitValue>) ->

A sequence has three accessors. The empty accessor returns true if its argument
is the empty sequence and false otherwise. The head accessor returns the first
value in a non-empty sequence. The tail accessor returns all items in a non-empty
sequence excluding its first member.

 empty : Sequence<UnitValue> -> xs:boolean
 head : Sequence<UnitValue> -> UnitValue
 tail : Sequence<UnitValue> -> Sequence<UnitValue>

7 Error

The data model includes a distinguished error value, called error. Note that error
cannot occur in the content of any node in the data model, nor may it occur in any
sequence. The error object is defined so that functions or operators have a
mechanism for identifying an error condition. How the error value is handled in a
query processor is implementation-defined.

8 Schema Components

This section requires some familiarity with the [XML Schema: Formal Description].
In the data model, the [XML Schema: Formal Description] (XFSD) components
are represented by four kinds of schema-component values: element-declaration,
attribute-declaration, simple-type-definition, and complex-type-definition. A
schema component collectively refers to these four kinds of values.

We use the notation [f] to refer to the XSFD component field named f. The
[name] of an XSFD component has the form i#sn1/.../snk, where snk = ss::j. The

symbol i is a namespace, ss is one of six symbol spaces (element, attribute, type,
attribute group, model group, or notation), and j is a local name. Given an XSFD
component with a [name] as above, the corresponding schema-component value
has the following properties.

A schema component has an expanded-QName The namespace name of its
expanded-QName is equal to i, and local part is equal to the empty string if j = *,
otherwise it is equal to j.

The parent property is equal to the empty sequence if k = 1, otherwise it is the
schema component with corresponding [name] equal to i#sn1/.../sn(k-1).

The base property is the component whose name is [base].

The derived-by-extension property is true if [derivation] is "extension", otherwise
false.

The derived-by-refinement property is true if [derivation] is "restriction", otherwise
false.

Editorial Note: MF cite James: (An alternative to (d), (e) and (f) would be to
have an extends accessor that returns deref([base]) if [derivation] is extension
and empty sequence otherwise, and a restricts accessor that returns deref
([base]) if [derivation] is restriction and empty sequence otherwise.) The
[abstract], [refinement] and [content] fields of a XSFD component are not
represented in this proposal (at least for the first two it would be easy to
extend the proposal to cover them).

A SchemaComponent has the following accessors. The component-kind accessor
returns the string "element-declaration", "attribute-declaration", "simple-type-
definition", or "complex-type-definition". The other accessors are defined above.

component-kind : SchemaComponent -> xs:string
name : SchemaComponent -> xs:QName
parent : SchemaComponent -> Sequence(0,1)<SchemaComponen
base : SchemaComponent -> SchemaComponent
derived-by-extension : SchemaComponent -> xs:boolean
derived-by-refinement : SchemaComponent -> xs:boolean

8.1 Mapping PSV Infoset additions to Schema Components

This section specifies how the schema component of an element or attribute node
is constructed from the PSV Infoset additions that specify validity and type

assessment for the node’s corresponding information item.

We note that each kind of XSFD component has a corresponding "top-most" or
"root" component, named xs:AnyElement, xs:AnyAttribute, xs:AnySimpleType,
xs:AnyComplexType. These root components represent the most general
element, attribute, simple type, and complex type. We assume these components
are pre-defined and rely on them in the definitions below.

A PSV element (attribute) information item has a [validity], an [element-
declaration] ([attribute-declaration]), and a [type-definition] property. The
[validity] property may be "valid", "invalid", or "notKnown". The [element-
declaration] and [attribute-declaration] properties contains an element
information item that is isomorphic to the XML Schema element or attribute
declaration of the element or attribute information item. Similarly, the [type-
definition] property contains an element information item that is isomorphic to the
XML Schema type definition of the element or attribute information item. These
properties are used to construct the schema component of an element or attribute
in the data model.

The dm-schema-component function takes a string-valued validity property and an
element information item that corresponds to an element or attribute declaration or
a type definition. It constructs a schema-component value that corresponds to the
schema component represented by its arguments.

 dm-schema-component : (xs:string, ElementItem) -> SchemaComponent

If its [validity] property is "valid", dm-schema-component constructs a schema
component that corresponds to the element or attribute declaration or type
definition represented by the information item in its second argument.

If its [validity] property is "invalid" or "notKnown", dm-schema-component returns
the "root" schema component that corresponds to the element or attribute
declaration or type definition represented by the information item in its second
argument. For example, if the information item is an element declaration, dm-
schema-component returns xs:AnyElement, and similarly, for the other three
components. The only information that can be inferred from an invalid or not
known validity value is that the information item is well-formed, therefore, we must
associate the most general type information with the element or attribute node.

Editorial Note: MF: Following two cases need to be completed:

Given information items that validate with respect to a DTD, ...

Given information items from a document a well-formed document, with no
corresponding DTD or Schema...

Editorial Note: MF cite James’ notes: Given an XSFD normalized attribute or
element x[t types d], the declaration accessor would return deref(x) and the
type accessor would return deref(t). Note that for any element or attribute
node nd, if declaration(x) is not null, then local-name(x) = local-name
(declaration(x)), and namespace-uri(x) = namespace-uri(declaration(x))

9 Equality

The functions and operators on data-model values are included in a forthcoming
document that defines the functions and operators for XQuery 1.0 and XPath 2.0.
Included in that document are the functions that define equality between values
and equality between nodes. For completeness, we repeat the definitions of those
functions here.

The data model includes two equality functions: xfo:value-equal and xfo:node-
equal. The xfo:value-equal function denotes equality of values, and the xfo:node-
equal function denotes equality of node identities.

xfo:value-equal : (Sequence<UnitValue>, Sequence<UnitValue>) -> xs:boo
xfo:node-equal : (Node, Node) -> xs:boolean

We define the value-equality function, xfo:value-equal, as follows. We assume
value equality over simple values is defined. Equality over all other data model
values is defined recursively:

l Given attributes a1 and a2, xfo:value-equal(a1,a2), if and only if
xfo:value-equal(name(a1), name(a2)) and xfo:value-equal(value(a1), value
(a2)).

l Given elements e1 and e2, xfo:value-equal(e1, e2), if and only if
xfo:value-equal(name(e1), name(e2)) and xfo:value-equal(attributes(e1),
attributes(e2)) and xfo:value-equal(children(e1), children(e2)).

l Given two sequences (u1, .., uj) and (v1, ..., vk), xfo:value-equal((u1, .., uj),

(v1, ..., vk)) holds if and only if j = k and xfo:value-equal(ui, vi) holds for all 1

<= i <= n.

The function xfo:node-equal is only defined on nodes. For two nodes n1 and n2,
xfo:node-equal(n1, n2) holds if and only if n1 and n2 were created by the same
application of a node constructor (See 4 Nodes).

Editorial Note: MF: Should value equality over elements include all comment
and PI children? See [Issue-0015: Semantics of value equality operator
’=’].

10 Example

We use the following XML document to illustrate the information contained in an
instance of the data model:

<?xml version=1.0?>
<p:part xmlns:p="http://www.mywebsite.com/PartSchema"
 xs:schemaLocation = "http://www.mywebsite.com/PartSchema
 http://www.mywebsite.com/PartSchema"
 name="nutbolt">
 <mfg>Acme</mfg>
 <price>10.50</price>
</p:part>

The document is valid with respect to the following XML schema:

For this example, we chose an XML document and an XML Schema that
illustrates the relationship between document content and its associated schema
type information. In general, an XML Schema is not required, that is, the data
model can represent a schemaless, well-formed XML document with the rules
described in 8 Schema Components.

The XML document is represented by the data-model constructors below. The
value D1 represents a document node; the values E1, E2, etc. represent element
nodes; the values A1, ... represent attribute nodes; the values N1, ... represent
namespace nodes; the values T1, ... represent text nodes; the values SC1, ...
represent schema component values;

// Document node D1
children(D1) = E1
parent(D1) = empty-sequence()

// Element node E1
name(E1) = xfo:expanded-QName("http://www.mywebsite.com/PartSch
children(E1) = append(E2, E3)
attributes(E1) = A1
namespaces(E1) = N1
parent(E1) = D1
declaration(E1) = SC1

typed-valued(E1) = empty-sequence()
type(E1) = SC2

// Attribte node A1
name(A1) = xfo:QNAME(empty-sequence(), "name")
string-value(A1) = "nutbolt"
parent(A1) = E1
declaration(A1) = SC3

typed-value(A1) = "nutbolt"
type(A1) = SC4

// Namespace node N1
name(N1) = xfo:expanded-QName(empty-sequence(), "p")
uri(N1) = xfo:anyURI("http://www.mywebsite.com/PartSchema")
parent(N1) = E1

// Element node E2
name(E2) = xfo:QNAME(empty-sequence(), "mfg")
children(E2) = T1
attributes(E2) = empty-sequence()

<xs:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 targetNamespace="http://www.mywebsite.com/PartSchema">
 <xs:element name="part" type="part-type">
 <xs:complexType name="part-type">
 <xs:element name = "mfg" type="xs:string"/>
 <xs:element name = "price" type="xs:decimal"/>
 <xs:attribute name = "name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

namespaces(E2) = N1
parent(E2) = E1
declaration(E2) = SC5

typed-value(E2) = simple-value("Acme", SC4)
type(E2) = SC4

// Element node E3
name(E3) = xfo:QNAME(empty-sequence(), "price")
children(E3) = T2
attributes(E3) = empty-sequence()
namespaces(E3) = empty-sequence()
parent(E3) = E1
declaration(E3) = SC6

typed-value(E3) = simple-value(10.50, SC7)
type(E3) = SC7

// Text node T1
value(T1) = "Acme"
parent(T1) = E2

// Text node T2
value(T2) = "10.50"
parent(T2) = E3

// Schema component SC1
component-kind(SC1) = "element-declaration"
name(SC1) =
 xfo:expanded-QName("http://www.mywebsite.com/PartSchema", "part")
parent(SC1) = empty-sequence()
base(SC1) = xs:AnyElement
derived-by-extension(SC1) = false
derived-by-refinement(SC1) = true

// Schema component SC2
component-kind(SC2) = "type-definition"
name(SC2) =
 xfo:expanded-QName("http://www.mywebsite.com/PartSchema", "part-type
parent(SC2) = SC1
base(SC2) = xs:AnyComplexType
derived-by-extension(SC2) = false
derived-by-refinement(SC2) = true

// Schema component SC3
component-kind(SC3) = "attribute-declaration"
name(SC3) =
 xfo:expanded-QName("http://www.mywebsite.com/PartSchema", "name")
parent(SC3) = SC1
base(SC3) = xs:AnyAttribute
derived-by-extension(SC3) = false
derived-by-refinement(SC3) = true

// Schema component SC4
component-kind(SC4) = "simple-type-definition"
name(SC4) =
 xfo:expanded-QName("http://www.w3.org/1999/XMLSchema", "string")
parent(SC4) = empty-sequence()
base(SC4) = xs:AnySimpleType
derived-by-extension(SC4) = false
derived-by-refinement(SC4) = true

// Schema component SC5
component-kind(SC5) = "element-declaration"
name(SC5) =
 xfo:expanded-QName("http://www.mywebsite.com/PartSchema", "mfg")
parent(SC5) = SC2

base(SC5) = xs:AnyElement
derived-by-extension(SC5) = false
derived-by-refinement(SC5) = true

// Schema component SC6
component-kind(SC6) = "element-declaration"
name(SC6) =
 xfo:expanded-QName("http://www.mywebsite.com/PartSchema", "price")
parent(SC6) = SC2
base(SC6) = xs:AnyElement
derived-by-extension(SC6) = false
derived-by-refinement(SC6) = true

// Schema component SC7
component-kind(SC7) = "simple-type-definition"
name(SC7) =
 xfo:expanded-QName("http://www.w3.org/1999/XMLSchema", "decimal")
parent(SC7) = empty-sequence()
base(SC7) = xs:AnySimpleType
derived-by-extension(SC7) = false
derived-by-refinement(SC7) = true

Editorial Note: MF: New graphic is needed here.

11 XML Information Set Conformance

This specification conforms to the XML Information Set [XML Information Set].
The following information items must be exposed by the infoset producer to
construct an instance of the data model:

l The Document Information Item with [base URI] and [children]
properties.

l Element Information Items with [children], [attributes], [in-scope
namespaces], [local name], [namespace URI], [parent] properties.

l Attribute Information Items with [namespace URI], [local name],
[normalized value], [owner element] properties.

l Character Information Items with [character code] and [parent]
properties.

l Processing Instruction Information Items with [target], [content] and
[parent] properties.

l Comment Information Items with [content] and [parent] properties.

l Namespace Information Items with [prefix] and [namespace URI]
properties.

Other information items and properties made available by the Infoset processor
are ignored. In addition to the properties above, the following properties from the
PSV Infoset are required:

l [validity], [element declaration], [type definition], and [schema
normalized value] properties on Element Information Items.

l [attribute declaration], [type definition], and [schema normalized value]
properties on Attribute Information Items.

12 References

Document Object Model
World Wide Web Consortium, Document Object Model. See
http://www.w3.org/TR/DOM-Level-2-Core/.

XML Activity
World Wide Web Consortium, XML Activity. Home page:
http://www.w3.org/XML/.

XML Information Set
World Wide Web Consortium, XML Information Set (Infoset). See
http://www.w3.org/TR/xml-infoset/.

XML Pointer Language (XPointer)
World Wide Web Consortium, XML Pointer Language (XPointer). See
http://www.w3.org/TR/xptr.

XML Query Data Model
World-Wide Web Consortium XML Query Data Model, Working Draft, Feb
2001. See http://www.w3.org/TR/2001/WD-query-datamodel-20010215/.

XML Query Requirements
World Wide Web Consortium, XML Query Requirements. See
http://www.w3.org/TR/2000/WD-xmlquery-req-20000131.

XML Query Working Group
World Wide Web Consortium, XML Query Working Group. Home page:
http://www.w3.org/XML/Activity#query-wg.

XML Recommendation
World Wide Web Consortium, Extensible Markup Language (XML) 1.0
(Second Edition) See http://www.w3.org/TR/REC-xml.

XML Schema: Formal Description
World-Wide Web Consortium XML Schema: Formal Description, Working
Draft, March 2001. See http://www.w3.org/TR/xmlschema-formal/.

XMLSchema Part 1
World Wide Web Consortium, XML Schema Part 1: Structures. See
http://www.w3.org/TR/xmlschema-1.

XMLSchema Part 2
World Wide Web Consortium, XML Schema Part 2: Datatypes. See
http://www.w3.org/TR/xmlschema-2.

XPath
World-Wide Web Consortium XML Path Language (XPath): Version 1.0.
November, 1999. See http://www.w3.org/TR/xpath.html.

XPath Requirements Version 2.0
World Wide Web Consortium, XPath Requirements Version 2.0. See
http://www.w3.org/TR/xpath20req.

XQuery 1.0 Formal Semantics
World Wide Web Consortium, XQuery 1.0 Formal Semantics. See
http://www.w3.org/TR/query-semantics/

XQuery 1.0: A Query Language for XML
World Wide Web Consortium, XQuery 1.0: A Query Language for XML. See
http://www.w3.org/TR/xquery/.

XSL Transformations
World Wide Web Consortium, XSL Transformations Language (XSLT):
Version 1.0. See http://www.w3.org/TR/xslt.

XSL Working Group

World Wide Web Consortium, XSL Working Group. Home page:
http://www.w3.org/Style/XSL/.

A Issues

The issues in A Issues serve as a design history for this document. The ordering
of issues is irrelevant. Each issue has a unique id of the form Issue-<dddd>
(where d is a digit). This can be used for referring to the issue by <url-of-this-
document>#Issue-<dddd>. Furthermore, each issue has a mnemonic header, a
date, an optional description, and an optional resolution. For convenience,
resolved issues are displayed in green. Some of the issues contain references to
W3C internal archives. These are marked with "W3C-members only". Some of the
descriptions of the resolved issues are obsolete w.r.t. to the current version of the
document.

A.1 Issues

Issue-0001: PSV Infoset identity constraints

Date: Oct-2000
Raised by: Datamodel Editors

Description: What should be data-model representation, if any, of
PSV Infoset identity-constraint tables?

Issue-0002: Representation of atomic values

Date: Oct-2000
Raised by: Datamodel Editors

Description: This function assumes that the character information
items for an atomic value (e.g., string, integer, floating-point number)
are not interleaved with other information items (e.g., PIs or
comments). The treatment of such interleaved values is not handled
in this definition. This issue is addressed in threads beginning at:
http://lists.w3.org/Archives/Member/w3c-archive/2000Jun/0090.html
(W3C-members only) and http://lists.w3.org/Archives/Member/w3c-
xml-query-wg/2000Sep/0079.html (W3C-members only).

Resolution: MF: The data model does not preserve information
items interleaved with the character info items of an atomic value.

Issue-0003: Example parent

Date: Oct-2000
Raised by: Datamodel Editors

Description: Remark Michael: An IDREF cannot point to an empty
string.

Issue-0004: Schema/DTD

Date: Oct-2000
Raised by: Datamodel Editors

Description: A document may refer to a DTD and have an
associated schema.

Issue-0005: Lists of Simple Values

Date: Oct-2000
Raised by: Datamodel Editors

Description: The current data model draft takes only into account
singleton value-nodes. It must represent lists of simple-type values
as well. See http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000May/0060.html.(W3C-members only)

Peter suggests having a special-purpose kind of a TextNode that
represents lists of simple types. An advantage of this approach is
that the constraint that lists of simple types be
homogeneous/monomorphic can be enforced. However, lists/forests
already can be modeled in current data model, without adding more
complexity. For example, an attribute's value could be modeled as a
list of TextNodes:

value : AttributeNode -> Sequence<TextNode>

A disadvantage of this approach is that the monomorphism
constraint on lists derived from simple types is not enforced.
However, given a type system for Query, such a constraint could be
enforced. So Mary is in favor of not having a special-purpose kind of
TextNode to represent lists, but instead model them by forests
directly in the data model.

Issue-0006: Collections

Date: Oct-2000
Raised by: Datamodel Editors

Description: We need a more thorough definition of collections,
perhaps in a separate section, which includes bags and defines
collections formally.

In particular, the algebra (probably) will not support arbitrarily nested
collections (i.e., lists of lists, sets of sets, etc.). We need to specify
how collections are constructed. For example, in the data model, the
basic collection is a forest, i.e., a list of Nodes. The forest constructor
creates a singleton forest from one Node; or it creates a forest from
two forests by concatenating the two forests:

Similar constructors would exist for bags with and without duplicates.

unordered : Forest -> NodeBag
unique : NodeBag -> NodeSet
set = unique o unordered : Forest -> NodeSet

Resolution: Added section on Collections 6 Sequences.

Issue-0007: TextNodes

Date: Oct-2000
Raised by: Datamodel Editors

Description: An alternative representation is to have a single
TextNode whose base type is string:

text-node : (xs:string, S, Sequence<Node]) -> TextNode

This representation is more closely aligned with other node types in
the data model, but it makes the simple type of leaf-node values
opaque.

Peter Fankhauser compares and constrasts these options in :
http://lists.w3.org/Archives/Member/w3c-xml-query-
wg/2000Apr/0174.html (W3C-members only)

Issue-0008: Node vs edge centric data model

Date: Oct-2000
Raised by: Michael Rys

Description: Cite:

Let me summarize my issues with a node-centric datamodel right at
the beginning. The first two are mentioned in the doc later on:

As long as (1) the data represents a tree, (2) easy bi-directional is
not required, (3) projection/extension operations with object-
preserving semantics are not required, a node-centric datamodel is
isomorphic to an edge-centric datamodel and is easier to represent
and understand.

Forest = Node | Sequence<Node>

forest : Node -> Forest
function forest(Node n) = Sequence<n>

union : (Forest, Forest) -> Forest
function union(f1, f2) = list-append f1 f2

bagunion : (NodeBag, NodeBag) -> NodeBag
setunion : (NodeSet, NodeSet) -> NodeSet

As soon as anyone of the above requirements change, an edge
model has several advantages:

1. data represents a graph: naming the edges (relationships)
becomes a must, since the names are now on the relationships
and not on the objects. Uniform treatment of all edges (even
the so far anonymous containment edges) makes defining
operations easier since they are more orthogonal. With the
possibility of distinguishing "type" from "name", even
subelement names now semantically represent relationship
names. For example, ShipAddr and BillAddr in
<Order> <ShipAddr dt:dt="Address">...</ShipAddr> <BillAddr
dt:dt="Address">...</BillAddr> </Order>
are denoting relationships (ownership to be exact) from the
order element to the Address elements.

2. As soon as backwards pointers are introduced into a node-
centric model, the representation becomes more complex and
less elegant. Transforming data becomes more complex since
the backwards pointer becomes part of the object state. Thus,
if I define views where an element changes the parent, in the
edge-centric case, this just adds a new relationship, the object
state is unchanged, in the node-centric approach, I need to
express now two parents in the object state.

3. Projection/extension operations. Assume that I pose a query
that projects name and address but hides the age of a person
element. In the edge-centric approach, this means that the
query logically transforms the graph context on which the query
operates by removing the age edge from the context without
touching the object state (the objects keeps its basetype), in
the node-centric approach, the object state needs to change
since the context transformation will remove the attribute
property age. While both operations transform the context, I
find the former to be more elegant than the later.

Resolution: MF: To align with XPath 1.0 and the Algebra, the data
model is node centric.

Issue-0009: Schema info

Date: Oct-2000
Raised by: Michael Rys

Description: Cite: Sometimes one wants to use different schemata
over the same basic XML fragment. So I would rather start with that
in principle, the data model is schemaless and can provide the data
model of any XML fragment given a schema. Thus, the schema
postprocessing becomes a datamodel transformation that we make
explicit (and that could be optimized with other operations that
transform the datamodel graph).

Issue-0010: Node identity

Date: Oct-2000
Raised by: Datamodel Editors

Description: Should the data model require that an implementation
guarantee that the identity of a node is always preserved?

Resolution: MF: The data model always preserves node identity;
the only operator that does not preserve node identity is copy.

Issue-0011: Access to facets

Date: Oct-2000
Raised by: Datamodel Editors

Description: In XML Schema, facets such as ``nullable'' is
associated with an element declaration, which is a element name,
complex type pair. If the query language needs access to such
facets, we may need to replace ReferenceNode by a reference to
the element declaration.

Issue-0012: Representation of reference values

Date: Oct-2000
Raised by: Michael Rys

Description: Cite: The current representation of reference values is
too much IDREF(S) centric. I would prefer a more general
representation for XLink and the schema (and potentially graph
operation) introduced reference mechanisms.

Issue-0013: Equality operators on collections

Date: 17-Jan-2001
Raised by: Mary Fernandez

Description: Equality operators '=' on collections are not defined.

Resolution: MF: Added in 9 Equality.

Issue-0014: Elements with unordered children

Date: 17-Jan-2001
Raised by: Mary Fernandez

Description: Should the element constructor element-node also
permit bags of children?

Resolution: MF: decision to use sequences everywhere in data

model.

Issue-0015: Semantics of value equality operator ’=’

Date: 02-Feb-2001
Raised by: Mary Fernandez

Description: The semantics of the value equality operator '=' is
undefined

Issue-0016: PSV Infoset Mapping - undefined terms

Date: 21-Feb-2001
Raised by: Michael Rys

Description: Code is undefined.

Resolution: Defined in 4.8 Text.

Issue-0017: Relationship between Ordered and Unordered collections

Date: 03-Mar-2001
Raised by: Mary Fernandez

Description: The relationship between ordered and unordered
collections is not specified. Any ordered collection can be treated as
an unordered collection.

Resolution: Unordered collections removed.

Issue-0018: Representation of lists of IDREFS and NMTOKENS

Date: 12-Mar-2001
Raised by: Michael Rys

Description: How are IDREF lists and NMTOKEN lists represented
in data model.

Issue-0019: Element constructor that performs schema processing

Date: 15-Mar-2001
Raised by: James Clark

Description: An alternate is to separate element construction from
schema validity assessment. The element constructor would
construct an element corresponding to the an element information
item in the Infoset before schema validity assessment. To produce
elements with types, the schema-process function would schema
process an element with respect to a schema type to yield a new
element with the full PSV infoset. The schema-process function
would ignore any type information on attributes and elements and

would assess the untyped value with respect to the given type.

element-node : (expanded-QName,
 Sequence<NamespaceNode>,
 Sequence<AttributeNode>,
 Sequence<ElementNode | ProcessingInstructionNod
 | TextNode | CommentNode | ReferenceNod
 -> ElementNode
schema-process : (ElementNode | AttributeNode, SchemaComponent)
 -> ElementNode | AttributeNode

Issue-0020: Semantics of copy

Date: 27-Mar-2001
Raised by: Michael Kay

Description: Deep copy on a node is defined only informally. For
example, does deep copy preserve base URI?

Issue-0021: Declared vs. In-scope namespaces

Date: 27-Mar-2001
Raised by: XPath 2.0 Task Force

Description: Currently, an element node preserved its declared
namespace nodes, not its in-scope namespaces. Members of the
XSLT WG point out this may make impossible to determine the
meaning of data-model values that refer to the default namespace.
This is a big, nasty problem.

Issue-0022: Abstraction of Run-time type information

Date: 27-Mar-2001
Raised by: XPath 2.0 Task Force (Steve Zilles)

Description: The representation of run-time type information is very
concrete -- it's the data model representation of a Schema type. The
XPath task force would like a more abstract representation of
runtime type that is not bound so tightly to XML Schema. This is an
open design problem.

Issue-0023: Support for document repositories

Date: 27-Mar-2001
Raised by: XPath 2.0 Task Force

Description: Many people would like to see support for document
repositories in XPath 2.0 with a corresponding notion in the data
model. A document repository is easy to model as a sequence or
bag of document nodes. It may have some additional properties, like
for an ordered repository, order among all the nodes in the
repository.

Issue-0024: Support for Schema-invalid documents

Date: 27-Mar-2001
Raised by: Michael Sperberg-McQueen

Description: In its current state, the data model clearly does not
cover schema-invalid documents: section 3.3 says "We assume that
the element is an instance of the type represented by Def-Type, i.e.,
the document ``type checks'' or is valid with respect to the given
schema." I believe we may wish to extend / modify the data model to
specify that - if the element is marked valid (i.e. if the [validity]
property for the element information item has the value "valid"), then
we assume that the element is an instance of the type represented
by Def-Type - otherwise, if the element is marked invalid (i.e. the
[validity] property has the value "invalid" or "notKnown"), and if the
element has neither attributes nor child elements, then we assume
[observe] that the element is an instance of the type anySimpleType
- otherwise, we assume that the element is an instance of the type
anyType This would allow / require schema systems to be robust in
the face of invalid documents. At first glance, that seems like a win.

Issue-0025: Types of Sequences

Date: 27-Apr-2001
Raised by: Mike Kay

Description: Should sequence values carry their type as do simple
values and element and attribute nodes?

Issue-0026: Schema Component Values vs. Nodes

Date: 27-Apr-2001
Raised by: Mary Fernandez

Description: If schema component values becomes nodes, then
does that mean they can occur any where in a document tree? I.e.,
can they be children of other nodes? What does this mean when a
data model is serialized as a document?

Issue-0027: Lexical representation of simple-typed values

Date: 01-May-2001
Raised by: Mary Fernandez

Description: Given a simple-typed value, it may be necessary to
recover its lexical representation, for example, when creating a text
node that contains the value. It is not always possible to compute a
unique lexical representation of a simple typed value.

Issue-0028: Whitespace handling

Date: 04-May-2001
Raised by: Jonathan Marsh

Description: Whitespace handling needs to be more explicit. In the
presence of a schema we have full knowledge of which whitespace
is significant and which isn't, and can either mark whitespace as
insignificant (and thus exclude it from text() and string-range() for
instance), or automatically suppress whitespace in the data model.
The former is appropriate given the dual representation of text nodes
and values, the latter is appropriate if we only expose values.

Issue-0029: Use of Reference Nodes

Date: 04-May-2001
Raised by: Jonathan Marsh

Description: Reference nodes may be part of the data model, but
will never appear from a mapping from the infoset. In addition they
cannot be serialized. Without these two features there doesn't seem
to be much point in having them. Should we leverage an existing
syntax (e.g. IDREFS) or design a new syntax to represent them?

Issue-0030: Base URI is a property of element nodes

Date: 04-May-2001
Raised by: Jonathan Marsh

Description: With external entities, and now with XML Base, the
base URI can be scoped to various parts of the document. A base
URI property should be added to Element Nodes, and the
constructor and infoset mapping updated. Otherwise relative URIs in
content cannot be correctly resolved.

Issue-0031: Schema component does not reveal [content] property

Date: 17-May-2001
Raised by: Ashok Malhotra

Description: Schema component does not reveal [content] property
of [XML Schema: Formal Description] schema component. MF:
Problem with revealing [content] property is that we/Schema/Query
have to agree on syntax for component content (Sec 2.2.1 in [XML
Schema: Formal Description]).

Issue-0032: Keys and key references not represented

Date: 17-May-2001
Raised by: Query

Description: Note that the data model does not currently represent
key values and key reference values as described in XML Schema

Part 1 : Structures [XMLSchema Part 1]. In a future draft of this
document, keys and key references will be represented in the data
model (see [Issue-0032: Keys and key references not
represented]).

B Open Issues (Non-Normative)

l Issue-0001: PSV Infoset identity constraints
l Issue-0003: Example parent
l Issue-0004: Schema/DTD
l Issue-0005: Lists of Simple Values
l Issue-0007: TextNodes
l Issue-0009: Schema info
l Issue-0011: Access to facets
l Issue-0012: Representation of reference values
l Issue-0015: Semantics of value equality operator ’=’
l Issue-0018: Representation of lists of IDREFS and NMTOKENS
l Issue-0019: Element constructor that performs schema processing
l Issue-0020: Semantics of copy
l Issue-0021: Declared vs. In-scope namespaces
l Issue-0022: Abstraction of Run-time type information
l Issue-0023: Support for document repositories
l Issue-0024: Support for Schema-invalid documents
l Issue-0025: Types of Sequences
l Issue-0026: Schema Component Values vs. Nodes
l Issue-0027: Lexical representation of simple-typed values
l Issue-0028: Whitespace handling
l Issue-0029: Use of Reference Nodes
l Issue-0030: Base URI is a property of element nodes
l Issue-0031: Schema component does not reveal [content] property
l Issue-0032: Keys and key references not represented

C Resolved Issues (Non-Normative)

l Issue-0002: Representation of atomic values
l Issue-0006: Collections
l Issue-0008: Node vs edge centric data model
l Issue-0010: Node identity
l Issue-0013: Equality operators on collections
l Issue-0014: Elements with unordered children
l Issue-0016: PSV Infoset Mapping - undefined terms
l Issue-0017: Relationship between Ordered and Unordered collections

	XQuery 1.0 and XPath 2.0 Data Model
	W3C Working Draft 7 June, 2001
	Status of this Document
	Table of Contents
	Appendix

	1 Introduction
	2 Notation and Pseudo-code Syntax
	3 Concepts
	3.1 Node Identity
	3.2 Document Order
	3.3 XML Schemas and the XML Information Set
	3.4 Schema Components and Values
	3.5 Text Nodes and Simple-Typed Values
	3.6 Ignoring Comments, Processing Instructions, and Whitespace

	4 Nodes
	4.1 Documents
	4.2 Elements
	4.3 Attributes
	4.4 Namespaces
	4.5 Processing Instructions
	4.6 Comments
	4.7 References
	4.8 Text

	5 Simple Values
	5.1 Primitive Values
	5.2 Derived Simple Values

	6 Sequences
	7 Error
	8 Schema Components
	8.1 Mapping PSV Infoset additions to Schema Components

	9 Equality
	10 Example
	11 XML Information Set Conformance
	12 References
	Abstract
	A Issues
	A.1 Issues

	B Open Issues (Non-Normative)
	C Resolved Issues (Non-Normative)

	
	World Wide Web Consortium Title Page

