
Copyright © ebXML 2000. All Rights Reserved.

1

ebXML Technical Architecture Specification2
ebXML Technical Architecture Team3

4
17 October 20005

1.0 Status of this Document6
7

This document represents a work in progress upon which no reliance should be made.8
Distribution of this document is unlimited. The document formatting is based on the9
Internet Society’s Standard RFC format.10

11
This version:12

ebXML_TA_v0.9.doc13
14

Latest version:15
N/A16

17
Previous version:18

EbXML_TA_v0.8.72i19
20

2.0 Scope21
22

This document describes the underlying Architecture for ebXML. It provides a high level23
overview of ebXML and describes the relationships, interactions, and basic functionality24
of ebXML Components. It should be used as a roadmap to learn: (1) what ebXML is, (2)25
what problems ebXML solves, and (3) core ebXML functionality. This document does26
not go into the level of detail required to build an ebXML application. Please refer to27
each of the ebXML component specifications for the exact information needed to build28
ebXML applications and related Components.29

30

3.0 Normative References31
32

The following standards contain provisions which, through reference in this text,33
constitute provisions of this specification. At the time of publication, the editions34
indicated below were valid. All standards are subject to revision, and parties to35
agreements based on this specification are encouraged to investigate the possibility of36
applying the most recent editions of the standards indicated below.37

38
W3C XML v1.0 specification39

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 2 of 46
Copyright © ebXML 2000. All Rights Reserved.

ISO/IEC 14662: Open-edi Reference Model40
ISO 11179 Metadata Repository41
ISO 10646: Character Encoding42
ISO 8601:2000 Date/Time/Number Datatyping43

44

4.0 ebXML Technical Architecture Participants45
46

We would like to recognize the following for their significant participation in the47
development of this document.48

49
Editors: Duane Nickull, XML Global Technologies50

 Brian Eisenberg, DataChannel51
52

Participants: Colin Barham, TIE53
Al Boseman54
Dick Brooks, Group 876055
Cory Casanave, DataAccess Technologies56
Robert Cunningham, Military Traffic Management Command, US Army57
Christopher Ferris, Sun Microsystems58
Anders Grangard, EDIFrance59
Kris Ketels, SWIFT60
Piming Kuo, Worldspan61
Kyu-Chul Lee, Chungnam National University62
Henry Lowe, OMG63
Melanie McCarthy, General Motors64
Klaus-Dieter Naujok, NextEra Interactive65
Bruce Peat, eProcessSolutions66
John Petit, KPMG Consulting67
Mark Heller, MITRE68
Scott Hinkelman, IBM69
Karsten Riemer, Sun Microsystems70
Lynne Rosenthal, NIST71
Nikola Stojanovic, Columbine JDS Systems72
Jeff Sutor, Sun Microsystems73
David RR Webber, XML Global Technologies74

75

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 3 of 46
Copyright © ebXML 2000. All Rights Reserved.

5.0 Table of Contents76
ebXML Technical Architecture Specification .. 177

1.0 Status of this Document .. 178
2.0 Scope ... 179
3.0 Normative References ... 180
4.0 ebXML Technical Architecture Participants... 281
5.0 Table of Contents .. 382
6.0 Introduction ... 583
7.0 ebXML Abstract Overview... 684
8.0 ebXML Conceptual Overview .. 785
9.0 Relating the ebXML Architecture to Existing Standards.. 986
10.0 ebXML Architecture ... 1187
11.0 ebXML Business Operational View ... 1288
12.0 ebXML Functional Service View ... 1489
13.0 Implementation Phase ... 1790
14.0 Discovery and Deployment Phase... 1891
15.0 Run Time Phase .. 1992
16.0 Trading Partner Information.. 1993

16.1 Support for Trading Partner Agreements .. 2094
17.0 Business Process and Information Modeling .. 2195

17.1 Overview ... 2196
17.2 Position within overall ebXML Architecture.. 2197
17.3 Business Process and Information Modeling Functionality.............................. 2298
17.4 The Business Process and Information Metamodel .. 2299
17.5 Interfaces and Relationship ... 23100
17.6 Relationship to Trading Partner Agreements .. 24101
17.7 Relationship to Core Components .. 24102

18.0 Core Component Functionality ... 24103
19.0 Business Object Functionality... 25104

19.1 Overview ... 25105
19.2 Business Objects in Business Process and Information Models 26106
19.3 Common Business Objects.. 26107

20.0 Registry and Repository Functionality.. 27108
20.1 Overview ... 27109
20.2 Information Model & Interface Constrains... 28110
20.3 Formal Functional Overview .. 29111
20.4 Sample Objects Residing in a Repository and Managed by a Registry............ 30112
20.5 Registry Management of Repository Objects and Metadata............................. 30113
20.6 Querying Registries and Returning Repository Objects and Metadata............. 31114
20.7 Registry to Registry Interfacing Model... 31115
20.8 Registry/Repository Business Scenario Example ... 33116

21.0 Messaging Service Functionality .. 33117
21.1 Overview ... 33118
21.2 Abstract ebXML Messaging Service Interface ... 34119

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 4 of 46
Copyright © ebXML 2000. All Rights Reserved.

21.3 ebXML Messaging Service Layer Functions.. 34120
21.4 ebXML Message Structure and Packaging ... 37121

22.0 Conformance ... 38122
22.1 Overview ... 38123
22.2 Conformance Requirements.. 38124
22.3 General Framework of Conformance Testing... 39125
Scenario 1: Two Partners set-up an agreement and run the associated exchange..... 40126
Scenario 2: Three or more partners set-up a Business Process implementing a127
supply-chain and run the associated exchanges .. 42128
Scenario 3 : A Company sets up a Portal which defines a Business Process involving129
the use of external business services ... 43130
Scenario 4: Three or more parties engage in multi-party Business Process and run131
the associated exchanges... 44132

Disclaimer ... 46133
Copyright Statement.. 46134

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 5 of 46
Copyright © ebXML 2000. All Rights Reserved.

6.0 Introduction135
136

Over 25 years ago the idea was born to eliminate the use of paper documents for137
exchanging business data by linking computer systems together so that the data, normally138
on paper, could be sent from one system to the other. This concept became known as139
Electronic Data Interchange (EDI). The advantages are still valid today: single point of140
information capture, electronic delivery, low storage and retrieval costs, to mention just a141
few. However, looking at the statistics of who is currently utilizing EDI only the top142
10,000 companies on a global scale (Fortune 1000 in the top 10 countries) are using EDI.143
For the rest of the business world only 5% are using EDI and therefore today common144
Business Processes are dominated by paper transactions.145

146
Today, Extensible Markup Language (XML) is at the forefront of efforts to replace paper-147
based business transactions. In order for Small to Medium Enterprises (SMEs) to benefit148
from the next generation of eBusiness standards, these standards must contain all the149
information to allow software developers to create programs that can be purchased off-150
the-self (shrink-wrapped-solutions) or developed in-house. The success of any new way151
to exchange data among businesses depends not only on the adoption by the Fortune152
1000 companies of standard agreements, but on their adoption by the other estimated153
25,000,000 SMEs in the world. Without an economic incentive for the SMEs, any new154
method of accomplishing eBusiness is just re-inventing the status quo instead of155
delivering a pervasive solution.156

157
The answer is to document and capture in an unambiguous way the Business Processes158
and associated information requirements for a particular business goal, which can then be159
processed by a computer program. The use of XML technologies combined with160
Business Process and Information Modeling and object-oriented technology can achieve161
this objective. Instead of looking at the data requirements based on internal legacy162
database records, Business Experts identify the collaborations with other parties in order163
to achieve a certain business goal. Those collaborations are documented in a model164
developed in the Unified Modeling Language (UML). Each activity requires the165
exchange of business information. Instead of taking the data element (EDI) approach,166
objects are used to describe and model Business Processes.167

168
With the advent of XML, it is easier to identify and define objects with attributes (data)169
along with functions that can be performed on those attributes. There are many objects170
that are common to many Business Processes (goals), such as address, party, and171
location.. By allowing these objects to be reused, ebXML can provide the means to unify172
cross-industry exchanges with a single consistent Lexicon. However the role of ebXML173
is not to replicate the reliance on electronic versions of common paper documents such as174
purchase orders, invoices and tender requests and to offer up and develop such175
implementation examples. Instead the ebXML specifications provide a framework where176
SMEs, software engineers, and other organizations can create consistent, robust, and177
interoperable eBusiness services and Components, ultimately leading to the realization of178
global eBusiness.179

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 6 of 46
Copyright © ebXML 2000. All Rights Reserved.

180

7.0 ebXML Abstract Overview181
182

Although XML is a recent newcomer in the eBusiness landscape, Supply Chains in many183
industries, as well as industry consortiums and standards organizations are using XML to184
define their own vocabularies for business relationships and transactions. The185
vocabularies, business templates, and Business Processes used by these groups to transact186
business must be accessible by all partners at any time.187

188
Furthermore, newcomers to the Supply Chain or business partnerships must be able to189
discover and implement eBusiness interfaces to interoperate in a secure, reliable and190
consistent manner. In order to facilitate these needs, mechanisms must be in place that191
can provide information about each participant (Trading Partner), including what they192
support for Business Processes and their implemented service interfaces. This includes193
information about what business information is required for each instance of a business194
message, and a mechanism to allow dynamic discovery of the semantic meaning of that195
business information. The entire mechanism must be able to recognize semantic196
meanings at the business element level and be implemented using XML based197
representations and systems. The complete set of ebXML Specifications explains this198
functionality in detail.199

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 7 of 46
Copyright © ebXML 2000. All Rights Reserved.

200

8.0 ebXML Conceptual Overview201
202

Figure 1 shows a conceptual model for two Trading Partners, first configuring and then203
engaging in a simple business transaction interchange. This model is provided as an204
illustration of the process and steps that may typically be required using ebXML205
applications and related Components. The ebXML specifications are not limited to this206
simple model, provided here as quick introduction to the concepts. Further examples of207
ebXML implementation models are provided at the end of this section. Specific208
implementation examples are described in Appendix A.209

210

Business Profiles

Scenarios

ebXML Registry

Business Object Library

Business Process Model

ebXML compliant

COMPANY A

COMPANY B

Request ebXML specifications

ebXML specifications details
Build Local System
Implementation

Submit scenarios and implementation details
Submit company business profile

INDUSTRY
XML

Qu
er

y a
bo

ut
 C

OM
PA

NY
 A

 p
ro

fil
e

6

CO
M

PA
NY

 A
 p

ro
fil

e
de

ta
ils

7

Confirm Profile and Scenarios Accepted

8

Submit Trading Partner A rrangement (TPA)

3

9

Confirm TPA details accepted

Specifications

Business Object Library

Business Process Model

ebXML compliant

Re
qu

es
t C

OM
PA

NY
 A

 sc
en

ar
io

 d
et

ail
s

10

11

CO
M

PA
NY

 A
 s

ce
na

rio
 d

et
ai

ls

1

DO BUSINESS TRANSACTIONS

4

2

5

12

211
212

Figure 1: a high level overview of ebXML functionality213
214

In Figure 1, Company A has become aware of an ebXML Registry that contains a set of215
ebXML specifications. Company A requests an ebXML specification in order to216
determine if it wants to become an ebXML compliant participant (Figure 1, step 1). The217

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 8 of 46
Copyright © ebXML 2000. All Rights Reserved.

request results in the ebXML process specification being sent to Company A (Figure 1,218
step 2). Company A, after reviewing the specification, decides to build and deploy its219
own ebXML compliant application (Figure 1, step 3). [Note: custom software220
development is not a necessary prerequisite for ebXML participation, user applications221
will be also commercially available as turn-key solutions.]222

223
Company A then submits its own implementation details, reference links, and Trading224
Partner Profile (TPP) as a request to the ebXML registry (Figure 1, step 4). The TPP225
submitted describes the company’s ebXML capabilities and constraints, as well as its226
supported business scenarios. These scenarios are XML versions of the Business227
Processes and associated information parcels (based on business objects: for example a228
sales tax calculation) that the company is able to engage in. After receiving verification229
that the format and usage of a business object is correct, an acknowledgment is sent to230
Company A by the ebXML Registry (Figure 1, step 5).231

232
Company B (an SME) is then informed by Company A that they would like to engage in233
a business transaction using ebXML. Company B acquires a shrink-wrapped application234
that is ebXML compliant and able to interface with its existing (legacy) applications. The235
ebXML program already contains the base ebXML information bundles such as a library236
of Business Objects and Models for the specific industry they are part of. Company A237
knows that its Business Processes and TPP are compliant with the ebXML infrastructure238
from the information available in the ebXML specification package. However, since239
Company A just registered its scenarios, they are not yet part of the package. Therefore240
the ebXML application queries the ebXML Registry about Company A (Figure 1, step 6).241
Company A’s profile is retrieved (Figure 1, step 7). Based on the TPP, the application242
determines that it is able to execute a specific scenario that Company A supports.243

244
Before engaging in that the scenario Company B submits a proposed Trading Partner245
Agreement (TPA) directly to Company A’s ebXML compliant software interface. The246
TPA outlines the eBusiness scenario and specific arrangement(s) it wants to use with247
Company A, as well as certain messaging, contingency and security-related requirements248
(Figure 1, step 8). Company A accepts the TPA and acknowledgement is sent directly to249
Company B’s shrink-wrapped ebXML software application (Figure 1, step 9). Since the250
scenario from Company A was not available in the software package that Company B is251
using, the application requests it from the ebXML Registry (Figure 1, step 10). The252
scenario is then provided to Company B’s application (Figure 1, step 11).253

254
Based on the processes (contained in the process models) and information parcels255
(presented in class diagrams) Company A and B are now engaging in eBusiness utilizing256
ebXML specifications via their respective software applications (Figure 1, step 12).257

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 9 of 46
Copyright © ebXML 2000. All Rights Reserved.

The conceptual overview described in the scenario above introduced the following258
concepts and architectural Components:259

260
1. A standard mechanism for describing a Business Process and its associated261

information model.262
2. A mechanism for registering and storing a Business Process and information263

model so that it can be shared/reused.264
3. Discovery of information about each participant including:265

• The Business Processes they support.266
• The business service interfaces they offer in support of the Business Process.267
• the business messages are to be exchanged between their respective service268

interfaces.269
• The technical configuration of the supported transport, security and encoding270

protocols.271
4. A mechanism for registering the aforementioned information so that it may be272

discovered and retrieved.273
5. A mechanism for describing a Trading Partner Agreement (TPA) which may be274

derived from the information about each participant from item 3 above.275
6. A standardized messaging service which enables interoperable, secure and276

reliable exchange of messages between two parties.277
7. A mechanism for configuration of the respective messaging services to engage in278

the agreed upon Business Process in accordance with the constraints defined in279
the TPA.280

281
Using these Components ebXML compliant software can be used to implement popular,282
well-known eBusiness scenarios, examples include but are not limited to:283

284
a) Two partners set-up an agreement and run the associated electronic exchange.285
b) Three or more partners set-up a Business Process implementing a supply-chain286

and run the associated electronic exchanges287
c) A company sets up a portal that defines a Business Process involving the use of288

external business services.289
d) Three or more parties engage in multi-party Business Process and run the290

associated electronic exchanges.291
292

The above examples are described in detail in Appendix A.293

9.0 Relating the ebXML Architecture to Existing Standards294
295

The ebXML approach utilizes public specifications and standards wherever applicable296
and consistent with the goals of the ebXML initiative. One such specification is the297
Open-edi work, an ISO/IEC 14662 (Open-edi Reference Model) vision of future EDI.298
The ebXML approach can benefit from the lessons learned by Open-edi work and utilize299
the related methodologies. Particularly, Open-edi takes a generic industry and technology300
neutral approach and by similarly utilizing this, ebXML will enable organizations to301

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 10 of 46
Copyright © ebXML 2000. All Rights Reserved.

provide the opportunity to significantly lower the barriers to electronic data exchange by302
introducing standard business scenarios and the necessary services to support them. In303
principle, once a business scenario is agreed upon, and implementations conform to the304
standards, there is no need for prior agreement among Trading Partners, other than the305
decision to engage in the ebXML transaction in compliance with the business scenario.306
This will lead to the ability to establish short-term business relationships quickly and cost307
effectively.308

309
The field of application of ebXML is the electronic processing of XML-based business310
transactions among autonomous multiple organizations within and across sectors (e.g.,311
public, private, industrial, geographic). It includes business transactions that involve312
multiple data types such as numbers, characters, images and sound. The Open-edi313
Reference Model provides the standards required for the inter-working of organizations314
through interconnected information technology systems, and is independent of specific315
information technology (IT) implementations, business content or conventions, business316
activities, and organizations.317

318
The Open-edi Reference Model places existing EDI standards in perspective using two319
views to describe the relevant aspects of business transactions: the Business Operational320
View (BOV) and the Functional Service View (FSV). The ebXML Architecture uses321
similar views of these definitions. The BOV expresses the users’ requirements needed to322
achieve the common business goal. The FSV describes how the BOV is actually323
implemented using the selected technology.324

325
Open-edi Reference Model

Business Operational View

Functional Service View

Comply with

Covered by

Comply with

Covered by

B
U
S
I
N
E
S
S

T
R
A
N
S
A
C
T
I
O
N
S

Business aspects
of

business transactions

Information technology
aspects of

business transactions

BOV RELATED
STANDARDS

FSV RELATED
STANDARDS

Viewed
as

326
Figure 2: Open-edi environment327

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 11 of 46
Copyright © ebXML 2000. All Rights Reserved.

328
Figure 2 above sets out the relationship between the Open-edi Reference Model and these329
views.330
The primary focus of ebXML resides with the FSV and the supporting BOV. The331
assumption for ebXML is that the FSV will be implemented by commercial software332
vendors and ensure backwards compatibility to traditional EDI systems (where333
applicable). As such, the resultant BOV-related standards provide the business and object334
class models needed to construct ebXML compliant eBusiness services and Components.335

336
While business practices from one business organization to another are highly variable,337
most activities can be decomposed into Business Processes which are more generic to a338
specific type of business. This analysis through the modeling process will identify object339
classes and models that are likely candidates for standardization. The ebXML approach340
looks for standard reusable Components from which to construct information exchange341
software. While Open-edi is a theoretical syntax neutral approach, ebXML itself is342
focused on a physical implementation using specifically an XML-based syntax and343
related technologies.344

345

10.0 ebXML Architecture346
347

The ebXML Architecture Reference Model uses the following two views to describe the348
relevant aspects of business transactions:349

350
• The Business Operational View (BOV)351
• The Functional Service View (FSV)352

353
The BOV addresses the semantics of:354

355
a) The semantics of business data in transactions and associated data interchanges356

357
b) The architecture for business transactions, including:358

359
o operational conventions;360
o agreements;361
o mutual obligations and requirements.362

363
These specifically apply to the business needs of ebXML Trading Partners.364

365
The FSV addresses the supporting services meeting the mechanistic needs of ebXML. It366
focuses on the Information Technology aspects of:367

368
• functional capabilities;369
• service interfaces;370

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 12 of 46
Copyright © ebXML 2000. All Rights Reserved.

• protocols.371
372

Additionally, the functional capabilities, service interfaces and protocols include:373
374

• capabilities for implementation, discovery, deployment and run time scenarios;375
• user application interfaces;376
• data transfer infrastructure interfaces;377
• protocols for interworking of XML vocabulary deployments from different378

organizations.379
380

The BOV and the FSV are discussed in detail in the following sections.381
382

11.0 ebXML Business Operational View383
384

Business Knowledge

Business Process and Information Models

Build
Core Components &

Core Processes

Lexicon

Activity Diagrams

Analysis Artifacts

Sequence Diagrams

Conceptual Class
Diagrams

Collaboration Diagrams

Design Artifacts

State Diagrams

Final Class
Diagrams

Use Cases Diagrams

Requirements Artifacts

Use Cases Description

Library

Business Objects &
Business Processes

385
386

Figure 3: the Business Operational View387
388

ebXML Business and Information Models are created following the selected ebXML389
Business Process and Information Modeling (see section 17).390

391
Business knowledge is captured in a Lexicon. The Lexicon contains data and process392
definitions including relationships and cross-references as expressed in business393
terminology and organized by industry domain. The Lexicon is the bridge between the394

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 13 of 46
Copyright © ebXML 2000. All Rights Reserved.

specific business or industry language and the knowledge expressed by the models in a395
more generalized industry neutral language.396

397
The first phase defines the requirements artifacts which describe the problem using Use398
Case Diagrams and Descriptions. If Lexicon entries are available they will be utilized,399
otherwise new Lexicon entries will be created.400

401
The second phase (analysis) will create activity and sequence diagrams describing the402
Business Processes. Class diagrams will capture the associated information parcels403
(business messages). The analysis phase reflects the business knowledge contained in the404
Lexicon. No effort is made to force the application of object-oriented principles. The405
class diagram is a free structured data diagram.406

407
The design phase is the last step of standardization, which may be accomplished by408
applying object-oriented principles. In addition to generating collaboration diagrams, a409
state diagram may also be created. The data diagram from the analysis phase will410
undergo harmonization to align it with other models in the same industry and across411
others.412

413
Therefore in ebXML interoperability is achieved by applying business objects across all414
class models. The content of the business object library is created by analyzing existing415
business objects as used by many industries today in conjunction with the Lexicon416
content and ebXML selected modeling methodology.417

418
Figure 4 shows how the user can see this correlation to the actual business roles:419

420

LEXICON LIBRARY Role Role

Business Document

Business ProcessesCore Processes

Core Components Business Objects

421
422

Figure 4: Role Relation Model.423

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 14 of 46
Copyright © ebXML 2000. All Rights Reserved.

424

12.0 ebXML Functional Service View425
426

Registry Service
Interface

Payload
Business Service

Interface
Business Service

Interface

Internal
Business App

Shrink-wrapped
Application

Registry

Implementers

Business Process and Information Models

Build

Registration

TPA

UML to XML conversion

Retrieval of ebXML
Specifications & Models

Build

Retrieval of Profiles & new or
updated ebXML Models

Retrieval of Profiles & new or
updated ebXML Models

Registration Registration
TPP

ebXML metamodel XML content

TPP

Registration

TPA Governs

TPP Derives

427
428

Figure 5: ebXML Functional Service View429
430

The ebXML Registry system is an important part of ebXML. The Registries not only431
hold the ebXML base reference specifications, but also the Business Process and432
information models developed by industry groups, SMEs, and other organizations. These433
models are compliant with the ebXML Metamodel and related methodologies. In order to434
store the models they are converted from UML to XML. ebXML Registries store these435
models as instances of XML that are compliant to the ebXML metamodel.436

437
This XML-based business information shall be expressed in a manner that will allow438
discovery down to the attribute level via a consistent methodology. In order to enable this439
functionality, the use of Unique Identifiers (UIDs) is required for all items within an440
ebXML Registry and Repository System. These UID references are implemented as441
XML attributes, expressed as fixed value attributes for each of the physical XML elements442
and structures. UID keys are required references for all ebXML content. The UID keys443
themselves do not contain explicit versioning control, but may be used with versioning444
control mechanisms, either as an extension to the UID key value itself, or within the445

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 15 of 46
Copyright © ebXML 2000. All Rights Reserved.

ebXML Registry and Repository System. The latter is the preferred approach since it446
provides a single access and maintenance and control point.447

448
Additionally the UID keys may be implemented in physical XML syntax in a variety of449
ways. The architectural needs require that several mechanisms be supported. These450
mechanisms include, but are not limited to:451

452
• A pure explicit reference mechanism (XML URN:UID method),453
• A referential method (XML URI:UID / namespace:UID),454
• An object-based reference compatible with W3C Schema (XML455

URN:complextype name), and456
• A datatype based reference (for ISO 8601:2000 Date/Time/Number datatyping457

and then legacy datatyping).458
459

Examples of each of these in XML syntax in the order noted include:460
461

• An URN:UID method,462
• An URI:UID / namespace:UID method,463
• An URN:complextype name method, and464
• An explicit type encoding values as outlined in ISO 8601.465

466
Additionally, all participating Components in ebXML must facilitate multilingual467
support. Again, a UID reference is particularly important here as it provides a language468
neutral reference mechanism. To enable multilingual support, the ebXML specification469
must be compliant with Unicode and ISO/IEC 10646 for character set and UTF-8 or470
UTF-16 for character encoding.471

472
The underlying ebXML Architecture is distributed in such a manner to minimize the473
potential for a single point of failure within the ebXML infrastructure. This specifically474
refers to Registry and Repository Services (see Registry and Repository Functionality,475
Section 20 for details of this architecture).476

477
The implementation of the FSV of ebXML, can be categorized as having the following478
three major phases:479

480
a) The Implementation Phase481

482
The implementation phase deals specifically with the procedures for creating an483
application of the ebXML infrastructure484

485
b) The Discovery and Deployment Phase486

487
The Discovery and Deployment Phase covers all aspects of actual discovery of488
ebXML related resources and self enabled into the ebXML infrastructure.489

490

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 16 of 46
Copyright © ebXML 2000. All Rights Reserved.

c) The Run Time Phase491
492

The Run Time phase covers the execution of a ebXML scenario with the actual493
associated ebXML transactions.494

495
These three phases are now discussed in greater detail.496

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 17 of 46
Copyright © ebXML 2000. All Rights Reserved.

497

13.0 Implementation Phase498
499

A Trading Partner wishing to engage in an ebXML compliant transaction, must first500
request a copy of the ebXML specification. The Specification is then downloaded to the501
Trading Partner. The Trading Partner studies the ebXML specification. The Trading502
Partner subsequently requests to download the Lexicon and the Business Object Library.503
The Trading Partner may also request other Trading Partners’ Business Process504
information (stored in its TPP) for analysis and review. The Trading Partner may also505
submit its own Business Process information to an ebXML compliant Registry.506

507
Figure 6 below, illustrates a potential interaction between an ebXML Registry and a business service508

interface.509

Figure 6: Functional Service View: Implementation Phase510
511
512
513

ebXML
Specification

ebXML
Business
Service
Interface
(application)

ebXML
Registry

Business
Process and
Information
Models

Request / Send

Receive

RequestSpecification()
ReceiveSpecification()
RequestLexicon()
ReceiveLexicon()
RequestBusinessObjectLibrary()
ReceiveBusinessObjectLibrary()
RequestSomeOnesBusinessProcessInformationModel()
ReceiveBusinessSomeOnesBusinessProcessInformationModel()
SendOwnBusinessProcessInformationModel()
ReceiveAcknowledgementForOwnBusinessProcessInformationModelAcceptance()

Lexicon
(Core
Component)
Content
Business
Object
Library

Some examples of possible access service methods

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 18 of 46
Copyright © ebXML 2000. All Rights Reserved.

14.0 Discovery and Deployment Phase514
515

A Trading Partner who has implemented an ebXML Business Service Interface may now516
begin the process of discovery and deployment (Figure 7). One possible discovery517
method may be to request the Trading Partner Profile of another Trading Partner.518
Requests for updates to Lexicons, Business Object Libraries and updated or new Business519
Process and information models are also methods which shall be supported by an520
ebXML application. This is the phase where Trading Partners discover the semantic521
meaning of business information being requested by other Trading Partners.522

523
Figure 7: Functional Service View: Discovery and Deployment Phase524

ebXML
Business
Service
Interface
(application)

ebXML
Registry

Business
Process and
Information
Models

Request

Receive Update

RequestSomeOnesTradingPartnerProfile()
ReceiveSomeOnesTradingPartnerProfile ()
RequestSomeOnesNew/UpdatedBusinessProcessInformationModel()
ReceiveBusinessSomeOnesNew/UpdatedBusinessProcessInformationModel()
SendTradingPartnerAgreement()
ReceiveAcknowledgementForTradingPartnerAgreement()
RequestLexiconUpdate()
ReceiveLexiconUpdate()
RequestBusinessObjectLibraryUpdate()
ReceiveBusinessObjectLibraryUpdate()

TPP
Registry

Query
Retrieve (abstract)

Lexicon
(Core
Component)
Content

Business
Object
Library

ebXML
Service
Interface
(application)

Send

Some examples of possible access service methods

List of
Scenarios

Messaging
Constraints

Security
Constraints

Receive

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 19 of 46
Copyright © ebXML 2000. All Rights Reserved.

15.0 Run Time Phase525
526

The Run Time phase is the least complex (Figure 8). Note that no Registry calls are527
required during the Run Time Phase. There are ebXML message instances being sent528
and received between Trading Partners utilizing the ebXML Messaging Service.529

530
531
532
533
534
535
536
537
538
539
540

541

542
543
544
545
546
547
548

Figure 8: Functional Service View: Run Time Phase549
550

16.0 Trading Partner Information551
552

To facilitate the process of conducting eBusiness, SMEs and other organizations need a553
mechanism to publish information about the Business Processes they support along with554
specific technology implementation details about their capabilities for exchanging555
business information. This is accomplished by creating a Trading Partner Profile (TPP).556
The TPP is a document which allows a Trading Partner to express their minimum557
Business Process and Business Service Interface requirements in a manner where they558
can be universally understood by other ebXML compliant Trading Partners. The TPP559
describes the specific technology capabilities that a Trading Partner supports and the560
Service Interface requirements that need to be met in order to exchange business561
documents with that Trading Partner. The TPP of the a priori interchange information is562
stored in an ebXML Registry which provides a discovery mechanism for Trading563
Partners to find one another.564

565

ebXML
Business
Service
Interface
(application)

SendBusinessMessage()
ReceiveBusinessMessageAcknowledgement()
ReceiveBusinessMessage()
SendBusinessMessageAcknowledgement()
GenerateErrorMessage()
ReceiveErrorMessage()

Send

Retrieve

ebXML
Business
Service
Interface
(application)

Some examples of possible transport methods

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 20 of 46
Copyright © ebXML 2000. All Rights Reserved.

16.1 Support for Trading Partner Agreements566
To facilitate the process of conducting electronic business, organizations need a567
mechanism to publish information about the Business Processes they support, along with568
specific technology details about their capabilities for sending and receiving business569
documents.570
ebXML defines the ability for this to be realized under the broad notion of a Trading571
Partner Agreement.572

573
A Trading Partner Agreement (TPA) is a document that describes: (1) the Messaging574
Service (technology), and (2) the Process (application) requirements that are agreed upon575
by two or more parties. A TPA is negotiated after the discovery process and is essentially576
a snapshot of the specific technology and process related information that two or more577
parties agree to use to exchange business information. If any of the parameters of an578
accepted TPA changes after the agreement has been executed, a new TPA shall be579
negotiated between all parties.580

581
Conceptually, ebXML supports a three level view of narrowing subsets to arrive at582
agreements for transacting business. The outer-most scope relates to all of the583
possibilities that a Partner could do, with a subset of that of what a Partner is capable of584
doing, with a subset of what a Partner “will” do.585

Possibilities

Capabilities

Agreements

586
Figure 9: Three level view of TPA’s587

588
ebXML acknowledges the global scope of a Trading Partner Agreements to include such589
aspects as legal agreement elements and legal ramifications and other trade issues that590
are, from an over-arching business perspective, essential elements of “Agreements591
between Traders.” ebXML limits its scope within this broad spectrum to addressing the592
needs of (electronic) Business Collaborations. This provides extensibility for ebXML to593
expand to encompass other aspects of Trading Partner Agreements on its own or by594
embracing other work. Further, the entities engaged in Business Collaborations within595
ebXML are referred to as Partners. Business Collaborations are the first order of support596
that can be claimed by ebXML Partners. This “claiming of support” for specific Business597
Collaborations is facilitated by a distinct profile defined specifically for publishing, or598
advertising in a directory service, like the ebXML Registry/Repository or other available599
similar services.600

601

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 21 of 46
Copyright © ebXML 2000. All Rights Reserved.

Trading Partner Agreements

Business
Collaborations

Other

In scope for ebXML

602
603

Figure 10: Scope for TPA’s604
605

17.0 Business Process and Information Modeling606
607

17.1 Overview608
The purpose of the Business Process and Information Modeling specification is to enable609
the modeling of the business relationships between partners in a shared Business Process,610
and their interaction and information exchange as they each perform roles within that611
process. In general terms, a Business Process is defined as a sequenced set of business612
transactions. A business transaction is a clearly defined exchange of business messages613
resulting in a new legal or commercial state between the two partners. The business614
semantics of each commercial transaction are defined in terms of the Business Objects615
affected, and the commitment(s) formed or agreed. The technical semantics of each616
commercial transaction are defined in terms of a ‘handshake’ protocol of required617
message (signal) exchanges.618

619
17.2 Position within overall ebXML Architecture620
The Business Process and Information Modeling specification has important semantic621
relationships to the Core Component specification and to the Trading Partner622
Specification. In addition, the business models produced are registered within an ebXML623
Registry/Repository.624

625

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 22 of 46
Copyright © ebXML 2000. All Rights Reserved.

626
17.3 Business Process and Information Modeling Functionality627
The Business Process and Information Modeling specification supports UML Business628
Process and information modeling, along with conversion of UML models into XML, and629
direct access to the XML expression of the model. Within the UML modeling system the630
ebXML specification provides a UML profile, a set of recommended diagrams, and a631
selected methodology to follow in constructing those diagrams. For the conversion of632
UML to XML the specification provides a set of production rules. For further633
standardization, the specification provides a set of core processes, and a set of patterns634
from which to compose new process definitions.635

636
The ebXML Metamodel specifications constitute a set of XML structures that can be637
populated and stored in an ebXML Registry and Repository System. The XML structures638
may utilize a classification system with UID reference linkages which are compatible639
with the Registry and Repository architecture requirements.640

641

UML Profile
Metamodel

UML Profile
Specification

Production
Rules

XML Schema

UML
Methodology

UML
Patterns

XML
Classification

Scheme

XML Content
Instances

642
643

Figure 11: Relationship of UML to ebXML metamodel content representation.644
645

17.4 The Business Process and Information Metamodel646
The Business Process and Information Metamodel is composed of four layers (see Figure647
12 below). The top layer consists of the Business Operational Map which supports the648

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 23 of 46
Copyright © ebXML 2000. All Rights Reserved.

process of relating different Business Processes to each other into a map as well as the649
categorization of Business Processes by business or process area. The next layer, the650
Business Requirements View, supports definition of the partner type which partakes in a651
step within a Business Process along with the business agreements resulting from or652
governing that step and the economic resource commitment or exchange resulting from653
that step. The Business Transaction View supports the specification of Business654
Transactions in terms of exchanged business documents. The bottom layer, the Business655
Service View, captures the syntax and semantics of business messages and their656
exchange between business services.657

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

Figure 12: Business Process and Information Metamodel Architecture682
683

17.5 Interfaces and Relationship684
The interface from a Business Process and information model to other parts of the685
ebXML architecture, or to other tools and environments outside the scope of the ebXML686
specifications, is an XML document representing the Business Process and information687
model. Specifically, the interface between the Business Process and information model688
and the Trading Partner model is the part of such an XML document that represents the689
business transactional layer of the Business Process metamodel. The expression of the690
sequence of commercial transactions in XML is shared between the Business Process and691
Trading Partner models.692

693

Business Operational Map

Business
Category

Business
Process

Business Requirements View

Partner
Type

Business
Collaboration

Agreement

Economic
Resource

Business Transaction View

Business Service View

Role Business
Transaction

Request
Document

Response
Document

Business
Service

Service
Transaction

Request
Message

Response
Message

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 24 of 46
Copyright © ebXML 2000. All Rights Reserved.

17.6 Relationship to Trading Partner Agreements694
The interface between the Business Process and information model and the Trading695
Partner specification is the sequence of business transactions, the commercial business696
itself, and the message exchange in support of the business transaction. The profile of a697
Trading Partner defines that partner’s functional and technical capability to support one698
or more roles in a Business Process. The agreement between two Trading Partners699
defines the actual conditions under which the two partners will conduct business700
transactions together.701

702
17.7 Relationship to Core Components703
A Business Process can be seen as a series of actions on entities within an enterprise,704
interleaved with a set of communications with parties outside the enterprise. The705
communication between the parties is the shared part of the Business Process. This is the706
focus of ebXML.707

708
The entities within an enterprise are called business entities, and their data structure can709
be represented by Business Objects.710

711
The communication with parties outside the enterprise takes place through an exchange712
of business documents.713

714
Both Business Objects and business documents are composed from Core Components, re-715
useable low-level data structures.716

717
The exact composition of a Business Object or a business document is guided by a set of718
contexts derived from (among other sources) the Business Process.719

720

18.0 Core Component Functionality721
722

A Core Component captures information about a real world (business) concept, and723
relationships between that concept and other business concepts.724

725
A Core Component can be either an individual piece of business information, or a natural726
“go-together” family of business information pieces. It is ‘Core’ because it occurs in727
many different areas of industry/business information interaction.728

729
A Core Component may contain:730

• Another Core Component in combination with one or more individual business731
information pieces.732

• Other Core Components in combination with zero or more individual business733
information pieces.734

735

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 25 of 46
Copyright © ebXML 2000. All Rights Reserved.

A Core Component needs to contain either attribute(s) or be part of another Core736
Component, thus specifying the precise context or combination of contexts in which it is737
used.738

739
Context may be structural, identifying the placement of a Core Component within740
another Core Component. It may be a combination of structural contexts when the Core741
Component is re-used at different layers within another Core Component.742

743
Context will also be defined by the Business Process model, which defines the instances744
in which the Business Object occurs.745

746
747

Context

Context
Core Component

Core
Component

Core
Component

Context
Core Component

Core
Component
Core
Component
Core
Component

Core
Component
Core
Component
Core
Component

Context
Core Component

Core
Component

Core
Component

Context
Core Component

Core
Component
Core
Component
Core
Component

Core
Component
Core
Component
Core
Component

748
749

Figure 13: Core components as contextual items.750
751

The pieces of information, or Core Components, within a generic Core Component may752
be either mandatory, or optional. A Core Component in a specific context or combination753
of contexts may alter the fundamental mandatory/optional cardinality.754

755
Individual Core Components will in general match the “data list” part of Business756
Objects.757

19.0 Business Object Functionality758
759

19.1 Overview760
The term Business Object is used in two distinct ways in ebXML, with different761
meanings for each usage:762

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 26 of 46
Copyright © ebXML 2000. All Rights Reserved.

763
• In a business model, Business Objects describe a business itself, and its business764

context. The Business Objects capture business concepts and expresses an abstract765
view of the business’s “real world” functions.766

767
• In a business software application or service, Business Objects reflects how768

business concepts are represented in software. The abstraction here reflects the769
transformation of business ideas (processes) into a software implementation.770

771
Within the context of ebXML, only Business Objects represented in Business Processes772
and information models are of relevance.773

774
19.2 Business Objects in Business Process and Information Models775
A Business Object describes a thing, concept, process or event in operation, management,776
planning or accounting of a business or other organization. It is a conceptual object that777
has been specified for the purpose of directly describing and representing, and thus778
serving, a business concept or purpose. The focus/subject is the business subject/concept779
being modeled.780

781
A Business Object in this usage is a specification for a kind of object which may exist in782
one or more business domains. The specification of a business object may include783
attributes, relationships, and actions/events that apply to these objects. These business784
object models may exist regardless of the existence of information systems, applications,785
software design or program code. They are independent of information systems because786
business object models directly reflect and abstract “real world” business concepts and787
scenarios. Thus business object models are defined independently of application systems.788

789
The primary concern when creating business object models is capturing common790
business semantics and having a common idea or concept that is usable by different parts791
of a business or by different independent businesses.792

793
19.3 Common Business Objects794
A Common Business Object (CBO) is a business object that is specified in more than one795
Domain. For the purposes of defining CBOs, a domain is defined as an industry sector.796
As with all business objects in general, the most important issue with CBOs is a common797
concept and mutually agreed upon structure.798

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 27 of 46
Copyright © ebXML 2000. All Rights Reserved.

20.0 Registry and Repository Functionality799
800

20.1 Overview801
An ebXML Registry provides a set of distributed services that enable the sharing of802
information between interested parties for the purpose of enabling Business Process803
integration between such parties by utilizing the ebXML specifications. The shared804
information is maintained as objects in an ebXML Repository which is managed by805
ebXML Registry Services. Access to an ebXML Repository is provided by the interfaces806
(APIs) exposed by Registry Services.807

808
Therefore, architecturally the Registry and Repository are tightly coupled Components.809
The Registry provides the access services interfacing, the information model and810
reference system implementation, while a Repository provides the physical backend811
information store. For example, an ebXML Registry may provide a Trading Partner812
Profile from the Repository in response to a query; or an ebXML Repository may contain813
reference DTD’s or Schemas that are retrieved by the Registry as a result of searching a814
metadata classification of the DTD’s or Schemas. Figure 14 provides an overview of this815
configuration.816

817

Repository

Registry
SECURITY LAYER

POINTS AT

API

Business
Application
Interface

Human
Interface

PUBLISH TO

818
Figure 14: Registry / Repository interaction overview.819

820
821
822

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 28 of 46
Copyright © ebXML 2000. All Rights Reserved.

20.2 Information Model & Interface Constrains823
In order to accurately and consistently store and retrieve information a registry requires a824
formal architecture that includes an information model. Traditional relational SQL825
databases have a very simple information model that includes tables, indexes and column826
definitions for content to be stored into them. However, when using XML structures to827
store and manage content we potentially have an infinite variety of ways to present828
information to a registry. We therefore to ensure there are particular aspects of those829
structures that allow us to manage them within the registry, and that also these aspects are830
linked to the access methods that will be used to interface to the registry. Providing the831
mechanisms to support the business functional capabilities expressed in these XML832
structures and content and ensuring it functions correctly is the role of the information833
model.834

835
The information model for the ebXML Registry is an extension of the existing OASIS836
Registry information model, specifically tailored for the storage and retrieval of business837
information content, whereas the OASIS model is a superset designed for handling838
extended and generic information content. As such the ebXML Registry information839
model is designed to make it easier to implement and to provide explicit ebXML840
metamodel compliant instance structures to facilitate accessing and storing ebXML841
content.842

843

Content

XML Content Referencing
Access Index

Registry

Interface
Information
Model

Associated References

Registration of
Domain

Classification & Ownership

ebXML conformant XML object
Collections & Versioning

Transport
Layer

Request Response

Detail Constraints

Industry Domain
Business Process

Details Content
Action Status

Remote ebXML
Registry

Registry Service Interface
Other Registry

Service Interface(s):
UDDI, CORBA

Compatibility Wrappers

Registry
Services

Repository

Access
Syntax
in XML

844
845

Figure 15: Registry / Repository Architecture.846

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 29 of 46
Copyright © ebXML 2000. All Rights Reserved.

847
A Registry maintains the metadata for a registered object, and a Repository maintains the848
file containing a registered object. The Registry and Repository are tied together in that849
the metadata for a registered object in the Registry includes a globally unique locator for850
a file, in some Repository, that contains the registered object.851

852
A Registry Item contains information that identifies, names, and describes each registered853
object, gives its administrative and access status, defines its persistence and mutability,854
classifies it according to pre-defined classification categories, declares its file855
representation type, and identifies the submitting and responsible organizations.856

857
Related to this the existing ISO11179/3 work on business semantic content registry858
implementations is used to provide a model for the ebXML Registry implementation.859
Again the approach is to take a tailored subset of the ISO11179 functionality that is860
applicable to the ebXML Registry requirements, and to make implementing ebXML861
Registry systems simpler for vendors to implement and librarians to manage.862

863
Combined together these reference specifications are then exposed via the Registry864
Interface system itself. The Registry interface is the architectural component that865
provides both a machine-to-registry automated access system, and also a human-to-866
registry interactive visual access system. The Registry interface system is designed to be867
a primitive XML-based interface that is transport layer neutral. However, the reference868
implementation of the Registry interface is built using the ebXML Transport layer869
facilities only. Similarly the query syntax used by the Registry access mechanisms is870
designed to be a neutral syntax based solely in XML syntax, and independent of the871
physical product implementation of the backend Repository system.872

873
20.3 Formal Functional Overview874
A Registry/Repository system may have many deployment models that yield the same875
functionality. The initial specification and implementation will define the minimal876
functional requirements that a Registry/Repository System shall provide to facilitate its877
role in the ebXML infrastructure. It is expected that future specifications and878
implementations will evolve into more complex systems.879

880
All interaction between a Registry clients and the Registry are treated as business881
transactions between parties. Thus the processes supported by the Registry are described882
in terms of:883

884
• A special TPA between the Registry and Registry clients.885
• A set of business functional processes involving the Registry and Registry clients.886
• A set of business messages exchanged between a Registry client and the Registry887

as part of a specific business functional process.888
• A set of primitive interface mechanisms to support the business messages and889

associated query and response mechanisms.890
• A special TPA for between one Registry interoperating with another Registry.891

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 30 of 46
Copyright © ebXML 2000. All Rights Reserved.

• A set of functional processes involving Registry to Registry interactions.892
• A set of error responses and conditions with remedial actions.893

894
The Registry interactions supported here are intended to be a limited subset of the full895
requirements as defined by the ebXML Requirements documents. The architecture896
described here is based on supporting the conceptual ebXML architecture and business897
interactions as defined in Section 8 of this specification. Some of the extended898
functionality deferred to a subsequent phase includes transformation services, workflow899
services, quality assurance services and extended security mechanisms.900

901
20.4 Sample Objects Residing in a Repository and Managed by a Registry902

• Schema: These objects are documents that represent the schema (XML DTD, etc.)903
for XML documents.904

905
• Process: These are objects that represent a Business Process. These could include906

a process description in an XML form such as XMI or could be actual software907
Components (e.g. Java Classes) that could represent an implementation of a908
Business Process.909

910
• Trading Partner Profile: These are XML documents that provide information911

about a party interested in participating in B2B interaction.912
913

• Reference Content: there are two types of reference content, those that describe914
the reference information model and classification systems within the registry915
itself (schemas), and those that categorize industry business information (XML916
document instances). The later are often standard information sets that can be917
expected to reside in and be supported by the registry information model, such as918
ISO reference datatypes, ISO reference code tables and similar open public919
definitions.920

921
• Any object with metadata: Elements provide standard metadata about the object922

being managed in the Repository. Note that the object metadata is separate from923
the object itself, thus allowing the ebXML Registry to catalog arbitrary objects.924

925
20.5 Registry Management of Repository Objects and Metadata926
Registry messages shall exist to create, modify and delete Repository objects and their927
metadata. Appropriate security protocols shall be deployed to offer authentication and928
protection for the Repository when accessed by the Registry.929

930
Additionally all content stored into a Registry/Repository is implicitly public and open931
information. Therefore parties submitting information to an ebXML Registry should932
ensure that they have appropriate intellectual rights and permissions to submit this933
information. An ebXML Registry will provide administrative access rights to ensure only934
the submitting organization has formal access to change the content, however all other935
retrieval rights will be open. For this reason, TPAs, which are necessarily proprietary to936

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 31 of 46
Copyright © ebXML 2000. All Rights Reserved.

Trading Partners will not be stored within an ebXML Registry, only the public TPP937
details will be stored within an ebXML Registry.938

939
20.6 Querying Registries and Returning Repository Objects and Metadata940
A Registry query mechanism shall be employed to query for Repository objects and their941
metadata by either an Application automated interface or a Human software GUI942
interface.943

944
Repository objects and their metadata shall be made available by ebXML messages sent945
to the Registry (typically an Application requestor service).946

947
Repository objects and their metadata can also be addressable where applicable as an948
XML based URI reference using only HTTP for simple direct access.949

Each Repository Object is identified by a Unique Identifier key (see Section 12 for an950
introduction on UID key mechanisms). A query on a Unique Identifier (UID) returns one951
and only one Repository object.952

953
Metadata queries perform an object search based on the metadata defined for (but954
maintained outside) a managed object.955

956
Browse and drill down queries are expected to be the primary use case for querying the957
Registry by Web based human interactions. In this scenario, a user browses the repository958
content using a Web browser via a HTTP protocol. The user may initially browse and959
traverse the content based on the built-in classification schemes.960

961
20.7 Registry to Registry Interfacing Model962
Since ebXML Registries are distributed each Registry may potentially interact with and963
cross-reference to another ebXML Registry. The following diagram provides an example964
of the architectural Components that facilitate these mechanisms.965

966
Figure 16: Registry to Registry Service Components.967

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 32 of 46
Copyright © ebXML 2000. All Rights Reserved.

968
Referencing Figure 16 above, the following apply:969

970
A RegistryName to RegistryObject association is called a RegistryBinding. A971
RegistryBinding is always defined relative to a RegistryContext. A RegistryContext is an972
object that contains a set of RegistryBindings in which each RegistryName is unique.973
Different RegistryNames can be bound to a RegisteredObject in the same or different974
RegistryContexts at the same time.975

976
A RegistryObject specialization (a RegistryContext or a RepositoryEntryMetaData),977
which is bound into a RegistryContext is unaware of the fact that it has been associated to978
a RegistryName via a RegistryBinding, and that the RegistryBinding may be bound into a979
RegistryContext (not navigable).980

981
A RegistryName is used to identify the binding within the RegistryContext for which it982
may be bound. A RegistryNameSequence is an ordered set of RegistryNames that can be983
used to resolve a RegisteredObject from a given target RegistryContext.984
RegistryContextService is RegistryContext boundary interface and is an EMarketService.985
For the extent of the model scope of this document, a URL is inherited and is used to986
facilitate distribution of RegistryContexts through URL addressing.987

988
A RegistryBindingDescriptor describes a RegistryBinding by identifying the type of989
binding and the RegistryName. RegistryBindingDescriptors are returned on list messages990
on RegistryContexts.991

992
The architecture of the ebXML metadata classification system within the ebXML993
Registry itself will be extended (see Figure 14 above). These extensions will support994
references to domains that are not directly managed by that Registry, and its associated995
Repository store.996

997

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 33 of 46
Copyright © ebXML 2000. All Rights Reserved.

20.8 Registry/Repository Business Scenario Example998
In addition to the use of the ebXML Registry as a means to facilitate and enable the core999
architecture of ebXML compliant information exchanges, a Registry/Repository may also1000
be used to facilitate business functional implementations. An example would be a1001
network of Trading Partners similar to a telephone directory Yellow Pages system where1002
businesses can be categorized by services that they provide.1003

1004

Party 2

repository

Remote
Registry
Server

Discovery and
Initial Business

Exchange

1

4
3

2

5

Party 1

6

repository
8

7

Party 2

repository

Remote
Registry
Server

Discovery and
Initial Business

Exchange

1

4
3

2

5

Party 1

6

repository
8

7

1005
Figure 17: Trading Partner Discovery.1006

1007
1008

21.0 Messaging Service Functionality1009
1010

21.1 Overview1011
The ebXML Messaging Service provides for the secure, reliable exchange of ebXML1012
Messages between Parties over various transport protocols (SMTP, HTTP/S, FTP, etc.).1013
The Messaging Service specification defines the MIME packaging and ebXML message1014
Header information required by the ebXML Messaging Service to enable interoperable1015
exchange of ebXML compliant messages.1016

1017
The ebXML Messaging Service supports all messaging between distributed Components1018
of the ebXML system including Registry/Repository and ebXML compliant applications.1019

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 34 of 46
Copyright © ebXML 2000. All Rights Reserved.

It utilizes and enforces the "rules of engagement" defined in a Trading Partner1020
Agreement (TPA). The ebXML Messaging Service supports simplex (one-way) and1021
request/response (either synchronous or asynchronous) message exchange and can be1022
mapped onto any transport service capable of transporting MIME (further discussed in1023
section).1024

1025
The ebXML Messaging Service is conceptually broken down into three parts: (1) an1026
abstract service interface, (2) functions provided by the Messaging Service Layer, and (3)1027
the mapping to underlying transport service(s). The relation of the abstract interface,1028
Messaging Service Layer, and transport service(s) are shown in Figure 18 below:1029

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042

Figure 18: ebXML Messaging Service1043
1044

21.2 Abstract ebXML Messaging Service Interface1045
The ebXML Message Service provides ebXML with an abstract interface whose1046
functions, at an abstract level, include:1047

1048
• Send – send an ebXML Message – values for the parameters are derived from the1049

ebXML Message Headers.1050
• Receive – indicates willingness to receive an ebXML Message.1051
• Notify – provides notification of expected and unexpected events.1052
• Inquire – provides a method of querying the status of the particular ebXML1053

Message interchange.1054
1055

21.3 ebXML Messaging Service Layer Functions1056
The ebXML Messaging Service Layer provides all of the services and functionality1057
needed to manage the entire lifecycle of ebXML Messages. Functions provided by this1058
layer include:1059

1060
• The ability to construct and validate proper ebXML Messages.1061
• Enforcing the "rules of engagement" as defined by two parties in a Trading1062

Partner Agreement (including security and Business Process functions related to1063
message delivery). The Trading Partner Agreement defines the acceptable1064
behavior by which each Party agrees to abide. The definition of these ground1065

Abstract ebXML Messaging Service Interface

EbXML Messaging Service Layer maps the
abstract interface to the underlying transport

service

Transport Service(s)

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 35 of 46
Copyright © ebXML 2000. All Rights Reserved.

rules can take many forms including formal Trading Partner Agreements,1066
interactive agreements established at the time a business transaction occurs (e.g.1067
buying a book online), or other forms of agreement. There are Messaging Service1068
Layer functions that enforce these ground rules. Any violation of the ground rules1069
result in an error condition, which is reported using the appropriate means.1070

• Support for the following reliability options:1071
o "Best Effort" delivery1072
o "Once and only once" delivery1073
o Synchronous or Asynchronous messaging1074
o Request/Response processing1075
o Fire 'n forget processing1076
o Allow for "multiparty" message delivery1077

• Perform all security related functions including:1078
o Identification1079
o Authentication (verification of identity)1080
o Authorization (access controls)1081
o Privacy (encryption)1082
o Integrity (message signing)1083
o Non-repudiation1084
o Logging1085

• Interface with internal systems including:1086
o Routing of received messages to internal systems1087
o Error notification1088

• Administrative services including:1089
o Notification, both system-to-system and system-to-human (via pagers or1090

e-mail)1091
o Track and report the status of message exchanges for auditing and1092

diagnostic purposes1093
o Logging of service related errors1094
o Access to Partner Agreement information1095
o Status inquiry1096

• Transport bindings:1097
o Functions to enable the delivery of messages over various transport1098

services (e.g. SMTP, FTP, HTTP, etc.)1099
1100

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 36 of 46
Copyright © ebXML 2000. All Rights Reserved.

The following diagram depicts a logical arrangement of the functional modules that exist1101
within the ebXML Messaging Service architecture. These modules are arranged in a1102
manner to indicate their inter-relationships and dependencies. This architecture diagram1103
illustrates the flexibility of the ebXML Messaging Service, reflecting the broad spectrum1104
of services and functionality that may be implemented in an ebXML system.1105

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

Figure 19: The Messaging Service Architecture1145

HTTP SMTP IIOP FTP …

ebXML Applications

Messaging Service Interface

Messaging Service

Authentication, authorization and
repudiation services

Header Processing

Encryption, Digital Signature

Message Packaging Module

Delivery Module
Send/Receive

Transport Mapping and Binding

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 37 of 46
Copyright © ebXML 2000. All Rights Reserved.

21.4 ebXML Message Structure and Packaging1146
Figure 20 below illustrates the logical structure of an ebXML compliant message.1147

1148
Figure 20: ebXML Message Structure1149

1150
An ebXML Message consists of an optional transport protocol specific outer1151
Communication Protocol Envelope and a protocol independent ebXML Message1152
Envelope. The ebXML Message Envelope is packaged using the MIME multipart/related1153
content type. MIME is used as a packaging solution because of the diverse nature of1154
information exchanged between Partners in eBusiness environments. For example, a1155
complex B2B business transaction between two or more Trading Partners might require1156
a payload that contains an array of business documents (XML or other document1157
formats), binary images, or other related business objects.1158

1159
The ebXML Message Envelope is used to encapsulate the Components of an ebXML1160
compliant message. This structure effectively separates ebXML header information from1161
the payload content of the message. The separation of Header and Payload containers1162
promotes system efficiency, as the ebXML Messaging Service only needs to access1163
Header information to process the message. This provides a flexible mechanism for1164
transparently passing diverse Payloads to appropriate business services without having to1165

 Transport Envelope (SMTP, HTTP, etc.)

 ebXML Message Envelope (MIME multipart/related)

 ebXML Header Envelope

 ebXML Header Document

ebXML Payload Envelope

Payload Document(s) ebXML
Payload

Container

Manifest

Header

ebXML
Header

Container

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 38 of 46
Copyright © ebXML 2000. All Rights Reserved.

process them within the Messaging Service framework. It also allows encrypted and/or1166
signed Payloads to be exchanged and forwarded with no processing overhead.1167

1168
The ebXML Payload Container is an optional part of an ebXML Message. If a Payload is1169
present in and ebXML Message, the ebXML Payload Envelope serves as the container for1170
the actual content (Payload) of the ebXML Message. The ebXML Payload Envelope1171
consists of a MIME header portion and a content portion (the Payload itself). The1172
ebXML Messaging Service does not limit in any way the structure or content of1173
payloads.1174

1175

22.0 Conformance1176
1177

22.1 Overview1178
The objectives of this section are to:1179

a) Ensure a common understanding of conformance and what is required to claim1180
conformance;1181

1182
b) Promote interoperability and open interchange of Business Processes and1183

messages;1184
1185

c) Promote uniformity in the development of conformance tests.1186
1187

ebXML conformance is defined in terms of conformance to ebXML, conformance to1188
each of the component specifications for ebXML, and conformance to this (Technical1189
Architecture) specification.1190

1191
All ebXML specifications shall contain a conformance clause. The conformance clause1192
specifies explicitly all the requirements that have to be satisfied to claim conformance to1193
that specification. These requirements may be applied and grouped at varying levels1194
within each specification.1195

1196
22.2 Conformance Requirements1197
Types of conformance requirements can be classified as:1198

1199
a) Mandatory requirements: these are to be observed in all cases;1200

1201
b) Conditional requirements: these are to be observed if certain conditions set out in1202

the specification apply;1203
1204

c) Optional requirements: these can be selected to suit the implementation, provided1205
that any requirement applicable to the option is observed.1206

1207
Furthermore, conformance requirements in a specification can be stated:1208

1209

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 39 of 46
Copyright © ebXML 2000. All Rights Reserved.

• Positively: they state what shall be done;1210
• Negatively (prohibitions): they state what shall not be done.1211

1212
22.3 General Framework of Conformance Testing1213
The objective of conformance testing is to establish a set of criteria that enable vendors to1214
implement compatible and interoperable systems built on the ebXML foundations.1215
Since ebXML consists of many facets and Components, ebXML conformance shall take1216
into account different layers and levels. These levels will be hierarchical and recursive, so1217
conformance to a higher level will include conformance to a lower level.1218

1219
Implementations and applications shall be tested to verify their conformance to ebXML1220
Specifications.1221

1222
Publicly available test suites from vendor neutral organizations such as OASIS and NIST1223
should be used to verify the conformance of ebXML implementations, applications, and1224
Components claiming conformance to ebXML. This will ensure that they are compliant1225
with the base ebXML criteria. Live benchmark implementations may be available to1226
allow vendors to test their products for interface compatibility and conformance.1227

1228
Additional items of note include:1229

1230
a) Extended implementations may include support for more than just the base1231

ebXML protocols, including other popular or emerging formats, such as legacy1232
EDI or messaging services such as Java Messaging Service (JMS)1233
implementations.1234

1235
b) Each ebXML working group will be responsible to coordinate with and determine1236

what it means to conform to their specification and what should be included in the1237
appropriate Conformance test suite(s).1238

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 40 of 46
Copyright © ebXML 2000. All Rights Reserved.

Appendix A: Example ebXML Business Scenarios1239
1240

Definition1241
This set of Scenarios defines how ebXML compliant software could be used to1242
implement popular, well-known eBusiness models.1243
Scope1244
These Scenarios are oriented to properly position ebXML specifications as a convenient1245
mean for Companies to properly run eBusiness over the Internet using open standards.1246
They bridge the specifications to real life uses.1247
Audience1248
Companies planning to use ebXML compliant software will benefit from these Scenarios1249
because they will show how these companies may be able to implement popular business1250
scenarios onto the ebXML specifications.1251
List1252

e) Two Partners set-up an agreement and run the associated electronic exchange.1253
f) Three or more partners set-up a Business Process implementing a supply-chain1254

and run the associated exchanges1255
g) A Company sets up a Portal which defines a Business Process involving the use1256

of external business services.1257
h) Three or more parties engage in multi-Party Business Process and run the1258

associated exchanges.1259
1260

Scenario 1: Two Partners set-up an agreement and run the associated1261
exchange1262
In this scenario:1263
• Each partner defines its own Party Profile.1264

Each Party Profile references:1265
• One or more existing Business Process found in the ebXML Repository1266
• One of more Message Definitions. Each Message definition is built from reusable1267

Components (Core Components) found in the ebXML Repository1268
1269

Each Party Profile defines:1270
• The Commercial Transactions that the Party is able to engage into1271
• The Technical protocol (like HTPP, SMTP etc) and the technical properties (such as1272

special encryption, validation, authentication) that the Party supports in the1273
engagement1274

• The parties acknowledge each other’s profile and create a Partner Agreement.1275
The Partner Agreement references :1276

• The relevant Party Profiles1277
• The Legal terms and conditions related to the exchange1278
• The parties implement the respective part of the Profile.1279

This is done:1280
• Either by creating/configuring a Business Service Interface.1281
• Or properly upgrading the legacy software running at their side1282

In both cases, this step is about :1283

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 41 of 46
Copyright © ebXML 2000. All Rights Reserved.

• Plugging the Legacy into the ebXML technical infrastructure as specified by the1284
TR&P1285

• Granting that the software is able to properly engage the stated conversations1286
• Granting that the exchanges semantically conform to the agreed upon Message1287

Definitions1288
• Granting that the exchanges technically conform with the underlying ebXML TR&P1289
• The parties start exchanging messages and performing the agreed upon commercial1290

transactions.1291
1292

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 42 of 46
Copyright © ebXML 2000. All Rights Reserved.

Scenario 2: Three or more partners set-up a Business Process1293
implementing a supply-chain and run the associated exchanges1294
The simple case of a supply-chain involving two parties can be reconstructed from the1295
Scenario 1.1296
Here we are dealing with situations where more parties are involved. We consider a1297
Supply Chain of the following type :1298

1299
1300
1301
1302
1303
1304

What fundamentally differs from Scenario 1 is that Party 2 is engaged at the same time1305
with two different parties. The assumption is that the “state” of the entire Business1306
Process is managed by each Party, i.e. that each Party is fully responsible of the1307
Commercial Transaction involving it (Party 3 only knows about Party 2, Party 2 knows1308
about Party 3 and Party 1, Party 1 knows about Party 2).1309

1310
In this scenario:1311
• Each partner defines its own Party Profile.1312

Each Party Profile references:1313
• One or more existing Business Process found in the ebXML Repository1314
• One of more Message Definitions. Each Message definition is built from reusable1315

Components (Core Components) found in the ebXML Repository1316
Each Party Profile defines:1317

• The Commercial Transactions that the Party is able to engage into1318
Party 2 must be able to support at least 2 Commercial Transactions.1319

• The Technical protocol (like HTPP, SMTP etc) and the technical properties (such as1320
special encryption, validation, authentication) that the Party supports in the1321
engagement1322
the technical requirements for the exchanges with Party 1 and Party 3 may be1323
different. In such case, Party 2 must be able to support different protocols and/or1324
properties.1325

• The parties acknowledge each other profile and create the relevant Partner1326
Agreements (at least 2 in this Scenario).1327
Each Partner Agreement references:1328

• The relevant Party Profiles1329
• The Legal terms and conditions related to the exchange1330

Party 2 is engaged in 2 Party Agreements.1331
• The parties implement the respective part of the Profile.1332

This is done:1333
• Either by creating/configuring a Business Service Interface.1334
• Or properly upgrading the legacy software running at their side1335

In both cases, this step is about:1336

Party 1 Party 2 Party 3

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 43 of 46
Copyright © ebXML 2000. All Rights Reserved.

• Plugging the Legacy into the ebXML technical infrastructure as specified by the1337
TR&P1338

• Granting that the software is able to properly engage the stated conversations1339
• Granting that the exchanges semantically conform to the agreed upon Message1340

Definitions1341
• Granting that the exchanges technically conform with the underlying ebXML TR&P1342
• Party 2 may need to implement a complex Business Service Interface in order to be1343

able to engage with different partners.1344
• The parties start exchanging messages and performing the agreed upon commercial1345

transactions.1346
• Party 3 places an order at Party 21347
• Party 2 (eventually) places an order with Party 11348
• Party 1 fulfills the order1349
• Party 2 fulfill the order1350

1351
Scenario 3 : A Company sets up a Portal which defines a Business Process1352
involving the use of external business services1353
This is the Scenario describing a Service Provider. A “client” asks the Service Provider1354
for a Service. The Service Provider fulfills the request by properly managing the1355
exchanges with other partners, which provide information to build the final answer.1356
In the simplest case, this Scenario could be modeled as follows:1357

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

This is an evolution of Scenario 2. The Description of this scenario is omitted.1375
1376

Client

Service
Provider

Partner 1 Partner 2 Partner 3

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 44 of 46
Copyright © ebXML 2000. All Rights Reserved.

Scenario 4: Three or more parties engage in multi-party Business Process1377
and run the associated exchanges1378
This Scenario is about 3 or more Parties having complex relationships. An example of1379
this is the use of an external delivery service for delivering goods.1380

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

In this Scenario, each Party is involved with more than one other Party but the1394
relationship is not linear. The good which is ordered by the Client with the Service1395
Provider is delivered by a 3rd Party.1396

1397
In this scenario:1398
• Each partner defines its own Party Profile.1399

Each Party Profile references:1400
• One or more existing Business Process found in the ebXML Repository1401
• One of more Message Definitions. Each Message definition is built from reusable1402

Components (Core Components) found in the ebXML Repository1403
Each Party Profile defines:1404

• The Commercial Transactions that the Party is able to engage into1405
In this case, each Party must be able to support at least 2 Commercial Transactions.1406

• The Technical protocol (like HTPP, SMTP etc) and the technical properties (such as1407
special encryption, validation, authentication) that the Party supports in the1408
engagement.1409
In case the technical infrastructure underlying the different exchanges differs, each1410
Party must be able to support different protocols and/or properties. (an example is that1411
the order is done through a Web Site and the delivery is under the form of an email).1412

• The parties acknowledge each other profile and create a Partner Agreement.1413
Each Party, in this Scenario, must be able to negotiate at least 2 Agreements.1414
The Partner Agreement references :1415

• The relevant Party Profiles1416
• The Legal terms and conditions related to the exchange1417

Each Party is engaged in 2 Party Agreements.1418
• The parties implement the respective part of the Profile.1419

This is done:1420
• Either by creating/configuring a Business Service Interface.1421

Client Service
Provider

Mail
Delivery
Company

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 45 of 46
Copyright © ebXML 2000. All Rights Reserved.

• Or properly upgrading the legacy software running at their side1422
In both cases, this step is about:1423

• Plugging the Legacy into the ebXML technical infrastructure as specified by the1424
TR&P1425

• Granting that the software is able to properly engage the stated conversations1426
• Granting that the exchanges semantically conform to the agreed upon Message1427

Definitions1428
• Granting that the exchanges technically conform with the underlying ebXML TR&P1429
• All Parties may need to implement complex Business Service Interfaces to1430

accommodate the differences in the Party Agreements with different Parties.1431
• The parties start exchanging messages and performing the agreed upon commercial1432

transactions.1433
• The Client places an Order at the Service Provider1434
• The Service Provider Acknowledges the Order with The Client1435
• The Service Provider informs the Mail Delivery Service about a good to be delivered1436

at the Client1437
• The Mail Delivery Service delivers the good at the Client1438
• The Clients notifies the Service Provider that the good is received.1439

ebXML Technical Architecture Team October 2000

Technical Architecture Specification Page 46 of 46
Copyright © ebXML 2000. All Rights Reserved.

Disclaimer1440
The views and specification expressed in this document are those of the authors and are1441
not necessarily those of their employers. The authors and their employers specifically1442
disclaim responsibility for any problems arising from correct or incorrect implementation1443
or use of this design.1444

Copyright Statement1445
Copyright © ebXML 2000. All Rights Reserved.1446

1447
 This document and translations of it may be copied and furnished to others, and1448
derivative works that comment on or otherwise explain it or assist in its implementation1449
may be prepared, copied, published and distributed, in whole or in part, without1450
restriction of any kind, provided that the above copyright notice and this paragraph are1451
included on all such copies and derivative works. However, this document itself may not1452
be modified in any way, such as by removing the copyright notice or references to the1453
Internet Society or other Internet organizations, except as needed for the purpose of1454
developing Internet standards in which case the procedures for copyrights defined in the1455
Internet Standards process must be followed, or as required to translate it into languages1456
other than English.1457

1458
 The limited permissions granted above are perpetual and will not be revoked by ebXML1459
or its successors or assigns.1460

1461
 This document and the information contained herein is provided on an1462
 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR1463
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE1464
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR1465
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A1466
PARTICULAR PURPOSE.1467

	ebXML Technical Architecture Specification
	ebXML Technical Architecture Team October 17, 2000
	1.0 Status of this Document
	2.0 Scope
	3.0 Normative References
	4.0 ebXML Technical Architecture Participants
	5.0 Table of Contents
	6.0 Introduction
	7.0 ebXML Abstract Overview
	8.0 ebXML Conceptual Overview
	9.0 Relating the ebXML Architecture to Existing Standards
	10.0 ebXML Architecture
	11.0 ebXML Business Operational View
	12.0 ebXML Functional Service View
	13.0 Implementation Phase
	14.0 Discovery and Deployment Phase
	15.0 Run Time Phase
	16.0 Trading Partner Information
	16.1 Support for Trading Partner Agreements

	17.0 Business Process and Information Modeling
	17.1 Overview
	17.2 Position within overall ebXML Architecture
	17.3 Business Process and Information Modeling Functionality
	17.4 The Business Process and Information Metamodel
	17.5 Interfaces and Relationship
	17.6 Relationship to Trading Partner Agreements
	17.7 Relationship to Core Components

	18.0 Core Component Functionality
	19.0 Business Object Functionality
	19.1 Overview
	19.2 Business Objects in Business Process and Information Models
	19.3 Common Business Objects

	20.0 Registry and Repository Functionality
	20.1 Overview
	20.2 Information Model & Interface Constrains
	20.3 Formal Functional Overview
	20.4 Sample Objects Residing in a Repository and Managed by a Registry
	20.5 Registry Management of Repository Objects and Metadata
	20.6 Querying Registries and Returning Repository Objects and Metadata
	20.7 Registry to Registry Interfacing Model
	20.8 Registry/Repository Business Scenario Example

	21.0 Messaging Service Functionality
	21.1 Overview
	21.2 Abstract ebXML Messaging Service Interface
	21.3 ebXML Messaging Service Layer Functions
	21.4 ebXML Message Structure and Packaging

	22.0 Conformance
	22.1 Overview
	22.2 Conformance Requirements
	22.3 General Framework of Conformance Testing

	Appendix A: Example ebXML Business Scenarios
	Scenario 1: Two Partners set-up an agreement and run the associated exchange
	Scenario 2: Three or more partners set-up a Business Process implementing a supply- chain and run the associated exchanges
	Scenario 3 : A Company sets up a Portal which defines a Business Process involving the use of external business services
	Scenario 4: Three or more parties engage in multi-party Business Process and run the associated exchanges

	Disclaimer
	Copyright Statement

	
	OASIS Title Page

