

EntityIdentifiers-1_0 - 1 -

Entity Identifiers 1.0

Recommendation 2002-April-30
This version:

EntityIdentifiers-1_0

Previous version:
N/A

Editors:
Karl Brophey, eBenX
Grant Chappell, City and County of Denver
Rob Payne, bp
Sandra Stover

Authors:
Members of the Cross-Process Object work group

Contributors:
Members of the Cross-Process Object work group

Copyright statement
©2001,2002 HR-XML. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America.

Abstract
This document creates a methodology for identifier management that can standardize identifier handling
across HR-XML Consortium schemas. This includes a set of design norms and recommendations as well
as a XML Schema data type to use for entity identifiers. In addition, common use patterns are laid out,
guidance is provided for when this standard should be used, recommendations are given for managing
the related topic of identifier-change, and guidelines are included for facilitating trading partner
agreements pertaining to identifiers in business transactions.

Status of this Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC 2119.

EntityIdentifiers-1_0 - 2 -

Table of Contents

1 Overview .. 4

1.1 Objective ... 4
1.1.1 Domain Issues ... 4
1.1.2 Business Reasons .. 5

1.2 Design Requirements .. 5
1.3 Scope... 5

1.3.1 Major Components.. 5
1.3.2 Items Within the Design Scope... 6
1.3.3 Items Outside of Design Scope... 6

2 Supported Business Processes.. 7

2.1 Vocabulary Requirements ... 7
2.1.1.1 Identifier.. 7
2.1.1.2 Key.. 7
2.1.1.3 Keying... 7

2.2 Trading Partner Roles .. 7
2.3 Usage Examples of Identifiers .. 7

2.3.1 Summary ... 7
2.3.2 Use Case Scenarios ... 8

2.3.2.1 Simple Cases... 9
2.3.2.1.1 Initial transmission of data.. 9
2.3.2.1.2 Transmission with Reply .. 9
2.3.2.1.3 Multiple Transmissions Involving the Same Entity ... 9
2.3.2.1.4 Related Business Transactions Involving the Same Entity....................................... 10

2.3.2.2 Identifier Change Cases .. 10
2.3.2.2.1 Cases with Timely Notification of Identifier Change... 11
2.3.2.2.2 Cases with Late Notification of Identifier Change ... 12

2.3.2.3 Receiving System Cases ... 13
2.3.2.3.1 More Than One Identifier Provided.. 13
2.3.2.3.2 Business Elements Recommended for Verification of Matches............................... 15
2.3.2.3.3 Prior Value Provided in Primary Transaction... 16

3 Schema Design... 18

3.1 Entity Identification (Keying).. 18
3.1.1 Schema Diagrams ... 18
3.1.2 Schema Elements Explained... 18

4 Implementation Considerations... 20

4.1 Choosing to Use EntityIdType Versus Local Definition ... 20
4.2 Naming Entity Identification Elements ... 21

EntityIdentifiers-1_0 - 3 -

4.3 Multi-part Identifiers .. 21
4.4 Allowing Single versus Multiple Occurrences of Identifiers... 22
4.5 Facilitating Identifier Change .. 23

4.5.1 Identifier Change Transactions ... 23
4.5.2 Previous Value Element.. 24
4.5.3 Manual Notification .. 25

5 Issues List... 26

6 Appendix A - Document Version History ... 26

7 Appendix B – Related Documents ... 26

8 Appendix C – Reference Examples ... 27

8.1 Simple Person Identifiers .. 27
8.2 Multiple Identifiers.. 28
8.3 Multi-part Identifiers .. 28
8.4 Effective Dated Identifiers .. 29

EntityIdentifiers-1_0 - 4 -

1 Overview

1.1 Objective

Create a methodology for identifier management that can standardize identifier handling across
HR-XML Consortium schemas. This includes a set of design norms and recommendations as
well as a XML Schema data type to use for entity identifiers.

1.1.1 Domain Issues

In transporting data, transaction types can be categorized into: those that are single
occurrences, and those that may later need to be referred to. For example, when placing an
order for a staffing resource, the responder needs to be able to identify which request is being
responded to. Additionally, the requester may wish to amend the request, which requires that
they be able to reference the previous request so that the amendment changes that previous
request rather than looking like a new, additional request. Likewise, for payroll and benefits
enrollment, it is important to identify which employee is being referenced so that subsequent
feeds amend the information that is already on record rather than setting up duplicate entries.

One could question whether there indeed is any situation where it is not important to be able to
later update information. One presumes that items such as an informational publication that
need not be acted upon exist and would not require this matching consideration. You may also
be able to devise situations where matching is based solely on meaningful business attributes
(such as company name and invoice date for billing).

For the great class of transactions that do require the ability to match data in one transmission
to data that may have been previously conveyed, the issues involved are identical regardless of
what vertical within the HR-domain is being considered. In fact, the issues are nearly
independent of domain altogether. The fundamental issue is to be able to match not just the
transaction itself (which would almost certainly be an issue for envelopes to address), but to
match the most significant entities within a transaction such as an employee or a specific
request within a group of requests sent together.

Taking an example, consider perhaps the most ubiquitous example of an entity identifier within
the HR domain: personal identifiers, usually for an employee. Personal identifiers are
fundamental to almost every HR process. An identifier can be described as an element that
identifies an individual in a transaction. Identifiers come in many forms internationally.
Organizations in the US (for good or bad) use Social Security Number quite often to identify
individuals. Likewise, in Canada groups may use Social Insurance Number. Some organizations
may use Driver’s License Number, Employee ID, or even personal traits such as name or date
of birth. They may even use a combination of these various forms. The particulars of this
identification cannot be enforced as each trading partner might behave differently. Thus a
flexible approach is needed.

Regardless of the method chosen, a transaction needs to clearly demonstrate a unique
individual, so an implementation might want to suggest how an identifier should be validated

EntityIdentifiers-1_0 - 5 -

against other elements in case duplicates or errors occur. Furthermore, since many of the items
that may be used as identifiers are real-world data that must be manually entered into a system,
mistakes may happen. Thus, when a transaction definition includes such an identifier, it should
address how trading partners manage changes to what was previously communicated.

The concerns surrounding other entities are quite similar to this example. As previously
mentioned, the keying of data is really a fundamental systems issue, nearly independent of
domain.

1.1.2 Business Reasons

The primary purpose for creating a standard approach to the keying of transactional data is to
save effort or duplication of effort. This is in the form of reducing duplicate effort to solve the
same problem amongst HR-XML Consortium workgroups, as well as creating a solution that is
cheaper to implement when included in HR-XML standards.

Developing an interface for interoperability between companies and/or software vendors may
take many months. The development of standard XML vocabularies and schemas can
drastically reduce the time needed in the development phase, but certain details still are left to
individual trading partners. By creating a well thought-out framework for having those
discussions, even this effort is reduced.

Additional business reasons include:
! Reducing the risk of duplicate entries—be they paid employees, resource requests, or

benefit plan participants; and
! Managing identification across business transactions—that is, within a vertical: for example

to be able to identify that a particular billing line ties back to a particular resource request.

1.2 Design Requirements
! Syntax must be as self-documenting;
! Must take international requirements into consideration;
! Must be deployable in existing HR-XML Schemas;
! Must support processes to correct a previously communicated identifier; and
! Must be capable of transmitting both multi-part identifiers, and multiple identifiers for the

same entity (for example a sending system employee number and a receiving system
employee number, assuming the sending system knows both).

1.3 Scope

1.3.1 Major Components

This recommendation includes:
! A complex schema data type for use in workgroup entity identifiers;
! Guidelines for inclusion and treatment of entity identifiers; and
! Boilerplate language for use by workgroups in their recommendations.

EntityIdentifiers-1_0 - 6 -

1.3.2 Items Within the Design Scope

! Identifiers made up of multiple parts;
! Ability to describe within the data what the identifier represents;
! Identification of the issuer or “owning party” of an identifier;
! Effective dating of an identifier;
! Discussion of management of identifier change as a business and transactional process;
! Discussion of need to support multiple identifiers for the same entity;
! Discussion of requirements for trading partners to agree on the specific identifier(s) to be

supplied; and
! Discussion of options for recommending secondary matching on business data.

1.3.3 Items Outside of Design Scope

! Guaranteeing the uniqueness of identifiers;
! Method of issuing identifiers;
! Taxonomies of identification owners (such as company names or IDs, government names or

country codes, etc.) or typical data used (such as Social Security Number, employee ID,
driver’s license number, name, date of birth, etc.); and

! Creation of any technique for identification; scope is limited to the exchange of data

EntityIdentifiers-1_0 - 7 -

2 Supported Business Processes

2.1 Vocabulary Requirements

The XML vocabulary adopted for the Entity Identifiers Schema conforms to the guidelines
outlined in the Technical Steering Committee’s Schema Design Guidelines document. Where
appropriate the same terms are used but some name changes have occurred.

2.1.1.1 Identifier

A set of data that unambiguously identifies the specific object which it describes. For example, a
database primary key is the identifier for a database row. An example in a business context is
that United States businesses frequently use Social Security Number as the identifier for an
employee.

2.1.1.2 Key

One or more fields in an object or record that holds unique data that identifies that object or
record from all others. The term "key" is frequently thought of in relation to database systems,
particularly in terms of "primary keys" and "foreign keys". To avoid confusion, this
recommendation avoids using this term to refer to a data structure for identification within an
XML document.

2.1.1.3 Keying

The act of using identifiers or keys to match representations of objects as being of the same
object. This could also be thought of as "key matching" or "identifier matching".

2.2 Trading Partner Roles

Because this is a Cross-Process Object, and not a transaction itself, the roles of trading
partners using Entity Identifiers will be those of the business processes that include the
identifiers. There are a relatively small number of common patterns for trading partner use of
identifiers, and these are outlined in the use cases in the next section.

2.3 Usage Examples of Identifiers

2.3.1 Summary

To cover the general topic of identifier usage, rather than documenting a specific business
process, this section deals with generalities. There are a limited number of patterns of usage

EntityIdentifiers-1_0 - 8 -

that cover the vast majority of cases. Any real business process will only correspond to a few of
these patterns, and the particular patterns will frequently be dictated not only by the business
process but by the identifier management strategy of the transaction definition as well.

2.3.2 Use Case Scenarios

This section contains an examination a number of different cases that one might like to support.
The first set will consider simple data exchange examples. Next it progresses to consideration
of techniques for communication of changes to identifier values. Last are complex cases giving
examples of how a receiving system might utilize identifier data.

The cases are listed here, with detailed discussions to follow.

Simple cases:
! Initial transmission of data
! Transmission with reply
! Multiple transmissions involving the same entity
! Related business transactions involving the same entity
Identifier change cases:
! Cases with timely notification of identifier change:

! Transmission, update of data including identifier, and updating transmission noting
identifier change

! Transmission, update of data including identifier, identifier change transaction, and
updating transmission

! Transmission, update of data including identifier, manual communication of identifier
change, and updating transmission

! Cases with late notification of identifier change:
! Transmission, update of data including identifier, updating transmission (no identifier

change noted), and updating transmission noting identifier change
! Transmission, update of data including identifier, updating transmission, and

identifier change transaction
! Transmission, update of data including identifier, updating transmission, and manual

communication of identifier change
Receiving system cases:
! More than one identifier provided:

! Receiver attempts match, finds no match, and utilizes additional identifier to find
match

! Receiver attempts match, finds match, and utilizes additional identifiers for
verification

! Business elements recommended for verification of matches:
! Receiver attempts match, finds match, utilizes recommended business elements for

verification, and matches
! Receiver attempts match, finds match, utilizes recommended business elements for

verification, and does not match

EntityIdentifiers-1_0 - 9 -

! Prior value provided in primary transaction:
! Receiver attempts match, finds no match, and utilizes prior value for match
! Receiver attempts match, finds match, utilizes prior value to detect duplication

2.3.2.1 Simple Cases

These are straightforward representations of common data transmission scenarios.

2.3.2.1.1 Initial transmission of data

In this case, data for a particular business transaction is sent, received, confirmed to be new,
and loaded.

The identifier is used in confirming that the data is new. If no data were ever updated, identifiers
would not be needed this case would be all that was seen.

2.3.2.1.2 Transmission with Reply

In this case, data for a particular business transaction is sent, received, and loaded. Then the
activity requested by the transaction is performed. Finally, a separate business transaction is
sent back either confirming for each entity in the original set that the work is done or providing
the requested information.

An example of this might be a transaction containing several requests for resumes, each with a
given request number. When transactions containing candidate resumes come back, they are
identified with the corresponding request number (or numbers if they match several and the
transaction is structured to support this structure).

If one does not have an identifier for the request, then the receiver would need to examine the
data to deduce which request the data is a match for. This is clearly not desirable.

2.3.2.1.3 Multiple Transmissions Involving the Same Entity

In this case, data for a particular business transaction is sent, received, and loaded. Then the
information provided by the sender is updated. They repeat sending the same business
transaction with the new data. The second transaction is received, matched, and loaded.

An example of this is passing data from a payroll system to a payroll company for production of
checks. Information is sent regarding a given employee. That employee’s pay is changed in the
payroll system. An update is sent to the payroll company and the payroll company amends their
current data for that employee.

The importance of the matching is seen in this example, since failure to correctly match the
employee would result in duplicate checks being issued.

EntityIdentifiers-1_0 - 10 -

2.3.2.1.4 Related Business Transactions Involving the Same Entity

There are actually a variety of cases that might be considered in this scenario. They follow two
basic patterns:
! System A produces Transaction X for Entity Q and sends to System B; System A then

produces Transaction Y for Entity Q and sends to System B.
! System A produces Transaction X for Entity Q and sends to System B; System B then

produces Transaction Y for Entity Q and sends to System A.

This might be considered the same as the previous example of transmission and response.
What is being contemplated here is cases where the transactions are not fundamentally
joined—Transaction Y is not a logical response for Transaction X. If one modeled the various
business events holistically across the HR domain it would be seen to be a natural response,
but X and Y are in different verticals, so a narrow analysis does not predict it.

Examples of these patterns come naturally in the combination of benefits and payroll disciplines.

An example of the first pattern can be seen in the passing of data to a flexible spending account
administrator. Typically there are separate feeds sent to this administrator, one containing plan
enrollment data, and the other containing payroll deduction data. For this case, consider the
benefits and payroll systems to be unified as “System A” and the administrator to be “System
B”.

An employee, Juan Garcia, is enrolled in a medical FSA account. The fact of that benefit
enrollment is sent to the account administrator. Then payroll deductions are made for that
benefit and the amount deducted from Juan’s check is sent to the administrator.

The second pattern can be seen in action during the interaction of non-integrated payroll and
benefits systems.

A feed is sent from a payroll system to an HRIS system updating employment data for a list of
employees. One of these employees moves from full-time to part-time, losing her eligibility for
benefits. The HRIS system then terminates the benefits, causing a change in payroll
deductions. The HRIS system sends a payroll deduction transaction identifying this same
employee with her revised deduction amount.

2.3.2.2 Identifier Change Cases
Aside from the primary use of identifiers in matching entities across transactions, the most
significant event an identifier experiences is change. Identifier change frequently leads to
undesirable duplication of data. A variety of cases are noted below, but the all to frequent case
of an identifier changing and no notification ever being sent is intentionally omitted. This is a
default case that is unintended and highly undesirable, and obviously is not the intention for
what any transaction supports. The supported cases are differentiated between those cases
where the change is noted before a transaction is sent requiring the identifier change, and those
where the transaction using the new data arrives first. Each set of cases is split into three
different approaches to communicating identifier changes:
! The business transaction provides an element for previous identifier value
! A separate transaction is provided for notification of changes to identifier

EntityIdentifiers-1_0 - 11 -

! Identifier change notification is a manual process

2.3.2.2.1 Cases with Timely Notification of Identifier Change

These cases assume that an identifier change occurs, and that data about the identifier change
is sent in time to handle the change to affect any transaction that depends on the identifier
change. Because these are more a matter of system behavior than business requirements, no
business scenarios are included.

! Transmission, Update Of Data Including Identifier, And Updating Transmission Noting

Identifier Change

Assume that data has been transmitted. Now the identifier in the source system is changed. As
the next transmission from the source system is created, it includes the prior identifier as well as
the current one. When the transmission is received and processed, the receiving system sees
the prior identifier and looks to see if there is a match. The receiver’s current identifier matches
the sender’s prior identifier, so a match is found and the data updates correctly, including
updating the identifier.

Incidentally, a match for the prior identifier may not be found. Perhaps because the sender
includes the prior information for a month and the receiver has already updated their copy, so
the prior value no longer shows in their system. In such a case, you would expect the receiver to
operate on the normal identifier as usual.

! Transmission, Update Of Data Including Identifier, Identifier Change Transaction, And

Updating Transmission

Assume that data has been transmitted. Now the identifier in the source system is changed. On
the next transmission from the source system, an identifier change transaction is created and
sent. Then the regular transmission is sent as usual (with the new identifier). When the
transmissions are received and processed, the receiving system first processes the identifier
change transactions. Since this is done as the first step, the receiving system now has the
identifier on record in their system. The main transmission then processes as usual.

! Transmission, Update Of Data Including Identifier, Manual Communication Of Identifier

Change, And Updating Transmission

Assume that data has been transmitted. Now the identifier in the source system is changed.
There is a procedure in place to notify the trading partner and this happens. The trading partner
updates the identifier in their system. When the source system is ready for the next transmission
a regular transmission is created. When the transmission is received and processed, the
receiving system has the changed identifier on record already and the transmission processes
as usual.

EntityIdentifiers-1_0 - 12 -

2.3.2.2.2 Cases with Late Notification of Identifier Change

These cases assume that an identifier is changed, and a transaction is sent identified by the
new identifier value without the change being communicated. Finally, the identifier change is
transmitted.

! Transmission, Update of Data Including Identifier, Updating Transmission (No Identifier

Change Noted), and Updating Transmission Noting Identifier Change

Assume that data has been transmitted. Now the identifier in the source system is changed. As
the next transmission is created, the prior identifier is not included. When the transmission is
received and processed, the receiving system does recognize the identifier, thus they create a
duplicate.

Later, the source system creates another transmission, and this time the prior identifier is
included (and noted as being prior) as well as the current one, and other business changes to
apply. When the transmission is received and processed, the receiving system has matches for
both the current identifier and the prior identifier. The system may update based on the current
identifier only, but it must note that there very likely is a duplicate. The receiving company must
enact whatever measures they have to remedy the duplicate situation. As noted, the receiver
must decide where to apply the additional business changes, or whether to suspend applying
changes for this entity until the duplication is handled.

! Transmission, Update of Data Including Identifier, Updating Transmission, and Identifier

Change Transaction

Assume that data has been transmitted. Now the identifier in the source system is changed. As
the next transmission is created, no change transaction for the prior identifier is created. When
the transmission is received and processed, the receiving system does recognize the identifier,
thus they create a duplicate.

Later, the source system creates the change transaction. When this is received and processed,
the receiving system has matches for both the current identifier and the prior identifier. The
system must note that there very likely is a duplicate. The receiving company must enact
whatever measures they have to remedy the duplicate situation.

! Transmission, Update of Data Including Identifier, Updating Transmission, and Manual

Communication of Identifier Change

Assume that data has been transmitted. Now the identifier in the source system is changed. As
the next transmission is created, no change for the identifier has been communicated. When the
transmission is received and processed, the receiving system does recognize the identifier, thus
they create a duplicate.

Later, the owner of the source system realizes the mistake and communicates the change.
When this is received, the owners of the receiving system see that they have a duplicate. They
must enact whatever measures they have to remedy the duplicate situation.

EntityIdentifiers-1_0 - 13 -

2.3.2.3 Receiving System Cases
The following set of cases detail how a variety of scenarios might be handled using identifier
information by a receiving system. These are not the only ways of handling the given situations,
nor even necessarily the best, thus they are not recommendations. They are included as
examples of the types of use that a keying mechanism might reasonably be expected to
support. These examples are more of an algorithm to consider rather than a use case.

2.3.2.3.1 More Than One Identifier Provided
These cases outline how a transaction that allows for multiple identifiers to be provided supports
more robust operation.

! Receiver Attempts Match, Finds No Match, and Utilizes Additional Identifier to Find Match

Assume that the sender is providing more than one identifier per entity and that the receiving
system has stored all of these identifiers and can check for a match on each. The receiving
system might follow these steps to prevent duplicates that a single key might allow:

Check for match
on main ID

Match
found?

Process matched
entry

Check for match
on secondary ID

Match
found?

Yes

No

Treat as new
(or move to third
ID, etc.)

Yes

No

EntityIdentifiers-1_0 - 14 -

! Receiver Attempts Match, Finds Match, and Utilizes Additional Identifiers for Verification

Assume that the sender is providing more than one identifier per entity and that the receiving
system has stored all of these identifiers and can check for a match on each. The receiving
system might follow these steps to confirm the identifier that was agreed to for matching:

Check for match
on ID

Match
found?

Check for match
on secondary ID

Treat as new, or
perform additional
checks

Yes

No

Match?

Record possible
duplicate, or handle
automatically

Yes

No

Process matched
entry

EntityIdentifiers-1_0 - 15 -

2.3.2.3.2 Business Elements Recommended for Verification of Matches
These cases outline how a transaction implementation guide can help enable a more robust
business process by defining likely “key” attributes. That is, if there is a set of business data that
generally will uniquely identify an entity (a set of “key” attributes), various measures can be
employed by a receiving system to increase the robustness of the interchange. The following
two scenarios are considered in one flow chart.

! Receiver Attempts Match, Finds Match, Utilizes Recommended Business Elements for

Verification, and Matches
! Receiver Attempts Match, Finds Match, Utilizes Recommended Business Elements for

Verification, and Does Not Match

A system attempting to handle these situations might follow this logic:

Check for match
on ID

Match
found?

Compare key
business data

Treat as new

Yes

No

Match?

Note exception
and put on hold

Update matched
entry

No

Yes

The assumption here is that a person can cheaply validate whether the match is correct or not,
and avoid a duplication that might be costly to remedy later.

EntityIdentifiers-1_0 - 16 -

2.3.2.3.3 Prior Value Provided in Primary Transaction
These cases outline how identifier change is handled on transactions that include the prior value
in place.

! Receiver Attempts Match, Finds No Match, And Utilizes Prior Value For Match

Assuming a receiving system has a method to attempt a match, it might follow this flow:

Check for match
on main ID

Match
found?

Process matched
entry

Check for match
on prior ID

Match
found?

Yes

No

Treat as new

Yes

No

EntityIdentifiers-1_0 - 17 -

! Receiver Attempts Match, Finds Match, Utilizes Prior Value to Detect Duplication

Assuming a receiving system has a method to attempt a match, it might follow this flow:

Check for match
on ID

Match
found?

Update matched
entry

Follow process for
checking prior ID

Yes

No

Match?

Record possible
duplicate, or handle
automatically

No

Yes

Check for match
on prior ID

Done

A caveat here is that with non-system identifiers (such as a government-issued ID number),
sometimes the reason for the change is that an error was discovered by trying to record the
entity that rightfully has the given identifier. For example, in a system that uses US social
security numbers as identifiers, if Joe is entered with SSN 111-22-3333 but the last digit should
be a 4, the error might be discovered when Juanita is entered and Juanita’s SSN really is
111-22-3333. In such a case, matching on the prior incorrect value beyond the first transmission
would be undesirable. When such an algorithm is used to provide a warning rather than an
automated response, it can aid in cleaning up duplicates that might otherwise go undetected.

EntityIdentifiers-1_0 - 18 -

3 Schema Design

3.1 Entity Identification (Keying)

3.1.1 Schema Diagrams

3.1.2 Schema Elements Explained

Component Name

[Global types listed
at the end of the

table.]

ContentModel
Data type
Occurrence:

Sequence | Choice | All
(minOccurs/maxOccurs)

Attributes

Definition

/
IdValue

xsd:extension base:
xsd:string

A sequence of characters that one or more systems use as an
identifier for the given entity. This could be numeric, alpha, and
may include punctuation.

/ IdValue/
name

- xsd:string - A description of the type of identifier or the portion of an identifier
that “IdValue” represents. If used, values should be determined by
trading partner agreement. See Appendix B in the specification
documentation for examples of use.

/
[EntityIdType]

IdValue - xsd:string - S
(1/*)
validFrom
AnyDateTimeNkNaType -
optional
validTo
AnyDateTimeNkNaType -
optional
idOwner xsd:string -
optional

Data Type used to represent any Entity Identifier.

/ EntityIdType/
validFrom

- AnyDateTimeNkNaType
-

A method for “effective dating” identifiers. Use should be
determined by trading partner agreement. See Appendix B in the

EntityIdentifiers-1_0 - 19 -

validFrom - specification documentation for examples of use.

/ EntityIdType/
validTo

- AnyDateTimeNkNaType
-

A method for “effective dating” identifiers. Use should be
determined by trading partner agreement. See Appendix B in the
specification documentation for examples of use.

/ EntityIdType/
idOwner

- xsd:string - A description of who “owns” the identifier. This usually will be the
company and/or system name that utilizes the given value(s) for
uniqueness. Use should be by trading partner agreement. See
Implementation Considerations on the use of multiple identifiers for
further discussion. See Appendix B in the specification
documentation for examples of use.

EntityIdentifiers-1_0 - 20 -

4 Implementation Considerations

Topics:
! Choosing to use EntityIdType versus local definition
! Naming Entity Identification Elements
! Multipart identifiers
! Allowing single versus multiple occurrences of identifiers
! Facilitating identifier change

4.1 Choosing to Use EntityIdType Versus Local Definition

Entity Identifiers are a more nebulous concept than other Cross Process Objects such as Postal
Address or PersonName. As such, work groups may not be clear when it is appropriate to utilize
the defined type and the surrounding frameworks in this recommendation. This section attempts
to provide clear explanations.

An entity is a discrete object of some kind. Thus it is largely a reference to a particular noun, - “a
person”, “an employee”, “a purchase order”, “a staffing request”, “an invoice”, etc. EntityIdType
provides a means of uniquely identifying a particular employee, staffing request, or the like.

EntityIdType is intended only to contain unique identifiers of the entities being passed in the
transaction. If a data element is intended to allow a system to match an entity to data previously
sent, or to reply with data about the entity and have it be matched, use the EntityIdType. For
example, if company A sends a request to fill a position to staffing company B, and company B
later sends candidates for the position, the second exchange needs to identify the position sent
in the first transaction. EntityIdType would be a good data type to use for the position identifier
element in both transactions.

However, if a data element is intended for use by the business context for purposes other than
unique entity identification do not use EntityIdType, instead create an appropriate structure for
that data.

Consider an example – a trucking company might need to have the driver’s license information
for an employee on file. The license number may need to be transmitted for government
compliance reporting purposes. The reason for including driver’s license data is that you clearly
show that all drivers are licensed. This purpose is not a general method of identifying entities
passed in a transaction. Further, there are a number of additional attributes specific to a driver’s
license number, such as a grade (commercial, etc.) that could be important for business
purposes but not for unique entity identification. The owner attribute and multi-part nature of the
EntityIdType could conceivably be used to house the data. But the driver’s license is relevant to
the business, so the schema would be much clearer and resulting documents would be more
likely to contain all needed data if a new “DriversLicense” type were defined.

EntityIdentifiers-1_0 - 21 -

So to summarize, it is recommended that the EntityIdType be used for all elements or attributes
whose only intent is to provide the ability to do transaction-to-transaction keying of transmitted
entities to a sending or receiving system. It is further recommended that other specific, detailed,
and descriptive types be used for elements and attributes whose purpose is to supply other
business-relevant data.

4.2 Naming Entity Identification Elements

This recommendation provides a schema data type, but no global element. It is expected that
each schema that utilizes the EntityIdType will create a specifically named element to match the
type of entity being identified. Thus a JobPosting schema would contain an element named
JobPostingId. It is felt that this leads to designs that are much more easily understood by users
of the published schemas.

In addition to identifying an entity in a transaction, an identifier might be used to refer to a
previously defined entity. For example, a response transaction that summarizes processing may
need to identify that there was a business error in the data for a particular submitted entity. This
reference should use the same element name as was used to identify the entity. Thus if the
previously mentioned JobPosting schema had a response schema, and the response contains
information about each individual JobPosting, the response should include a JobPostingId
element.

4.3 Multi-part Identifiers

Sometimes a trading partner uses a combination of values in order to uniquely identify an entity.
For example, an organization might use an employee ID along with a subsidiary company ID in
order to uniquely identify an individual. It is possible to treat these two values as strings and
concatenate them in order to create a unique value, but parsing out the individual segments
from the concatenated string can be complex and error prone. EntityIdType allows for more than
one IdValue element in order to facilitate multipart identifiers such as this.

This also allows personal “traits” to be used as an identifier. For example, a person sometimes
will be identified in a system by their first, middle, and last names, plus sex date of birth. An
identifier could be created with five parts, one for each of these “traits”. If the data for these
“traits” is included elsewhere in the transaction, it may not be obvious why you would repeat
them in the identifier. There are multiple reasons to do this.

First, identifiers should have a documented method for communicating changes, which business
data typically does not have. Thus by placing data in an identifier, it becomes easier to prevent
duplication than if matching were simply done on a series of business elements. Also, by always
using the identifier element to perform identification, it maintains responsibility for determining
uniqueness with the sender of data.

In both of the cases looked at, it is desirable to fill in the “name” attribute on the IdValue
elements to reflect what the particular portion of the identifier represents. In the first example, it
would differentiate between the employee ID and the company ID. For the second example, it

EntityIdentifiers-1_0 - 22 -

would identify which of the five traits was being provided. Example XML documents for these
cases are included in Appendix B.

4.4 Allowing Single versus Multiple Occurrences of Identifiers

When implementing an element with EntityIdType, a significant consideration is whether to allow
multiple occurrences of that element. The reason for doing so would be to allow for a collection
of identifiers to be included when a business transaction involves more than two trading
partners.

In reality, nearly any transaction could involve an intermediary. An intermediary may have
reason to have its own system identifiers, and may pass both the originator’s identifier as well
as its own.

Even for a pair of trading partners, they may have independent identifiers and may opt to pass
the identifiers for both systems back and forth. This might occur when the communication is
between two systems of the same organization, such as synchronization feeds between multiple
HRIS systems for an employer.

The majority of users of HR-XML standards will employ a single identifier. But in order to
facilitate use by all parties, schemas will usually need to allow for multiple identifiers. Only in
cases where a work group can demonstrate that multiple identifiers would never make sense
should it restrict identifiers to a single occurrence.

When using multiple identifiers, the receiver must be able to determine which identifiers on the
current transmission to match to those of prior transmissions. This is the purpose of the optional
“idOwner” attribute.

An example would be a company with HRIS installations in Europe and Africa. It could fill
“idOwner” in with values of “EuropeHRIS” and “AfricaHRIS”. Thus on a given transaction an
identifier tagged with “EuropeHRIS” should be matched with identifiers that were also tagged
with “EuropeHRIS”. Likewise for “AfricaHRIS” you would match to previously sent identifiers with
that designation.

Because of the desire for the use of multiple occurrences to be governed by trading partner
agreement, and because of the complexity involved, it is recommended that work groups
discuss the topic in their Implementation Considerations. Possible text for that section is
included here. It should be tailored to best meet the situation and needs of the particular
business transaction being supported.

Sample Boilerplate Text for Work Group Use:
Multiple Occurrences of Identifiers
Certain elements (<list names>) are used to provide a means for matching data from
one transmission to another. <This/These> element<s> allow<s> for multiple
occurrences.
If multiple identifiers are to be used, a trading partner agreement should stipulate this.
The agreement should state what the various identifiers are and how they are to be

EntityIdentifiers-1_0 - 23 -

used. Further, the agreement should identify what value should be placed in the
“idOwner” attribute for each identifier.

In the absence of a trading partner agreement as just described, it should be assumed
that each of these identifier elements (<list names>) is considered single instance.

4.5 Facilitating Identifier Change

In an ideal world, any identifier used to match entities would be permanent and unchanging. Of
course this is not always the case. System conversions lead to changes in system-generated ID
values; identifiers get mistyped and must be corrected. Since a system of passing entity
identifiers exists solely to ensure information is correctly associated and that duplicates do not
occur, such a system must provide for such change scenarios.

This recommendation document strongly suggests that if a work group uses the EntityIdType for
persistent data the group must provide a defined mechanism in their Implementation
Considerations section of their recommendation for managing identifier change. The preferred
method is to provide a separate identifier change transaction (as described below), but any of
the following methodologies are acceptable provided they are documented:

! Identifier change transactions (preferred)

! Previous value element as a peer to the identifier

! Manual (non-systematic) notification

Each of these methods is detailed below.

4.5.1 Identifier Change Transactions

An identifier change transaction contains an XML document that communicates a change for a
specific use of an EntityIdType. It is recommended that the schema for this transaction include a
place for both the previous and new (replacement) values.

Thus to change the identifier for a person in the Benefits Enrollment transaction (which uses the
element name “IdentificationCode”) the following schema might be used:

EntityIdentifiers-1_0 - 24 -

This additional transaction type would be documented in the Benefits Enrollment
recommendation document. Implementation of sending and receiving this additional transaction
type would be considered part of implementing the Benefit Enrollment standard.

Since not all systems can necessarily handle identifier changes automatically, it is
recommended that in the Implementation Considerations section of the recommendation, that
“manual notification” for identifier changes be stipulated as a less desirable alternative available
by trading partner agreement.

Sample Boilerplate Text for Work Group Use:

Handling Identifier Changes

Certain elements (<list names>) are used to provide a means for matching data from
one transmission to another. Because the data contained in <this/these> element<s>
may change over time, a method for systematically communicating these changes is
provided.

If multiple identifiers are provided for keying, the “idOwner” attribute must be used to
match the correction information to the previous information. See the Implementation
Considerations for multiple identifiers for more information on “idOwner”.

It is assumed that the receiver of data will handle any business implications from
resolving the change to the identifier. This might include resolving the situation where
duplication of the given data has already occurred. If the sender cannot assume this will
be handled, it should be stipulated in a trading partner agreement.

Likewise, if either a sender or a receiver in a trading partner arrangement cannot send
identifier changes systematically as described, a trading partner agreement should state
that identifier changes will be communicated via correspondence. Such an agreement
might list any detailed requirements or procedures.

If there are multiple entity identifiers in the transactions of a particular recommendation, the
identifier change transaction can be structured to allow all of the identifiers to be modified using
a single schema, or a separate schema can be defined for each. What is significant is that the
identifier change can be automatically handled.

There should be a discussion in the Implementation Considerations section of the
recommendation for both this option and the “Previous Value Element” option. Boilerplate text
that might be used for this purpose is shown above.

4.5.2 Previous Value Element

The second method for automatic handling of identifier change is to put an additional element in
the primary transaction. This element would sit next to the actual identifier and would have a
name indicating that it was storing a previously sent value. Like the identifier, the prior identifier
element would be of type EntityIdType. In most cases identifier elements are required, however
the prior identifier element should always be optional. Finally, prior identifier elements should

EntityIdentifiers-1_0 - 25 -

always allow multiple occurrences, even if the identifier element allows only a single
occurrence—this allows multiple previous incorrect values to be communicated.

The explanation for the prior identifier element should read like:

“Contains previously communicated identification data. The current identification data is
transmitted in <element name>. The previous data is for use in handling identifier
changes. See the Implementation Considerations section for more details.”

Additionally, commentary must be put in the Implementation Considerations section. An
example of what that text might be is included in the discussion of the “Identifier Change
Transactions”, above.

For an element named Person that has an identifier called PersonId, implementing this method
for handling changes might result in this schema:

4.5.3 Manual Notification

As discussed above, identifier changes can be communicated in a non-automated way. This
should normally be considered a fallback position to be left to trading partners who cannot
automate the process. For a business transaction where it is deemed highly unlikely that
identifier changes will occur, it may be suggested that those cases be handled via separate
communication between trading partners. As in the above examples, it is recommended that the
topic of identifier change be discussed in the Implementation Considerations section.

EntityIdentifiers-1_0 - 26 -

5 Issues List

Issue Resolution Rationale

6 Appendix A - Document Version History

Version Date Description
Entity Identifiers 1_0

Candidate 2002-03-11
2002-03-11 Candidate submission to TSC

1.0 2002-April-1 Present for Membership review
1.0 2002-April-10 Approved Spec.

7 Appendix B – Related Documents

Reference Link
EntityId 1.0 schema http://ns.hr-xml.org/CPO/ID-1_0/EntityIdType-1_0.xsd

http://ns.hr-xml.org/CPO/ID-1_0/EntityIdType-1_0.xsd

EntityIdentifiers-1_0 - 27 -

8 Appendix C – Reference Examples

Examples:

! Simple person identifiers

! Multiple identifiers

! Multi-part identifiers

! Effective dated identifiers

Each example contemplates an identifier being used in the context of an element named
“Person”. “Person” contains the element these examples are illustrating, “PersonId”, that is of
type EntityIdType. Presumably, it also contains elements like “Name” and “Address”, so that the
schema might look like:

Since the concern is only with how the EntityIdType is utilized, the examples show only the
“Person” and “PersonId” elements.

8.1 Simple Person Identifiers

The most straightforward example is where a person is identified with a single, one-part
identifier. In such a case it does not matter who owns the identifier, or what the identifier
represents.

If Cogs, Inc. sends Mohammed Abdul to their payroll administrator, PayCo, and Mohammed’s
employee ID in Cogs’ HRIS is 113355, the transaction might look like:
<Person>
 <PersonId>
 <IdValue>113355</IdValue>
 </PersonId>
</Person>

EntityIdentifiers-1_0 - 28 -

A more verbose option is:
<Person>
 <PersonId idOwner="Cogs, Inc.">
 <IdValue name="Employee ID">113355</IdValue>
 </PersonId>
</Person>

8.2 Multiple Identifiers

Extending the above example, say that PayCo has started receiving data through an
intermediary named GlueCom. GlueCom has their own system identifiers, and Mohammed’s is
MA237. Presumably Cogs will send the same data as before, just to GlueCom rather than
PayCo. If PayCo has arranged with GlueCom to provide both identifiers, the transaction would
look like:
<Person>
 <PersonId idOwner="Cogs, Inc.">
 <IdValue>113355</IdValue>
 </PersonId>
 <PersonId idOwner="GlueCom">
 <IdValue>MA237</IdValue>
 </PersonId>
</Person>

8.3 Multi-part Identifiers

Cogs buys another company, GearTech, and makes them a largely independent division.
GearTech keeps their own HRIS system, but is switching to utilizing PayCo, and Cogs will send
a feed with data from both HRIS systems. There is a problem: the employee IDs between the
two systems overlap, so you cannot identify just by employee ID. Their solution is to add a
division indicator and works this out with GlueCom (that data receiver for PayCo).

Now Mohammed’s entry in a transaction might look like:
<Person>
 <PersonId>
 <IdValue name="Employee ID">113355</IdValue>
 <IdValue name="Division">Corporate</IdValue>
 </PersonId>
</Person>

When GlueCom passes this information to PayCo, it will now look like:
<Person>
 <PersonId idOwner="Cogs, Inc.">
 <IdValue name="Employee ID">113355</IdValue>
 <IdValue name="Division">Corporate</IdValue>
 </PersonId>
 <PersonId idOwner="GlueCom">
 <IdValue>MA237</IdValue>
 </PersonId>
</Person>

EntityIdentifiers-1_0 - 29 -

This example matches to the first scenario in the multi-part identifiers discussion in
Implementation Considerations (section 4.2). The other example in that section is using
personal traits to identify a person.

Assuming Mohammed was born 1963-04-14, a trait-based identification would look like:
<Person>
 <PersonId>
 <IdValue name="FirstName">Mohammed</IdValue>
 <IdValue name="MiddleName"></IdValue>
 <IdValue name="LastName">Abdul</IdValue>
 <IdValue name="Sex">M</IdValue>
 <IdValue name="DOB">1963-04-14</IdValue>
 </PersonId>
</Person>

8.4 Effective Dated Identifiers

Taking the example even farther, Cogs has decided to converge to one HRIS system, and they
decide to use the one at GearTech, meaning that everyone in the Cogs HRIS must be given a
new employee ID; Mohammed’s will be 2221001. In preparation for the transition, they arrange
to begin sending both the current and the future identifier values. If their plan is to begin using
the combined system on 2000-08-01, the transmission might look like:
<Person>
 <PersonId validFrom="1900-01-01" validTo="2000-07-31">
 <IdValue name="Employee ID">113355</IdValue>
 <IdValue name="Division">Corporate</IdValue>
 </PersonId>
 <PersonId validFrom="2000-08-01" validTo="notApplicable">
 <IdValue name="Employee ID">2221001</IdValue>
 <IdValue name="Division">GearTech</IdValue>
 </PersonId>
</Person>

Thus, effective dating in this case takes the place of identifier change mechanisms.

In this example, since they are switching to a single system again, they would probably like to
switch back to a single-part identifier, which would make the transmission look like:
<Person>
 <PersonId validFrom="1900-01-01" validTo="2000-07-31">
 <IdValue name="Employee ID">113355</IdValue>
 <IdValue name="Division">Corporate</IdValue>
 </PersonId>
 <PersonId validFrom="2000-08-01" validTo="notApplicable">
 <IdValue>2221001</IdValue>
 </PersonId>
</Person>

This has the unpleasant side effect of the two portions of the timeline of identifiers not having
the same structure (not the same number of parts). Because use of effective dates, multiple

EntityIdentifiers-1_0 - 30 -

identifiers, and multi-part identifiers are left to trading partner arrangement, if Cogs and
GlueCom agree this is how they want to handle their situation, it is perfectly acceptable, and this
recommendation supports this type of flexibility.

	Entity Identifiers 1.0
	30 Apr 2002 Recommendation, HR-XML Consortium
	Abstract
	Status of this Document
	Table of Contents
	Overview
	Objective
	Domain Issues
	Business Reasons

	Design Requirements
	Scope
	Major Components
	Items Within the Design Scope
	Items Outside of Design Scope

	Supported Business Processes
	Vocabulary Requirements
	
	Identifier
	Key
	Keying

	Trading Partner Roles
	Usage Examples of Identifiers
	Summary
	Use Case Scenarios
	Simple Cases
	Initial transmission of data
	Transmission with Reply
	Multiple Transmissions Involving the Same Entity
	Related Business Transactions Involving the Same Entity

	Identifier Change Cases
	Cases with Timely Notification of Identifier Change
	Cases with Late Notification of Identifier Change

	Receiving System Cases
	More Than One Identifier Provided
	Business Elements Recommended for Verification of Matches
	Prior Value Provided in Primary Transaction

	Schema Design
	Entity Identification (Keying)
	Schema Diagrams
	Schema Elements Explained

	Implementation Considerations
	Choosing to Use EntityIdType Versus Local Definition
	Naming Entity Identification Elements
	Multi-part Identifiers
	Allowing Single versus Multiple Occurrences of Identifiers
	Facilitating Identifier Change
	Identifier Change Transactions
	Previous Value Element
	Manual Notification

	Issues List
	Appendix C – Reference Examples
	Simple Person Identifiers
	Multiple Identifiers
	Multi-part Identifiers
	Effective Dated Identifiers

	
	HR-XML Consortium Title Page

