
From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 1 August 26, 2002

Web Services for Remote Portals (WSRP)
Note 21 January 2002

This version:
http://www.ibm.com/developerworks/library/ws-wsrp (available in PDF)

Authors:

Angel Luis Diaz, IBM <aldiaz@de.ibm.com>
Peter Fischer, IBM <peter.fischer@de.ibm.com>
Carsten Leue, IBM <cleue@de.ibm.com>
Thomas Schaeck, IBM <schaeck@de.ibm.com>

Editor:

Thomas Schaeck, IBM <schaeck@de.ibm.com>

Copyright© 2002 International Business Machines Corporation

Abstract
Web Services for Remote Portals (WSRP) are visual, user-facing web services
centric components that plug-n-play with portals or other intermediary web
applications that aggregate content or applications from different sources. They
are designed to enable businesses to provide content or applications in a form
that does not require any manual content- or application-specific adaptation by
consuming intermediary applications. As Web Services for Remote Portals
include presentation, service providers determine how their content and
applications are visualized for end-users and to which degree adaptation,
transcoding, translation etc may be allowed.

WSRP services can be published into public or corporate service directories
(UDDI) where they can easily be found by intermediary applications that want to
display their content. Web application deployment vendors can wrap and adapt
their middleware for use in WSRP-compliant services. Vendors of intermediary
applicatios can enable their products for consuming Web Services for Remote
Portals. Using WSRP, portals can easily integrate content and applications from
many internal and external content providers. The portal administrator simply
picks the desired services from a list and integrates them, no programmers are
required to tie new content and applications into the portal.

To accomplish these goals, the WSRP standard defines a web services interface
description using WSDL and all the semantics and behavior that web services
and consuming applications must comply with in order to be pluggable as well as

Schaeck@DE.IBM.com
Schaeck@DE.IBM.com
CLeue@DE.IBM.com
Peter.Fischer@DE.IBM.com
ALDiaz@DE.IBM.com
http://www.IBM.com/developerworks/library/ws-wsrp
www.IBM.com
http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 2 August 26, 2002

the meta-information that has to be provided when publishing WSRP services
into UDDI directories. The standard allows WSRP services to be implemented in
very different ways, be it as a Java/J2EE based web service, a web service
implemented on Microsoft's .NET platform or a portlet published as a WSRP
Service by a portal. The standard enables use of generic adapter code to plug in
any WSRP service into intermediary applications rather than requiring specific
proxy code.

WSRP services are WSIA component services built on standard technologies
including SOAP, UDDI, and WSDL. WSRP adds several context elements
including user profile, information about the client device, locale and desired
markup language passed to them in SOAP requests. A set of operations and
contracts are defined that enable WSRP plug-n-play.

Status of this Document
This specification is being submitted to the OASIS group for consideration. This
is a proposal only.

http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 3 August 26, 2002

Table of Contents
1. Introduction
2. Portals and WSRP
 2.1. The WSRP Concept applied to Portals
 2.2. How portals can use WSRP Services
3. WSRP and UDDI
 3.1. Publishing Web Services for Remote Portals
 3.2. Finding WSRP Services
 3.3. Binding WSRP Services
4. WSRP Life Cycle
 4.1. Life cycle management operations
 4.1.1. Binding a client
 4.1.2. Creation of portlet instances
 4.1.3. Destruction of Portet Instances, Sessions or Bindings
5. WSRP Usage
 5.1. Data Types
 5.1.1. Request Data
 5.2. Action Processing
 5.3. Getting Markup
6. Markup Restrictions
7. Security
 7.1. Authentication
 7.2. Authorization
 7.3. Confidentiality
8. Contract between Portals and Web Services for Remote Portals
 8.1. Two phase processing of events and rendering
 8.2. URL Rewriting
 8.3. Restrictions on Markup Fragments
 8.3.1. HTML Markup Fragments
 8.3.2. WML Markup Fragments
 8.3.3. VoiceXML Markup Fragments
 8.3.4. CHTML Markup Fragments
 8.4. Caching Considerations
9. Relation of WSRP to WSIA
10. References

http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 4 August 26, 2002

1. Introduction
In this Note, we define pluggable, user-facing visual web services named Web
Services for Remote Portals (WSRP) as a paradigm that complements the
"traditional" form of purely data oriented web services. For the "traditional" web
services, the typical usage pattern is that a client invokes a special operation of
the web service, providing input parameters in a SOAP request and the web
service processes the input parameters and creates a result that is sent back in a
SOAP response. A good example for this kind of web services is a stock quote
web service: A client sends the stock symbols for which it wants quotes to the
stock quote web service in a SOAP request. The stock quote web service gets
the symbols from the request, looks up the current price for each stock symbol
and sends the list of prices back to the client in a SOAP response. It is important
to note that the interfaces of data oriented web services typically depend on the
type of data or function they provide. For example, the stocks services may have
functions like getAvailableStockSymbols and getCurrentStockPrices while the
weather service may have functions such as getAvailableCities and
getWeatherInformation.

Figure 1: Data-oriented web services require specific presentation
components at the intermediary application

Data-oriented web services do not include any user interaction or presentation
functionality; there always need to be intermediary applications that provide a
user interface, using the data-oriented web service under the covers. To do so, it
must know the interface of the web service, or in other words it must be written to
conform to the web serviceâ€™s particular WSDL interface definition. This
means that code is required that is specific to the particular kind of data-oriented
web service - for example code for using a weather web service would be very
different from code using a stock quote service (see Figure 1). The data-oriented
web services approach does not allow providers to add the value of an end-user
interface to their services. Considering the stock quote example, the stock quote
provider might want to provide an additional, visual web service with an end user
interface and presentation that can be plugged into intermediate applications like
portals rather than just providing a simple, data-oriented web service that will
require dedicated programming work for integration on the intermediate
application’s side. Doing so allows intermediary applications to simply aggregate

http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 5 August 26, 2002

the obtained presentation fragments into the larger context of their overall
presentation rather than forcing them to create their own user interfaces and
presentation code around the data provided by a purely data-oriented web
service.

Figure 2: Data-oriented web services require specific presentation
components at the intermediary application

When implementing visual, user-facing web services, there are two options -
using custom sets of possible events and output operations or restricting the
services to a concrete, well-defined set of interfaces and contracts. Web Services
for Interactive Applications (WSIA) specification will provide a framework for
creating visual web services of different kinds.

The WSRP services definition shares basic interfaces with WSIA, and defines a
specific set of interfaces and contracts on top of the base component interface
that are concrete and comprehensive enough to allow plugging any WSRP
compliant service together with any WSRP compliant client. It will however be
possible to use the Web Services for Remote Portals using standard WSIA
operations only.

http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 6 August 26, 2002

2. Portals and WSRP
While WSRP services can be consumed by different kinds of intermediary
applications, they are of particular importance for portals. For this reason, we
describe their use in portals in some detail in this section. Portals are focal points
for users to access information and applications from many different sources.
Typically, portals get information from local or remote data sources, e.g. from
databases, transaction systems, syndicated content providers, or remote web
sites. They render and aggregate this information into composite pages to
provide information to users in a compact and easily consumable form. In
addition to pure information, many portals also include applications like e-mail,
calendar, organizers, banking, bill presentment, etc.

Different rendering and selection mechanisms are required for different kinds of
information or applications, but all of them rely on the portalâ€™s infrastructure
and operate on data or resources owned by the portal, like user profile
information, persistent storage or access to managed content. Consequently,
most of todayâ€™s portal implementations provide a component model that
allows plugging components referred to as Portlets into the portal infrastructure.

2.1. The WSRP Concept applied to Portals

While local web application components like portlets provide short response
times, they are not well suited to enable dynamic integration of business
applications and information sources. Let us consider the following scenario: An
employee portal manager wants to include a human resources service
calculating variable pay for employees and an external weather service providing
weather forecasts. One solution for this scenario is depicted in Figure 3 - a
human resources portlet and a weather portlet run locally on the portal server
and access data-oriented remote web services to obtain the required information.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 7 August 26, 2002

Figure 3: Example of local portlets using web services

This approach only works if all portlets are physically installed at the employee
portal and the process of making new portlets available is tedious and expensive.
To integrate HR information in the portal, either the HR department would
implement the HR portlet and give it to one of the administrators of the employee
portal to install it, or an employee portal developer would implement the HR
portlet according to the interface description of the HR web service, similarly for
the weather portlet. In each case, significant effort and local installation of
additional code are required to make the portlets available.

Obviously, it would be much more convenient from a portal perspective if web
services would appear as visual, user-facing services including presentation and
application logic as shown in Figure 4. If a standardized web services interface
exists, such visual, user-facing web services can be invoked through generic
portlet proxies on the portal side.

Use of generic portlet proxies eliminates the need to develop specific portlets for
each web service to plug into the portal. Portlets can be added dynamically to the
environment, and users benefit by having more services made available to them
in a timely manner. Additional remote portlets can be included into a portal just
by finding them and binding to them by creating a new portlet proxy instance
bound to the visual, user-facing service. Through the use of portlet proxies,
remote visual, user-facing web services appear to portals and can be selected by
users just like local portlets.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 8 August 26, 2002

Figure 4: Example of a portal using remote portlets

Figure 5 gives an example of a corporation that owns an employee portal, a
supplier portal and a human resources portal. The employee portal has a
weather portlet that runs on the local portlet container while the account, stock,
search, variable pay and news portlets run remotely and are accessed by the
employee portal through portlet proxies. The account and stock portlet reside on
a bankâ€™s portal while the news portlet runs on a content providerâ€™s portal.
The human resources department has a variable pay portlet running on their
portal that has been made available for use by other portals by publishing it as a
web service.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 9 August 26, 2002

Figure 5: A distributed portal solution based on remote portlets and web
services

As of today, the business problems described here are not addressed by
appropriate standards. There is no standard in place that defines visual web
services so that they can be found and plugged into intermediary applications like
portals in a simple manner. The Web Services for Remote Portals (WSRP)
standard aims to allow for interoperability between different kinds of intermediary
applications and visual, user-facing web services.

To realize this goal, an architecture is required that defines the relevant building
blocks and interfaces and protocols between them. The architecture needs to
cover all the way from client devices over portals to visual web services to be
included in portals. Figure 6 shows an open portal architecture that addresses
the areas mentioned above and that lets us position WSRP services in relation to
portals.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 10 August 26, 2002

Figure 6: An open portal architecture

The architecture assumes that clients access portal implementations via the
HTTP protocol, either directly or indirectly through appropriate gateways, e.g.
WAP gateways or voice gateways. The mark-up languages used by the different
devices may be different, for example WAP phones typically use WML, iMode
phones use cHTML, voice browsers mostly use VoiceXML while the well-known
PC web browsers use HTML. To accommodate different devices, portals need to
support different mark-up languages and likewise components that plug into
portals need to be able to handle different device types.

When aggregating pages for portal users, portals typically invoke all portlets
belonging to a userâ€™s page through a Portlet API for locally installed portlets.
We differentiate two different kinds of portlets:

• Local Portlets run on the portal server itself. They may be deployed by
installing portlet archive files on portal servers and are typically invoked by
the portal server directly through local method calls.

• Remote Portlets run as web services on remote servers that are published
in a UDDI directory to allow for easy finding and binding. Typically portlet
proxies (generic local placeholders) will invoke WSRP services to which
they are bound via the SOAP protocol.

While local portlets usually provide the base functionality for portals, remote
portlets can provide a large number of additional functions without installation
effort or need for third-party code to run locally on the portal server. Web
Services for Remote Portals may be implemented as dedicated web services or
by a portal with an adapter that exposes local portlets as WSRP services.
We can identify the areas that require standardization in order to ensure
interoperability across all layers:

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 11 August 26, 2002

• Portlet API: Portlet APIs need to be standardized for different
programming languages. The Java Portlet API will defined in the Java
Community Process, versions for other languages may be defined
similarly in other standards bodies.

• Web Services for Remote Portals: WSRP services can be defined and
standardized in a programming language independent manner, based on
the WSDL, UDDI, SOAP, and WSXL standards.

• Mark-up Fragment Definitions: Markup fragment definitions need to be
defined for each particular markup language; the document type
definitions and rules for markup fragments need to be derived from the
DTDs of the individual markup languages.

The Web Services for Remote Portals Specification will focus on the second
aspect and define interfaces and contracts between portals or other applications
and WSRP services.

2.2. How portals can use WSRP Services

In order to make a dynamic integration of WSRP services into portals as easy as
possible, a find and bind function needs to be integrated. A UDDI registry acts as
the central registry for publishing and finding WSRP services. The UDDI registry
can be either a private UDDI that is limited to a corporate network or the public
UDDI directory. Client applications that wish to provide or consume WSRP
services can perform the following actions:

• Publishing a Portlet as a WSRP service: An administrator uses a
publishing function to publish a portlet to the UDDI registry as a WSRP
service. For example, the admin function of a portal may read the portlet
registry of the portal and displays all available portlets so that the portlet
administrator can choose the portlet to be published.

• Find&Bind a Remote Portlet Portlet Web Service: The find&bind
administration function lets the administrator search a UDDI registry for
WSRP services. For a selected service, the administration function can
automatically generate a portlet proxy in the portlet registry that is bound
to this service.

• Selecting a portlet proxy representing a WSRP service: After an
administator has bound a portlet proxy to a WSRP service, users may be
allowed to put the portlet proxy on one of their personal pages.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 12 August 26, 2002

Figure 7: Example of portals sharing portlets

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 13 August 26, 2002

3. WSRP and UDDI
In order to make WSRP services discoverable for clients, they can be published
to a UDDI directory. This section describes how Web Services for Remote
Portals are published, how they are described in UDDI, and how they can be
found and bound to.

3.1. Publishing Web Services for Remote Portals

In order to make WSRP services known, the provider must publish them to a
UDDI directory. To allow for any WSRP Service to plug into any compliant client
application, all WSRP services implement the same WSDL interface and
behavioral contracts. Furthermore, they share a common set of attributes that
can be analyzed by portals to find out what capabilities the service provides and
how it has to be used by client applications.

The following attributes are used to describe Web Services for Remote Portals:

• T-model ID - The WSRP services T-Model ID to indicate that this is a

WSRP service
• Service Name - The name of the WSRP Service, e.g. â€œStock Quote

Serviceâ€�
• Supported locales - The list of locales supported by the service
• Service Titles - Titles of the service in all the locales that the service

supports
• Service Descriptions - Descriptions of the service for all supported

locales
• Supported Modes - The modes that are supported by the service, e.g.

view, edot, config, help
• Supported Markups - The different markup languages supported by the

service, e.g. HTML, XHTML, WML, VoiceXML, cHTML, â€¦
• Cachability - Information on how caching may be applied, including expiry

times and indication on whether content is personal or shared.
• Instance awareness - Indicates whether the service is aware of portlet

instances, i.e. has instance specific behavior
• Keywords - Key words describing the service which can be used for

search
• Supported View States - Minimized, Normal, Maximized, â€¦
• Allowed modifications - Transcoding, Translation, Adaptation, â€¦

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 14 August 26, 2002

3.2. Finding WSRP Services

Web Services for Remote Portals can be found in UDDI directories by querying
the directory for businesses providing services implementing the WSRP tModel
and listing the WSRP services provided by particular businesses. As described in
Section 3.1, WSRP Services have to be published with a defined set of attributes
describing their capabilities and properties.

3.3. Binding WSRP Services

When client applications bind WSRP services, they will typically store the subset
of attributes listed in Section 3.1 for administrative purposes and in order to keep
information on how to invoke the service. For example, a portal may store the
service titles and descriptions of the WSRP services to which it is bound and
present this information to end users when they select what they want to see on
their personal portal pages.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 15 August 26, 2002

4. WSRP Life Cycle
Whenever client application binds to a WSRP service, it typically creates local
proxy for the WSRP Service. The local proxy as well as the service can be seen
as a type. The client application can create portlet instances within any WSRP
Service and consequently create an associated, local proxy instance. In the
example of a portal, this typically happens when a user selects a locally portlet
proxy in the portal customizer and adds it to one of his pages. The portlet proxy
instance and the WSRP Service instance must be associated persistently until
both instances and their association are destroyed. A life cycle management
interface is thus required to create and destroy instances of remote portlets.
Figure 8 shows an example of possible associations of portlet proxy instances
and WSRP service instances between two portals and two WSRP services. Note
that all boxes represent instances in the form of data entities, not programming
language object instances. Whether or not object instances are used to represent
the entities at runtime is up to the implementation, which e.g. may create objects
per entity or apply the flyweight pattern to reuse objects.

Figure 8: Association of Portlet Proxy instances and WSRP Service
instances

Note:
The figure above doesn’t depict the relation between users and portlet proxy
instances because this is irrelevant for remote portlet invocation. A portlet
instance may be referenced from a single personal page, from multiple
personal pages, or from a group page shared across many users. In other
words, the same user may have multiple instances of the same WSRP
Service and a single portlet instance may be shared amongst many users.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 16 August 26, 2002

When handling a request, the portal passes the information about the user who
triggered the request to the WSRP Service along with the portlet instance handle.
While several sessions/users may share the same portlet instance, it may still
look and behave differently based on user information.

4.1. Life cycle management operations

Initially, client applications must create a binding to the WSRP Service by calling
the bindClient operation. This needs to be done only once by each client
application that wants to use the service and creates a persistent relationship
between the client and the service. The bindClient operation returns a client
handle that the client must store and use in all subsequent calls to the service.
Once a binding exists, client applications can create WSRP service instances in
the scope of the binding by calling the createPortletInstance operation, e.g. as
a part of the process to instantiate portlet proxies.

Within existing bindings, clients may send events or request markup from the
WSRP service for a given portlet instance. In the course of this interaction,
sessions may be created by the service if it needs to maintain state across
requests. If a WSRP service returns a session handle in a response, clients must
pass that handle in all subsequent requests to the same portlet instance. It is not
necessary for the client to store the session handle persistently. The client may
force creation of a session by calling the createSession operation and may
terminate a session by calling the destroyInstance operation. The WSRP service
may implement a timeout mechanism for sessions. Both the destroyInstance
operation and the optional timeout mechanism invalidate the session handle.
Using an invalidated handle in subsequent operation invocations leads to a
SOAP exception.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 17 August 26, 2002

Figure 9: States and Life Cycle Methods

When a WSRP service instance is no longer needed, e.g. after destroying a
portlet proxy instance referencing it, client applications must also destroy the
associated remote portlet instance using the destroyInstance operation. WSRP
services may implement a means to remove remote portlet instances without
request from the client application that owns the associated portlet proxy.
When a client doesnâ€™t need the WSRP Service anymore, it must unbind from
the service by calling the destroyInstance operation on the client handle, so that
the WSRP services can release any resources allocated to and discard all data
associated with that client.

4.1.1. Binding a client

New client applications perform a bind operation to establish a persistent
relationship with the WSRP Service by calling the bindClient operation. It returns
a client handle that has to be used for creating portlet instances in subsequent
createPortletInstance calls.

bindClient

In: -

Out: Client Handle

4.1.2. Creation of portlet instances

Client applications can create persistent instances of WSRP services through the
createPortletInstance operation.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 18 August 26, 2002

The createPortletInstance operation takes as input the identifier of the remote
portlet of which an instance shall be created. WSRP services which only expose
one single remote portlet may safely ignore this parameter as in that case the
access to the web service already uniquely identifies the remote portlet in
question. The web service provider must persistently maintain the created
remote portlet instance until the client makes a call to the corresponding
destruction operation or unbinds. If a client unbinds, the service must discard all
portlet instances associated with that client handle.

createPortletInstance

In: Client handle
Remote Portlet ID

Out: Portlet Instance Handle

As the return value after successful creation of a portlet instance, the create
operation passes back a portlet instance handle that can be used to refer to the
new portlet instance. If no new portlet instance could be created, an appropriate
error message is returned. The client application must use the portlet instance
handle in any subsequent calls to the WSRP service intended for that portlet
instance. The portlet instance handle remains valid until a call to the destruction
operation.

4.1.3. Destruction of Portet Instances, Sessions or Bindings

When an instance of a WSRP Service or a binding is not needed anymore by the
client, the associated remote portlet instance or the binding respectively must be
destroyed. The WSXL base component interface exposes a destroyInstance
operation. For WSRP services, this operation can take as an input the portlet
instance handle for the portlet instance to be destroyed or a client handle for the
client binding to be destroyed.

destroyInstance

In: Portlet Instance Handle or Client Handle

Out: -

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 19 August 26, 2002

5. WSRP Usage
Applications use WSRP services by creating remote portlet instances, sending
events or requesting markup and finally destroying remote portlet instances when
they are not needed anymore. Figure 10 shows an example of interaction
between an intermediary application on the left (in this case a portal where
WSRP services are embedded as portlets), and a WSRP service on the right.
When a user puts a portlet on one of the portal pages, the portal requests
creation of a corresponding portlet instance at the WSRP serviceâ€™s side by
calling the createPortletInstance operation, obtaining a portlet instance handle
that it uses in subsequent requests. It can then obtain markup to embed from the
WSRP service by calling the getPortletMarkup operation and display that
markup within a portlet. If the obtained markup contains links or forms with
associated actions, and the user clicks into the portlet, on one of these links or
forms, the portlet triggers the corresponding action in the WSRP service by
calling the performAction operation. When the portal doesnâ€™t need the
portlet instance anymore because the portlet is removed from a userâ€™s page,
it requests to discard the portlet instance on the WSRP Serviceâ€™s side by
calling the destroyInstance operation.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 20 August 26, 2002

Figure 10: Interaction between a portal and a WSRP Service

If the obtained markup contains links or forms with associated actions, and the
user clicks on these links or forms, the intermediary application triggers the
corresponding action in the WSRP Service by calling the performAction
operation. When the intermediary application doesnâ€™t need a portlet instance
anymore, it can request to discard the portlet instance by calling the
destroyInstance operation. In the remainder of this section, we introduce the
relevant data types and the operations to process events and to get markup.

5.1. Data Types

In the following sections, we will make use of the following complex type.

5.1.1. Request Data

The request data provides information that corresponds to the original request
send from the device to the client application:

• Parameters from the original request sent by the client device.
• Session Identifier for the session between the client device and the

service (null for the first event or request for markup).
• Mime headers indicating the mime types that can be accepted by the

client device.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 21 August 26, 2002

• Information about the userâ€™s client device.
• Information indicating whether communication between client and service

via the portal is secure
• User profile of the client application user (optional, the intermediary

application may or may not transmit user profile information depending on
privacy settings)

• Locale preferred by the client application user (optional, if not specified the
service should use a default locale)

• Locale preferred by the client portal userâ€™s device [fallback
mechanism]

• Content type requested by the client application
• Character set requested by the client application
• Current portlet mode of the portlet proxy on the client application (e.g.

VIEW, EDIT,CONFIG, HELP)
• Previous portlet mode of the portlet proxy on the client application
• Window state of the portlet proxy on the client application (e.g. NORMAL,

MAXIMIZED)
Simple WSRP services may choose to not use all of the rich information that is
provided to them; more sophisticated WSRP services may use this information to
generate output that is tailored for the userâ€™s device type, translated to the
userâ€™s preferred language and personalized based on the user profile.

5.2. Action Processing

WSRP service instances can react on actions that are triggered by users
manipulating their UI representation. Users trigger action events by clicking on a
link in markup generated by the WSRP service that is prefixed with the
ActionEventURIPrefix and ends with an Action Identifier. Clicking the link in
the browser results in a request being sent to the client application bound to the
WSRP Service. The client application must convert the received request into an
ActionEvent and pass it to the WSRP service by invoking the
invokePortletAction operation. As parameters, this operation expects the
destination handle, an action identifier, and request data. The destination handle
may be either the portlet instance handle or a session handle retrieved by a call
to getPortletMarkup or invokePortletAction.

invokePortletAction

In: Destination Handle
 Action Identifier
 Request Data

Out: Session Handle
 Expiry Indicator

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 22 August 26, 2002

The return values are the optional session handle for the session between the
client device and the service and an expiry indicator. If present, the session
identifier must be used in the request data of each subsequent
invokePortletAction or getPortletMarkup call that shall be made within the
same session. The expiry indicator must be set to true when the event results in
expiry of the view that may be cached on the client application.

5.3. Getting Markup

The essential functionality of a WSRP service is to generate markup based on
input parameters provided by client applications and its current state for
aggregation within portals. To obtain markup, the client application must call the
getPortletMarkup operation, providing the destination handle, client context
information, client portlet state and request data as parameters:

getPortletMarkup

In: Handle
 Request Data

Out: Session Handle
 Markup

The getPortletMarkup operation returns the markup generated by the WSRP
service based on the request and remote portlet state and the session handle for
the session between the client device and the service. The markup may contain
URIs that start with one of the Portal URI Prefixes, e.g. the
ActionEventURIPrefix and end with an Action Identifier. The session handle
must be used in the request data of each subsequent invokePortletAction or
getPortletMarkup call that shall be made within the same session. To allow the
transfer of any type of markup the markup has to be transferred in Base64
encoding.

6. Markup Restrictions
As the markup provided by WSRP services must be aggregatable in the larger
context of pages of a client application, it must adhere to certain restrictions and
rules. The markup generated by a WSRP service may be adapted to the style of
the calling client application in several ways:

• Style sheets: For some markups, e.g. HTML, style attributes like font

face, size, colors, etc may be defined by a style sheet that is active in the
client application. Remote portlets should only explicitly specify their own
style attributes in exceptional cases. They must use to-be-defined
standard style sheet attribute names that providers must use to allow
clients to override the look and feel.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 23 August 26, 2002

• URLs: URLs generated by the WSRP services must be adapted to the
environment of the calling client application, for example in a portal server
portlet proxies must intercept any interaction with the portlet. This implies
the use of URL-rewriting which will be further detailed in Section 8.2.

• Adaptation: The markup of the remote web service may have adaption
points that can be used to modify or augment WSRP servicesâ€™ output
in a specific way. To support this, WSRP Service can make use of the
â€œAdaption Description Languageâ€� as defined in the WSXL
standard.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 24 August 26, 2002

7. Security
Web Services for Remote Portals do not define special security mechanisms.
The same security mechanisms as for other kinds of web services may be
applied.

7.1. Authentication

Authentication lies in the responsibility of the providers of WSRP services. They
may configure their servers to support SSL/TLS server authentication and if
desired also for client authentication. In the latter case, only clients supporting
SSL/TLS client authentication with the required cryptographic keys would be able
to connect.

7.2. Authorization

Authorization lies in the responsibility of WSRP services. As Web Services for
Remote Portals have access to client application identifiers and user profile
information, they may implement authorization mechanisms based on portal
identity, user identity, or both.

7.3. Confidentiality

For secure communication, Web Services for Remote Portals may allow for
invocation via SOAP over HTTPS.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 25 August 26, 2002

8. Contract between Portals and Web Services for
Remote Portals
While implementing the interfaces defined in the previous sections is required for
Web Services for Remote Portals to be pluggable into portals, it is not sufficient.
This section defines the contracts that WSRP services must adhere to in addition
in order to allow for aggregation within intermediary web applications like portals.

8.1. Two phase processing of events and rendering

To guarantee correct behavior of event handling and rendering of markup by
multiple WSRP services bound to a portal, the portal must assure that event
handling and rendering take place in two separate cycles.

• In the first cycle, event handling must be performed completely; any
events raised as secondary events must be finished before the second
cycle starts.

• In the second cycle, the portal requests markup from all components and
aggregates it into a page.

Figure 11 shows an example showing why two separate cycles are required:

Figure 11: Example of a possible order of events

Let us assume the user clicks a link in Portlet 3, resulting in the
invokePortletAction operation of Portlet 3 to be called. This operation in turn
sends a message to Portlet 1, changing its state. Because of the layout of
portlets in the page however, the portal must invoke the getPortletMarkup
operation of Portlet 1 before that of Portlet 3. Only by handling events in an

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 26 August 26, 2002

independent cycle before rendering, it can be assured that for Portlet 1 the
current state is displayed. Ootherwise, the old state of Portlet 1 would be used to
render it.

8.2. URL Rewriting

As WSRP services can be interactive, they often need to produce mark-up
containing links pointing back to actions within the services themselves. To allow
this while still keeping the user in the context of the intermediary web application,
e.g. a portal that includes the WSRP service, a URL rewriting scheme is
required. The service can only provide a client independent part that needs to be
embedded into an appropriate tag that can be resolved by the intermediary web
application before actually sending the servicesâ€™s markup to a client device.
URLs embedded in final markup for client devices must have a prefix that points
to the client application and identifies the component, e.g. portlet that is bound to
the WSRP Service and a second part that identifies the target Action Identifier
within the WSRP service itself and may optionally contain parameters. If the
client device has not enabled cookies, a third part might be required to carry a
session ID between the intermediary web application and the client device. If a
user clicks on such a link within mark-up created by a WSRP Service and
rewritten by the intermediary application, the browser sends the resulting GET or
POST request to the intermediary application that must convert the request into
the appropriate action event and in turn invoke the invokePortletAction
operation of the WSRP Service using the Action Identifier from the URL.

8.3. Restrictions on Markup Fragments

As the markup produced by many different WSRP service instances usually is
aggregated and displayed by portals on common pages, WSRP services must
generate markup fragments rather than complete documents. The structure of
markup fragments depends on the particular markup languages of supported
client devices.

8.3.1. HTML Markup Fragments

Markup fragments for HTML must be aggregatable in pages, e.g. it must be
possible to encapsulate them within in <table> or <DIV> tags. This means that
they may not contain tags such as <html>, <body>, <head>, etc. and they may
not contain frames.
For font and color definitions, HTML markup fragments should only contain
explcit definitions if required for example to preserve the corporate identity of the
provider of the WSRP Service. In most cases portals including WSRP services
will want them to adapt to the portal look&feel.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 27 August 26, 2002

8.3.2. WML Markup Fragments

Tbd

8.3.3. VoiceXML Markup Fragments

Tbd

8.3.4. CHTML Markup Fragments

Tbd

8.4. Caching Considerations

Client applications using WSRP services will need to apply caching on results
when possible to achieve short response times. For example, there may be a
WSRP Service that provides the latest news, with an expiry of 5 minutes. For
client applications that receive requests for the information they in turn acquire
from the service, caching the markup obtained from the service and serving the
requets from the cache reduces response times by orders of magnitude.
We can identify the following properties of WSRP services that are relevant to
caching on the client application side:

• Expires - This attribute determines the minimal time before the view of a
WSRP Service expires

• WSRP services should implement the WSXL property interfaces
• Instance awareness - This attribute determines whether the service is

aware or agnostic of portlet instances
The expires-attribute may be used by client applications to determine how long
views may be cached. The instance awareness-attribute may be used to
determine whether cache entries have to be managed on a per-instance basis or
may be shared for all portlet instances of a WSRP Service. Client applications
must treat cache entries for WSRP Service instances as expired as soon as an
action fires to the instance.

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 28 August 26, 2002

9. Relation of WSRP to WSIA
Web Services for Remote Portals are special WSIA components, sharing the
basic interfaces and contracts defined in WSIA. This means that WSRP services
behave like other WSIA components in terms of life cycle and provide operations
for providing markup and for processing user actions. While WSIA as a horizontal
standard defines a general programming model for web service-based
application components and base interfaces, the WSRP standard can be seen as
an vertical application of WSIA, defining a concrete interface and contract for
components intended to be aggregated in and driven by client applications like
for example portals. By standardizing the complete interface and behavior for
compliant services and client applications in addition to what is standardized in
WSXL, the WSRP specification enables â€œplug&playâ€� interoperability
between any WSRP compliant client application and WSRP service, so that
client applications can invoke WSRP services using generic invocation code.
WSIA provides a generic set of basic interfaces for life cycle, presentation and
event handling. WSRP implements and extends selected WSIA interfaces and
provides a specialized interface to its services. WSRP is designed so that
implementing a compliant service is as easy as possible, services are extensible
and interfaces can be efficiently accessed.

For interoperability, WSRP services not only provide specialized and efficient
access through the WSRP interface for WSRP clients like portals but also
provide generic access through the WSIA interfaces for usage by WSIA clients
and components. We envision the following relation of WSRP and WSIA:

• WSRP services must implement the basic WSIA Bindable, WSIA Base,
and WSIA Markup interfaces

• WSRP services should implement the WSXL property interfaces
• WSRP services may implement the WSXL event interface

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 29 August 26, 2002

Figure 12: Relation between Remote Portlet

From http://www-106.ibm.com/developerworks/webservices/library/ws-wsrp/?dwzone=webservices

 30 August 26, 2002

10. References
1

SOAP Version 1.2, W3C Working Draft 9 July 2001, Martin Gudgin, Marc
Hadley, Jean-Jacques Moreau, Henrik Frystyk Nielsen
http://www.w3.org/TR/soap12/

2
Web Services Description Language (WSDL) 1.1, W3C Note 15 March
2001, Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana http://www.w3.org/TR/wsdl

3
UDDI Specifications http://www.uddi.org/specification.html

4
Web Services Experience Language, Angel Diaz, John Lucassen, Charles
F Wiecha http://www-106.ibm.com/developerworks/library/ws-
wsxl/index.html

	Web Services for Remote Portals (WSRP)
	21 Jan 2002 Note
	Abstract
	Status of this Document
	Table of Contents
	1. Introduction
	2. Portals and WSRP
	2.1. The WSRP Concept applied to Portals
	2.2. How portals can use WSRP Services

	3. WSRP and UDDI
	3.1. Publishing Web Services for Remote Portals
	3.2. Finding WSRP Services
	3.3. Binding WSRP Services

	4. WSRP Life Cycle
	4.1. Life cycle management operations
	4.1.1. Binding a client
	4.1.2. Creation of portlet instances
	4.1.3. Destruction of Portet Instances, Sessions or Bindings

	5. WSRP Usage
	5.1. Data Types
	5.1.1. Request Data

	5.2. Action Processing
	5.3. Getting Markup

	6. Markup Restrictions
	7. Security
	7.1. Authentication
	7.2. Authorization
	7.3. Confidentiality

	8. Contract between Portals and Web Services for Remote Portals
	8.1. Two phase processing of events and rendering
	8.2. URL Rewriting
	8.3. Restrictions on Markup Fragments
	8.3.1. HTML Markup Fragments
	8.3.2. WML Markup Fragments
	8.3.3. VoiceXML Markup Fragments
	8.3.4. CHTML Markup Fragments

	8.4. Caching Considerations

	9. Relation of WSRP to WSIA
	10. References

	
	IBM Title Page

