
oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 1 of 53

 1

Assertions and Protocol for the OASIS 2

Security Assertion Markup Language 3

(SAML) V1.1 4

OASIS Standard, 2 September 2003 5

Document identifier: 6
oasis-sstc-saml-core-1.1 7

Location: 8
http://www.oasis-open.org/committees/documents.php?wg_abbrev=security 9

Editors: 10
Eve Maler, Sun Microsystems (eve.maler@sun.com) 11
Prateek Mishra, Netegrity, Inc. (pmishra@netegrity.com) 12
Rob Philpott, RSA Security (rphilpott@rsasecurity.com) 13

Contributors: 14
Stephen Farrell, Baltimore Technologies 15
Irving Reid, Baltimore Technologies 16
Hal Lockhart, BEA Systems 17
David Orchard, BEA Systems 18
Krishna Sankar, Cisco Systems 19
Carlisle Adams, Entrust 20
Tim Moses, Entrust 21
Nigel Edwards, Hewlett-Packard 22
Joe Pato, Hewlett-Packard 23
Bob Blakley, IBM 24
Marlena Erdos, IBM 25
Scott Cantor, individual 26
RL “Bob” Morgan, individual 27
Marc Chanliau, Netegrity 28
Chris McLaren, Netegrity 29
Charles Knouse, Oblix 30
Simon Godik, Overxeer 31
Darren Platt, formerly of RSA Security 32
Jahan Moreh, Sigaba 33
Jeff Hodges, Sun Microsystems 34
Phillip Hallam-Baker, VeriSign (former editor) 35

Abstract: 36
This specification defines the syntax and semantics for XML-encoded assertions about 37
authentication, attributes and authorization, and for the protocol that conveys this information. 38

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 2 of 53

Status: 39
This is an OASIS Standard document produced by the Security Services Technical Committee. It 40
was approved by the OASIS membership on 2 September 2003. 41
Committee members should submit comments and potential errata to the security-42
services@lists.oasis-open.org list. Others should submit them to the security-services-43
comment@lists.oasis-open.org list (to post, you must subscribe; to subscribe, send a message to 44
security-services-comment-request@lists.oasis-open.org with "subscribe" in the body) or use 45
other OASIS-supported means of submitting comments. The committee will publish vetted errata 46
on the Security Services TC web page (http://www.oasis-open.org/committees/security/). 47
For information on whether any patents have been disclosed that may be essential to 48
implementing this specification, and any offers of patent licensing terms, please refer to the 49
Intellectual Property Rights web page for the Security Services TC (http://www.oasis-50
open.org/committees/security/ipr.php). 51

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 3 of 53

Table of Contents 52

1 Introduction... 6 53
1.1 Notation... 6 54
1.2 Schema Organization and Namespaces .. 6 55

1.2.1 String and URI Values... 7 56
1.2.2 Time Values... 7 57
1.2.3 ID and ID Reference Values.. 7 58
1.2.4 Comparing SAML Values .. 7 59

1.3 SAML Concepts (Non-Normative) .. 8 60
1.3.1 Overview.. 8 61
1.3.2 SAML and URI-Based Identifiers .. 9 62
1.3.3 SAML and Extensibility.. 10 63

2 SAML Assertions .. 11 64
2.1 Schema Header and Namespace Declarations ... 11 65
2.2 Simple Types .. 11 66

2.2.1 Simple Type DecisionType.. 12 67
2.3 Assertions ... 12 68

2.3.1 Element <AssertionIDReference>... 12 69
2.3.2 Element <Assertion> ... 12 70

2.3.2.1 Element <Conditions>..14 71
2.3.2.1.1 Attributes NotBefore and NotOnOrAfter ...15 72
2.3.2.1.2 Element <Condition>..15 73
2.3.2.1.3 Elements <AudienceRestrictionCondition> and <Audience> ...15 74
2.3.2.1.4 Element <DoNotCacheCondition> ...16 75

2.3.2.2 Element <Advice>..16 76
2.4 Statements.. 17 77

2.4.1 Element <Statement>.. 17 78
2.4.2 Element <SubjectStatement>.. 17 79

2.4.2.1 Element <Subject>...17 80
2.4.2.2 Element <NameIdentifier> ...18 81
2.4.2.3 Elements <SubjectConfirmation>, <ConfirmationMethod>, and <SubjectConfirmationData>18 82

2.4.3 Element <AuthenticationStatement>... 19 83
2.4.3.1 Element <SubjectLocality> ..20 84
2.4.3.2 Element <AuthorityBinding> ..20 85

2.4.4 Element <AttributeStatement> .. 21 86
2.4.4.1 Elements <AttributeDesignator> and <Attribute>...21 87

2.4.4.1.1 Element <AttributeValue> ..22 88
2.4.5 Element <AuthorizationDecisionStatement>... 22 89

2.4.5.1 Element <Action>...23 90
2.4.5.2 Element <Evidence>..24 91

3 SAML Protocol.. 25 92
3.1 Schema Header and Namespace Declarations ... 25 93
3.2 Requests... 25 94

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 4 of 53

3.2.1 Complex Type RequestAbstractType ... 26 95
3.2.1.1 Element <RespondWith> ...26 96

3.2.2 Element <Request>... 27 97
3.2.2.1 Requests for Assertions by Reference...28 98
3.2.2.2 Element <AssertionArtifact> ..28 99

3.3 Queries ... 28 100
3.3.1 Element <Query> .. 28 101
3.3.2 Element <SubjectQuery> .. 28 102
3.3.3 Element <AuthenticationQuery> ... 28 103
3.3.4 Element <AttributeQuery>... 29 104
3.3.5 Element <AuthorizationDecisionQuery> ... 30 105

3.4 Responses .. 31 106
3.4.1 Complex Type ResponseAbstractType... 31 107
3.4.2 Element <Response>.. 32 108
3.4.3 Element <Status>.. 33 109

3.4.3.1 Element <StatusCode>..33 110
3.4.3.2 Element <StatusMessage>..34 111
3.4.3.3 Element <StatusDetail> ...35 112

3.4.4 Responses to Queries... 35 113
4 SAML Versioning.. 36 114

4.1 SAML Specification Set Version... 36 115
4.1.1 Schema Version .. 36 116
4.1.2 SAML Assertion Version ... 36 117
4.1.3 SAML Protocol Version ... 37 118

4.1.3.1 Request Version ..37 119
4.1.4 Response Version ... 37 120
4.1.5 Permissible Version Combinations ... 37 121

4.2 SAML Namespace Version... 38 122
4.2.1 Schema Evolution ... 38 123

5 SAML and XML Signature Syntax and Processing.. 39 124
5.1 Signing Assertions .. 39 125
5.2 Request/Response Signing .. 40 126
5.3 Signature Inheritance.. 40 127
5.4 XML Signature Profile... 40 128

5.4.1 Signing Formats and Algorithms ... 40 129
5.4.2 References .. 40 130
5.4.3 Canonicalization Method ... 40 131
5.4.4 Transforms .. 41 132
5.4.5 KeyInfo .. 41 133
5.4.6 Binding Between Statements in a Multi-Statement Assertion... 41 134
5.4.7 Interoperability with SAML V1.0 .. 41 135
5.4.8 Example... 41 136

6 SAML Extensions ... 44 137
6.1 Assertion Schema Extension.. 44 138
6.2 Protocol Schema Extension.. 44 139

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 5 of 53

6.3 Use of Type Derivation and Substitution Groups ... 45 140
7 SAML-Defined Identifiers ... 46 141

7.1 Authentication Method Identifiers ... 46 142
7.1.1 Password... 46 143
7.1.2 Kerberos .. 46 144
7.1.3 Secure Remote Password (SRP).. 46 145
7.1.4 Hardware Token.. 47 146
7.1.5 SSL/TLS Certificate Based Client Authentication: .. 47 147
7.1.6 X.509 Public Key ... 47 148
7.1.7 PGP Public Key... 47 149
7.1.8 SPKI Public Key .. 47 150
7.1.9 XKMS Public Key .. 47 151
7.1.10 XML Digital Signature.. 47 152
7.1.11 Unspecified.. 47 153

7.2 Action Namespace Identifiers ... 47 154
7.2.1 Read/Write/Execute/Delete/Control .. 48 155
7.2.2 Read/Write/Execute/Delete/Control with Negation ... 48 156
7.2.3 Get/Head/Put/Post .. 48 157
7.2.4 UNIX File Permissions .. 48 158

7.3 NameIdentifier Format Identifiers ... 49 159
7.3.1 Unspecified.. 49 160
7.3.2 Email Address ... 49 161
7.3.3 X.509 Subject Name ... 49 162
7.3.4 Windows Domain Qualified Name... 49 163

8 References ... 50 164
Appendix A. Acknowledgments .. 52 165
Appendix B. Notices.. 53 166

 167

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 6 of 53

1 Introduction 168

This specification defines the syntax and semantics for XML-encoded Security Assertion Markup 169
Language (SAML) assertions, protocol requests, and protocol responses. These constructs are typically 170
embedded in other structures for transport, such as HTTP form POSTs and XML-encoded SOAP 171
messages. The SAML specification for bindings and profiles [SAMLBind] provides frameworks for this 172
embedding and transport. Files containing just the SAML assertion schema [SAML-XSD] and protocol 173
schema [SAMLP-XSD] are available. 174

The following sections describe how to understand the rest of this specification. 175

1.1 Notation 176

This specification uses schema documents conforming to W3C XML Schema [Schema1] and normative 177
text to describe the syntax and semantics of XML-encoded SAML assertions and protocol messages. 178
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD 179
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as 180
described in IETF RFC 2119 [RFC 2119]: 181

…they MUST only be used where it is actually required for interoperation or to limit behavior 182
which has potential for causing harm (e.g., limiting retransmissions)… 183

These keywords are thus capitalized when used to unambiguously specify requirements over protocol 184
and application features and behavior that affect the interoperability and security of implementations. 185
When these words are not capitalized, they are meant in their natural-language sense. 186

Listings of SAML schemas appear like this. 187
 188

Example code listings appear like this. 189

In cases of disagreement between the SAML schema files [SAML-XSD] [SAMLP-XSD] and this 190
specification, the schema files take precedence. 191
Conventional XML namespace prefixes are used throughout the listings in this specification to stand for 192
their respective namespaces (see Section 1.2) as follows, whether or not a namespace declaration is 193
present in the example: 194

• The prefix saml: stands for the SAML assertion namespace. 195

• The prefix samlp: stands for the SAML request-response protocol namespace. 196

• The prefix ds: stands for the W3C XML Signature namespace [XMLSig-XSD]. 197

• The prefix xsd: stands for the W3C XML Schema namespace [Schema1] in example listings. In 198
schema listings, this is the default namespace and no prefix is shown. 199

This specification uses the following typographical conventions in text: <SAMLElement>, 200
<ns:ForeignElement>, Attribute, Datatype, OtherCode. 201

1.2 Schema Organization and Namespaces 202

The SAML assertion structures are defined in a schema [SAML-XSD] associated with the following XML 203
namespace: 204

urn:oasis:names:tc:SAML:1.0:assertion 205

The SAML request-response protocol structures are defined in a schema [SAMLP-XSD] associated with 206
the following XML namespace: 207

urn:oasis:names:tc:SAML:1.0:protocol 208

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 7 of 53

The assertion schema is imported into the protocol schema. Also imported into both schemas is the 209
schema for XML Signature [XMLSig-XSD], which is associated with the following XML namespace: 210

http://www.w3.org/2000/09/xmldsig# 211

See Section 4.2 for information on SAML namespace versioning. 212

1.2.1 String and URI Values 213

All SAML string and URI reference values have the types xsd:string and xsd:anyURI respectively, which 214
are built in to the W3C XML Schema Datatypes specification [Schema2]. All strings in SAML messages 215
MUST consist of at least one non-whitespace character (whitespace is defined in the XML 216
Recommendation [XML] §2.3). Empty and whitespace-only values are disallowed. Also, unless otherwise 217
indicated in this specification, all URI reference values MUST consist of at least one non-whitespace 218
character, and are strongly RECOMMENDED to be absolute [RFC 2396]. 219

1.2.2 Time Values 220

All SAML time values have the type xsd:dateTime, which is built in to the W3C XML Schema Datatypes 221
specification [Schema2], and MUST be expressed in UTC form. 222

SAML system entities SHOULD NOT rely on other applications supporting time resolution finer than 223
milliseconds. Implementations MUST NOT generate time instants that specify leap seconds. 224

1.2.3 ID and ID Reference Values 225

The xsd:ID simple type is used to declare SAML identifiers for assertions, requests, and responses. 226
Values declared to be of type xsd:ID in this specification MUST satisfy the following properties: 227

• Any party that assigns an identifier MUST ensure that there is negligible probability that that party or 228
any other party will accidentally assign the same identifier to a different data object. 229

• Where a data object declares that it has a particular identifier, there MUST be exactly one such 230
declaration. 231

The mechanism by which a SAML system entity ensures that the identifier is unique is left to the 232
implementation. In the case that a pseudorandom technique is employed, the probability of two randomly 233
chosen identifiers being identical MUST be less than or equal to 2-128 and SHOULD be less than or equal 234
to 2-160. This requirement MAY be met by encoding a randomly chosen value between 128 and 160 bits in 235
length. The encoding must conform to the rules defining the xsd:ID datatype. 236
The xsd:NCName simple type is used in SAML to reference identifiers of type xsd:ID. Note that 237
xsd:IDREF cannot be used for this purpose since, in SAML, the element referred to by a SAML reference 238
identifier might actually be defined in a document separate from that in which the identifier reference is 239
used. XML [XML] requires that names of type xsd:IDREF must match the value of an ID attribute on 240
some element in the same XML document. 241

1.2.4 Comparing SAML Values 242

Unless otherwise noted, all elements in SAML documents that have the XML Schema xsd:string type, or 243
a type derived from that, MUST be compared using an exact binary comparison. In particular, SAML 244
implementations and deployments MUST NOT depend on case-insensitive string comparisons, 245
normalization or trimming of white space, or conversion of locale-specific formats such as numbers or 246
currency. This requirement is intended to conform to the W3C Requirements for String Identity, Matching, 247
and String Indexing [W3C-CHAR]. 248

If an implementation is comparing values that are represented using different character encodings, the 249
implementation MUST use a comparison method that returns the same result as converting both values 250
to the Unicode character encoding, Normalization Form C [UNICODE-C], and then performing an exact 251
binary comparison. This requirement is intended to conform to the W3C Character Model for the World 252
Wide Web [W3C-CharMod], and in particular the rules for Unicode-normalized Text. 253

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 8 of 53

Applications that compare data received in SAML documents to data from external sources MUST take 254
into account the normalization rules specified for XML. Text contained within elements is normalized so 255
that line endings are represented using linefeed characters (ASCII code 10Decimal), as described in the 256
XML Recommendation [XML] §2.11. Attribute values defined as strings (or types derived from strings) 257
are normalized as described in [XML] §3.3.3. All white space characters are replaced with blanks (ASCII 258
code 32Decimal). 259
The SAML specification does not define collation or sorting order for attribute or element values. SAML 260
implementations MUST NOT depend on specific sorting orders for values, because these may differ 261
depending on the locale settings of the hosts involved. 262

1.3 SAML Concepts (Non-Normative) 263

This section is informative only and is superseded by any contradicting information in the normative text 264
in Section 2 and following. A glossary of SAML terms and concepts [SAMLGloss] is available. 265

1.3.1 Overview 266

The Security Assertion Markup Language (SAML) is an XML-based framework for exchanging security 267
information. This security information is expressed in the form of assertions about subjects, where a 268
subject is an entity (either human or computer) that has an identity in some security domain. A typical 269
example of a subject is a person, identified by his or her email address in a particular Internet DNS 270
domain. 271

Assertions can convey information about authentication acts that were previously performed by subjects, 272
attributes of subjects, and authorization decisions about whether subjects are allowed to access certain 273
resources. A single assertion might contain several different internal statements about authentication, 274
authorization, and attributes. 275
Assertions are issued by SAML authorities, namely, authentication authorities, attribute authorities, and 276
policy decision points. SAML defines a protocol by which clients can request assertions from SAML 277
authorities and get a response from them. This protocol, consisting of XML-based request and response 278
message formats, can be bound to many different underlying communications and transport protocols; 279
SAML currently defines one binding, to SOAP over HTTP. 280
SAML authorities can use various sources of information, such as external policy stores and assertions 281
that were received as input in requests, in creating their responses. Thus, while clients always consume 282
assertions, SAML authorities can be both producers and consumers of assertions. 283

The following model is conceptual only; for example, it does not account for real-world information flow or 284
the possibility of combining of authorities into a single system. 285

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 9 of 53

SAML

Credentials
Collector

Authentication
Authority

Attribute
Authority

Policy Decision
Point

Policy

Policy Enforcement
PointSystem Entity

Authentication
Assertion Attribute Assertion Authorization

Decision Assertion

Policy Policy

Application
Request

 286
Figure 1 The SAML Domain Model 287

One major design goal for SAML is Single Sign-On (SSO), the ability of a user to authenticate in one 288
domain and use resources in other domains without re-authenticating. However, SAML can be used in 289
various configurations to support additional scenarios as well. Several profiles of SAML have been 290
defined that support different styles of SSO, as well as the securing of SOAP payloads. 291

The assertion and protocol data formats are defined in this specification. The bindings and profiles are 292
defined in a separate specification [SAMLBind]. A conformance program for SAML is defined in the 293
conformance specification [SAMLConform]. Security issues are discussed in a separate security and 294
privacy considerations specification [SAMLSecure]. 295

1.3.2 SAML and URI-Based Identifiers 296

SAML defines some identifiers to manage references to well-known concepts and sets of values. For 297
example, the SAML-defined identifier for the password authentication method is as follows: 298

urn:oasis:names:tc:SAML:1.0:am:password 299

For another example, the SAML-defined identifier for the set of possible actions on a resource consisting 300
of Read/Write/Execute/Delete/Control is as follows: 301

urn:oasis:names:tc:SAML:1.0:action:rwedc 302

These identifiers are defined as Uniform Resource Identifier (URI) references, but they are not 303
necessarily able to be resolved to some Web resource. At times, SAML authorities need to use identifier 304
strings of their own design, for example to define additional kinds of authentication methods not covered 305
by SAML-defined identifiers. In the case where a form is used that is compatible with interpretation as a 306
URI reference, it is not required to be resolvable to some Web resource. However, using URI references 307
– particularly URLs based on the http: scheme or URNs based on the urn: scheme – is likely to 308
mitigate problems with clashing identifiers to some extent. 309

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 10 of 53

The Read/Write/Execute/Delete/Control identifier above is an example of a namespace (not in the sense 310
of an XML namespace). SAML uses this namespace mechanism to manage the universe of possible 311
types of actions and possible names of attributes. 312

See Section 7 for a list of SAML-defined identifiers. 313

1.3.3 SAML and Extensibility 314

The XML formats for SAML assertions and protocol messages have been designed to be extensible. 315
Section 6 describes SAML’s design for extensibility in more detail. 316
However, it is possible that the use of extensions will harm interoperability and therefore the use of 317
extensions should be carefully considered. 318

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 11 of 53

2 SAML Assertions 319

An assertion is a package of information that supplies one or more statements made by a SAML 320
authority. This SAML specification defines three different kinds of assertion statement that can be created 321
by a SAML authority. As mentioned above and described in Section 6, extensions are permitted by the 322
SAML assertion schema, allowing user-defined extensions to assertions and SAML statements, as well 323
as allowing the definition of new kinds of assertion statement. The three kinds of statement defined in this 324
specification are: 325

• Authentication: The specified subject was authenticated by a particular means at a particular time. 326

• Attribute: The specified subject is associated with the supplied attributes. 327

• Authorization Decision: A request to allow the specified subject to access the specified resource 328
has been granted or denied. 329

The outer structure of an assertion is generic, providing information that is common to all of the 330
statements within it. Within an assertion, a series of inner elements describe the authentication, 331
authorization decision, attribute, or user-defined statements containing the specifics. 332

2.1 Schema Header and Namespace Declarations 333

The following schema fragment defines the XML namespaces and other header information for the 334
assertion schema: 335

<schema 336
 targetNamespace="urn:oasis:names:tc:SAML:1.0:assertion" 337
 xmlns="http://www.w3.org/2001/XMLSchema" 338
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 339
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 340
 elementFormDefault="unqualified" 341
 attributeFormDefault="unqualified" 342
 version="1.1"> 343
 <import namespace="http://www.w3.org/2000/09/xmldsig#" 344
 schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-345
schema.xsd"/> 346
 <annotation> 347
 <documentation> 348
 Document identifier: oasis-sstc-saml-schema-assertion-1.1 349
 Location: http://www.oasis-350
open.org/committees/documents.php?wg_abbrev=security 351
 Revision history: 352
 V1.0 (November, 2002): 353
 Initial standard schema. 354
 V1.1 (September, 2003): 355
 * Note that V1.1 of this schema has the same XML 356
 namespace as V1.0. 357
 Rebased ID content directly on XML Schema types 358
 Added DoNotCacheCondition element and 359
 DoNotCacheConditionType 360
 </documentation> 361
 </annotation> 362
… 363
</schema> 364

2.2 Simple Types 365

The following section(s) define the SAML assertion-related simple types. 366

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 12 of 53

2.2.1 Simple Type DecisionType 367

The DecisionType simple type defines the possible values to be reported as the status of an 368
authorization decision statement. 369
Permit 370

The specified action is permitted. 371
Deny 372

The specified action is denied. 373
Indeterminate 374

The SAML authority cannot determine whether the specified action is permitted or denied. 375

The Indeterminate decision value is used in situations where the SAML authority requires the ability to 376
provide an affirmative statement that it is not able to issue a decision. Additional information as to the 377
reason for the refusal or inability to provide a decision MAY be returned as <StatusDetail> elements. 378

The following schema fragment defines the DecisionType simple type: 379

<simpleType name="DecisionType"> 380
 <restriction base="string"> 381
 <enumeration value="Permit"/> 382
 <enumeration value="Deny"/> 383
 <enumeration value="Indeterminate"/> 384
 </restriction> 385
</simpleType> 386

2.3 Assertions 387

The following sections define the SAML constructs that contain assertion information. 388

2.3.1 Element <AssertionIDReference> 389

The <AssertionIDReference> element makes a reference to a SAML assertion. 390

The following schema fragment defines the <AssertionIDReference> element: 391

<element name="AssertionIDReference" type="NCName"/> 392

2.3.2 Element <Assertion> 393

The <Assertion> element is of AssertionType complex type. This type specifies the basic information 394
that is common to all assertions, including the following elements and attributes: 395

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 13 of 53

MajorVersion [Required] 396

The major version of this assertion. The identifier for the version of SAML defined in this specification 397
is 1. SAML versioning is discussed in Section 4. 398

MinorVersion [Required] 399

The minor version of this assertion. The identifier for the version of SAML defined in this specification 400
is 1. SAML versioning is discussed in Section 4. 401

AssertionID [Required] 402

The identifier for this assertion. It is of type xsd:ID, and MUST follow the requirements specified in 403
Section 1.2.3 for identifier uniqueness. 404

Issuer [Required] 405

The SAML authority that created the assertion. The name of the issuer is provided as a string. The 406
issuer name SHOULD be unambiguous to the intended relying parties. SAML authorities may use an 407
identifier such as a URI reference that is designed to be unambiguous regardless of context. 408

IssueInstant [Required] 409

The time instant of issue in UTC, as described in Section 1.2.2. 410

<Conditions> [Optional] 411

Conditions that MUST be taken into account in assessing the validity of the assertion. 412

<Advice> [Optional] 413

Additional information related to the assertion that assists processing in certain situations but which 414
MAY be ignored by applications that do not support its use. 415

<ds:Signature> [Optional] 416

An XML Signature that authenticates the assertion, as described in Section 5. 417

One or more of the following statement elements: 418
<Statement> 419

A statement defined in an extension schema. 420
<SubjectStatement> 421

A subject statement defined in an extension schema. 422
<AuthenticationStatement> 423

An authentication statement. 424
<AuthorizationDecisionStatement> 425

An authorization decision statement. 426
<AttributeStatement> 427

An attribute statement. 428

The following schema fragment defines the <Assertion> element and its AssertionType complex type: 429

<element name="Assertion" type="saml:AssertionType"/> 430
<complexType name="AssertionType"> 431
 <sequence> 432
 <element ref="saml:Conditions" minOccurs="0"/> 433
 <element ref="saml:Advice" minOccurs="0"/> 434
 <choice maxOccurs="unbounded"> 435
 <element ref="saml:Statement"/> 436
 <element ref="saml:SubjectStatement"/> 437
 <element ref="saml:AuthenticationStatement"/> 438
 <element ref="saml:AuthorizationDecisionStatement"/> 439
 <element ref="saml:AttributeStatement"/> 440
 </choice> 441
 <element ref="ds:Signature" minOccurs="0"/> 442

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 14 of 53

 </sequence> 443
 <attribute name="MajorVersion" type="integer" use="required"/> 444
 <attribute name="MinorVersion" type="integer" use="required"/> 445
 <attribute name="AssertionID" type="ID" use="required"/> 446
 <attribute name="Issuer" type="string" use="required"/> 447
 <attribute name="IssueInstant" type="dateTime" use="required"/> 448
</complexType> 449

2.3.2.1 Element <Conditions> 450

The <Conditions> element MAY contain the following elements and attributes: 451

NotBefore [Optional] 452

Specifies the earliest time instant at which the assertion is valid. The time value is encoded in UTC as 453
described in Section 1.2.2. 454

NotOnOrAfter [Optional] 455

Specifies the time instant at which the assertion has expired. The time value is encoded in UTC as 456
described in Section 1.2.2. 457

<Condition> [Any Number] 458

Provides an extension point allowing extension schemas to define new conditions. 459

<AudienceRestrictionCondition> [Any Number] 460

Specifies that the assertion is addressed to a particular audience. 461

<DoNotCacheCondition> [Any Number] 462

 Specifies that the assertion SHOULD be used immediately and MUST NOT be retained for future use. 463

The following schema fragment defines the <Conditions> element and its ConditionsType complex 464
type: 465

<element name="Conditions" type="saml:ConditionsType"/> 466
<complexType name="ConditionsType"> 467
 <choice minOccurs="0" maxOccurs="unbounded"> 468
 <element ref="saml:AudienceRestrictionCondition"/> 469
 <element ref=”saml:DoNotCacheCondition”> 470
 <element ref="saml:Condition"/> 471
 </choice> 472
 <attribute name="NotBefore" type="dateTime" use="optional"/> 473
 <attribute name="NotOnOrAfter" type="dateTime" use="optional"/> 474
</complexType> 475

If an assertion contains a <Conditions> element, the validity of the assertion is dependent on the sub-476
elements and attributes provided. When processing the sub-elements and attributes of a <Conditions> 477
element, the following rules MUST be used in the order shown to determine the overall validity of the 478
assertion: 479

1. If no sub-elements or attributes are supplied in the <Conditions> element, then the assertion is 480
considered to be Valid. 481

2. If any sub-element or attribute of the <Conditions> element is determined to be invalid, then the 482
assertion is Invalid. 483

3. If any sub-element or attribute of the <Conditions> element cannot be evaluated, then the validity 484
of the assertion cannot be determined and is deemed to be Indeterminate. 485

4. If all sub-elements and attributes of the <Conditions> element are determined to be Valid, then the 486
assertion is considered to be Valid. 487

The <Conditions> element MAY be extended to contain additional conditions. If an element contained 488
within a <Conditions> element is encountered that is not understood, the status of the condition cannot 489

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 15 of 53

be evaluated and the validity status of the assertion MUST be deemed to be Indeterminate in 490
accordance with rule 3 above. 491
Note that an assertion that has validity status Valid may not be trustworthy for reasons such as not being 492
issued by a trustworthy SAML authority or not being authenticated by a trustworthy means. 493

2.3.2.1.1 Attributes NotBefore and NotOnOrAfter 494

The NotBefore and NotOnOrAfter attributes specify time limits on the validity of the assertion. 495

The NotBefore attribute specifies the time instant at which the validity interval begins. The 496
NotOnOrAfter attribute specifies the time instant at which the validity interval has ended. 497

If the value for either NotBefore or NotOnOrAfter is omitted it is considered unspecified. If the 498
NotBefore attribute is unspecified (and if any other conditions that are supplied evaluate to Valid), the 499
assertion is valid at any time before the time instant specified by the NotOnOrAfter attribute. If the 500
NotOnOrAfter attribute is unspecified (and if any other conditions that are supplied evaluate to Valid), 501
the assertion is valid from the time instant specified by the NotBefore attribute with no expiry. If neither 502
attribute is specified (and if any other conditions that are supplied evaluate to Valid), the assertion is valid 503
at any time. 504

The NotBefore and NotOnOrAfter attributes are defined to have the dateTime simple type that is built 505
in to the W3C XML Schema Datatypes specification [Schema2]. All time instants are specified in 506
Universal Coordinated Time (UTC) as described in Section 1.2.2. Implementations MUST NOT generate 507
time instants that specify leap seconds. 508

2.3.2.1.2 Element <Condition> 509

The <Condition> element serves as an extension point for new conditions. Its ConditionAbstractType 510
complex type is abstract and is thus usable only as the base of a derived type. 511

The following schema fragment defines the <Condition> element and its ConditionAbstractType 512
complex type: 513

<element name="Condition" type="saml:ConditionAbstractType"/> 514
<complexType name="ConditionAbstractType" abstract="true"/> 515

2.3.2.1.3 Elements <AudienceRestrictionCondition> and <Audience> 516

The <AudienceRestrictionCondition> element specifies that the assertion is addressed to one or 517
more specific audiences identified by <Audience> elements. Although a SAML relying party that is 518
outside the audiences specified is capable of drawing conclusions from an assertion, the SAML authority 519
explicitly makes no representation as to accuracy or trustworthiness to such a party. It contains the 520
following elements: 521
<Audience> 522

A URI reference that identifies an intended audience. The URI reference MAY identify a document 523
that describes the terms and conditions of audience membership. 524

The audience restriction condition evaluates to Valid if and only if the SAML relying party is a member of 525
one or more of the audiences specified. 526
The SAML authority cannot prevent a party to whom the assertion is disclosed from taking action on the 527
basis of the information provided. However, the <AudienceRestrictionCondition> element allows 528
the SAML authority to state explicitly that no warranty is provided to such a party in a machine- and 529
human-readable form. While there can be no guarantee that a court would uphold such a warranty 530
exclusion in every circumstance, the probability of upholding the warranty exclusion is considerably 531
improved. 532

The following schema fragment defines the <AudienceRestrictionCondition> element and its 533
AudienceRestrictionConditionType complex type: 534

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 16 of 53

<element name="AudienceRestrictionCondition" 535
 type="saml:AudienceRestrictionConditionType"/> 536
<complexType name="AudienceRestrictionConditionType"> 537
 <complexContent> 538
 <extension base="saml:ConditionAbstractType"> 539
 <sequence> 540
 <element ref="saml:Audience" maxOccurs="unbounded"/> 541
 </sequence> 542
 </extension> 543
 </complexContent> 544
</complexType> 545
<element name="Audience" type="anyURI"/> 546

2.3.2.1.4 Element <DoNotCacheCondition> 547

Indicates that the assertion SHOULD be used immediately by the relying party and MUST NOT be 548
retained for future use. A SAML authority SHOULD NOT include more than one 549
<DoNotCacheCondition> element within a <Conditions> element of an assertion. Note that no 550
Relying Party implementation is required to perform caching. However, any that do so MUST observe this 551
condition. If multiple <DoNotCacheCondition> elements appear within a <Conditions> element, a 552
Relying Party MUST treat the multiple elements as though a single <DoNotCacheCondition> element 553
was specified. For the purposes of determining the validity of the <Conditions> element, the 554
<DoNotCacheCondition> (see Section 2.3.2.1) is considered to always be valid. 555

 556

<element name="DoNotCacheCondition" type="saml:DoNotCacheConditionType" /> 557
<complexType name="DoNotCacheConditionType"> 558
 <complexContent> 559
 <extension base="saml:ConditionAbstractType"/> 560
 </complexContent> 561
</complexType> 562

2.3.2.2 Element <Advice> 563

The <Advice> element contains any additional information that the SAML authority wishes to provide. 564
This information MAY be ignored by applications without affecting either the semantics or the validity of 565
the assertion. 566

The <Advice> element contains a mixture of zero or more <Assertion> elements, 567
<AssertionIDReference> elements, and elements in other namespaces, with lax schema validation 568
in effect for these other elements. 569

Following are some potential uses of the <Advice> element: 570

• Include evidence supporting the assertion claims to be cited, either directly (through incorporating the 571
claims) or indirectly (by reference to the supporting assertions). 572

• State a proof of the assertion claims. 573

• Specify the timing and distribution points for updates to the assertion. 574

The following schema fragment defines the <Advice> element and its AdviceType complex type: 575

<element name="Advice" type="saml:AdviceType"/> 576
<complexType name="AdviceType"> 577
 <choice minOccurs="0" maxOccurs="unbounded"> 578
 <element ref="saml:AssertionIDReference"/> 579
 <element ref="saml:Assertion"/> 580
 <any namespace="##other" processContents="lax"/> 581
 </choice> 582
</complexType> 583

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 17 of 53

2.4 Statements 584

The following sections define the SAML constructs that contain statement information. 585

2.4.1 Element <Statement> 586

The <Statement> element is an extension point that allows other assertion-based applications to reuse 587
the SAML assertion framework. Its StatementAbstractType complex type is abstract and is thus usable 588
only as the base of a derived type. 589

The following schema fragment defines the <Statement> element and its StatementAbstractType 590
complex type: 591

<element name="Statement" type="saml:StatementAbstractType"/> 592
<complexType name="StatementAbstractType" abstract="true"/> 593

2.4.2 Element <SubjectStatement> 594

The <SubjectStatement> element is an extension point that allows other assertion-based applications 595
to reuse the SAML assertion framework. It contains a <Subject> element that allows a SAML authority 596
to describe a subject. Its SubjectStatementAbstractType complex type, which extends 597
StatementAbstractType, is abstract and is thus usable only as the base of a derived type. 598

The following schema fragment defines the <SubjectStatement> element and its 599
SubjectStatementAbstractType abstract type: 600

<element name="SubjectStatement" type="saml:SubjectStatementAbstractType"/> 601
<complexType name="SubjectStatementAbstractType" abstract="true"> 602
 <complexContent> 603
 <extension base="saml:StatementAbstractType"> 604
 <sequence> 605
 <element ref="saml:Subject"/> 606
 </sequence> 607
 </extension> 608
 </complexContent> 609
</complexType> 610

2.4.2.1 Element <Subject> 611

The <Subject> element specifies the principal that is the subject of the statement. It contains either or 612
both of the following elements: 613
<NameIdentifier> 614

An identification of a subject by its name and security domain. 615
<SubjectConfirmation> 616

Information that allows the subject to be authenticated. 617

If the <Subject> element contains both a <NameIdentifier> and a <SubjectConfirmation>, the 618
SAML authority is asserting that if the SAML relying party performs the specified 619
<SubjectConfirmation>, it can be confident that the entity presenting the assertion to the relying 620
party is the entity that the SAML authority associates with the <NameIdentifier>. A <Subject> 621
element SHOULD NOT identify more than one principal. 622

The following schema fragment defines the <Subject> element and its SubjectType complex type: 623

<element name="Subject" type="saml:SubjectType"/> 624
<complexType name="SubjectType"> 625
 <choice> 626
 <sequence> 627
 <element ref="saml:NameIdentifier"/> 628

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 18 of 53

 <element ref="saml:SubjectConfirmation" minOccurs="0"/> 629
 </sequence> 630
 <element ref="saml:SubjectConfirmation"/> 631
 </choice> 632
</complexType> 633

2.4.2.2 Element <NameIdentifier> 634

The <NameIdentifier> element specifies a subject by a combination of a name qualifier, a name, 635
and a format. The name is provided as element content. The <NameIdentifier> element has the 636
following attributes: 637

NameQualifier [Optional] 638

The security or administrative domain that qualifies the name of the subject. This attribute provides a 639
means to federate names from disparate user stores without collision. 640

Format [Optional] 641

A URI reference representing the format in which the <NameIdentifier> information is provided. 642
See Section 7.3 for some URI references that MAY be used as the value of the Format attribute. If 643
the Format attribute is not included, the identifier urn:oasis:names:tc:SAML:1.0:nameid-644
format:unspecified (see Section 7.3.1) is in effect. Regardless of format, issues of anonymity, 645
pseudonymity, and the persistence of the identifier with respect to the asserting and relying parties 646
are implementation-specific. 647

The following schema fragment defines the <NameIdentifier> element and its NameIdentifierType 648
complex type: 649

<element name="NameIdentifier" type="saml:NameIdentifierType"/> 650
<complexType name="NameIdentifierType"> 651
 <simpleContent> 652
 <extension base="string"> 653
 <attribute name="NameQualifier" type="string" use="optional"/> 654
 <attribute name="Format" type="anyURI" use="optional"/> 655
 </extension> 656
 </simpleContent> 657
</complexType> 658

When a Format other than those specified in Section 7.3 is used, the NameQualifier attribute and the 659
<NameIdentifier> element’s content are to be interpreted according to the specification of that format 660
as defined outside of this specification. 661

2.4.2.3 Elements <SubjectConfirmation>, <ConfirmationMethod>, and 662
<SubjectConfirmationData> 663

The <SubjectConfirmation> element specifies a subject by supplying data that allows the subject to 664
be authenticated. It contains the following elements in order: 665

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 19 of 53

<ConfirmationMethod> [One or more] 666

A URI reference that identifies a protocol to be used to authenticate the subject. URI references 667
identifying SAML-defined confirmation methods are currently defined with the SAML profiles in the 668
SAML bindings and profiles specification [SAMLBind]. Additional methods may be added by defining 669
new profiles or by private agreement. 670

<SubjectConfirmationData> [Optional] 671

Additional authentication information to be used by a specific authentication protocol. 672

<ds:KeyInfo> [Optional] 673

An XML Signature [XMLSig] element that provides access to a cryptographic key held by the subject. 674

The following schema fragment defines the <SubjectConfirmation> element and its 675
SubjectConfirmationType complex type, along with the <SubjectConfirmationData> element and 676
the <ConfirmationMethod> element: 677

<element name="SubjectConfirmation" type="saml:SubjectConfirmationType"/> 678
<complexType name="SubjectConfirmationType"> 679
 <sequence> 680
 <element ref="saml:ConfirmationMethod" maxOccurs="unbounded"/> 681
 <element ref="saml:SubjectConfirmationData" minOccurs="0"/> 682
 <element ref="ds:KeyInfo" minOccurs="0"/> 683
 </sequence> 684
</complexType> 685
<element name="SubjectConfirmationData" type="anyType"/> 686
<element name="ConfirmationMethod" type="anyURI"/> 687

2.4.3 Element <AuthenticationStatement> 688

The <AuthenticationStatement> element describes a statement by the SAML authority asserting 689
that the statement’s subject was authenticated by a particular means at a particular time. It is of type 690
AuthenticationStatementType, which extends SubjectStatementAbstractType with the addition of the 691
following elements and attributes: 692

AuthenticationMethod [Required] 693

A URI reference that specifies the type of authentication that took place. URI references identifying 694
common authentication protocols are listed in Section 7.1. 695

AuthenticationInstant [Required] 696

Specifies the time at which the authentication took place. The time value is encoded in UTC as 697
described in Section 1.2.2. 698

<SubjectLocality> [Optional] 699

Specifies the DNS domain name and IP address for the system entity from which the subject was 700
apparently authenticated. 701

<AuthorityBinding> [Any Number] 702

Indicates that additional information about the subject of the statement may be available. 703

The following schema fragment defines the <AuthenticationStatement> element and its 704
AuthenticationStatementType complex type: 705

<element name="AuthenticationStatement" 706
 type="saml:AuthenticationStatementType"/> 707
<complexType name="AuthenticationStatementType"> 708
 <complexContent> 709
 <extension base="saml:SubjectStatementAbstractType"> 710
 <sequence> 711
 <element ref="saml:SubjectLocality" minOccurs="0"/> 712

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 20 of 53

 <element ref="saml:AuthorityBinding" 713
 minOccurs="0" maxOccurs="unbounded"/> 714
 </sequence> 715
 <attribute name="AuthenticationMethod" type="anyURI" 716
use=”required”/> 717
 <attribute name="AuthenticationInstant" type="dateTime" 718
use=”required”/> 719
 </extension> 720
 </complexContent> 721
</complexType> 722

2.4.3.1 Element <SubjectLocality> 723

The <SubjectLocality> element specifies the DNS domain name and IP address for the system 724
entity that was authenticated. It has the following attributes: 725

IPAddress [Optional] 726

The IP address of the system entity that was authenticated. 727

DNSAddress [Optional] 728

The DNS address of the system entity that was authenticated. 729

This element is entirely advisory, since both these fields are quite easily “spoofed,” but current practice 730
appears to require its inclusion. 731

The following schema fragment defines the <SubjectLocality> element and its SubjectLocalityType 732
complex type: 733

<element name="SubjectLocality" 734
 type="saml: SubjectLocalityType"/> 735
<complexType name="SubjectLocalityType"> 736
 <attribute name="IPAddress" type="string" use="optional"/> 737
 <attribute name="DNSAddress" type="string" use="optional"/> 738
</complexType> 739

2.4.3.2 Element <AuthorityBinding> 740

The <AuthorityBinding> element MAY be used to indicate to a SAML relying party processing an 741
AuthenticationStatement that a SAML authority may be available to provide additional information about 742
the subject of the statement. A single SAML authority may advertise its presence over multiple protocol 743
bindings, at multiple locations, and as more than one kind of authority by sending multiple elements as 744
needed. 745
NOTE: This element is deprecated; use of this element SHOULD be avoided because it is planned to be 746
removed in the next major version of SAML. 747

The <AuthorityBinding> element has the following attributes: 748

AuthorityKind [Required] 749

The type of SAML protocol queries to which the authority described by this element will respond. The 750
value is specified as an XML Schema QName. The AuthorityKind value is either the QName of the 751
desired SAML protocol query element or, in the case of an extension schema, the QName of the 752
SAML QueryAbstractType complex type or some extension type that was derived from it. In the 753
case of an extension schema, the authority will respond to all query elements of the specified type. 754
For example, an attribute authority would be identified by 755
AuthorityKind="samlp:AttributeQuery", where there is a namespace declaration in the 756
scope of this attribute that binds the samlp: prefix to the SAML protocol namespace. 757

Location [Required] 758

A URI reference describing how to locate and communicate with the authority, the exact syntax of 759

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 21 of 53

which depends on the protocol binding in use. For example, a binding based on HTTP will be a web 760
URL, while a binding based on SMTP might use the mailto: scheme. 761

Binding [Required] 762

A URI reference identifying the SAML protocol binding to use in communicating with the authority. All 763
SAML protocol bindings will have an assigned URI reference. 764

The following schema fragment defines the <AuthorityBinding> element and its 765
AuthorityBindingType complex type: 766

<element name="AuthorityBinding" type="saml:AuthorityBindingType"/> 767
<complexType name="AuthorityBindingType"> 768
 <attribute name="AuthorityKind" type="QName" use="required"/> 769
 <attribute name="Location" type="anyURI" use="required"/> 770
 <attribute name="Binding" type="anyURI" use="required"/> 771
</complexType> 772

2.4.4 Element <AttributeStatement> 773

The <AttributeStatement> element describes a statement by the SAML authority asserting that the 774
statement’s subject is associated with the specified attributes. It is of type AttributeStatementType, 775
which extends SubjectStatementAbstractType with the addition of the following element: 776

<Attribute> [One or More] 777

The <Attribute> element specifies an attribute of the subject. 778

The following schema fragment defines the <AttributeStatement> element and its 779
AttributeStatementType complex type: 780

<element name="AttributeStatement" type="saml:AttributeStatementType"/> 781
<complexType name="AttributeStatementType"> 782
 <complexContent> 783
 <extension base="saml:SubjectStatementAbstractType"> 784
 <sequence> 785
 <element ref="saml:Attribute" maxOccurs="unbounded"/> 786
 </sequence> 787
 </extension> 788
 </complexContent> 789
</complexType> 790

2.4.4.1 Elements <AttributeDesignator> and <Attribute> 791

The <AttributeDesignator> element identifies an attribute name within an attribute namespace. It 792
has the AttributeDesignatorType complex type. It is used in an attribute query to request that attribute 793
values within a specific namespace be returned (see Section 3.3.4 for more information). The 794
<AttributeDesignator> element contains the following XML attributes: 795

AttributeNamespace [Required] 796

The namespace in which the AttributeName elements are interpreted. 797

AttributeName [Required] 798

The name of the attribute. 799

The following schema fragment defines the <AttributeDesignator> element and its 800
AttributeDesignatorType complex type: 801

<element name="AttributeDesignator" type="saml:AttributeDesignatorType"/> 802
<complexType name="AttributeDesignatorType"> 803
 <attribute name="AttributeName" type="string" use="required"/> 804
 <attribute name="AttributeNamespace" type="anyURI" use="required"/> 805
</complexType> 806

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 22 of 53

The <Attribute> element supplies the value for an attribute of an assertion subject. It has the 807
AttributeType complex type, which extends AttributeDesignatorType with the addition of the following 808
element: 809

<AttributeValue> [Any Number] 810

The value of the attribute. 811

The following schema fragment defines the <Attribute> element and its AttributeType complex type: 812

<element name="Attribute" type="saml:AttributeType"/> 813
<complexType name="AttributeType"> 814
 <complexContent> 815
 <extension base="saml:AttributeDesignatorType"> 816
 <sequence> 817
 <element ref="saml:AttributeValue” 818
maxOccurs="unbounded"/> 819
 </sequence> 820
 </extension> 821
 </complexContent> 822
</complexType> 823

2.4.4.1.1 Element <AttributeValue> 824

The <AttributeValue> element supplies the value of a specified attribute. It is of the anyType simple 825
type, which allows any well-formed XML to appear as the content of the element. 826
If the data content of an AttributeValue element is of an XML Schema simple type (such as xsd:integer 827
or xsd:string), the data type MAY be declared explicitly by means of an xsi:type declaration in the 828
<AttributeValue> element. If the attribute value contains structured data, the necessary data 829
elements MAY be defined in an extension schema. 830

The following schema fragment defines the <AttributeValue> element: 831

<element name="AttributeValue" type="anyType"/> 832

2.4.5 Element <AuthorizationDecisionStatement> 833

The <AuthorizationDecisionStatement> element describes a statement by the SAML authority 834
asserting that a request for access by the statement’s subject to the specified resource has resulted in the 835
specified authorization decision on the basis of some optionally specified evidence. 836

The resource is identified by means of a URI reference. In order for the assertion to be interpreted 837
correctly and securely, the SAML authority and SAML relying party MUST interpret each URI reference in 838
a consistent manner. Failure to achieve a consistent URI reference interpretation can result in different 839
authorization decisions depending on the encoding of the resource URI reference. Rules for normalizing 840
URI references are to be found in IETF RFC 2396 [RFC 2396] §6: 841

In general, the rules for equivalence and definition of a normal form, if any, are scheme 842
dependent. When a scheme uses elements of the common syntax, it will also use the common 843
syntax equivalence rules, namely that the scheme and hostname are case insensitive and a URL 844
with an explicit ":port", where the port is the default for the scheme, is equivalent to one where 845
the port is elided. 846

To avoid ambiguity resulting from variations in URI encoding SAML system entities SHOULD employ the 847
URI normalized form wherever possible as follows: 848

• SAML authorities SHOULD encode all resource URI references in normalized form. 849

• Relying parties SHOULD convert resource URI references to normalized form prior to processing. 850

Inconsistent URI reference interpretation can also result from differences between the URI reference 851
syntax and the semantics of an underlying file system. Particular care is required if URI references are 852

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 23 of 53

employed to specify an access control policy language. The following security conditions should be 853
satisfied by the system which employs SAML assertions: 854

• Parts of the URI reference syntax are case sensitive. If the underlying file system is case insensitive, 855
a requester SHOULD NOT be able to gain access to a denied resource by changing the case of a 856
part of the resource URI reference. 857

• Many file systems support mechanisms such as logical paths and symbolic links, which allow users to 858
establish logical equivalences between file system entries. A requester SHOULD NOT be able to gain 859
access to a denied resource by creating such an equivalence. 860

The <AuthorizationDecisionStatement> element is of type 861
AuthorizationDecisionStatementType, which extends SubjectStatementAbstractType with the 862
addition of the following elements (in order) and attributes: 863

Resource [Required] 864

A URI reference identifying the resource to which access authorization is sought. It is permitted for 865
this attribute to have the value of the empty URI reference (""), and the meaning is defined to be "the 866
start of the current document", as specified by IETF RFC 2396 [RFC 2396] §4.2. 867

Decision [Required] 868

The decision rendered by the SAML authority with respect to the specified resource. The value is of 869
the DecisionType simple type. 870

<Action> [One or more] 871

The set of actions authorized to be performed on the specified resource. 872

<Evidence> [Optional] 873

A set of assertions that the SAML authority relied on in making the decision. 874

The following schema fragment defines the <AuthorizationDecisionStatement> element and its 875
AuthorizationDecisionStatementType complex type: 876

<element name="AuthorizationDecisionStatement" 877
type="saml:AuthorizationDecisionStatementType"/> 878
<complexType name="AuthorizationDecisionStatementType"> 879
 <complexContent> 880
 <extension base="saml:SubjectStatementAbstractType"> 881
 <sequence> 882
 <element ref="saml:Action" maxOccurs="unbounded"/> 883
 <element ref="saml:Evidence" minOccurs="0"/> 884
 </sequence> 885
 <attribute name="Resource" type="anyURI" use="required"/> 886
 <attribute name="Decision" type="saml:DecisionType" 887
use="required"/> 888
 </extension> 889
 </complexContent> 890
</complexType> 891

2.4.5.1 Element <Action> 892

The <Action> element specifies an action on the specified resource for which permission is sought. It 893
has the following attribute and string-data content: 894

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 24 of 53

Namespace [Optional] 895

A URI reference representing the namespace in which the name of the specified action is to be 896
interpreted. If this element is absent, the namespace urn:oasis:names:tc:SAML:1.0:action:rwedc-897
negation specified in Section 7.2.2 is in effect. 898

string data [Required] 899

An action sought to be performed on the specified resource. 900

The following schema fragment defines the <Action> element and its ActionType complex type: 901

<element name="Action" type="saml:ActionType"/> 902
<complexType name="ActionType"> 903
 <simpleContent> 904
 <extension base="string"> 905
 <attribute name="Namespace" type="anyURI"/> 906
 </extension> 907
 </simpleContent> 908
</complexType> 909

2.4.5.2 Element <Evidence> 910

The <Evidence> element contains an assertion or assertion reference that the SAML authority relied on 911
in issuing the authorization decision. It has the EvidenceType complex type. It contains one of the 912
following elements: 913
<AssertionIDReference> 914

Specifies an assertion by reference to the value of the assertion’s AssertionID attribute. 915
<Assertion> 916

Specifies an assertion by value. 917

Providing an assertion as evidence MAY affect the reliance agreement between the SAML relying party 918
and the SAML authority making the authorization decision. For example, in the case that the SAML 919
relying party presented an assertion to the SAML authority in a request, the SAML authority MAY use that 920
assertion as evidence in making its authorization decision without endorsing the <Evidence> element’s 921
assertion as valid either to the relying party or any other third party. 922

The following schema fragment defines the <Evidence> element and its EvidenceType complex type: 923

<element name="Evidence" type="saml:EvidenceType"/> 924
<complexType name="EvidenceType"> 925
 <choice maxOccurs="unbounded"> 926
 <element ref="saml:AssertionIDReference"/> 927
 <element ref="saml:Assertion"/> 928
 </choice> 929
</complexType> 930

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 25 of 53

3 SAML Protocol 931

SAML assertions MAY be generated and exchanged using a variety of protocols. The bindings and 932
profiles specification for SAML [SAMLBind] describes specific means of transporting assertions using 933
existing widely deployed protocols. 934
SAML-aware requesters MAY in addition use the SAML request-response protocol defined by the 935
<Request> and <Response> elements. The requester sends a <Request> element to a SAML 936
responder, and the responder generates a <Response> element, as shown in Figure 2. 937

Process Request

SAMLRequest? SAMLResponse!

 938
Figure 2: SAML Request-Response Protocol 939

3.1 Schema Header and Namespace Declarations 940

The following schema fragment defines the XML namespaces and other header information for the 941
protocol schema: 942

<schema 943
 targetNamespace="urn:oasis:names:tc:SAML:1.0:protocol" 944
 xmlns="http://www.w3.org/2001/XMLSchema" 945
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" 946
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 947
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 948
 elementFormDefault="unqualified" 949
 attributeFormDefault="unqualified" 950
 version="1.1"> 951
 <import namespace="urn:oasis:names:tc:SAML:1.0:assertion" 952
 schemaLocation="oasis-sstc-saml-schema-assertion-1.1.xsd"/> 953
 <import namespace="http://www.w3.org/2000/09/xmldsig#" 954
 schemaLocation=" http://www.w3.org/TR/xmldsig-core/xmldsig-core-955
schema.xsd "/> 956
 <annotation> 957
 <documentation> 958
 Document identifier: oasis-sstc-saml-schema-protocol-1.1 959
 Location: http://www.oasis-960
open.org/committees/documents.php?wg_abbrev=security 961
 Revision history: 962
 V1.0 (November, 2002): 963
 Initial standard schema. 964
 V1.1 (September, 2003): 965
 * Note that V1.1 of this schema has the same XML 966
 namespace as V1.0. 967
 Rebased ID content directly on XML Schema types 968
 </documentation> 969
 </annotation> 970
… 971
</schema> 972

3.2 Requests 973

The following sections define the SAML constructs that contain request information. 974

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 26 of 53

3.2.1 Complex Type RequestAbstractType 975

All SAML requests are of types that are derived from the abstract RequestAbstractType complex type. 976
This type defines common attributes and elements that are associated with all SAML requests: 977

RequestID [Required] 978

An identifier for the request. It is of type xsd:ID and MUST follow the requirements specified in 979
Section 1.2.3 for identifier uniqueness. The values of the RequestID attribute in a request and the 980
InResponseTo attribute in the corresponding response MUST match. 981

MajorVersion [Required] 982

The major version of this request. The identifier for the version of SAML defined in this specification is 983
1. SAML versioning is discussed in Section 4. 984

MinorVersion [Required] 985

The minor version of this request. The identifier for the version of SAML defined in this specification is 986
1. SAML versioning is discussed in Section 4. 987

IssueInstant [Required] 988

The time instant of issue of the request. The time value is encoded in UTC as described in Section 989
1.2.2. 990

<RespondWith> [Any Number] 991

Each <RespondWith> element specifies a type of response that is acceptable to the requester. 992

<ds:Signature> [Optional] 993

An XML Signature that authenticates the request, as described in Section 5. 994

The following schema fragment defines the RequestAbstractType complex type: 995

<complexType name="RequestAbstractType" abstract="true"> 996
 <sequence> 997
 <element ref="samlp:RespondWith" 998
 minOccurs="0" maxOccurs="unbounded"/> 999
 <element ref = "ds:Signature" minOccurs="0"/> 1000
 </sequence> 1001
 <attribute name="RequestID" type="ID" use="required"/> 1002
 <attribute name="MajorVersion" type="integer" use="required"/> 1003
 <attribute name="MinorVersion" type="integer" use="required"/> 1004
 <attribute name="IssueInstant" type="dateTime" use="required"/> 1005
</complexType> 1006

3.2.1.1 Element <RespondWith> 1007

The <RespondWith> element specifies the type of statement the SAML relying party wants from the 1008
SAML authority. Multiple <RespondWith> elements MAY be included to indicate that the relying party 1009
will accept assertions containing any of the specified types. If no <RespondWith> element is given, the 1010
SAML authority MAY return assertions containing statements of any type. 1011
NOTE: This element is deprecated; use of this element SHOULD be avoided because it is planned to be 1012
removed in the next major version of SAML. 1013

If the <Request> element contains one or more <RespondWith> elements, the SAML authority MUST 1014
NOT respond with assertions containing statements of any type not specified in one of the 1015
<RespondWith> elements. 1016

Inability to find assertions that meet <RespondWith> criteria should be treated as identical to any other 1017
query for which no assertions are available. In both cases a status of success MUST be returned in the 1018
Response message, but no assertions will be included. 1019

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 27 of 53

The content of each <RespondWith> element is an XML QName. The <RespondWith> content is 1020
either the QName of the desired SAML statement element name or, in the case of an extension schema, 1021
it is the QName of the SAML StatementAbstractType complex type or some type that was derived from 1022
it. In the case of an extension schema, all statements of the specified type are requested. 1023
For example, a relying party that wishes to receive assertions containing only attribute statements would 1024
specify <RespondWith>saml:AttributeStatement</RespondWith>, where the prefix is bound to 1025
the SAML assertion namespace in a namespace declaration that is in the scope of this element. 1026

The following schema fragment defines the <RespondWith> element: 1027

<element name="RespondWith" type="QName"/> 1028

3.2.2 Element <Request> 1029

The <Request> element specifies a SAML request. It provides either a query or a request for a specific 1030
assertion identified by <AssertionIDReference> or <AssertionArtifact>. It has the complex 1031
type RequestType, which extends RequestAbstractType by adding a choice of one of the following 1032
elements: 1033
<Query> 1034

An extension point that allows extension schemas to define new types of query. 1035
<SubjectQuery> 1036

An extension point that allows extension schemas to define new types of query that specify a single 1037
SAML subject. 1038

<AuthenticationQuery> 1039

Makes a query for authentication information. 1040
<AttributeQuery> 1041

Makes a query for attribute information. 1042
<AuthorizationDecisionQuery> 1043

Makes a query for an authorization decision. 1044

<AssertionIDReference> [One or more] 1045

Requests an assertion by reference to the value of its AssertionID attribute. 1046

<AssertionArtifact> [One or more] 1047

Requests assertions by supplying an assertion artifact that represents it. 1048

The following schema fragment defines the <Request> element and its RequestType complex type: 1049

<element name="Request" type="samlp:RequestType"/> 1050
<complexType name="RequestType"> 1051
 <complexContent> 1052
 <extension base="samlp:RequestAbstractType"> 1053
 <choice> 1054
 <element ref="samlp:Query"/> 1055
 <element ref="samlp:SubjectQuery"/> 1056
 <element ref="samlp:AuthenticationQuery"/> 1057
 <element ref="samlp:AttributeQuery"/> 1058
 <element ref="samlp:AuthorizationDecisionQuery"/> 1059
 <element ref="saml:AssertionIDReference" 1060
maxOccurs="unbounded"/> 1061
 <element ref="samlp:AssertionArtifact" 1062
maxOccurs="unbounded"/> 1063
 </choice> 1064
 </extension> 1065
 </complexContent> 1066
</complexType> 1067

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 28 of 53

3.2.2.1 Requests for Assertions by Reference 1068

In the context of a <Request> element, the <saml:AssertionIDReference> element is used to 1069
request an assertion by means of its ID. See Section 2.3.1 for more information on this element. 1070

3.2.2.2 Element <AssertionArtifact> 1071

The <AssertionArtifact> element is used to specify the assertion artifact that represents an 1072
assertion being requested. Its use is governed by the specific profile of SAML that is being used; see the 1073
SAML specification for bindings and profiles [SAMLBind] for more information on the use of assertion 1074
artifacts in profiles. 1075

The following schema fragment defines the <AssertionArtifact> element: 1076

<element name="AssertionArtifact" type="string"/> 1077

3.3 Queries 1078

The following sections define the SAML constructs that contain query information. 1079

3.3.1 Element <Query> 1080

The <Query> element is an extension point that allows new SAML queries to be defined. Its 1081
QueryAbstractType is abstract and is thus usable only as the base of a derived type. 1082
QueryAbstractType is the base type from which all SAML query elements are derived. 1083

The following schema fragment defines the <Query> element and its QueryAbstractType complex type: 1084

<element name="Query" type="samlp:QueryAbstractType"/> 1085
<complexType name="QueryAbstractType" abstract="true"/> 1086

3.3.2 Element <SubjectQuery> 1087

The <SubjectQuery> element is an extension point that allows new SAML queries that specify a single 1088
SAML subject. Its SubjectQueryAbstractType complex type is abstract and is thus usable only as the 1089
base of a derived type. SubjectQueryAbstractType adds the <Subject> element. 1090

The following schema fragment defines the <SubjectQuery> element and its 1091
SubjectQueryAbstractType complex type: 1092

<element name="SubjectQuery" type="samlp:SubjectQueryAbstractType"/> 1093
<complexType name="SubjectQueryAbstractType" abstract="true"> 1094
 <complexContent> 1095
 <extension base="samlp:QueryAbstractType"> 1096
 <sequence> 1097
 <element ref="saml:Subject"/> 1098
 </sequence> 1099
 </extension> 1100
 </complexContent> 1101
</complexType> 1102

3.3.3 Element <AuthenticationQuery> 1103

The <AuthenticationQuery> element is used to make the query “What assertions containing 1104
authentication statements are available for this subject?” A successful response will be in the form of 1105
assertions containing authentication statements. 1106

The <AuthenticationQuery> element MUST NOT be used as a request for a new authentication 1107
using credentials provided in the request. <AuthenticationQuery> is a request for statements about 1108

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 29 of 53

authentication acts that have occurred in a previous interaction between the indicated subject and the 1109
Authentication Authority. 1110
This element is of type AuthenticationQueryType, which extends SubjectQueryAbstractType with the 1111
addition of the following attribute: 1112

AuthenticationMethod [Optional] 1113

If present, specifies a filter for possible responses. Such a query asks the question “What assertions 1114
containing authentication statements do you have for this subject with the supplied authentication 1115
method?” 1116

In response to an authentication query, a SAML authority returns assertions with authentication 1117
statements as follows: 1118

• Rules given in Section 3.4.4 for matching against the <Subject> element of the query identify the 1119
assertions that may be returned. 1120

• If the AuthenticationMethod attribute is present in the query, at least one 1121
<AuthenticationStatement> element in the set of returned assertions MUST contain an 1122
AuthenticationMethod attribute that matches the AuthenticationMethod attribute in 1123
the query. It is OPTIONAL for the complete set of all such matching assertions to be returned in 1124
the response. 1125

• If any <RespondWith> elements are present and none of them contain 1126
“saml:AuthenticationStatement”, then the SAML authority returns no assertions with 1127
authentication statements. (See Section 3.2.1.1 for more information.) 1128

The following schema fragment defines the <AuthenticationQuery> element and its 1129
AuthenticationQueryType complex type: 1130

<element name="AuthenticationQuery" type="samlp:AuthenticationQueryType"/> 1131
<complexType name="AuthenticationQueryType"> 1132
 <complexContent> 1133
 <extension base="samlp:SubjectQueryAbstractType"> 1134
 <attribute name="AuthenticationMethod" type="anyURI"/> 1135
 </extension> 1136
 </complexContent> 1137
</complexType> 1138

3.3.4 Element <AttributeQuery> 1139

The <AttributeQuery> element is used to make the query “Return the requested attributes for this 1140
subject.” A successful response will be in the form of assertions containing attribute statements. This 1141
element is of type AttributeQueryType, which extends SubjectQueryAbstractType with the addition of 1142
the following element and attribute: 1143

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 30 of 53

Resource [Optional] 1144

If present, specifies that the attribute query is being made in order to evaluate a specific access 1145
request relating to the resource. The SAML authority MAY use the resource attribute to establish the 1146
scope of the request. It is permitted for this attribute to have the value of the empty URI reference (""), 1147
and the meaning is defined to be "the start of the current document", as specified by [RFC 2396] 1148
§4.2. 1149
If the resource attribute is specified and the SAML authority does not wish to support resource-1150
specific attribute queries, or if the resource value provided is invalid or unrecognized, then the 1151
Attribute Authority SHOULD respond with a top-level <StatusCode> value of Responder and a 1152
second-level <StatusCode> value of ResourceNotRecognized. 1153

<AttributeDesignator> [Any Number] (see Section 2.4.4.1) 1154

Each <AttributeDesignator> element specifies an attribute whose value is to be returned. If no 1155
attributes are specified, it indicates that all attributes allowed by policy are requested. 1156

In response to an attribute query, a SAML authority returns assertions with attribute statements as 1157
follows: 1158

• Rules given in Section 3.4.4 for matching against the <Subject> element of the query identify the 1159
assertions that may be returned. 1160

• If any <AttributeDesignator> elements are present in the query, they constrain the attribute 1161
values returned, as noted above. 1162

• The SAML authority MAY take the Resource attribute into account in further constraining the values 1163
returned, as noted above. 1164

• The attribute values returned MAY be constrained by application-specific policy considerations. 1165

• If any <RespondWith> elements are present and none of them contain 1166
“saml:AttributeStatement”, then the SAML authority returns no assertions with attribute 1167
statements. (See Section 3.2.1.1 for more information.) 1168
 1169

The following schema fragment defines the <AttributeQuery> element and its AttributeQueryType 1170
complex type: 1171

<element name="AttributeQuery" type="samlp:AttributeQueryType"/> 1172
<complexType name="AttributeQueryType"> 1173
 <complexContent> 1174
 <extension base="samlp:SubjectQueryAbstractType"> 1175
 <sequence> 1176
 <element ref="saml:AttributeDesignator" 1177
 minOccurs="0" maxOccurs="unbounded"/> 1178
 </sequence> 1179
 <attribute name="Resource" type="anyURI" use="optional"/> 1180
 </extension> 1181
 </complexContent> 1182
</complexType> 1183

3.3.5 Element <AuthorizationDecisionQuery> 1184

The <AuthorizationDecisionQuery> element is used to make the query “Should these actions on 1185
this resource be allowed for this subject, given this evidence?” A successful response will be in the form 1186
of assertions containing authorization decision statements. This element is of type 1187
AuthorizationDecisionQueryType, which extends SubjectQueryAbstractType with the addition of the 1188
following elements and attribute: 1189

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 31 of 53

Resource [Required] 1190

A URI reference indicating the resource for which authorization is requested. 1191

<Action> [One or More] 1192

The actions for which authorization is requested. 1193

<Evidence> [Optional] 1194

A set of assertions that the SAML authority MAY rely on in making its authorization decision. 1195
In response to an authorization decision query, a SAML authority returns assertions with authorization 1196
decision statements as follows: 1197

• Rules given in Section 3.4.4 for matching against the <Subject> element of the query identify the 1198
assertions that may be returned. 1199

• If any <RespondWith> elements are present and none of them contain 1200
“saml:AuthorizationDecisionStatement”, then the SAML authority returns no assertions with 1201
authorization decision statements. (See Section 3.2.1.1 for more information.) 1202

The following schema fragment defines the <AuthorizationDecisionQuery> element and its 1203
AuthorizationDecisionQueryType complex type: 1204

<element name="AuthorizationDecisionQuery" 1205
type="samlp:AuthorizationDecisionQueryType"/> 1206
<complexType name="AuthorizationDecisionQueryType"> 1207
 <complexContent> 1208
 <extension base="samlp:SubjectQueryAbstractType"> 1209
 <sequence> 1210
 <element ref="saml:Action" maxOccurs="unbounded"/> 1211
 <element ref="saml:Evidence" minOccurs="0"/> 1212
 </sequence> 1213
 <attribute name="Resource" type="anyURI" use="required"/> 1214
 </extension> 1215
 </complexContent> 1216
</complexType> 1217

3.4 Responses 1218

The following sections define the SAML constructs that contain response information. 1219

3.4.1 Complex Type ResponseAbstractType 1220

All SAML responses are of types that are derived from the abstract ResponseAbstractType complex 1221
type. This type defines common attributes and elements that are associated with all SAML responses: 1222

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 32 of 53

ResponseID [Required] 1223

An identifier for the response. It is of type xsd:ID, and MUST follow the requirements specified in 1224
Section 1.2.3 for identifier uniqueness. 1225

InResponseTo [Optional] 1226

A reference to the identifier of the request to which the response corresponds, if any. If the response 1227
is not generated in response to a request, or if the RequestID attribute value of a request cannot be 1228
determined (because the request is malformed), then this attribute MUST NOT be present. 1229
Otherwise, it MUST be present and its value MUST match the value of the corresponding 1230
RequestID attribute value. 1231

MajorVersion [Required] 1232

The major version of this response. The identifier for the version of SAML defined in this specification 1233
is 1. SAML versioning is discussed in Section 4. 1234

MinorVersion [Required] 1235

The minor version of this response. The identifier for the version of SAML defined in this specification 1236
is 1. SAML versioning is discussed in Section 4. 1237

IssueInstant [Required] 1238

The time instant of issue of the response. The time value is encoded in UTC as described in Section 1239
1.2.2. 1240

Recipient [Optional] 1241

The intended recipient of this response. This is useful to prevent malicious forwarding of responses to 1242
unintended recipients, a protection that is required by some use profiles. It is set by the generator of 1243
the response to a URI reference that identifies the intended recipient. If present, the actual recipient 1244
MUST check that the URI reference identifies the recipient or a resource managed by the recipient. If 1245
it does not, the response MUST be discarded. 1246

<ds:Signature> [Optional] 1247

An XML Signature that authenticates the response, as described in Section 5. 1248
The following schema fragment defines the ResponseAbstractType complex type: 1249

<complexType name="ResponseAbstractType" abstract="true"> 1250
 <sequence> 1251
 <element ref = "ds:Signature" minOccurs="0"/> 1252
 </sequence> 1253
 <attribute name="ResponseID" type="ID" use="required"/> 1254
 <attribute name="InResponseTo" type="NCName" use="optional"/> 1255
 <attribute name="MajorVersion" type="integer" use="required"/> 1256
 <attribute name="MinorVersion" type="integer" use="required"/> 1257
 <attribute name="IssueInstant" type="dateTime" use="required"/> 1258
 <attribute name="Recipient" type="anyURI" use="optional"/> 1259
</complexType> 1260

3.4.2 Element <Response> 1261

The <Response> element specifies the status of the corresponding SAML request and a list of zero or 1262
more assertions that answer the request. It has the complex type ResponseType, which extends 1263
ResponseAbstractType by adding the following elements in order: 1264

<Status> [Required] 1265

A code representing the status of the corresponding request. 1266

<Assertion> [Any Number] 1267

Specifies an assertion by value. (See Section 2.3.2 for more information.) 1268

The following schema fragment defines the <Response> element and its ResponseType complex type: 1269

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 33 of 53

<element name="Response" type="samlp:ResponseType"/> 1270
<complexType name="ResponseType"> 1271
 <complexContent> 1272
 <extension base="samlp:ResponseAbstractType"> 1273
 <sequence> 1274
 <element ref="samlp:Status"/> 1275
 <element ref="saml:Assertion" minOccurs="0" 1276
maxOccurs="unbounded"/> 1277
 </sequence> 1278
 </extension> 1279
 </complexContent> 1280
</complexType> 1281

3.4.3 Element <Status> 1282

The <Status> element contains the following elements: 1283

<StatusCode> [Required] 1284

A code representing the status of the corresponding request. 1285

<StatusMessage> [Optional] 1286

A message which MAY be returned to an operator. 1287

<StatusDetail> [Optional] 1288

Additional information concerning an error condition. 1289

The following schema fragment defines the <Status> element and its StatusType complex type: 1290

<element name="Status" type="samlp:StatusType"/> 1291
<complexType name="StatusType"> 1292
 <sequence> 1293
 <element ref="samlp:StatusCode"/> 1294
 <element ref="samlp:StatusMessage" minOccurs="0"/> 1295
 <element ref="samlp:StatusDetail" minOccurs="0"/> 1296
 </sequence> 1297
</complexType> 1298

3.4.3.1 Element <StatusCode> 1299

The <StatusCode> element specifies one or more possibly nested, codes representing the status of the 1300
corresponding request. The <StatusCode> element has the following element and attribute: 1301

Value [Required] 1302

The status code value. This attribute contains an XML Schema QName; a namespace prefix MUST 1303
be provided. The value of the topmost <StatusCode> element MUST be from the top-level list 1304
provided in this section. 1305

<StatusCode> [Optional] 1306

A subordinate status code that provides more specific information on an error condition. 1307

The top-level <StatusCode> values are QNames associated with the SAML protocol namespace. The 1308
local parts of these QNames are as follows: 1309

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 34 of 53

Success 1310

The request succeeded. 1311
VersionMismatch 1312

The SAML responder could not process the request because the version of the request message was 1313
incorrect. 1314

Requester 1315

The request could not be performed due to an error on the part of the requester. 1316
Responder 1317

The request could not be performed due to an error on the part of the SAML responder or SAML 1318
authority. 1319

The following second-level status codes are referenced at various places in the specification. Additional 1320
second-level status codes MAY be defined in future versions of the SAML specification. 1321
RequestVersionTooHigh 1322

The SAML responder cannot process the request because the protocol version specified in the 1323
request message is a major upgrade from the highest protocol version supported by the responder. 1324

RequestVersionTooLow 1325

The SAML responder cannot process the request because the protocol version specified in the 1326
request message is too low. 1327

RequestVersionDeprecated 1328

The SAML responder can not process any requests with the protocol version specified in the request. 1329
TooManyResponses 1330

The response message would contain more elements than the SAML responder will return. 1331
RequestDenied 1332

The SAML responder or SAML authority is able to process the request but has chosen not to 1333
respond. This status code MAY be used when there is concern about the security context of the 1334
request message or the sequence of request messages received from a particular requester. 1335

ResourceNotRecognized 1336

The SAML authority does not wish to support resource-specific attribute queries, or the resource 1337
value provided in the request message is invalid or unrecognized. 1338

SAML system entities are free to define more specific status codes in other namespaces, but MUST NOT 1339
define additional codes in the SAML assertion or protocol namespace. 1340

The QNames defined as status codes SHOULD be used only in the <StatusCode> element's Value 1341
attribute and have the above semantics only in that context. 1342

The following schema fragment defines the <StatusCode> element and its StatusCodeType complex 1343
type: 1344

<element name="StatusCode" type="samlp:StatusCodeType"/> 1345
<complexType name="StatusCodeType"> 1346
 <sequence> 1347
 <element ref="samlp:StatusCode" minOccurs="0"/> 1348
 </sequence> 1349
 <attribute name="Value" type="QName" use="required"/> 1350
</complexType> 1351

3.4.3.2 Element <StatusMessage> 1352

The <StatusMessage> element specifies a message that MAY be returned to an operator: 1353

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 35 of 53

The following schema fragment defines the <StatusMessage> element and its StatusMessageType 1354
complex type: 1355

<element name="StatusMessage" type="string"/> 1356

3.4.3.3 Element <StatusDetail> 1357

The <StatusDetail> element MAY be used to specify additional information concerning an error 1358
condition. 1359

The following schema fragment defines the <StatusDetail> element and its StatusDetailType 1360
complex type: 1361

<element name="StatusDetail" type="samlp:StatusDetailType"/> 1362
<complexType name="StatusDetailType"> 1363
 <sequence> 1364
 <any namespace="##any" processContents="lax" minOccurs="0" 1365
maxOccurs="unbounded"/> 1366
 </sequence> 1367
</complexType> 1368

3.4.4 Responses to Queries 1369

In response to a query, every assertion returned by a SAML authority MUST contain at least one 1370
statement whose <saml:Subject> element strongly matches the <saml:Subject> element found in 1371
the query. 1372

A <saml:Subject> element S1 strongly matches S2 if and only if the following two conditions both 1373
apply: 1374

• If S2 includes a <saml:NameIdentifier> element, then S1 must include an identical 1375
<saml:NameIdentifier> element. 1376

• If S2 includes a <saml:SubjectConfirmation> element, then S1 must include an identical 1377
<saml:SubjectConfirmation> element. 1378

If the SAML authority cannot provide an assertion with any statements satisfying the constraints 1379
expressed by a query, the <Response> element MUST NOT contain an <Assertion> element and 1380
MUST include a <StatusCode> element with value Success. It MAY return a <StatusMessage> 1381
element with additional information. 1382

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 36 of 53

4 SAML Versioning 1383

The SAML specification set is versioned in two independent ways. Each is discussed in the following 1384
sections, along with processing rules for detecting and handling version differences, when applicable. 1385
Also included are guidelines on when and why specific version information is expected to change in future 1386
revisions of the specification. 1387
When version information is expressed as both a Major and Minor version, it may be expressed 1388
discretely, or in the form Major.Minor. The version number MajorB.MinorB is higher than the version 1389
number MajorA.MinorA if and only if: 1390

MajorB > MajorA ∨ ((MajorB = MajorA) ∧ MinorB > MinorA) 1391

4.1 SAML Specification Set Version 1392

Each release of the SAML specification set will contain a major and minor version designation describing 1393
its relationship to earlier and later versions of the specification set. The version will be expressed in the 1394
content and filenames of published materials, including the specification set document(s), and XML 1395
schema instance(s). There are no normative processing rules surrounding specification set versioning, 1396
since it merely encompasses the collective release of normative specification documents which 1397
themselves contain processing rules. 1398
The overall size and scope of changes to the specification set document(s) will informally dictate whether 1399
a set of changes constitutes a major or minor revision. In general, if the specification set is backwards 1400
compatible with an earlier specification set (that is, valid older messages, protocols, and semantics 1401
remain valid), then the new version will be a minor revision. Otherwise, the changes will constitute a major 1402
revision. Note that SAML V1.1 has made one backwards-incompatible change to SAML V1.0, described 1403
in Section 5.4.7. 1404

4.1.1 Schema Version 1405

As a non-normative documentation mechanism, any XML schema instances published as part of the 1406
specification set will contain a schema "version" attribute in the form Major.Minor, reflecting the 1407
specification set version in which it has been published. Validating implementations MAY use the attribute 1408
as a means of distinguishing which version of a schema is being used to validate messages, or to support 1409
a multiplicity of versions of the same logical schema. 1410

4.1.2 SAML Assertion Version 1411

The SAML <Assertion> element contains attributes for expressing the major and minor version of the 1412
assertion using a pair of integers. Each version of the SAML specification set will be construed so as to 1413
document the syntax, semantics, and processing rules of the assertions of the same version. That is, 1414
specification set version 1.0 describes assertion version 1.0, and so on. 1415

There is explicitly NO relationship between the assertion version and the SAML assertion XML 1416
namespace that contains the schema definitions for that assertion version. 1417

The following processing rules apply: 1418

• A SAML authority MUST NOT issue any assertion with an assertion version number not supported by 1419
the authority. 1420

• A SAML relying party MUST NOT process any assertion with a major assertion version number not 1421
supported by the relying party. 1422

• A SAML relying party MAY process or MAY reject an assertion whose minor assertion version 1423
number is higher than the minor assertion version number supported by the relying party. However, 1424
all assertions that share a major assertion version number MUST share the same general processing 1425

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 37 of 53

rules and semantics, and MAY be treated in a uniform way by an implementation. That is, if a V1.1 1426
assertion shares the syntax of a V1.0 assertion, an implementation MAY treat the assertion as a V1.0 1427
assertion without ill effect. 1428

4.1.3 SAML Protocol Version 1429

The SAML protocol <Request> and <Response> elements contain attributes for expressing the major 1430
and minor version of the request or response message using a pair of integers. Each version of the SAML 1431
specification set will be construed so as to document the syntax, semantics, and processing rules of the 1432
protocol messages of the same version. That is, specification set version 1.0 describes request and 1433
response version V1.0, and so on. 1434
There is explicitly NO relationship between the protocol version and the SAML protocol XML namespace 1435
that contains the schema definitions for protocol messages for that protocol version. 1436

The version numbers used in SAML protocol <Request> and <Response> elements will be the same 1437
for any particular revision of the SAML specification set. 1438

4.1.3.1 Request Version 1439

The following processing rules apply to requests: 1440

• A SAML requester SHOULD issue requests with the highest request version supported by both the 1441
SAML requester and the SAML responder. 1442

• If the SAML requester does not know the capabilities of the SAML responder, then it should assume 1443
that it supports requests with the highest request version supported by the requester. 1444

• A SAML requester MUST NOT issue a request message with a request version number matching a 1445
response version number that the requester does not support. 1446

• A SAML responder MUST reject any request with a major request version number not supported by 1447
the responder. 1448

• A SAML responder MAY process or MAY reject any request whose minor request version number is 1449
higher than the highest supported request version that it supports. However, all requests that share a 1450
major request version number MUST share the same general processing rules and semantics, and 1451
MAY be treated in a uniform way by an implementation. That is, if a V1.1 request shares the syntax of 1452
a V1.0 request, a responder MAY treat the request message as a V1.0 request without ill effect. 1453

4.1.4 Response Version 1454

The following processing rules apply to responses: 1455

• A SAML responder MUST NOT issue a response message with a response version number higher 1456
than the request version number of the corresponding request message. 1457

• A SAML responder MUST NOT issue a response message with a major response version number 1458
lower than the major request version number of the corresponding request message except to report 1459
the error RequestVersionTooHigh. 1460

An error response resulting from incompatible SAML protocol versions MUST result in reporting a top-1461
level <StatusCode> value of VersionMismatch, and MAY result in reporting one of the following 1462
second-level values: RequestVersionTooHigh, RequestVersionTooLow, or 1463
RequestVersionDeprecated. 1464

4.1.5 Permissible Version Combinations 1465

In general, assertions of a particular major version may appear in response messages of the same major 1466
version, as permitted by the importation of the SAML assertion namespace into the SAML protocol 1467
schema. Future versions of this specification are expected to explicitly describe the permitted 1468
combinations across major versions. 1469

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 38 of 53

Specifically, this permits a V1.1 assertion to appear in a V1.0 response message and a V1.0 assertion to 1470
appear in a V1.1 response message. 1471

4.2 SAML Namespace Version 1472

XML schema instances and "qualified names" (QNames) published as part of the specification set contain 1473
one or more target namespaces into which the type, element, and attribute definitions are placed. Each 1474
namespace is distinct from the others, and represents, in shorthand, the structural and syntactical 1475
definitions that make up that part of the specification. 1476
The namespace URIs defined by the specification set will generally contain version information of the 1477
form Major.Minor somewhere in the URI. The major and minor version in the URI MUST correspond to 1478
the major and minor version of the specification set in which the namespace is first introduced and 1479
defined. This information is not typically consumed by an XML processor, which treats the namespace 1480
opaquely, but is intended to communicate the relationship between the specification set and the 1481
namespaces it defines. 1482
As a general rule, implementers can expect the namespaces (and the associated schema definitions) 1483
defined by a major revision of the specification set to remain valid and stable across minor revisions of 1484
the specification. New namespaces may be introduced, and when necessary, old namespaces replaced, 1485
but this is expected to be rare. In such cases, the older namespaces and their associated definitions 1486
should be expected to remain valid until a major specification set revision. 1487

4.2.1 Schema Evolution 1488

In general, maintaining namespace stability while adding or changing the content of a schema are 1489
competing goals. While certain design strategies can facilitate such changes, it is complex to predict how 1490
older implementations will react to any given change, making forward compatibility difficult to achieve. 1491
Nevertheless, the right to make such changes in minor revisions is reserved, in the interest of namespace 1492
stability. Except in special circumstances (for example to correct major deficiencies or fix errors), 1493
implementations should expect forward compatible schema changes in minor revisions, allowing new 1494
messages to validate against older schemas. 1495

Implementations SHOULD expect and be prepared to deal with new extensions and message types in 1496
accordance with the processing rules laid out for those types. Minor revisions MAY introduce new types 1497
that leverage the extension facilities described in Section 6. Older implementations SHOULD reject such 1498
extensions gracefully when they are encountered in contexts that dictate mandatory semantics. Examples 1499
include new query, statement, or condition types. 1500

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 39 of 53

5 SAML and XML Signature Syntax and Processing 1501

SAML assertions and SAML protocol request and response messages may be signed, with the following 1502
benefits: 1503

• An assertion signed by the SAML authority supports: 1504

– Assertion integrity. 1505

– Authentication of the SAML authority to a SAML relying party. 1506
– If the signature is based on the SAML authority’s public-private key pair, then it also provides for 1507

non-repudiation of origin. 1508

• A SAML protocol request or response message signed by the message originator supports: 1509

– Message integrity. 1510

– Authentication of message origin to a destination. 1511
– If the signature is based on the originator's public-private key pair, then it also provides for non-1512

repudiation of origin. 1513
A digital signature is not always required in SAML. For example, it may not be required in the following 1514
situations: 1515

• In some circumstances signatures may be “inherited," such as when an unsigned assertion gains 1516
protection from a signature on the containing protocol response message. "Inherited" signatures 1517
should be used with care when the contained object (such as the assertion) is intended to have a 1518
non-transitory lifetime. The reason is that the entire context must be retained to allow validation, 1519
exposing the XML content and adding potentially unnecessary overhead. 1520

• The SAML relying party or SAML requester may have obtained an assertion or protocol message 1521
from the SAML authority or SAML responder directly (with no intermediaries) through a secure 1522
channel, with the SAML authority or SAML responder having authenticated to the relying party or 1523
SAML responder by some means other than a digital signature. 1524

Many different techniques are available for "direct" authentication and secure channel establishment 1525
between two parties. The list includes TLS/SSL, HMAC, password-based mechanisms, etc. In addition, 1526
the applicable security requirements depend on the communicating applications and the nature of the 1527
assertion or message transported. 1528
It is recommended that, in all other contexts, digital signatures be used for assertions and request and 1529
response messages. Specifically: 1530

• A SAML assertion obtained by a SAML relying party from an entity other than the SAML authority 1531
SHOULD be signed by the SAML authority. 1532

• A SAML protocol message arriving at a destination from an entity other than the originating site 1533
SHOULD be signed by the origin site. 1534

Profiles may specify alternative signature mechanisms such as S/MIME or signed Java objects that 1535
contain SAML documents. Caveats about retaining context and interoperability apply. XML Signatures 1536
are intended to be the primary SAML signature mechanism, but the specification attempts to ensure 1537
compatibility with profiles that may require other mechanisms. 1538
Unless a profile specifies an alternative signature mechanism, enveloped XML Digital Signatures MUST 1539
be used if signing. 1540

5.1 Signing Assertions 1541

All SAML assertions MAY be signed using the XML Signature. This is reflected in the assertion schema 1542
as described in Section 2.3. 1543

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 40 of 53

5.2 Request/Response Signing 1544

All SAML protocol request and response messages MAY be signed using the XML Signature. This is 1545
reflected in the schema as described in Sections 3.2 and 3.4. 1546

5.3 Signature Inheritance 1547

A SAML assertion may be embedded within another SAML element, such as an enclosing <Assertion> 1548
or a <Request> or <Response>, which may be signed. When a SAML assertion does not contain a 1549
<ds:Signature> element, but is contained in an enclosing SAML element that contains a 1550
<ds:Signature> element, and the signature applies to the <Assertion> element and all its children, 1551
then the assertion can be considered to inherit the signature from the enclosing element. The resulting 1552
interpretation should be equivalent to the case where the assertion itself was signed with the same key 1553
and signature options. 1554

Many SAML use cases involve SAML XML data enclosed within other protected data structures such as 1555
signed SOAP messages, S/MIME packages, and authenticated SSL connections. SAML profiles may 1556
define additional rules for interpreting SAML elements as inheriting signatures or other authentication 1557
information from the surrounding context, but no such inheritance should be inferred unless specifically 1558
identified by the profile. 1559

5.4 XML Signature Profile 1560

The XML Signature specification [XMLSig] calls out a general XML syntax for signing data with flexibility 1561
and many choices. This section details the constraints on these facilities so that SAML processors do not 1562
have to deal with the full generality of XML Signature processing. This usage makes specific use of the 1563
xsd:ID-typed attributes optionally present on the root elements to which signatures can apply: the 1564
AssertionID attribute on <Assertion>, the RequestID attribute on <Request>, and the 1565
ResponseID attribute on <Response>. These three attributes are collectively referred to in this section 1566
as the identifier attributes. 1567

5.4.1 Signing Formats and Algorithms 1568

XML Signature has three ways of relating a signature to a document: enveloping, enveloped, and 1569
detached. 1570
SAML assertions and protocols MUST use enveloped signatures when signing assertions and protocol 1571
messages. SAML processors SHOULD support the use of RSA signing and verification for public key 1572
operations in accordance with the algorithm identified by http://www.w3.org/2000/09/xmldsig#rsa-sha1. 1573

5.4.2 References 1574

Signed SAML assertions and protocol messages MUST supply a value for the identifier attribute on the 1575
root element (<Assertion>, <Request>, or <Response>). The assertion’s or message's root element 1576
may or may not be the root element of the actual XML document containing the signed assertion or 1577
message. 1578

Signatures MUST contain a single <ds:Reference> containing a URI reference to the identifier attribute 1579
value of the root element of the message being signed. For example, if the attribute value is "foo", then 1580
the URI attribute in the <ds:Reference> element MUST be "#foo". 1581

5.4.3 Canonicalization Method 1582

SAML implementations SHOULD use Exclusive Canonicalization [Excl-C14N], with or without comments, 1583
both in the <ds:CanonicalizationMethod> element of <ds:SignedInfo>, and as a 1584
<ds:Transform> algorithm. Use of Exclusive Canonicalization ensures that signatures created over 1585
SAML messages embedded in an XML context can be verified independent of that context. 1586

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 41 of 53

5.4.4 Transforms 1587

Signatures in SAML messages SHOULD NOT contain transforms other than the enveloped signature 1588
transform (with the identifier http://www.w3.org/2000/09/xmldsig#enveloped-signature) or the exclusive 1589
canonicalization transforms (with the identifier http://www.w3.org/2001/10/xml-exc-c14n# or 1590
http://www.w3.org/2001/10/xml-exc-c14n#WithComments). 1591
Verifiers of signatures MAY reject signatures that contain other transform algorithms as invalid. If they do 1592
not, verifiers MUST ensure that no content of the SAML message is excluded from the signature. This 1593
can be accomplished by establishing out-of-band agreement as to what transforms are acceptable, or by 1594
applying the transforms manually to the content and reverifying the result as consisting of the same 1595
SAML message. 1596

5.4.5 KeyInfo 1597

XML Signature [XMLSig] defines usage of the <ds:KeyInfo> element. SAML does not require the 1598
use of <ds:KeyInfo> nor does it impose any restrictions on its use. Therefore, <ds:KeyInfo> MAY 1599
be absent. 1600

5.4.6 Binding Between Statements in a Multi-Statement Assertion 1601

Use of signing does not affect semantics of statements within assertions in any way, as stated in Section 1602
2. 1603

5.4.7 Interoperability with SAML V1.0 1604

The use of XML Signature [XMLSig] described above is incompatible with the usage described in the 1605
SAML V1.0 specification [SAMLCore1.0]. The original profile was underspecified and was insufficient to 1606
ensure interoperability. It was constrained by the inability to use URI references to identify the SAML 1607
content to be signed. With this limitation removed by the addition of SAML identifier attributes, a decision 1608
has been made to forgo backwards compatibility with the older specification in this respect. 1609

5.4.8 Example 1610

Following is an example of a signed response containing a signed assertion. Line breaks have been 1611
added for readability; the signatures are not valid and cannot be successfully verified. 1612

<Response 1613
 IssueInstant="2003-04-17T00:46:02Z" 1614
 MajorVersion="1" 1615
 MinorVersion="1" 1616
 Recipient="www.opensaml.org" 1617
 ResponseID="_c7055387-af61-4fce-8b98-e2927324b306" 1618
 xmlns="urn:oasis:names:tc:SAML:1.0:protocol" 1619
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" 1620
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1621
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 1622
<ds:Signature 1623
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 1624
<ds:SignedInfo> 1625
<ds:CanonicalizationMethod 1626
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1627
<ds:SignatureMethod 1628
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1629
<ds:Reference 1630
 URI="#_c7055387-af61-4fce-8b98-e2927324b306"> 1631
<ds:Transforms> 1632
<ds:Transform 1633
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 1634
<ds:Transform 1635

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 42 of 53

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> 1636
<InclusiveNamespaces 1637
 PrefixList="#default saml samlp ds xsd xsi" 1638
 xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1639
</ds:Transform> 1640
</ds:Transforms> 1641
<ds:DigestMethod 1642
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1643
<ds:DigestValue>TCDVSuG6grhyHbzhQFWFzGrxIPE=</ds:DigestValue> 1644
</ds:Reference> 1645
</ds:SignedInfo> 1646
<ds:SignatureValue> 1647
x/GyPbzmFEe85pGD3c1aXG4Vspb9V9jGCjwcRCKrtwPS6vdVNCcY5rHaFPYWkf+5 1648
EIYcPzx+pX1h43SmwviCqXRjRtMANWbHLhWAptaK1ywS7gFgsD01qjyen3CP+m3D 1649
w6vKhaqledl0BYyrIzb4KkHO4ahNyBVXbJwqv5pUaE4=</ds:SignatureValue> 1650
<ds:KeyInfo> 1651
<ds:X509Data> 1652
<ds:X509Certificate> 1653
MIICyjCCAjOgAwIBAgICAnUwDQYJKoZIhvcNAQEEBQAwgakxCzAJBgNVBAYTAlVT 1654
MRIwEAYDVQQIEwlXaXNjb25zaW4xEDAOBgNVBAcTB01hZGlzb24xIDAeBgNVBAoT 1655
F1VuaXZlcnNpdHkgb2YgV2lzY29uc2luMSswKQYDVQQLEyJEaXZpc2lvbiBvZiBJ 1656
bmZvcm1hdGlvbiBUZWNobm9sb2d5MSUwIwYDVQQDExxIRVBLSSBTZXJ2ZXIgQ0Eg 1657
LS0gMjAwMjA3MDFBMB4XDTAyMDcyNjA3Mjc1MVoXDTA2MDkwNDA3Mjc1MVowgYsx 1658
CzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaWNoaWdhbjESMBAGA1UEBxMJQW5uIEFy 1659
Ym9yMQ4wDAYDVQQKEwVVQ0FJRDEcMBoGA1UEAxMTc2hpYjEuaW50ZXJuZXQyLmVk 1660
dTEnMCUGCSqGSIb3DQEJARYYcm9vdEBzaGliMS5pbnRlcm5ldDIuZWR1MIGfMA0G 1661
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDZSAb2sxvhAXnXVIVTx8vuRay+x50z7GJj 1662
IHRYQgIv6IqaGG04eTcyVMhoekE0b45QgvBIaOAPSZBl13R6+KYiE7x4XAWIrCP+ 1663
c2MZVeXeTgV3Yz+USLg2Y1on+Jh4HxwkPFmZBctyXiUr6DxF8rvoP9W7O27rhRjE 1664
pmqOIfGTWQIDAQABox0wGzAMBgNVHRMBAf8EAjAAMAsGA1UdDwQEAwIFoDANBgkq 1665
hkiG9w0BAQQFAAOBgQBfDqEW+OI3jqBQHIBzhujN/PizdN7s/z4D5d3pptWDJf2n 1666
qgi7lFV6MDkhmTvTqBtjmNk3No7v/dnP6Hr7wHxvCCRwubnmIfZ6QZAv2FU78pLX 1667
8I3bsbmRAUg4UP9hH6ABVq4KQKMknxu1xQxLhpR1ylGPdiowMNTrEG8cCx3w/w== 1668
</ds:X509Certificate> 1669
</ds:X509Data> 1670
</ds:KeyInfo> 1671
</ds:Signature> 1672
<Status><StatusCode Value="samlp:Success"/></Status> 1673
<Assertion 1674
 AssertionID="_a75adf55-01d7-40cc-929f-dbd8372ebdfc" 1675
 IssueInstant="2003-04-17T00:46:02Z" 1676
 Issuer="www.opensaml.org" 1677
 MajorVersion="1" 1678
 MinorVersion="1" 1679
 xmlns="urn:oasis:names:tc:SAML:1.0:assertion" 1680
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1681
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 1682
<Conditions 1683
 NotBefore="2003-04-17T00:46:02Z" 1684
 NotOnOrAfter="2003-04-17T00:51:02Z"> 1685
<AudienceRestrictionCondition><Audience>http://www.opensaml.org</Audience> 1686
</AudienceRestrictionCondition></Conditions> 1687
<AuthenticationStatement 1688
 AuthenticationInstant="2003-04-17T00:46:00Z" 1689
 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"> 1690
<Subject> 1691
<NameIdentifier 1692
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress"> 1693
scott@example.org</NameIdentifier> 1694
<SubjectConfirmation> 1695
<ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</ConfirmationMethod> 1696
</SubjectConfirmation></Subject> 1697
<SubjectLocality 1698

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 43 of 53

 IPAddress="127.0.0.1"/> 1699
</AuthenticationStatement> 1700
<ds:Signature 1701
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 1702
<ds:SignedInfo> 1703
<ds:CanonicalizationMethod 1704
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1705
<ds:SignatureMethod 1706
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 1707
<ds:Reference 1708
 URI="#_a75adf55-01d7-40cc-929f-dbd8372ebdfc"> 1709
<ds:Transforms> 1710
<ds:Transform 1711
 Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 1712
<ds:Transform 1713
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> 1714
<InclusiveNamespaces 1715
 PrefixList="#default saml samlp ds xsd xsi" 1716
 xmlns="http://www.w3.org/2001/10/xml-exc-c14n#"/> 1717
</ds:Transform> 1718
</ds:Transforms> 1719
<ds:DigestMethod 1720
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 1721
<ds:DigestValue>Kclet6XcaOgOWXM4gty6/UNdviI=</ds:DigestValue> 1722
</ds:Reference> 1723
</ds:SignedInfo> 1724
<ds:SignatureValue> 1725
hq4zk+ZknjggCQgZm7ea8fI79gJEsRy3E8LHDpYXWQIgZpkJN9CMLG8ENR4Nrw+n 1726
7iyzixBvKXX8P53BTCT4VghPBWhFYSt9tHWu/AtJfOTh6qaAsNdeCyG86jmtp3TD 1727
MWuL/cBUj2OtBZOQMFn7jQ9YB7klIz3RqVL+wNmeWI4=</ds:SignatureValue> 1728
<ds:KeyInfo> 1729
<ds:X509Data> 1730
<ds:X509Certificate> 1731
MIICyjCCAjOgAwIBAgICAnUwDQYJKoZIhvcNAQEEBQAwgakxCzAJBgNVBAYTAlVT 1732
MRIwEAYDVQQIEwlXaXNjb25zaW4xEDAOBgNVBAcTB01hZGlzb24xIDAeBgNVBAoT 1733
F1VuaXZlcnNpdHkgb2YgV2lzY29uc2luMSswKQYDVQQLEyJEaXZpc2lvbiBvZiBJ 1734
bmZvcm1hdGlvbiBUZWNobm9sb2d5MSUwIwYDVQQDExxIRVBLSSBTZXJ2ZXIgQ0Eg 1735
LS0gMjAwMjA3MDFBMB4XDTAyMDcyNjA3Mjc1MVoXDTA2MDkwNDA3Mjc1MVowgYsx 1736
CzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaWNoaWdhbjESMBAGA1UEBxMJQW5uIEFy 1737
Ym9yMQ4wDAYDVQQKEwVVQ0FJRDEcMBoGA1UEAxMTc2hpYjEuaW50ZXJuZXQyLmVk 1738
dTEnMCUGCSqGSIb3DQEJARYYcm9vdEBzaGliMS5pbnRlcm5ldDIuZWR1MIGfMA0G 1739
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDZSAb2sxvhAXnXVIVTx8vuRay+x50z7GJj 1740
IHRYQgIv6IqaGG04eTcyVMhoekE0b45QgvBIaOAPSZBl13R6+KYiE7x4XAWIrCP+ 1741
c2MZVeXeTgV3Yz+USLg2Y1on+Jh4HxwkPFmZBctyXiUr6DxF8rvoP9W7O27rhRjE 1742
pmqOIfGTWQIDAQABox0wGzAMBgNVHRMBAf8EAjAAMAsGA1UdDwQEAwIFoDANBgkq 1743
hkiG9w0BAQQFAAOBgQBfDqEW+OI3jqBQHIBzhujN/PizdN7s/z4D5d3pptWDJf2n 1744
qgi7lFV6MDkhmTvTqBtjmNk3No7v/dnP6Hr7wHxvCCRwubnmIfZ6QZAv2FU78pLX 1745
8I3bsbmRAUg4UP9hH6ABVq4KQKMknxu1xQxLhpR1ylGPdiowMNTrEG8cCx3w/w== 1746
</ds:X509Certificate> 1747
</ds:X509Data> 1748
</ds:KeyInfo> 1749
</ds:Signature></Assertion></Response> 1750

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 44 of 53

6 SAML Extensions 1751

The SAML schemas support extensibility. An example of an application that extends SAML assertions is 1752
the Liberty Protocols and Schema Specification [LibertyProt]. The following sections explain how to use 1753
the extensibility features in SAML to create extension schemas. 1754
Note that elements in the SAML schemas are not blocked from substitution, so that all SAML elements 1755
MAY serve as the head element of a substitution group. Also, types are not defined as final, so that all 1756
SAML types MAY be extended and restricted. The following sections discuss only elements that have 1757
been specifically designed to support extensibility. 1758

6.1 Assertion Schema Extension 1759

The SAML assertion schema is designed to permit separate processing of the assertion package and the 1760
statements it contains, if the extension mechanism is used for either part. 1761
The following elements are intended specifically for use as extension points in an extension schema; their 1762
types are set to abstract, and are thus usable only as the base of a derived type: 1763

• <Condition> 1764

• <Statement> 1765

• <SubjectStatement> 1766

The following elements that are directly usable as part of SAML MAY be extended: 1767

• <AuthenticationStatement> 1768

• <AuthorizationDecisionStatement> 1769

• <AttributeStatement> 1770

• <AudienceRestrictionCondition> 1771

The following elements are defined to allow elements from arbitrary namespaces within them, which 1772
serves as a built-in extension point without requiring an extension schema: 1773

• <AttributeValue> 1774

• <Advice> 1775

6.2 Protocol Schema Extension 1776

The following SAML protocol elements are intended specifically for use as extension points in an 1777
extension schema; their types are set to abstract, and are thus usable only as the base of a derived 1778
type: 1779

• <Query> 1780

• <SubjectQuery> 1781

The following elements that are directly usable as part of SAML MAY be extended: 1782

• <Request> 1783

• <AuthenticationQuery> 1784

• <AuthorizationDecisionQuery> 1785

• <AttributeQuery> 1786

• <Response> 1787

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 45 of 53

6.3 Use of Type Derivation and Substitution Groups 1788

W3C XML Schema [Schema1] provides two principal mechanisms for specifying an element of an 1789
extended type: type derivation and substitution groups. 1790

For example, a <Statement> element can be assigned the type NewStatementType by means of the 1791
xsi:type attribute. For such an element to be schema-valid, NewStatementType needs to be derived 1792
from StatementType. The following example of a SAML assertion assumes that the extension schema 1793
(represented by the new: prefix) has defined this new type: 1794

<saml:Assertion …> 1795
 <saml:Statement xsi:type="new:NewStatementType"> 1796
 … 1797
 </saml:Statement> 1798
</saml:Assertion> 1799

Alternatively, the extension schema can define a <NewStatement> element that is a member of a 1800
substitution group that has <Statement> as a head element. For the substituted element to be schema-1801
valid, it needs to have a type that matches or is derived from the head element’s type. The following is an 1802
example of an extension schema fragment that defines this new element: 1803

<xsd:element "NewStatement" type="new:NewStatementType" 1804
 substitutionGroup="saml:Statement"/> 1805

The substitution group declaration allows the <NewStatement> element to be used anywhere the SAML 1806
<Statement> element can be used. The following is an example of a SAML assertion that uses the 1807
extension element: 1808

<saml:Assertion …> 1809
 <new:NewStatement> 1810
 … 1811
 </new:NewStatement> 1812
</saml:Assertion> 1813

The choice of extension method has no effect on the semantics of the XML document but does have 1814
implications for interoperability. 1815

The advantages of type derivation are as follows: 1816

• A document can be more fully interpreted by a parser that does not have access to the extension 1817
schema because a “native” SAML element is available. 1818

• At the time of this writing, some W3C XML Schema validators do not support substitution groups, 1819
whereas the xsi:type attribute is widely supported. 1820

The advantage of substitution groups is that a document can be explained without the need to explain the 1821
functioning of the xsi:type attribute. 1822

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 46 of 53

7 SAML-Defined Identifiers 1823

The following sections define URI-based identifiers for common authentication methods, resource access 1824
actions, and subject name identifier formats. 1825
Where possible an existing URN is used to specify a protocol. In the case of IETF protocols the URN of 1826
the most current RFC that specifies the protocol is used. URI references created specifically for SAML 1827
have one of the following stems: 1828

urn:oasis:names:tc:SAML:1.0: 1829
urn:oasis:names:tc:SAML:1.1: 1830

7.1 Authentication Method Identifiers 1831

The AuthenticationMethod attribute of an <AuthenticationStatement> and the 1832
<SubjectConfirmationMethod> element of a SAML subject perform different functions, although 1833
both can refer to the same underlying mechanisms. An authentication statement with an 1834
AuthenticationMethod attribute describes an authentication act that occurred in the past. The 1835
AuthenticationMethod attribute indicates how that authentication was done. Note that the 1836
authentication statement does not provide the means to perform that authentication, such as a password, 1837
key, or certificate. 1838

In contrast, <SubjectConfirmationMethod> is a part of the <SubjectConfirmation> element, 1839
which is an optional part of a SAML subject. <SubjectConfirmation> is used to allow the SAML 1840
relying party to confirm that the request or message came from a system entity that corresponds to the 1841
subject in the statement or query. The <SubjectConfirmationMethod> element indicates the method 1842
that the relying party can use to do this in the future. This may or may not have any relationship to an 1843
authentication that was performed previously. Unlike the authentication method, the subject confirmation 1844
method may be accompanied by some piece of information, such as a certificate or key, that will allow the 1845
relying party to perform the necessary check. 1846
Subject confirmation methods are defined in the SAML profiles in which they are used; see the SAML 1847
bindings and profiles specification [SAMLBind] for more information. Additional methods may be added 1848
by defining new profiles or by private agreement. 1849

The following identifiers refer to SAML-specified authentication methods. 1850

7.1.1 Password 1851

URI: urn:oasis:names:tc:SAML:1.0:am:password 1852

The authentication was performed by means of a password. 1853

7.1.2 Kerberos 1854

URI: urn:ietf:rfc:1510 1855
The authentication was performed by means of the Kerberos protocol [RFC 1510], an instantiation of the 1856
Needham-Schroeder symmetric key authentication mechanism [Needham78]. 1857

7.1.3 Secure Remote Password (SRP) 1858

URI: urn:ietf:rfc:2945 1859
The authentication was performed by means of Secure Remote Password protocol as specified in [RFC 1860
2945]. 1861

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 47 of 53

7.1.4 Hardware Token 1862

URI: urn:oasis:names:tc:SAML:1.0:am:HardwareToken 1863

The authentication was performed using some (unspecified) hardware token. 1864

7.1.5 SSL/TLS Certificate Based Client Authentication: 1865

URI: urn:ietf:rfc:2246 1866

The authentication was performed using either the SSL or TLS protocol with certificate-based client 1867
authentication. TLS is described in [RFC 2246]. 1868

7.1.6 X.509 Public Key 1869

URI: urn:oasis:names:tc:SAML:1.0:am:X509-PKI 1870

The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1871
an X.509 PKI [X.500][PKIX]. It may have been one of the mechanisms for which a more specific identifier 1872
has been defined below. 1873

7.1.7 PGP Public Key 1874

URI: urn:oasis:names:tc:SAML:1.0:am:PGP 1875

The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1876
a PGP web of trust [PGP]. It may have been one of the mechanisms for which a more specific identifier 1877
has been defined below. 1878

7.1.8 SPKI Public Key 1879

URI: urn:oasis:names:tc:SAML:1.0:am:SPKI 1880

The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1881
a SPKI PKI [SPKI]. It may have been one of the mechanisms for which a more specific identifier has 1882
been defined below. 1883

7.1.9 XKMS Public Key 1884

URI: urn:oasis:names:tc:SAML:1.0:am:XKMS 1885

The authentication was performed by some (unspecified) mechanism on a key authenticated by means of 1886
a XKMS trust service [XKMS]. It may have been one of the mechanisms for which a more specific 1887
identifier has been defined below. 1888

7.1.10 XML Digital Signature 1889

URI: urn:ietf:rfc:3075 1890
The authentication was performed by means of an XML digital signature [RFC 3075]. 1891

7.1.11 Unspecified 1892

URI: urn:oasis:names:tc:SAML:1.0:am:unspecified 1893

The authentication was performed by an unspecified means. 1894

7.2 Action Namespace Identifiers 1895

The following identifiers MAY be used in the Namespace attribute of the <Action> element (see Section 1896
2.4.5.1) to refer to common sets of actions to perform on resources. 1897

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 48 of 53

7.2.1 Read/Write/Execute/Delete/Control 1898

URI: urn:oasis:names:tc:SAML:1.0:action:rwedc 1899

Defined actions: 1900
Read Write Execute Delete Control 1901

These actions are interpreted as follows: 1902
Read 1903

The subject may read the resource. 1904
Write 1905

The subject may modify the resource. 1906
Execute 1907

The subject may execute the resource. 1908
Delete 1909

The subject may delete the resource. 1910
Control 1911

The subject may specify the access control policy for the resource. 1912

7.2.2 Read/Write/Execute/Delete/Control with Negation 1913

URI: urn:oasis:names:tc:SAML:1.0:action:rwedc-negation 1914

Defined actions: 1915
Read Write Execute Delete Control ~Read ~Write ~Execute ~Delete ~Control 1916

The actions specified in Section 7.2.1 are interpreted in the same manner described there. Actions 1917
prefixed with a tilde (~) are negated permissions and are used to affirmatively specify that the stated 1918
permission is denied. Thus a subject described as being authorized to perform the action ~Read is 1919
affirmatively denied read permission. 1920

A SAML authority MUST NOT authorize both an action and its negated form. 1921

7.2.3 Get/Head/Put/Post 1922

URI: urn:oasis:names:tc:SAML:1.0:action:ghpp 1923

Defined actions: 1924
GET HEAD PUT POST 1925

These actions bind to the corresponding HTTP operations. For example a subject authorized to perform 1926
the GET action on a resource is authorized to retrieve it. 1927

The GET and HEAD actions loosely correspond to the conventional read permission and the PUT and 1928
POST actions to the write permission. The correspondence is not exact however since an HTTP GET 1929
operation may cause data to be modified and a POST operation may cause modification to a resource 1930
other than the one specified in the request. For this reason a separate Action URI reference specifier is 1931
provided. 1932

7.2.4 UNIX File Permissions 1933

URI: urn:oasis:names:tc:SAML:1.0:action:unix 1934

The defined actions are the set of UNIX file access permissions expressed in the numeric (octal) notation. 1935

The action string is a four-digit numeric code: 1936
extended user group world 1937

Where the extended access permission has the value 1938

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 49 of 53

+2 if sgid is set 1939

+4 if suid is set 1940
The user group and world access permissions have the value 1941

+1 if execute permission is granted 1942

+2 if write permission is granted 1943

+4 if read permission is granted 1944

For example, 0754 denotes the UNIX file access permission: user read, write and execute; group read 1945
and execute; and world read. 1946

7.3 NameIdentifier Format Identifiers 1947

The following identifiers MAY be used in the Format attribute of the <NameIdentifier> element (see 1948
Section 2.4.2.2) to refer to common formats for the content of the <NameIdentifier> element. The 1949
recommended identifiers shown below SHOULD be used in preference to the deprecated identifiers, 1950
which are planned to be removed in the next major version of the SAML assertion specification. 1951

7.3.1 Unspecified 1952

URI: urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified 1953

The interpretation of the content of the <NameQualifier> element is left to individual implementations. 1954

7.3.2 Email Address 1955

Recommended URI: urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress 1956

Deprecated URI: urn:oasis:names:tc:SAML:1.0:assertion#emailAddress 1957

Indicates that the content of the <NameIdentifier> element is in the form of an email address, 1958
specifically "addr-spec" as defined in IETF RFC 2822 [RFC 2822] §3.4.1. An addr-spec has the form 1959
local-part@domain. Note that an addr-spec has no phrase (such as a common name) before it, has no 1960
comment (text surrounded in parentheses) after it, and is not surrounded by "<" and ">". 1961

7.3.3 X.509 Subject Name 1962

Recommended URI: urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName 1963

Deprecated URI: urn:oasis:names:tc:SAML:1.0:assertion#X509SubjectName 1964

Indicates that the content of the <NameIdentifier> element is in the form specified for the contents of 1965
the <ds:X509SubjectName> element in the XML Signature Recommendation [XMLSig]. Implementors 1966
should note that the XML Signature specification specifies encoding rules for X.509 subject names that 1967
differ from the rules given in IETF RFC 2253 [RFC 2253]. 1968

7.3.4 Windows Domain Qualified Name 1969

Recommended URI: urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName 1970

Deprecated URI: urn:oasis:names:tc:SAML:1.0:assertion#WindowsDomainQualifiedName 1971

Indicates that the content of the <NameIdentifier> element is a Windows domain qualified name. A 1972
Windows domain qualified user name is a string of the form "DomainName\UserName". The domain 1973
name and "\" separator MAY be omitted. 1974

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 50 of 53

8 References 1975

[Excl-C14N] J. Boyer et al. Exclusive XML Canonicalization Version 1.0. World Wide Web 1976
Consortium, July 2002. http://www.w3.org/TR/xml-exc-c14n/. 1977

[LibertyProt] J. Beatty et al., Liberty Protocols and Schema Specification Version 1.1, Liberty 1978
Alliance Project, January 2003, 1979
http://www.projectliberty.org/specs/archive/v1_1/liberty-architecture-protocols-1980
schema-v1.1.pdf. 1981

[Needham78] R. Needham et al. Using Encryption for Authentication in Large Networks of 1982
Computers. Communications of the ACM, Vol. 21 (12), pp. 993-999. December 1983
1978. 1984

[PGP] Atkins, D., Stallings, W. and P. Zimmermann..PGP Message Exchange Formats. 1985
IETF RFC 1991, August 1996. http://www.ietf.org/rfc/rfc1991.txt. 1986

[PKIX] R. Housley, W. Ford, W. Polk, D. Solo. Internet X.509 Public Key Infrastructure 1987
Certificate and CRL Profile. IETF RFC 2459, January 1999. 1988
http://www.ietf.org/rfc/rfc2459.txt. 1989

[RFC 1510] J. Kohl, C. Neuman. The Kerberos Network Authentication Requestor (V5). IETF 1990
RFC 1510, September 1993. http://www.ietf.org/rfc/rfc1510.txt. 1991

[RFC 2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. IETF 1992
RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt. 1993

[RFC 2246] T. Dierks, C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, January 1994
1999. http://www.ietf.org/rfc/rfc2246.txt. 1995

[RFC 2253] M. Wahl et al. Lightweight Directory Access Protocol (v3): UTF-8 String 1996
Representation of Distinguished Names. IETF RFC 2253, December 1997. 1997
http://www.ietf.org/rfc/rfc2253.txt. 1998

[RFC 2396] T. Berners-Lee et al. Uniform Resource Identifiers (URI): Generic Syntax. IETF 1999
RFC 2396, August, 1998. http://www.ietf.org/rfc/rfc2396.txt. 2000

[RFC 2630] R. Housley. Cryptographic Message Syntax. IETF RFC 2630, June 1999. 2001
http://www.ietf.org/rfc/rfc2630.txt. 2002

[RFC 2822] P. Resnick. Internet Message Format. IETF RFC 2822, April 2001. 2003
http://www.ietf.org/rfc/rfc2822.txt. 2004

[RFC 2945] T. Wu. The SRP Authentication and Key Exchange System. IETF RFC 2945, 2005
September 2000. http://www.ietf.org/rfc/rfc2945.txt. 2006

[RFC 3075] D. Eastlake, J. Reagle, D. Solo. XML-Signature Syntax and Processing. IETF 2007
3075, March 2001. http://www.ietf.org/rfc/rfc3075.txt. 2008

[SAMLBind] E. Maler et al. Bindings and Profiles for the OASIS Security Assertion Markup 2009
Language (SAML). OASIS, September 2003. Document ID oasis-sstc-saml-2010
bindings-1.1. http://www.oasis-open.org/committees/security/. 2011

[SAMLConform] E. Maler et al. Conformance Program Specification for the OASIS Security 2012
Assertion Markup Language (SAML). OASIS, September 2003. Document ID 2013
oasis-sstc-saml-conform-1.1. http://www.oasis-open.org/committees/security/. 2014

[SAMLCore1.0] E. Maler et al. Assertions and Protocol for the OASIS Security Assertion Markup 2015
Language (SAML). OASIS, November 2002. http://www.oasis-2016
open.org/committees/download.php/1371/oasis-sstc-saml-core-1.0.pdf. 2017

[SAMLGloss] E. Maler et al. Glossary for the OASIS Security Assertion Markup Language 2018
(SAML). OASIS, September 2003. Document ID oasis-sstc-saml-glossary-1.1. 2019
http://www.oasis-open.org/committees/security/. 2020

[SAMLP-XSD] E. Maler et al. SAML protocol schema. OASIS, September 2003. Document ID 2021
oasis-sstc-saml-schema-protocol-1.1. http://www.oasis-2022
open.org/committees/security/. 2023

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 51 of 53

[SAMLSecure] E. Maler et al. Security and Privacy Considerations for the OASIS Security 2024
Assertion Markup Language (SAML). OASIS, September 2003. Document ID 2025
oasis-sstc-saml-sec-consider-1.1. http://www.oasis-2026
open.org/committees/security/. 2027

[SAML-XSD] E. Maler et al. SAML assertion schema. OASIS, September 2003. Document ID 2028
oasis-sstc-saml-schema-assertion-1.1. http://www.oasis-2029
open.org/committees/security/. 2030

[Schema1] H. S. Thompson et al. XML Schema Part 1: Structures. World Wide Web 2031
Consortium Recommendation, May 2001. http://www.w3.org/TR/xmlschema-1/. 2032

[Schema2] P. V. Biron et al. XML Schema Part 2: Datatypes. World Wide Web Consortium 2033
Recommendation, May 2001. http://www.w3.org/TR/xmlschema-2/. 2034

[SPKI] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, T. Ylonen. SPKI 2035
Certificate Theory. IETF RFC 2693, September 1999. 2036
http://www.ietf.org/rfc/rfc2693.txt. 2037

[UNICODE-C] ��������	�M. J. Dürst. Unicode Normalization Forms. UNICODE Consortium, 2038
March 2001. http://www.unicode.org/unicode/reports/tr15/tr15-21.html. 2039

[W3C-CHAR] M. J. Dürst. Requirements for String Identity Matching and String Indexing. World 2040
Wide Web Consortium, July 1998. http://www.w3.org/TR/WD-charreq. 2041

[W3C-CharMod] M. J. Dürst. Character Model for the World Wide Web 1.0.�World Wide Web 2042
Consortium, April, 2002. http://www.w3.org/TR/charmod/. 2043

[X.500] ITU-T Recommendation X.501: Information Technology - Open Systems 2044
Interconnection - The Directory: Models. 1993. 2045

[XKMS] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia, J. Epstein, J. 2046
Lapp. XML Key Management Specification (XKMS). W3C Note 30 March 2001. 2047
http://www.w3.org/TR/xkms/. 2048

[XML] T. Bray, et al. Extensible Markup Language (XML) 1.0 (Second Edition). World 2049
Wide Web Consortium, October 2000. http://www.w3.org/TR/REC-xml. 2050

[XMLSig] D. Eastlake et al., XML-Signature Syntax and Processing, World Wide Web 2051
Consortium, February 2002. http://www.w3.org/TR/xmldsig-core/. 2052

[XMLSig-XSD] XML Signature Schema. World Wide Web Consortium. 2053
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-2054
schema.xsd. 2055

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 52 of 53

Appendix A. Acknowledgments 2056

The editors would like to acknowledge the contributions of the OASIS Security Services Technical 2057
Committee, whose voting members at the time of publication were: 2058

• Frank Siebenlist, Argonne National Laboratory 2059

• Irving Reid, Baltimore Technologies 2060

• Hal Lockhart, BEA Systems 2061

• Steven Lewis, Booz Allen Hamilton 2062

• John Hughes, Entegrity Solutions 2063

• Carlisle Adams, Entrust 2064

• Jason Rouault, Hewlett-Packard 2065

• Maryann Hondo, IBM 2066

• Anthony Nadalin, IBM 2067

• Scott Cantor, individual 2068

• RL “Bob” Morgan, individual 2069

• Trevor Perrin, individual 2070

• Padraig Moloney, NASA 2071

• Prateek Mishra, Netegrity (co-chair) 2072

• Frederick Hirsch, Nokia 2073

• Senthil Sengodan, Nokia 2074

• Timo Skytta, Nokia 2075

• Charles Knouse, Oblix 2076

• Steve Anderson, OpenNetwork 2077

• Simon Godik, Overxeer 2078

• Rob Philpott, RSA Security (co-chair) 2079

• Dipak Chopra, SAP 2080

• Jahan Moreh, Sigaba 2081

• Bhavna Bhatnagar, Sun Microsystems 2082

• Jeff Hodges, Sun Microsystems 2083

• Eve Maler, Sun Microsystems (coordinating editor) 2084

• Emily Xu, Sun Microsystems 2085

• Phillip Hallam-Baker, VeriSign 2086

oasis-sstc-saml-core-1.1 2 September 2003
Copyright © OASIS Open 2003. All Rights Reserved Page 53 of 53

Appendix B. Notices 2087

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that 2088
might be claimed to pertain to the implementation or use of the technology described in this document or 2089
the extent to which any license under such rights might or might not be available; neither does it 2090
represent that it has made any effort to identify any such rights. Information on OASIS's procedures with 2091
respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights 2092
made available for publication and any assurances of licenses to be made available, or the result of an 2093
attempt made to obtain a general license or permission for the use of such proprietary rights by 2094
implementors or users of this specification, can be obtained from the OASIS Executive Director. 2095

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, 2096
or other proprietary rights which may cover technology that may be required to implement this 2097
specification. Please address the information to the OASIS Executive Director. 2098
Copyright © OASIS Open 2003. All Rights Reserved. 2099

This document and translations of it may be copied and furnished to others, and derivative works that 2100
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 2101
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice 2102
and this paragraph are included on all such copies and derivative works. However, this document itself 2103
may not be modified in any way, such as by removing the copyright notice or references to OASIS, 2104
except as needed for the purpose of developing OASIS specifications, in which case the procedures for 2105
copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to 2106
translate it into languages other than English. 2107
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors 2108
or assigns. 2109
This document and the information contained herein is provided on an “AS IS” basis and OASIS 2110
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 2111
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 2112
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 2113

	Assertions and Protocol for the OASIS Security Assertion Markup Language 3 (SAML) V1.1 4
	2 Sep 2003 OASIS Organization for the Advancement of Structured Information Standards
	Table of Contents
	1 Introduction
	1.1 Notation
	1.2 Schema Organization and Namespaces
	1.2.1 String and URI Values
	1.2.2 Time Values
	1.2.3 ID and ID Reference Values
	1.2.4 Comparing SAML Values

	1.3 SAML Concepts (Non-Normative)
	1.3.1 Overview
	1.3.2 SAML and URI- Based Identifiers
	1.3.3 SAML and Extensibility

	2 SAML Assertions
	2.1 Schema Header and Namespace Declarations
	2.2 Simple Types
	2.2.1 Simple Type DecisionType

	2.3 Assertions
	2.3.1 Element <AssertionIDReference>
	2.3.2 Element <Assertion>

	2.4 Statements
	2.4.1 Element <Statement>
	2.4.2 Element <SubjectStatement>
	2.4.3 Element <AuthenticationStatement>
	2.4.4 Element <AttributeStatement>
	2.4.5 Element <AuthorizationDecisionStatement>

	3 SAML Protocol
	3.1 Schema Header and Namespace Declarations
	3.2 Requests
	3.2.1 Complex Type RequestAbstractType
	3.2.2 Element <Request>

	3.3 Queries
	3.3.1 Element <Query>
	3.3.2 Element <SubjectQuery>
	3.3.3 Element <AuthenticationQuery>
	3.3.4 Element <AttributeQuery>
	3.3.5 Element <AuthorizationDecisionQuery>

	3.4 Responses
	3.4.1 Complex Type ResponseAbstractType
	3.4.2 Element <Response>
	3.4.3 Element <Status>
	3.4.4 Responses to Queries

	4 SAML Versioning
	4.1 SAML Specification Set Version
	4.1.1 Schema Version
	4.1.2 SAML Assertion Version
	4.1.3 SAML Protocol Version
	4.1.4 Response Version
	4.1.5 Permissible Version Combinations

	4.2 SAML Namespace Version
	4.2.1 Schema Evolution

	5 SAML and XML Signature Syntax and Processing
	5.1 Signing Assertions
	5.2 Request/Response Signing
	5.3 Signature Inheritance
	5.4 XML Signature Profile
	5.4.1 Signing Formats and Algorithms
	5.4.2 References
	5.4.3 Canonicalization Method
	5.4.4 Transforms
	5.4.5 KeyInfo
	5.4.6 Binding Between Statements in a Multi-Statement Assertion
	5.4.7 Interoperability with SAML V1.0
	5.4.8 Example

	6 SAML Extensions
	6.1 Assertion Schema Extension
	6.2 Protocol Schema Extension
	6.3 Use of Type Derivation and Substitution Groups

	7 SAML-Defined Identifiers
	7.1 Authentication Method Identifiers
	7.1.1 Password
	7.1.2 Kerberos
	7.1.3 Secure Remote Password (SRP)
	7.1.4 Hardware Token
	7.1.5 SSL/TLS Certificate Based Client Authentication:
	7.1.6 X.509 Public Key
	7.1.7 PGP Public Key
	7.1.8 SPKI Public Key
	7.1.9 XKMS Public Key
	7.1.10 XML Digital Signature
	7.1.11 Unspecified

	7.2 Action Namespace Identifiers
	7.2.1 Read/Write/Execute/Delete/ Control
	7.2.2 Read/Write/Execute/Delete/ Control with Negation
	7.2.3 Get/Head/Put/ Post
	7.2.4 UNIX File Permissions

	7.3 NameIdentifier Format Identifiers
	7.3.1 Unspecified
	7.3.2 Email Address
	7.3.3 X.509 Subject Name
	7.3.4 Windows Domain Qualified Name

	8 References

	
	OASIS Title Page

