
 Page 1 3/11/2004

Technical Report
Sakai Project

The Sakai Technology Portability Profile

March 11, 2004

Craig Counterman
Glenn Golden
Rachel Golub
Mark Norton

Charles Severance
Lance Speelmon

Comments to: csev@umich.edu

www.sakaiproject.org

 Page 2 3/11/2004

Introduction

The Sakai project is producing an extensible open-source learning management
system that provides and uses a complete implementation of the OKI OSID
standard interfaces for LMS portability. In addition Sakai will deploy the
components of its learning management system using the uPortal enterprise
portal technology.

It is important to understand the distinct components that the Sakai project will
produce. While they are related, there are important distinctions between the
components:

• The Sakai Technology Portability Profile describes standards, techniques,
and technologies that will allow developers to create tools and services
that can be deployed within any Sakai compliant framework.

• The Sakai Reference Framework is a software environment based on

uPortal that implements the Sakai Technology Portability Profile and
provides an environment that supports the deployment of Sakai TPP
compliant tools and services.

• The Sakai Collaborative/Learning System - which is a set of TPP-

Compliant tools that can be used in various combinations to deploy a
learning management system, enterprise portal, small group collaboration
environment, or collaborative problem-solving environment.

In addition, because there is a wide range of existing enterprise portal-oriented
tools that are already available for the uPortal technology, the Sakai Learning
Management System can be deployed within the context of an enterprise portal.
For organizations that do not want to deploy an enterprise portal, Sakai will install
out of the box as a stand-alone learning management system.

Our Vision:

Sakai will create an open-source learning management system, but
at the same time create a framework, market, clearinghouse, cadre

of skilled programmers, and set of documentation necessary to
enable many organizations to focus their energy on developing

capabilities/tools which advance the pedagogy and effectiveness of
technology-enhanced teaching, learning, and collaboration rather

than just building or deploying another variant on a threaded
discussion tool as an LMS.

This document describes the Sakai Technology Portability Profile and how to
write Sakai compliant tools and services.

 Page 3 3/11/2004

The elements of the TPP are selected to ensure the long-term value, portability,
and interoperability of the tools and services which are developed using the TPP.

One of the goals is to keep the TPP relatively simple, and to limit the explicit
dependencies of the tools and services to as few as possible with the idea that
every additional explicit dependency is a possible constraint on portability.

Compliance with the Sakai TPP

It is very important when writing a specification to define what it means to comply
with the specification. It is not particularly meaningful for a service to be
"compliant" with the TPP because tools will use other standards beyond the TPP
approved standards (like Sockets or web-services). The TPP is a contract
between the framework and the tools and services. If the framework does not
provide a described feature or capability or does not live up to the contract then
the Framework can be declared as "not compliant". In a way, a tool or service
can be "Sakai compliant" in the way it uses the Sakai interfaces. However
because the tools and services use elements outside of the scope of Sakai,
saying a tool or service is "Sakai compliant" essentially says nothing about the
tool.

That said, the purpose of the Sakai TPP is to provide a set of interfaces and rules
that enable the portability of tools and services that use those interfaces and
capabilities. So, to the extent that a tool can use the Sakai interfaces and other
highly portable elements of Java, the tool can depend on the Sakai framework to
provide its interfaces across multiple Sakai compliant frameworks.

If other frameworks are developed to support Sakai tools and services, then
there will be a need to certify those frameworks as Sakai compliant. Certification
is not a simple process - there are significant legal and technical challenges in
producing a specification and test suite suitable to truly certify framework as
compliant.

Often the effort to produce a set of certification documents and the development
of a rich set of tests to insure that that certification is actually meaningful is as
large of an effort of producing the original specifications and first reference
implementation. Sakai does have the advantage that in addition to producing a
reference implementation, the Sakai project is producing a large number of tools
and services which can serve as a de-facto certification mechanism until a more
rich and focused certification mechanism can be developed.

When the phrase "for a tool to be compliant with the TPP it must do X" is used, it
means that the tool is properly using the TPP or is compliant with that particular
aspect of the TPP - but nothing can be said as to whether the tool complies with
the TPP.

 Page 4 3/11/2004

Standards

One of the essential elements of a profile is to select a set of standards, and add
guidance, select options and define best practices around those services
sufficient to insure that portable and interoperable code can be developed using
the profile.

The standards that form the foundation of the Sakai Technology Portability
Profile include:

JavaServer Faces - In the early releases of Sakai, these will be stored in JSP
files. It is important to note that the specification for a Sakai view is the XML
representation of the JSF layout with no other JSP in the file - no HTML, no Java.
 In the future, Sakai may use actual XML files, instead of JSP files, to declare the
views. To be TPP compliant, the JSF document must only use the approved JSF
HTML, JSF core, and Sakai tag libraries. It is understood that some tools will
require richer interfaces than those that are supported by the three approved tag
libraries. The best approach to solve this problem is to work with the Sakai
project to extend the approved Sakai tag library so that all applications can make
use of the new capabilities. Another alternative is to build a tool-specific tag
library. In this situation the developer of the tag library will be responsible for
seeing that the tags are supported when the tools are moved from one
framework to another.

OKI OSIDs - These APIs provide an integration layer that ensures portability of
the tools and services across any environment that provides implementations for
the OKI OSIDs. In addition, the OKI OSIDs provide interfaces where local
implementations of the OSIDs can be developed to integrate OKI compliant tools
and services into the local environment.

The Sakai Project will define its own internal standards that are part of the
Portability Profile - these standards will build upon and add detail to the OKI and
JSF Standards to define their use within the Sakai Framework.

Sakai GUI Elements - Sakai will define additional JSF tags based on the Sakai
Tool Development Style Guide. By using these tags, tool developers will
automatically comply with the Sakai Tool Style Guide. These tags also insure a
uniform look and feel across Sakai tools developed by different developers. It is
also important to note that the Sakai mechanisms are in place to ensure that
tools have a consistent look and feel that is under the control of the deploying
institutions.

Sakai/OKI Façade Services - These will be new interfaces and implementations
developed by the Sakai Project primarily to add a semantic layer on top of the
OKI OSID interfaces and add schema-specific semantics to the OKI OSIDs

 Page 5 3/11/2004

which are designed to support a wide range of schemas. The purpose of the
façade services is to provide a mechanism to insure interoperability in terms of
the data used by Sakai tools using the OKI OSIDs to store and retrieve data.
These Façade services will act as a layer on top of the OKI OSIDs - in order to
move the Sakai tools to a different OKI compliant environment, one must also
bring the façade services as well. The intent for the façade services is to be
relatively "thin" - their purpose is not to capture business logic but instead to add
a schema and semantic model and explicit typing to abstract data objects stored
using the OKI OSIDs. The application services described below are the proper
place to capture business logic.

In addition, another set of services will be developed which fall outside the
Portability Profile per-se as they are more related to the Sakai produced tools
and services which will be developed for deployment within the framework rather
than being part of the framework:

Sakai Application Services - These will be new interfaces developed by the
Sakai Project as part of the development of the tools that make up the Sakai
Collaborative Learning Toolkit - The application classes will evolve as the needs
of tools expand. The goal is to limit the amount of code that is place in the tools
with respect to interacting with the storage services. The application Services
are a convenient way to implement functionality once and use it across multiple
tools.

Sakai Foundational Services - This a set of interfaces developed for the
specific purpose of supporting the storage needs of the OSID implementations.
The goal is to provide an abstract general-purpose storage layer which handles
object-to-relational mapping, multi-system caching, scaling, and high-
performance access. Not all OSID implementations will use the foundational
services - sites can develop their own OSID implementations that replace the
Sakai OSID implementations for particular services. These locally developed
services may completely ignore the Sakai foundation services.

As the figure below shows, while there is a logical layering in terms of the general
purpose of each of the types of interfaces, much of the layering is neither
required nor strict:

 Page 6 3/11/2004

Sakai Types of Services
Sakai Framework

Fa

Application
Services

Sakai
Tool

View View…

OSID

Foundational Services

OSID OSID OSID

Fa

A tool can talk to any of the interfaces from the application directly to the OKI
OSIDs. As a matter of fact, it is quite reasonable for some tools not to use
application or façade classes at all and to instead go directly to the OKI OSIDs.
The Sakai framework must support this direct access to OSIDs to accommodate
tools that are developed to comply with the OSIDs but not initially developed in
the Sakai environment.

Similarly an application service can use OSIDs directly or work through the
façade classes.

Façade classes only communicate with a single OSID and have a one-to-one
mapping with their underlying OSIDs.

Foundational services should only be used by the high-performance enterprise
implementations of the Sakai OSIDs. Tools and application services should use
the OSIDs for their storage needs rather than calling the foundation services. If
developers begin to develop or modify an enterprise OSID implementation, then
they will interact with the foundation services.

The Sakai Reference Framework

The Sakai Project is producing a reference implementation of a Sakai TPP
compliant framework that will support the deployment of Sakai compliant tools
and services. The reference framework will target the web browser/portal
environment. It is important that we separate the definition of the TPP from the
reference framework that is delivered that implements the TPP. Just because a
piece of software is used as part of the framework (say a particular web-services
implementation) it does not imply that by including that software component, the

 Page 7 3/11/2004

TPP is automatically extended. The TPP documents are the definition of the
TPP contract, not the Sakai Reference Framework.

The following figure shows the implementation of the Sakai reference framework:

Sakai Reference Framework
Sakai Reference Framework

Sakai
Services

Sakai
Tools

View View…

uPortal
JSR-168iChannel cWebProxy WSRP

Sakai GUIJSR-168
Portlet

WSRP
Producer

cWebProxy

Channel

By using uPortal as the foundation of the framework, the Sakai framework will
support all of the popular portal standards in the market today. A collaborative
system can make use of the many sources of existing and in-development
portlets implemented using the JSR-168, iChannel, cWebProxy, or Web Services
for Remote Portals (WSRP) to produce an integrated enterprise portal and
collaborative environment. To further aid in producing a unified look and feel
between TPP tools and these other ways to implement tools, CSS class
definitions will be aligned between JSR-168, uPortal, and the Sakai TPP,
adopting the JSR-168 CSS elements wherever possible.

In addition, because the Sakai Tools are ultimately rendered through JSR-168,
the framework provides a path forward to making use of Sakai tools in JSR-168
compliant environments other than uPortal. However, in the short term, there will
be close integration between the Sakai service implementations and uPortal in
the areas of authentication, layout, and configuration, leading to a smooth end-
user experience.

When a developer is considering the development of a new tool, any of the
options described above can be chosen. However if the tool is intended to
interoperate closely with the rest of the tools being developed by the Sakai
project then the tool should be developed using the Sakai TPP standards.

Design Patterns

The Sakai TPP embraces and extends a number of basic design patterns. Much
of the TPP design is built around these design patterns as founding principles.

 Page 8 3/11/2004

Model-View-Controller - In Sakai parlance, the Service is the persistent aspect
of the system (often called the Domain Model). The tool presentation views
expressed in JavaServer Faces make up the View, and the Controller is the tool
logic. Strictly speaking the Model (as compared to the Domain Model) is the data
that is handed from the controller to the View. In Sakai this is a Java bean that
contains the information retrieved from the Service (Domain Model) plus any
needed decoration elements.

Model-View

Controller

Domain
Model

Model

Model

Model

Model

Programming to interfaces rather than implementations - It is up to the
framework to provide the proper implementation for each interface required by a
tool or service. This is basic Java programming best practices. In order to allow
for pluggable implementations of interfaces, the tools are kept completely
unaware of the particular class which implements the desired interface. Tools
and services simply express their desire in terms of the interfaces needed.

Separation of graphic view and rendering from tool logic - Sakai tools are
decomposed into tool logic (written in Java) and tool presentation view (written in
JavaServer Faces). This approach insures that these domains are kept separate
so that it is possible to find and debug these elements separately. Furthermore it
allows the separate development of the graphical look and feel of a tool from the
basic logic and operation of the tool. It is clear that the design of JSF and the
Sakai conventions on the use of JSF will enable graphical layout tools (such as
Dreamweaver) to be developed which automatically generate the JSF markup
from a tool used by the interface designer. Once this happens, then the interface
design and mockup effort can be done directly in JSF, leading to quicker design-
build-cycles.

 Page 9 3/11/2004

Sakai Tools anSakai Framework

Sakai
Service

Sakai
Service

Sakai
Tool

View View…

Separation of persistence/storage from tool logic - Often the persistence
layer in a system (Database, File system, etc.) causes code to be non-portable
because it depends on the availability of a particular storage technology.
Because of this impact on portability Sakai demands that all storage activity be
performed in services which tool accesses via an interface. This way, any non-
portable code is hidden behind a clean interface.

User Interface Elements Controlled by the Framework

The design of the portability profile is intended to maximize the portability of the
components built to comply with the profile. Because the ultimate intent is to
deploy TPP compliant tools beyond the web browser environment, it is important
that some aspects of the user interface are left to the framework implementation,
and are not considered part of the tool itself.

• Presentation Rendering - While the initial target of the Sakai TPP is
web/browser environments, it has been designed to allow tools to operate
in a desktop environment with the development of the proper desktop
framework environment.

• Tool Arrangement - The user / desktop / framework controls the
arrangement of tools - tools can be moved, maximized, minimized,
opened, or closed under control of the framework.

• Tool Selection and Inter-Tool Navigation - Tools are launched using
mechanisms provided by the framework - the user moves between tools
using the framework as well.

Each tool should behave as though it is an independent window that can be
composed and arranged by the user and/or the framework. A tool should make
sense if it is displayed in a paneled environment with other tools such as a web

 Page 10 3/11/2004

portal or as a separate window on the user's desktop. The tool does not need to
concern itself with providing a mechanism for "closing" the tool - the framework
will control the launching and closing of the tools.

Alternate Presentations of Tools

Start Tool A Tool BTool A

Tool A
New Del Del

Tool B
New Del Del

Start Browser

Page 1

Page 2

Page 3 Tool A
New Del Del

Tool B
New Del Del

Each tool can be in use in multiple times by the same user. The tool does not
need to keep track of separate instances of itself - the framework will insure that
each instance of the tool will include a distinct set of data values that are kept
separate from the other instances of the tool and the other instances of other
tools.

The best way to keep this element in mind is to look at the duality between a
portal and desktop environment. Given that uPortal has the capability to "tear
off" windows from the portal, this paradigm is not so far-fetched as one might
thing. The more far-fetched (but not impossible) notion is that these tools may
actually be separate Java applications running on the desktop.

Service Framework

Usually in a system where there is a dynamic mapping of implementation classes
to interfaces it is necessary to specify a service framework that can be used so
that tools can locate services, and so that services can locate other services.
Traditionally, the pattern used to solve this problem is for the service framework
to provide an API that can be used to "look-up" the framework configured
implementation for a particular interface.

This is called the "service locator" pattern and there are a number of examples of
the use of this pattern:

• Jakarta Turbine
• Jakarta Avalon
• OKI OSID Loader
• IBM WebSphere

 Page 11 3/11/2004

The problem with this pattern is that it introduces a dependency on the particular
chosen framework because each framework invents its own method syntax,
types, and parameters even though the underlying functionality is nearly always
the same. As a result the tool or service must import packages specific to a
particular framework. This explicit dependency on the framework is a few lines of
code that is used in nearly every tool and service.

A new generation of frameworks typified by Spring and Pico removes this explicit
dependency by allowing the tool or service express its dependencies either using
a Java Bean setter method or constructor. When the tool or service object is
being created, the framework examines it for the external dependencies and
"injects" the implementation classes in via the constructor or bean-setter
methods, making the necessary linkups. As the object begins execution, all of its
dependencies are already satisfied and stored in local variables.

Dependency
Sakai Framework

org.sakai.
impl…

Sakai
Tool

View View…

Components
org.sakai.impl.
org.sakai.impl.
org.local.impl
É

Fram
ew

ork

This approach makes the tool/service dependency resolution an implicit
dependency rather than an explicit dependency. So while the bean-setter
pattern was initially made popular using the Spring framework, it could be
performed by some completely different framework such as a web-services
based framework.

The Sakai Portability Profile includes bean-setting dependency as its best
practice approach to dependency resolution. The bean-setting pattern is far
more flexible when using containers (such as JSR-168 or JSF) that perform the
actual construction of the object. This is in contrast to implementing constructor-
style injection in a JSR-168 or JSF environment where one must revise JSF or
JSR-168 so that it properly performs the service injection at constructor time.
This is not practical in situations where you either do not have source to a
component (such as JSF) or do not want to make modifications to a component
(such as JSR-168) so as not to end up with a forked-source tree.

The bean-setter pattern allows dependencies to be injected after the constructor
has been completed but before the object has been activated. Using this

 Page 12 3/11/2004

approach allows the opportunity to make clever use of existing features (such as
the fact that every JSF tool is also a managed bean) to satisfy the necessary
dependencies using standard mechanisms.

The Sakai framework easily supports constructor style and service locator
mechanisms in addition to the bean-setter method, because there are situations
where these are preferred, but the bean-setter method is the recommended best
practice.

Degrees of Portability

There are varying levels of portability of the various elements within the Sakai
Technology portability profile. The goal of the profile is to ensure the maximum
portability of the following elements:

• The Java code within the tools
• The View templates expressed in JavaServer Faces
• The service interfaces, APIs or OSIDs, for all the various levels of services
• The Java code within services which is used to communicate with tools

and other services

We expect that these elements will be portable across a wide range of current
and imagined frameworks. While the Sakai project is focused on delivering a
browser-based JSR-168 portlet framework, other frameworks that have been
imagined include:

• A desktop Swing-based Sakai framework
• A secure web services based Sakai framework
• A Grid Services based Sakai framework

There are no current plans to implement these alternative frameworks - some of
them require new technologies to be developed or current technologies to mature
before they are practical. While these frameworks may be a way off, it is
instructive to examine how they might affect portability. The "maximum
portability" elements have been designed so as to be portable across all of these
frameworks with no changes to the code.

 Page 13 3/11/2004

Dimensions of Portability
Sakai Framework

Sakai
Service

Sakai
Service

Sakai
Tool

View View…

Tool config

Service config

Tag
Libraries

Skin
config

Very Portable

Depends on
implementation

choices

May require
changes

OSID InterfaceOSID Interface

There are other elements that are part of developing Sakai components that may
require modification as they are moved between different frameworks. These are
some illustrative examples:

• If a developer produces a custom JSF tag that generates HTML or
JavaScript, work will have to be done when operating in a non-HTML
Sakai Framework such as Swing.

• If a developer places hard-coded Oracle calls in a particular service

implementation, then that service implementation will only be deployable
on systems that support Oracle. For a particular implementation of a
service OSID, it may be an absolute requirement to use Oracle directly to
ensure performance – however, this then limits portability. This is one
reason that persistence activity is confined to services - to ensure that
non-portable code does not sneak into the tool code.

• The XML configuration files that describe the tools and services to the

framework may need to be changed to provide particular information that
the framework needs. For example, a Grid based framework may need
configuration information that describes where to find a particular service
within the Grid.

• If a developer chooses to develop a tool using iChannel (uPortal), JSR-

168, or WSRP (Web Services for Remote Portals) rather than using the
Sakai GUI mechanism, then the tool will only be portable to environments
that support those interfaces.

For the time being, these are academic distinctions because there is only one
Sakai framework reference implementation that supports Sakai TPP, JSR-168,
WSRP, JSR-168, and many other standards. However as you look at the
Portability Profile, and the reference implementation of the Framework, it is

 Page 14 3/11/2004

important to keep track of those elements that are "maximally portable" and other
elements that are framework-dependent and are only present because of the
particular framework that is in use.

Great care has gone into keeping the framework-dependent elements as small
and simple as possible, so that most of the complex development is in the
portable elements of the Sakai framework. In many ways, the TPP is developed
as part of a quest to find and define maximally portable elements.

Timeline

It is important to understand that there will be a continuous process of refinement
and development surrounding the Sakai TPP and other associated Sakai
specifications. Some of the specifications will be complete early in the project,
and others will require significant development experience before they can be
considered mature. The following is a very rough timeline breakdown that gives
a sense of when to expect these documents, broken down by maturity:

Document 50% 80% 100%
Technology Portability Profile (JSF / OKI) 1Q04
Sakai GUI Elements 2Q04 4Q04
Sakai Façade Services 3Q03 4Q04 1Q05
Sakai Application Services 3Q04 1Q05 3Q05
Sakai Foundation Services 2Q04 3Q04
Sakai Tool Requirements 3Q04 1Q05 3Q05

A maturity level of 100% effectively means that we publish a complete version
1.0 of the document. After that point, there may be changes to the documents,
but they will be relatively small, evolutionary in nature, driven by new
developments, and done as part of a consensus process among those
organizations working that are using and developing with Sakai.

Document TimeLineDefine
TPP

Define
Foundation

Define
GUI Elements

Tool
Requirements

Develop
Tools

OSID Impls
Fa¨ ade

Convienence

Release
V 2.0

For example, the Sakai Foundation Services and Sakai GUI Elements are the
subject of intense work in 2Q04 because they are prerequisites to the beginning
of major tool development that is expected to commence in 3Q04. On the other

 Page 15 3/11/2004

hand the façade and application services will be primarily defined as outputs of
the experience gained through the development process that commences in
2Q04 but does not really ramp up until 3Q04, with delivery 2Q05.

All of the documents will be developed in parallel with the underlying research,
requirements, or development processes. Draft versions of the documents will
be used as a form of communication between the Sakai partners and the rest of
the Sakai community to ensure consensus is maintained throughout these
processes and that mistakes are identified as early in the process as possible,
through careful review of these documents in their draft form before too much
code is developed.

Summary

The Sakai Technical Architecture solves two important problems:

• Describing a set of documents that will provide enough detail to allow tools
and services to be written that are both portable and interoperable.

• Decomposing the problem space to maximize reuse of code and isolate

any non-portable aspects of the code to as few components as possible.

The Sakai Technology Portability Profile is an important element of the Sakai
Architecture and defines that "most portable" core of the Sakai project. Once the
architecture and portability profile are in place, work can commence on the next
set of documents that will provide further refinement and detail on the process.

This is a live process and many of the details of the Sakai project will not be
known until portions of the development process have been completed. If you
have any comments on this material, please send E-Mail to csev@umich.edu.

Acknowledgements

This document is the result of the Sakai Architecture Research Group including:
Craig Counterman, MIT, Rachel Gollub, Stanford, Mark Norton, Sakai
Educational Partnership Program, Charles Severance, University of Michigan,
Lance Speelmon, Indiana University, Curt Seifert, Indiana University, Bryan
McGough, Indiana University, Glenn Golden, University of Michigan, Ken Weiner,
uPortal, and many others from the core Sakai institutions.

In addition, a number of groups and individuals helped significantly in early
review of this material including teams from the NMI Grid Portals project team,
Cambridge University and Berkeley University as well as productive discussions
with Benjamin Maillistrat who is the project architect of the eXo Portal project and
Jason Novotny who is the architect of the GridSphere project.

 Page 16 3/11/2004

References

Tomcat Servlet Container (jakarta.apache.org)
JavaServer Pages and standard tags library (java.sun.org/jsp)
JavaBeans (java.sun.com/products/ejb)
Spring Framework (www.springframework.org)
OKI Open Service Interface Definitions (www.sourceforge.net/okiproject)
JavaServer Faces (java.sun.com/j2ee/javaserverfaces)

	The Sakai Technology Portability Profile, Technical Report, Sakai Project
	11 Mar 2004 Craig Counterman, Glenn Golden, Rachel Golub, Mark Norton, Charles Severance, Lance Speelman, Sakai Project
	Introduction
	Compliance with the Sakai TPP
	Standards
	JavaServer Faces
	OKI OSIDs
	Sakai GUI Elements
	Sakai/OKI Façade Services
	Sakai Application Services
	Sakai Foundational Services

	The Sakai Reference Framework
	Design Patterns
	Model-View-Controller
	Programming to interfaces rather than implementations
	Separation of graphic view and rendering from tool logic
	User Interface Elements Controlled by the Framework

	Service Framework
	Degrees of Portability
	Summary
	Acknowledgements
	References

	
	University of Michigan Title Page

