

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704

(408) 536-6000
http://partners.adobe.com

bbc

June 11, 2001

Portable Document Format:
Changes from Version1.3 to1.4

Technical Note #5409

Preliminary

Copyright 2000, 2001 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this

publication (whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of the

Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the

text are references to the PostScript language as defined by Adobe Systems Incorporated unless otherwise

stated. The name PostScript also is used as a product trademark for Adobe Systems’ implementation of the

PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar

item refers to a printing device, display device or item (respectively) that contains PostScript technology created

or licensed by Adobe Systems Incorporated and not to devices or items that purport to be merely compatible with

the PostScript language.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Acrobat Catalog, Acrobat Exchange, Acrobat

Search, Distiller, Illustrator, Photoshop, PostScript, and the PostScript logo are trademarks of Adobe Systems

Incorporated.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States

and other countries. PowerPC is a registered trademark of IBM Corporation in the United States. ActiveX,

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in

the United States and other countries. UNIX is a registered trademark of The Open Group. All other trademarks

are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not

be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no

responsibility or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or

statutory) with respect to this publication, and expressly disclaims any and all warranties of merchantability, fitness

for particular purposes, and noninfringement of third party rights.

iii

Introduction 1

JBIG2 Compression Filter 3

1 Introduction 3
1.1 Multi-page images 4
2 PDF Reference Manual changes 4
2.1 Changes to Section 3.3, ‘ “Filtered Streams” 4
3 Inline images 7

Encryption 9

3.5 Encryption 9
3.5.1 General Encryption Algorithm 11
3.5.2 Standard Security Handler 12

Adding Language Version to the Catalog 21

1 Introduction 21
1.1 Terminology 21
2 Background 21
2.1 Digital signatures 22
2.2 Saving files to non-traditional file systems 22
3 Adding Language Version to the Catalog 23
3.1 Compatibility Notes 23
4 Web behavior 24

Included Data 25

1 Included Data 25

ProcSet Resource 27

1 Procedure Sets; Obsolete for PDF 1.4 27

 Contents

iv

Graphics 29

1 Support for Separation and DeviceN Is Removed 29

 Glyph Widths; Predefined CMaps 31

1 Glyph Widths Override 31
2 Predefined CMaps 32
2.1 Standard Character Collections for CID-keyed Fonts 32
2.2 New CMaps for PDF 1.4 33
2.3 Changes to Existing CMaps 33
2.4 Backward Compatibility Issues 34
3 PDF CMaps and Supplement Numbers 34

Output Intents for Color Critical Workflows 39

1 Introduction 39
2 Use of OutputIntents 39
3 Defining OutputIntents 40
3.1 Additions to the Catalog 40
3.2 Known forms of Output Intent Dictionaries 41
4 Changes to restriction on ICC profile stream attributes 43

New Bookmark Properties 47

1 New Bookmark Properties 47

Annotations 49

1 Annotation naming 49
2 Background color 49
3 Line endings 50
4 Quadding support 50
5 Squiggly annotations 51
6 Markup annotation definition 51
7 Annotation Border Style 52
8 Markup annotation opacity 52
9 Trap Network Annotations 52

New Trigger Events 55

1 Document Level Triggers 55
2 The Trigger Types 55

Forms-Related Changes to PDF and FDF 57

1 Multiple Selection for Fields of Type Listbox 57
2 File Select Control 58
3 Multiple Options with the Same Value 58

v

4 Submit Using XML Flag 59
5 Changes to FDF 60
6 Using Unicode Values / Buttons with the Same Export Value 61
7 New Field Flags 62
8 JavaScript and FDF 63
9 Additional Submit Form Action Flags 64

Referenced PDF 67

1 Introduction 67
2 Structure 69
3 Optimization 69
4 Page Insertion/Deletion 69
5 Printing and OPI 70

Natural Language Specification 71

1 Introduction 71
2 Language Specification 71
2.1 Language Key Values 71
2.2 Catalog Object key: 72
2.3 Structure Element key: 72
2.4 Marked Content Property List key: 73
3 Determining the Language of Text in a Document 73

Accessibility Support in PDF 77

1 Introduction 77
1.1 Logical Content Order 77
1.2 Alternative descriptions 77
1.3 Abbreviations and Acronyms 78

Box Definitions for Pages 79

1 Introduction 79
2 Viewing and Printing preferences 80
3 Additions to the Viewer Preferences Dictionary 80
4 Page Attributes additions 81
5 BoxColorInfo Dictionary 82

PrinterMark Annotations 85

1 Introduction 85
2 PrinterMark Annotation Attributes 86
2.1 PrinterMark Appearance Attributes 87

New Metadata Architecture for PDF 1.4 89

1 Introduction 89

vi

2 Metadata streams 89
3 Document metadata 90
3.1 Attaching metadata to the document 90
4 Component metadata 91
4.1 How metadata is associated with components 91
4.2 What components can have metadata 91
4.3 Finding component metadata from document metadata 92
4.4 Enumerating components with metadata 93
5 Compatibility 93

Tagged PDF 95

1 Introduction 95
1.1 Terminology 95
2 Tagged PDF Content Streams 98
2.1 Page Content and Page Artifacts 98
2.2 Examining and Processing the Page Content 100
2.3 Page Content Ordering 100
2.4 The Text Stream at the Character Level 102
2.5 The Text Stream at the Word Level 106
2.6 Alternative Texts and Other Textual Key-Values 107
2.7 Textual Artifacts 108
2.8 XObject Forms 109
3 Use of Logical Structure in Tagged PDF 110
3.1 Standard Roles and Standard Properties 110
3.2 Use of Standard Properties in Tagged PDF 127
3.3 Definitions of Standard Properties used by Tagged PDF 130
4 Additional Requirements for Tagged PDF Acceptance 144

Transparency in PDF 145

1 Introduction 145
1.1 About This Document 145
1.2 Related Documents 147
1.3 Intellectual Property 147
2 Overview 148
2.1 Basic Concepts 148
2.2 Notation 150
3 Color Compositing Computations 151
3.1 Blending Color Space 152
3.2 Blend Mode 153
3.3 Interpretation of Alpha 157
4 Shape and Opacity Computations 158
4.1 Source Shape and Opacity 158
4.2 Computing the Result Shape and Opacity 160
4.3 Summary of Compositing Computations 162

vii

5 Groups 162
5.1 Notation 163
5.2 Group Structure and Nomenclature 165
5.3 Group Compositing Computations 166
5.4 Isolated Groups 170
5.5 Knockout Groups 171
5.6 Summary of Group Compositing Computations 173
5.7 Page Group 174
6 Soft Masks 176
6.1 Mask from group alpha 176
6.2 Mask from group luminosity 177
7 Color Space and Color Rendering Issues 178
7.1 Color Spaces 178
7.2 Spot Colors 180
7.3 Overprinting and Erasing 182
7.4 Rendering Parameters 184
8 Overview of PDF Extensions 187
8.1 Color Compositing Computations 187
8.2 Shape and Opacity Computations 188
8.3 Groups 189
8.4 Soft Masks 190
8.5 Color Space and Color Rendering Issues 190
8.6 Limitations in the PDF Transparency Model 190
9 PDF Specification 191
9.1 Adobe Imaging Model—2.1.2 191
9.2 Page Tree (Page Objects)—3.6.2 [6.4] 191
9.3 Graphics Objects—4.1 [8.1] 191
9.4 Details of Graphics State Parameters—4.3.2 [8.4] 192
9.5 Graphics State Parameter Dictionaries—4.3.4 [7.15] 195
9.6 Path-Painting Operators—4.4.2 [8.6.2] 197
9.7 Clipping Path Operators—4.4.3 [8.3.1.1] 198
9.8 Device Color Spaces—4.5.3 [7.12] 198
9.9 CIE-Based Color Spaces—4.5.4 [8.5.1.5] 199
9.10 CIE-Based Color Spaces (ICCBased Color Spaces)—4.5.4 [8.5.1.5] 200
9.11 CIE-Based Color Spaces (Rendering intents)—4.5.4 [8.5.1.5] 200
9.12 Special Color Spaces (Separation Color Spaces)—4.5.5 [7.12.8] 201
9.13 Overprint Control—4.5.6 [8.4.9] 202
9.14 Tiling Patterns—4.6.2 [7.17.2] 202
9.15 Shading Patterns—4.6.3 [7.17.3] 203
9.16 Image Dictionaries—4.8.4 [7.13.1] 204
9.17 Form XObjects—4.9 [7.13.7] 207
9.18 Text State Parameters and Operators—5.2 [8.7] 213
9.19 Text Rendering Mode—5.2.5 [8.7.1.7] 213
9.20 Text-Showing Operators—5.3.2 [8.7.5] 214

viii

9.21 Conversion from DeviceRGB to DeviceCMYK—6.2.3 [8.4.10] 214
9.22 Transfer Functions—6.3 [8.4.12] 214
9.23 Halftones—6.4 [8.4.13] 215
9.24 Annotation Appearances—7.4.4 [6.6.3] 215
10 Terminology Summary 216
11 Compatibility 220
11.1 Backward Compatibility 220
11.2 Forward Compatibility 220
11.3 PostScript Printing 220
12 Overprinting, Erasing, and Transparency 221
13 Revision History 225

Appendix: Adding Unicode Codepoints to Font Descriptors 227

1

June 11, 2001

The information in this document is subject to change

; it will become final when
the

PDF Reference, Third Edition, Version 1.4

 is published, which will be after
the Adobe Acrobat 5.0 product ships in early 2001.

The information in this document is organized by topic, in the approximate order
of the current PDF Reference (PDFR), Second Edition. Most sections contain a
reference (in square brackets) to the chapter or section to which the new text ap-
plies.

The second release of this document, dated May 22, 2001, contained only a few
updates to the Encryption and Accessibility chapters.

This second update, dated June 11, 2001, adds a few additional changes to the
chapter on Encryption.

0

Introduction

This document is a preliminary draft of the
language extensions for PDF version 1.4.

Introduction

2

June 11, 2001

3

June 11, 2001

[Applies to Section 3.3, “Details of Filtered Streams”]

1 Introduction

PDF 1.4 adds the ability to compress single-bit images using the JBIG2 image
compression filter. For single-bit images, JBIG2 compression provides consider-
ably better compression than the existing CCITT standard. In lossy mode, com-
pression ratios can be as high as three to seven times that achieved by CCITT G4
for single-page images, with higher ratios possible for multi-page documents.

JBIG2 is currently approaching standards approval. Current information, and the
latest version of the working draft, are available from:

http://www.jpeg.org/public/jbigpt2.htm

The JBIG2 standard defines a compliant bitstream, but not an explicit encoder
design. Encoder capability and performance are differentiators for competitive
implementations.

JBIG2 is based on symbol matching, and works well for images of text pages in
any language. The encoder constructs a table of symbols found in the image
(called a “symbol dictionary”), and attempts to match symbols found later in the
document with the existing symbol dictionary. If no acceptable match is found, a
new symbol is added to the symbol dictionary. If an acceptable match is found,
JBIG2 has a lossy mode, where the occurrence of the symbol is replaced with an
index into the symbol dictionary, and a lossless mode, where the difference be-
tween the dictionary symbol and the matched symbol is also stored.

0

JBIG2 Compression
Filter

JBIG2 Compression Filter

2

4

June 11, 2001

A similar dictionary mechanism is used for dithered halftone regions of the im-
age, where a halftone dictionary is constructed, and used to encode the halftone
region of the image. Regions of the image which are neither halftone nor sym-
bols (called

generic

 regions – typically drawings or illustrations) are encoded us-
ing arithmetic or Huffman coding.

The JBIG2 bitstream includes a header, and segments containing either a dictio-
nary (symbol or halftone), or an encoded region.

Note:

The use of the terms “halftone” and “halftone dictionary” in this section
are unrelated to the Halftone resources defined in Section 6.4 on page 356 in
PDF Reference, Second Edition.

1.1 Multi-page images

JBIG2 supports compression of multiple page-images as a single JBIG2 stream.
If the pages belong to a single document, they will tend to use only a few type-
faces, and the number of matches found on later pages, and hence the compres-
sion ratios achieved, are significantly higher than for single-page images.

To allow PDF representation of multi-page JBIG2-encoded images, the JBIG2
bitstream is split into page-specific parts and an off-page part. The page-specific
parts will form the content of Image XObjects referred to from individual page
descriptions. These XObjects will contain JBIG2 segments which are page-spe-
cific, and can optionally refer to a PDF stream object which will contain global
JBIG2 segments, typically symbol and halftone dictionaries.

2 PDF Reference Manual changes

The following additions will be made to the PDF Reference, Second Edition.

2.1 Changes to Section 3.3, ‘ “Filtered Streams”

Note:

[The following entry will be added to Table 3.5, “Standard Filters”]

PDF Reference Manual changes

2

5

June 11, 2001

TABLE 1 Addition to Table 3.5, Standard Filters

KEY TYPE VALUE

JBIG2Decode

dictionary

(Optional)

Decompresses single-bit sampled image data using a symbol-

based compression algorithm, the JBIG2 standard,

Note:

[The following section will be added as Section 3.3.7, “JBIG2Decode”]:

This filter decodes single-bit image data encoded using the JBIG2 (Joint Bi-level
Image experts Group) standard. Encoding an image using JBIG2 always results
in binary data.

JBIG2 provides for both lossy and lossless compression of single-bit images. It is
useful only for single-bit images, not for color images, grayscale images, or text.
The compression achieved using JBIG2 depends strongly on the nature of the
image. Images of pages containing text in any language will compress particular-
ly well, with typical compression ratios of 20:1 to 50:1 for a page full of text.
The JBIG2 encoder builds a table of unique symbol bitmaps found in the image,
and other symbols found later in the image are matched against the table. Match-
ing symbols are replaced by an index into the table, and symbols which fail to
match are added to the table. The table itself is compressed using other means.
This results in high compression ratios for documents where the same symbol re-
peats often, as is typical for images created by scanning text pages. This method
also results in high compression of whitespace in the image, as whitespace re-
gions will contain no symbols, and will not need to be encoded.

While best compression is achieved for images of text, the JBIG2 standard also
includes algorithms for compressing regions of the image which contain dithered
halftone images, or figures.

The algorithms used by the encoder, and the details of the format, are not de-
scribed here, but can be obtained from the JBIG2 committee homepage at:

 http://www.jpeg.org/public/jbighomepage.htm

JBIG2 can also be used for encoding multiple images into a single JBIG2 bit-
stream. Typically, these will be scanned images of the pages of a multi-page doc-
ument. Since a single table of symbol bitmaps is used to match symbols across

http://www.jpeg.org/public/jbighomepage.htm

JBIG2 Compression Filter

2

6

June 11, 2001

multiple pages, this can result in significantly higher compression ratios than if
each of the pages had been individually encoded using JBIG2.

The filter addresses both single-page and multi-page JBIG2 bitstreams, by repre-
senting each JBIG2 “page” as a PDF image. This is achieved by using the fol-
lowing mechanism:

•

The filter uses the Embedded file organization of JBIG2 (see appendix G of the
JBIG2 standard). The optional 2-byte combination (marker) described in the
description of the organization is not used in PDF. JBIG2 bitstreams in ran-
dom-access organization should be converted to this organization. Bitstreams
in Sequential organization need no reorganization, except for the mappings de-
scribed below.

•

The JBIG2 file header, End of Page segments, and End of File segment are not
stored in PDF. These should be removed before creating the PDF objects de-
scribed below.

•

The Image XObject to which the JBIG2Decode filter is applied contains all
segments which are associated with the JBIG2 “page” represented by that im-
age i.e., segments whose “segment page association” field contains the page
number of the JBIG2 “page” represented by the image. In the XObject, howev-
er, the segment’s page number should always be 1, that is. when these seg-
ments are written to the XObject, the value of their “segment page association”
field should always be set to 1.

•

If the bitstream contains global segments (segments whose “segment page as-
sociation” field contains zero), these should be placed in a separate PDF
stream, and the DecodeParms for the

JBIG2Decode

 filter for the image
should contain a

JBIG2Globals

 entry, whose value is a stream object contain-
ing the JBIG2 global segments.

Note:

[The following will be inserted as

“

Table 3.11

Parameters for
JBIG2Decode”]:

TABLE 3.11 Key Type Semantics

KEY TYPE VALUE

JBIG2Globals

stream

(Optional).

Stream containing the JBIG2 global (page 0) segments.

Inline images

3

7

June 11, 2001

Note:

[The following will be inserted as “Example 3.4 JBIG2-encoded image”]:

5 0 obj
<<
/Type /XObject
/Subtype /Image
/Width 24
/Height 23
/BitsPerComponent 1
/ColorSpace /DeviceGray
/Filter [/ASCII85Decode /JBIG2Decode]
/DecodeParms [null <</JBIG2Globals 6 0 R>>]
/Length 113
>>
stream
J..)6T`?p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'F
LIDK#!n`$"<Atdi`\Vn%b%)&'cA*VnK\CJY(sF>c!Jnl@
RM]WM;jjH6Gnc75idkL5]3k
endstream
endobj
6 0 obj
<<
/Filter /ASCII85Decode
/Length 1587
>>
stream
,p>`rDKJj'E+LaU0eP.@+AH9dBOu$hFD55nC
...omitted data...
endstream
endobj

As shown in the above example, the value for

BitsPerComponent

 must be 1,
and the value for

ColorSpace

 must be

DeviceGray

.

3 Inline images

Since PDF inline image object format is useful for small images, and most
JBIG2-encoded images will be of relatively large scanned pages, usage of the

JBIG2Decode

 filter is not allowed for inline images.

JBIG2 Compression Filter

3

8

June 11, 2001

9

June 11, 2001

[Applies to Section 3.5, “Encryption”]

Note:

This chapter is a complete replacement for Section 3.5, Encryption, in the
PDF Reference, Second Edition. References in this section – to tables and page
numbers that are not in this chapter – are references to the PDF Reference, Sec-
ond Edition.

3.5 Encryption

A PDF document can be

encrypted

(PDF 1.1)

 to protect its contents from un-
authorized access. Encryption applies to all strings and streams in the docu-
ment’s PDF file, but not to other object types such as integers and boolean
values, which are used primarily to convey information about the document’s
structure rather than its content. Leaving these values unencrypted allows ran-
dom access to the objects within a document, while encrypting the strings and
streams protects the document’s substantive contents.

Note:

When a PDF stream object (see Section 3.2.7, “Stream Objects”) refers to
an external file, the stream’s contents are not encrypted, since they are not part of
the PDF file itself. However, if the contents of the stream are embedded within
the PDF file (see Section 3.10.3, “Embedded Stream Objects”), they are encrypt-
ed like any other stream in the file.

Encryption is controlled by an

encryption dictionary

, which is the value of the

Encrypt

 entry in the document’s trailer dictionary (see Table 3.11 on page 61 of
the PDF Reference). If this entry is absent from the trailer dictionary, the docu-
ment is not encrypted. The entries shown in Table 3.12 are common to all en-
cryption dictionaries.

0

Encryption

The May 22 release of this document included three changes in this Encryption section:1) The maximum value of L when V has a value of 2;2) The bit position values in Table 3.14; and3) Changes in the number of iterations in Algorithms 3.2 and 3.3.This release, dated June 11, includes changes to Algorithms 3.4 and 3.5. Algorithm 3.4 was split into two -- one for Revision 2, and one for Revision 3. The algorithms following 3.4 were renumbered accordingly.

Encryption

10

June 11, 2001

TABLE 3.12 Entries common to all encryption dictionaries

KEY TYPE SEMANTICS

Filter

name

(Required)

 The name of the security handler for this document; see below.
Default value:

Standard

, for the built-in security handler. (Names for other
security handlers can be registered using the procedure described in Appen-
dix E.).

V

number (

Optional, value defaults to 0 if not present) A code specifying the algorithm
to be used in encrypting and decrypting the document:

Values indicating decryption algorithm
0 An alternate algorithm that is undocumented and no longer

supported, and whose use is strongly discouraged.

1 Algorithm 3.1 (see below).

2 [PDF 1.4] Algorithm 3.1 (see below), but allowing key lengths
greater than 40 bits.

3 [PDF 1.4] An unpublished algorithm allowing key lengths up to 128
bits. This algorithm is unpublished as an export requirement of the
U.S. Department of Commerce.

The default value of this entry if it is omitted is 0, but a value of 1 or
greater is strongly recommended.

Length integer (Optional, defaults to 40) Defined only when V is 2 or 3. Length of key, in
bits, used for encryption and decryption. The size must be a multiple of 8,
with a minimum value of 40 and maximum value of 128.

The encryption dictionary’s Filter entry identifies the file’s security handler, a
software module that implements various aspects of the encryption process and
controls access to the contents of the encrypted document. PDF specifies a stan-
dard security handler that all viewer applications are expected to support, but ap-
plications may optionally substitute alternate security handlers of their own. The
remaining contents of the encryption dictionary are determined by the security
handler, and may vary from one handler to another. Those for the standard secu-
rity handler are described below in Section 3.5.2, “Standard Security Handler.”

Unlike strings within the body of the document, those in the encryption dictio-
nary must be direct objects and are not encrypted by the usual methods. The se-

Encryption
11

June 11, 2001

curity handler itself is responsible for encrypting and decrypting strings in the
encryption dictionary, using whatever encryption algorithm it chooses.

Note: If the standard encryption methods provided by PDF are not sufficient to
their needs, document creators have two choices: they can provide an alternate,
more secure security handler or they can encrypt whole PDF documents them-
selves, bypassing PDF security entirely.

3.5.1 General Encryption Algorithm

PDF’s standard encryption methods use the MD5 message-digest algorithm (de-
scribed in Internet RFC 1321, The MD5 Message-Digest Algorithm; see the Bib-
liography) and a proprietary encryption algorithm known as RC4. RC4 is a
symmetric stream cipher—the same algorithm is used for both encryption and
decryption, and the algorithm does not change the length of the data.

Note: RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Adobe
Systems has licensed this algorithm for use in its Acrobat products. Independent
software vendors may be required to license RC4 in order to develop software
that encrypts or decrypts PDF documents. For further information, visit the RSA
Web site:
 http://www.rsasecurity.com
or send e-mail to:
 products@rsasecurity.com

The encryption of data in a PDF file is based on the use of an encryption key
computed by the security handler. Different security handlers can compute the
key in a variety of ways, more or less cryptographically secure. The key length
can vary dependent on the algorithm version that is specified by the V entry in the
encryption dictionary. The algorithm version is specified by the security handler
that is used to encrypt the document. The PDF 1.3 specification defined algo-
rithms up to version 1, allowing 40-bit key lengths. The PDF 1.4 specification
defines up to version 2 which allows variable-length keys. PDF’s Standard en-
cryption handler can use algorithm versions 1 and 2.

Algorithm 3.1 Encryption of data using an encryption key

1. Obtain the object number and generation number from the object identifi-
er of the string or stream to be encrypted (see Section 3.2.9, “Indirect Ob-

http://www.rsasecurity.com

Encryption
12

June 11, 2001

jects”). If the string is a direct object, use the identifier of the indirect
object containing it.

2. Treating the object number and generation number as binary integers, ex-
tend the original N-byte key to N+5 bytes by appending the low-order 3
bytes of the object number and the low-order 2 bytes of the generation
number in that order, low-order byte first. N is the key length in bytes,
which is always 5 (40 bits) for algorithm version 1, but may be as large as
16 (128 bits) for other algorithm versions.

3. Initialize the MD5 hash function and pass the result of step 2 as input to
the MD5 hash function.

4. Use the first N+5 bytes of the output from the MD5 function as the key
for the RC4 encryption function, along with the string or stream data to be
encrypted. If N+5 is greater than 16 then only the first 16 bytes are used
for the RC4 key. The output is the encrypted data to be stored in the PDF
file.

Stream data is encrypted after applying all stream encoding filters, and is de-
crypted before applying any stream decoding filters; the number of bytes to be
encrypted or decrypted is given by the Length entry in the stream dictionary.
Decryption of strings (other than those in the encryption dictionary) is done after
escape-sequence processing and hexadecimal decoding as appropriate to the
string representation described in Section 3.2.3, “String Objects.”

3.5.2 Standard Security Handler

PDF’s Standard security handler allows two passwords to be specified for a doc-
ument: an owner password and a user password. Correctly supplying either pass-
word allows a user to open the document, decrypt it, and display it on the screen.
Correctly supplying the owner password will give full access to a document.
Correctly supplying the user password will potentially provide a reduced set of
operations that can be performed on the document. Access information in the
document’s encryption dictionary specifies which of these operations, if any,
may be performed. The owner password must be supplied in order to change
these restrictions or the passwords themselves. The following operations are op-

Encryption
13

June 11, 2001

tionally permitted for Standard security handler 2 when a correct user password
is provided:

• Modifying the document’s contents

• Copying text and graphics from the document

• Adding or modifying text annotations (see Section 7.4 “Annotations”) and
interactive form fields (Section 7.6 “Interactive Forms”)

• Printing the document

The following additional operations are optionally permitted for Standard secu-
rity handler 3 when a correct user password is provided:

• Form fill-in and sign document

• Text inspection for accessibility

• Document assembly, including insertion, rotation, and deletion of pages and
creation of bookmarks and thumbnails

• Allow only printing that does not allow perfect digital copies, but which may
also result in degradation of output quality

Note: PDF cannot enforce the document access privileges specified in the en-
cryption dictionary. It is up to the implementors of PDF viewer applications to
respect the intent of the document creator by restricting access to an encrypted
PDF file according to the passwords and permissions contained in the file.

Note: If the owner and user passwords are the same, the document is always
opened with user access privileges. It is therefore impossible in these circum-
stances to obtain owner privileges for the document.

Encryption Dictionary

Table 3.13 shows the encryption dictionary entries for the standard security
handler (in addition to those in Table 3.12). The values of the O and U entries are
used to determine whether a password string supplied by the user is the correct
owner password, user password, or neither. If the user password is supplied, the
P entry determines which operations are to be permitted. A document is encrypt-
ed if an owner password, user password, or any access restriction was specified

Encryption
14

June 11, 2001

when the document was created. However, the user is prompted for a password
on opening the document only if the document has a user password; this can be
determined by testing the empty string as the user password (see Algorithm 3.5
below).

The value of the encryption dictionary’s P entry is an unsigned 32-bit integer
containing a set of flags specifying which access privileges should be granted
when the document is opened with the user password. Table 3.14 shows the
meanings of these flags. Bit positions within the flag word are numbered from 1
(low-order) to 32 (high-order); a 1-bit in any position enables the corresponding
access privilege. Bits 17 through 21 are new to the revision 3 implementation of
the Standard security handler.

Note: PDF integer objects in fact are represented internally in signed twos-
complement form. Since all the reserved high-order flag bits in the encryption
dictionary’s P value are required to be 1, the value must be specified as a nega-
tive integer. For example, the value −44 allows printing and copying but disal-
lows modifying the content and annotations.

TABLE 3.13 Additional encryption dictionary entries for the standard security
handler

KEY TYPE VALUE

R number (Required) The revision number of the Standard security handler that is re-
quired to interpret this dictionary. The revision number should be set as fol-
lows:

2: for documents that do not require the new encryption features of PDF
1.4, meaning documents encrypted with V entry value of 1 and using
permission bits 1– 6

3: for documents requiring the new encryption features of PDF 1.4, mean-
ing documents encrypted with V entry value of 2 or greater or that use
the extended permission bits 17–21.

O string (Required) A 32-byte string used in determining whether a valid owner pass-
word was entered. Contains an encrypted version of the padded user pass-
word (see step 1 of Algorithm 3.2, below).

U string (Required) A 32-byte string used in determining whether a valid user pass-
word was entered. Contains an encrypted version of the fixed padding string
shown in step 1 of Algorithm 3.2 below.

Encryption
15

June 11, 2001

P integer (Required) A set of flags specifying which operations are permitted when the
document is opened with the user password (see table 3.14).

Implementation note Acrobat version 4.0 and PDF version 1.3 and earlier support Standard
security handler revision R with a value of 2. Acrobat 4.05 and PDF 1.4
supports revision 3.

TABLE 3.14 User password access privileges

BIT POSITION ENABLED CAPABILITY

1–2 Reserved; must be 0.

3 Print document.

4 Modify contents of document (other than text annotations, but in-
cluding interactive form fields).

5 Copy text and graphics from document.

6 Add or modify text annotations, modify interactive form fields and,
if bit 4 is also set, allow authoring of interactive form fields and sig-
natures.

7–8 Reserved; must be 1.

9 (Revision 3 only) Fill in existing interactive form fields (including
signature fields), even if bit 6 is clear.

10 (Revision 3 only) Extract text and graphics for sole purpose of mak-
ing the contents of the document acccessible through assistive tech-
nologies such as screen readers or Braille output devices.

11 (Revision 3 only) Assemble the document (insert, rotate, or delete
pages and create bookmarks or thumbnails), even if bit 4 is clear.

12 (Revision 3 only) Print the document to a representation from
which a faithful digital copy of the PDF content could be generat-
ed. When this bit is clear (and bit 3 is set), printing is limited to a
low-level representation of the appearance, possibly of degraded
quality. (See implementation note 118 in Appendix H.)

13–32 (Revision 3 only) Reserved; must be 1.

Encryption
16

June 11, 2001

Key Generation Algorithms

As noted earlier, one function of a security handler is to generate an encryption
key for use in encrypting and decrypting the contents of a document. Given a
password string, the standard security handler computes an encryption key as
shown in Algorithm 3.2.

Algorithm 3.2 Computing an encryption key

1. Pad or truncate the password string to exactly 32 bytes. If the password
string is more than 32 bytes long, use only its first 32 bytes; if it is less
than 32 bytes long, pad it by appending the required number of additional
bytes from the beginning of the following padding string:

< 28 BF 4E 5E 4E 75 8A 41 64 00 4E 56 FF FA 01 08
2E 2E 00 B6 D0 68 3E 80 2F 0C A9 FE 64 53 69 7A >

That is, if the password string is n bytes long, append the first (32 − n) bytes of
the padding string to the end of the password string. If the password is omitted,
treat it as an empty (zero-length) string and substitute the entire padding string in
its place.

2. Initialize the MD5 hash function and input the result of step 1 to this
function.

3. Input the value of the encryption dictionary’s O entry to the hash function.
(Algorithm 3.3 shows how the O value is computed.)

4. Treat the value of the P entry as an unsigned 4-byte integer and pass these
bytes to the MD5 hash function, low-order byte first.

5. Pass the first element of the file’s file identifier to the MD5 hash function
(see Section 8.3, “File Identifiers”).

6. Finish the MD5 hash and get the output of the hash. If revision 3, then
loop 50 additional times, taking the output of the hash and using this as
input into a new MD5 hash. The first N bytes of the output from the final
MD5 hash constitute the encryption key. N is the key length as defined by
the Length attribute in the encryption dictionary. For revision 2, N is al-
ways 5.

This algorithm, when applied to the user password, produces the encryption key
used to encrypt or decrypt string and stream data according to Algorithm 3.1 on
page 11. Parts of this algorithm are also used in the algorithms described below.

Encryption
17

June 11, 2001

In addition to the encryption key, the standard security handler must provide the
contents of the encryption dictionary (Tables 3.12 and 3.13). The values of the
Filter, R, P, and V entries are straightforward, but the computation of the O (own-
er password) and U (user password) entries requires further explanation.
Algorithms 3.3 and 3.4 show how to compute the values of these entries.

Algorithm 3.3 Computing the O (owner) value in the encryption dictionary

1. Pad or truncate the owner password string as described in step 1 of Algo-
rithm 3.2. If there is no owner password, use the user password instead.
(See implementation note 16 in Appendix H.)

2. Pass the result of step 1 as input to the MD5 hash function. If the R entry
is 3, then loop 50 additional times, taking the output of the hash and using
this as input into a new MD5 hash.

3. Create an RC4 key using the first N bytes of the MD5 output. N is the key
length as defined by the Length entry in the encryption dictionary. When
R is 2, N is always 5.

4. Pad or truncate the user password string as described in step 1 of Algo-
rithm 3.2.

5. Encrypt the padded user password string with the RC4 algorithm, using
the key obtained in step 3. If R is 3, then loop an additional 19 times over
the RC4 algorithm with the data output of each iteration being the data in-
put for the next iteration. For each iteration (1 through 19), each byte of
the key obtained in step 3 is XOR’d with the single-byte value of the loop
counter.

6. Store the result of step 5 as the value of the O entry in the encryption dic-
tionary.

Algorithm 3.4 Computing the U (user) value in the encryption dictionary n
(Revision 2)

1. Create an encryption key based on the user password string, as described
in Algorithm 3.2.

2. Encrypt the 32-byte padding string shown in step 1 of Algorithm 3.2, us-
ing the RC4 algorithm with the encryption key from the preceding step.

3. Store the result of step 2 as the value of the U entry in the encryption dic-
tionary.

Encryption
18

June 11, 2001

Algorithm 3.5 Computing the encryption dictionary’s U (user password) value
(Revision 3)

1. Create an encryption key based on the user password string, as described
in Algorithm 3.2.

2. Initialize the MD5 hash function and pass the encryption key from step 1
as input to this function.

3. Pass the first element of the file’s file identifier array (the value of the ID

entry in the document’s trailer dictionary; see Table 3.12 on page 67) to
the hash function and finish the hash.

4. Encrypt the 16-byte result of the hash, using the RC4 algorithm with the
encryption key from step 1.

5. Do the following 19 times: Take the output from the previous RC4 en-
cryption and pass it as input into a new RC4 encryption; use an encryp-
tion key generated by taking each byte of the original encryption key
(obtained in step 1) and performing an XOR (exclusive or) operation be-
tween that byte and the single-byte value of the iteration counter (from 1
to 19).

6. Store the output from the final RC4 encryption as the value of the U entry
in the encryption dictionary.

The standard security handler uses Algorithms 3.6 and 3.7 to determine whether
a supplied password string is the correct user or owner password. Note too that
Algorithm 3.6 can be used to determine whether a document’s user password is
the empty string, and therefore whether to suppress prompting for a password
when the document is opened.

Algorithm 3.6 Checking the user password

1. Compute an encryption key from the supplied password string, as de-
scribed in Algorithm 3.2.

2. Decrypt the value of the encryption dictionary’s U entry, using the RC4
algorithm with the encryption key computed in step 1.

3. (Revision 2) If the result of step 2 is identical to the fixed padding string
shown in step 1 of Algorithm 3.2, the password supplied is the correct
user password.

(Revision 3) Do the following 19 times: Take the output from the previ-
ous RC4 encryption and pass it as input into a new RC4 encryption; use
an encryption key generated by taking each byte of the original encryp-

Encryption
19

June 11, 2001

tion key (obtained in step 1) and performing an XOR (exclusive or) oper-
ation between that byte and the single-byte value of the iteration counter
(from 19 to 1). If the output from the final RC4 encryption is identical to
result of step 4 of Algorithm 3.5, the password supplied is the correct user
password.

Once it is determined that the password supplied is the correct user password, the
key obtained in step 1 of the above algorithm can be used to decrypt the docu-
ment using Algorithm 3.1.

Algorithm 3.7 Checking the owner password

1. Compute an encryption key from the supplied password string, as de-
scribed in steps 1 to 4 of Algorithm 3.3.

2. Decrypt the value of the encryption dictionary’s O entry, using the RC4 al-
gorithm with the encryption key computed in step 1.

3. (Revision 3 only) Do the following 19 times: Take the output from the pre-
vious RC4 encryption and pass it as input into a new RC4 encryption; use
an encryption key generated by taking each byte of the encryption key ob-
tained in step 1 and performing an XOR (exclusive or) operation between
that byte and the single-byte value of the iteration counter (from 19 to 1).

4. Use Algorithm 3.2 to compute an encryption key from the decrypted val-
ue obtained as output from the last RC4 encryption.

5. Decrypt the value of the encryption dictionary’s U entry, using the RC4 al-
gorithm with the encryption key computed in step 4.

6. If the result of step 5 is identical to the fixed padding string shown in
step 1 of Algorithm 3.2, the password supplied is the correct owner pass-
word.

Once it is determined that the password supplied is the correct owner password,
the key obtained in step 4 of the above algorithm can be used to decrypt the doc-
ument using Algorithm 3.1.

Encryption
20

June 11, 2001

21

June 11, 2001

[Applies to Section 3.6.1 “Document Catalog;”]

1 Introduction

PDF 1.4 allows the addition of an optional Version key to the catalog dictionary
to indicate the PDF language version number used in the file. This makes it pos-
sible to perform an incremental update of a PDF file when it is necessary to spec-
ify an updated version number of the PDF language used in the document.

1.1 Terminology

Version number – The phrase version number refers to the version of the PDF
language specification that a PDF document conforms to i.e. the PDF language
version as currently specified in the document’s header.

Incremental update – As described in section 3.4.5 of the PDF 1.3 language
specification, a PDF document can be altered by appending information to the
end of the file without altering the existing file contents. This is known as an in-
cremental update to the file (and also known as an append save or incremental
save).

2 Background

It is currently impossible to perform an incremental update of a PDF file if the
version number must be updated. The version number is only specified in the
header, the very first line of the file; to modify the version number you must at
least alter the first few bytes of the file (and at most re-write the file entirely).

0Adding Language
Version to the Catalog

Adding Language Version to the Catalog2
22

June 11, 2001

Note that the header is the only portion of a PDF file that cannot be updated in-
crementally.

Note: An incremental update strategy should allow the update to be completely
reversed by simply removing the data appended to the file during the update. The
current specification prevents such “roll-back” if the version number must be up-
dated; updating the version number is guaranteed to completely obliterate the
previous version number. It’s desirable to find a solution which allows a com-
plete version number history to be maintained for documents which are incre-
mentally updated.

2.1 Digital signatures

The digital signature design was based on the notion that idea that once a file was
signed, all further modifications to the file would be performed using incremental
updates to ensure that existing bytes are not altered. Altering any existing bytes
in the file will invalidate any existing digital signatures in the file. Without a lan-
guage change to either the version numbering scheme or the digital signatures
mechanism, it will continue to be impossible to update the version number of a
document without invalidating existing signatures. It is too late to change the ex-
isting digital signature definition at this point because of the number of signed
documents already authored.

2.2 Saving files to non-traditional file systems

Current Acrobat implementations never directly modify existing bytes in a file.
When saving a file, Acrobat either performs an incremental update or writes out a
brand new file from scratch and then renames the new file to replace the old file.
This follows accepted practices for minimizing the risk of data loss.

This methodology assumes that a temporary file can be written out and then re-
named to replace the existing file. These assumptions cannot be met in certain
contexts, such as when viewing a file across an HTTP connection or working
with a file using OLE embedding (a Windows-specific technology). In particular
one cannot overwrite the contents of the original file using a renaming scheme in
these contexts. Indeed, there appears to be no one scheme for performing a full
rewrite of the existing file that works across all of these contexts; a separate strat-
egy must be developed and implemented in each case (with a good deal of effort
involved for each). Extending the existing incremental update logic to these con-

Adding Language Version to the Catalog3
23

June 11, 2001

texts is relatively easy by comparison, but currently this strategy fails when the
document’s version number must be changed.

3 Adding Language Version to the Catalog

PDF 1.4 allows the addition of an optional Version key to the catalog dictionary
to indicate the PDF language version number used in the file.

TABLE 1 Addition to Table 3.15 Entries in the catalog dictionary

KEY NAME TYPE DESCRIPTION

Version number (Optional) The version of the PDF specification the file
conforms to (e.g. 1.3, 1.4). If not present the document is assumed
to conform to the version specified in the file’s header. If present
the document conforms to either the version specified by this key
or in the header, whichever is greater.

In contexts where only incremental updates can be performed, a PDF author can
update the version number by inserting a Version key into the catalog with the
new version number, leaving the header intact.

When the version number specified in the file header and the Version key dis-
agree as to the version number, the greater of the two values is taken as the effec-
tive version number. This is to accommodate applications that may have
modified PDF 1.4 documents before full support for this change was available. It
is possible for such software to roll the version number in the header up to
PDF 1.4, while leaving the Version key in the catalog at a lower number.

3.1 Compatibility Notes

Acrobat 5.0 will avoid adding a Version key in the Catalog unless it has to. Once
it has done so, however, it will never remove the Version key. For documents
containing a Version key the implementation will attempt to ensure that the ver-
sion number in the header matches the value of the Version key; if this is not
possible it will at least ensure that the value of the Version key exceeds the value
in the header.

Adding Language Version to the Catalog4
24

June 11, 2001

Consumers which are not PDF 1.4 savvy will continue to look for the version
number only at the top of the file and will not see the updated version number
specified in the Catalog. Take Acrobat 4.0 as an example of an application de-
signed to handle version numbers up to 1.3. In theory the Version key in the Cat-
alog will have a value of 1.4 or greater, so the interesting cases are:

• Header specifies 1.2 or earlier, Version key specifies 1.4. If the user modifies
the document Acrobat 4.0 will attempt to update the version number to 1.3.
Since it believes the document is currently at 1.2 or earlier it will not allow an
incremental update of the file when saving. Instead it will rewrite the file with a
new header indicating version number 1.3. The Version key in the Catalog,
however, will be maintained at a value of 1.4.

• Header specifies 1.3 or greater, Version key specifies 1.4 If the user modifies
the document Acrobat 4.0 will allow an incremental update. The value of the
Version key will be maintained at a value of 1.4.

In both of the above cases certain errors will be reported differently. If the Acro-
bat 4.0 viewer knew that the version number was really greater than 1.3 it would
include the following string in some of its error messages:

 This file contains information not understood by the viewer.

The user would also be allowed to suppress further error messages of this type.
Since the viewer will not know that the version is actually 1.4 this message will
not be shown and the user will not be able to suppress further errors.

Similar anomalies would occur when opening a file in earlier Acrobat viewers.

4 Web behavior

The version number would need to be available very early when opening a PDF
file. The Catalog dictionary is already placed near the front of a linearized PDF
file and so should be readily available even when downloading a file across an
HTTP connection.

25

June 11, 2001

[Applies to Section 3.6.3 “Name Dictionary”]

1 Included Data

PDF 1.3 allows PDF documents to refer to the contents of a file, which may be
embedded within the document or may reside externally. In either case, the file
specification associates a location in a file system with the referenced data.

PDF 1.4 allows the embedding of data independent of any file system: the data’s
presence in the PDF document is all that is required. This can be done using an
embedded file stream referenced by a private entry in a dictionary, but PDF 1.4
defines a standard location for the data, using the Data key in the document’s
name dictionary (see Table 3.18 Entries in the name dictionary, in Section 3.6.3
“Name Dictionary”).

The mapping from user-defined strings to an embedded file stream is specified
by the Data key in a document’s name dictionary. The specified name tree maps
user-defined strings to embedded file streams containing the corresponding user-
defined data.

TABLE 1 Additions to Table 3.18 Entries in a name dictionary

KEY TYPE VALUE

Data name tree (Optional) A name tree that maps strings to embed-
ded file streams.

0Included Data

Included Data1
26

June 11, 2001

The relationship between the name of the data object and the embedded file is an
artificial one for data management purposes. This allows embedded files to be
easily identified by the author of the document in much the same way that the
JavaScript name tree associates names with document level JavaScripts.

27

June 11, 2001

[Applies to Section 3.72 “Resource Dictionaries,” and Table 3.20
“Entries in a resource dictionary”]

1 Procedure Sets; Obsolete for PDF 1.4

For PDF 1.4 files, the ProcSet resource is obsolete, though it is still required for
PDF files of PDF 1.3 or earlier.

It is recommended that applications that generate PDF files specify:

 /ProcSet [/PDF/Text/ImageB/ImageC/ImageI]

that is, the full complement, unless they have explicit knowledge that fewer proc-
sets are needed.

0ProcSet Resource

ProcSet Resource1
28

June 11, 2001

29

June 11, 2001

[Section 4.5 “Color Spaces”]

1 Support for Separation and DeviceN Is Removed

Separation and DeviceN colorants are not supported for additive color devices.

0Graphics

Graphics1
30

June 11, 2001

31

June 11, 2001

[Applies to Chapter 5 Fonts; Section 5.1.3 “Glyph Positioning and
Metrics”]

1 Glyph Widths Override

Implementation note:

Acrobat 5 uses the glyph widths stored in the PDF file to override the widths of
glyphs in the font itself, which improves the consistency of the display and print-
ing of the document. This addresses the situation where a document is created
with a font whose widths have been intentionally altered, but the same font on
the viewer’s system has not been altered.

The font with altered glyph widths might be embedded or not:

• If the font is embedded, the widths in the font should exactly match the widths
in the Widths array in the PDF file.

• If the font is not embedded: Acrobat will override the widths in the font used in
the viewer’s system, with the widths specified in the Widths array.

However, it is important that the glyph width override feature not be used for any
purpose other than to represent an actual font that has been modified. The prob-
lem is that consumers of PDF files depend on widths in many different contexts:
viewing, printing, fauxing, reflow, word-finding, and the like. Those processes
may malfunction if arbitrary adjustments are made to the widths, and they don’t
represent the actual glyph widths intended by the PDF producer.

0 Glyph Widths;
Predefined CMaps

Glyph Widths ; Predefined CMaps2
32

June 11, 2001

It is recommended that diagnostic and preflight tools check the PDF widths
against the glyph widths of an embedded font, and flag any inconsistencies. It
might also be helpful if the tools could optionally check for consistency with
non-embedded fonts; this is useful for checking a PDF file immediately after it is
produced, when the original fonts are still available.

2 Predefined CMaps

[Applies to Section 5.6.4 “CMaps”]

2.1 Standard Character Collections for CID-keyed Fonts

Adobe Acrobat 4.0 is aware of several standard character collections, which are
used as the basis for searching and copy-and-paste operations. A character col-
lection is defined as a combination of the /Registry, /Ordering, and /Supplement
fields in a CIDFont’s /CIDSystemInfo dictionary. The first two fields are string
objects, and the third is an integer value. The standard character collections that
are recognized by Adobe Acrobat 4.0 for these purposes are as follows:

Adobe-GB1-2 (Adobe Tech Note #5079)
Adobe-CNS1-0 (Adobe Tech Note #5080)
Adobe-Japan1-2 (Adobe Tech Note #5078)
Adobe-Korea1-1 (Adobe Tech Note #5093)

Note: The Supplement numbers indicate the highest supplement number sup-
ported by the product release. Some CMaps may be at a lower supplement num-
ber because they do not reference glyphs defined in a higher supplement.

Adobe Acrobat 5.0 recognizes the same character collections, but with greater
/Supplement values:

Adobe-GB1-4 (Adobe Tech Note #5079)
Adobe-CNS1-3 (Adobe Tech Note #5080)
Adobe-Japan1-4 (Adobe Tech Note #5078)
Adobe-Korea1-2 (Adobe Tech Note #5093)

Predefined CMaps2
33

June 11, 2001

2.2 New CMaps for PDF 1.4

Several new CMaps have been added to the core Predefined CJK CMaps for a
CIDFont, as shown in Table 1.

Note: The CMaps described in this section refer to the CMap files associated
with CIDFont files, and do not refer to the “cmap” tables included in TrueType
fonts. Both CMaps and cmaps specify glyph encodings, but they differ in struc-
ture and format.

TABLE 1 Additions to Table 5.14 Predefined CJK CMap names

NAME DESCRIPTION

GBKp-EUC-H Identical to GBK-EUC-H except that the single-byte range (ASCII)
uses proportional-width glyphs instead of half-width ones. Sup-
ports Microsoft’s Code Page 936. Code point 0x24 is mapped to a
dollar sign ($), instead of the yuan glyph.

GBKp-EUC-V Vertical version of GBKp-EUC-H.

GBK2K-H Supports the GB 18030-2000 character set and its mixed one-,
two-, and four-byte encoding. Also supports Microsoft’s Code Page
936. Code point 0x24 is mapped to a dollar sign ($), instead of the
yuan glyph.

GBK2K-V Vertical version of GBK2-H.

HKscs-B5-H Supports the Hong Kong SCS (Supplementary Character Set),
which is an extension to the Big Five character set and encoding.

HKscs-B5-V Vertical version of HKscs-B5-H.

Note: No new CMaps were added for the Japanese or Korean Character Collec-
tions.

2.3 Changes to Existing CMaps

PDF 1.4 adds new Unicode entries to CID mappings for the following CMaps:

UniGB-UCS2-H
UniCNS-UCS2-H

Glyph Widths ; Predefined CMaps3
34

June 11, 2001

UniJIS-UCS2-H
UniJIS-UCS2-V

These new mappings are for mapping Unicode codepoints to CID numbers for
supplements that have been added to the Adobe-GB1, and Adobe-CNS1, and
Adobe-Japan1 character collections. Only new mappings have been added; none
of the mappings that existed in early versions of the CMaps have been changed.
The UniGB-UCS2-H CMap includes mappings to CIDs in Adobe-GB1 Supple-
ments 0 through 4; previously only supplements 0 through 2 were supported. The
UniJIS-UCS2-H/V CMaps now include mappings to CIDs in Adobe-Japan1
Supplements 0 through 4; previously only supplements 0 through 2 were sup-
ported. The UniCNS-UCS2-H CMap contains mappings for Adobe-CNS1 sup-
plements 0 through 3; previously only supplement 0 was supported.

2.4 Backward Compatibility Issues

If an Acrobat viewer version 4.05 or earlier displays a PDF that uses one of the
new CMaps, an error will be displayed indicating the CMap is not found.

No characters will be displayed for the newly added code points in the modified
CMaps in Acrobat versions 4.05 or earlier.

Note: If a font is used that references one of the predefined CMaps, and its CMap
has a larger /Supplement number than the standard one supported for the PDF
language version being used, the CMap file should be embedded in the docu-
ment, whether or not the font is embedded.

3 PDF CMaps and Supplement Numbers

The following table lists the CMaps supported by previous versions (1.2 and 1.3)
of the PDF language, and shows the current supplement number of Character
Collection for each CMap.

TABLE 2 PDF 1.2 CMaps and supplement numbers

Adobe-GB1 Supplement
GB-EUC-H 0
GB-EUC-V 0

PDF CMaps and Supplement Numbers3
35

June 11, 2001

GBpc-EUC-H 0

Adobe-CNS1 Supplement
B5pc-H 0
B5pc-V 0
ETen-B5-H 0
ETen-B5-V 0
CNS-EUC-H 0
CNS-EUC-V 0

Adobe-Japan1 Supplement
83pv-RKSJ-H 1
90ms-RKSJ-H 2
90ms-RKSJ-V 2
90pv-RKSJ-H 1
Add-RKSJ-H 1
Add-RKSJ-V 1
Ext-RKSJ-H 2
Ext-RKSJ-V 0
H 1
V 0

Adobe-Japan2 Supplement
Hojo-EUC-H 0
Hojo-EUC-V 0

Adobe-Korea1 Supplement
KSC-EUC-H 0
KSC-EUC-V 0
KSCms-UHC-H 1
KSCms-UHC-V 1
KSCpc-EUC-H 0
KSC-Johab-H 1
KSC-Johab-V 1

Glyph Widths ; Predefined CMaps3
36

June 11, 2001

TABLE 3 PDF 1.3 CMaps and supplement numbers

Adobe-GB1 Supplement
GB-EUC-H 0
GB-EUC-V 0
GBpc-EUC-H 0
GBpc-EUC-V 0
GBK-EUC-H 2
GBK-EUC-V 1
UniGB-UCS2-H 2
UniGB-UCS2-V 1

Adobe-CNS1 Supplement
B5pc-H 0
B5pc-V 0
ETen-B5-H 0
ETen-B5-V 0
ETenms-B5-H 0
ETenms-B5-V 0
CNS-EUC-H 0
CNS-EUC-V 0
UniCNS-UCS2-H 0
UniCNS-UCS2-V 0

Adobe-Japan1 Supplement
83pv-RKSJ-H 1
90ms-RKSJ-H 2
90ms-RKSJ-V 2
90msp-RKSJ-H 2
90msp-RKSJ-V 2
90pv-RKSJ-H 1
Add-RKSJ-H 1
Add-RKSJ-V 1
EUC-H 1
EUC-V 1
Ext-RKSJ-H 2
Ext-RKSJ-V 2
H 1
V 0
UniJIS-UCS2-H 2

PDF CMaps and Supplement Numbers3
37

June 11, 2001

UniJIS-UCS2-V 2
UniJIS-UCS2-HW-H 2
UniJIS-UCS2-HW-V 2

Adobe-Korea1 Supplement
KSC-EUC-H 0
KSC-EUC-V 0
KSCms-UHC-H 1
KSCms-UHC-V 1
KSCms-UHC-HW-H 1
KSCms-UHC-HW-V 1
KSCpc-EUC-H 0
UniKS-UCS2-H 1
UniKS-UCS2-V 1

TABLE 4 PDF 1.4 CMaps and Supplement numbers

(CMaps added for PDF 1.4 are marked with an asterisk)

Adobe-GB1 Supplement
GB-EUC-H 0
GB-EUC-V 0
GBpc-EUC-H 0
GBpc-EUC-V 0
GBK-EUC-H 4
GBK-EUC-V 1
UniGB-UCS2-H 2
UniGB-UCS2-V 1
GBKp-EUC-H* 1
GBKp-EUC-V* 0
GBK2K-H* 4
GBK2K-V* 4

Adobe-CNS1 Supplement
B5pc-H 0
B5pc-V 0
ETen-B5-H 0
ETen-B5-V 0

Glyph Widths ; Predefined CMaps3
38

June 11, 2001

ETenms-B5-H 0
ETenms-B5-V 0
CNS-EUC-H 0
CNS-EUC-V 0
UniCNS-UCS2-H 3
UniCNS-UCS2-V 0
HKscs-B5-H* 3
HKscs-B5-V* 0

Adobe-Japan1 Supplement
83pv-RKSJ-H 1
90ms-RKSJ-H 2
90ms-RKSJ-V 2
90msp-RKSJ-H 2
90msp-RKSJ-V 2
90pv-RKSJ-H 1
Add-RKSJ-H 1
Add-RKSJ-V 1
EUC-H 1
EUC-V 1
Ext-RKSJ-H 2
Ext-RKSJ-V 2
H 1
V 0
UniJIS-UCS2-H 4
UniJIS-UCS2-V 2
UniJIS-UCS2-HW-H 4
UniJIS-UCS2-HW-V 4

Adobe-Korea1 Supplement
KSC-EUC-H 0
KSC-EUC-V 0
KSCms-UHC-H 1
KSCms-UHC-V 1
KSCms-UHC-HW-H 1
KSCms-UHC-HW-V 1
KSCpc-EUC-H 0
UniKS-UCS2-H 1
UniKS-UCS2-V 1

39

June 11, 2001

[Applies to Section 3.6.1 “Document Catalog” and Section 4.5.4
“CIE-Based Color Spaces”]

1 Introduction

This section describes the PDF 1.4 means for identifying the color characteristics
of the intended output device associated with a PDF document. This is accom-
plished through an extension of the PDF Language syntax which supplements
that found in the PDF Reference, version 2.0. All constructs described herein are
backward compatible with the PDF 1.3 specification. As such, they may be in-
cluded in compliant PDF 1.3 files.

Most sections in this document contain information that will be added to, or re-
place the text in the PDF Reference, version 2.0. Other sections in this document
introduce new material that will be added to the PDF 1.4 specification.

2 Use of OutputIntents

The OutputIntents array is a repository of information about the color repro-
duction characteristics of one or more intended output devices. In some work-
flows this data is provided for informational purposes only. There is no
expectation that a PDF production tool would automatically convert source ICC
colorant values referring to the same base color space to the specified output
space prior to generating output. Nor is it necessarily desirable that they do so
when working with CMYK data which is tagged with a source ICC profile only
for the purposes of characterization.

0Output Intents for
Color Critical

Workflows

Output Intents for Color Critical3
40

June 11, 2001

Note: The 4-3-4 transformation performed in a CMYK conversion is likely to
produce a loss of fidelity in the black component information.

It is possible that the DestOutputProfile of an output intent dictionary be used
as a destination profile when converting from source color spaces which are not
derived from the same base colorspace. It is possible, but not required that a PDF
reading application use a profile or characterization data stored in an output in-
tent dictionary as a target profile. Acrobat 5.0 will not make use of the DestOut-
putProfile out of the box. However, a plug-in developer could develop a tool to
do so.

Output intent information may vary depending on expected reproduction work-
flow and the tools at the production house. For instance, one print production fa-
cility may accept PDF/X-1 compliant files and have tools for processing them.
Another facility may use custom Acrobat plug-ins to implement their RGB
workflow for document distribution on the web. Each of these scenarios may re-
quire different sets of output characterization data. Furthermore, it is possible
that one PDF file may be distributed unmodified to multiple vendors for produc-
tion. This format allows for the definition of multiple output intent dictionaries
that may be stored simultaneously in the OutputIntents array. It is expected
that the purchaser of final output and service provider have prior agreement on
which set of information will be used in a particular production run. The lan-
guage specification intentionally does not provide a selector specifying the out-
put intent dictionary to be used at any given time.

The output intent dictionaries supplement rather than replace information found
in an ICCBased color space or a default colorspace. These existing mechanisms
are specifically used to describe the characteristics of source color component
values. Output intent information used in combination with the aforementioned
source profiles will provide the capability to convert ICCBased data to that re-
quired for a specific output condition and/or enable the display and/or proofing
of the intended output.

3 Defining OutputIntents

3.1 Additions to the Catalog

The OutputIntents array found in the catalog describes one or more possible
output conditions for the entire document. Each output condition is identified

Defining OutputIntents3
41

June 11, 2001

with a separate dictionary entry in the OutputIntents array. The individual out-
put intent dictionaries found in the array may vary in form and content. Each
subordinate output intent dictionary must contain a value for the S key which is
used to uniquely identify the form and content.

TABLE 1 Additions to Table 3.15 Entries in the catalog dictionary

KEY TYPE SEMANTICS

OutputIntents Array (Optional) Describes one or more intended out-
put conditions applicable to the entire docu-
ment.

3.2 Known forms of Output Intent Dictionaries

Below, the known forms of output intent dictionaries are described. The form
and content of various output intent dictionaries will be uniquely identified by
the value in the S key which is required. The value for the S key should conform
to the guidelines described in Appendix E.

Definition of PDF/X Output Intent Dictionary

The table below describes one form of an output intent component dictionary. It
contains the information used by a PDF/X based workflow system. These con-
tents will be found associated with the S key having a value of GTS_PDFX in the
output intent dictionary. This document describes the general syntax require-
ments for use of a PDF/X output intent dictionary. The PDF/X family of interna-
tional standards (ISO 15930) identifies multiple conformance levels. At any
level, the PDF/X standard may prescribe further restrictions on the use of certain
keys and their associated semantics. Compliance with such standards requires
that precedence be given to the requirements stated therein.

The PDF/X family of international standards allows PDF creators to include a
specific output profile or identify a printing condition by name. Use of a profile
explicitly describes the color capabilities of the intended output device insuring
that the intended printing condition matches, or is appropriate for, the named
condition. The ICC Characterization Data Registry of standard printing condi-

Output Intents for Color Critical3
42

June 11, 2001

tions describes printing conditions for which a set of characterization data is sep-
arately identified. When the OutputConditionIdentifier field is present in a
GTS_PDFX output intent dictionary, the consuming workflow system is respon-
sible for insuring that the intended output condition matches or is appropriate for
the named condition.

When all source data in the page content is characterized and the contents of the
OutputConditionIdentifier match an entry in an industry standard output con-
dition registry, such as the ICC Characterization Data Registry of standard print-
ing conditions, inclusion of the profile data in the DestOutputProfile key is
optional. If a non-standard condition is identified, such as Custom, an ICC profile
shall be included in the DestOutputProfile and a free form description is re-
quired in the Info key. It is recommended that creators provide a human readable
description in the OutputCondition in order facilitate display in a user interface.

The device to PCS (AToB) transform found in a DestOutputProfile can be used
to enable the remapping of the uncharacterized source color values having a sim-
ilar base color space to some other destination color space. A typical use of this
would be for screen preview or hardcopy proofing. The default behavior of the
Acrobat 5.0 application does not make use of this mechanism.

TABLE 2 PDF/X OutputIntent Dictionary (New for PDF 1.4)

KEY TYPE SEMANTICS

Type Name (Required) Object type. The value must be OutputIntent

S Name(Required) The output intent subtype. The remaining entries below ap-
ply to this type. At present, GTS_PDFX is the only valid type. Future exten-
sions may introduce other types, which will most likely have a different set
of additional entries.

DestOutputProfile ICCProfile/stream (Optional in presence of OutputConditionIdentifier.
Otherwise required.) Any valid bi-directional ICC profile
which describes the transformation to device colorants.

This is not an ICCBased colorspace definition, but rather an ICC Profile
stream as described in table 4.16. When used in this con-
text the restriction described therein for output colorspaces
are applicable.

Changes to restriction on ICC profile4
43

June 11, 2001

OutputConditionIdentifier String (Required) Identification of the intended output condition. It may be
the name of a printing condition maintained in an industry
standard registry. This field should be human or machine
readable. It may be used for presentation in the user inter-
face when the OutputCondition key is not defined.

The value Custom is recommended for situations where the condition is not
an established standard. This indicates that the consuming
application should use information in the Info key to fur-
ther identify the intent.

RegistryName String (Optional) A string specifying the registry where the OutputCondi-
tionIdentifier is defined. Conventionally, this is a URI.

OutputCondition TextString(Optional) Concise identification of the output condition in the form
of a text string that is human readable. It is the intended
and preferred key for use in user interface presentation of
this information. It may be localized.

Info TextString (Optional) Additional information or comments about the
output condition.

4 Changes to restriction on ICC profile stream attributes

The existing description of table 4.16 and associated text in the PDF Reference,
version 2.0, identifies a number of restrictions on the contents of an ICC profile
stream which arise from the need to use it as a source color space. Those restric-
tions do not apply to a profile used as a DestOutputProfile.

The following tables and paragraphs describe additions and changes to the exist-
ing reference material.

TABLE 3 Modifications to Table 4.16 Entries in an ICC profile stream dictionary

KEY TYPE SEMANTICS

Alternate Array or Name Note: Change to Optional and add the following to the beginning of the de-
scription:

(Optional) An alternate source color space to be used in case the one
specified in the stream data is not supported.

Note: The following will be added at the start of the second paragraph:

Output Intents for Color Critical4
44

June 11, 2001

Note that there is no conversion of source color data when using the al-
ternate color space.

Note: Add the following to the end of the second paragraph:

The alternate value is ignored when the stream describes an output col-
orspace.

Last paragraph on page 175

The first sentence of the paragraph will be reworded as follows:

When the ICCBased color space is being used as a source color space, the “to-
CIE” profile information (AtoB in ICC terminology) is used; The “from CIE”
(BToA) information is used only for destination profiles such as those found in
the OutputIntents entry of the catalog.

Changes to restriction on ICC profile4
45

June 11, 2001

Example OutputIntents array

Example 4.1 OutputIntents Array using Industry Standard Identifier
24 0obj % ICC Profile stream
<<
/N 4
/Length 1605
/Filter/ASCIIHexDecode
>>
stream
00 00 02 0C 61 70
endstream
endobj

/OutputIntents [
<<
/Type/OutputIntent
/S /GTS_PDFX
/DestOutputProfile 24 0 obj
/OutputConditionIdentifier(CGATS TR 001)
/OutputCondition(CGATS TR 001 \(SWOP\))
/RegistryName (http://www.color.org)
>>
]

Example 4.2 OutputIntents Array using Custom Identifier
/OutputIntents [
<<
/Type/OutputIntent
/S /GTS_PDFX
/DestOutputProfile24 0 obj
/OutputConditionIdentifier(Custom)
/OutputCondition(Coated)
/Info (Coated 150lpi)
>>
]

Output Intents for Color Critical4
46

June 11, 2001

47

June 11, 2001

[Applies to Section 7.2.2 “Document Outline”]

1 New Bookmark Properties

PDF 1.4 adds two new entries to Table 7.4, Entries in an outline item dictionary,
to specify font style and color for text in a bookmark.

TABLE 1 Additions to Table 7.4 Entries in an outline item dictionary

KEY TYPE DESCRIPTION

C array (Optional) An array of three numbers in the range 0.0 to 1.0 representing the
components of a color in the DeviceRGB color space. The color will be
used to display the text for the outline entry. Default value: [0 0 0].

F integer (Optional)A set of flags specifying various characteristics of the outline en-
try. Default value: 0.

The defined flags are:

Bit 1: If set, display the entry using an italic font.

Bit 2: If set, display the entry using a bold font.

All other bits are reserved and must be set to 0.

0New Bookmark
Properties

New Bookmark Properties1
48

June 11, 2001

49

June 11, 2001

[Applies to Section 7.4 “Annotations”]

1 Annotation naming

In order to better identify individual annotations across editing sessions, an addi-
tional attribute has been added to the description of annotations.

TABLE 1 Addition to Table 7.9 Entries common to all annotation dictionaries

KEY TYPE SEMANTICS

NM Text (Optional) A string unique among all annota-
tions on a given page

2 Background color

For annotations of type Line, Circle, or Square, an additional attribute has been
added to support background colors.

TABLE 2 Addition to Table 7.17 Additional entries specific to a line annotation,
and Table 7.18 Additional entries specific to a line annotation

KEY TYPE SEMANTICS

BG array of numbers (Optional) An array of three numbers representing the
fill color used by Line, Circle, and Square an-
notations. A color is specified as an array of

0Annotations

Annotations3
50

June 11, 2001

three numbers in the range 0 to 1, representing
a color in DeviceRGB.

3 Line endings

For annotations of type Line, the LE attribute has been added to describe line
endings.

TABLE 3 Additions to Table 7.17 Line annotation attributes

KEY TYPE SEMANTICS

LE array (Optional) An array of two names identifying line ending styles. The first name represents
the line ending which corresponds to the endpoint described by the first two coordinates
in the L attribute. The second name represents the line ending which corresponds to the
endpoint described by the last two coordinates in the L attribute. The following line end-
ing styles are defined:

Square line ending A square is drawn (and optionally filled with the color speci-
fied by BG) at the appropriate endpoint

Circle line ending A circle is drawn (and optionally filled with the color speci-
fied by BG) at the appropriate endpoint.

Diamond line ending A diamond shape is drawn (and optionally filled with the col-
or specified by BG) at the appropriate endpoint.

Line line ending Two short lines are drawn from the appropriate endpoint such
that the line proper bisects the small angle.

Triangle line ending Two lines are drawn as in the Line line ending style. These
two lines are connected with a third line forming a triangle.
This triangle is optionally filled with the color specified by
BG.

4 Quadding support

For annotations of type FreeText, the Q attribute has been added to support quad-
ding (text justification).

Squiggly annotations5
51

June 11, 2001

TABLE 4 Addition to Table 7.16 Additional entries specific to a free text
annotation

KEY TYPE SEMANTICS

Q integer (Optional) Specifies whether the text contained in Contents is
left-justified (0), centered (1) or right-justified (2). The default val-
ue is 0.

5 Squiggly annotations

The Squiggly annotation is like the StrikeOut, Highlight, or Underline annota-
tions. Its appearance is a jagged line underlining the quads indicated by the
QuadPoints attribute.

ADDITION TO TABLE 7.19 ADDITIONAL ENTRIES SPECIFIC TO MARKUP ANNOTATIONS

KEY TYPE SEMANTICS

Subtype name (Required) Annotation subtype. Always Squiggly.

6 Markup annotation definition

In addition to Acrobat Form fields, FDF submitted through Acrobat Forms may
contain markup annotations. Markup annotations include the following annota-
tion types: Text, Sound, FreeText, Stamp, Line, Square, Circle, StrikeOut, High-
light, Underline, Squiggly, Ink, FileAttachment, and Popup.

Annotations7
52

June 11, 2001

7 Annotation Border Style

[Applies to Section 7.4.5 “Annotation Types;” Subsection: “Link
Annotations”]

Add note: The link annotation uses the Border key to specify the border style;
the BS key is not recognized.

8 Markup annotation opacity

[Applies to Section 7.4.1 “Annotation Dictionaries”]

For markup annotations, a general opacity attribute CA has been added. This at-
tribute does not refer to stroke opacity or fill opacity but to a high level notion of
opacity for the annotation as a whole. The implicit blend mode is /Normal.

TABLE 5 Addition to Table 7.9 Entries common to all annotation dictionaries

KEY TYPE SEMANTICS

CA number (Optional) A number representing the opacity of the markup an-
notation. The default value is 1.

9 Trap Network Annotations

[Applies to Trap Network Annotations in Section 8.6.3 “Trapping
Support”]

The TrapNet annotation dictionary has the following changes:

• The Version key and AnnotStates keys are now optional instead of required

Trap Network Annotations9
53

June 11, 2001

• A new key has been added to Table 8.22, Additional entries specific to a trap
network annotation:

TABLE 6 Addition to Table 8.22 Additional entries specific to a trap network
annotation

KEY TYPE VALUE

LastModified date (Optional) The date the TrapNet was last modified.

BACKGROUND NOTE:

The TrapNet annotation has required keys Version and AnnotStates whose pur-
pose is to specify when the appearance of a trapped page has changed, so that
trapping-aware software can determine that the trapping annotation is no longer
valid. The PDF 1.3 specification describes an algorithm for using the Version
key to detect that page content has changed, but use of that key or the Annot-
States key can produce false results

For PDF 1.4, the LastModified key in a TrapNet can also be used in conjunction
with the LastModified key in a Page dictionary, in a workflow where that key is
up-to-date. The Page LastModified key was designed with a similar purpose in
mind, but it depends on voluntary cooperation by applications and plug-ins. Cur-
rently nothing in Acrobat insures that the Page LastModified is correct, but it
can still be useful in a controlled workflow.

Implementation note: Distiller 5.0 will extend the capabilities of pdfmark to
enable putting date strings into a dictionary that match the CreationDate of the
PDF Distiller is making.

Annotations9
54

June 11, 2001

55

June 11, 2001

[Section 7.5.2 “Trigger Events”]

1 Document Level Triggers

This feature allows the execution of a JavaScript depending on the action a user
performs on a PDF document. A dialog is provided so that a JavaScript can be
specified to any of the existing five action triggers. The new triggers are: Docu-
ment Will Close, Document Will Save, Document Did Save, Document Will Print,
and Document Did Print. There is no Document Open action trigger because
document-level JavaScripts already exist.

These new document triggers require that the AA (Additional Actions) key at-
tribute be added to the PDF Catalog dictionary, as shown in Table 1 below.

TABLE 1 Addition to Table 3.15 Entries in the catalog dictionary

KEY TYPE SEMANTICS

AA dictionary (Optional) An additional-actions dictionary,
providing actions for the entire document.

2 The Trigger Types

These are the trigger types allowed for document-level actions. There can only
be one action per trigger. The action type is limited to the JavaScript type.

0New Trigger Events

New Trigger Events2
56

June 11, 2001

TABLE 2 Table 7.28 Additional Actions attributes

KEY TYPE S SEMANTICS

DC dictionary (Optional, Defined only for Document objects) The action to be ex-
ecuted prior to the closure of a document. The action type is
always a JavaScript action.

WS dictionary (Optional, Defined only for Document objects) The action to be ex-
ecuted prior to saving a document. The action type is always
a JavaScript action.

DS dictionary (Optional, Defined only for Document objects) The action to be ex-
ecuted after a document is saved. The action type is always a
JavaScript action.

WP dictionary (Optional, Defined only for Document objects) The action to be ex-
ecuted prior to printing a document. The action type is al-
ways a JavaScript action.

DP dictionary (Optional, Defined only for Document objects) The action to be ex-
ecuted after a document is printed. The action type is always
a JavaScript action.

57

June 11, 2001

[Applies to Section 7.6 “Interactive Forms”]

1 Multiple Selection for Fields of Type Listbox

In order to specify multiple selection, the multiple selection flag, available to
fields of type listbox, can be set to indicate that the field allows multiple selec-
tion. Fields that have the multiple selection flag set to on may have an array of
strings as a value.

Table 7.44 contains updates for the Ff and V keys for all field dictionaries.

TABLE 1 Addition to entry in Table 7.44 Entries common to all field dictionaries

KEY TYPE SEMANTICS

Ff integer (Optional, inheritable)
Flags. The following flag is added for PDF 1.4:

bit 22:Multiple selection flag. Indicates that the
field allows multiple selection.

[Replace description of V in Table 7.44 with the following:]

(Optional, inheritable) Field value. The value of a listbox field is of type
text if only one element is currently selected. If multiple elements are select-
ed, then it is an array of text elements. Each element in V corresponds to the
Opt array element that is currently selected. If that Opt array element is text,

0Forms-Related
Changes to PDF and

FDF

Forms-Related Changes to PDF and FDF2
58

June 11, 2001

then the value is that text. If it is an array, then the value is the text found in
the first element of that array. The default value of this attribute is null.

2 File Select Control

In order to support functionality equivalent to a “file select” control, there is a
new file select flag available to fields of type text, which when set indicates that
the field’s value represents the pathname of a file whose contents may be submit-
ted with the form. On form submission (see 7.6.4, Form Actions – SubmitForm
Action), a text field that has the file select flag set to on causes the contents of the
file that it is pointing to, to be submitted. If the chosen submission format is
HTML-compatible, then the submission uses the content-type multipart/form-
data. For FDF submission, the value of V in the FDF is a dictionary using the
same format as that used by file attachment annotations when they get exported
as FDF (see Table 7.23, Additional entries specific to a file attachment annota-
tion).

TABLE 2 Addition to Table 7.49 Field flags specific to text fields

KEY TYPE SEMANTICS

Ff integer (Optional, inheritable) Flags. The following
flag is added in PDF 1.4:

bit 21: File select flag. Indicates that the
field’s value represents the path-
name of a file whose contents may
be submitted with the form.

3 Multiple Options with the Same Value

For fields of type listbox or combobox, if two or more options have the same
value, the currently selected options can be specified using the I key. This feature
is typically needed when the item names (as shown on the form at fill-in time)
are different, yet the export values are the same. The Opt array is composed of

Submit Using XML Flag4
59

June 11, 2001

elements, each of which may itself be an array with two text elements. The ex-
port value is the first, the item name is the second.

TABLE 3 Addition to Table 7.52 Additional entries specific to a choice field

KEY TYPE SEMANTICS

I array of integers(Optional, inheritable) An array of integers sorted in as-
cending order, that represents the zero-based indices
of the currently selected elements in Opt. The I key is
required when two (or more) elements in Opt have the
same export value, or when the value of the field is an
array. I is allowed to be used, however, even if that’s
not the case. If the value V of the field does not match
the option(s) that I points to, then V takes precedence.

4 Submit Using XML Flag

The following addition has been made to Table 7.54 in the PDF Reference:

TABLE 4 Addition to Table 7.54 Additional entries specific to a submit-form
action

KEY TYPE SEMANTICS

Flags integer (Optional) The binary value of the integer is in-
terpreted as a collection of flags that define vari-
ous characteristics of the action. The default
value is 0. The following flag is added for PDF
1.4:

bit 6: XML flag. If this bit is 0,
then the data is sent using the format indicat-
ed by bit 3. Otherwise it is sent in XML for-
mat.

Forms-Related Changes to PDF and FDF5
60

June 11, 2001

5 Changes to FDF

[Section 7.6.6 Forms Data Format; Subsection “FDF Catalog”, page
463]

TABLE 5 Addition to TABLE 7.61 Entries in an FDF catalog dictionary

KEY TYPE VALUE

Version name (Optional) The version of the PDF specification
this file conforms to (e.g. 1.3, or 1.4). If not
present the document is assumed to conform to
the version specified in the file’s header. If
present the document conforms to either the ver-
sion specified by this key or in the header,
whichever is greater.

Implementation note: Due to a bug in versions of Acrobat prior to 5.0, which
would prevent Acrobat from accepting anything different, the FDF header (see
“FDF Header” on page 462) will remain “%FDF-1.2.”

TABLE 6 Additions to TABLE 7.62 Entries in an FDF dictionary)

KEY TYPE VALUE

Differences stream (Optional) A stream containing all the bytes in all incremental updates (i.e.
append saves—see Section 3.4.5 “Incremental Updates”) made to the PDF
that is being submitted from, since the time it opened until the time the FDF
was submitted. An incremental save is automatically performed just before
the submission takes place, in order to capture all the changes made to the
document. See also IncludeAppendSaves in Table 7.55 (PDFR). Note that
even if multiple sets of changes are made to the document, each followed by
a submission, the full set of incremental updates (all the way back to when
the document first opened) is included each time.

It is possible for an FDF to contain both form fields (i.e. a Fields array) and/
or annotations (i.e. an Annots array), as well as a Differences stream. In
this case, the Differences stream will capture any changes that were made
to the form fields and annotations, so the latter are seemingly redundant. This
redundancy may be convenient for a server that can simply save the Differ-

Using Unicode Values / Buttons with the6
61

June 11, 2001

ences stream without looking at it and process the submitted form fields
and annotations directly.

Although one would normally expect the form fields and annotations in the
FDF to be consistent with the ones captured in the Differences stream,
PDF makes no guarantee of such consistency. In particular, if the Differ-
ences stream contains a digital signature, only the values of the form fields
given in the Differences stream can be considered trustworthy under that
signature.

Target string (Optional) Used to specify the name of a browser frame where the document
pointed to by the F key is to be opened. This mimics the target attribute in
HTML <href> tags.

EmbeddedFDFs array of file
specifications (Optional) An FDF can be a carrier for multiple embedded FDFs within it.

Each of the file specifications in the array contains an embedded file stream
(see Section 3.10.3 “Embedded File Streams”). Each of the embedded FDFs
may optionally be encrypted using RC4 encryption with a 40-bit key. If this
is the case, then the stream dictionary describing the embedded, encrypted
FDF contains the additional entry shown in Table 7 below (To follow Table
7.62, PDFR). The encryption key is computed using an MD5 hash, using as
input a padded user-supplied password. This computation consists of steps 1
and the first part of 2 in Algorithm 3.2, Computing an encryption key on page
69 in PDFR).

TABLE 7 New Table to follow Table 7.62 Additional entries in an embedded,
encrypted FDF file stream dictionary

KEY TYPE VALUE

EncryptionRevision integer (Required if the FDF is encrypted) The number 1.

6 Using Unicode Values / Buttons with the Same Export Value

As of PDF 1.3, the value (and default value) of a field of type checkbox or radio
button, if not null, is of type name. Recall that for fields of type checkbox or ra-
dio button, the value of the field is equal to the name that is used to identify the
on appearance of the widget annotation that is currently checked. The value is
null if none of the Widget annotations belonging to the field are checked. Using a
name to represent the value constitutes a limitation in that Unicode strings are

Forms-Related Changes to PDF and FDF7
62

June 11, 2001

not allowed. In order to support non-Roman locales, the following attribute is
added in PDF 1.4:

TABLE 8 New Table, (Section 7.6.3): Additional entries to a button field

KEY TYPE SEMANTICS

Opt array of text(Optional, inheritable) This key is used when the value of the
field cannot be represented in PDFDoc encoding. The
elements in Opt are text strings, where the ith string
represents the export value of the ith annotation in the
Kids array (if there is only one annotation, there may
not be a Kids array, and instead the annotation shares
the dictionary with the field). When the Opt array is
present, the names used to represent the on state in
each AP dictionary are computer-generated numbers
(starting with “0” for the first annotation of the field).

Opt is also used when two or more annotations have
the same on value. In this case, Opt will include two
or more entries that are equal. Since each annotation
has a different computer-generated number to repre-
sent its on state, this allows checking a single annota-
tion at a time while permitting duplicate export values.

7 New Field Flags

[Section 7.6.3 Field Types; Subsection: Interactive Forms; page
434]

TABLE 9 Additions to Table 7.49 Field flags specific to text fields (page 448)

BIT POSITION NAME MEANING

23 DoNotSpellCheck If set, the field will not be spell
checked. Note: this flag is also applicable to editable

JavaScript and FDF8
63

June 11, 2001

combo boxes (i.e. Choice fields that have the Edit bit
set, see Table 7.51).

24 DoNotScroll If set, the field will not scroll
to accommodate more text than fits within the rectan-
gle. For single line fields, this means horizontally. For
multi-line, it means vertically. Once the field is full, no
more text will be accepted.

8 JavaScript and FDF

The current FDF specification describes how an FDF can carry a new value for
the actions (A or AA) of a field, and this includes JavaScript actions. The follow-
ing extensions enable adding document-level scripts to the document, as well as
immediate execution of scripts at FDF import time.

The following new key is added to the root object of an FDF:

TABLE 10 Addition to Table 7.62 Entries in an FDF dictionary

(KEY TYPE SEMANTICS

JavaScript dictionary (Optional) See Table: “JavaScript dictionary en-
tries” 11 below.

The entries in the JavaScript dictionary are listed below (a new table to be add-
ed).

TABLE 11 JavaScript dictionary entries (New table to be added to Section 7.6)

KEY TYPE SEMANTICS

Before string or stream (Optional) The string or the contents of the
stream contains the JavaScript to be executed
just before the FDF gets imported.

Forms-Related Changes to PDF and FDF9
64

June 11, 2001

After string or stream (Optional) The string or the contents of the
stream contains the JavaScript to be executed
right after the FDF gets imported.

Doc array (Optional) The even elements of this array are
script names, and the odd ones are strings or
streams containing scripts. These scripts will be
added to any other document level scripts al-
ready present in the Names tree (see JavaScript
Actions in section 7.6.4, Form Actions) and then
executed. This happens before the Before scripts
(if any) get executed.

9 Additional Submit Form Action Flags

Two submission formats have been added to the Submit Form action. Digital
Signatures needs the ability to submit the whole PDF document to the web serv-
er. The document may contain signatures, and sending the complete PDF is one
of two new ways to transmit those signatures to the server. The other is to send
just the “append saves” of the PDF, embedded within an FDF. There is no other
mechanism in FDF to transmit just the digital signatures.

Also, PDF 1.4 adds several submission options. The ability to include markup
annotations inside the submitted FDF has been added (see Section 6, “Markup
annotation definition in the chapter on “Annotations” in this document). See the
Annots key in Table 7.62 (PDFR) Entries in an FDF dictionary for a description
of how annotations are represented inside FDF.

Some explanation is in order with respect to the ExclNonUserAnnots flag in
Table 7.55 below. For collaboration, T is being christened the owner of the anno-
tation. Given this assumption, ExclNonUserAnnots simply filters annotations
based on their T key and collaboration’s idea of the current “user.” If “owner” !=
“user,” don’t include the annotation in the resultant FDF. This allows a collabora-
tion backend to be a dumb CGI script that simply swallows and regurgitates
whole FDFs. This scenario would work something like this:

A user begins collaborating on a document. The collaboration engine does a
submit to a CGI script (what it submits is not important... presumably, it sub-
mits essentially nothing.) The CGI script sends back a single FDF containing
JavaScript that simply does several more submits – one per person collabo-

Additional Submit Form Action Flags9
65

June 11, 2001

rating on the document. Each of those submits results in the CGI script send-
ing back a single FDF containing the annotations for a single person, and
that person alone. All of those FDFs together comprise all annotations that
pertain to the document.

The user is done collaborating and wants to submit his or her annotations.
The collaboration engine does another submit to a CGI script. This time, it
does submit something. It submits annotations. But, it only submits the an-
notations owned by the current user. The CGI script just stores this FDF
somewhere, byte for byte, ready to be sent to the next person who collabo-
rates on that document. The reason for the ExclNonUserAnnots flag is also
related to the scenario described above. It simply gives the collaboration
server the ability to move around PDF files if it sees fit. Say a PDF file is be-
ing collaborated upon at http://foo.bar/doc1.pdf. People put lots of annota-
tions on it and the server is collecting lots of FDFs and everyone is happy. At
some point, someone realizes that hierarchies can be good and moves
doc1.pdf to http://foo.bar/Docs/doc1.pdf. If there are no /F keys, everything
just works (assuming the server knows about the move.) If those FDF files
did have /F keys, as soon as you try to collaborate on the document in its new
location, the FDFs the server has lying around will cause Acrobat to try to
look for the document in its old location.

The encrypted/embedded FDF stream (see Table Table 6, above) addresses this
issue as well. The encryption part is to give confidence to people wanting to use a
collaboration server to collaborate on sensitive topics. It avoids leaving sensitive
text in what is essentially plain text, especially if the server is run by a third party.
If the client encrypts the FDF before it is sent, the server can store FDFs, but text
cannot be extracted from them. So, collaboration works without the server ever
knowing what the annotations actually are.

As for the ability to embed multiple FDFs, this can be used as an optimization so
that a server could send back the annotations for all users in one single FDF.
Note that with some work, a server could stitch together even encrypted FDFs
while still not being able to decrypt them.

Forms-Related Changes to PDF and FDF9
66

June 11, 2001

TABLE 12 Additions to Table 7.55 Flags for submit-form actions

BIT POSITION NAME MEANING

7 IncludeAppendSaves If set, the submitted FDF includes the incremental updates (i.e. the ap-
pend saves) made to the PDF (see the Differences key in Table
Table 6 above). Only applicable if bit 3 (ExportFormat) is 0.

8 IncludeAnnotations If set, the submitted FDF includes the annotations in the PDF. Only ap-
plicable if bit 3 (ExportFormat) is 0.

9 SubmitPDF If set, will submit the PDF itself (i.e. MIME type application/pdf). If this bit
is set, then all the other flag bits are ignored except for bit 4 (Get-
Method)

10 CanonicalFormat If set, will convert any submitted field values that represent dates to stan-
dard format (see Section 3.8.2 Dates). The interpretation of a form
field as a date is not specified explicitly in the field itself, but only in
the JavaScript that processes the field.

11 ExclNonUserAnnots If set, will exclude any annotations that are not owned by the current
user. Only applicable if bit 3 (ExportFormat) is 0 and bit 8 (Include-
Annotations) is 1.

12 ExclFKey If set, the submitted FDF will exclude the F key. Only applicable if bit 3 (Ex-
portFormat) is 0.

67

June 11, 2001

[Applies mainly to Section 8.4.3 “Logical Structure” and Section
8.6.4 “Open Prepress Interface”]

1 Introduction

Referenced PDF enables the use of one PDF document to reference another PDF
document for page content. The referenced PDF page might contain a logo to be
used on multiple pages, or a high resolution image. The document containing the
reference must contain a proxy (that which is used in place of the referenced doc-
ument page), which might be an image or text. The proxy may be a low-resolu-
tion image of the referenced PDF, or, it may be a gray box, or, text referring to
the referenced PDF, or, some other means of indicating that a proxy is being
used.

The behavior of a referenced PDF depends upon the applications that view and
operate upon it. A simple application may display the proxy only, and ignore the
reference. A more sophisticated application may look for the reference at view or
print time and use the referenced PDF if it is available. An application may also
provide a user interface to allow editing and updating of referenced PDF links.

Any XObject Form may contain a reference to a referenced PDF. The reference
object is a dictionary with the name Ref.

TABLE 1 XObject Form attribute for referenced PDF

KEY TYPE SEMANTICS

Ref dictionary (Optional) Contains information about the ref-
erenced PDF document. The document that con-

0Referenced PDF

Referenced PDF1
68

June 11, 2001

tains this XObject is the container of the
referenced PDF and the XObject is the proxy
object for it.

The Ref object contains the following attributes.

TABLE 2 Referenced PDF attributes

KEY TYPE SEMANTICS

F (File) file specification (Required) The file containing the referenced PDF.

Page number or text (Required) The page number or page name of the ref-
erenced PDF. If a name, it refers to the Page label of a
page.

ID array (Optional) The File ID of the referenced PDF. This can
be used to determine if the referenced PDF has
changed since the ID was last updated. It can also be
used to verify that the referenced PDF file is the same
document as the one that was originally referenced.

A referenced PDF is specified by a file specification and a page number. The file
ID should be used to detect whether the referenced PDF has been modified or re-
written. Note that the reference is weak in that the actual page could be changed
or replaced which could invalidate the reference inadvertently.

When the referenced PDF replaces the proxy, it is transformed according to the
matrix in the XObject Form. As for an XObject Form, the referenced PDF is
clipped to the bounds of the Form’s BBox. Note that the combination of the ma-
trix and the Form BBox implicitly define the bounding box of the referenced
page. This bounding box will typically be the CropBox or the ArtBox, but is not
constrained to any of the known BBoxes.

When a referenced page contains annotations, those annotations that contain a
printable, unhidden, visible appearance object (AP dict), must be included in the
rendering of the referenced page. If the proxy is a snapshot of the referenced
PDF, then it must also include the annotation appearances. In order to represent

Structure2
69

June 11, 2001

these appearances in an XObject Form they must be converted into part of the
Form’s stream, either as subsidiary XObject Form’s or flattened into the Form’s
stream.

Note that a referenced PDF may also be an Embedded File within the containing
PDF.

2 Structure

A referenced PDF page may contain structure information. This information
should be ignored when using referenced PDF.

Typically, for a multi-page document, the structure tree will refer to elements on
the page as part of a larger set of structure elements. In such a case it does not
make sense to incorporate structure information from the referenced page into
the containing document. For one-page documents, or, page-oriented documents,
a structure subtree may be present which wholly contains the structure informa-
tion for the referenced page. In this case it is possible to incorporate the structure
tree for the proxy PDF into the structure of the containing document. At this
time, it is not possible to refer to a structure subtree which is in an external docu-
ment such as the referenced PDF.

3 Optimization

When streaming an XObject Form using the features of Linearized PDF, an ap-
plication may display the proxy as the initial rendering of the Form. If the appli-
cation supports rendering of the referenced PDF, it may defer retrieval and
rendering of the referenced PDF.

All XObjects occur after the page Contents, thus are already deferred in PDF 1.3
and earlier. The use of the Ref object will result in an additional level of deferral.
The Ref object and its contents should be direct objects to avoid another trip to
the server for the information in the Ref dict.

4 Page Insertion/Deletion

There are no known effects.

Referenced PDF5
70

June 11, 2001

5 Printing and OPI

When printing, an application may emit one of the following for the referenced
PDF:

The proxy XObject Form
The referenced PDF page
The OPI object for the XObject Form, if present

The selection of which object will depend upon user choices and the purpose of
the print job. Simple applications may always print the proxy. More sophisticated
applications will support use of the referenced page, or, an OPI high-resolution
image. When generating OPI comments in a PostScript stream, an OPI producer
may refer to the OPI high-resolution image, and include the proxy or the refer-
enced page as the OPI low-resolution image.

71

June 11, 2001

[Applies to Chapter 8 “Document Interchange,” Section to be
added]

1 Introduction

Specification of the language used for text in a PDF document can increase the
accessibility of that document for disabled users. For example, with the language
correctly identified, text-to-speech engines can properly vocalize the text, either
via a screen reader or some more direct invocation of a text-to-speech engine.

2 Language Specification

The language of a word in a document is determined in a hierarchical fashion by
the language specification keys in the Catalog and in structure element objects,
and by properties attached to marked content with the Span tag. Lang is the op-
tional language specification key that indicates the language of the text in this
object. The value associated with Lang is of type string, and an empty string in-
dicates that the language is unknown.

2.1 Language Key Values

If it is not empty, the value of this key is a language identifier as defined by
[IETF RFC 1766], “Tags for the Identification of Languages,” described in sec-
tion 2.12 of the XML 1.0 Specification, http://www.w3.org/TR/REC-xml.

LanguageID ::= Langcode (‘-’ Subcode)*
Langcode ::= ISO639Code | IanaCode | UserCode
ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])

0Natural Language
Specification

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

Natural Language Specification2
72

June 11, 2001

IanaCode ::= (‘i’ | ‘I’) ‘-’ ([a-z] | [A-Z])+
UserCode ::= (‘x’ | ‘X’) ‘-’ ([a-z] | [A-Z])+

Subcode ([a-z] | [A-Z])+

The Langcode may be any of the following:

• a two-letter language code as defined by [ISO 639], “Codes for the representa-
tion of names of languages.”

• a language identifier registered with the Internet Assigned Numbers Authority
[IANA]; these begin with the prefix “i-” (or “I-”).

• a language identifier assigned by the user, or agreed on between parties in pri-
vate use; these must begin with the prefix “x-” or “X-” in order to ensure that
they do not conflict with names later standardized or registered with IANA.

There may be any number of Subcode segments; if the first subcode segment ex-
ists and consists of two letters, then it must be a country code from [ISO 3166],
“Codes for the representation of names of countries.” If the first subcode consists
of more than two letters, it must be a subcode for the language in question regis-
tered with IANA, unless the Langcode begins with the prefix “x-” or “X-”.

Although these values are case insensitive, it is customary to give the language
code in lower case, and the country code (if any) in upper case.

2.2 Catalog Object key:

This key specifies the language of all text in the document except where overrid-
den by language specifications for structure element objects or marked content.
This default applies both to text strings and content strings. See section 3, “De-
termining the Language of Text in a Document” (below) for how to override the
default language in a text string.

2.3 Structure Element key:

This key specifies the language of all text in this structural element except where
overridden by language specifications for nested structural elements or marked
content.

Determining the Language of Text in a3
73

June 11, 2001

2.4 Marked Content Property List key:

This key specifies the language of all text within this marked content except
where overridden by language specifications for nested marked content. If the
marked content is non-structural (that is, has no /MCID entry), then the tag for
the marked content should be /Span.

3 Determining the Language of Text in a Document

There are two scope hierarchies for the language specification that interact in
sometimes unexpected ways. There is the structure hierarchy for the document
and there is the hierarchy defined by the nesting of marked content objects within
the page stream.

The document default language and structure tree determine the default language
for a marked content that is a structure leaf. Within that marked content, the lan-
guage can be changed within a Span marked content by using the Lang proper-
ty.

The following example shows the use of language specifications both in the
structure tree and in marked content:

Example 1:

1 0 obj % Structure element
 << /Type /StructElem

/Lang (en)% Language specification
…
/K << /Type /MCR

/Pg …% Page containing the marked content sequence
/MCID 0% Marked content identifier

 >>
 >>
endobj
2 0 obj %Page’s content stream
<< /Length … >>
stream
 …

 /P <</MCID 0>> BDC
 (When we go out for Mexican food, I can never resist trying the) Tj

Natural Language Specification3
74

June 11, 2001

 /Span <</Lang (es)>> BDC (guacamole) Tj EMC
 (to see how it compares with my own.) Tj
 EMC
 …
endstream
endobj

The language of any page content text that is not in the structure tree (for exam-
ple, in an unstructured PDF file) is specified by the Lang key of the Catalog un-
less the text is within a marked content containing a Lang property.

For an example of an admittedly contrived, though legal, interaction between
these two language specification hierarchies, consider the following page where
only part of the page content is contained in the structure tree.

Example 2:

1 0 obj % Structure element
 << /Type /StructElem

/Lang (en)% Language specification
…
/K << /Type /MCR

/Pg …% Page containing the marked content sequence
/MCID 0% Marked content identifier

 >>
 >>
endobj

2 0 obj %Page’s content stream
<< /Length … >>
stream
/Span <</Lang (es)>> BDC (Hasta la vista,) Tj
/P <</MCID 0>> BDC
(Baby! Arnold won’t be back for new Terminator installment.) Tj
EMC
EMC
endstream
endobj

Although the Span marked content in the content stream contains the text “Ba-
by! Arnold won’t be back for new Terminator installment”, its /Lang (es) at-
tribute does not apply to it. The text is contained within the /P element that is a

Determining the Language of Text in a3
75

June 11, 2001

node of the structure tree (indicated by the /MCID attribute). So the language of
“Baby! Arnold won’t be back for new Terminator installment” is determined by
that Structure Element’s language specification, /Lang (en).

Natural Language Specification3
76

June 11, 2001

77

June 11, 2001

[New section to be added to Chapter 8 “Document Interchange”]

1 Introduction

Because of their potential richness of visual display, PDF files have been a diffi-
cult medium for many visually handicapped computer users. These users typical-
ly use screen readers to read a document aloud. Several features of PDF need to
be supported to provide a complete and meaningful vocalization of a document.

1.1 Logical Content Order

To solve one of the problems encountered by disabled users, creators of PDF
files can use logical structure and Tagged PDF to indicate logical content order-
ing in a PDF file. The content of a document will be presented to a disabled user
by walking the structure tree and presenting the contents of each node. So all in-
formation in the document must be reachable from the structure tree.

1.2 Alternative descriptions

PDF 1.3 permits a human-readable text representation to be attached to a struc-
tural element or tagged content stream with the Alt attribute, which is a property
of the Span tag. PDF documents can be enhanced by providing alternate de-
scriptions for images, graphics, or other items that don’t translate naturally into
text by providing Alt text.

Alternative Descriptions for Annotations

All annotation may contain a Contents attribute (Table 7.9 “Entries common to
all annotations dictionaries,” in the PDF Reference, Second Edition). This should

0Accessibility Support
in PDF

In the previous release of this document, this section incorrectly stated that /Alt could also appear as a nonstructural marked content property.

Accessibility Support in PDF1
78

June 11, 2001

be used as the description for all annotations. It is the natural description for a
Text annotation and it is a natural container for alternate descriptions of other,
non-text-oriented annotations. The TU attribute of interactive form fields serves
the same purpose.

Using Multiple Languages in Alternative Descriptions

Alt fields are of type Text (PDF Reference, Section 3.8.1, “Text Strings”) which
may be encoded using either PDFDocEncoding or Unicode. Unicode defines an
escape sequence to indicate the language of the text. This mechanism permits the
alternate description to change from the current language, as specified in the sec-
tion on Tagged PDF.

1.3 Abbreviations and Acronyms

The full expansions of abbreviations and acronyms should be provided via the
BDC tagged content operator. The property list for the tagged abbreviation
should contain the E property. This will permit correct pronunciation of the ab-
breviation.

For example, in the text “Dr. Edward Smith”, the word “Dr.” would be tagged as
an abbreviation for “Doctor”, but in the text “123 Ridgemont Dr.”, the word “Dr.”
would be tagged as an abbreviation for “Drive”. Some abbreviations or acronyms
are conventionally not expanded: “see it on CBS” should be left untagged (leav-
ing the pronunciation to the mercy of the text-to-speech engine) or should have
the expansion “C B S”. Use the Unicode escape sequence for expansions in other
than the current language. Table 1 shows the E key entry.

TABLE 1 Tagged content properties

KEY TYPE SEMANTICS

E text (Optional) The text for pronunciation of the tagged content stream.
E is a property of the Span tag.

Note: The /E key is limited to use in /Span marked content.

79

June 11, 2001

[Applies to Section 8.6 “Prepress Support”]

1 Introduction

The PDF 1.3 specification allowed designers of PDF documents used in produc-
tion printing workflows to specify more precise definitions of page areas. The
Page object may include one or more of the following box definitions: ArtBox,
TrimBox, BleedBox. The art box specifies the bounding area of artwork which
can be placed into other documents. The trim and bleed boxes specify object po-
sitioning to accommodate for mechanical variation in physical printing systems.
See Adobe Technical Note #5188, PDF features to facilitate ANSI CGATS.12,
PDF/X, for a detailed description.

PDF 1.4 introduces a number of additions that allow the user or a prepress appli-
cation to specify viewing preferences and attributes that enhance the viewing ex-
perience. Standard viewer implementations may simply ignore this additional
information.

The preferences and attributes added for PDF 1.4 include:

• Additional Viewer Preferences that allow selection of a visible area distinct
from a clipping region.

• Additional Page attributes additions (Section 3.6, “Page Objects”)

• A BoxColorInfo dictionary

• A BoxStyle dictionary, which describes the on-screen appearance of guide-
lines associated with a particular box.

0Box Definitions for
Pages

Box Definitions for Pages2
80

June 11, 2001

2 Viewing and Printing preferences

These features provide the ability to select a preferred visible area distinct from a
preferred contents clipping region. The user should be able to choose these set-
tings separately for viewing and printing. It is desirable for these selections to be
stored as preferences for individual documents.

The purpose of the Viewer Preferences, as the name suggests, is to record the us-
er’s preferences for alternative boxes to use for the page and clip areas. These
preferences might be used when printing directly from an application, or when
generating a Job Ticket. On the other hand, when a PDF file is printed from Ac-
robat or sent directly to a PDF printer, the MediaBox and CropBox will be used,
just as before. There is no intention that PDF consumers in general will heed the
Viewer Preferences.

Use of Guidelines

Following are some suggestions for how the newly defined boxes could be used
in an application. Guidelines might be displayed in user-selectable colors both at
“box” definition time and optionally when viewing the composite document. The
ability to see such guides would be dependent on the graphical content of a given
page. To be useful, the lines must be distinguishable from any artwork that they
intersect. In order to prevent a need to repeatedly modify the guide colors, it is
necessary to allow them to be stored in association with a page.

The choice of whether or not to display the guidelines would ideally be con-
trolled by an individual user’s preference for interacting with the document. As
such, this information need not be stored in the document.

3 Additions to the Viewer Preferences Dictionary

The following additions to the viewer preferences dictionary (PDF Reference,
Section 7.1; Table 7.1: “Entries in a viewer preferences dictionary”) will support
the viewing and printing preferences mentioned above:

Page Attributes additions4
81

June 11, 2001

TABLE 1 Additions to Table 7.1 Viewer Preferences

KEY TYPE SEMANTICS

ViewArea name (Optional) Specifies the name of the box which represents the area of the
page the user would like to see on screen. The absence of a ViewArea box
will result in use of the default as specified in Technical Note #5188, which
states:

If ViewArea is not specified, the CropBox will be used as the default. If
the CropBox is also missing, the visible area will be defined by the Medi-
aBox.

ViewClip name (Optional) Specifies the box which represents the contents-clipping area of
the page the user would like to see on screen. The absence of a definition for
the named box for any given page, will result in use of the default as speci-
fied in Technical Note #5188. In absence of this definition the clip region
will be the CropBox.

PrintArea name (Optional) Specifies the box which represents the area of the page the user
would like to see on printed output. The absence of a definition for the
named box for any given page, will result in use of the default as specified in
Technical Note #5188. In absence of this definition the printed area will be
the CropBox.

PrintClip name (Optional) Specifies the box which represents the contents clipping area of
the page the user would like to see on printed output. The absence of a defini-
tion for the named box for any given page, will result in use of the default as
specified in Technical Note #5188. In absence of this definition the clip re-
gion for the printed content will be the CropBox.

4 Page Attributes additions

The following additions to the Page Attributes (PDF Reference, Section 3.6,
Table 3.17: “Entries in a page object”) will support the user-selectable guideline
colors as described above.

TABLE 2 Addition to Table 3.17 Entries in a page object

PARAMETER TYPE SEMANTICS

BoxColorInfo dictionary (Optional; may not be inherited) This dictionary
specifies the user-selected guideline colors for

Box Definitions for Pages5
82

June 11, 2001

one or more of the box definitions. Where val-
ues are not present, the current application de-
fault settings will be used instead. The
BoxColorInfo dictionary is described below.

5 BoxColorInfo Dictionary

BoxColorInfo is a dictionary that describes the colors to be used on screen when
providing guidelines in a user interface which shows the bounds of various box-
es. These attributes are intended merely as an adjunct to UI controls. If a user re-
quests that the TrimBox guideline be shown, then the TrimBox attribute
determines how it will appear. A BoxColorInfo dictionary has the attributes de-
scribed in Table 3.

Absence of a page specific color record for a given box means that the current
application default will be used instead. If a color record is defined, but no box
definition exists, the information is simply ignored.

TABLE 3 BoxColorInfo Dictionary (New dictionary to follow Table 3.17 in PDFR)

PARAMETER TYPE SEMANTICS

CropBox dictionary (Optional) A dictionary which specifies several attributes related to the ap-
pearance of the guideline. In absence of a CropBox definition associated
with the page object, this value will be ignored.

TrimBox dictionary (Optional) A dictionary which specifies several attributes related to the ap-
pearance of the guideline. In absence of a TrimBox definition associated
with the page object, this value will be ignored.

BleedBox dictionary (Optional) A dictionary which specifies several attributes related to the ap-
pearance of the guideline. In absence of a BleedBox definition associated
with the page object, this value will be ignored.

ArtBox dictionary (Optional) A dictionary which specifies several attributes related to the ap-
pearance of the guideline. In absence of a ArtBox definition associated with
the page object, this value will be ignored.

BoxColorInfo Dictionary5
83

June 11, 2001

Other box parameters may be defined in the future.

Each value in the BoxColorInfo dictionary is itself a dictionary that describes
the on screen appearance of guidelines associated with a particular box. Table
Table 4 describes the entries common to all dictionaries in the BoxColorInfo
dictionary.

TABLE 4 Entries common to all Box Style Dictionaries

PARAMETER TYPE SEMANTICS

S (Style) name (Optional) One of the following names:

S (Solid) The box draws as a solid line. This is the default.

D (Dashed) The box is drawn as a dashed line. The dash pattern is spec-
ified by the D attribute. (See below)

Other styles may be defined in the future.

C (Color) array (Required) An array of colorant values in DeviceRGB colorspace.

D (Dash array) array (Optional) If the value of the S entry is D, this array contains numbers repre-
senting on and off stroke lengths for drawing dashes, in the same format as
the d marking operator. The default for this key is [3].

W (Width) number (Optional) The line width in points. The default is 1.

Box Definitions for Pages5
84

June 11, 2001

85

June 11, 2001

[Applies to Section 8.6 “Prepress Support”]

1 Introduction

Printer’s marks are a set of graphic symbols and/or strings used by press opera-
tors to identify components of a multiple-plate job and maintain consistent out-
put during the printing of a job. Targets are used to register the alignment of each
plate. Color bars allow measurement of colors and ink density across multiple
printing environments. Crop Marks show where the paper will be trimmed.

Such marks typically appear outside the area containing the graphical content of
a page and are logically separate entity from those contents. Despite this, cre-
ation applications traditionally include such marks in the contents stream of the
document. The TrimBox and BleedBox added to the page’s dictionary in PDF
1.3 provide a mechanism to logically separate the two regions.

PDF 1.4 includes a new annotation type, PrinterMark, to record, display, and
print printer’s marks. Each page may contain multiple PrinterMark annotations,
each of which contains a single symbol (for example, target, gray ramp, color
bar).

Since printer’s marks typically fall outside the content clip and surround the page
contents area, it is necessary to define each mark in a separate annotation. Other-
wise, the default annotation handler, which is invoked for any user interaction
that occurs within the bounds of an annotation, would control user interaction for
the entire page. Implementing separate PrinterMark annotations facilitates an
application’s ability to implement a drag-and-drop user interface for specifying
such marks.

0PrinterMark
Annotations

PrinterMark Annotations2
86

June 11, 2001

2 PrinterMark Annotation Attributes

Printer’s marks are represented as Form XObjects which occur as entries in the
Appearance Dictionary of PrinterMark annotations. PrinterMark annotations
that are to be printed must occur in the N (Normal) sub-dictionary of the annota-
tion AP dictionary. Entries may be provided for the R (Rollover) or D (Down)
keys in the AP dictionary, but cannot be printed.

More than one appearance may be specified for a given Printer’s Mark, based on
different regional requirements or production facility requirements. Multiple
sub-appearances in the Appearance dictionaries are the mechanism for specify-
ing the alternatives. The sub-keys used inside the N (Normal), R (Rollover) and
D (Down) dictionaries are arbitrary. The existing AS mechanism is used for se-
lecting among them.

TABLE 1 Additions to Table 7.9 Entries common to all annotation dictionaries

KEY TYPE SEMANTICS

Subtype name (Required) Annotation subtype. Always PrinterMark.

MN (Mark Name) name (Optional) Name identifying the type of printer mark. For instance /RegistrationMark
or /ColorBar.

F (Flags) integer(Required) The flag field must be present; bit values specified below:
bit 1Invisible flag; must be 0
bit 2Hidden flag; must be 0
bit 3Print flag; must be 1
bit 4NoZoom flag; must be 0
bit 5NoRotate flag; must be 0
bit 6NoView flag; must be 0
bit 7ReadOnly flag; must be 1
bit 8ClickThrough; must be 0 (Note: this is a new bit intended to al-

low any annotation to always pass mouse clicks to the next
lower level. A value of 0 indicates that the annotation handler
will receive the clicks and is the standard behavior of the Ac-
robat product.)

AP (Appearance) dictionary(Required) Holds a stream containing the graphical operations required to draw a
single PrinterMark.

PrinterMark Annotation Attributes2
87

June 11, 2001

AS (Appearance State)name(Required if more than one appearance is present) This value specifies which trap
network is ‘current’ and will be displayed and printed.

2.1 PrinterMark Appearance Attributes

Each PrinterMark appearance contains the marking operations needed to render
the desired graphic. The attributes are listed in Table 2.

TABLE 2 Additions to Table 7.12 Entries in an appearance dictionary

KEY TYPE SEMANTICS

MarkStyle text (Optional) Text which an application can use to
describe a PrinterMark to users.

Colorants dictionary (Optional) Identifies the colorants which were
identified in this mark. For instance a color bar
that only includes CMYK vs. one with CMYK
+ Green. The contents of this dictionary are
identical to the optional Colorants dictionary as-
sociated with a DeviceN colorspace.

PrinterMark Annotations2
88

June 11, 2001

89

June 11, 2001

[Applies to Chapter 8 “Document Interchange”]

1 Introduction

A means for defining Metadata is defined in PDF 1.3, using an Info dictionary to
store the Metadata. PDF 1.4 introduces an alternate method that offers significant
enhancements in how applications can access the data. The motivation for chang-
ing the way metadata is stored includes:

• PDF-based workflows often embed metadata-bearing artwork as components
within larger documents. PDF 1.4 provides a standard way of preserving the
metadata of these components for examination downstream. PDF-aware appli-
cations should be able to derive a list of all metadata-bearing document com-
ponents from the PDF document itself.

• PDF documents are often made available on the World Wide Web, where many
tools routinely examine, catalog, and classify documents. These tools should
be able to understand the self-contained description of the document even if
they do not understand PDF 1.4.

The additions for PDF 1.4 address the above needs.

2 Metadata streams

Metadata, both for the entire document and for components within a document,
is stored in PDF streams having dictionary entries as given in Table 1.

0New Metadata
Architecture for

PDF 1.4

New Metadata Architecture for PDF 1.43
90

June 11, 2001

The contents of a metadata stream are the metadata represented in XML. This in-
formation will be visible as plain text to non-PDF-aware tools only if the meta-
data stream is both unfiltered and unencrypted.

The format of the XML representing the metadata will be defined in a new docu-
ment: Adobe XAP Metadata Framework. The XAP (eXtensible Authoring and
Publishing) Metadata Framework provides a way to use XML to represent meta-
data describing documents and their component assets. XAP is intended to be
adopted by a wider class of applications than just those that process PDF. XAP
includes a method to embed XML data within non-XML data files in a platform-
independent format that can be easily located and accessed by simple scanning
rather than having to parse the document file. This document will be published
by Adobe Systems in the general timeframe of the Acrobat 5.0 release.

TABLE 1 Metadata streams

KEY TYPE SEMANTICS

Type name (required) Must be Metadata.

Subtype name (required) Must be XML.

3 Document metadata

3.1 Attaching metadata to the document

There will be a new reserved key Metadata in the Catalog dictionary whose val-
ue is an indirect reference to a metadata stream as described in Section 2, “Meta-
data streams. The current Info dictionary will be preserved for backwards
compatibility (see Section 5, “Compatibility).

TABLE 2 Additional key for Catalog dictionary

KEY TYPE SEMANTICS

Metadata stream (Optional) Contains the metadata for the PDF
document. The metadata is represented as RDF
in conformance with the XAP Adobe Standard
Metadata schema. The stream must satisfy the

Component metadata4
91

June 11, 2001

requirements of a metadata stream as given in
Table 1.

4 Component metadata

4.1 How metadata is associated with components

A PDF document component represented as a dictionary or stream may have an
additional key Metadata. The value associated with this key is an XML stream
just as for the document-level metadata.

TABLE 3 Addition to any dictionary for components having metadata

KEY TYPE SEMANTICS

Metadata stream A metadata stream (as described in Table 1)
containing the metadata for the component.

4.2 What components can have metadata

There are many kinds of objects represented by streams and dictionaries in PDF.
Most, but not all, of these can have metadata attached as specified in Table 3.

In general, a PDF stream or dictionary may have metadata attached as long as the
stream or dictionary represents an actual information resource, as opposed to
serving as an implementation artifact. Table 4 enumerates the PDF constructs
that are considered implementational (and hence cannot have associated metada-
ta).

For the remaining PDF constructs there is sometimes ambiguity about exactly
which dictionary or stream should bear the Metadata key. Such cases are to be
resolved so that the metadata is attached as close as possible to the object that ac-
tually stores the data resource described. For example, metadata describing a til-
ing pattern should be attached to the pattern stream’s dictionary, but a shading
should have metadata attached to the shading dictionary itself, rather than to the
shading pattern dictionary that refers to it.

New Metadata Architecture for PDF 1.44
92

June 11, 2001

This scheme for attaching metadata to component objects will not work for in-
line images. If it necessary to attach metadata to an image, the image must be in-
cluded as an image XObject.

TABLE 4 PDF constructs that do not take metadata

Nodes in name and number trees The class map

Pages objects The role map

The Catalog dictionary File specification dictionaries

The Names dictionary Font encodings

The trailer dictionary Font dictionaries1

The Info dictionary Font descriptors

The encryption dictionary Color spaces2

Resources dictionaries DeviceN dictionaries

Actions SeparationInfo dictionaries

Destinations Functions

The structure tree root Extended graphics states

Marked content references OPI dictionaries

Object references Group dictionaries

Objects belonging to the Property lists (when stored
 various Web Capture databases inline in content streams)

4.3 Finding component metadata from document metadata

The relationship between the document metadata and component metadata is
maintained entirely within the metadata itself, and is therefore outside the scope
of this specification.

1. By the principle that metadata should be attached to the closest object to the information
being described, metadata for fonts should be attached to font file streams rather than to font
dictionaries.

2. By the principle that metadata should be attached to the closest object to the information
being described, metadata describing an ICC profile should be attached to the stream contain-
ing the ICC profile data.

Compatibility5
93

June 11, 2001

4.4 Enumerating components with metadata

In order to find the actual component objects that have component metadata, an
application must be PDF-aware. It is up to an application to decide which dictio-
naries and streams it will inspect for the presence of attached metadata.

5 Compatibility

PDF 1.3 documents read by PDF a 1.4-aware application

PDF 1.3 Info dictionaries remain syntactically valid in PDF 1.4. Any PDF 1.4-
aware application should also understand PDF 1.3 Info dictionaries as a reposi-
tory of metadata.

PDF 1.3 documents having metadata altered by PDF 1.4-aware
application; PDF 1.4 documents read by PDF 1.3 application

In order to provide a measure of backward compatibility, applications that create
PDF 1.4 documents should also write properties-value pairs having an equivalent
in PDF 1.3 into the Info dictionary as well as into the Metadata stream.

PDF 1.4 documents read by PDF 1.4-aware application

Applications that support PDF 1.4 should check for the existence of a Metadata
stream. If one is present, the application should ignore the Info dictionary.

Note: Rationale: It might seem that the Metadata stream should override the
Info dictionary on a property-by-property basis, but this is unnecessarily compli-
cated. Any application that knows how to create a Metadata stream at all
should make sure that it saves documents with the Info dictionary in sync with
the Metadata stream. Imposing this condition allows applications that know to
examine the Metadata stream to be confident that there’s no different informa-
tion to be found in the Info dictionary.

New Metadata Architecture for PDF 1.45
94

June 11, 2001

PDF 1.4 document having metadata altered by PDF 1.3
application

An application that only understands PDF 1.3 that changes the metadata in a
PDF 1.4 document would not know to write out a copy in the XAP stream. This
means that a PDF file can have metadata in the Info dictionary that should over-
ride corresponding values in the XAP metadata stream.

It’s not possible to modify existing PDF 1.3 applications, but it is possible to de-
tect the situation in a PDF 1.4-aware application. The XAP property xap:Meta-
dataDate records the last time the XAP metadata was modified. PDF 1.4-aware
applications can check whether the modification date of a PDF document is more
recent than the date given by xap:MetadataDate; if it is, the application can up-
date the XAP metadata from the values in the Info dictionary.

95

June 11, 2001

[Applies mainly to Section 8.4.2 “Marked Content.” Also Section 4 of this
chapter will be added to Section 3.6.1, “Document Catalog.”]

1 Introduction

Tagged PDF is a stylized use of PDF that allows reliable recovery of text, graph-
ics, and images in PDF documents, with no ambiguity about the contents or the
ordering of the contents. Tagged PDF is a firm basis on which to build tools for
reflowing text; extraction of contents, extraction and conversion of PDF-to-HT-
ML, PDF-to-RTF, and PDF-fragment-to-clipboard; access (in particular, PDF-to-
speech); and other uses including full-text indexing of PDF documents, reliable
search, table extraction, spell-checking, etc.

A Tagged PDF is page oriented. For each page of a Tagged PDF document, the
rendering stream for that page contains the text, graphics, and images in PCOrd-
er, as determined by the authoring application.

A Tagged PDF is a Logical Structured PDF. Logical Structure is used to carry in-
formation necessary to support tagging for access and content extraction, as well
as styling properties needed for access, reflow so, and content extraction. It also
provides the identification of the article flows in the cross-page environment for
access and content extraction.

1.1 Terminology

The following terms are used in this section:

0Tagged PDF

Tagged PDF1
96

June 11, 2001

Alternative Text Text, supplied outside the marking operators, that can “stand in”
for a page element.

Artifact A page element that is a side effect of rendering, rather than an
intrinsic part of the document or story.

Block-level Structural Element (BLSE)
A Block-level Structural Element is a Structural Element that is
laid out in the slow-progression direction (top-to-bottom in western
text) as specified by the WritingMode property.

Character Code A show string is the encoded representation of a sequence of non-
negative integers. Each of those integers is a Character Code. The
interpretation of a show string depends on the associated font:
some fonts imply a one-byte representation while others imply a
multi-byte representation.

Note: This is the PDF definition of character code and somewhat con-
trary to normal usage. The same letter, for example a capital A, can have
many different character codes on the same page.

Code-point Each Unicode code-point is derived by mapping the Character
Codes through the font’s ToUnicode table. A single Character
Code may map to a sequence of 1 or more Unicode Code-Points.
This provides a uniform letter code for access and for content
extraction.

Decoration Annotation
A PDF Annotation that is not part of the page content. Examples:
text annotation; link annotation.

Illustration Illustrations are fragments of a document that constitute single
compact page-regions that are units-of-layout. They are rectangular
and aligned parallel to the page-edges.

Inline-level Structural Element (ILSE)
An Inline-level Structural Element is a Structural Element that is
laid out in the fast-progression direction (left-to-right in western
text) as specified by the WritingMode property.

Logical Structure A PDF facility that allows the structure of a PDF file to be
expressed via a Logical Structure. Ref: PDF Reference, section
8.4.3. The Logical Structure is separable from Tagged PDF,
although Tagged PDF requires the use of Logical Structure. Every
Tagged PDF is a Logical Structured PDF, but not all Logical
Structured PDF files are Tagged PDFs.

Page Content Annotation
A PDF Annotation that is “part of the page content.” An annotation
is page content, per section 7.4, if and only if it:
a) Contains an AP appearance dictionary with a N normal

Introduction1
97

June 11, 2001

appearance and
b) Does not have its Hidden flag set.
The remaining flags may be investigated by individual users. For
example reflowing text requires the Print flag to be set in order to
consider the annotation for reflow.

PCOrder The ordering of a page’s elements defined by the sequencing of the
page-content stream imaging operations.

Reference-area A reference-area is a virtual box (closed, non-self-crossing path
that is typically but not always rectangular) used by the layout
application as a reference frame or guide to place content. PDF
does not record these boxes, but certain measurements used by
reflow and by the content extraction properties are measured from
these boxes (such as StartIndent and EndIndent). The Reference-
areas of interest are generally the column box(es) in a general text
layout, the outer bounding box of a table and each table-cell, and
the bounding box of a figure or floating group.

Show String The strings that are the arguments to the page-content Tj operators
and the strings that are the arguments to the ’ and " operators and
the strings that are elements of the arrays that are the arguments to
the TJ operators.

Soft Hyphen A character that is used to mark conditional hyphenation points.
Unicode and ISO-Latin-1 code-point 0xAD.

Structural Element A node in the Logical Structure tree.
Unicode Standard The set of sixteen-bit code-points defined by the Unicode

Consortium, 57709 of which are currently assigned and name
Unicode Characters. The lowest 65536 code-points in ISO 10646-
1 1993 are identical to the Unicode Standard and are sometimes
called the Basic Multilingual Plane. Ref: http://www.unicode.org

Unspecified If a property has a default value of Unspecified it is treated
identically to the situation where the property is not specified on
the current element.

Definition of value types
<length> A number, interpreted in default user-space units.

HTML, CSS, and XSL allow the specification of measurement
units [pt (computer points), pc, px, em (fraction of current font

Tagged PDF2
98

June 11, 2001

size), ex, cm, or %] on any length specifier. This feature is NOT
supported in Tagged PDF.

<string> A PDF string.

2 Tagged PDF Content Streams

2.1 Page Content and Page Artifacts

Artifacts

Within a page-content, we can call-out several forms of content:
1. The real content of the document. The author’s content. The content that is

identifiable in the author’s markup.

2. Artifacts:

• Artifacts of the printing process. Examples: crop-box markings; docu-
ment file name printed outside the crop box.

• Artifacts of the pagination of the document. Elements that would be ab-
sent (or present in a much different form) if a document was always one
very big page. Examples: Running headers; page numbers.

• Artifacts of the layout process and typographic style. Examples: a pas-
tel colored area under the text columns; a horizontal rule above the foot-
note.

The differences between these forms are not absolute, and sometimes the line is
blurred. Is a vertical rule between columns a pagination artifact or a layout arti-
fact? If a footnote is numbered “3,” is that digit an artifact of the pagination or
part of the real content?

Many consumers of Tagged PDF wish to distinguish between artifacts and the
real content. A speaker of Tagged PDF probably should not speak running head-
ers at page-turns. The reflowing of Tagged PDF should not reflow an inter-col-
umn rule if the reflow-result is single column.

Page artifacts are not part of a document’s Logical Structure.

Tagged PDF Content Streams2
99

June 11, 2001

Some creators of Tagged PDF may wish to distinguish between the several types
of Artifact. Some consumers of Tagged PDF will be only interested in “Artifact
or non-artifact?” But the type of artifact, if it is clear, may aid other consumers.

An Artifact marked content may be used to distinguish artifacts.

/Artifact BMC .. EMC

/Artifact PropertyList BDC .. EMC

The first form is used to identify a generic artifact. The second form is when
properties are attached to the Artifact.

Note: It is recommended that the properties be attached to an Artifact whenev-
er possible. They aid text reflow; reflow is likely to discard Artifacts that lack a
BBox.

TABLE 1 Artifact Property List

KEY TYPE SEMANTICS

Type name (optional) The type of page-content artifact. One of Page, Pagina-
tion, Layout.

BBox rectangle (optional) The page-extent of the Artifact.

Attached array (optional) Array containing one to four names.

The edges of the page (as defined by the CropBox), if any, that the
Pagination Artifact is “attached to.”

The edges are named Top, Bottom, Left, and Right. The ordering of
the names in the array is not material.

If a Pagination Artifact is logically “attached to” an edge, that charac-
teristic can be captured with this key-value. Multiple edge-attachments
may be indicated.

If both Left and Right (or Top and Bottom) are supplied, that indi-
cates a full-width (full-height) Artifact.

No meaning for Attached is defined for Page or Layout Artifacts. (It
is only honored for artifacts of type Pagination.)

Tagged PDF2
100

June 11, 2001

2.2 Examining and Processing the Page Content

A consumer of Tagged PDF may have its own ideas about what constitutes the
actual page-content. (Some of this is discussed, above, under Artifacts)

The usage of Tagged PDF supports this. In general, the consumer is allowed to:

a) decide that some page-content is not of interest, and

b) treat some page elements as terminals that are not examined further, for ex-
ample, treat an illustration as a unit for reflow purposes, and

c) substitute Alternate Text. Different consumers will make different decisions,
as their goals are different.

Throughout this specification, such usage is supported. Phrases that talk about
“processing the page-content” always condone such processing.

2.3 Page Content Ordering

Within a page-content, the serialization of the elements imposed by the page-
content stream defines an ordering of the elements. That is the Page Content Or-
dering (PCOrder). And the ordering of the glyphs within each show-string de-
fines an ordering within show-string elements.

This ordering is separate from the ordering of the elements of the page imposed
by a depth-first traversal of the Logical Structure. It may or may not be a different
ordering.

Note: If the page contains Artifacts, the artifacts will be present in the PCOrder
but artifacts are always absent from the Logical Structure order.

When dealing with material on a page-by-page basis, some consumers of Tagged
PDF will use the PCOrder of a page as reading order, rather than the Logical
Structure ordering of a page’s elements. The requirement for PCOrder is for re-
flow to maintain a proper reading order, so it should normally be a top-to-bottom
order, with artifacts in their correct relative place.

The creator of Tagged PDF is responsible for producing an appropriate PCOrder
of each page’s content.

Tagged PDF Content Streams2
101

June 11, 2001

Note: Both PCOrder and Logical Structure order sequence both the full page-
content and any fraction of it chosen by a consumer of Tagged PDF.

Annotations

In PDF, annotations are not interleaved within the page-content stream, but are
placed in the Annots array for the page.

Logical Structure provides a mechanism for referencing the annotation from with-
in the logical structure tree, even though it is not part of the content marking
stream; see section 8.4.3, “Logical Structure,” of the PDF Reference, and page
494, “PDF Objects as Content Items.”

In order to make the location of an Page Content Annotation that is in the Logical
Structure manifest within the Page Content Ordering, one applies this rule:

For each Structural Element that is manifest in the page-content: The set (if
any) of Page Content Annotations (on this page) that are immediate prede-
cessor Elements in the Logical Structure precede this Structural Element in the
Page Content Ordering. The set (if any) of Page Content Annotations (on
this page) that are immediate successor Elements in the Logical Structure fol-
low this Structural Element in the Page Content Ordering.

(Rephrasing this mechanistically: To process the page in Page Content Or-
dering, process the manifest Structural Elements in page-content order, and,
a) immediately before processing each page-content manifest Structural Ele-
ment, process (in Structural Element order) predecessor leaf Elements in the
Logical Structure as long as they are unprocessed Page Content Annotations
on this page; b) immediately after processing each page-content manifest
Structural Element, process successor leaf Elements in the Logical Structure as
long as they are unprocessed Page Content Annotations on this page.)

Note: A creator may introduce an empty MCID in order to have this rule order
the page-content.

Reverse Order Show String Content

Font characteristics may suggest that right-to-left text be typeset left-to-right.
This is an artifact of the historic use of Type 1 and other fonts. In a font that con-

Tagged PDF2
102

June 11, 2001

tains Hebrew letters, for example, one might expect that the character-origins are
at the right side of the glyphs and that the advance, the delta-x of the origin, is
negative.

Although fonts can be created that way, usually such fonts are constructed just
like an English font, with character-origins at the left and positive advance. That
means that to typeset a Hebrew word in reading order using such a positive-ad-
vance font, the PDF page content must supply an explicit re-origin for every let-
ter. This is unfortunate: a) it makes the file larger b) if the advances are utilized
within a show-string, then the calculations at the rendering level can be per-
formed in device space; but if they are instead performed by the creating applica-
tion in page-space, the as-rendered inter-character spacing is less precise.

Hence, individual show-strings are allowed without interior embedded spaces to
be typeset left-to-right (positive advance) even though the reading order within
the show-string is thus backward.

Note: The “without embedded spaces” is not a major limitation, because a space
provides an opportunity to re-align the typography without visible effect; and it
is valuable because it limits the scope of reversals for word-processing consum-
ers of Tagged PDF.

The ReversedChars marked content informs the consumer of Tagged PDF that
the show string or show strings within the marked content are individually re-
versed in reading order.

/ReversedChars BMC (olleH) Tj -200 0 Td (.dlrow) Tj EMC

Note: Within a multi-show-string marked content, only the individual letters
within a string are reversed; the ordering of the show-strings themselves is in
reading order, as in the example.

2.4 The Text Stream at the Character Level

Within each page of a Tagged PDF, there is a sequence of show strings and there-
fore a sequence of Character Codes with associated fonts.

For each page of a Tagged PDF document, the sequence of Character Codes can
be unambiguously turned into a sequence of Unicode values appropriate for “cut
and paste” operations.

Tagged PDF Content Streams2
103

June 11, 2001

Unicode

In Tagged PDF, every Character Code can be mapped to a Code-point in the Uni-
code Standard. The Unicode Consortium has defined sixteen-bit values for most
of the characters in the world’s languages and world’s character sets, and pro-
vides a vendor space that can be considered a private use area for escaping pur-
poses.

The mapping function from a Character Code to a Unicode value is the following,
as derived from section 5.9, ToUnicode CMaps, of the PDF Reference.

Note: All objects of PDF-type NAME (items having the syntax: /xxx) within the
structure tree or its associated attribute dictionaries (whether used as a key or as
a value), RoleMaps and ClassMaps (used by structure or any structure attribute)
must be in UTF-8 encoding.

Obtaining a Unicode Value from a Character Code and Font

If the font contains a ToUnicode entry, then the Character Code should be con-
verted to Unicode via the ToUnicode CMap.

Else if the font uses one of the PDF predefined encodings MacRomanEncoding,
MacExpertEncoding, or WinAnsiEncoding (perhaps as modified by a Differenc-
es array in the fonts encoding resource), use the Differences array or Appendix
D to convert the Character Code to an Adobe glyph name (called “NAME” in Ap-
pendix D of the PDF Reference, Second Edition). Then use the Adobe glyph
name and look up the corresponding Unicode value.

Else if the font uses one of the predefined CMaps listed in Table 5.14 on page
320 of the PDF Reference, Second Edition, except Identity-H and Identity-V,
convert the Character Code to a Unicode value via the following steps.

1. Obtain the Registry and Ordering of the predefined CMap from the CID-
SystemInfo of the appropriate CMap.

2. Concatenate the Registry and the Ordering according to the format
“<registry>-<ordering>-UCS2” to obtain a second CMap name, for exam-
ple, “Adobe-Japan1-UCS2.” Obtain that CMap.

3. Index into the predefined CMap, using the Character Code, and obtain an
Intermediate Value.

4. Index into the CMap obtained in step 2, using the Intermediate Value, and

Tagged PDF2
104

June 11, 2001

obtain a Unicode Value.

If any of these four steps fail, for example if there is no CMap of that name or the
indexing value is missing or undefined in the CMap, then failure: the page is not
a Tagged PDF page.

Else if the font is a Type 0 font whose descendant CIDFont uses the Adobe-Ja-
pan, Adobe-Korea, Adobe-CNS1, or Adobe-GB1 character collection, as speci-
fied in the CIDSystemInfo dictionary, follow the same steps as in the preceding
else clause.

Else if the font is a Type 1 font whose character names are taken from the Adobe
standard Latin character set and the set of named characters in the Symbol font,
documented in Appendix D of the PDF Reference, Second Edition, use the corre-
sponding Unicode value found by looking up the glyph name.

Else failure: the page is not a Tagged PDF page.

Note: An ActualText or Alt property on a Structural Element may affect the char-
acter-stream that some consumers of Tagged PDF actually utilize. (For example,
some consumers of Tagged PDF may choose to utilize the ActualText or Alt con-
tent and ignore all other content in the Structural Element and its children.)

Note: Several uses of Tagged PDF require characters that may not be available
in all fonts. Appendix A of this document shows how to add additional Unicode
code-points to the font-descriptor.

Font Characteristics

In Tagged PDF, every Character Code from the text stream can be given the key-
values:

 Serifed (boolean)

 Proportional (boolean)

 Italic (boolean)

 Smallcap (boolean)

 Weight (non-negative integer, per http://www.w3.org/TR/xsl#font-style)

Tagged PDF Content Streams2
105

June 11, 2001

and these key-values depend solely on the font used, not on the Character Code
value.

These key-values are useful when re-purposing a Tagged PDF page and the tar-
get system has a limited repertoire of available fonts.

Note: These key-values only exist for characters contained in the Tagged PDF
show strings. They do not exist for ActualText replacement text nor for Alt de-
scriptive text.

In a Tagged PDF, the above key-values can correctly be calculated from the in-
formation in the PDF Font Descriptor for the font in use. For the base fourteen
PDF fonts, the Font Descriptor may be missing; the well-known values for these
fourteen fonts are used:

The Serifed value is equal to the value of the “Serif font” bit in the Flags of
the Font Descriptor.

The Proportional value is the negation of the value of the “Fixed-width font”
bit in the Flags of the Font Descriptor.

The Italic value is equal to the value of the “Italic” bit in the Flags of the Font
Descriptor.

The Smallcap value is equal to the value of the “Small-cap font” bit in the
Flags of the Font Descriptor.

The Weight value is stored in a PDF file via the StemV value of the Font De-
scriptor. To obtain the Weight from the StemV, calculate it as

 SQRT (MAX(StemV,50) – 50) * 65

and, if desired, adjust the result to be in the CSS2 and XSL range of [100 ..
900].

Note: The Weight (and StemV) value is for font-substitution, where the actual
“weight” of the glyphs is the important thing. Not all fonts with “Bold” in their
names have similar weights: Bell Gothic Bold is lighter than Stone Sans [Regu-
lar].

Tagged PDF2
106

June 11, 2001

Note: The Base 14 fonts may be present in a PDF without an associated Font
Descriptor. However, if it is necessary to add Unicode code-points to the font, it
will be necessary to provide a font descriptor in accordance with the guidelines
in Appendix A in this document.

2.5 The Text Stream at the Word Level

The text stream not only defines the characters in the running text of a page, it
also defines the words.

Unlike character, the definition of word is fuzzy, and depends on the intent of the
application that is examining the Tagged PDF.

Note: The identification of what constitutes a word is totally unrelated to how the
text happens to be grouped into show strings. It is a common error for people to
believe that the division into show strings has semantic significance. In particu-
lar, a space or other word-breaking character is still needed even if a word break
happens to fall at the end of a show string.

Reflow tools need to know where it can re-break the running text when it refor-
mats; access wants to vocalize the words; spell-check and other applications all
have their own idea of what “Word” means.

It is not important that we create a single definition of word that satisfies all these
clients; what is important is that there is enough correct information in the stream
so that each client can easily obtain the information that it needs. For example,
reflow should consider that there is a re-break opportunity at the end of an em-
dash that separates two letter-sequences; access software may wish punctuation
to be separated from words; given a Unicode stream they can work this out on
their own.

A consumer of Tagged PDF finds words by (sequentially) examining the Uni-
code character stream, perhaps augmented by ActualText. It does not utilize a)
glyph positioning on the page b) font information or c) glyph sizes.

The main consideration is ensuring that the spacing characters that would be
present in any markup (for example RTF) are present in the Tagged PDF. Some
applications may discover “words” by simply separating words at every space
character. Or they may utilize slightly more sophisticated algorithms, for exam-
ple, treating an em dash as a word-separator.

Tagged PDF Content Streams2
107

June 11, 2001

Other applications, such as reflow, may be interested in ascertaining possible
line-break opportunities; they may use an algorithm similar to the one at:

< http://www.unicode.org/unicode/reports/tr14/ >

Note: The above specification implies that the lines of text for western languages
usually end with a trailing space.

2.6 Alternative Texts and Other Textual Key-Values

Since Tagged PDF enables many consumers, including accessibility, to recover
the contents of PDF pages, a Tagged PDF file should use the alternative text
(Alt), actual text (ActualText), abbreviation expansion text (E), and language
tagging (Lang) facilities described in this document.

The guidelines at:

< http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505 >

and the documents that it points to should be used to understand the support that
is required.

Expansion Text Instream Marking

The page-content marking stream may contain an abbreviation that is customari-
ly spoken in its full form.

Sometimes, a reader-application can divine the full pronunciation without aid:
appeal to a dictionary will probably reveal that “Blvd” is pronounced “boule-
vard” and “Ave.” is pronounced “avenue.”

But some abbreviations are difficult for the Tagged PDF consumer to resolve:
Consider “St. Peter lives at 123 Main St.” An authoring application can place an
Abbreviation Expansion alternative text into the Tagged PDF in order to provide
a “long form” for an abbreviation. Abbreviation Expansions are defined in the
Accessibility section in this document.

They are marked with an instream marking of the form:

/Span << /E (replacement string) >> BDC (abbrev.) Tj EMC

Tagged PDF2
108

June 11, 2001

Note: The Expansion Text (E) property is treated as if it were a word or phrase substitu-
tion for the BDC...EMC content. Thus if 2 objects each having an Expansion Text (E)
property are encountered in sequence, they should be treated as if a word break were
present between them.

Language Tagging

If the authoring application knows the language of the running text, it is strongly
encouraged to include this information in the PDF document. Knowledge of the
language aids many clients of the Tagged PDF, including clients interested in
pronunciation, spell-checking, and hyphenation in re-layout.

Language tagging is described in the Language section of this document.

The language may be marked with an instream marking of the form:

/Span << /Lang (en-us) >> BDC (Text to be interpreted as US. English.) Tj EMC

Note that the expansion text and language tagging can be combined:

/Span << /Lang (en-us) /E (replacement) >> BDC (abbrev.) Tj EMC

Note: ISO 639 language codes can be found at
 < http://lcweb.loc.gov/standards/iso639-2 >
and IANA registered language codes can be found at
 < http://www.isi.edu/in-notes/iana/assignments/languages >.

2.7 Textual Artifacts

There are elements and relationships in a page’s running text that are not really
part of the articles in the document, but rather artifacts associated with turning
the articles into a document. Since these elements would not be present in an
SGML or other purely-markup representation of the document, they hence do
not appear as elements in the Logical Structure of a Tagged PDF document.

Hyphenation

Among the artifacts introduced by typesetting is the hyphen at the end of a line
signifying that a line-break was introduced into the middle of a word.

Tagged PDF Content Streams2
109

June 11, 2001

Such a soft hyphen is identified by a character that the ToUnicode mapping
translates to the Unicode value of U+00AD, 173 decimal.

A “regular” or “hard” hyphen is U+002D. In order to differentiate between
“soft” and “hard” hyphens, the creator of a Tagged PDF chooses a character that
the ToUnicode mapping translates to U+002D or U+00AD appropriately. The
consumer of Tagged PDF does not have to guess what those characters are.

Word continuations

The running-text of a page may contain locations where the normal progression
of article text suffers a discontinuity. An example is a page that contains the be-
ginnings of two different stories, each story being continued onto later pages in
the document.

A consumer of Tagged PDF needs to be able to recognize this case, so that, for
example, the last phrase of the first story fragment is not part of the first sentence
of the second story. Examining the Logical Structure is the way to recognize this
case.

Text Clipping and Other Hidden Page Elements

The text of a document, present in the page-content, may be invisible for many
reasons. It may be clipped, its ink-color may match the background, it may be
over-printed.

In Tagged PDF, the text is all of the text without regard for any such display
anomalies.

Similarly, illustrations on the page may overlap, one obscuring the other. For the
purposes of Tagged PDF, each Illustration is complete, and may include elements
that are not visible on the original page.

2.8 XObject Forms

An XObject Form participates in the Logical Structure and Tagged PDF of the
page that it is imaged into via the Do operator.

Tagged PDF3
110

June 11, 2001

For all of the purposes of Tagged PDF, it is as though the form’s content stream
was bodily inserted into the page, replacing the Do. (Actually performing such a
replacement involves fix-ups of the Graphics State and of Resource identifiers.)

In Logical Structure (and therefore in Tagged PDF), no XObject Form within a
document can be incorporated into the document’s pages more than once unless
the XObject Form contains no Logical Structure markings at all.

Note: A multiply-referenced XObject Form can participate in Logical Structure,
just as a multiply-referenced XObject Image can, by being all of the content of a
leaf element or part of the content of a leaf element. But the Form’s content-
stream cannot itself contain any Logical Structure BDC, BMC, or EMC markers.

3 Use of Logical Structure in Tagged PDF

Logical Structure is used in Tagged PDF to carry the structure and properties
needed for access, content extraction, and reflow.

The Logical Structure is also used to resolve reading-order when document com-
ponents cross page boundaries.

3.1 Standard Roles and Standard Properties

This section describes the standard roles. These roles are necessary so that reflow
can determine a standard formatting paradigm for a given object; access can pro-
vide predictable presentation on alternate media; and content extraction can pro-
vide for standard translations to various common file formats (HTML, HTML
with basic CSS, XML with basic CSS, RTF, etc.)

The user may either:

• Specify the role as the value of the subtype (S) key of the Structural Element,
or

• Specify an arbitrary value as the subtype (S) then provide a RoleMap entry
which maps the arbitrary subtype (S) to one of these roles.

Use of Logical Structure in Tagged PDF3
111

June 11, 2001

Use of the Standard Roles in Tagged PDF

Use of the Structural Element’s Subtype (S) and the Logical
Structure’s RoleMap

The Structural Element’s subtype (S) value will be used as the Structural Ele-
ment’s tag for any XML output and possibly as the stylesheet-name for RTF out-
put. In most other cases, the mapped role is used to determine the tag to be
issued.

Note: For proper processing by the various content extraction and access tools,
it is strongly recommended that the specified subtype (S) or the mapped role be
one of the “Standard” roles described later in this section.

The rolemap is not required if all subtype (S) values are members of the “Stan-
dard” roles described in this document. However, if the subtype (S) value is not
one of the Standard Roles, the Role is derived by taking the subtype (S) value
and remapping it via the RoleMap. In the absence of a RoleMap, the subtype (S)
value will be used.

Top Structural Element of the Logical Structure Tree

For most content extraction formats, the document must be a tree with a single
root node. Therefore, the StructRoot node may have only one child in its kids
(K) array. If the PDF file is a complete document, the use of the Document role
is recommended. If the PDF file is a well-formed document fragment, then Part,
Art, Sect, or Div may be used as the top node.

TABLE 2 Additional Role for the Top Structural Element of the Logical Structure

STANDARD ROLE DESCRIPTION

Document This is the root element of any structure tree that contains multiple
parts or multiple articles. (Comparable to <BODY> in HTML.)

Tagged PDF3
112

June 11, 2001

Block-level Grouping Elements

TABLE 3 Roles that provide grouping of Block-level Structural Elements

STANDARD ROLE DESCRIPTION

Part A Part is a large division of an entire document. Parts are appropri-
ate for grouping Articles or for grouping sections. (Comparable to
<DIV Class=“Part”> in HTML.)

Art An Article is a relatively self-contained body of text considered to
be a single narrative or exposition.

An Article should not contain any other Article, so that applications
that examine Logical Structure may assume that Articles are dis-
joint. (Comparable to <DIV Class=“Art(icle)”> in HTML.)

Sect A Section is the most general text container type, comparable to
Division <DIV Class=“Sect”> in HTML.

Div A Division is a generic block-level element or a group of block-lev-
el elements.

BlockQuote A block quote is a block-level element containing one or more
paragraphs of text attributed to someone other than the author of
the text surrounding it.

Caption A Caption is a brief portion of text that describes a table or figure.
It is different from a Lbl (Label) in that it describes rather than
merely identifying. Elements that have a child of role Caption may
also have a child of role Lbl.

Index An Index contains a sequence of entries that contain both identify-
ing text and Reference elements that point out the occurrence of the
text in the main text body of a document.

TOC A Table of Contents element contains a List of ListItems (see Ta-
ble 5), each of which may contain either a ContentItem or anoth-
er such List along with a Reference to a text body (or other)
Structural Element. A TOC is thus potentially hierarchical. It is
desirable for such a hierarchy to correspond in structure to the
structure hierarchy of the text body of the document.

Use of Logical Structure in Tagged PDF3
113

June 11, 2001

Lists of figures and tables, as well as bibliographies, can be treated
as tables of contents for the purpose of standard Structural Element
types.

TOCI (ContentItem) A TOCI contains some identifying text, along with
one or more References to a text body Structural Element. (The
Reference entries can be used to show the Label, Title, and/or
page-number of the item in the text body.)

Please see the section(s) describing the properties owned by Layout to determine
the specific usage of properties by Div, Part, Art, Sect, BlockQuote, Caption,
Index, TOC, and TOCI.

Paragraph-like Block-level Structural Elements

TABLE 4 Paragraph-like Block-level Structural Elements

STANDARD ROLE DESCRIPTION

H (Heading) A Heading is a label for a subdivision of a document’s
content.

Note: A Heading should appear as the first child of the division
that it heads.

H1 through H6 (Heading with specific level) A Heading is a label for a subdivision
of a document’s content. Headings with specific levels are used in
applications that can’t hierarchically nest their sections, thus can’t
determine the heading level from the level of nesting.

P (Paragraph) A Paragraph is a low-level division of text.

(A preliminary version draft of this document required that P ele-
ments should not contain any other P element. This requirement
has been relaxed.)

Please see the section(s) describing the properties owned by Layout to determine
the specific usage of properties by P, H, H1, H2, H3, H4, H5, H6.

Tagged PDF3
114

June 11, 2001

Block-level Structural Elements

As used herein, a BLSE is any region of text that is laid out paragraph-like: heads,
list-items, footnotes are all BLSEs.

All BLSEs are elements of the document’s Logical Structure. A Structural Element
is a BLSE if (and only if) it is an Structural Element role-mapped to one of { P, H,
ListItem, Caption, Document, Div, Part, Art, Sect, BlockQuote, Caption, In-
dex, TOC, TOCI, H1, H2, H3, H4, H5, H6, L, LI, Lbl, LBody}. All other elements
are treated as inline-level elements, except for:

a.) TR, TH, & TD which have Table-specific layout strategies and are consid-
ered neither ILSE nor BLSE.

b.) Elements with a Placement property, where the property value overrides
the default placement of Inline.

The document’s Logical Structure completely describes the relationship between
BLSEs and page-content. In Tagged PDF, all of a page’s running text is within
BLSEs. There is no text layout outside of BLSEs.

Note: Text may exist outside of BLSEs. It is either an Artifact or it is a design
Structural Element in an Illustration.

Fragmented BLSEs

In many cases, a BLSE appears as one compact piece of page-content. In other
cases, a BLSE is discontinuous in (one or more) page-contents. Examples: a BLSE
that extends across a page boundary; a BLSE that is interrupted (in the PCOrder)
by a nested BLSE or directly-included footnote.

Note: Nothing in Tagged PDF suggests that the physical placement of a footnote
at the bottom of a page implies a late location in the PCOrder, nor does it pre-
clude placing it later in PCOrder.

Appeal to the Logical Structure is the way to recognize fragmented BLSEs and re-
assemble them into a single BLSE when necessary.

Use of Logical Structure in Tagged PDF3
115

June 11, 2001

Baseline Alignment Within BLSEs

The typesetting of the BLSE’s text on the Tagged PDF page may be irregular.
This may be done to create a special typographic effect, for example text that
“bounces” on an irregular baseline, or that has a curved baseline.

For reflow and content extraction, text will ordinarily be re-typeset according to
the ordinary Layout of the paragraph. And speech programs will ignore the spe-
cial typographic effect variation.

However, reflow and content extraction should not lose the visual appearance of
subscripting and superscripting. And speech programs should be able to distin-
guish subscripting and superscripting. The BaselineShift property is used to
record superscript/subscript deviations from the defined baseline or reference
path.

Most authoring applications that create special typographic effect text use explic-
it operations on the graphic matrix (and/or XY-moves with adjustments to the
text matrix) on a character-by-character basis to place each character within the
special typographic effect text. The application’s equivalent to the BaselineShift
property is used to record superscript/subscript deviations from the defined refer-
ence path. Tagged PDF capitalizes on this by ignoring positioning adjustments
(since we now require characters that the ToUnicode mapping translates to spac-
es to be retained in the text stream and other breaks to be explicitly marked) and
using BaselineShift to identify superiors and inferiors.

Special Block-level Structural Elements for Structuring Lists

TABLE 5 Special Block-level Structural Elements for Structuring Lists

STANDARD ROLE DESCRIPTION

L (List) A List can be any sequence of items of like meaning and im-
portance.

Note: The immediate children of a List element should be
ListItem elements.

LI (List Item) A List Item is one member of a List.

Note: List Items may contain an Lbl and an LBody.

Tagged PDF3
116

June 11, 2001

LBL (Label) A Label is a name or number that distinguishes an element
from others in the same list or other group of like items. (Contains
the term in dictionary lists.)

LBody (LBody) A wrapper surrounding the list item’s descriptive content.
(Contains the definition in dictionary lists.) Contains either inline
text or may contain multiple block-level elements (including nested
lists).

Please see the section(s) describing the properties owned by Layout and List to
determine the specific usage of properties by List components.

Special Structural Elements for Structuring Tables

TABLE 6 Special Structural Elements for Structuring Tables

STANDARD ROLE DESCRIPTION

Table A Table represents a two-dimensional layout of rectangular data
cells, possibly having a complex substructure.

A Table contains TRs (table rows) as children, and may have a
Caption as its first or its last child. The substructure of Struc-
tural Element types that may be included within a Table is de-
signed to mimic the highly prevalent structure of HTML tables.

A Table may be placed as specified by the Placement property.

TR (Table Row) A Table Row is one row of headings or data in a table.
A table row may contain TableHeaderCells and TableDataCells.

TH (Table Header Cell) A Table Header Cell is a table cell that contains
header text describing one or more rows or columns of a table.

TD (Table Data Cell) A Table Data Cell is a table cell that it is intended
to contain (non-header) data.

The association of headers with rows and columns of data is to be
determined heuristically by applications and is not defined here.

Please see the section(s) describing the properties owned by Layout to determine
the specific usage of properties by Table and TR.

Use of Logical Structure in Tagged PDF3
117

June 11, 2001

Please see the section(s) describing the properties owned by Layout and Table to
determine the specific usage of properties by TD and TH.

Inline-level Structural Elements

An Inline-level Structural element is used to identify a span of text having specific
styling or specific behaviors. They are handled in exactly the same manner as all
other Structural Elements and Structural Element properties.

TABLE 7 Inline-level Structural Elements

STANDARD ROLE DESCRIPTION

Span A Span is any inline segment of text. One use of a Span is to de-
limit the text associated with a given set of styling properties.

Note: Not all inline style changes need to be marked as a
Span. It is not necessary to mark text color and font changes
(including bold, italic, and small-caps modifiers) since these
can be derived from the PDF content. However, it is neces-
sary to use a Span to mark TextDecorationType, LineHeight,
or BaselineShift or to mark any of these 3 properties on the
BLSE that directly contains the text. Certain other proper-
ties, such as Lang and E may be marked using the instream
span marking “/Span <</Lang (en-us)>> BDC ... EMC”.

Quote A Quote is an inline portion of text attributed to someone other
than the author of the text surrounding it. (This is a quote that is in-
line within a paragraph, whereas BlockQuote is a quote which is
a whole paragraph or multiple paragraphs in length.)

BibEntry A BibEntry gives information on where some cited information
can be found. A BibEntry may contain a Lbl as a child Structural
Element. It is likely that a BibEntry will have substructure identi-
fying author, work, publisher, and so forth; but standard Structural
Element types are not provided at this level of detail.

Note: Inline-elements have in common that, although they
form part of a text sequence, they are not themselves BLSEs.
They may, however, be contained in or contain BLSEs.

Tagged PDF3
118

June 11, 2001

Please see the section(s) describing the properties owned by Layout to determine
the specific usage of properties by the common Inline components.

Special Inline-level Structural Elements

TABLE 8 Special Inline-level Structural Elements

STANDARD ROLE DESCRIPTION

Code Code represents part of computer program text embedded within a
document.

Note A Note is some explanatory text, such as a footnote or an endnote,
that is referred to from body text. A Note may have a Lbl as a
child Structural Element. A Note may be included as a child in
the body text Structural Element that refers to it, or may be in-
cluded elsewhere (such as in an endnotes section) and accessed via
a Reference.

Form A Form Structural Element designates an Inline-level Structur-
al Element as a PDF Form Annotation—something that can be or
has been filled out. A Form Structural Element refers to its under-
lying annotation via an object reference (OBJR). A form element
does not have any children other than the OBJR, its rendering is de-
fined by the appearance entry of the form annotation.

Link A hypertext (go to) link. (A discussion of Link attributes will be
supplied in a future revision.) In a manner similar to the Form
Structural Element, the Link Structural Element designates an In-
line-level Structural Element as associated with a PDF Link Anno-
tation—something that goes to another location in this document or
goes to another document. A Link Structural Element refers to its
underlying annotation via an object reference (OBJR) in the Struc-
tural Element’s Kids array. In the case of the link annotation, it may
have children in addition to the OBJR which represent the dis-
played form of the link. In the absence of any child Structural Ele-
ment, the text content of the Link Structural Element is treated as if
it were a Span element. (See section below on Simple Links.)

Reference A Reference element contains a citation to data elsewhere in the
document. (A discussion of Reference attributes will be supplied
in a future revision.)

Formula A Formula is a mathematical formula.

Use of Logical Structure in Tagged PDF3
119

June 11, 2001

Note: This is only useful for navigation: the encoding would
need to be represented in order to be able to reuse a formula.
From a formatting viewpoint, it is handled in a manner sim-
ilar to a Figure element.

Figure A Figure is graphic material associated with text which may be
placed as specified by the Placement property.

Please see the section(s) describing the properties owned by Layout to determine
the specific usage of properties by all Special Inline components.

Simple Links

It is important to make link annotations that are comparable to HTML links ac-
cessible in Tagged PDF, since links are a particularly important navigation aide
to the blind or motion disabled. This section describes how to incorporate link
annotations in the structure tree to make it possible to provide this level of acces-
sibility.

What are simple links?

A simple link is a Link Structural Element in the logical structure tree that has an
action associated with it. There is only one action associated with this Structural
Element, and the action is associated with all of the content of the Structural Ele-
ment.

Examples of simple links are links that are associated with a span of text or with
an image.

Creating a simple link

A Structural Element with the subtype (S key) of Link is inserted in the structure
tree to mark the location in the tree to be associated with a PDF link annotation.
This Structural Element is treated as a special form of an ILSE and may contain
any content allowed in an ILSE except another link element. Rather than associ-
ating styling with the content of the element, a link Structural Element associates
the action of the link annotation.

Tagged PDF3
120

June 11, 2001

A Link Structural Element in the logical structure tree is a simple link when it has
one or more children that are OBJRs for Link Annotations (PDF 1.3, section
7.4.5). All of the content of the Link Structural Element must be covered by one
of the child Link Annotations. A simple link may contain several Link Annota-
tions because the geometry of the object requires it; for instance, if a span of text
wraps from the end of one line to the beginning of another, separate Link Anno-
tations may be required to cover the portions of the simple link on different lines.
If a simple link contains multiple Link Annotation children, they must all have
the same action and target.

When an OBJR to a Link Annotation appears in the logical structure tree as a
child of a Link structure element, that Link Annotation is associated with the
content of that Link Structural Element. The Link Annotation rectangle may cov-
er a subset of the content, or it may extend beyond the ranges of the content, but
it should not overlap visible content in any other part of the logical structure tree.

If a Link Annotation in the structure tree is not a child of a Link Structural Ele-
ment, it may not be properly processed by Accessibility and content extraction
services.

Simple links may not be nested, that is, one simple link may not be a descendant
of another simple link.

How does Accessibility use simple links?

When the MSAA plug-in encounters a link annotation in a document as it is
passing it to the screen reader, it needs to provide certain attributes. It must iden-
tify it as a link, it must activate the link if requested, and it must describe what
the link will do if activated. The plug-in can obtain this information from the link
annotation.

It must also provide the name of the link, used to identify the link to the user, and
it must provide a value that is used to determine when two links are really the
same. The link annotation can’t provide this information directly.

If a link annotation is part of a simple link, the link name can be generated from
the content of the Link. If the content is text, that text can be used as the name. If
the content or the Link itself has an Alt tag, that can be used as the name. In ei-
ther case, the name is likely to be meaningful to the user as he reads the docu-
ment or as he tabs to the next link and needs to know where he is.

Use of Logical Structure in Tagged PDF3
121

June 11, 2001

If two link annotations are siblings within a simple link, they will be given the
same value so the screen reader will only present the link to the user once, as
matches the logical structure.

Examples of simple links

Example 1

Consider the following snippet of html which produces a line of text containing a
link:

<html>
<body>
<p>
Here is some text with a link
inside.
</body>
</html>

If we represented the equivalent in PDF and represent the link as a simple link,
the content stream might contain

/P <</MCID 0 >>BDC
q
0 18 612 756 re
W* n
BT
/T1_0 1 Tf
14 0 0 14 10 753.9756 Tm
(Here is some text)Tj
ET
EMC
/Link <</MCID 1 >>BDC
0 0 1 RG // blue
0.7056 w 10 M 0 j 0 J []0 d // line width, etc.
111.094 751.8587 m // move to beginning of underline
174.486 751.8587 l // lineto end
S // stroke
0 0 1 rg
BT
/T1_0 1 Tf
14 0 0 14 111.094 753.9756 Tm

Tagged PDF3
122

June 11, 2001

(with a link)Tj
ET
EMC
/P <</MCID 2 >>BDC
0 0 0 rg
BT
/T1_0 1 Tf
14 0 0 14 174.486 753.9756 Tm
(inside.)Tj
ET
EMC

The following is a illustration of the structure tree, approximately as shown in
the Tags view, with the children of a structure tree element indented beneath the
element:

/P
MCID 0 Reference
/Link

MCID 1 reference
OBJR to link annotation

MCID 2 reference

Example 2

A Link Structural Element may contain several link annotations if the linked in-
formation is discontinuous. In this case, all the link annotations must have the
same target. For instance, the paragraph

This is a two sentence paragraph and this is
a six word link. This is the second sentence.

contains a simple link that needs to be covered by two link annotations, since it
splits across a line break. It would be represented in the Tags view as follows:

<P>
MCID reference for “This is a two sentence paragraph and”
<Link>

MCID reference for “this is a six word link.”
OBJR to link annotation covering “this is”
OBJR to link annotation covering “a six word link”

MCID reference for “This is the second sentence.”

Use of Logical Structure in Tagged PDF3
123

June 11, 2001

Illustrations

In Tagged PDF, an Illustration (defined in Terminology section) is an Structural
Element of the Logical Structure that is role-mapped to a member of the set { Fig-
ure Form Formula }.

Illustrations are considered to be PDF graphical objects. Therefore, an Illustra-
tion cannot occur within a Text Object (BT-ET sequence).

Clipping is part of an Illustration if and only if it is supplied by a contained
marked clipping sequence as defined by the rules of section 8.4.2. In Tagged
PDF, the tag associated with each marked clipping sequence is required to be
Clip.

Note: The required BMC tag does not alter the specification of section 8.4.2 at
all. It merely adds a redundant marking on a marked clipping sequence so that a
consumer of Tagged PDF does not have to perform the difficult semantic analy-
sis of section 8.4.2 in order to ascertain whether a given marked-content is, in
fact, a marked clipping sequence.

For the purposes of reflow, Illustrations are considered as units-of-reflow and are
moved (and perhaps resized) as a unit, without examination of their interior.

For access, a Figure that is used as a general Illustration should always have an
Alt attribute, a Figure used in place of a character (for instance, a dropped cap)
should always have the ActualText attribute.

In addition to common inline- and/or block-level properties (the Placement
property determines if inline-level properties, or block-level properties, or both
apply to the Structural Element), an Illustration may have BaselineShift, BBox,
Height, Placement & Width properties, carried in the Logical Structure as part
of the Attributes (A) list in a dictionary owned by Layout or can be set indirectly
through the use of a dictionary in ClassMap with the same owner and selected
via the class (C) key.

The following list identified additional restrictions caused by certain special uses
of an illustration:

1. When a Figure element has a Placement of Block, the value of Height
must be <length> and cannot be Auto. The value is the advance amount in
the block-progression-direction (depending on WritingMode, this is either
AdvanceX or AdvanceY specified in page units [points]).

Tagged PDF3
124

June 11, 2001

2. When a Figure element has a Placement of Inline, the value of Width
must be a <length> and cannot be Auto. This value is used to determine the
advance width for reflow.The value is the advance amount in the inline-pro-
gression-direction (depending on WritingMode, this is either AdvanceX
or AdvanceY specified in page units [points]).

3. When a Figure element has a Placement of Inline, Start or End, the
value of BaselineShift is used to determine the position of the after-edge
(bottom) of the character relative to the text-line’s baseline. BaselineShift
is ignored for all other values of Placement.(A Figure element with the
Placement value of Start can be used to create a dropped-cap. The Place-
ment value of Inline can be used to create a raised cap.)

Illustrations may be nested in the Logical Structure.

Note: Many consuming applications will treat an illustration as an elementary
object, and will not examine its internal structure.

All Illustrations that are contained in their entirety within a page-region are re-
quired to have a BBox property.

Illustrations Referred To By Paragraphs

It is often the case that an Illustration will logically be part of, or at least attached
to, a paragraph or other document entity.

Any such containment or attachment is represented within the Logical Structure
through the use of the Figure element. The Figure element is inserted in the Log-
ical Structure at the point of attachment and the Placement property is used to
describe the nature of the attachment.

Tables

Tagged PDF incorporates the table-in-PDF definition found in Adobe Technical
Note 5402, Use of PDF Logical Structure by Acrobat Web Capture.

Table elements are handled in the same manner as Figure elements and make
identical use of the Placement, Height, Width, BaselineShift, and BBox prop-
erties.

Use of Logical Structure in Tagged PDF3
125

June 11, 2001

Tables and the components within a table need to be marked in Logical Structure
with Table, TR, TH, & TD elements for access and for content extraction.

Recommended Organization of the Logical Structure Tree

Note: The Recommended Content Rules in this section are expressed in XML
syntax. They are recommendations, since the PDF applications have no way to
enforce these.

Recommended Content Rule for Document, Part, Art(icle),
Sect(ion), and Div

The Document, Part, Art(icle), Sect(ion), and Div elements are all block-level
grouping elements. That is they are used to provide the high-level structure of a
document.

1. Weakly structured:
((H | H1 | H2 | H3 | H4 | H5 | H6 | P | BibEntry | BlockQuote | Code | Fig-
ure | Form | Formula | List | Note | Table | Sect | Part | Article | Div |
TOC | Index)*)

2. More-strongly structured:
(H, (P | BibEntry | BlockQuote | Code | Figure | Form | Formula | List
| Note | Table)*, TOC?, (Sect* | Part* | Art* | Div*), Index?)

TOC and Index are very similar to Sect.

Recommended Content Rule for H(eading), H1 – H6, P, L(ist),
BlockQuote

The H(eading), H1 – H6, P, L(ist), and BlockQuote elements are block-level
components. These components may contain other block-level components, but
would normally contain text or inline-level elements.

1. Many export file formats allow only text and inline elements within these
objects. The Recommended Content Rule is:
(MCD | BibEntry | Code | Figure | Form | Formula | Lbl | Note | Table |
Link | Quote | Reference | Span)*

2. MCD is “Marked-Content Data.” It is equivalent to #PCDATA in XML/
HTML.
For some applications, block-level elements may be intermingled with
inline level elements. In these environments, the Recommended Content

Tagged PDF3
126

June 11, 2001

Rule becomes:
(MCD | H | H1 | H2 | H3 | H4 | H5 | H6 | P | BibEntry | BlockQuote |
Code | Figure | Form | Formula | Lbl | List | Note | Table | Div | Link |
Quote | Reference | Span)*

LI (List Item) elements are block-level components of the List elements. Lbl and
LBody are block-level elements of LI.

Recommended Content Rule for L(ist):

L(ist) may contain: ((P | Caption), LI*).

Recommended Content Rule for LI (ListItem):

LI may contain: (Lbl*, LBody*).

Recommended Content Rule for LBody:

LBody may contain: another L(ist) element, multiple block-level elements,
or may have the same Recommended Content Rule as P.

Recommended Content Rule for Inline-level Structural Elements:

Only text and inline elements are allowed in an inline element. The recommend-
ed content rule is:

(MCD | BibEntry | Code | Figure | Form | Formula | Lbl | Note | Table |
Link | Quote | Reference | Span)*

Link, Quote, Reference, & Span are inline components, thus must be con-
tained in a block-level component.

BibEntry, Code, Figure, Form, Formula, Lbl, Note, and Table may be used ei-
ther as block-level or inline-level elements, but may be treated only as block-lev-
el by some formatting applications.

TR & Caption are block-level components of Table.

TD & TH are block-level components of TR.

Use of Logical Structure in Tagged PDF3
127

June 11, 2001

3.2 Use of Standard Properties in Tagged PDF

In addition to standard roles, this document identifies standard styling properties
to be used with these roles. Again, this allows for predictable formatting and
translation.

Many of these properties are placed in individually owned dictionaries within the
Structural Element’s attribute (A) key or can be set indirectly through the use of a
ClassMap and corresponding class (C) key. These owned properties are for the
use of specific downstream processes such as reflow or individual content extrac-
tion filters. The specific semantics for these properties are as defined by the indi-
vidual owner. Multiple owners may define like-named properties, but assign
differing value-types, value names, and/or semantics. These owned properties
have no effect on the PDF rendering. Tagged PDF defines specific semantics for
some of these “owned” properties (called Standard Properties in this document)
that may be shared by multiple downstream processes.

Note: Names used by the Class (C) key to identify a member of a ClassMap are
local to a document and do not need to be registered with Adobe (see “Third
class” names in the PDF Reference, Version 1.3, 2nd Edition -- Appendix E).

Owned properties are placed in a list of dictionaries within the StructElem’s A
key. Each dictionary has an owner specified by a key-value pair in the dictionary
with the key O or in an identical manner within the ClassMap. The following ta-
ble identifies owners that have assigned uses:

TABLE 9 Standard Owners of Attribute Dictionaries

OWNER DESCRIPTION

Layout Properties that are shared by reflow, access, and Repurposing.
These properties may be converted to the appropriate form for use
by reflow or access or when converting to: HTML-3.20, HTML-
4.01, OEB-1.0, RTF, and other file formats.

Link Identifies that this element has an attached link or reference.

List Properties controlling the numbering of a list.

Table The table cell’s RowSpan and ColSpan.

XML-1.00 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to XML.

Tagged PDF3
128

June 11, 2001

HTML-3.20 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to HTML-
3.20.

HTML-4.01 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to HTML-
4.01.

OEB-1.00 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to OEB-1.0.

RTF-1.05 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to Microsoft
Rich Text Format.

CSS-1.00 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to a format
using CSS-1.00.

CSS-2.00 Additional properties (other than those owned by Layout, Link,
List, and Table) that will be output when repurposing to a format
using with CSS-2.00.

If the same property is found in both the selected ClassMap and under the A key
of the SE, then the one found under the A key in the one that will be used.

The Standard Properties fall into five categories:
1. Properties specified directly in the Structural Element obj dictionary.

Properties in this category are encoded in the manner shown in the follow-
ing example:

15 0 obj
<<
/Type /StructElem
...
/Lang (en-us)
/Alt (Alternative text)
/ActualText (Substitute text)
>>
endobj

2. Properties chosen through the C attribute in the Structural Element.
Entries in the Structural Element’s attribute (A) list owned by Layout, Link, List, and
Table.

Use of Logical Structure in Tagged PDF3
129

June 11, 2001

3. Properties in the Structural Element’s attribute (A) dictionary owned by Layout,
Link, List, and Table are encoded in the manner shown in the following example
(Layout and Link are used as the sample owners):

15 0 obj
<<

/Type /StructElem
...
/A [

<<
/O /Layout
/SpaceBefore 12.0
...

>>
<<

/O /Link
/S /L
...

>>
]

>>
endobj

4. Entries in the Structural Element’s A attribute’s dictionary owned by XML-1.00,
HTML-3.20, HTML-4.01, OEB-1.00, RTF-1.05, CSS-1.00, CSS-2.00, or any
other specific export format that are applied only when that file format is the active
export format. This list is open-ended and is not specified in this document.
Properties in the Structural Element’s attribute (A) dictionary owned by XML-1.00,
HTML-3.20, HTML-4.01, OEB-1.00, RTF-1.05, CSS-1.00, CSS-2.00 are encoded
in the manner shown in the following example (XML-1.00 and HTML-3.20 are used
as the sample owners):

15 0 obj
<<

/Type /StructElem
...
/A [

<<
/O /XML-1.00
/Class (my-class)
...

>>
<<

/O /HTML-3.02

Tagged PDF3
130

June 11, 2001

/Class (Sect)
...

>>
]

>>
endobj

5. Properties that are marked directly in instream markings such as BMC...EMC or DP.

3.3 Definitions of Standard Properties used by Tagged PDF

The following two subsections contain the definitions and usage guidelines for
all Standard Properties used in Tagged PDF.

Each description consists of:

• The key (name) of the property.

• The general value type (data type).

• An overview definition of the property’s semantics.

1.) The list of values or value types that may be assigned to the property;

2.) Whether the property optional or required (optional unless otherwise
specified); -and-

3.) the default value. (One should note that even required values have a de-
fault, however the default on a required property is designed to produce a
safe value that is inaccessible/unusable, thus effectively disables the use of the
property on the associated element.)

• A table describing the specific meaning of each value.

• Additional notes or additional description of the values, if needed.

Keys used in the Structural Element’s obj Dictionary

TABLE 10 Keys used in the Structural Element’s obj Dictionary

KEY TYPE SEMANTICS

ActualText string (Optional) The ActualText property is a string that is an exact text replace-
ment for the Structural Element. It is used to provide the actual individual
letters for text glyphs that represent a non-standard ligature, a custom charac-

Use of Logical Structure in Tagged PDF3
131

June 11, 2001

ter, a logo, etc. or for text that is replaced by an inline graphic such as the ini-
tial letter in an illuminated manuscript. If the ActualText string is non-
empty, then an aural reader will read the actual text and will not process any
content nor children of the Structural Element. This property has the fol-
lowing values: <string>. The default value is Unspecified.

Value Description
<string> The text to be used as an alternate representation of this

Structural Element and its children.

Note: Any ActualText should surround as small a piece of the
page-content as possible. It is not possible to match the char-
acters of the ActualText with the glyphs within the Actual-
Text’s marked-content. As a result, consumers of Tagged PDF
such as reflow programs cannot perform, for example, word-
breaking within a ActualText marked-content.

Note: The Alt ActualText property is treated as if it were a character substitu-
tion for the current Structural Element. Thus if 2 objects each having an Ac-
tualText property are encountered in sequence, they should be treated as if no
word break is present between them.

Alt string (Optional) The Alt property is used by the access reader to provide a de-
scription of a figure or formula for aural readers. This property has the fol-
lowing values: <string>. The default value is Unspecified.

For a complete definition of this property, see the PDF Reference.

Note: The Alt property is treated as if it were a word or phrase substitution
for the current Structural Element. Thus if 2 objects each having an Alt prop-
erty are encountered in sequence, they should be treated as if a word break is
present between them.

Lang string (Optional) The language of a word in a document is determined in a hierar-
chical fashion by the language specification dictionary keys in the Catalog
and in Structural Element objects and by properties attached to marked
content with the span tag. The key is optional. The value is of type string and
the empty string indicates that the language is unknown. This property has
the following values: <IETF RFC-1766-language-code>. If this proper-
ty is not present, the hierarchy must be looked up to determine the language.

Note: ISO 639 language codes can be found at
 http://lcweb.loc.gov/standards/iso639-2

http://lcweb.loc.gov/standards/iso639-2
http://lcweb.loc.gov/standards/iso639-2
http://www.isi.edu/in-notes/iana/assignments/languages

Tagged PDF3
132

June 11, 2001

and IANA registered language codes can be found at
 http://www.isi.edu/in-notes/iana/assignments/languages.

Keys Owned by Layout

The following list summarizes the usage of properties owned by Layout:
1. Properties on any Block-level Structural Element:

SpaceAfter

SpaceBefore

EndIndent

StartIndent

WritingMode

Note: If a Structural Element has a placement property value other than Inline
(and does not default to Inline), then the above 5 properties apply to the Struc-
tural Element.

2. Additional properties that apply to Block-level Structural Elements that con-
tain text:

TextAlign

TextIndent

3. Properties on any Inline-level Structural Element:

LineHeight

BaselineShift

TextDecorationType

Note: The above 3 properties, though they apply to any ILSE, may be specified
on any BLSE and will apply to any content of the BLSE that is not wrapped in
a Structural Element nested within this BLSE.

Note: If a Structural Element has a placement property value of Inline (or de-
faults to Inline), then the above 3 properties apply to the Structural Element.

4. Properties on Figure, Form, Formula, Code, Note, or Table Structural
Elements:

Height

Width

http://www.isi.edu/in-notes/iana/assignments/languages
http://www.isi.edu/in-notes/iana/assignments/languages

Use of Logical Structure in Tagged PDF3
133

June 11, 2001

Placement

BBox

5. Properties on TD, or TH Structural Elements:

Height

Width

BlockAlign

InlineAlign

Property definitions in the following table are listed in alphabetical order.

TABLE 11 Keys Owned by Layout

KEY TYPE SEMANTICS

BaselineShift number (Optional) Used to create inferiors (subscripts) and superiors (superscripts).
This property is also used to position inline figures relative to the baseline.
This property has the following values: <length>. The default value is 0 (ze-
ro).
The BaselineShift property allows repositioning of the baseline relative
to the baseline of the parent element. The shifted object might be a
subscript, a superscript, or an inline graphic. Within the shifted object,
the whole baseline-table is offset; not just a single baseline.

When a baseline shift is applied to an element, the content of the element
and all its children are shifted by the amount specified. Any
BaselineShift properties that are applied to a child of this element are
measured relative to the shifted result of this (parent) element. This is not
the full behavior of a Reference-area (for example, it does not define
bounds for measuring indents), thus is called a reference-frame.

Value Description
<length> The baseline is shifted in the shift-direction (positive

value, toward superscript) or opposite to the shift-
direction (negative value, toward subscript) of the parent
element’s baseline by the <length> value.

BBox rectangle Required if a Table, Form, Formula, or Figure element appears in its en-
tirety on a single page. The extent of the Table, Form, or Figure on the page,
in page-space (points).

Tagged PDF3
134

June 11, 2001

Value Description
<rectangle> The page-extent of the Figure, Form, or Table element.

BlockAlign name (Optional) Controls placement of content within a table-cell. (This is equiva-
lent to “valign” in HTML.) This property specifies the alignment, in the
block-progression-direction, of the areas that are the children of a Reference-
area. This property has the following values: Before | Middle | After | Justi-
fy. The default value is Before.

Value Description
Before The before-edge of the allocation-rectangle of the first

child area is placed coincident with the before-edge of the
content-rectangle of the Reference-area.

Middle The child areas are placed such that the distance between
the before-edge of the allocation-rectangle of the first child
area and the before-edge of the content-rectangle of the
Reference-area is the same as the distance between the
after-edge of the allocation-rectangle of the last child area
and the after-edge of the content-rectangle of the
Reference-area.

After The after-edge of the allocation-rectangle of the last child
area is placed coincident with the after-edge of the
content-rectangle of the Reference-area.

Justify Equal spacing is inserted between all children of this area,
such that the first child has the alignment Before and the
last child has the alignment After. If there is only one
child, it will be placed as if Before had been specified.

EndIndent number (Optional) Distance from the end-edge of the Reference-area to the end-
edge of all lines in the BLSE; larger values make the line shorter. This prop-
erty has the following values: <length>. The default value is 0.0 points.

 Value Description
<length> For each block-area generated by this Structural Element,

specifies the distance from the end-edge of the content-
rectangle of that block-area to the end-edge of the
content-rectangle of the containing Reference-area.

This property may have a negative value, which indicates a
hanging indent (outdent), but various export formats may
have implementation-specific limits.

Use of Logical Structure in Tagged PDF3
135

June 11, 2001

Height name or number
(Optional) Desired-height of the Reference-area to be used to lay out this
object (a form, formula, table, figure), measured in the block-progression-di-
rection as established by the current WritingMode. This property applies to
graphics and tables, it does not apply to text (when the “line-height” property
applies). This property has the following values: <length> | Auto. The de-
fault value is Auto.

Value Description
Auto No constraint is imposed by this property. The block-

progression-dimension is determined by the intrinsic size
of the object.

<length> Specifies an explicit block-progression-dimension.

InlineAlign name (Optional) Controls “lateral” placement of content within a table-cell. (This
is equivalent to “halign” in HTML.) This property specifies the alignment, in
the inline-progression-direction, of the areas that are the children of a Refer-
ence-area. This property has the following values: Start | Center | End |
Justify. The default value is Start.

Value Description
Start The start-edge of the allocation-rectangle of the first child

area is placed coincident with the start-edge of the
content-rectangle of the Reference-area.

Center The child areas are placed such that the distance between
the start-edge of the allocation-rectangle of the first child
area and the start-edge of the content-rectangle of the
Reference-area is the same as the distance between the
end-edge of the allocation-rectangle of the last child area
and the end-edge of the content-rectangle of the
Reference-area.

End The end-edge of the allocation-rectangle of the last child
area is placed coincident with the end-edge of the content-
rectangle of the Reference-area.

Justify Equal spacing is inserted between all children of this area,
such that the first child has the alignment Start and the
last child has the alignment End. If there is only one child,
it will be placed as if Start had been specified.

LineHeight name or number
(Optional) Preferred height of an Inline-Level Structural Element. The

Tagged PDF3
136

June 11, 2001

largest LineHeight for any fragment of any Inline-level Structural Ele-
ment in a given text line is used as the height of the line. This property has
the following values: Normal | Auto | <length>. The default value is Nor-
mal.

Note: This is an inline-level property, not a Block-level property.
However, this property may be placed on a BLSE and will apply to
any content within the BLSE that is not wrapped in an element
nested within the BLSE as if the unwrappped content had been
wrapped in a span element bearing this LineHeight.

Value Description
Normal Tells user agents to set the height of the Inline-level

Structural Element to a reasonable value based on the font
size for the Structural Element. In calculating the height of
the line, the minima and maxima are adjusted to include
any non-zero BaselineShift.

Auto Tells user agents to set the height of the Inline-level
Structural Element to a reasonable value based on the font
size for the Structural Element. In calculating the height of
the line, the maxima and minima are calculated as if
BaselineShift had been set to zero.

<length> The height is set to this length. Negative values are illegal.

Note: Both Normal and Auto include the term reasonable. Absent any
other property to modify this definition, reasonable is assumed to be
approximately 1.2 times the font size. The coefficient may differ from
the assumed value of 1.2 in each of the content extraction formats. The
value Normal or Auto is the value actually issued by content extraction if
available in the output format, hence the reason these are defined in
terms of reasonable.

Note: If the LineHeight property is set to Normal or Auto, one reason-
able method to calculate the font size to be used in calculating a numeric
line height from the information in a PDF file is to take the maximum
(most positive) value across all characters of the applicable span of the
result of multiplying the current font’s Ascent by the current composite
of the GraphicState (CTM) and TextState (Tm) matrices and the size
operand of the current Tf operator (as described in the section Text Ren-
dering Matrix in section 5.3.2 of the PDF Reference) then subtract the
minimum (most negative) value calculated in a similar manner using the

Use of Logical Structure in Tagged PDF3
137

June 11, 2001

font’s Descent value. One should note that if the font, size, or the Tm
matrix changes then this calculation should be treated as if text string
was broken into two ILSEs at the point where the change occurs.

Placement name (Optional) This property specifies whether a box should float to the top of
page, left side of the column, right side of the column, be placed as a nested
BLSE, or be placed inline (as a character-level object). Placement may have
the following values: Inline | Block | Start | End | Before | After. The de-
fault value is: Inline.

Value Description
Inline Specifies that the areas created by this Structural Element

shall be laid out as if they were a baseline-resting character
in the text line.

Block Specifies that the areas created by this Structural Element
shall be laid out as if it were a nested BLSE.

Start Specifies that the areas created by this Structural Element
may float and shall be placed so that the start-edge of the
floating area coincides with the start-edge of the nearest
containing Reference-area. This is created as a runaround.

End Specifies that the areas created by this Structural Element
may float and shall be placed so that the end-edge of the
floating area coincides with the end-edge of the nearest
containing Reference-area. This is created as a runaround.

Before Specifies that the areas created by this Structural Element
may float and shall be placed so that the before-edge of the
floating area coincides with the before-edge of the nearest
containing Reference-area. This is created as a full-width
block and pushes any normal content of the Reference-
area to begin at the after-edge of the float’s area.

If multiple floats are encountered, they may be stacked adjacent to one-an-
other against the specified edge of the Reference-area in the order the figure
elements are encountered. (The first one encountered is placed against the
Reference-area’s edge, the second is placed adjacent to and inboard of the
first, and so on.)

Note: StartIndent is applied to Structural Elements with a Placement of
Block or Start and EndIndent applies to Structural Elements with a Place-
ment of Block or End.

Note: If a Structural Element that is placed adjacent to one with a Placement
of Start has a StartIndent, the actual starting indent for each of its lines of

Tagged PDF3
138

June 11, 2001

text will be the maximum of its StartIndent property and the ending edge po-
sition on the floating elements. This actual starting indent of the line may
then be further adjusted by the TextIndent property, if applicable to the line.

SpaceAfter number (Optional) Specifies the space after the last line of this BLSE in the block-
progression-direction. If the subsequent object has a SpaceBefore specifi-
cation, the greater of this object’s SpaceAfter and the subsequent object’s
SpaceBefore is to be used. This property has the following values:
<length>. The default value is 0.0 points.

Value Description
<length> Specifies the space before the first line of this BLSE in the

block-progression-direction.

This value is disregarded if this is the last item placed in the Reference-area.
This value is added to any adjustments induced by the LineHeight proper-
ty.

SpaceBefore number (Optional) Specifies the space before the first line of this BLSE in the block-
progression-direction. If the prior object has a SpaceAfter specification,
the greater of this object’s SpaceBefore and the prior object’s SpaceAf-
ter is to be used. This property has the following values: <length>. The de-
fault value is 0.0 points.

Value Description
<length> Specifies the space before the first line of this BLSE in the

block-progression-direction.

This value is disregarded at the if this is the first item placed in the Refer-
ence-area. This value is added to any adjustments induced by the Line-
Height property.

StartIndent number (Optional) Distance from the start-edge of the Reference-area to the start-
edge of all lines in the BLSE; larger values make the line shorter. This prop-
erty has the following values: <length>. The default value is 0.0 points.

Value Description
<length> For each block-area generated by this Structural Element,

specifies the distance from the start-edge of the content-
rectangle of the containing Reference-area to the start-
edge of the content-rectangle of that block-area.

Use of Logical Structure in Tagged PDF3
139

June 11, 2001

This property may have a negative value, which indicates a
hanging indent (outdent), but various export formats may
have implementation-specific limits.

TextAlign name (Optional) The justification of the lines within a paragraph. This property has
the following values: Start | Center | End | Justify. The default value is
Start.

 Value Description
Start Specifies that the content is to be aligned on the start-edge

in the inline-progression-direction.

Center Specifies that the content is to be centered in the inline-
progression-direction.

End Specifies that the content is to be aligned on the end-edge
in the inline-progression-direction.

Justify Specifies that the contents is to be expanded to fill the
available width in the inline-progression-direction.

The last (or only) line of any block with
TextAlign=Justify specified will be aligned as if
TextAlign=Start had been specified.

TextDecorationType name (Optional) Specifies if text is to have underline, strike-through, etc.

This property has the following values:

None |

Underline | Overline | LineThrough

The default value is None.

This property describes decorations that are added to the text of an Structur-
al Element. If the property is specified for a Block-level Structural Ele-
ment, it affects all Inline-level descendants of the Structural Element. If it
is specified for (or affects) an Inline-level Structural Element, it affects all
boxes generated by the Structural Element. If the Structural Element has
no content or no text content (for example, the IMG Structural Element in
HTML), user agents must ignore this property.

All children of an element with this property should be formatted with the
same decoration (for example, they should all be underlined). The element
and its children should all be formatted as if on a single line, then the decora-
tion applied to the formatted result as if the formatted result was a single
item. The decorated result can then be broken into lines if necessary. The col-
or of decoration should remain the same even if the child elements have dif-

Tagged PDF3
140

June 11, 2001

ferent color values. The position and thickness of the decoration should be
uniform across all the children.

Value Description
None Produces no text decoration.

Underline Each line of text is underlined.

Overline Each line of text has a line above it.

LineThroughEach line of text has a line through the middle

TextIndent number (Optional) Additional StartIndent for the first line of the paragraph. Alge-
braically adds to StartIndent. This property has the following values:
<length>. The default value is 0.0 points.

Value Description
<length> Specifies the additional indent to be applied on the start-

edge of the first line of a paragraph or Block-level
Structural Element.

This property may have a negative value, which indicates a
hanging indent (outdent), but various export formats may
have implementation-specific limits.

Width name or number
(Optional) Desired-width of the Reference-area to be used to lay out this ob-
ject (a form, formula, table, figure), measured in the inline-progression-di-
rection as established by the current WritingMode. This property applies to
graphics and tables, it does not apply to text. This property has the following
values: <length> | Auto. The default value is Auto.

Value Description
Auto No constraint is imposed by this property. The inline-

progression-dimension is determined by the intrinsic size
of the object.

<length> Specifies an explicit inline-progression-dimension.

WritingMode name (Optional) Specifies the direction of character/inline layout progression in
each line (inline-progression-direction) and the direction of layout of subse-
quent lines/blocks in a column (block-progression-direction) for the Struc-
tural Element and all its children. This property has the following values:
LrTb | RlTb | TbRl. The default value is LrTb.

Use of Logical Structure in Tagged PDF3
141

June 11, 2001

The WritingMode is specified as a pair of directions-specifiers such as
LrTb. For the basic writing modes, the first component specifies the inline-
progression-direction (Lr=left-to-right, Rl=right-to-left, Tb=top-to-bottom,
and Bt=bottom-to-top), the second component specifies the block-progres-
sion-direction.

When WritingMode is applied to an object that produces multiple columns,
it defines the column-progression within each region. The inline-progres-
sion-direction is used to determine the stacking direction for columns (and
the default flow order of text from column-to-column).

When WritingMode is applied to a table, it controls the layout of the rows
and columns. Table-rows use the block-progression-direction as the row-
stacking direction. The inline-progression-direction is used to determine the
stacking direction for columns (and cell order within the row).

 Value Description
LrTb Inline components and text within a line are written left-

to-right. Lines and blocks are placed top-to-bottom.

Note(s): Typically, this is the writing-mode for normal
alphabetic text.

Establishes the following directions:

• inline-progression-direction to left-to-right – Start is
set to left, end is set to right. If any right-to-left
reading characters are present in the text, the inline-
progression-direction for glyph-areas may be further
modified by the Unicode bidi algorithm.

• block-progression-direction to top-to-bottom;
Before is set to top, after is set to bottom

• shift-direction to bottom-to-top; A positive value
moves toward top, a negative value moves toward
bottom.

RlTb Inline components and text within a line are written right-
to-left. Lines and blocks are placed top-to-bottom.

Note: Typically, this writing mode is used for Arabic
and Hebrew text.

Establishes the following directions:

Tagged PDF3
142

June 11, 2001

• inline-progression-direction to right-to-left; Start is
set to right, end is set to left. If any left-to-right
reading characters or numbers are present in the text,
the inline-progression-direction for glyph-areas may
be further modified by the Unicode bidi algorithm.

• block-progression-direction to top-to-bottom;
Before is set to top, after is set to bottom.

• shift-direction to bottom-to-top; A positive value
moves toward top, a negative value moves toward
bottom.

TbRl Inline components and text within a line are written top-
to-bottom. Lines and blocks are placed right-to-left.

Note: Typically, this writing mode is used for Chinese and Japanese text.

Establishes the following directions:

• inline-progression-direction to top-to-bottom; Start
is set to top, end is set to bottom.

• block-progression-direction to right-to-left; Before is
set to right, after is set to left

• shift-direction to left-to-right; A positive value moves
toward right, a negative value moves toward left

Keys Owned by List

The ListNumbering property is specified on the L (List) element, but controls
the interpretation of the Lbl element within LI (List Item) elements within that
List.

TABLE 12 Properties Owned by List

KEY TYPE DESCRIPTION

ListNumbering name (Optional) For auto-numbered lists, specifies the numbering system to be
used. For un-numbered lists, specifies the symbol to be used to identify each
list-item. This property has the following values: None | Disc | Circle |
Square | Decimal | LowerRoman | UpperRoman | LowerAlpha |
UpperAlpha. The default value is None.

Note: The ListNumbering property is used to allow a content
extraction tool to auto-number a list. The Lbl element should

Use of Logical Structure in Tagged PDF3
143

June 11, 2001

contain the resultant number so that the document can be re-
flowed or printed without full reformatting.

Value Description
None List is not auto-numbered. The Lbl Structural Element

can be provided to contain manual numbering or the term
in a dictionary list. If Lbl is absent, it is an unnumbered
list.

Disc Solid circular bullet (filled circle)

Circle Open (unfilled) circular bullet.

Square Solid square bullet.

Decimal 1, ..., 9, 10, ..., 99, etc. The User agent may optionally
follow the number with a period or a closing parenthesis.

LowerRoman i, ii, iii, iv, ...

UpperRoman I, II, III, IV, ...

LowerAlpha a, b, c, ... (Alphabet chosen depends on the current Lang
property)

UpperAlpha A, B, C, ... (Alphabet chosen depends on the current Lang
property)

Note: This list may be expanded as Unicode identifies additional
numbering systems.

Keys Owned by Table

These properties apply only to table cells (TD & TH).

TABLE 13 Properties Owned by Table

KEY TYPE DESCRIPTION

ColSpan number (Optional) Defines the number of columns in a table that are spanned by the
current cell. The cell expands by adding columns in the column-progression-
direction (inline-progression-direction) specified for the table.This property
has the following values: a positive-integer. The default value is 1.

Value Description
positive-integer Number of columns spanned by the cell.

Tagged PDF4
144

June 11, 2001

RowSpan number (Optional) Defines the number of rows in a table that are spanned by the cur-
rent cell. The cell expands by adding rows in the row-progression-direction
(block-progression-direction) specified for the table.This property has the
following values: a positive-integer. The default value is 1.

Value Description
positive-integer Number of rows spanned by the cell.

(Section 4 below — To be added to Section 3.6.1 Document Catalog)

4 Additional Requirements for Tagged PDF Acceptance

The following new entry in the Catalog indicates that the document is a Tagged
PDF document.

TABLE 14 Additions to the Catalog

KEY TYPE DESCRIPTION

MarkInfo dictionary (Required for PDF files conforming to the Tagged PDF specification) Con-
tains information related to the Tagged PDF properties of this document.

TABLE 15 Contents of the MarkInfo dictionary

KEY TYPE DESCRIPTION

Marked boolean (Optional) A value of true indicates that the document is a Tagged PDF. De-
fault value: false.

145

June 11, 2001

1 Introduction

This document describes how the Adobe® imaging model is extended to include
transparency and specifies how transparency is represented in the Adobe Portable
Document Format (PDF). Under the transparency model, graphics objects do not
necessarily obey a strict opaque painting model; instead, they can blend in inter-
esting ways with other objects that overlap.

Support for transparency is first introduced in PDF version 1.4, which will be the
native file format for Adobe Acrobat® 5. The first Adobe application to support
PDF transparency is Adobe Illustrator® 9, which supports PDF 1.4 as a native
file format.

The purpose of this document is to provide preliminary information that will be
useful to developers working with Illustrator 9. This document describes only the
transparency features of PDF 1.4. Other features of PDF 1.4 will be published
following the introduction of Acrobat 5.

1.1 About This Document

The transparency extensions to the Adobe imaging model are very general. This
document describes the general model to the extent necessary to understand the
PDF extensions for transparency. However, it does not describe the realization of
the transparency extensions in applications such as Adobe Illustrator or Adobe
Photoshop®.

This document also does not cover how the transparency model is to be imple-
mented. We use implementation-like descriptions at various points to describe

0Transparency in PDF
February 5, 2001

Transparency in PDF1
146

June 11, 2001

how things work, but this is only for the purpose of elucidating the behavior of
the model. Please bear in mind that the actual implementation will almost cer-
tainly be different from what might be implied in these descriptions.

This document is organized as follows:

• Section 2, “Overview,” introduces the basic concepts of the transparency mod-
el and its associated terminology, including shape, opacity, alpha, blend mode,
stack, backdrop, and group.

• Section 3, “Color Compositing Computations,” describes the mathematics of
computing a result color as a function of source and backdrop colors, alphas,
and blend mode.

• Section 4, “Shape and Opacity Computations,” continues in the same vein and
covers the related shape and opacity computations.

• Section 5, “Groups,” introduces the concept of groups and covers their proper-
ties and semantics.

• Section 6, “Soft Masks,” covers the creation and use of masks to specify posi-
tion-dependent shape and opacity.

• Section 7, “Color Space and Color Rendering Issues,” describes the interac-
tions between the transparency model and other aspects of color specification
and rendering in the existing Adobe imaging model.

• Section 8, “Overview of PDF Extensions,” gives a brief overview of how the
transparency extensions to the Adobe imaging model are represented in PDF.

• Section 9, “PDF Specification,” gives a detailed description of the PDF exten-
sions, organized according to PDF Reference.

• Section 10, “Terminology Summary,” is an alphabetized summary of terminol-
ogy used in this document.

• Section 11, “Compatibility,” discusses compatibility with PDF 1.3 and with
the PostScript® language.

• Section 12, “Overprinting, Erasing, and Transparency,” presents details of the
existing overprinting and erasing rules in PDF 1.3 and their equivalent repre-
sentation in PDF 1.4 as a form of transparency.

• There is a revision history at the end.

Introduction1
147

June 11, 2001

1.2 Related Documents

The PDF and PostScript specifications mentioned below are available on the
Adobe Solutions Network (ASN) Developer Program web site, located at:

< http://partners.adobe.com/asn/developer/ >

The official specification for PDF is now the book PDF Reference, second edi-
tion, published in July 2000 by Addison-Wesley (and also available on-line).
That book is a self-contained reference for PDF, incorporating all information
about the Adobe imaging model that formerly was documented only in Post-
Script Language Reference, third edition. Additionally, the PDF material has
been extensively reorganized and revised. PDF Reference, second edition super-
sedes the former Portable Document Format Reference Manual, version 1.3.

This document refers to the PDF specification as, for example, PDF Reference,
Section 1.4 [1.7]. The first number refers to a section in the new PDF Reference,
second edition. The second number (in brackets) refers to a section in the old
Portable Document Format Reference Manual, version 1.3, where the closest
equivalent material can be found.

PDF Reference, second edition (PDF version 1.3)
Addison-Wesley, June 2000

Portable Document Format Reference Manual, version 1.3
March 11, 1999
Superseded by PDF Reference, second edition.

PostScript Language Reference, third edition
Addison-Wesley, February 1999

Compositing Digital Images
T. Porter & T. Duff, Computer Graphics (ACM), vol. 18 no. 3, July 1984

1.3 Intellectual Property

The information in this document is subject to the copyright permissions stated
in PDF Reference, Section 1.4 [1.7]. Additionally, developers should be aware
that many of the transparency extensions to the Adobe imaging model are the
subject of patents and patents pending by Adobe Systems. The permission to use

Transparency in PDF2
148

June 11, 2001

the copyrighted material in the PDF specification does not include the right to
use any Adobe patents, except as may be permitted by an official Adobe Patent
Clarification Notice (published at Adobe’s web site or elsewhere).

2 Overview

This section introduces the general concepts behind the transparency extensions
to the Adobe imaging model. Subsequent sections go into the model in greater
detail. The technical terms introduced here are summarized in Section 10, “Ter-
minology Summary.”

2.1 Basic Concepts

The existing Adobe imaging model paints objects (fills, strokes, text, images),
possibly clipped by a path, opaquely onto a page. One can think of the objects on
a page as forming a stack, where the stacking order is defined to be the order in
which the objects are specified, bottommost object first. At any given point on
the page, the color of the page is defined to be the color of the topmost enclosing
object, disregarding any overlapping objects lower in the stack. This effect can
be—and often is—realized simply by rendering objects directly to the page in
the order in which they are specified.

Under the transparency imaging model, all of the objects in a stack can potential-
ly contribute to the result. At any given point, the color of the page is defined to
be the result of combining the colors of all enclosing objects in the stack, accord-
ing to some compositing rules that the transparency model defines.

Note: The order in which objects are specified determines the stacking order, but
not necessarily the order in which objects are actually painted onto the page. In
particular, the model does not require the implementation to rasterize objects im-
mediately or to commit to a raster representation at any time prior to rendering
the entire stack onto the page. This is important, since rasterization often causes
significant loss of information and precision that is best avoided during interme-
diate stages of the transparency computation.

A given object is composited with a backdrop. Ordinarily, the backdrop consists
of the stack of all objects that have been specified previously; the result is then
treated as the backdrop for compositing the next object. However, within certain
kinds of groups (see below), a different backdrop is chosen.

Overview2
149

June 11, 2001

When an object is composited with the backdrop, the color at each point is mod-
ified by a function called the blend mode, which is a function of both the object’s
color and the backdrop color. The blend mode determines how colors interact;
different blend modes can be used to achieve a variety of useful effects. A single
blend mode is in effect for compositing all of a given object, but different blend
modes can be applied to different objects.

Compositing of an object with the backdrop is mediated by two scalar quantities
called shape and opacity. Conceptually, for each object, these quantities are de-
fined at every point in the plane, just as if they were additional color components.
(In actual practice, they are often obtained from auxiliary sources, rather than be-
ing intrinsic to the object itself.)

Both shape and opacity vary from 0 (no contribution) to 1 (maximum contribu-
tion). At any point where either the shape or the opacity is 0, the color is unde-
fined. At any point where the shape is 0, the opacity is also undefined. The shape
and opacity themselves are subject to compositing rules, so that the stack also
has a shape and opacity at each point.

An object’s opacity, in combination with the backdrop’s opacity, determines the
relative contributions of the backdrop’s color, the object’s color, and the blended
color to the computed composite color. An object’s shape then determines the de-
gree to which the composite color replaces the backdrop color. Shape values of 0
and 1 identify points that lie “outside” and “inside” a familiar sharp-edged ob-
ject, but intermediate values are useful in defining soft-edged objects.

Shape and opacity are very similar concepts. In fact, in most situations, they can
be combined into a single value, called alpha, which controls both the color
compositing computation and the fading between the object and the backdrop.
However, there are a few situations in which they must be treated separately; see
Section 5.5, “Knockout Groups.” Moreover, raster-based implementations must
maintain a separate shape parameter in order to do anti-aliasing properly; it is
therefore convenient to have it be an explicit part of the model.

One or more consecutive objects in a stack can be collected together into a trans-
parency group, hereafter referred to simply as group. The group as a whole can
have various properties that modify the compositing behavior of objects within a
group and their interactions with the backdrop of the group. Additionally, an ad-
ditional blend mode, shape, and opacity can be associated with the group as a

Transparency in PDF2
150

June 11, 2001

whole and used when compositing the group with its backdrop. Groups can be
nested within other groups, so that the group hierarchy forms a tree structure.

Note: The concept of transparency group is independent of the existing notions
of “group” or “layer” in applications such as Adobe Illustrator. Those group-
ings reflect logical relationships among objects that are meaningful when editing
those objects, but they are not part of the imaging model.

The color result of compositing a group can be converted to a single-component
luminosity value and treated as a soft mask, or just mask for short. Such a mask
can then be used as an additional source of shape or opacity values during subse-
quent compositing operations. When the mask is used as shape, this technique is
known as soft clipping; it is a generalization of the clipping path in the existing
Adobe imaging model.

The current page is generalized to be a group consisting of the entire stack of ob-
jects placed on the page, composited with a backdrop that is white and fully
opaque. Logically, this entire stack is then rasterized, determining the actual pix-
el values that are to be transmitted to the output device.

Note: In contexts where a PDF “page” is to be treated as a piece of artwork to
be placed on some other page, such as an Illustrator artboard or an encapsulat-
ed PostScript (EPS) file, we do not treat it as a page but as a group, whose back-
drop may be defined differently from a page.

2.2 Notation

The following are conventions for variable names used in this document. In gen-
eral, a lowercase letter represents a scalar quantity, such as an opacity. An upper-
case letter represents an n-tuple of scalar values, such as a color.

In the descriptions of the basic color compositing computations, color values are
generally represented by the letter C, with a mnemonic suffix that indicates
which of several color values is being referred to; for instance, Cs stands for
“source color.” Shape and opacity values are represented with the letters f (for
“form factor”) and q (for “opaqueness”), with a mnemonic suffix, such as qs for
“source opacity.” The symbol α (alpha) stands for the product of the correspond-
ing shape and opacity values.

Color Compositing Computations3
151

June 11, 2001

In the descriptions of group transparency, the basic formulas are recast as recur-
rence relations and augmented with other formulas specifying group behavior.
Here, variables have a numeric subscript indicating the position in the stack that
the quantity is associated with, with the bottommost object numbered 0. Thus,
Csi stands for “source color of the ith object in the stack.”

In certain computations, one or more variables may have undefined values; for
instance, when opacity is zero, the corresponding color is undefined. A value can
also be undefined if it results from a division by zero. In any formula that uses
the undefined value, the value has no effect on the ultimate result because it is
subsequently multiplied by zero or otherwise cancelled out.

The important point is that any arbitrary value can be chosen for an undefined
value, but the computation must not malfunction due to exceptions caused by
overflow or division by zero. Additionally, it is convenient to adopt the conven-
tion that 0 / 0 = 0.

3 Color Compositing Computations

The primary change in the imaging model that comes with adding transparency
is in how colors are painted. In the transparent model the result of painting, the
result color, is a function of both the color being painted, the source color, and
the color it is being painted over, the backdrop color. Both of these colors may
vary as a function of position on the page, but for the purposes of this section we
will concentrate our attention on some fixed point in the page and assume a fixed
source and backdrop color.

Other parameters in this computation are the alpha, which specifies the relative
contributions of the source and backdrop colors, and the blend mode, which al-
lows one to customize how the source and backdrop colors are combined in the
painting operation. This color compositing function, or just compositing function
for short, determines the color result of a painting operation:

where the variable definitions are given in Table 1.

Cr 1 αs
αr
------–

 Cb⋅
αs
αr
------ 1 αb–() Cs⋅ αb B Cb Cs,()⋅+()⋅+=

Transparency in PDF3
152

June 11, 2001

TABLE 1 Variables in the color compositing formula

VARIABLE MEANING

αb Backdrop alpha

αr Result alpha

αs Source alpha

B(Cb, Cs) Function implementing the blend mode

Cb Backdrop color

Cr Result color

Cs Source color

This is actually a simplified form of the compositing function where the shape
and opacity values are combined and represented as a single alpha value. The
more general form is presented later. This function is based on the Porter & Duff
over operation, extended to include a blend mode in the region of overlapping
coverage.

The following sections elaborate on the meaning and implications of these for-
mulas.

3.1 Blending Color Space

First, note that the compositing function operates on colors. If the colors are rep-
resented by more than one scalar value then the computation treats them as vec-
tor quantities. To be precise, Cb, Cr, Cs, and B(Cb, Cs) will all have n elements,
where n is the number of components in the color space used for compositing.
The above formula is then a vector function: the ith component of Cr is obtained
by plugging in the ith components of Cs, Cb and B(Cb, Cs).

Thus, the result of the computation will depend on the color space in which the
colors are represented. For this reason, the color space used to represent colors
for this computation is explicitly made part of the model and is called the blend-
ing color space. When necessary, source colors are converted to the blending col-
or space prior to the compositing computation.

Color Compositing Computations3
153

June 11, 2001

The following PDF color spaces are supported as blending color spaces:
DeviceGray, DeviceRGB, DeviceCMYK, CalGray, CalRGB, and the equiva-
lent ICCBased color spaces (including calibrated CMYK). The Lab space and
the ICCBased spaces that represent lightness and chromaticity separately (such
as Lab, Luv, and HSV) are not allowed, because the compositing computations in
such spaces do not give meaningful results when done on a per-component basis.
Additionally, an ICCBased color space used as a blending color space must be
bidirectional; that is, the ICC profile must contain both AToB and BToA trans-
forms.

The blending color space is consulted for blending of process colors only. Addi-
tionally, blending can be done on spot colors individually. Spot colors are never
converted to a blending color space, except in the case where they first revert to
their alternate color space. Instead, if an object is painted with a Separation or
DeviceN color space, the specified color components are blended individually
with the corresponding color components of the backdrop.

The blend mode functions assume that the range per color component is from 0
to 1, and that the color space is additive. The former is true for all of the allowed
blending color spaces, but the latter is not. In particular, the DeviceCMYK,
Separation, and DeviceN spaces are subtractive. When performing blending
operations in subtractive color spaces, we assume that the color component val-
ues are complemented before the blend mode function is applied and that the re-
sults of the function are then complemented before being used. By
complemented we mean that a color component value c is replaced with 1 – c.

This adjustment makes the effect of the blend modes numerically consistent
across all color spaces. However, the actual visual effect produced by a given
blend mode still depends on the color space. Blending in a device color space
produces device-dependent results. Blending in a CIE-based color space produc-
es results that are consistent across all devices. Additional details about color
space issues are given in Section 7, “Color Space and Color Rendering Issues.”

3.2 Blend Mode

The B(Cb, Cs) term of the compositing function is used to customize the blend-
ing operation. This function of two colors is called the blend mode. Abstractly,
this could be any function of the source and backdrop colors that returns another
color. PDF defines a standard set of named functions for the blend mode; see
Table 2 and Table 3.

Transparency in PDF3
154

June 11, 2001

All of the blend modes in Table 2 are defined by a scalar function that is applied
separately to each color component, expressed in additive form:

where the lowercase cr, cs, and cb denote one component of the colors Cr, Cs,
and Cb. Such a blend mode is called separable. This is in contrast to a function
where the result for a particular component is a function of components other
than the corresponding component in the backdrop and source colors. (In princi-
ple, a blend mode could have a different function for each component and yet re-
main separable; however, none of the blend modes listed below have that
property.) A separable blend mode can be used with any color space, since it ap-
plies to any number of components. Only separable blend modes can be used
when blending spot colors.

Some of the separable blend modes are defined by actual mathematical formulas;
the rest are defined only by a description of their intended effects.

TABLE 2 Separable blend modes

NAME RESULT

Normal
Replaces the backdrop color by the source color.

Multiply
Multiples the backdrop and source color values. The result color is
always at least as dark as either of the two argument colors. Multi-
plying any color with black produces black. Multiplying any color
with white leaves the color unchanged. Painting successive over-
lapping objects with a color other than black or white produces pro-
gressively darker colors.

Screen
Multiplies the complements of the backdrop and source color val-
ues. The result color is always at least as light as either of the two
argument colors. Screening with black leaves the color unchanged.
Screening with white produces white. The effect is similar to pro-
jecting multiple photographic slides simultaneously onto a single
screen.

Overlay Multiplies or screens the colors, depending on the backdrop color.
Source colors overlay the backdrop while preserving the highlights
and shadows of the backdrop. The backdrop color is not replaced

cr B cb cs,()=

Normal cb cs,() cs=

Multiply cb cs,() cb cs⋅=

Screen cb cs,() cb cs cb cs⋅–+ 1 1 cb–() 1 cs–()⋅–= =

Color Compositing Computations3
155

June 11, 2001

but is mixed with the source color to reflect the lightness or dark-
ness of the backdrop color.

SoftLight Darkens or lightens the colors, depending on the source color val-
ue. The effect is similar to shining a diffused spotlight on the back-
drop.

If the source color is lighter than 0.5, the backdrop is lightened, as
if it were dodged. This is useful for adding highlights to a scene. If
the source color is darker than 0.5, the backdrop is darkened, as if it
were burned in. Painting with pure black or white produces a dis-
tinctly darker or lighter area but does not result in pure black or
white.

HardLight Multiplies or screens the colors, depending on the source color val-
ue. The effect is similar to shining a harsh spotlight on the back-
drop.

If the source color is lighter than 0.5, the backdrop is lightened, as
if it were screened. This is useful for adding highlights to a scene.
If the source color is darker than 0.5, the backdrop is darkened, as if
it were multiplied. This is useful for adding shadows to a scene.
Painting with pure black or white produces pure black or white.

ColorDodge Brightens the backdrop color to reflect the source color. Painting
with black produces no change.

ColorBurn Darkens the backdrop color to reflect the source color. Painting
with white produces no change.

Darken
Selects the darker of the backdrop and source colors. The backdrop
is replaced with the source where the source is darker; otherwise it
is left unchanged.

Lighten
Selects the lighter of the backdrop and source colors. The backdrop
is replaced with the source where the source is lighter; otherwise it
is left unchanged.

Difference
Subtracts the source color from the backdrop color or the backdrop
color from the source color, depending on which has the greater

Darken cb cs,() min cb cs,()=

Lighten cb cs,() max cb cs,()=

Difference cb cs,() cb cs–=

Transparency in PDF3
156

June 11, 2001

brightness value. Painting with white inverts the backdrop color;
painting with black produces no change.

Exclusion Produces an effect similar to but lower in contrast than the Differ-
ence mode. Painting with white inverts the backdrop color; painting
with black produces no change.

Table 3 lists a standard set of non-separable blend modes. Their effects are de-
scribed, but no mathematical formulas are given. These modes all entail conver-
sion to and from an intermediate hue, saturation, and luminance representation.
Since the non-separable blend modes consider all color components in combina-
tion, their computation depends on the blending color space in which those col-
ors are interpreted.

TABLE 3 Non-separable blend modes

NAME RESULT

Hue Creates a color with the luminance and saturation of the backdrop
color and the hue of the source color.

Saturation Creates a color with the luminance and hue of the backdrop color
and the saturation of the source color. Painting with this mode in an
area of the backdrop that is a pure gray (no saturation) produces no
change.

Color Creates a color with the luminance of the backdrop color and the
hue and saturation of the source color. This preserves the gray lev-
els of the backdrop and is useful for coloring monochrome images
and for tinting color images.

Luminosity Creates a color with the hue and saturation of the base color and the
luminance of the blend color. This produces an inverse effect from
that of the Color mode.

Note: For illustrations of the visual effects of the blend modes, see the Adobe
Photoshop User Guide.

Color Compositing Computations3
157

June 11, 2001

3.3 Interpretation of Alpha

The color compositing function (repeated below) produces a result color that is a
weighted average of the source color, the backdrop color, and the B(Cb, Cs)
term, with the weighting controlled by the source and backdrop alphas.

The simplest blend mode, Normal, is defined by B(Cb, Cs) = Cs. With this blend
mode, the compositing formula collapses to a simple weighted average of the
source and backdrop colors, controlled by the source and backdrop alpha values.

If the blend mode is a more interesting function of the source and backdrop col-
ors, the source and backdrop alphas control whether the effect of the blend mode
is fully realized or is toned down by mixing the result with the source and back-
drop colors. With any blend mode, αs = 0 or αb = 0 results in no blend mode ef-
fect; αs = 1 and αb = 1 results in maximum blend mode effect.

Mathematically, the influence of the source and backdrop colors is controlled by
the source and backdrop alphas, respectively. The influence of the blend function
is controlled by the product of the source and backdrop alphas.

Another variable, the result alpha, also appears in the function. This is actually a
computed result, described in Section 4, “Shape and Opacity Computations.”
The result color is normalized by the result alpha. This ensures that when this
color and alpha are subsequently used together in another compositing operation,
the color’s contribution will be correctly represented. Note that if the result alpha
is zero, the result color is undefined.

The above formula is a simplification of the following one, which presents the
relative contributions of backdrop, source, and blended colors in a more straight-
forward fashion:

The simplification requires a substitution based on the alpha compositing formu-
la, which is presented in the next section.

Cr 1 αs
αr
------–

 Cb⋅
αs
αr
------ 1 αb–() Cs⋅ αb B Cb Cs,()⋅+()⋅+=

αr Cr⋅ 1 αs–() αb Cb⋅ ⋅ 1 αb–() αs Cs⋅ ⋅ αb αs B Cb Cs,()⋅ ⋅+ +=

Transparency in PDF4
158

June 11, 2001

4 Shape and Opacity Computations

So far, we have covered the generation of the color that results when a source
color is composited with a backdrop color. This section describes the derivation
of the alpha values that control the compositing process.

As indicated earlier, alpha is actually a combination of shape and opacity; it is
defined simply to be their product. Thus, we define:

We now describe the various shape and opacity values individually. Once again,
keep in mind that conceptually these values are computed for every point on the
page.

4.1 Source Shape and Opacity

The shape and opacity values can come from several sources. The transparency
model defines three independent sources for each. However, the PDF representa-
tion imposes some limitations on the ability to specify all of these sources inde-
pendently.

• Object shape. Elementary objects, such as strokes, fills, and text, have an in-
trinsic shape, whose value is 1 for points inside the object and 0 outside. Simi-
larly, a masked image with a binary mask (as in PDF 1.3) has a shape that is 1
in the unmasked portions and 0 in the masked portions. The shape of a group
object is the union of the shapes of the objects it contains.

Note: Mathematically, elementary objects have “hard” edges, with shape val-
ue either 0 or 1 at any given point. However, when such objects are rasterized
to device pixels, the shape values along the boundaries may take on fractional
values, representing fractional coverage of those pixels. When such anti-alias-
ing is performed, it is important to treat the fractional coverage as shape, not
as opacity.

• Mask shape. There can be an additional source of shape values varying by po-
sition, independent of the object itself. (How such a mask might be generated
is discussed in Section 6, “Soft Masks.”) Using such a mask to modify the

αb fb qb⋅=

αr fr qr⋅=

αs fs qs⋅=

Shape and Opacity Computations4
159

June 11, 2001

shape of some object or group is called soft clipping. It can produce effects
such as a gradual transition between an object and its backdrop, as in a vi-
gnette.

• Constant shape. This is a scalar value that simply modifies the source shape
value at every point. The constant shape is just a convenience, since its effect
could be simulated with a mask that has the same value everywhere.

• Object opacity. Elementary objects have an opacity of 1 everywhere. The
opacity of a group object is the result of the opacity computations for all the
objects it contains.

• Mask opacity. This is an additional source of opacity values varying by posi-
tion, independent of the object itself.

• Constant opacity. This is a scalar value that simply modifies the source opacity
value at every point. It is useful to think of this value as the “current opacity,”
analogous to the “current color,” used when painting elementary objects.

The range of all of the above shape and opacity inputs is from 0 to 1, and the de-
fault value for all of them is 1. The intent is that any of the inputs described
above will make the painting operation more transparent as it goes towards 0. If
more than one input goes towards 0 then the result is compounded. This is
achieved mathematically simply by multiplying the three inputs of each type,
producing intermediate values called the source shape and the source opacity.

where the variable definitions are given in Table 4.

TABLE 4 Variables in the source shape and opacity computations

VARIABLE MEANING

fj Object shape

fk Constant shape

fm Mask shape

fs Source shape

qj Object opacity

fs fj fm fk⋅ ⋅=

qs qj qm qk⋅ ⋅=

Transparency in PDF4
160

June 11, 2001

qk Constant opacity

qm Mask opacity

qs Source opacity

Note: When an object is painted with a pattern, the shape and opacity for points
in the object’s interior are determined by the shape and opacity of corresponding
points in the pattern instead of being 1 everywhere (see Section 9.14).

4.2 Computing the Result Shape and Opacity

In parallel with computing a result color, the painting operation also computes a
result shape and a result opacity value. These values define the shape and opacity
associated with the result color.

Compositing of shape and opacity values is done by the union function:

where b and s are the backdrop and source values to be composited. This can be
thought of as an “inverted multiply”: it is just a multiply with the inputs and out-
puts complemented. The result tends toward 1; if either input is 1 then the result
is 1. This is a generalization of the conventional concept of “union” for opaque
shapes.

The result shape and opacity are given by:

where the variable definitions are given in Table 5.

TABLE 5 Variables in the result opacity computation

VARIABLE MEANING

fb Backdrop shape

fr Result shape

Union b s,() 1 1 b–() 1 s–()⋅– b s b s⋅–+= =

fr Union fb fs,()=

qr
Union fb qb⋅ fs qs⋅,()

fr
--=

Shape and Opacity Computations4
161

June 11, 2001

fs Source shape

qb Backdrop opacity

qr Result opacity

qs Source opacity

These formulas can be interpreted as follows:

• The result shape is simply the union of the backdrop and source shapes.

• The result opacity is the union of the backdrop and source opacities, each of
whose contribution is determined by its respective shape. The result is then
normalized by the result shape. This ensures that when this shape and opacity
are subsequently used together in another compositing operation, the opacity’s
contribution will be correctly represented.

Since alpha is just the product of shape and opacity, it can easily be shown that

This formula can be used whenever the independent shape and opacity results are
not needed.

αr Union αb αs,()=

Transparency in PDF5
162

June 11, 2001

4.3 Summary of Compositing Computations

Below is a summary of all the computations from the previous section and this
one. They are given in an order such that no variable is used before it is comput-
ed; also, some of the formulas have been rearranged to simplify them.

For a list of the variables used in these formulas, see the tables in the preceding
sections; the information is summarized in Table 13 on page 216.

5 Groups

A group is a sequence of consecutive objects in a stack that are collected together
and composited to produce a single color, shape, and opacity at each point. The
result is then treated as if it were a single object for subsequent compositing op-
erations. This facilitates creating independent pieces of artwork, each composed
of many objects, and then combining them, possibly with additional transparen-
cy effects during the combination. Groups can be nested within other groups; this
is a strict nesting, so that the group hierarchy forms a tree structure.

The objects contained within a group are treated as a separate stack, called the
group’s stack. The objects in the stack are composited against some initial back-
drop (discussed later), producing a composite color, shape, and opacity for the
group as a whole. The result is an object whose shape is the union of the shapes
of all constituent objects and whose color and opacity are the result of the com-

Union b s,() 1 1 b–() 1 s–()⋅– b s b s⋅–+= =

fs fj fm fk⋅ ⋅=

qs qj qm qk⋅ ⋅=

fr Union fb fs,()=

αb fb qb⋅=

αs fs qs⋅=

αr Union αb αs,()=

qr
αr
fr

------=

Cr 1 αs
αr
------–

 Cb⋅
αs
αr
------ 1 αb–() Cs⋅ αb B Cb Cs,()⋅+()⋅+=

Groups5
163

June 11, 2001

positing operations. This object is in turn composited with the group’s backdrop
in the usual way.

In addition to the computed color, shape, and opacity, the group as a whole can
have several additional attributes:

• All of the input variables that affect the compositing computation for an object
can also be applied when compositing the group with its backdrop. These in-
clude mask and constant shape, mask and constant opacity, and blend mode.

• The group can be isolated or non-isolated, determining the initial backdrop
against which the group’s stack is composited.

• The group can be knockout or non-knockout, determining whether the objects
within the group’s stack are composited with one another, or only with the
group’s backdrop.

• An isolated group can specify its own blending color space, independent of the
blending color space of the group’s backdrop.

• Instead of being composited onto the current page, a group’s results can be
used as a source of shape or opacity values for creating a soft mask, described
in Section 6, “Soft Masks.”

The next section introduces some new notation for dealing with group composit-
ing. The following section describes the group compositing function for a non-
isolated, non-knockout group. Subsequent sections describe the special proper-
ties of groups having the isolated and knockout attributes.

5.1 Notation

Since we are now dealing with multiple objects at a time, it is useful to have
some notation for distinguishing among them. Accordingly, we alter the vari-
ables used earlier to include a subscript that indicates the associated object’s po-
sition in the stack. The subscript 0 indicates the initial backdrop; subscripts 1
through n indicate the bottommost through topmost objects in an n-element
stack; subscript i indicates the object that is currently of interest. Additionally,
we drop the b and r suffixes from the variables αb, Cb, fb, qb, αr, Cr, fr and qr;
other variables retain their suffixes.

This convention permits the compositing formulas to be restated as recurrence
relations among elements of a stack. For instance, the result of the color compos-

Transparency in PDF5
164

June 11, 2001

iting computation for object i is denoted by Ci (previously Cr). This computation
takes as one of its inputs the immediate backdrop color, which is the result of the
color compositing computation for object i – 1; this is denoted by Ci – 1 (previ-
ously Cb).

The revised formulas for a simple stack (not including any groups) are:

where the variable definitions are given in Table 6. Compare these with the for-
mulas summarized in Section 4.3, “Summary of Compositing Computations.”

TABLE 6 Revised variables for basic compositing computations

VARIABLE MEANING

αsi Source alpha

αi Result alpha (after compositing object i)

Bi(Ci – 1, Csi) Function implementing the blend mode

Csi Source color

Ci Result color (after compositing object i)

fji Object shape

fki Constant shape

fmi Mask shape

fsi Source shape

f si f ji f mi f ki⋅ ⋅=

qsi q ji qmi qki⋅ ⋅=

f i Union f i 1– f si,()=

αsi f si qsi⋅=

αi Union αi 1– αsi,()=

qi

αi

f i
-----=

Ci 1
αsi

αi
--------–

Ci 1–⋅
αsi

αi
-------- 1 αi 1––() Csi⋅ αi 1– Bi Ci 1– Csi,()⋅+()⋅+=

Groups5
165

June 11, 2001

fi Result shape (after compositing object i)

qji Object opacity

qki Constant opacity

qmi Mask opacity

qsi Source opacity

qi Result opacity (after compositing object i)

5.2 Group Structure and Nomenclature

As indicated earlier, the elements of a group are treated as a separate stack, the
group’s stack. Those objects are composited (against a selected initial backdrop,
to be described), and the resulting color, shape, and opacity are then treated as if
they belonged to a single object. The resulting object is in turn composited with
the group’s backdrop in the usual way.

This manipulation entails interpreting the stack as a tree. For an n-element group
that begins at position i in the stack, it treats the next n objects as an n-element
substack, whose elements are given an independent numbering of 1 through n.
Those objects are removed from the object numbering in the containing stack.
They are replaced by the group object, numbered i, followed by the remaining
objects that are painted on top of the group, renumbered starting at i + 1. This op-
eration applies recursively to any nested groups. Henceforth, the term element
(denoted Ei) refers to a member of some group; it can itself be either an object or
a group.

From the perspective of a particular element in a nested group, there exist three
different backdrops that are interesting to talk about:

• Group backdrop—the result of compositing all elements up to but not includ-
ing the first element of the group. (This definition is altered if the parent group
is a knockout group; see Section 5.5, “Knockout Groups.”)

• Initial backdrop—a backdrop that is selected for compositing the group’s first
element. This is either the same as the group backdrop (non-isolated group) or
a fully transparent backdrop (isolated group).

• Immediate backdrop—the result of compositing all elements of the group up to
but not including the current element of interest.

Transparency in PDF5
166

June 11, 2001

When all elements of a group have been composited, the result is treated as if the
group were a single object, which is then composited with the group backdrop.
(Note that this operation occurs regardless of whether the group backdrop or a
transparent backdrop was chosen as the initial backdrop for compositing the ele-
ments of the group. There is a special correction to ensure that the backdrop’s
contribution to the overall result is applied only once.)

5.3 Group Compositing Computations

The color and opacity of a group are defined by the group compositing function:

where the variable definitions are given in Table 7.

TABLE 7 Arguments and results of group compositing function

VARIABLE MEANING

α0 Alpha of the group’s backdrop

α Computed alpha of the group, to be used as the object alpha when
the group itself is treated as an object

C0 Color of the group’s backdrop

C Computed color of the group, to be used as the source color when
the group itself is treated as an object

f Computed shape of the group, to be used as the object shape when
the group itself is treated as an object

G The group: a compound object consisting of all the elements
E1…En of the group—the n constituent objects’ colors, shapes,
opacities, and blend modes

Note that the opacity is not given explicitly as an argument or result of this func-
tion. When needed, the opacity can be computed by dividing the alpha by the as-
sociated shape. Almost all of the computations use the product of shape and
opacity rather than opacity by itself, so it is usually convenient to keep track of
shape and alpha, rather than shape and opacity.

C f α, ,〈 〉 Composite C0 α0 G, ,()=

Groups5
167

June 11, 2001

The result of calling the Composite function is then treated as if it were an ob-
ject, which is composited with the group’s backdrop according to the normal for-
mulas. In those formulas, the returned color C is treated as the source color Cs;
the returned shape and alpha, f and α, are treated as the object shape and alpha, fj
and αj.

The definition of the Composite function (for a non-isolated, non-knockout
group) is as follows:

Initialization:

For each group element Ei in G, i ∈ [1, n]:

Result:

f g0 αg0 0= =

Csi f ji α ji, ,〈 〉
Composite Ci 1– αi 1– Ei, ,() if Ei is a group

intrinsic color, shape, and shape opacity⋅() of Ei otherwise

=

f si f ji f ki f mi⋅ ⋅=

αsi α ji f ki qki⋅() f mi qmi⋅()⋅ ⋅=

f gi Union f gi 1– f si,()=

αgi Union αgi 1– αsi,()=

αi Union α0 αgi,()=

Ci 1
αsi

αi
--------–

Ci 1–⋅
αsi

αi
-------- 1 αi 1––() Csi⋅ αi 1– Bi Ci 1– Csi,()⋅+()⋅+=

C Cn Cn C0–()
α0
αgn
--------- α0–

⋅+=

f f gn=

α αgn=

Transparency in PDF5
168

June 11, 2001

where the variable definitions are given in Table 8 (in addition to the ones in
Table 7).

TABLE 8 Variables in the group compositing function

VARIABLE MEANING

αsi Source alpha

αgi Group alpha: the accumulated source alphas of group elements E1
through Ei only, excluding the initial backdrop α0

αji Object alpha for Ei,—the product of the object shape and object
opacity. This is an intrinsic attribute of an elementary object (one
that isn’t a group); it is a computed result for a group.

αi Accumulated alpha (after compositing object i), including the ini-
tial backdrop α0

Bi(Ci – 1, Csi) Function implementing the blend mode for Ei

Csi Source color for Ei. This is an intrinsic attribute of an elementary
object; it is a computed result for a group.

Ci Accumulated color (after compositing object i), including the ini-
tial backdrop

Ei Element i of the group. This is a compound variable representing
the color, shape, opacity, and blend mode parameters that either are
intrinsic to the object or are associated input variables.

fji Object shape for Ei. This is an intrinsic attribute of an elementary
object (one that isn’t a group); it is a computed result for a group.

fki Constant shape for Ei

fmi Mask shape for Ei

fsi Source shape

fgi Group shape: the accumulated source shapes of group elements E1
through Ei only, excluding the initial backdrop

qki Constant opacity for Ei

qmi Mask opacity for Ei

Groups5
169

June 11, 2001

As stated above, Ei is a compound variable representing an element of a group. If
the element is itself a group, it represents all the elements of that group. When
Composite is called with Ei as an argument, this means to pass the entire group
that Ei represents. This group is represented by the G variable inside the recur-
sive call to Composite; it is expanded and its elements are denoted by E1…En.

Note that the elements of a group are composited onto a backdrop that includes
the group’s initial backdrop. This is to achieve the correct effects of the blend
modes, most of which are dependent on both the source and backdrop colors be-
ing blended. (This feature is what distinguishes a non-isolated group from an iso-
lated group, discussed in the next section.)

Special attention should be directed to the formulas at the end that compute the
C, f, and α results that are returned from the Composite function. Essentially,
they remove the contribution of the group backdrop from the computed results.
This ensures that when the group itself is subsequently composited with that
backdrop (possibly with additional shape or opacity inputs or a different blend
mode), the backdrop’s contribution is included only once.

For color, the backdrop removal is accomplished by an explicit calculation,
whose effect is essentially the reversal of compositing with Normal blend mode.
The formula is a simplification of the following formulas that present this opera-
tion more intuitively:

where bf is the backdrop fraction, that is, the relative contribution of the back-
drop color to the overall color.

For shape and alpha, backdrop removal is accomplished by maintaining two sets
of variables to hold the accumulated values. The group shape and alpha, fgi and
αgi, accumulate only the shape and alpha of the group elements, excluding the
group backdrop; their final values become the group results returned by Compos-
ite. The complete alpha, αi, includes the backdrop contribution as well; its value
used in the color compositing computations. (There is never any need to compute
the corresponding complete shape, fi, that includes the backdrop contribution.)

bf
1 αgn–() α0⋅

Union α0 αgn,()
--------------------------------------=

C
Cn bf C0⋅–

1 bf–
------------------------------=

Transparency in PDF5
170

June 11, 2001

As a result of these corrections, the effect of compositing objects as a group is
the same as compositing them separately, without grouping, if all of the follow-
ing conditions are true:

• The group is non-isolated and has the same knockout attribute as its parent
group (see the next two sections).

• When compositing the group’s results with the group backdrop, the Normal
blend mode is used and the shape and opacity inputs are always 1.

5.4 Isolated Groups

An isolated group is one whose elements are composited onto a fully transparent
initial backdrop rather than onto the group’s backdrop. The resulting source col-
or, object shape, and object alpha for the group are therefore independent of the
group backdrop. The only interaction with the group backdrop occurs when the
group’s computed color, shape, and alpha are then composited with it.

In particular, the special effects produced by the blend mode of objects within
the group take into account only the intrinsic colors and opacities of those ob-
jects; they are not influenced by the group’s backdrop. For example, applying the
Multiply blend mode to an object in the group will produce a darkening effect
upon other objects lower in the group’s stack, but it won’t produce that effect on
the group’s backdrop.

The effect of an isolated group can be represented by a simple object that directly
specifies a color, shape, and opacity at each point. This so-called “flattening” of
an isolated group is sometimes useful for import and export of fully-composited
artwork in applications. Additionally, a group that specifies an explicit blending
color space must be an isolated group.

For an isolated group, the group compositing function is altered simply by add-
ing one statement to the initialization:

If the group is isolated:

That is, the initial backdrop on which the elements of the group are composited
is transparent, rather than being inherited from the group’s backdrop. This substi-
tution also makes C0 undefined, but the normal compositing formulas take care

α0 0=

Groups5
171

June 11, 2001

of that. Additionally, the result computation for C automatically simplifies to
C = Cn, since there is no backdrop contribution to be factored out.

5.5 Knockout Groups

In a knockout group, each individual element is composited with the group’s ini-
tial backdrop, rather than with the stack of preceding elements in the group.
When objects have binary shapes (1 for “inside,” 0 for “outside”), each object
“knocks out” the effects of any overlapping elements within the same group. At
any given point, only the topmost object enclosing the point contributes to the re-
sult color and opacity of the group as a whole.

This model is similar to the opaque painting model of the existing Adobe imag-
ing model, except that the “topmost object wins” rule applies to both the color
and the opacity. Knockout groups are useful in composing a piece of artwork
from a collection of overlapping objects, where the topmost object in any overlap
completely obscures the objects underneath. At the same time, the topmost ob-
ject interacts with the group’s initial backdrop in the usual way, with its opacity
and blend mode applied as appropriate.

The concept of “knockout” is generalized to accommodate fractional shape val-
ues. In that case, the immediate backdrop is only partially knocked out and re-
placed by only a fraction of the result of compositing the object with the initial
backdrop.

The restated group compositing function deals with knockout groups by intro-
ducing a new variable, b, which is a subscript that specifies which previous result
to use as the backdrop in the compositing computations: 0 in a knockout group;
i – 1 in a non-knockout group. When b = i – 1, the formulas simplify to the ones
given in Section 5.3, “Group Compositing Computations.”

In the general case, the computation proceeds in two stages:

1. Composite the object with the group’s initial backdrop, but disregarding the
object’s shape and using a source shape value of 1 everywhere. This produces
unnormalized temporary alpha and color results, αt and Ct. (For color, this
computation is essentially the same as the unsimplified color compositing for-

Transparency in PDF5
172

June 11, 2001

mula given in Section 3.3, “Interpretation of Alpha,” but using a source shape
of 1.)

2. Compute a weighted average of this result with the object’s immediate back-
drop, using the source shape as the weighting factor. Then normalize the result
color by the result alpha.

This averaging computation is performed for both color and alpha. The above
formulas show this averaging directly. The formulas given below in Section 5.6,
“Summary of Group Compositing Computations,” are slightly altered to use
source shape and alpha, rather than source shape and opacity, avoiding the need
to compute a source opacity value explicitly. (Note that Ct there is slightly differ-
ent from Ct above; it is premultiplied by fsi.)

The extreme values of the source shape produce the straightforward “knockout”
effect. That is, a shape of 1 (“inside”) yields the color and opacity that result
from compositing the object with the initial backdrop. A shape of 0 (“outside”)
leaves the previous group results unchanged. The existence of the knockout fea-
ture is the main reason for maintaining a separate shape value, rather than only a
single alpha value that combines shape and opacity. The separate shape value
must be computed in any group that is subsequently used as an element of a
knockout group.

A knockout group can be non-isolated or isolated; that is, isolated and knockout
are independent attributes of a group. A non-isolated knockout group composites
its topmost enclosing element with the group’s backdrop; an isolated knockout
group composites the element with a transparent backdrop.

Note: When a non-isolated group is nested within a knockout group, the initial
backdrop of the inner group is the same as the initial backdrop of the outer

αt Union αgb qsi,()=

Ct 1 qsi–() αb Cb⋅ ⋅ qsi 1 αb–() Csi⋅ αb B⋅
i

Cb Csi,()+()⋅+=

αgi 1 f si–() αgi 1–⋅ f si αt⋅+=

αi Union α0 αgi,()=

Ci

1 f si–() αi 1– Ci 1– f si Ct⋅+⋅ ⋅

αi
--=

Groups5
173

June 11, 2001

group; it is not the immediate backdrop of the inner group. This non-obvious
nesting behavior is a consequence of the formulas for Composite when b = 0.

5.6 Summary of Group Compositing Computations

The following restatement of the group compositing function also takes isolated
groups and knockout groups into account. See Table 7 on page 166 and Table 8
on page 168 for the definitions of the variables.

Initialization:

For each group element Ei in G, i ∈ [1, n]:

C f α, ,〈 〉 Composite C0 α0 G, ,()=

f g0 αg0 0= =

If the group is isolated: α0 0=

b
0 if the group is knockout

i 1 otherwise–

=

Csi f ji α ji, ,〈 〉
Composite Cb αb Ei, ,() if Ei is a group

intrinsic color, shape, and shape opacity⋅() of Ei otherwise

=

f si f ji f ki f mi⋅ ⋅=

αsi α ji f ki qki⋅() f mi qmi⋅()⋅ ⋅=

f gi Union f gi 1– f si,()=

αgi 1 f si–() αgi 1–⋅ f si αsi–() αgb⋅ αsi+ +=

αi Union α0 αgi,()=

Ct f si αsi–() αb Cb⋅ ⋅ αsi 1 αb–() Csi⋅ αb B⋅
i

Cb Csi,()+()⋅+=

Ci

1 f si–() αi 1– Ci 1– Ct+⋅ ⋅

αi
---=

Transparency in PDF5
174

June 11, 2001

Result:

Note: Once again, keep in mind that these formulas are in their most general
form. They can be significantly simplified when some sources of shape and opac-
ity are not present or when shape and opacity need not be maintained separately.
Furthermore, in each specific type of group (isolated or not, knockout or not),
some terms of these equations cancel or drop out. An efficient implementation
should use the derived simplified equations.

5.7 Page Group

All of the elements painted directly onto a page—both top-level groups and top-
level objects that are not part of any group—are treated as if they were contained
in a group P, which in turn is composited with a context-dependent backdrop.
This group is called the page group.

The page group can be treated in two distinctly different ways:

• Ordinarily, the page group is imposed directly on media, such as paper or a
display screen. The page group is treated as an isolated group, whose results
are then composited with a backdrop color appropriate for the media. The
backdrop is nominally white, though varying according to actual properties of
the media. However, some applications may choose to provide a different
backdrop, such as a checkerboard that is useful for visualizing the effects of
transparency in the artwork.

• A “page” of a PDF file can be treated as a graphics object that is to be used as
an element of a page of some other document. This case arises, for example,
when placing a PDF file containing a piece of artwork produced by Illustrator
into a page layout produced by InDesign™. In this situation, the PDF “page” is
not composited with the media color; instead, it is treated as an ordinary trans-
parency group, which can be either isolated or non-isolated and is composited
with its backdrop in the normal way.

C Cn Cn C0–()
α0
αgn
--------- α0–

⋅+=

f f gn=

α αgn=

Groups5
175

June 11, 2001

The remainder of this section pertains only to the first use of the page group,
where it is to be imposed directly on the media.

The color C of the page at a given point is defined by a simplification of the gen-
eral group compositing formula:

where the variable definitions are given in Table 9. The first formula computes
the color and alpha for the group given a transparent backdrop—in effect, treat-
ing P as an isolated group. The second formula composites the results with the
context-dependent backdrop (using the equivalent of Normal blend mode).

TABLE 9 Variables for page group computation

VARIABLE MEANING

αg Computed alpha of the group

C Color of the page

Cg Computed color of the group

fg Computed shape of the group (this result is discarded)

P A group consisting of all elements E1…En in the page’s top-level
stack

U An undefined color (which is not used, since the α0 argument of
Composite is 0)

W The initial color of the page, which is nominally white but can be
context-dependent depending on properties of the media or the
needs of the application.

If not otherwise specified, the page group’s color space is inherited from the na-
tive color space of the output device—that is, a device color space, such as
DeviceRGB or DeviceCMYK. It is often preferable to specify an explicit color
space, particularly a CIE-based color space, to ensure more predictable results of
the compositing computations within the page group. In this case, all page-level
compositing is done in that color space, with the entire result then converted to
the native color space of the output device before being composited with the con-

Cg fg αg, ,〈 〉 Composite U 0 P, ,()=

C 1 αg–() W αg Cg⋅+⋅=

Transparency in PDF6
176

June 11, 2001

text-dependent backdrop. This case also arises when the page is not actually be-
ing rendered but is converted to a “flattened” representation in an opaque
imaging model, such as PostScript.

6 Soft Masks

Earlier sections have mentioned the mask shape, fm, and mask opacity, qm, that
are contributors to the source shape and opacity. These enable shape and opacity
to originate from a source that is independent of the objects being composited. A
soft mask (or just mask for short) defines values that can vary across different
points on the page. The word “soft” emphasizes that the mask value at a given
point is not just 0 or 1 but can take on fractional values.

A mask used as a source of shape values is also called a soft clip. The term soft
clip arises from analogy with the “hard” clipping path of the existing Adobe im-
aging model. The soft clip is a generalization of the hard clip: a hard clip can be
represented as a soft clip having shape value 1 inside and 0 outside the clipping
path. Everywhere inside a hard clipping path, a source object’s color replaces the
backdrop; everywhere outside, the backdrop shows through unchanged. With a
soft clip, on the other hand, one can create a gradual transition between an object
and the backdrop, such as in a vignette. (Although “soft clip” suggests a vignette
around an enclosed area, in fact the value of the mask can be an arbitrary func-
tion of position.)

A mask is typically the only means of providing position-dependent opacity,
since elementary objects do not have intrinsic opacity.

A mask can be defined by creating a group and then painting objects into it,
thereby defining color, shape, and opacity in the usual way. The resulting group
can then be treated as a mask by following one of the two procedures described
below.

6.1 Mask from group alpha

The color, shape, and opacity of the group G are first computed by the usual for-
mula:

C f α, ,〈 〉 Composite C0 α0 G, ,()=

Soft Masks6
177

June 11, 2001

where C0 and α0 are an arbitrary backdrop whose value does not contribute to
the eventual result. The C, f, and α results are the group’s color, shape, and alpha,
with the backdrop factored out.

The mask value at each point is then derived from the alpha of the group. In this
case, the group’s color is not used, so there is no need to compute it. The alpha
value is passed through a separately-specified transfer function, enabling the
masking effect to be customized.

6.2 Mask from group luminosity

The group is composited with a fully-opaque backdrop of some selected color.
The mask value at any given point is then defined to be the luminosity of the re-
sulting color. This enables the mask to be derived from the shape and color of an
arbitrary piece of artwork, drawn with ordinary painting operators.

The color C used to create the mask from a group G is defined by:

where C0 is the selected backdrop color.

G can be any kind of group—isolated or not, knockout or not—with various ef-
fects in the C result produced in each case. The color C is then converted to lumi-
nosity in one of the following ways, depending on the group’s color space:

• For CIE-based spaces, convert to CIE XYZ and use the Y component as lumi-
nosity. This procedure produces a colorimetrically correct luminosity. In the
case of a PDF CalRGB space, the formula is:

using components of the Gamma and Matrix entries of the color space dictio-
nary (see PDF Reference, Table 4.14 [7.28]). An analogous computation ap-
plies to other CIE-based color spaces.

• For device color spaces, convert the color to DeviceGray by device-dependent
means and use the resulting gray value as luminosity, with no compensation
for gamma or other color calibration. This method makes no pretense of colori-

Cg fg αg, ,〈 〉 Composite C0 1 G, ,()=

C 1 αg–() C0 αg Cg⋅+⋅=

Y Y A A
GR⋅ Y B B

GG⋅ YC C
GB⋅+ +=

Transparency in PDF7
178

June 11, 2001

metric correctness; it merely provides a numerically simple means to produce
contone mask values. Here are some recommended formulas for converting
from DeviceRGB and DeviceCMYK, respectively:

Following this conversion, the result is then passed through a separately-speci-
fied transfer function, enabling the masking effect to be customized.

The backdrop color that is most likely to be useful is black. If the backdrop is
black, any areas outside the group’s shape will end up with a zero luminosity val-
ue in the resulting mask. If we view the contents of the group as a positive mask,
this result matches our expectations with respect to the points that are outside the
shape.

7 Color Space and Color Rendering Issues

This section describes the interactions between the transparency model and other
aspects of color specification and rendering in the Adobe imaging model.

7.1 Color Spaces

A group can have either an explicitly declared color space or the color space in-
herited from the parent group. In either case:

1. A source object’s color is converted to the group’s color space if necessary.

2. The blending and compositing computations are done in that color space (see
Section 3.1, “Blending Color Space”).

3. The group’s resulting color is interpreted as being in that color space when the
group is subsequently composited with the backdrop.

Under this arrangement, we envision that all or most of a piece of artwork will be
created in a single color space—most likely, the working color space of the ap-
plication that generated it. Use of multiple color spaces typically will arise only
when assembling independently-produced artwork onto a page. When the com-
plete artwork is placed on a page, the conversion from the group’s color space to

Y 0.3 R⋅ 0.59 G⋅ 0.11 B⋅+ +=

Y 0.3 1 C–() 1 K–()⋅ ⋅ 0.59 1 M–() 1 K–()⋅ ⋅ 0.11 1 Y–() 1 K–()⋅ ⋅+ +=

Color Space and Color Rendering Issues7
179

June 11, 2001

the page’s device color space will be done as the last step, without any further
transparency compositing.

The transparency model does not impose any requirement that such a convention
be followed. The reason for adopting it is to avoid loss of color information and
introduction of errors due to performing unnecessary conversions.

Only isolated groups may have an explicitly declared color space; non-isolated
groups must inherit their color space from the parent group. Use of an explicit
color space in a non-isolated group would require converting colors from the
backdrop’s color space to the group’s color space in order to perform the com-
positing computations. This may not be possible, since some color conversions
are one-way; in any event, it would cause an excessive number of color conver-
sions.

The choice of group color space will have significant effects on the results that
are produced. In particular:

• As indicated in Section 3.1, “Blending Color Space,” if the group uses a device
color space, then the transparency compositing computations will produce de-
vice-dependent results.

• In order for the compositing computations to work in a device-independent
way, the group’s color space must be a CIE-based color space.

• A consequence of choosing a CIE-based group color space is that only CIE-
based color spaces can be used to specify the colors of objects within the
group. This is because conversion from device to CIE-based colors is not pos-
sible in general; the defined conversions work only in the opposite direction.

• The compositing computations and blend modes generally compute linear
combinations of color component values, based on the assumption that the col-
or component values themselves are linear. Therefore, it is usually best to
choose a group color space that is linear (that is, it has a linear gamma curve).
If a non-linear color space is chosen, the results are still well-defined, but the
appearance may not match the user’s expectations.

Note: In this connection, note that sRGB is a non-linear CIE-based color space,
hence possibly unsuitable for use as a group color space.

Note: An implementation of the transparency model is advised to use as much
precision as possible to represent colors during the compositing computations

Transparency in PDF7
180

June 11, 2001

and in the accumulated group results. More precision is needed for intermediate
results than is typically used to represent either the original source data or the fi-
nal rasterized results. This is to minimize accumulation of roundoff errors and to
avoid additional errors that arise from the use of linear group color spaces.

7.2 Spot Colors

The preceding discussion about color spaces has been concerned about process
colors—that is, the colors that are produced by combinations of the device’s pro-
cess colorants. (Process colors are sometimes called “composite colors,” but we
will avoid that term here due to possible confusion with the transparency com-
positing operations.) Process colors may be specified directly in the device’s col-
or space (such as DeviceCMYK), or they may be produced by conversion from
some other color space, such as a CIE-based color space (CalRGB or
ICCBased). Whatever means is used to specify them, process colors are subject
to conversion to and from the group’s color space.

A spot color is an additional color component, independent of the color compo-
nents that are used to produce process colors. A spot color can represent either an
additional separation that is to be produced or an additional colorant that is to be
applied to the composite page. The color component value for a spot color is
called a tint, representing the concentration of the spot colorant. (Tints are con-
ventionally represented as subtractive values, not additive.)

Spot colors are inherently device-dependent and are not always available. In the
Adobe imaging model as represented in PostScript and PDF, each use of a spot
color (in a Separation or DeviceN color space) is accompanied by an alternate
color space and a function for mapping tint values into that color space. This en-
ables the spot color to be approximated with process colors when the spot colo-
rant is not available in the device.

Spot colors can be accommodated straightforwardly in the transparency model,
except for issues relating to overprinting, discussed in Section 7.3, “Overprinting
and Erasing.” If an object that is an element of a group is painted with a spot col-
or, one of two things can happen:

• The group maintains a separate color value for each spot color component, in-
dependent of the group’s color space. Effectively, the spot color passes directly
through the group hierarchy to the device, with no color conversions per-

Color Space and Color Rendering Issues7
181

June 11, 2001

formed; however, it is still subject to blending and compositing with other ob-
jects that use the same spot color.

• The spot color is converted to its alternate color space. The resulting color is
then subject to the usual compositing rules for process colors.

Only a single shape value and opacity value are maintained at each point in the
computed group results; they apply to both process and spot color components.
In effect, every object is considered to paint every color component that exists.
Where no value has been specified for a given color component in a given object,
an additive value of 1 (or subtractive tint value of 0) is assumed.

For instance, when painting an object with a color specified as DeviceCMYK or
ICCBased, the process color components are painted as specified and the spot
color components are painted with additive value 1. Likewise, when painting an
object with a color specified as Separation, the named spot color is painted as
specified and the other components (both process and other spot colors) are
painted with additive value 1. The consequences of this are discussed in Section
7.3, “Overprinting and Erasing.”

The existing Adobe imaging model also allows the process color components to
be addressed individually, as if they were spot colors. For instance, one can spec-
ify a Separation color space named Cyan, which paints just the cyan component
in a CMYK output device.

This is very difficult to extend to work in transparency groups. In general, the
color components in a group are not the process colorants themselves, but are
converted to process colorants only after completion of all color compositing
computations for the group (and perhaps some of the group’s parents as well).
For instance, if the group’s color space is ICCBased, the group has no Cyan
component to be painted.

Therefore, treating a process color component as if it were a spot color is permit-
ted only within a group that inherits the native color space of the output device.
Attempting to do so in a group that specifies its own color space will result in
conversion of the requested spot color to its alternate color space.

Transparency in PDF7
182

June 11, 2001

7.3 Overprinting and Erasing

This section addresses the relationship between overprinting and transparency
and discusses how the Adobe imaging model is altered to deal with it. This dis-
cussion is limited to what can be represented in PDF. There is an entirely sepa-
rate question of how applications can use transparency to simulate the effects of
overprinting colorants; that topic is beyond the scope of this specification.

Background

PDF has an overprint parameter and a nonzero overprint mode parameter in the
graphics state. They are documented in PDF Reference, Section 4.5.6. (The older
PDF 1.3 specification lacks detailed documentation of these parameters. The
overprint parameter, but not the nonzero overprint mode, also exists in Post-
Script; it is documented in PostScript Language Reference, third edition, Section
4.8.5.)

Briefly, in the existing imaging model, painting an object causes some specific
set of device colorants to be marked according to the current color space and col-
or value. The remaining colorants are either erased or left unchanged, according
to whether the overprint parameter is false or true. The nonzero overprint mode
parameter additionally enables this selective marking of colorants to be applied
to individual components of DeviceCMYK according to whether the component
value is zero or nonzero.

This model of overprinting is very device-dependent. It deals directly with the
painting of device colorants, independent of the color space in which source col-
ors have been specified. It primarily addresses production needs, not design in-
tent. Overprinting is usually reserved for an opaque colorant or for a very dark
color such as black. It is also invoked during late-stage production operations,
such as trapping, when the actual set of device colorants has already been deter-
mined.

It is best to think of transparency as taking place in appearance space, but over-
printing of device colorants in device space. This means that colorant overprint
decisions should be made at output time based on the actual resultant colorants
of any transparency compositing operation. On the other hand, effects similar to
overprinting can be achieved in a device-independent manner by taking advan-
tage of blend modes; this is described below.

Color Space and Color Rendering Issues7
183

June 11, 2001

Use of Blend Modes to Erase or Overprint

As indicated in Section 7.2, “Spot Colors,” each object paints every color com-
ponent that exists—both the process color components in the group’s color space
and any available spot color components. For color components whose value has
not been specified, a source color of 1 is assumed. When objects are fully opaque
and Normal blend mode is used, this has the effect of erasing those components.
This is consistent with the existing opaque imaging model when the overprint
flag is turned off.

The transparency model defines some blend modes, such as Darken, that can be
used to achieve effects similar to overprinting. The definition of Darken is:

If the blend mode is Darken, its result will always be the same as the backdrop
color when the source color is 1, as it is for all unspecified color components.
When the backdrop is fully opaque, painting with a source color of 1 and the
Darken blend mode leaves the result color unchanged from the backdrop. This is
consistent with the existing opaque imaging model when the overprint flag is
turned on.

If the object or backdrop are not fully opaque, the above actions are altered cor-
respondingly. That is, the “erasing” effect is reduced, and “overprinting” an ob-
ject with color value 1 may affect the result color. While these results may or
may not be useful, they lie outside the realm of the erasing and overprinting that
are defined in the existing opaque imaging model.

When process colors are erased or overprinted (because a spot color is being
painted), the blending computations described above are done componentwise in
the group’s color space. If the group’s color space is different from the native
color space of the output device, its components are not the actual process colo-
rants of the output device; the blending computations affect the process colorants
only after the group’s results are converted to the device color space. Thus, the
effect is different from erasing or overprinting the device’s process colorants di-
rectly. On the other hand, this is a fully general operation that works uniformly,
regardless of the type of object and regardless of what computations produced
the source color.

Darken cb cs,() min cb cs,()=

Transparency in PDF7
184

June 11, 2001

The above discussion has concentrated on the color components whose values
have not been specified and that are to be either erased or left unchanged. The
Normal or Darken blend modes used for those purposes may not be suitable for
use on the components whose color values have been specified. In particular, the
Darken blend mode for those components would preclude overpainting a dark
color with a lighter color. Moreover, some other blend mode may be specifically
desired for those components.

PDF provides means to specify only one blend mode, which always applies to
process colorants and sometimes applies to spot colorants as well. Specifically,
only white-preserving blend modes can be used for spot colors—that is, func-
tions having the property that B(1, 1) = 1. If a non-white-preserving blend mode
is specified, it applies only to the process color components; Normal blend mode
is substituted for the spot colors. This ensures that when objects accumulate in an
isolated group, the accumulated values for unspecified components remain 1.
The group’s results can then be overprinted using Darken (or other useful
modes) while avoiding unwanted interactions with the components whose values
were never specified within the group.

Interpretation of Overprint Parameters

The previous section describes how effects similar to overprinting can be
achieved using blend modes. Those methods do not make direct use of the over-
print flag and nonzero overprint mode; they are usable only by transparency-
aware applications.

PDF provides for compatibility with PDF 1.3 overprint control by defining a spe-
cial CompatibleOverprint blend mode that consults the overprint control parame-
ters to compute its result. The value of CompatibleOverprint(Cb, Cs) is either Cb
or Cs, depending on the settings of the overprint parameters and the value of Cs.
When CompatibleOverprint needs to be applied in conjunction with some other
(non-Normal) blend mode, a nested transparency group is implicitly created. See
“CompatibleOverprint Blend Mode” on page 194 for a complete explanation.

7.4 Rendering Parameters

PDF has several graphics state parameters dealing with the rendering of color:
halftone, transfer functions, color rendering intent, undercolor removal, and

Color Space and Color Rendering Issues7
185

June 11, 2001

black generation. How should these parameters work in the presence of transpar-
ency?

The problem is this: The rendering parameters can be specified on a per-object
basis; they control how that object will be rendered. When all objects are opaque,
it is easy to define what this means. When they are transparent, more than one
object can contribute to the color at a given point. It is unclear which rendering
parameters to apply in an area where transparent objects overlap. (Devising a
way to “blend” the effects of these parameters seems hopelessly difficult.)

Furthermore, the operations that the rendering parameters control—halftoning in
particular—can be performed only when the final color at a given point is
known. When objects are transparent, rendering of an object does not occur at
the time the object is specified, but at some later time. The implementation must
keep track of the rendering parameters at each point from the time they are spec-
ified until the time the rendering actually occurs. In other words, rendering pa-
rameters must be associated with regions of the page rather than with individual
objects.

At the same time, we would like the transparency imaging model to be compati-
ble with the existing opaque imaging model in the case that only opaque objects
are painted.

Certain of the rendering parameters—halftone and transfer function—apply only
when the final color at each point on the page is known. The other parameters—
color rendering intent, undercolor removal, and black generation—apply any-
time colors must be converted from one color space to another. In the presence of
transparency, these two classes of parameters are treated somewhat differently.

Halftone and Transfer Function

For the halftone and transfer function parameters, the problem is solved in the
following way. Conceptually, there is a map over the entire page defining the ren-
dering parameters to be used at each point. This map is defined as follows:

• Initially, the rendering parameters for the entire page have default values,
which are the values in effect at the beginning of the current page.

• If the topmost object at a given point is fully opaque, then the rendering param-
eters associated with the object are used at that point. This provides exact com-

Transparency in PDF7
186

June 11, 2001

patibility with the existing opaque imaging model. The definitions of “topmost
object” and “fully opaque” are given below.

Only elementary objects define the rendering parameters map; the rendering pa-
rameters associated with a group object are ignored. At a given point, the topmost
object is the topmost elementary object in the entire page stack that has a nonze-
ro object shape value (fj) at that point (in other words, the point is “inside” the
object). An object is considered to be fully opaque if its source alpha is 1, its
blend mode is Normal or Compatible, and each direct ancestor group likewise
specifies a source alpha of 1 and a blend mode of Normal or Compatible. These
conditions ensure that only the object itself contributes to the color at that point;
it completely obscures the backdrop.

Rendering Intent and Color Conversions

The color rendering intent parameter needs to be handled somewhat differently.
This parameter influences the conversion from a CIE-based color space to a tar-
get color space, taking the target space’s gamut into account. In an opaque imag-
ing model, the target space is always the native color space of the output device.
However, in the transparency model, the target space may be the group color
space of a transparency group into which an object is being painted.

The rendering intent is needed at the moment such a conversion must be per-
formed—that is, when painting an object (elementary or group object) having a
CIE-based color into a parent group having a different color space. This is unlike
the halftone and transfer function parameters, whose values are used only after
all color compositing has been completed and rasterization is performed.

In all cases, the rendering intent to use for converting an object’s color is deter-
mined by the rendering intent parameter associated with that object. That is,
when painting an elementary object into a group, the object’s rendering intent is
used. When painting a group’s results into a parent group, the group’s rendering
intent is used.

Note: Since there may be one or more nested groups having different CIE-based
color spaces, the color of an elementary source object may be converted to the
device color space in multiple stages, controlled by the rendering intent in effect
at each stage. The proper choice of rendering intent at each stage depends on the
relative gamuts of the source and target color spaces. It is specified explicitly by

Overview of PDF Extensions8
187

June 11, 2001

the document creator, not prescribed by the PDF specification, since no single
policy for managing rendering intents is appropriate for all situations.

A similar approach works for the undercolor removal and black generation func-
tions, which are applied only during conversion from DeviceRGB to
DeviceCMYK color spaces.

8 Overview of PDF Extensions

The preceding sections have described the transparency model at a fairly abstract
level, with relatively little mention of how it is represented in PDF. This section
introduces the PDF representation; it is organized according to the presentation
of the transparency model above. The next section specifies the PDF extensions
for transparency in detail; it is organized according to the presentation in PDF
Reference.

8.1 Color Compositing Computations

The object color Cs comes from the usual sources of color, that is, the current
color in the graphics state or the source samples in an image. The backdrop color
Cb is the result of previous painting operations.

The blending color space is an attribute of the transparency group within which
an object is painted. The page as a whole is also treated as a group (the page
group) that has a color space attribute. If not otherwise specified, the page
group’s color space is inherited from the native color space of the output device.

The blend mode B(Cb, Cs) is a parameter in the graphics state. It is a name se-
lecting among a fixed enumeration of blend modes.

Transparency in PDF8
188

June 11, 2001

8.2 Shape and Opacity Computations

Every object painted by PDF painting operators has a shape value fj at each
point, defined as follows:

• The shape of an object defined by a path (fill, stroke, text) and painted with a
simple paint is always 1 inside and 0 outside the path.

• The shape of an image is nominally 1 inside and 0 outside the image rectangle.
This can optionally be reduced by a binary mask accompanying the image,
which is specified by either an explicit mask or a color key (using the PDF 1.3
masked image feature).

• The shape of an image mask is 1 for painted regions and 0 for masked regions.

• The shape of a shading object (painted by the sh operator) is 1 inside and 0
outside the bounds of the shading’s painting geometry, disregarding the
Background entry.

• The shape of an object painted with a tiling pattern is recursively determined
by the objects that define the pattern.

• The shape of an object painted with a shading pattern is the intersection of the
object itself and the geometry of the shading.

All elementary objects have an intrinsic opacity qj of 1 everywhere. Any desired
opacity less than 1 must be applied by means of the qk and qm parameters de-
scribed below.

The graphics state contains a constant alpha value and a position-dependent al-
pha mask. There is a separate parameter that specifies whether these alpha sourc-
es are to be treated as shape (fk and fm) or as opacity (qk and qm).

The constant alpha is specified by two simple scalar parameters in the graphics
state: one for strokes; one for all nonstroking operations. It is reasonable to think
of these parameters as the “current alpha,” analogous to the current color used
when painting elementary objects. (Note, however, that the nonstroking alpha is
also applied when painting a group’s results onto the backdrop.)

Overview of PDF Extensions8
189

June 11, 2001

There can be at most one mask input in any compositing operation. It can be
specified in either of the following ways:

• The graphics state contains a soft mask parameter. If present, its value is a soft-
mask dictionary, which includes a transparency group that is to be used as a
position-dependent source of alpha values. By this means, an arbitrary collec-
tion of objects can be used to define the shape or opacity that is then imposed
on the objects painted onto the page.

• An image XObject can contain a soft-mask image, specified as a subsidiary im-
age XObject. This mask, if present, overrides the PDF 1.3 masked image fea-
ture. Either form of mask in the image XObject overrides the soft mask
parameter in the graphics state.

Note: The limitation of one mask per compositing operation causes no loss of
generality in the transparency model. A soft mask can also be applied to a group,
and groups can be nested to multiple levels.

8.3 Groups

A group is represented in PDF as a transparency-group XObject—a form XOb-
ject having some additional transparency-related attributes, which are carried in a
separate group attributes subdictionary. The elements of the group consist of the
graphics objects that are painted by execution of the XObject’s content stream.
The results of the group compositing computations—color, shape, and opacity—
are then painted into the group’s parent group or page. The Do operator invokes
both of the above operations.

The entries in the group attributes dictionary include:

• Color space for blending and compositing, if different from the one used in the
parent group or page

• Isolated and knockout boolean attributes

For a non-isolated group, the group’s backdrop is defined as the computed color,
shape, and opacity of everything that has been painted into the parent group or
page prior to execution of the Do operator.

Transparency in PDF8
190

June 11, 2001

8.4 Soft Masks

A soft mask is represented by a soft-mask dictionary. This dictionary contains the
following:

• A transparency-group XObject describing the group that is to be used as the
source of position-dependent mask values

• Backdrop color and blending color space to use for the group compositing op-
eration

• Other entries controlling conversion from the group results to mask values

A soft mask created in this way can be established as the soft mask parameter in
the graphics state. This causes it to be treated as a position-dependent source of
shape or opacity (fm or qm) in subsequent compositing operations.

8.5 Color Space and Color Rendering Issues

The issues and proposed model for color spaces, spot colors, and overprinting
are quite thoroughly covered in Section 7, “Color Space and Color Rendering Is-
sues.” The PDF representation follows straightforwardly from that description.

8.6 Limitations in the PDF Transparency Model

The PDF realization of the general transparency model has several limitations in
order to simplify the representation and the implementation. The following is a
summary of these limitations, which are further described elsewhere in this spec-
ification.

• In any given transparency compositing operation, there is at most one mask in-
put, which can be treated as either shape or opacity. (This is in addition to the
shape and opacity that are intrinsic to the source object itself.)

• There are not independent parameters for constant shape and constant opacity.
Instead, there is a constant alpha value, which can be treated as either shape or
opacity (the other parameter is implicitly 1).

• There is only one blend mode specified per object, regardless of the number of
color components that are affected when the object is painted. It always applies
to the process color components. If it is a separable, white-preserving blend

PDF Specification9
191

June 11, 2001

mode, then it also applies to any spot color components that exist; otherwise,
Normal blend mode is substituted for those components. There is a fixed enu-
meration of blend modes, with no provision for specifying an arbitrary func-
tion as a blend mode.

9 PDF Specification

This section describes the additions and changes to the PDF specification. It is
organized according to the presentation in PDF Reference, second edition. The
numbers in brackets refer to sections in the older Portable Document Format
Reference Manual, version 1.3, where the closest equivalent material can be
found.

9.1 Adobe Imaging Model—2.1.2

[This section needs to be revised to incorporate the transparency extensions to
the Adobe imaging model, described here in Section 2, “Overview.”]

9.2 Page Tree (Page Objects)—3.6.2 [6.4]

[Add the following entry to Table 3.17:]

Table 3.17 [6.5] Entries in a page dictionary

KEY TYPE VALUE

Group dictionary (Optional) A group attributes dictionary, which specifies the group attributes
of the page group. See Table 11 on page 208 for the contents of this dictio-
nary. See also Section 5.7, “Page Group.”

9.3 Graphics Objects—4.1 [8.1]

[Replace the sentence “Each graphics object is painted...opaque painting mod-
el...” with the following:]

A PDF content stream represents a sequence of graphics objects. Each of these
objects has a shape. Within the shape, every point has a color and an opacity. For

Transparency in PDF9
192

June 11, 2001

some objects, the color and opacity are constant within the entire shape; for oth-
ers, they can vary at different points within the shape.

In the case that all the objects are fully opaque, one can consider the objects sim-
ply to be painted onto the current page, obscuring any existing marks they may
overlay. However, in the general case where transparency can occur, it is neces-
sary to think of the objects as forming a stack, where the stacking order is defined
to be the order in which the objects are specified, bottommost object first. All of
the objects in a stack can potentially contribute to the result, according to the col-
or, shape, and opacity compositing rules specified in Section 3, “Color Compos-
iting Computations,” and Section 4, “Shape and Opacity Computations.”

[Append the following:]

These graphics objects are also treated as the elementary objects for transparency
compositing purposes (subject to special treatment for text objects, described in
Section 9.18). That is, all of a given object is considered to be one element of a
stack. Portions of an object are not composited with one another, even if they are
described in a way that would seem to cause overlaps, such as a self-intersecting
path, combined fill and stroke of a path, or a shading pattern containing an over-
lap or fold-over.

The result of compositing a transparency-group XObject is itself treated as if it
were an elementary graphics object, having shape, opacity, and color at each
point. It is then composited with its parent group or page. Note that this treatment
applies only to form XObjects having a Group entry specifying a group at-
tributes dictionary whose S (Subtype) is Transparency. Painting an ordinary
form XObject (lacking a Group entry) is equivalent to painting the form’s con-
stituent graphics objects individually; there is no transparency grouping behav-
ior.

9.4 Details of Graphics State Parameters—4.3.2 [8.4]

[Add the following subsection:]

PDF Specification9
193

June 11, 2001

Blend Modes

The blend mode graphics state parameter is specified as the value of the BM en-
try in a graphics state parameter dictionary. Its value can be one of the following:

• The name of a standard blend mode, which is one of: Compatible, Normal,
Multiply, Screen, Difference, Darken, Lighten, ColorDodge, ColorBurn,
Exclusion, HardLight, Overlay, SoftLight, Luminosity, Hue, Saturation,
and Color. These blend modes are explained in Section 3.2, “Blend Mode,” ex-
cept for the blend mode named Compatible, whose meaning is the same as
Normal.

Note: The Compatible blend mode is a relic of an earlier design. It explicitly
invoked the CompatibleOverprint blend mode, described below. Compatible-
Overprint is now invoked implicitly when appropriate, so it is never necessary
to specify Compatible blend mode.

• An array of one or more blend modes, each specified by a name as described
above. This specifies alternate blend modes that can be used; the viewer will
use the first blend mode that it recognizes in the array. If the viewer does not
recognize any of the blend modes, it will use Normal mode. This allows a PDF
file to use a new blend mode that has been introduced, while specifying rea-
sonable fall-back behavior in a viewer that doesn’t recognize the new mode.

There is only one blend mode parameter in the graphics state. This blend mode
always applies to process color components and sometimes applies to spot color
components as well. Specifically:

• If the blend mode is separable and white-preserving, then it applies to all spot
color components that exist, as well as to process color components. A separa-
ble blend mode is one that is performed componentwise, with no interaction
between components. A white-preserving blend mode is a function B(cb, cs)
having the property that B(1, 1) = 1. Of the named blend modes listed above,
the following are separable and white-preserving: Compatible, Normal,
Multiply, Screen, Darken, Lighten, ColorDodge, ColorBurn, HardLight,
Overlay, SoftLight.

• Otherwise, the blend mode applies only to process color components. Any spot
color components are blended using Normal mode.

As explained in Section 7.2, “Spot Colors,” components whose values are not ex-
plicitly specified in the current color space are implicitly painted with additive

Transparency in PDF9
194

June 11, 2001

value 1 (that is, subtractive tint 0). When objects accumulate in an isolated group,
the accumulated values for unspecified components remain 1 so long as only
white-preserving blend modes are used. This enables the group’s results to be
overprinted using Darken (or other useful modes) while avoiding unwanted in-
teractions with the components whose values were never specified within the
group.

CompatibleOverprint Blend Mode

The overprinting semantics of PDF 1.3 and earlier can be modelled as transpar-
ency with a special blend mode, as discussed in Section 7.3, “Overprinting and
Erasing.” There is a special blend mode called CompatibleOverprint, which im-
plements overprinting and erasing behavior that is compatible with the existing
Adobe imaging model and PDF 1.3 when painting opaque objects. (The Compat-
ibleOverprint blend mode is never invoked explicitly; there is not any PDF name
object that identifies it.)

The CompatibleOverprint blend mode is implicitly invoked whenever an ele-
mentary graphics object is painted while overprinting is enabled (that is, when
the overprint flag, set by op or OP in a graphics state parameter dictionary, is
true). If the current blend mode parameter is anything besides Normal, the ob-
ject is treated as if it were defined in a non-isolated, non-knockout transparency
group and painted using the CompatibleOverprint blend mode; the group’s re-
sults are then painted using the current blend mode in the graphics state.

Note: It is not necessary to create the implicit transparency group if the current
blend mode is Normal. Simply substituting the CompatibleOverprint blend mode
while painting the object produces equivalent results. There are some additional
cases in which the implicit transparency group can be optimized out.

The function CompatibleOverprint(Cb, Cs) returns either Cb or Cs, depending
on the current value of the nonzero overprint mode (set by OPM), the value of
Cs, and the operation that is being performed. Its definition is as follows:

• Overprinting applies only when painting elementary objects—fills, strokes,
text, images, and shading objects—and only if the overprint flag in the graph-
ics state (set by op or OP) is true. Otherwise, CompatibleOverprint is not in-

PDF Specification9
195

June 11, 2001

voked (but if it were, its result would be Cs, making it equivalent to Normal
blend mode).

• If the overprint mode is 1 (nonzero overprint mode enabled) and the current
color space and group color space are both DeviceCMYK, then Compatible-
Overprint returns Cb for any DeviceCMYK component whose (subtractive)
color value is zero; it returns Cs otherwise. For spot color components, Com-
patibleOverprint returns Cb.

• Otherwise, CompatibleOverprint returns Cs for a color component that is spec-
ified in the current color space; it returns Cb otherwise. For instance, if the cur-
rent color space is DeviceCMYK or CalRGB, CompatibleOverprint returns Cs
for process color components and Cb for spot color components. On the other
hand, if the current color space is a Separation color space, CompatibleOver-
print returns Cs for that spot color component and Cb for process colors and all
other spot color components.

In the above description, “current color space” refers to the color space used for a
painting operation. This may be the color space parameter in the graphics state, a
color space used implicitly by operators such as rg, or an attribute of an image
XObject. In the case of an Indexed space, this refers to the underlying color
space; likewise for Separation and DeviceN spaces that revert to their alternate
color space.

See Section 12, “Overprinting, Erasing, and Transparency,” for tables giving de-
tails of the overprinting and erasing behavior described above.

9.5 Graphics State Parameter Dictionaries—4.3.4 [7.15]

[Add the following entries to table 4.8:]

Table 4.8 [7.49] Entries in a graphics state parameter dictionary

KEY TYPE VALUE

ca number (Optional) Constant alpha, used in the computation of the source shape or
opacity for each object painted by operations other than stroke. It must be in
the range 0 to 1. Default value: 1. This parameter is implicitly reset to its de-
fault value at the beginning of execution of a transparency-group XObject.

CA number (Optional) Similar to ca, but applies only when stroking paths and glyph
outlines.

Transparency in PDF9
196

June 11, 2001

SMask dictionary or name(Optional) Soft mask, used to provide the mask shape or opacity value at
each point when computing the source shape or opacity for an object being
painted. This is described by a soft-mask dictionary; see “Soft-Mask Dictio-
naries” on page 211. If this parameter is the name None, the mask value is
implicitly 1 everywhere. Default value: None. This parameter is implicitly
reset to its default value at the beginning of execution of a transparency-
group XObject.

When painting an image XObject, the soft mask parameter in the graphics
state is ignored (treated the same as None) if the image XObject contains a
Mask or SMask entry.

AIS boolean (Optional) Alpha is shape, indicating whether the sources of alpha are to be
treated as shape (true) or opacity (false). This determines the interpretation
of the constant alpha (ca and CA) and soft mask (SMask) parameters of the
graphics state, as well as a soft-mask image (SMask entry) of an image
XObject. Default value: false.

BM name or array (Optional) The blend mode for color compositing for each object painted. It
must be the name of a blend mode or an array of alternate blend modes. See
“Blend Modes” on page 193. Default value: Normal. This parameter is im-
plicitly reset to its default value at the beginning of execution of a transpar-
ency-group XObject.

TK boolean (Optional) Text knockout parameter, which determines the behavior of over-
lapping glyphs within a text object. If the value of TK is false, each glyph in a
text object is treated as a separate elementary object; when glyphs overlap,
they will composite with one another. If the value of TK is true, all the glyphs
in a text object are treated together as a single elementary object; when
glyphs overlap, later glyphs will knock out earlier ones in the area of overlap.
See Section 9.18. Default value: true.

Note: When the gs operator alters any of the above parameters, the new values
completely replace the old ones. In particular, the soft mask is not intersected
with its former value, as might be inferred from its role as a “soft clip” that is a
generalization of the clipping path.

Note: Although the soft mask is defined as a parameter in the graphics state, its
intended use is to clip only a single object at a time (either an elementary object
or a group). If a mask is applied when painting two or more objects that overlap,
the effect of the mask will multiply with itself in the area of overlap (except in a
knockout group), producing a result shape or opacity that is probably not what is
intended. To apply a soft mask to multiple objects, it is usually best to treat those

PDF Specification9
197

June 11, 2001

objects as a group and apply the mask when painting the group. The foregoing
considerations also apply to the constant alpha parameter in the graphics state.

9.6 Path-Painting Operators—4.4.2 [8.6.2]

[Change the following entries in Table 4.10:]

Table 4.10 Path-painting operators

OPERANDS OPERATOR DESCRIPTION

— B Fill and then stroke the path, using the nonzero winding number rule to de-
termine the region to fill. This produces the same result as specifying two
path objects with the same path, painting the first with f and the second with
S. Note that the filling and stroking portions of the operation consult differ-
ent values of several graphics state parameters, such as color.

For transparency compositing purposes, the combined fill and stroke are
treated as a single graphics object, as if they were enclosed in a transparency
group. This implicit group is established and used as follows:

• If overprinting of the stroke is enabled (OP parameter is true) and the val-
ues of the fill and stroke alphas (ca and CA) are equal, then a non-isolated
non-knockout group is established. Within the group, the fill and stroke are
performed with alpha value 1 but with CompatibleOverprint blend mode.
Then the group results are composited with the backdrop using the origi-
nally-specified alpha and blend mode.

• Otherwise, a non-isolated knockout group is established. Within the group,
the fill and stroke are performed with their prevailing alpha values (ca and
CA) and blend mode. Then the group results are composited with the
backdrop using alpha value 1 and Normal blend mode.

Note: Overprinting of the stroke over the fill does not work in the second
case (although either the fill or the stroke can still overprint the backdrop).
Furthermore, if OP is true, the results produced by the B operator are dis-
continuous at the transition between equal and unequal values of the ca and
CA parameters. For this reason, it is best not to use overprinting with the B
operator if CA and ca are being varied independently.

The purpose of the above rules is to avoid having a non-opaque stroke com-
posite with the result of the fill in the region of overlap, which would pro-
duce a “double border” effect that is usually undesirable. The special case
that applies when OP is true is for upward compatibility with the overprint-
ing behavior of PDF 1.3 and earlier. If a desired effect cannot be achieved

Transparency in PDF9
198

June 11, 2001

with the B operator, it can be achieved by specifying the fill and stroke with
separate path objects and an explicit transparency group.

Note: These transparency semantics also apply to the B*, b, and b* opera-
tors, as well as to glyphs painted with text rendering mode 2 or 6. However,
this does not change their descriptions, which are based on the behavior of
the B operator.

9.7 Clipping Path Operators—4.4.3 [8.3.1.1]

[Append the following to the first paragraph:]

In the context of the transparency model, the clipping path constrains an object’s
shape. The effective shape is the intersection of the object’s intrinsic shape and
the current clipping path: the source shape value is 0 outside this intersection. In
the same vein, the shape of a transparency group is defined as the union of the
shapes of all constituent objects. This shape is likewise influenced by the clip-
ping path in effect when each of those objects is painted; it is additionally con-
strained by the clipping path in effect at the time of the Do operator, when the
group’s results are painted onto the backdrop.

Note: The clipping path and the soft mask are independent parameters of the
graphics state. Even though the “soft” shape mask could be considered a gener-
alization of the “hard” clip, attempting to unify these parameters would disrupt
the existing PDF graphics model unacceptably.

9.8 Device Color Spaces—4.5.3 [7.12]

[Append the following:]

Use of device color spaces is subject to special treatment within a transparency
group whose group color space is CIE-based; see “Transparency-Group XOb-
jects” on page 207. In particular, the device color space operators should be used
only if the device color spaces have been remapped to CIE-based color space by
means of the DefaultGray, DefaultRGB, and DefaultCMYK color space re-
sources. Otherwise, the results will be implementation-dependent and unpredict-
able.

PDF Specification9
199

June 11, 2001

9.9 CIE-Based Color Spaces—4.5.4 [8.5.1.5]

[Append the following to the introductory text, immediately before the “CalGray
Color Spaces” subsection:]

In some workflows, a PDF document is intended for reproduction on a specific
output device, such as a printing press with particular inks and media. The source
colors for some or all objects in the document are specified with CIE-based color
spaces that match the calibration of the intended output device. The document is
therefore device-independent and will produce reasonable results if retargeted to
a different output device.

In this situation, the expectation is that if the document is printed on the intended
output device, source colors that have been specified in a color space that match-
es the output device will pass through unchanged, without conversion to and
from the intermediate CIE 1931 XYZ space. The particular case of interest is an
ICCBased color space specifying a CMYK printing profile that matches the out-
put device. Converting 4-component colors to 3-component colors and back to 4-
component colors will lose information; this is best avoided if not necessary.

PDF does not prescribe the conditions under which this should be done, since
there is nothing in PDF that describes the calibration of the output device. How-
ever, PDF viewer applications may provide the ability to specify a particular cal-
ibration to use for printing, proofing, or previewing. This is considered to be the
calibration of the native color space of the intended output device, which is usu-
ally DeviceCMYK. (In this situation, conversion to the actual calibration of the
display or proofing device is completely hidden by the viewing application and
plays no part in the interpretation of PDF color spaces.)

When DeviceCMYK is calibrated in this way, any CIE-based source color space
matching this calibration can be treated as if it were specified as DeviceCMYK.
When this is done, all of the semantics of DeviceCMYK spaces should also ap-
ply, even though they do not apply to CIE-based spaces in general. In particular:

• The nonzero overprint mode (set by OPM) determines the interpretation of col-
or component values in this space.

• If the space is used as the blending color space for a transparency group, com-
ponents of the space, such as /Cyan, can be selected in a Separation or
DeviceN color space used within the group.

Transparency in PDF9
200

June 11, 2001

• Likewise, any uses of device color spaces for objects within the group have
well-defined conversions to the group color space.

Note: A source color space can be specified directly—say, with an ICCBased
color space—or indirectly using the default color space feature—say,
DefaultCMYK. The treatment of a CIE-based color space as if it were a device
color space should not depend on whether the CIE-based color space is specified
directly or indirectly.

9.10 CIE-Based Color Spaces (ICCBased Color Spaces)—4.5.4 [8.5.1.5]

[After the paragraph following Table 4.18, insert the following:]

The above requirements apply to an ICCBased color space that is used to speci-
fy the source colors of graphics objects. An ICCBased color space that is used as
the blending color space for a transparency group must have both “to CIE”
(AToB) and “from CIE” (BToA) information. This is because the group color
space is used both as the destination for objects being painted within the group
and as the source for the group’s results.

9.11 CIE-Based Color Spaces (Rendering intents)—4.5.4 [8.5.1.5]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The rendering in-
tent parameter is needed whenever a color must be converted from a CIE-based
color space to a different (CIE-based or device) color space. This can occur:

• when painting an elementary object with a CIE-based color into a transparency
group having a different color space. In this case, the rendering intent used is
the current rendering intent in the graphics state at the time of the painting op-
eration.

• when painting a group whose color space is CIE-based into a parent group
having a different color space. In this case, the rendering intent used is the cur-
rent rendering intent in effect at the time of the Do operator for the group.

PDF Specification9
201

June 11, 2001

• when the page group has a CIE-based color space. The rendering intent used to
convert colors to the native color space of the output device is the default ren-
dering intent for the page.

9.12 Special Color Spaces (Separation Color Spaces)—4.5.5 [7.12.8]

[Append the following:]

A Separation color space is ordinarily used to produce a spot color—an addi-
tional color component, independent of the ones that are used to produce process
colors. When an object is painted transparently with a spot color, that color is
composited with the corresponding spot color component of the backdrop, inde-
pendent of the compositing that is performed for process colors. A spot color re-
tains its own identity; it is not subject to conversion to or from the color space of
the enclosing transparency group or page.

Any object, including a transparency group, is considered to have been painted
with all color components that exist, both process and spot. Components that ha-
ven’t been explicitly painted have an additive color value of 1 (that is, a subtrac-
tive tint value of 0). This has consequences that are discussed in Section 7.3,
“Overprinting and Erasing.”

Instead of producing a spot color, a Separation color space can be used to paint
a single process colorant, such as the Cyan component in a device whose native
color space is DeviceCMYK. However, this is permitted only in a group that in-
herits the native color space of the output device. If such a Separation color
space is used in a transparency group that specifies its own color space, the alter-
nate color space will be substituted.

Spot colors are never available in a transparency-group XObject that is used to
define a soft mask. The alternate color space will always be substituted in that
situation.

(DeviceN Color Spaces)

[Append the following:]

The transparency considerations described above for Separation color spaces
also apply to DeviceN color spaces.

Transparency in PDF9
202

June 11, 2001

9.13 Overprint Control—4.5.6 [8.4.9]

[Append the following:]

The semantics of the overprint control parameters (set by the op, OP, and OPM
entries in a graphics state parameter dictionary) are respecified in terms of trans-
parency, using a special blend mode named CompatibleOverprint. See Section
7.3, “Overprinting and Erasing” and “CompatibleOverprint Blend Mode” on
page 194. Note that overprinting behavior applies only to elementary graphics
objects, not to the results of transparency groups.

9.14 Tiling Patterns—4.6.2 [7.17.2]

[Include the following subsection somewhere:]

Tiling Patterns and Transparency

A tiling pattern is defined by an arbitrary sequence of graphics objects that are
used to paint the pattern cell, which is then replicated to tile the region being
painted. Those objects can include transparent objects and transparency groups.
Transparent compositing can occur both within the pattern cell and between it
and the backdrop wherever the pattern is painted. This section specifies the se-
mantics of patterns in the presence of transparency.

A pattern definition is treated as if it were enclosed in a non-isolated, non-knock-
out transparency group. This has the following consequences:

• As is always the case for transparency groups, the transparency parameters in
the graphics state (blend mode, alpha, and soft mask) are initialized to default
values prior to evaluating the pattern definition.

Note: Except for the transparency parameters, all graphics state parameters
are set to their state at the beginning of the content stream in which the pattern
is defined as a resource. This is the normal behavior of patterns, independent
of their interaction with transparency.

• The result of evaluating the pattern is to produce a color, shape, and opacity at
each point. This result is then applied to the interior of the graphics object be-
ing painted with the pattern. Effectively, the pattern defines the object’s source

PDF Specification9
203

June 11, 2001

color (Cs), shape (fj), and opacity (qj), as used in the transparency compositing
formulas.

• Painting the object with the pattern is subject to the transparency parameters in
effect at the time the object is specified, just the same as painting an object
with a constant color.

In other words, the current transparency parameters are not inherited by the pat-
tern definition, but take effect only when the result of evaluating the pattern is
used to paint an object using the pattern.

In the general case, the effect of tiling with a pattern must be as if the definition
of the pattern were re-executed for each tile, taking into account the color of the
backdrop at each point. This is unlike painting with a completely opaque pattern,
where the pattern cell can be evaluated once and then replicated.

Note: This can be significantly optimized in the common case in which the pat-
tern consists entirely of objects painted with Normal blend mode. In that case,
the same effect can be produced by treating the pattern cell as if it were an isolat-
ed group. The pattern cell can have color, shape, and opacity at each point, but
those results do not depend on the backdrop. This means that the pattern cell can
be evaluated once and then replicated, just as it can for a pattern defined with
opaque painting.

Note: In a raster-based implementation of tiling, it is important that all tiles to-
gether be treated as a single transparency group. This avoids artifacts due to
multiple marking of pixels along the boundaries between adjacent tiles.

The above discussion applies to both colored (PaintType 1) and uncolored
(PaintType 2) tiling patterns. These two types of patterns differ in how colors
are specified. A colored tiling pattern specifies colors as part of the definition of
the pattern cell; an uncolored tiling pattern uses a single color that is specified
separately when the pattern is used. An uncolored pattern’s definition may not
specify colors; this restriction extends to any transparency group that the defini-
tion includes. However, there are no corresponding restrictions on specifying
transparency parameters in the graphics state.

9.15 Shading Patterns—4.6.3 [7.17.3]

[Include the following subsection somewhere:]

Transparency in PDF9
204

June 11, 2001

Shading Patterns and Transparency

For transparency compositing purposes, the effect of a shading pattern is as if the
shading dictionary were applied with the sh operator in a non-isolated, non-
knockout transparency group. If the shading dictionary has a Background entry,
the group is first filled with the background color before sh is invoked.

The transparency group’s resulting color, shape, and opacity are then applied to
the interior of any graphics object being painted with the pattern. The conse-
quences of this are discussed in “Tiling Patterns and Transparency” on page 202;
in particular, graphics state parameters are handled as described there.

Note: The initial graphics state parameters obtained from the parent content
stream, possibly augmented by the ExtGState entry in the pattern dictionary, ap-
ply only to the shading itself, not to the object being painted with the shading.
Only the parameters that affect the sh operator, such as the CTM and rendering
intent, are used. Parameters that affect path-painting operators are not used,
since the execution of sh does not entail painting a path.

[Change Table 4.25 as follows:]

Table 4.25 [7.58] Entries common to all shading dictionaries

KEY TYPE VALUE

Background array (Optional) An array of color components appropriate to the color space,
specifying a single background color value. If present, this value specifies
the color to use at all points lying outside the bounds of the shading object it-
self. The background is applied only in a shading pattern, not in a shading
that is painted directly with the sh operator..

9.16 Image Dictionaries—4.8.4 [7.13.1]

[Add the following entry to Table 4.35:]

Table 4.35 [7.33] Entries in an image dictionary

KEY TYPE VALUE

SMask stream (Optional) A subsidiary image XObject defining a soft-mask image to be
used as a source of shape or opacity values for transparency purposes. Unlike

PDF Specification9
205

June 11, 2001

a general soft mask that can be derived from arbitrary objects (see Section 6,
“Soft Masks”), this mask is defined solely by an image, whose samples are
interpreted as mask values directly. The contents of the soft-mask image are
described in Table 10. If this entry is absent, no soft mask is associated with
the image (though the soft mask in the graphics state may still apply).

If SMask is present, the Mask entry, if present, is disregarded. Furthermore,
if either SMask or Mask is present, it overrides the soft mask parameter in
the graphics state. (However, the other transparency-related graphics state
parameters—constant alpha and blend mode—remain in effect.) The alpha is
shape (AIS) parameter in the graphics state determines whether this soft-
mask image is to be treated as shape or opacity.

Soft-Mask Images

Table 10 documents the entries in a soft-mask image dictionary. Except as noted,
the syntax and semantics of the entries are the same as in a regular image XOb-
ject, documented in Table 4.35. The image XObject entries that are not men-
tioned here are not relevant to this type of image and are ignored.

TABLE 10 Entries in a soft-mask image dictionary

KEY TYPE VALUE

Type name (Optional) If present, must be XObject.

Subtype name (Required) Must be Image.

Width integer (Required) If a Matte entry is specified, the value of Width must be the same
as the Width of the parent image. Otherwise, the Width of the mask image is
independent of the Width of the parent image. Both images are mapped to
the unit square in user space (as all images are), whether or not the samples
coincide individually.

Height integer (Required) Same considerations as for Width.

BitsPerComponent integer (Required)

ColorSpace name (Required) Must be DeviceGray.

Decode array (Optional) Default value: [0 1].

Interpolate boolean (Optional)

ImageMask boolean (Optional) Must be false or absent.

Mask stream (Optional) Must be absent.

Transparency in PDF9
206

June 11, 2001

SMask stream (Optional) Must be absent.

Matte array (Optional) Specifies a color, the matte color, with which the image data in
the parent image has been pre-blended (see below). The array must contain n
numbers, where n is the number of components in the ColorSpace entry for
the parent image; the numbers must be valid color components in that color
space. If the Matte entry is absent, the image data is not pre-blended.

Pre-Blended Image Data

When an image is accompanied by a soft-mask image, it is sometimes advanta-
geous for the image data to be pre-blended with some background color, called
the matte color. Each image sample represents a weighted average of the original
source color and the matte color, using the corresponding mask sample as the
weighting factor. (This is a generalization of a technique that is commonly called
“pre-multiplied alpha.”)

If the image data is pre-blended, the matte color must be specified by a Matte en-
try in the soft-mask image XObject. The pre-blending computation, performed
componentwise, is as follows:

where c is the original image component value, m is the matte color component
value, and α is the corresponding mask sample. The result, c′, is the value that
should be provided in the image source data.

Note: This computation uses actual color component values, with the effects of
the Filter and Decode transformations already performed. The computation is
the same whether the color space is additive or subtractive.

When pre-blended image data is used in transparency blending and compositing
computations, the results are the same as if the original, unblended image data
was used and no matte color was specified. In particular, the inputs to the blend
mode function are the original color values. This may sometimes require the im-
plementation to invert the above formula to derive c from c′. If this produces a c
value that lies outside the bounds of color component values for the image color
space, the results are unpredictable.

c′ m α c m–()⋅+=

PDF Specification9
207

June 11, 2001

The pre-blending computation is done in the color space specified by the parent
image’s ColorSpace entry. This is independent of the group color space into
which the image may be painted; if a color conversion is required, inversion of
the pre-blending must precede the color conversion. If the image color space is
an Indexed color space, the color values in the color table (not the index values
themselves) must be pre-blended.

9.17 Form XObjects—4.9 [7.13.7]

[Add the following entry to Table 4.41:]

Table 4.41 [7.37] Entries in a type 1 form dictionary

KEY TYPE VALUE

Group dictionary (Optional) A group attributes dictionary, which indicates that the entire con-
tents of the form XObject are to be treated as a group and specifies the at-
tributes of that group. See Table 11 for the contents of this dictionary.

Note: The following paragraph refers to a PDF 1.4 feature, referenced PDF,
whose specification has not yet been published.

If the form XObject contains a Ref entry specifying a referenced PDF file,
these group attributes also apply to the referenced PDF page when it replaces
the proxy. This allows an arbitrary external PDF page to be treated as a trans-
parency group, without requiring that the referenced PDF file be modified.

Transparency-Group XObjects

A form XObject containing a Group entry is to be treated as a group. The value
of this entry is a group attributes dictionary containing the entries described in
Table 11. A transparency-group XObject is a form XObject whose group at-
tributes dictionary has subtype Transparency, which is the only group subtype
defined at present.

A page object may also have a Group entry, which specifies the group attributes
dictionary for the page as a whole. Some entries in the dictionary are interpreted
slightly differently for a page group than for a transparency-group XObject, as
indicated in the descriptions of those entries below. See also Section 5.7, “Page
Group.”

Transparency in PDF9
208

June 11, 2001

TABLE 11 Entries in a group attributes dictionary

KEY TYPE VALUE

Type name (Optional) If present, must be Group.

S name (Required) Group subtype. At present, the only defined value is
Transparency; the remaining entries described below apply to this subtype.
Future extensions may introduce other group subtypes, which will most like-
ly have a different set of additional entries.

CS name or array (Sometimes required, as discussed below) Group color space. This specifies
the color space into which colors are converted when painted into this group,
and it defines the blending color space; see Section 3.1, “Blending Color
Space.” It also defines the color space of the group as a whole when it in turn
is painted as an object onto the group’s backdrop.

CS may be any device or CIE-based color space that treats its components as
independent additive or subtractive values in the range 0 to 1, subject to the
restrictions described in Section 3.1, “Blending Color Space.” This excludes
Lab and lightness-chromaticity ICCBased color spaces, as well as the spe-
cial color spaces Indexed, Separation, DeviceN, and Pattern. Device color
spaces are subject to remapping according to the DefaultGray, DefaultRGB,
and DefaultCMYK entries in the ColorSpace dictionary in the current
Resources dictionary; see PDF Reference, Section 4.5.4 [7.12.12].

Ordinarily, the CS entry is allowed only if I (Isolated) is true, and even then
it is optional. However, CS is required in the group attributes dictionary for a
transparency-group XObject that has no parent group or page from which to
inherit. This situation arises for a transparency-group XObject that is the val-
ue of the G entry in a soft-mask dictionary of subtype Luminosity; see
“Soft-Mask Dictionaries” on page 211.

Additionally, it is always permissible to specify CS in the group attributes
dictionary associated with a page object, even if I is false or absent. In the
normal case in which the page is imposed directly on the output media, the
page group is effectively isolated, regardless of the I value; thus, the CS val-
ue can take effect. But if the page is in turn used as an element of some other
page and if the group is non-isolated, CS is ignored; the color space is inher-
ited from the actual backdrop with which the page is composited. See Sec-
tion 5.7, “Page Group.”

Default value: color space of the parent group or page into which this trans-
parency-group XObject is painted by Do. (The parent’s color space in turn
can be either explicitly specified or inherited.) If a transparency-group XOb-

PDF Specification9
209

June 11, 2001

ject is used as an annotation appearance, its default CS value inherits from
the page.

I boolean (Optional) Specifies the isolated attribute of the group. This determines
whether the initial backdrop for compositing the objects within the group is
the group’s backdrop (false) or a transparent backdrop (true). See Section
5.4, “Isolated Groups.” Default value: false.

In the group attributes dictionary for a page, the interpretation of the I value
is slightly altered. In the normal case in which the page is imposed directly
on the output media, the page group is effectively isolated, regardless of the I
value. But if the page is in turn used as an element of some other page, the
page is treated as if it were a transparency-group XObject; the I value is in-
terpreted in the normal way to determine that group’s isolated attribute.

K boolean (Optional) Specifies the knockout attribute of the group. This determines
whether each object is composited with earlier objects in the group (false) or
with the group’s initial backdrop (true). See Section 5.5, “Knockout
Groups.” Default value: false.

When a transparency-group XObject is invoked by Do, the following actions oc-
cur in addition to the normal actions for invoking a form XObject:

1. If the value of I (Isolated) is false, the initial backdrop (within the bounding
box specified by the XObject’s BBox entry) is defined to be the accumulated
color and alpha of the parent group or page—that is, the result of everything
that has been painted in the parent up to that point. (However, if the parent is a
knockout group, the initial backdrop is the same as the parent’s initial back-
drop.) If the value of I is true, the initial backdrop is defined to be transparent.

2. In the graphics state, the current nonstroking and stroking alpha are initialized
to 1, the current soft mask is initialized to None, and the blend mode is initial-
ized to Normal.

Note: The purpose of initializing the soft mask, alpha, and blend mode param-
eters in the graphics state at the beginning of execution is to ensure that these
parameters aren’t applied twice: once when objects are painted into the group
and again when the group is painted into the parent group or page.

3. Objects painted by operators in the transparency-group XObject’s content
stream are composited into the group according to the rules described in Sec-
tion 3, “Color Compositing Computations,” and Section 4, “Shape and Opaci-
ty Computations.” The K (Knockout) entry in the group attributes dictionary

Transparency in PDF9
210

June 11, 2001

and the transparency parameters of the graphics state contribute to this com-
putation.

4. If CS (Color Space) is specified in the group attributes dictionary, all painting
operators convert source colors to the specified color space prior to composit-
ing objects into the group. The resulting color at each point in the group is in-
terpreted in that color space. If CS is not specified, the prevailing color space
is dynamically inherited from the parent group or page. (If not otherwise spec-
ified, the page group’s color space is the device color space of the output de-
vice.)

5. After execution of the transparency-group XObject’s content stream, the
graphics state reverts to its former state prior to the execution of Do (as occurs
for any form XObject, not just a transparency-group XObject). The group’s
shape—the union of all objects painted into the group, clipped by the XOb-
ject’s bounding box—is then painted into the parent group or page, using the
group’s accumulated color and opacity at each point within the shape.

Note: If a given transparency-group XObject is invoked by Do more than once,
each invocation is treated as a separate transparency group. That is, the result
must be as if the group were independently composited with the backdrop on
each invocation. If the implementation performs any caching of rendered form
XObjects, it must take this requirement into account.

The above actions occur only for a transparency-group XObject—one having a
group attributes subdictionary whose S (Subtype) is Transparency. A regular
form XObject—one having no Group entry—is not subject to any grouping be-
havior for transparency purposes. That is, the graphics objects that it contains are
composited individually, just as if they were painted directly into the parent
group or page.

If the group’s color space (either specified by CS or inherited) is a CIE-based
color space (CalGray, CalRGB, or ICCBased), any use of device color spaces
for painting objects is subject to special treatment. Device colors cannot be paint-
ed directly into such a group, since there is no generally-defined method for con-

PDF Specification9
211

June 11, 2001

verting them to the CIE-based color space. This problem arises in the following
cases:

• DeviceGray, DeviceRGB, and DeviceCMYK color spaces, unless remapped
to CIE-based color spaces by means of the corresponding DefaultGray,
DefaultRGB, or DefaultCMYK color space resources.

• Operators that specify a device color space implicitly, such as rg, unless that
space is remapped.

• Special color spaces whose underlying space is a device color space, unless
that space is remapped.

We recommend that the color space remapping mechanism always be employed
when defining a transparency group whose color space is CIE-based. However, if
a device color is specified and is not remapped, it will be converted to the CIE-
based color space in an implementation-defined fashion, producing unpredict-
able results.

Soft-Mask Dictionaries

Instead of being painted on the current page, a transparency-group XObject can
be used as a soft mask—a source of position-dependent shape or opacity values
to apply as a mask when painting other objects; see Section 6, “Soft Masks.” The
soft mask is a parameter of the graphics state; see Section 9.5. Its value is a soft-
mask dictionary, one of whose entries is the transparency-group XObject that is
to be treated as the source of the mask values. The soft-mask dictionary describes
how the mask is to be derived from the results of compositing the transparency
group; see Table 12.

TABLE 12 Entries in a soft-mask dictionary

KEY TYPE VALUE

Type name (Optional) If present, must be Mask.

S name (Required) Subtype that specifies how the mask is to be computed. Alpha
means to just use the group’s computed alpha (product of shape and opacity),
disregarding its color. Luminosity means to convert the group’s computed
color to a single-component luminosity value. See Section 6, “Soft Masks.”

G stream (Required) Transparency-group XObject that is to be used as the source of
alpha or color values for generating the mask. If the value of S (Subtype) is

Transparency in PDF9
212

June 11, 2001

Luminosity, the group attributes dictionary (value of Group in the transpar-
ency-group XObject) must contain a CS entry that defines the color space in
which the compositing computation is to be done.

BC array (Optional; consulted only if S (Subtype) is Luminosity) The color that is to be
used as the backdrop with which the transparency-group XObject G is to be
composited. The value of BC is an array of n numbers, where n is the number
of components in the color space specified by the CS entry in the group at-
tributes dictionary. Default value: the color space’s initial value, which repre-
sents black.

TR function or name (Optional) Transfer function, used during the conversion to mask values.
This is either a function object (dictionary or stream) or the name Identity.
The input to this function is the computed alpha or luminosity (depending on
the value of the S (Subtype) entry), in the range 0 to 1. The output is the
mask value in the range 0 to 1; it is clipped to that range if necessary. Default
value: Identity.

If S (Subtype) is Alpha, the transparency-group XObject G is evaluated to com-
pute a group alpha only; the colors of the constituent objects are ignored and the
color compositing computations are not performed. The computed group alpha is
then passed through the TR function to produce the mask. Outside the bounding
box of the transparency-group XObject, the mask value is the result of presenting
0 as input to the TR function.

If S is Luminosity, the transparency-group XObject G is composited with a ful-
ly-opaque backdrop whose color is BC everywhere. The computed result color is
then converted to a single-component luminosity value, which is passed through
the TR function to produce the mask. Outside the bounding box of the transpar-
ency-group XObject, the mask value is the BC color transformed to luminosity
and passed through the TR function.

The coordinate system of the soft mask is defined as the Matrix of the transpar-
ency-group XObject concatenated with user space at the moment the soft-mask
dictionary is established in the graphics state by the gs operator.

In a transparency-group XObject that defines a soft mask, spot color components
are never available, regardless of whether they are available in the group or page
on which the soft mask is used. If the content stream specifies a Separation or
DeviceN color space that uses spot color components, the alternate color space
will be substituted.

PDF Specification9
213

June 11, 2001

9.18 Text State Parameters and Operators—5.2 [8.7]

[Add the following somewhere:]

Text Knockout

The text knockout parameter determines what are considered to be the elementa-
ry objects for transparency compositing purposes. If text knockout is false, each
glyph in a text object is treated as a separate elementary object; when glyphs
overlap, they will composite with one another. If text knockout is true, all the
glyphs in a text object are treated together as a single elementary object; when
glyphs overlap, later glyphs will knock out earlier ones in the area of overlap.
(The latter behavior is equivalent to treating the entire text object as if it were a
knockout group.)

The text knockout parameter is specified as the value of the TK entry in a graph-
ics state parameter dictionary. (Unlike other text state parameters, there is no spe-
cial operator for specifying this parameter.) The text knockout parameter applies
to entire text objects; it may not be set between the BT and ET operators that de-
limit a text object.

9.19 Text Rendering Mode—5.2.5 [8.7.1.7]

[Add the following somewhere:]

Rendering modes 2 and 6 specify both fill and stroke. If glyphs in the text object
overlap, the result must be as if the fill and stroke are done on a glyph-by-glyph
basis. That is, perform the fill and stroke for the first glyph, then the fill and
stroke for the second glyph, and so on; not all of the fills followed by all of the
strokes for multiple glyphs together. This produces the correct visual appearance
of stacking of opaque glyphs.

For transparency compositing purposes, text rendering modes 2 and 6 have the
same effect as applying the B operator to the glyph outline path. That is, the ef-
fect is equivalent to performing the fill and the stroke in a transparency group
that is established according to the B operator description in Table 10 on
page 205. Note that this behavior is independent of the value of the text knockout
(TK) graphics state parameter.

Transparency in PDF9
214

June 11, 2001

9.20 Text-Showing Operators—5.3.2 [8.7.5]

[Add the following somewhere:]

Note: Within a text object, there is no significance in the grouping of glyphs into
strings presented to text-showing operators such as Tj. Showing multiple glyphs
with one invocation of Tj produces the same results as showing them with a sepa-
rate invocation for each glyph.

9.21 Conversion from DeviceRGB to DeviceCMYK—6.2.3 [8.4.10]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The undercolor
removal and black generation functions are needed whenever a DeviceRGB col-
or must be converted to a DeviceCMYK color. This can occur:

• when painting an elementary object with a DeviceRGB color directly into a
transparency group whose color space is DeviceCMYK. In this case, the func-
tions used are the current undercolor removal and black generation parameters
in the graphics state at the time of the painting operation.

• when painting a group whose color space is DeviceRGB into a parent group
whose color space is DeviceCMYK. In this case, the functions used are the
ones in effect at the time of the Do operator for the group.

• when the color space of the page group is DeviceRGB and the native color
space of the output device is DeviceCMYK. The functions used are the default
functions for the page.

9.22 Transfer Functions—6.3 [8.4.12]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The transfer func-
tion to be used at any given point on the page is the transfer function parameter
that is in effect at the time of painting the last (topmost) graphics object enclos-
ing that point, but only if that object is fully opaque.

PDF Specification9
215

June 11, 2001

An object is considered to be fully opaque if all of the following conditions are
true at the time the object is painted:

• The constant alpha parameter (ca or CA, whichever applies to the painting op-
eration) is 1.

• The soft mask parameter (SMask) in the graphics state is None. If the object is
an image, there is no SMask entry in the image dictionary.

• The blend mode parameter (BM) is either Normal or Compatible.

• The foregoing three conditions were also true at the time the group containing
the object (or any direct ancestor group) was invoked by Do.

• If the current color is a tiling pattern, all of the objects comprising its definition
also satisfy the above conditions.

The transfer function to use at a given point must be determined on a per-compo-
nent basis if any graphics object is painted with overprinting enabled (the op or
OP parameter is true). Overprinting implicitly invokes the CompatibleOverprint
blend mode. An object is considered opaque for a given component only if Com-
patibleOverprint returns the source color (not the backdrop color) for that com-
ponent. See “CompatibleOverprint Blend Mode” on page 194.

For portions of the page whose topmost object is not fully opaque or that are nev-
er painted at all, the default transfer function for the page is used.

9.23 Halftones—6.4 [8.4.13]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The halftone to be
used at any given point on the page is the halftone parameter that is in effect at
the time of painting the last (topmost) graphics object enclosing that point, but
only if that object is fully opaque. The conditions for applying it are the same as
for the transfer function parameter, described in Section 9.22 above.

9.24 Annotation Appearances—7.4.4 [6.6.3]

[Add the following somewhere:]

Transparency in PDF10
216

June 11, 2001

An annotation appearance can include transparency if the form XObject that de-
fines the appearance has a Group entry whose value is a group attributes dictio-
nary of subtype Transparency, indicating that the XObject is a transparency-
group XObject. This group is composited with a backdrop consisting of the page
content and any other annotation appearances that are below this one. The final
compositing operation is performed using a constant alpha of 1, None soft mask,
and Normal blend mode.

If a transparent annotation appearance is placed on top of an annotation that is
visible but is drawn without using an annotation appearance dictionary, the effect
is implementation-dependent. This is because such annotations are sometimes
drawn by means that do not conform to the Adobe imaging model. Also, the ef-
fect of highlighting a transparent annotation appearance is implementation-de-
pendent.

10 Terminology Summary

Table 13 lists terms used in Section 2 through Section 7 to explain the transpar-
ency model. Where a term refers to some variable, the table gives the variable
name that is conventionally used. This table does not include specific terms for
PDF objects used to represent the transparency model.

TABLE 13 Terminology summary

TERM VARIABLE(S) MEANING

Alpha α The product of shape and opacity.

Backdrop The stack of preceding objects onto which a new object is being painted.

Backdrop alpha αb, αi – 1 The computed alpha of the backdrop at a given point.

Backdrop color Cb, Ci – 1 The computed color of the backdrop at a given point.

Backdrop fraction bf The fraction of the group’s accumulated color that is attributable to the initial
backdrop color.

Backdrop opacity qb, qi – 1 The computed opacity of the backdrop at a given point.

Backdrop shape fb, fi – 1 The computed shape of the backdrop at a given point.

Blend mode B(Cb, Cs) A function in the color compositing computation that customizes how source
and backdrop colors combine.

Terminology Summary10
217

June 11, 2001

Blending color space The color space in which all colors in the compositing function are repre-
sented. Input colors are converted to this color space when necessary. Same
as group color space.

Color compositing function The function that computes the color result of painting an object over a back-
drop.

Constant opacity qk, qki A simple scalar contribution to the source opacity.

Constant shape fk, fki A simple scalar contribution to the source shape.

Current page The result produced by compositing the entire stack of objects onto a back-
drop that is initially white and fully opaque.

Element Ei A compound variable representing all the parameters of an object being
treated as an element of a group. The parameters include color, shape, and
opacity (either intrinsic or computed), as well as the separately-specified
shape, opacity, and blend mode parameters that are to be used when compos-
iting the object. The element can correspond to either an elementary object
or a group.

Elementary object A unitary object in the imaging model, such as a fill, stroke, glyph, or sam-
pled image. (Contrast with group.)

Group A sequence of consecutive objects in a stack that are composited together
and then treated as a single object to be composited with the group’s back-
drop.

Group alpha αgi Accumulated alpha of objects within a group, excluding the group’s back-
drop.

Group backdrop Ordinarily, the result of compositing all elements up to but not including the
first element of the current group. However, if the parent of the current group
is a knockout group, then the group backdrop is the same as the parent’s
group backdrop.

Group color space A color space associated with the group as a whole. Source colors are con-
verted into this color space if necessary. All blending and compositing com-
putations among objects in the group occur using colors in this color space.
The group’s result color is interpreted as being in this color space.

Group opacity qgi Accumulated opacity of objects within a group, excluding the group’s back-
drop. (This is rarely represented alone; it is usually combined with shape in
the corresponding alpha value.)

Group shape fgi Accumulated shape of objects within a group, excluding the group’s back-
drop.

Immediate backdrop The result of compositing all elements of a group up to but not including the
current element of interest.

Transparency in PDF10
218

June 11, 2001

Initial backdrop A backdrop that is selected for compositing the current group’s first element.
This is either the same as the group backdrop (non-isolated group) or a fully
transparent backdrop (isolated group).

Isolated group A group whose elements are composited with a transparent initial backdrop,
rather than with the group’s backdrop.

Knockout group A group whose elements are composited with the group’s initial backdrop,
rather than with the results of compositing elements lower on the group’s
stack.

Mask A source of position-dependent shape or opacity values that is independent
of the objects being composited.

Mask opacity qm, qmi The value of an opacity mask at a given point.

Mask shape fm, fmi The value of a shape mask at a given point.

Non-separable blend mode A blend mode in which a component of the result color is a function of com-
ponents other than the corresponding component of the backdrop and source
colors.

Object Either an elementary object or a group.

Object color The intrinsic color of the source object at a given point, in its original color
space.

Object opacity qj, qji The intrinsic opacity of the source object at a given point.

Object shape qj, qji The intrinsic shape of the source object at a given point.

Opacity q A weighting factor that determines the relative contribution of the associated
color to the overall result of a color compositing computation. Its value is in
the range 0 (fully transparent) to 1 (fully opaque).

Opacity compositing function The function that computes the opacity result of painting an object over a
backdrop.

Opacity mask See mask.

Page group A group consisting of all the objects (both elementary objects and groups)
that are painted directly onto the current page.

Process color Any color that is produced by combinations of the device’s process colo-
rants. (Contrast with spot color.)

Result alpha αr, αi The result of the alpha compositing function at a given point, which becomes
the backdrop alpha for the next object painted.

Result color Cr, Ci The result of the color compositing function at a given point, which becomes
the backdrop color for the next object painted.

Terminology Summary10
219

June 11, 2001

Result opacity qr, qi The result of the opacity compositing function at a given point, which be-
comes the backdrop opacity for the next object painted. (This is rarely repre-
sented alone; it is usually combined with shape in the corresponding alpha
value.)

Result shape fr, fi The result of the shape compositing function at a given point, which be-
comes the backdrop shape for the next object painted.

Separable blend mode A blend mode in which each component of the result color is a function of
the corresponding component of the backdrop and source colors.

Shape f A weighting factor that determines the degree to which the results of a com-
positing operation (color and opacity) replace the backdrop. The extreme
values 0 and 1 represent the familiar notions of “outside” and “inside” a
hard-edge shape.

Shape compositing function The function that computes the shape result of painting an object over a
backdrop.

Shape mask See mask.

Soft clip See shape mask.

Soft mask Same as mask; the “soft” adjective emphasizes that this is a continuous-tone
value, not just 0 or 1.

Source alpha αs, αsi The product of source shape and source opacity.

Source color Cs, Csi The intrinsic color of the source object at a given point, converted to the
blending color space if necessary.

Source opacity qs, qsi The product of all input opacity values: object opacity, constant opacity, and
mask opacity.

Source shape fs, fsi The product of all input shape values: object opacity, constant opacity, and
mask opacity.

Spot color A color that is produced by application of a separate colorant, such as special
ink, that is independent of the normal process colorants.

Stack An ordered sequence of objects painted onto the page or collected into a
group.

Transparency group See group.

Union Union(b, s) The function used to composite shape and opacity values. It is a generaliza-
tion of the conventional concept of “union” for solid shapes.

White-preserving blend mode A separable function B(cb, cs) having the property that B(1, 1) = 1 for all
color components (expressed in additive form).

Transparency in PDF11
220

June 11, 2001

11 Compatibility

11.1 Backward Compatibility

A PDF 1.3 or earlier viewer will ignore all transparency-related parameters, such
as alpha, soft mask, and blend mode. All graphics objects, including ones defined
in transparency-group XObjects, will be painted opaquely.

11.2 Forward Compatibility

The PDF 1.3 overprint control parameters (set by the op, OP, and OPM entries in
a graphics state parameter dictionary) are respecified to work as special transpar-
ency blend modes. Their behavior should be compatible when only opaque
painting operations are performed. When they are combined with other transpar-
ency operations, their behavior, though well-defined, is not a logical extension of
the selective colorant marking semantics of PDF 1.3.

A process colorant (e.g., Cyan in a DeviceCMYK device) may not be treated as a
spot color (via a Separation or DeviceN color space) within a transparency
group whose color space is not inherited from the device. The alternate color
space will be used instead. This isn’t really a compatibility issue, since PDF 1.3
doesn’t have transparency groups to begin with. The concern is about legacy art-
work that might be imported and then have transparency applied to it globally.

If a transparency group’s color space is CIE-based, any objects that are painted
using device color spaces will be converted into the group’s color space by im-
plementation-defined means, possibly producing unexpected results. This prob-
lem can be circumvented by properly defining the DefaultGray, DefaultRGB,
and DefaultCMYK color space resources. Once again, this is not really a compat-
ibility issue, but it may arise when attempting to apply transparency to legacy art-
work.

11.3 PostScript Printing

The PostScript language does not support the transparency model. Therefore, a
PDF 1.4 viewer must have means to produce a completely opaque description of
the appearance of a document that uses transparency. A similar operation can
produce a PDF file that can be correctly viewed by a PDF 1.3 viewer.

Overprinting, Erasing, and Transparency12
221

June 11, 2001

This involves some combination of shape decomposition and pre-rendering to
“flatten” the stack of transparent objects on a page, perform all the transparency
computations, and describe the final appearance using opaque objects only. This
is an irreversible operation, since all of the information about how the transpar-
ency effects were produced has been lost.

Note: Determining if a page contains transparency needing to be “flattened”
can be accomplished by straightforward analysis of the page’s resources; it isn’t
necessary to analyze the content stream.

In order to perform the transparency computations properly, the PDF viewer
needs to know the native color space of the output device. When the viewer con-
trols the output device directly, this is no problem. However, when the viewer is
generating PostScript output, it has no way to know the native color space of the
PostScript output device. Making an incorrect assumption will ruin the calibra-
tion of any CIE-based colors appearing on the page. This problem can be ad-
dressed in a couple of ways:

• If the entire page consists of CIE-based colors, then flatten the colors to a sin-
gle CIE-based color space, rather than to a device color space. The preferred
color space for this purpose can easily be determined in the case that the page
has a Group dictionary that specifies a CIE-based color space.

• Otherwise, flatten the colors to some assumed device color space with prede-
termined calibration. In the generated PostScript output, paint the flattened
colors in a CIE-based color space having that calibration.

During conversion to PostScript, a decision must also be made about the set of
available spot colors to assume. This is because the choice of spot colorant ver-
sus alternate color space affects the flattened results of the process colors. (This
is unlike the situation with strictly opaque painting, where the decision can be
deferred until the generated PostScript is executed.)

12 Overprinting, Erasing, and Transparency

This section provides details of the overprinting and erasing rules in PDF. The in-
formation here duplicates material that can be found elsewhere. However, the
rules are complex and interact with transparency in non-obvious ways, so it is
useful to have the information collected in one place and the results spelled out

Transparency in PDF12
222

June 11, 2001

for every case. This material should be read in conjunction with Section 7.2,
“Spot Colors,” and Section 7.3, “Overprinting and Erasing.”

Table 14 shows the existing rules as defined in the opaque imaging model of
PDF 1.3 (which is an extension of the PostScript imaging model). Table 15
shows the equivalent rules, respecified as a special CompatibleOverprint blend
mode in the transparency imaging model of PDF 1.4.

OP and OPM refer to the overprint flag and nonzero overprint mode control pa-
rameters in PDF. OP is equivalent to the setoverprint value in PostScript. There
is no PostScript equivalent to OPM; it enables or disables the interpretation of
DeviceCMYK color values to specify componentwise overprinting, as described
in Section 7.3, “Overprinting and Erasing.”

TABLE 14 Overprinting and erasing rules in PDF 1.3

Source color space Affected color
component

Effect on that color component

OP false OP true, OPM 0 OP true, OPM 1

DeviceCMYK &
specified directly &
not image

C, M, Y, or K Paint source Paint source Paint source if
source ≠ 0
Don’t paint if
source = 0

Process colorant ≠
CMYK

Paint source Paint source Paint source

Spot colorant Paint 0 Don’t paint Don’t paint

Any process color
space (including
other cases of
DeviceCMYK)

Process colorant Paint source Paint source Paint source

Spot colorant Paint 0 Don’t paint Don’t paint

Overprinting, Erasing, and Transparency12
223

June 11, 2001

Separation or
DeviceN

Process colorant Paint 0 Don’t paint Don’t paint

Spot colorant
named in source
space

Paint source Paint source Paint source

Spot colorant not
named in source
space

Paint 0 Don’t paint Don’t paint

TABLE 15 Overprinting and erasing recast as blend modes in PDF 1.4

Source color space Affected color
component of
group color space

Value of blend mode CompatibleOverprint(Cb, Cs),
expressed as tint

OP false OP true, OPM 0 OP true, OPM 1

DeviceCMYK &
specified directly &
not image

C, M, Y, or K Cs Cs Cs if Cs ≠ 0
Cb if Cs = 0

Process color com-
ponent ≠ CMYK

Cs Cs Cs

Spot colorant Cs (= 0) Cb Cb

Any process color
space (including
other cases of
DeviceCMYK)

Process color com-
ponent

Cs Cs Cs

Spot colorant Cs (= 0) Cb Cb

TABLE 14 Overprinting and erasing rules in PDF 1.3

Source color space Affected color
component

Effect on that color component

OP false OP true, OPM 0 OP true, OPM 1

Transparency in PDF12
224

June 11, 2001

In these tables, color component values are represented as subtractive tint values,
because one ordinarily thinks of overprinting inks, not additive light values. The
CompatibleOverprint blend mode is described as if it took subtractive arguments
and returned subtractive results. However, in reality, the CompatibleOverprint
blend mode (like all blend modes) treats color components as additive values;
subtractive components must be complemented before and after application of
the blend mode.

Please note an important difference between the two tables. In Table 14, the pro-
cess color components being discussed are the actual device colorants—the color
components of the native color space of the output device (DeviceRGB,
DeviceCMYK, or DeviceGray). In Table 15, the process color components are
those of the group’s color space, which is not necessarily the same as that of the
output device (and can even be something like CalRGB or ICCBased). For this
reason, the process color components of the group color space cannot be treated
as if they were spot colors (in a Separation or DeviceN color space); see Sec-
tion 7.2, “Spot Colors.”

Separation or
DeviceN

Process color com-
ponent

Cs (= 0) Cb Cb

Spot colorant
named in source
space

Cs Cs Cs

Spot colorant not
named in source
space

Cs (= 0) Cb Cb

Source is a group
(not an elementary
object)

All color compo-
nents

Cs Cs Cs

TABLE 15 Overprinting and erasing recast as blend modes in PDF 1.4

Source color space Affected color
component of
group color space

Value of blend mode CompatibleOverprint(Cb, Cs),
expressed as tint

OP false OP true, OPM 0 OP true, OPM 1

Revision History13
225

June 11, 2001

This difference between PDF 1.3 and PDF 1.4 overprinting and erasing rules
arises only within a transparency group (including the page group, if its color
space is different from the native color space of the output device). Since PDF
1.3 doesn’t have transparency groups to begin with, this difference is not consid-
ered to be an incompatibility. (There is no difference in the treatment of spot col-
or components.)

Table 15 has one additional row at the bottom. It applies when painting an object
that itself is a transparency group instead of an elementary object (fill, stroke,
text, image). As explained in Section 7.2, “Spot Colors,” a group is considered to
paint every color component, both process and spot. Color components that were
not explicitly painted by any object in the group have an additive color value of 1
(subtractive tint 0).

Since no information is retained about which components were actually painted
within the group, compatible overprinting is not possible in this case. Thus, the
CompatibleOverprint blend mode is never applied to a group. (Note that a trans-
parency-aware application can choose a suitable blend mode, such as Darken, if
it desires to produce an effect similar to overprinting of group results.)

13 Revision History

Note: Change bars mark all changes since the initial release of May 30, 2000.

November 30, 2000

Changed the semantics of the page group. The compositing formula for the page
group is now applied only if the page is imposed on output media, not if it is
placed on other content by an aggregating application. The formula itself is
changed to isolate the page group from the backdrop. If a page object has a
group-attributes dictionary, it specifies attributes of the page group, rather than
being a shorthand for specifying a subsidiary transparency-group XObject. The
interpretation of the transparency group attributes for a page group is slightly
changed.

Clarified the kinds of ICCBased color spaces that are permitted as group color
spaces.

Transparency in PDF13
226

June 11, 2001

January 23, 2001

Refined the treatment of the color rendering intent parameter in the presence of
transparency groups. Rendering intent is now tied to objects (including group ob-
jects) instead of regions of the page. For consistency, the undercolor removal and
black generation parameters work the same way.

Specified additional requirements on ICCBased color spaces that are permitted
as group color spaces. In particular, they must be bidirectional.

Introduced a more complete specification of the semantics of tiling patterns in
the presence of transparency. A pattern is treated as if it were defined within a
transparency group, thereby defining the color and alpha at each point within an
object being painted with the pattern.

Revised the treatment of overprinting as a blend mode. Formerly, overprinting
behavior occurred only if the blend mode was specified as Compatible. Now,
overprinting can be combined with any blend mode; a nested transparency group
is implicitly created if necessary to achieve this. The semantics of the overprint-
ing blend mode itself are unchanged. The default value of the blend mode param-
eter is now Normal, not Compatible.

Added guidelines on treating a CIE-based color space as if it were a device color
space. (Although this doesn’t have anything directly to do with transparency, it
does have transparency-related ramifications, such as in the treatment of over-
printing.)

February 5, 2001

Added a special case for the handling of the B (combined fill/stroke) operator if
overprinting is enabled. This is for upward compatibility from the overprinting
model of PDF 1.3 and earlier.

Extended the new specification of the semantics of tiling patterns to apply to
shading patterns as well, particularly in how graphics state parameters are inter-
preted. Clarified the semantics of the Background entry in a shading dictionary.

Further clarified the semantics of the page group.

227

June 11, 2001

This appendix discusses how Unicode characters that are not in a standard font
should be represented in a Tagged PDF document. This is necessary to allow
pass-through of characters such as Figure Space, Em Quad, Tab, Non-Breaking
Space, etc., so that they will be preserved if the document is saved as, for exam-
ple, HTML or RTF. This approach should be used when the goal is to avoid em-
bedding a font or a font subset in the PDF.

A.1 Case 1: If the authoring tool is generating PDF directly, such
as through the PDF library:

For Type 1 and similar fonts, use the differences table in a Font descriptor:

• Find an unused code-point

• Add a ToUnicode entry at that code-point for the desired Unicode

• Add a glyphname entry at that code-point which is the name of some real char-
acter in the font (often space, sometimes minus).

• Add width entry at that code-point which is the width of the real character (not
the width of the unicode character), but remember the desired width of the new
character somewhere else.

• When putting out the new code-point, explicitly kern (in the TJ) by the differ-
ence between the desired width and the width of the “real” substituted charac-
ter. This will preserve the spacing both on the display and on printers.

For Type 0 fonts with CMaps:

• Make up a new CMap with all the existing characters and with the desired
characters added at open code-points, and embed the new CMap in the PDF.

APPENDIX A

Adding Unicode
Codepoints to Font

Descriptors

228

June 11, 2001

• Add width entry for the added characters which is the width of the real charac-
ter (NOT the width of the unicode character) using the W or DW keys in the
manner described in the “Character Widths in CIDFonts” section of the PDF
Reference, but remember the desired width of the new character somewhere
else.

• When putting out the new code-point, explicitly kern (in the TJ) by the differ-
ence between the desired width and the width of the “real” substituted charac-
ter. This will preserve the spacing both on the display and on printers.

A.2 Case 2: If the authoring tool is generating PDF files through
Distiller:

There is currently no way to build a /Difference entry via Distiller. Until this is
fixed any application using the Distiller path should use the following work-
around:

• Put out a single-character TJ string using the “real” font character and any nec-
essary kerning.

• Make that single character a piece of Tagged text (Logical Structure Element
type Span), and set the ActualText string in the span to the desired Unicode
character.

The only other Distiller solution is to embed the actual font in the PDF file.

	Portable Document Format: Changes from Version1.3 to1.4 Technical Note #5409
	11 Jun 2001 Technical Note #5409, Adobe Systems Incorporated
	Contents
	Introduction
	JBIG2 Compression Filter
	1 Introduction
	1.1 Multi-page images

	2 PDF Reference Manual changes
	2.1 Changes to Section 3.3, ‘ “Filtered Streams”

	3 Inline images

	Encryption
	3.5 Encryption
	3.5.1 General Encryption Algorithm
	1. Obtain the object number and generation number from the object identifier of the string or str...
	2. Treating the object number and generation number as binary integers, extend the original N-byt...
	3. Initialize the MD5 hash function and pass the result of step 2 as input to the MD5 hash function.
	4. Use the first N+5 bytes of the output from the MD5 function as the key for the RC4 encryption ...

	3.5.2 Standard Security Handler
	1. Pad or truncate the password string to exactly 32 bytes. If the password string is more than 3...
	2. Initialize the MD5 hash function and input the result of step 1 to this function.
	3. Input the value of the encryption dictionary’s O entry to the hash function. (Algorithm 3.3 sh...
	4. Treat the value of the P entry as an unsigned 4-byte integer and pass these bytes to the MD5 h...
	5. Pass the first element of the file’s file identifier to the MD5 hash function (see Section 8.3...
	6. Finish the MD5 hash and get the output of the hash. If revision 3, then loop 50 additional tim...
	1. Pad or truncate the owner password string as described in step�1 of Algorithm 3.2. If there is...
	2. Pass the result of step 1 as input to the MD5 hash function. If the R entry is 3, then loop 50...
	3. Create an RC4 key using the first N bytes of the MD5 output. N is the key length as defined by...
	4. Pad or truncate the user password string as described in step�1 of Algorithm 3.2.
	5. Encrypt the padded user password string with the RC4 algorithm, using the key obtained in step...
	6. Store the result of step 5 as the value of the O entry in the encryption dictionary.
	1. Create an encryption key based on the user password string, as described in Algorithm 3.2.
	2. Encrypt the 32-byte padding string shown in step�1 of Algorithm 3.2, using the RC4 algorithm w...
	3. Store the result of step�2 as the value of the U entry in the encryption dictionary.
	1. Create an encryption key based on the user password string, as described in Algorithm 3.2.
	2. Initialize the MD5 hash function and pass the encryption key from step�1 as input to this func...
	3. Pass the first element of the file’s file identifier array (the value of the ID entry in the d...
	4. Encrypt the 16-byte result of the hash, using the RC4 algorithm with the encryption key from s...
	5. Do the following 19 times: Take the output from the previous RC4 encryption and pass it as inp...
	6. Store the output from the final RC4 encryption as the value of the U entry in the encryption d...
	1. Compute an encryption key from the supplied password string, as described in Algorithm 3.2.
	2. Decrypt the value of the encryption dictionary’s U entry, using the RC4 algorithm with the enc...
	3. (Revision 2) If the result of step�2 is identical to the fixed padding string shown in step�1 ...
	1. Compute an encryption key from the supplied password string, as described in steps�1 to 4 of A...
	2. Decrypt the value of the encryption dictionary’s O entry, using the RC4 algorithm with the enc...
	3. (Revision�3 only) Do the following 19 times: Take the output from the previous RC4 encryption ...
	4. Use Algorithm 3.2 to compute an encryption key from the decrypted value obtained as output fro...
	5. Decrypt the value of the encryption dictionary’s U entry, using the RC4 algorithm with the enc...
	6. If the result of step�5 is identical to the fixed padding string shown in step�1 of Algorithm ...

	Adding Language Version to the Catalog
	1 Introduction
	1.1 Terminology

	2 Background
	2.1 Digital signatures
	2.2 Saving files to non-traditional file systems

	3 Adding Language Version to the Catalog
	3.1 Compatibility Notes

	4 Web behavior

	Included Data
	1 Included Data

	ProcSet Resource
	1 Procedure Sets; Obsolete for PDF 1.4

	Graphics
	1 Support for Separation and DeviceN Is Removed

	Glyph Widths ; Predefined CMaps
	1 Glyph Widths Override
	2 Predefined CMaps
	2.1 Standard Character Collections for CID-keyed Fonts
	2.2 New CMaps for PDF 1.4
	2.3 Changes to Existing CMaps
	2.4 Backward Compatibility Issues

	3 PDF CMaps and Supplement Numbers

	Output Intents for Color Critical Workflows
	1 Introduction
	2 Use of OutputIntents
	3 Defining OutputIntents
	3.1 Additions to the Catalog
	3.2 Known forms of Output Intent Dictionaries

	4 Changes to restriction on ICC profile stream attributes

	New Bookmark Properties
	1 New Bookmark Properties

	Annotations
	1 Annotation naming
	2 Background color
	3 Line endings
	4 Quadding support
	5 Squiggly annotations
	6 Markup annotation definition
	7 Annotation Border Style
	8 Markup annotation opacity
	9 Trap Network Annotations

	New Trigger Events
	1 Document Level Triggers
	2 The Trigger Types

	Forms-Related Changes to PDF and FDF
	1 Multiple Selection for Fields of Type Listbox
	2 File Select Control
	3 Multiple Options with the Same Value
	4 Submit Using XML Flag
	5 Changes to FDF
	6 Using Unicode Values / Buttons with the Same Export Value
	7 New Field Flags
	8 JavaScript and FDF
	9 Additional Submit Form Action Flags

	Referenced PDF
	1 Introduction
	2 Structure
	3 Optimization
	4 Page Insertion/Deletion
	5 Printing and OPI

	Natural Language Specification
	1 Introduction
	2 Language Specification
	2.1 Language Key Values
	2.2 Catalog Object key:
	2.3 Structure Element key:
	2.4 Marked Content Property List key:

	3 Determining the Language of Text in a Document

	Accessibility Support in PDF
	1 Introduction
	1.1 Logical Content Order
	1.2 Alternative descriptions
	1.3 Abbreviations and Acronyms

	Box Definitions for Pages
	1 Introduction
	2 Viewing and Printing preferences
	3 Additions to the Viewer Preferences Dictionary
	4 Page Attributes additions
	5 BoxColorInfo Dictionary

	PrinterMark Annotations
	1 Introduction
	2 PrinterMark Annotation Attributes
	2.1 PrinterMark Appearance Attributes

	New Metadata Architecture for PDF�1.4
	1 Introduction
	2 Metadata streams
	3 Document metadata
	3.1 Attaching metadata to the document

	4 Component metadata
	4.1 How metadata is associated with components
	4.2 What components can have metadata
	4.3 Finding component metadata from document metadata
	4.4 Enumerating components with metadata

	5 Compatibility

	Tagged PDF
	1 Introduction
	1.1 Terminology

	2 Tagged PDF Content Streams
	2.1 Page Content and Page Artifacts
	2.2 Examining and Processing the Page Content
	2.3 Page Content Ordering
	2.4 The Text Stream at the Character Level
	2.5 The Text Stream at the Word Level
	2.6 Alternative Texts and Other Textual Key-Values
	2.7 Textual Artifacts
	2.8 XObject Forms

	3 Use of Logical Structure in Tagged PDF
	3.1 Standard Roles and Standard Properties
	3.2 Use of Standard Properties in Tagged PDF
	3.3 Definitions of Standard Properties used by Tagged PDF

	4 Additional Requirements for Tagged PDF Acceptance

	Transparency in PDF
	1 Introduction
	1.1 About This Document
	1.2 Related Documents
	1.3 Intellectual Property

	2 Overview
	2.1 Basic Concepts
	2.2 Notation

	3 Color Compositing Computations
	3.1 Blending Color Space
	3.2 Blend Mode
	3.3 Interpretation of Alpha

	4 Shape and Opacity Computations
	4.1 Source Shape and Opacity
	4.2 Computing the Result Shape and Opacity
	4.3 Summary of Compositing Computations

	5 Groups
	5.1 Notation
	5.2 Group Structure and Nomenclature
	5.3 Group Compositing Computations
	5.4 Isolated Groups
	5.5 Knockout Groups
	5.6 Summary of Group Compositing Computations
	5.7 Page Group

	6 Soft Masks
	6.1 Mask from group alpha
	6.2 Mask from group luminosity

	7 Color Space and Color Rendering Issues
	7.1 Color Spaces
	7.2 Spot Colors
	7.3 Overprinting and Erasing
	7.4 Rendering Parameters

	8 Overview of PDF Extensions
	8.1 Color Compositing Computations
	8.2 Shape and Opacity Computations
	8.3 Groups
	8.4 Soft Masks
	8.5 Color Space and Color Rendering Issues
	8.6 Limitations in the PDF Transparency Model

	9 PDF Specification
	9.1 Adobe Imaging Model—2.1.2
	9.2 Page Tree (Page Objects)—3.6.2 [6.4]
	9.3 Graphics Objects—4.1 [8.1]
	9.4 Details of Graphics State Parameters—4.3.2 [8.4]
	9.5 Graphics State Parameter Dictionaries—4.3.4 [7.15]
	9.6 Path-Painting Operators—4.4.2 [8.6.2]
	9.7 Clipping Path Operators—4.4.3 [8.3.1.1]
	9.8 Device Color Spaces—4.5.3 [7.12]
	9.9 CIE-Based Color Spaces—4.5.4 [8.5.1.5]
	9.10 CIE-Based Color Spaces (ICCBased Color Spaces)—4.5.4 [8.5.1.5]
	9.11 CIE-Based Color Spaces (Rendering intents)—4.5.4 [8.5.1.5]
	9.12 Special Color Spaces (Separation Color Spaces)—4.5.5 [7.12.8]
	9.13 Overprint Control—4.5.6 [8.4.9]
	9.14 Tiling Patterns—4.6.2 [7.17.2]
	9.15 Shading Patterns—4.6.3 [7.17.3]
	9.16 Image Dictionaries—4.8.4 [7.13.1]
	9.17 Form XObjects—4.9 [7.13.7]
	9.18 Text State Parameters and Operators—5.2 [8.7]
	9.19 Text Rendering Mode—5.2.5 [8.7.1.7]
	9.20 Text-Showing Operators—5.3.2 [8.7.5]
	9.21 Conversion from DeviceRGB to DeviceCMYK—6.2.3 [8.4.10]
	9.22 Transfer Functions—6.3 [8.4.12]
	9.23 Halftones—6.4 [8.4.13]
	9.24 Annotation Appearances—7.4.4 [6.6.3]

	10 Terminology Summary
	11 Compatibility
	11.1 Backward Compatibility
	11.2 Forward Compatibility
	11.3 PostScript Printing

	12 Overprinting, Erasing, and Transparency
	13 Revision History

	
	Adobe Systems Title Page

