
Erlang (programming language) 1

Erlang (programming language)

Erlang

Paradigm multi-paradigm: concurrent, functional

Appeared in 1986

Designed by Ericsson

Developer Ericsson

Stable release R14B02 (March 16, 2011)

Typing discipline dynamic, strong

Major implementations Erlang

Influenced by Prolog

Influenced Clojure, Scala

License Modified MPL

Website [1]

 Erlang Programming at Wikibooks

Erlang is a general-purpose concurrent, garbage-collected programming language and runtime system. The
sequential subset of Erlang is a functional language, with strict evaluation, single assignment, and dynamic typing.
For concurrency it follows the Actor model. It was designed by Ericsson to support distributed, fault-tolerant,
soft-real-time, non-stop applications. It supports hot swapping, thus code can be changed without stopping a
system.[2]

While threads are considered a complicated and error-prone topic in most languages, Erlang provides language-level
features for creating and managing processes with the aim of simplifying concurrent programming. Though all
concurrency is explicit in Erlang, processes communicate using message passing instead of shared variables, which
removes the need for locks.
The first version was developed by Joe Armstrong in 1986.[3] It was originally a proprietary language within
Ericsson, but was released as open source in 1998.

http://en.wikipedia.org/w/index.php?title=File:Erlang_logo.png
http://en.wikipedia.org/w/index.php?title=Programming_paradigm
http://en.wikipedia.org/w/index.php?title=Multi-paradigm_programming_language
http://en.wikipedia.org/w/index.php?title=Concurrent_programming
http://en.wikipedia.org/w/index.php?title=Functional_programming
http://en.wikipedia.org/w/index.php?title=Ericsson
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Ericsson
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Type_system
http://en.wikipedia.org/w/index.php?title=Strong_typing
http://en.wikipedia.org/w/index.php?title=Programming_language_implementation
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Mozilla_Public_License
http://www.erlang.org
http://en.wikipedia.org/w/index.php?title=File:Wikibooks-logo-en.svg
http://en.wikibooks.org/wiki/Erlang_Programming
http://en.wikipedia.org/w/index.php?title=Wikibooks
http://en.wikipedia.org/w/index.php?title=Concurrent_computing
http://en.wikipedia.org/w/index.php?title=Garbage_collection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Run_time_system
http://en.wikipedia.org/w/index.php?title=Functional_language
http://en.wikipedia.org/w/index.php?title=Strict_evaluation
http://en.wikipedia.org/w/index.php?title=Single_assignment
http://en.wikipedia.org/w/index.php?title=Dynamic_typing
http://en.wikipedia.org/w/index.php?title=Actor_model
http://en.wikipedia.org/w/index.php?title=Ericsson
http://en.wikipedia.org/w/index.php?title=Fault-tolerance
http://en.wikipedia.org/w/index.php?title=Real-time_computing
http://en.wikipedia.org/w/index.php?title=Hot_swapping
http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Message_passing
http://en.wikipedia.org/w/index.php?title=Lock_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Open_source

Erlang (programming language) 2

History
The name "Erlang", attributed to Bjarne Däcker, has been understood either as a reference to Danish mathematician
and engineer Agner Krarup Erlang, or alternatively, as an abbreviation of "Ericsson Language".[3] [4]

Erlang was designed with the aim of improving the development of telephony applications. The initial version of
Erlang was implemented in Prolog.[3]

In 1998, the Ericsson AXD301 switch was announced, containing over a million lines of Erlang, and reported to
achieve a reliability of nine "9"s.[5] Shortly thereafter, Erlang was banned within Ericsson Radio Systems for new
products, citing a preference for non-proprietary languages. The ban caused Armstrong and others to leave
Ericsson.[6] The implementation was open sourced at the end of the year.[3] The ban at Ericsson was eventually
lifted, and Armstrong was re-hired by Ericsson in 2004.[6]

In 2006, native symmetric multiprocessing support was added to the runtime system and virtual machine.[3]

Philosophy
The philosophy used to develop Erlang fits equally well with the development of Erlang-based systems. Quoting
Mike Williams, one of the three inventors of Erlang:
1. Find the right methods—Design by Prototyping.
2. It is not good enough to have ideas, you must also be able to implement them and know they work.
3. Make mistakes on a small scale, not in a production project.

Functional programming examples
A factorial algorithm implemented in Erlang:

-module(fact). % This is the file 'fact.erl', the module and the

filename MUST match

-export([fac/1]). % This exports the function 'fac' of arity 1 (1

parameter, no type, no name)

fac(0) -> 1; % If 0, then return 1, otherwise (note the semicolon ;

meaning 'else')

fac(N) when N > 0, is_integer(N) -> N * fac(N-1).

% Recursively determine, then return the result

% (note the period . meaning 'endif' or 'function end')

A sorting algorithm (similar to quicksort):

%% qsort:qsort(List)

%% Sort a list of items

-module(qsort). % This is the file 'qsort.erl'

-export([qsort/1]). % A function 'qsort' with 1 parameter is exported

(no type, no name)

qsort([]) -> []; % If the list [] is empty, return an empty list

(nothing to sort)

qsort([Pivot|Rest]) ->

 % Compose recursively a list with 'Front' for all elements that

should be before 'Pivot'

 % then 'Pivot' then 'Back' for all elements that should be after

http://en.wikipedia.org/w/index.php?title=Agner_Krarup_Erlang
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=Nines_%28engineering%29
http://en.wikipedia.org/w/index.php?title=Symmetric_multiprocessing
http://en.wikipedia.org/w/index.php?title=Factorial
http://en.wikipedia.org/w/index.php?title=Quicksort

Erlang (programming language) 3

'Pivot'

 qsort([Front || Front <- Rest, Front < Pivot])

 ++ [Pivot] ++

 qsort([Back || Back <- Rest, Back >= Pivot]).

The above example recursively invokes the function qsort until nothing remains to be sorted. The expression [Front ||
Front <- Rest, Front < Pivot] is a list comprehension, meaning “Construct a list of elements Front such that Front is a
member of Rest, and Front is less than Pivot.” ++ is the list concatenation operator.
A comparison function can be used for more complicated structures for the sake of readability.
The following code would sort lists according to length:

% This is file 'listsort.erl' (the compiler is made this way)

-module(listsort).

% Export 'by_length' with 1 parameter (don't care of the type and name)

-export([by_length/1]).

by_length(Lists) -> % Use 'qsort/2' and provides an anonymous function

as a parameter

 qsort(Lists, fun(A,B) when is_list(A), is_list(B) -> length(A) < length(B) end).

qsort([], _)-> []; % If list is empty, return an empty list (ignore the

second parameter)

qsort([Pivot|Rest], Smaller) ->

 % Partition list with 'Smaller' elements in front of 'Pivot' and

not-'Smaller' elements

 % after 'Pivot' and sort the sublists.

 qsort([X || X <- Rest, Smaller(X,Pivot)], Smaller)

 ++ [Pivot] ++

 qsort([Y ||Y <- Rest, not(Smaller(Y, Pivot))], Smaller).

Here again, a Pivot is taken from the first parameter given to qsort() and the rest of Lists is named Rest. Note that the
expression
[X || X <- Rest, Smaller(X,Pivot)]
is no different in form from
[Front || Front <- Rest, Front < Pivot]
(in the previous example) except for the use of a comparison function in the last part, saying “Construct a list of
elements X such that X is a member of Rest, and Smaller is true", with Smaller being defined earlier as
fun(A,B) when is_list(A), is_list(B) -> length(A) < length(B) end
Note also that the anonymous function is named Smaller in the parameter list of the second definition of qsort so that
it can be referenced by that name within that function. It is not named in the first definition of qsort, which deals
with the base case of an empty list and thus has no need of this function, let alone a name for it.

http://en.wikipedia.org/w/index.php?title=List_comprehension
http://en.wikipedia.org/w/index.php?title=Anonymous_function

Erlang (programming language) 4

Data structures
Erlang has eight primitive data types:
1. Integers: integers are written as sequences of decimal digits, for example, 12, 12375 and -23427 are integers.

Integer arithmetic is exact and only limited by available memory on the machine.
2. Atoms: atoms are used within a program to denote distinguished values. They are written as strings of

consecutive alphanumeric characters, the first character being a small letter. Atoms can obtain any character if
they are enclosed within single quotes and an escape convention exists which allows any character to be used
within an atom.

3. Floats: floating point numbers use the IEEE 754 64-bit representation. (Range: ±10308.)
4. References: references are globally unique symbols whose only property is that they can be compared for

equality. They are created by evaluating the Erlang primitive make_ref().
5. Binaries: a binary is a sequence of bytes. Binaries provide a space-efficient way of storing binary data. Erlang

primitives exist for composing and decomposing binaries and for efficient input/output of binaries.
6. Pids: Pid is short for Process Identifier—a Pid is created by the Erlang primitive spawn(...) Pids are references to

Erlang processes.
7. Ports: ports are used to communicate with the external world. Ports are created with the built-in function (BIF)

open_port. Messages can be sent to and received from ports, but these message must obey the so-called "port
protocol."

8. Funs : Funs are function closures. Funs are created by expressions of the form: fun(...) -> ... end.
And two compound data types:
1. Tuples : tuples are containers for a fixed number of Erlang data types. The syntax {D1,D2,...,Dn} denotes a tuple

whose arguments are D1, D2, ... Dn. The arguments can be primitive data types or compound data types. The
elements of a tuple can be accessed in constant time.

2. Lists : lists are containers for a variable number of Erlang data types. The syntax [Dh[D2|..|[Dn|[]]. The first
element of a list can be accessed in constant time. The first element of a list is called the head of the list. The
remainder of a list when its head has been removed is called the tail of the list.

Two forms of syntactic sugar are provided:
1. Strings : strings are written as doubly quoted lists of characters, this is syntactic sugar for a list of the integer

ASCII codes for the characters in the string, thus for example, the string "cat" is shorthand for [99,97,116].
2. Records : records provide a convenient way for associating a tag with each of the elements in a tuple. This allows

us to refer to an element of a tuple by name and not by position. A pre-compiler takes the record definition and
replaces it with the appropriate tuple reference.

Concurrency and distribution orientation
Erlang's main strength is support for concurrency. It has a small but powerful set of primitives to create processes
and communicate among them. Processes are the primary means to structure an Erlang application. Erlang processes
loosely follow the communicating sequential processes (CSP) model. They are neither operating system processes
nor operating system threads, but lightweight processes somewhat similar to Java's original “green threads”. Like
operating system processes (and unlike green threads and operating system threads) they have no shared state
between them. The estimated minimal overhead for each is 300 words,[7] thus many of them can be created without
degrading performance: a benchmark with 20 million processes has been successfully performed.[8] Erlang has
supported symmetric multiprocessing since release R11B of May 2006.
Inter-process communication works via a shared-nothing asynchronous message passing system: every process has a
“mailbox”, a queue of messages that have been sent by other processes and not yet consumed. A process uses the
receive primitive to retrieve messages that match desired patterns. A message-handling routine tests messages in turn

http://en.wikipedia.org/w/index.php?title=IEEE_754
http://en.wikipedia.org/w/index.php?title=64-bit
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Dt%5D%3C/code%3E_denotes_a_list_whose_first_element_is_%3Ccode%3EDh%3C/code%3E%2C_and_whose_remaining_elements_are_the_list_%3Ccode%3EDt%3C/code%3E._The_syntax_%3Ccode%3E%5B%5D%3C/code%3E_denotes_an_empty_list._The_syntax_%3Ccode%3E%5BD1%2CD2%2C..%2CDn%5D%3C/code%3E_is_short_for_%3Ccode%3E%5BD1
http://en.wikipedia.org/w/index.php?title=Syntactic_sugar
http://en.wikipedia.org/w/index.php?title=ASCII
http://en.wikipedia.org/w/index.php?title=Concurrency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Communicating_sequential_processes
http://en.wikipedia.org/w/index.php?title=Process_%28computing%29
http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Green_threads
http://en.wikipedia.org/w/index.php?title=Word_%28computing%29
http://en.wikipedia.org/w/index.php?title=Symmetric_multiprocessing
http://en.wikipedia.org/w/index.php?title=Inter-process_communication
http://en.wikipedia.org/w/index.php?title=Asynchronous_method_dispatch
http://en.wikipedia.org/w/index.php?title=Message_passing
http://en.wikipedia.org/w/index.php?title=Queue_%28data_structure%29

Erlang (programming language) 5

against each pattern, until one of them matches. When the message is consumed and removed from the mailbox the
process resumes execution. A message may comprise any Erlang structure, including primitives (integers, floats,
characters, atoms), tuples, lists, and functions.
The code example below shows the built-in support for distributed processes:

 % Create a process and invoke the function web:start_server(Port,

MaxConnections)

 ServerProcess = spawn(web, start_server, [Port, MaxConnections]),

 % Create a remote process and invoke the function

 % web:start_server(Port, MaxConnections) on machine RemoteNode

 RemoteProcess = spawn(RemoteNode, web, start_server, [Port,

MaxConnections]),

 % Send a message to ServerProcess (asynchronously). The message

consists of a tuple

 % with the atom "pause" and the number "10".

 ServerProcess ! {pause, 10},

 % Receive messages sent to this process

 receive

 a_message -> do_something;

 {data, DataContent} -> handle(DataContent);

 {hello, Text} -> io:format("Got hello message: ~s", [Text]);

 {goodbye, Text} -> io:format("Got goodbye message: ~s", [Text])

 end.

As the example shows, processes may be created on remote nodes, and communication with them is transparent in
the sense that communication with remote processes works exactly as communication with local processes.
Concurrency supports the primary method of error-handling in Erlang. When a process crashes, it neatly exits and
sends a message to the controlling process which can take action.[9] [10] This way of error handling increases
maintainability and reduces complexity of code.

Implementation
The Ericsson Erlang implementation loads virtual machine bytecode which is converted to threaded code at load
time. It also includes a native code compiler on most platforms, developed by the High Performance Erlang Project
(HiPE) at Uppsala University. Since October 2001 the HiPE system is fully integrated in Ericsson's Open Source
Erlang/OTP system. [11] It also supports interpreting, directly from source code via abstract syntax tree, via script as
of R11B-5.

Hot code loading and modules
Code is loaded and managed as "module" units; the module is a compilation unit. The system can keep two versions
of a module in memory at the same time, and processes can concurrently run code from each. The versions are
referred to as the "new" and the "old" version. A process will not move into the new version until it makes an
external call to its module.
An example of the mechanism of hot code loading:

http://en.wikipedia.org/w/index.php?title=Bytecode
http://en.wikipedia.org/w/index.php?title=Threaded_code
http://en.wikipedia.org/w/index.php?title=Uppsala_University
http://en.wikipedia.org/w/index.php?title=Abstract_syntax_tree
http://en.wikipedia.org/w/index.php?title=Compilation_unit

Erlang (programming language) 6

 %% A process whose only job is to keep a counter.

 %% First version

 -module(counter).

 -export([start/0, codeswitch/1]).

 start() -> loop(0).

 loop(Sum) ->

 receive

 {increment, Count} ->

 loop(Sum+Count);

 {counter, Pid} ->

 Pid ! {counter, Sum},

 loop(Sum);

 code_switch ->

 ?MODULE:codeswitch(Sum)

 % Force the use of 'codeswitch/1' from the latest MODULE

version

 end.

 codeswitch(Sum) -> loop(Sum).

For the second version, we add the possibility to reset the count to zero.

 %% Second version

 -module(counter).

 -export([start/0, codeswitch/1]).

 start() -> loop(0).

 loop(Sum) ->

 receive

 {increment, Count} ->

 loop(Sum+Count);

 reset ->

 loop(0);

 {counter, Pid} ->

 Pid ! {counter, Sum},

 loop(Sum);

 code_switch ->

 ?MODULE:codeswitch(Sum)

 end.

 codeswitch(Sum) -> loop(Sum).

Only when receiving a message consisting of the atom 'code_switch' will the loop execute an external call to
codeswitch/1 (?MODULE is a preprocessor macro for the current module). If there is a new version of the "counter"
module in memory, then its codeswitch/1 function will be called. The practice of having a specific entry-point into a
new version allows the programmer to transform state to what is required in the newer version. In our example we

Erlang (programming language) 7

keep the state as an integer.
In practice, systems are built up using design principles from the Open Telecom Platform which leads to more code
upgradable designs. Successful hot code loading is a tricky subject; code needs to be written to make use of Erlang's
facilities.

Distribution
In 1998, Ericsson released Erlang as open source to ensure its independence from a single vendor and to increase
awareness of the language. Erlang, together with libraries and the real-time distributed database Mnesia, forms the
Open Telecom Platform (OTP) collection of libraries. Ericsson and a few other companies offer commercial support
for Erlang.
Since the open source release, Erlang has been used by several firms worldwide, including Nortel and T-Mobile.[12]

Although Erlang was designed to fill a niche and has remained an obscure language for most of its existence, its
popularity is growing due to demand for concurrent services.[13] [14] Erlang has found some use in fielding
MMORPG servers.[15]

Erlang is available for many Unix-like operating systems, including Mac OS X, as well as Microsoft Windows.

Projects using Erlang
Projects using Erlang include:
• CouchDB, a document based database that uses MapReduce
• ejabberd, an Extensible Messaging and Presence Protocol (XMPP) instant messaging server

• Facebook Chat system,[16] based on ejabberd[17]

• GitHub egitd,[18] a replacement for stock git-daemon that ships with Git
• Issuu, an online digital publisher
• Membase, database management system optimized for storing data behind interactive web applications.
• RabbitMQ, an implementation of Advanced Message Queuing Protocol (AMQP)
• SimpleDB, a distributed database that is part of Amazon Web Services[19]

• Twitterfall, a service to view trends and patterns from Twitter[20] [21]

• Wings 3D, a 3D modeller
• Yaws web server
• Riak, a distributed database
• Goldman Sachs used Erlang for the high-frequency trading programs. Sergey Aleynikov, a former programmer at

Goldman Sachs was accused of stealing their code.

Clones
Erlang has inspired clones of its concurrency facilities for other languages:
• Reia
• Scala

References
[1] http:/ / www. erlang. org
[2] Joe Armstrong, Bjarne Däcker, Thomas Lindgren, Håkan Millroth. "Open-source Erlang - White Paper" (http:/ / erlang. org/ white_paper.

html). . Retrieved 2008-01-23.
[3] Joe Armstrong, "History of Erlang", in HOPL III: Proceedings of the third ACM SIGPLAN conference on History of programming

languages, 2007, ISBN 978-1-59593-766-X
[4] Erlang, the mathematician? (http:/ / www. erlang. org/ pipermail/ erlang-questions/ 1999-February/ 000098. html)
[5] "Concurrency Oriented Programming in Erlang" (http:/ / ll2. ai. mit. edu/ talks/ armstrong. pdf). November 2, 2002. .

http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Mnesia
http://en.wikipedia.org/w/index.php?title=Open_Telecom_Platform
http://en.wikipedia.org/w/index.php?title=Nortel_Networks
http://en.wikipedia.org/w/index.php?title=T-Mobile
http://en.wikipedia.org/w/index.php?title=MMORPG
http://en.wikipedia.org/w/index.php?title=Unix-like
http://en.wikipedia.org/w/index.php?title=Mac_OS_X
http://en.wikipedia.org/w/index.php?title=Microsoft_Windows
http://en.wikipedia.org/w/index.php?title=CouchDB
http://en.wikipedia.org/w/index.php?title=MapReduce
http://en.wikipedia.org/w/index.php?title=Ejabberd
http://en.wikipedia.org/w/index.php?title=Extensible_Messaging_and_Presence_Protocol
http://en.wikipedia.org/w/index.php?title=Facebook_Chat
http://en.wikipedia.org/w/index.php?title=GitHub
http://en.wikipedia.org/w/index.php?title=Git_%28software%29
http://en.wikipedia.org/w/index.php?title=Issuu
http://en.wikipedia.org/w/index.php?title=Membase
http://en.wikipedia.org/w/index.php?title=RabbitMQ
http://en.wikipedia.org/w/index.php?title=Advanced_Message_Queuing_Protocol
http://en.wikipedia.org/w/index.php?title=SimpleDB
http://en.wikipedia.org/w/index.php?title=Amazon_Web_Services
http://en.wikipedia.org/w/index.php?title=Twitterfall
http://en.wikipedia.org/w/index.php?title=Twitter
http://en.wikipedia.org/w/index.php?title=Wings_3D
http://en.wikipedia.org/w/index.php?title=Yaws_%28web_server%29
http://en.wikipedia.org/w/index.php?title=Riak
http://en.wikipedia.org/w/index.php?title=Goldman_Sachs
http://en.wikipedia.org/w/index.php?title=Erlang
http://en.wikipedia.org/w/index.php?title=High-frequency_trading
http://en.wikipedia.org/w/index.php?title=Sergey_Aleynikov
http://en.wikipedia.org/w/index.php?title=Reia_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://www.erlang.org
http://erlang.org/white_paper.html
http://erlang.org/white_paper.html
http://www.erlang.org/pipermail/erlang-questions/1999-February/000098.html
http://ll2.ai.mit.edu/talks/armstrong.pdf

Erlang (programming language) 8

[6] "question about Erlang's future" (http:/ / erlang. org/ pipermail/ erlang-questions/ 2006-July/ 021336. html). July 6, 2010. .
[7] "Erlang Efficiency Guide - Processes" (http:/ / www. erlang. org/ doc/ efficiency_guide/ processes. html). .
[8] Ulf Wiger (2005-11-14). "Stress-testing erlang" (http:/ / groups. google. com/ group/ comp. lang. functional/ msg/

33b7a62afb727a4f?dmode=source). comp.lang.functional.misc. . Retrieved 2006-08-25.
[9] Joe Armstrong. "Erlang robustness" (http:/ / www. erlang. org/ doc/ getting_started/ robustness. html). . Retrieved 2010-07-15.
[10] "Erlang Supervision principles" (http:/ / www. erlang. org/ doc/ design_principles/ sup_princ. html). . Retrieved 2010-07-15.
[11] "High Performance Erlang" (http:/ / www. it. uu. se/ research/ group/ hipe/). . Retrieved 2011-03-26.
[12] "Who uses Erlang for product development?" (http:/ / www. erlang. org/ faq/ faq. html#AEN50). Frequently asked questions about Erlang. .

Retrieved 2007-07-16. "The largest user of Erlang is (surprise!) Ericsson. Ericsson use it to write software used in telecommunications
systems. Many dozens projects have used it, a particularly large one is the extremely scalable AXD301 ATM switch. Other commercial users
listed as part of the FAQ include: Nortel, Deutsche Flugsicherung (the German national air traffic control organisation), and T-Mobile."

[13] "Programming Erlang" (http:/ / www. ddj. com/ linux-open-source/ 201001928?cid=RSSfeed_DDJ_OpenSource). . Retrieved 2008-12-13.
"Virtually all language use shared state concurrency. This is very difficult and leads to terrible problems when you handle failure and scale up
the system...Some pretty fast-moving startups in the financial world have latched onto Erlang; for example, the Swedish www.kreditor.se."

[14] "Erlang, the next Java" (http:/ / www. cincomsmalltalk. com/ userblogs/ ralph/ blogView?showComments=true& entry=3364027251). .
Retrieved 2008-10-08. "I do not believe that other languages can catch up with Erlang anytime soon. It will be easy for them to add language
features to be like Erlang. It will take a long time for them to build such a high-quality VM and the mature libraries for concurrency and
reliability. So, Erlang is poised for success. If you want to build a multicore application in the next few years, you should look at Erlang."

[15] Clarke, Gavin (5 Feb 2011). "Battlestar Galactica vets needed for online roleplay" (http:/ / www. theregister. co. uk/ 2011/ 02/ 05/
battlestar_galactica_mmp/) (HTML). Music and Media. The Reg. . Retrieved 2011-02-08.

[16] http:/ / www. facebook. com/ note. php?note_id=16787213919& id=9445547199& index=2
[17] http:/ / developers. facebook. com/ news. php?blog=1& story=110
[18] http:/ / github. com/ blog/ 112-supercharged-git-daemon
[19] What You Need To Know About Amazon SimpleDB (http:/ / www. satine. org/ archives/ 2007/ 12/ 13/ amazon-simpledb/)
[20] http:/ / twitter. com/ jalada/ status/ 1206606823
[21] http:/ / twitter. com/ jalada/ statuses/ 1234217518

Further reading
• Joe Armstrong (2003). Making reliable distributed systems in the presence of software errors (http:/ / www. sics.

se/ ~joe/ thesis/ armstrong_thesis_2003. pdf). Ph.D. Dissertation. The Royal Institute of Technology, Stockholm,
Sweden.

• Armstrong, J. (2007). A history of Erlang. pp. 6–1. doi:10.1145/1238844.1238850.
• Early history of Erlang (http:/ / www. erlang. se/ publications/ bjarnelic. pdf) by Bjarne Däcker
• "Mnesia - A distributed robust DBMS for telecommunications applications". First International Workshop on

Practical Aspects of Declarative Languages (PADL '99): 152–163. 1999.
• Armstrong, Joe; Virding, Robert; Williams, Mike; Wikstrom, Claes (January 16, 1996). Concurrent

Programming in Erlang (http:/ / www. erlang. org/ erlang_book_toc. html) (2nd ed.). Prentice Hall. pp. 358.
ISBN 9780135083017.

• Armstrong, Joe (July 11, 2007). Programming Erlang: Software for a Concurrent World (http:/ / pragprog. com/
titles/ jaerlang/ programming-erlang) (1st ed.). Pragmatic Bookshelf. pp. 536. ISBN 9781934356005.

• Thompson, Simon J.; Cesarini, Francesco (June 19, 2009). Erlang Programming: A Concurrent Approach to
Software Development (http:/ / www. erlangprogramming. org) (1st ed.). Sebastopol, California: O'Reilly Media,
Inc. pp. 496. ISBN 978059651818.

• Cant, Geoff (March 1, 2010). Mastering Erlang: Writing Real World Applications (http:/ / www. apress. com/
book/ view/ 9781430227694) (1st ed.). Apress. pp. 350. ISBN 9781430227694.

• Logan, Martin; Merritt, Eric; Carlsson, Richard (May 28, 2010). Erlang and OTP in Action (http:/ / www.
manning. com/ logan) (1st ed.). Greenwich, CT: Manning Publications. pp. 500. ISBN 9781933988788.

• Gerakines, Nick (August 2, 2010). Erlang Web Applications: Problem - Design - Solutions (http:/ / eu. wiley.
com/ WileyCDA/ WileyTitle/ productCd-0470743840. html) (1st ed.). John Wiley & Sons. pp. 512.
ISBN 9780470743843.

http://erlang.org/pipermail/erlang-questions/2006-July/021336.html
http://www.erlang.org/doc/efficiency_guide/processes.html
http://groups.google.com/group/comp.lang.functional/msg/33b7a62afb727a4f?dmode=source
http://groups.google.com/group/comp.lang.functional/msg/33b7a62afb727a4f?dmode=source
http://www.erlang.org/doc/getting_started/robustness.html
http://www.erlang.org/doc/design_principles/sup_princ.html
http://www.it.uu.se/research/group/hipe/
http://www.erlang.org/faq/faq.html#AEN50
http://en.wikipedia.org/w/index.php?title=Air_traffic_control
http://www.ddj.com/linux-open-source/201001928?cid=RSSfeed_DDJ_OpenSource
http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showComments=true&entry=3364027251
http://www.theregister.co.uk/2011/02/05/battlestar_galactica_mmp/
http://www.theregister.co.uk/2011/02/05/battlestar_galactica_mmp/
http://en.wikipedia.org/w/index.php?title=The_Reg
http://www.facebook.com/note.php?note_id=16787213919&id=9445547199&index=2
http://developers.facebook.com/news.php?blog=1&story=110
http://github.com/blog/112-supercharged-git-daemon
http://www.satine.org/archives/2007/12/13/amazon-simpledb/
http://twitter.com/jalada/status/1206606823
http://twitter.com/jalada/statuses/1234217518
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf
http://www.erlang.se/publications/bjarnelic.pdf
http://www.erlang.org/erlang_book_toc.html
http://en.wikipedia.org/w/index.php?title=Prentice_Hall
http://pragprog.com/titles/jaerlang/programming-erlang
http://pragprog.com/titles/jaerlang/programming-erlang
http://en.wikipedia.org/w/index.php?title=Pragmatic_Bookshelf
http://www.erlangprogramming.org
http://en.wikipedia.org/w/index.php?title=O%27Reilly_Media
http://www.apress.com/book/view/9781430227694
http://www.apress.com/book/view/9781430227694
http://en.wikipedia.org/w/index.php?title=Apress
http://www.manning.com/logan
http://www.manning.com/logan
http://en.wikipedia.org/w/index.php?title=Manning_Publications
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470743840.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470743840.html
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons

Erlang (programming language) 9

External links
• Official website (http:/ / http:/ / www. erlang. org)
• Erlang (http:/ / www. dmoz. org/ Computers/ Programming/ Languages/ Erlang/) at the Open Directory Project
• trapexit.org (http:/ / trapexit. org/), site with much Erlang/OTP information
• Erlang: The Movie (http:/ / www. archive. org/ details/ ErlangTheMovie)
• Erlang for Skeptics (http:/ / www. erlangforsceptics. com/), book for beginners, work in progress
• Learn You Some Erlang (http:/ / www. learnyousomeerlang. com/), tutorial for beginners
• erldocs.com (http:/ / erldocs. com/), alternative topic documentation
• Joe Armstrong on Erlang (http:/ / www. se-radio. net/ 2008/ 03/ episode-89-joe-armstrong-on-erlang), Software

Engineering Radio Podcast

http://http://www.erlang.org
http://www.dmoz.org/Computers/Programming/Languages/Erlang/
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://trapexit.org/
http://www.archive.org/details/ErlangTheMovie
http://www.erlangforsceptics.com/
http://www.learnyousomeerlang.com/
http://erldocs.com/
http://www.se-radio.net/2008/03/episode-89-joe-armstrong-on-erlang

Article Sources and Contributors 10

Article Sources and Contributors
Erlang (programming language) Source: http://en.wikipedia.org/w/index.php?oldid=421016424 Contributors: .:Ajvol:., 1234456556BK, 209.75.42.xxx, 4th-otaku, Adrianwn, Akavel, Allan
McInnes, Amire80, AmritTuladhar, Andreas.hillqvist, Andyjsmith, AntiRush, Antonielly, Argv0, Arn7, Ashley Y, AutumnSnow, Barkjon, BenBaker, Bender235, Bosmon, Callidior, Camw,
Carnildo, ChasRMartin, Conversion script, Cromain, Csl77, Cybercobra, Danakil, Darklich14, David Gerard, David Wahler, DavidDouthitt, Decltype, Defza, Demi, DennyAbraham, Dlambert,
Dmitriid, Doradus, Drbreznjev, Drewnoakes, Dysprosia, Ebraminio, Ejabberd, Eliasen, Emurphy42, Erlang 1, Erlang.consulting, Etz Haim, Faisal.akeel, Fanf, FatalError, Fikusfail, Frecklefoot,
Fudoreaper, Furrykef, Gaius Cornelius, Gf uip, Giardante, Gleber.p, Gpierre, Graham87, Greenrd, GregorB, Grimboy, Grshiplett, Gwern, H2g2bob, Halfacanuck, Hcs42, Hdante, Hsk0114,
Ignatz, Intgr, Iridescent, JLD, JLaTondre, James Hague, JamesBWatson, Jameshague, Janko.stefancic, Jasontrost, Jeltz, Jerryobject, JohnnyBjorn, Jonasfagundes, JonathanFeinberg, Jonnabuz,
Justin W Smith, Justinsheehy, Karvendhan, Kevingc, Korpo, Krallja, Kricxjo, Kuszi, Levin, Lihaitao, Liujiang, Loopkid, Lproven, Luke.randall, M7, Mapfn, Mariehuynh, Markpeak, Martinl,
Marudubshinki, Masharabinovich, Matt Crypto, Matthewdunsdon, Matthewokeefe, Maxim.kharchenko, Maxlapshin, Maxsharples, Memming, Miketomasello, Mistercupcake, Moltonel3xCombo,
Msbmsb, Mwarren us, NaturalBornKiller, Neustradamus, Niten, Noliver, Nyco, Ohnoitsjamie, Palfrey, Papppfaffe, Pauli133, Pavel Vozenilek, Peepeedia, Peet74, Peter S., Pgan002, Piet Delport,
Potto007, Prof3ta, Qiangguol, Quadell, Ravidgemole, Renku, Richardhenwood, RickBeton, Riffic, Rklophaus, Rogper, Rohan Jayasekera, Ronewolf, Ronz, Ruud Koot, Ryzol, Sandos, Sanspeur,
Sbierwagen, ScierGuy, Sedrik666, Stevenj, Stewartadcock, Stpeter, Svick, Tarka, Taw, The Anome, Tim Ivorson, Tobias Bergemann, Tobias382, TobinFricke, ToddDeLuca, Tonieisner, Traroth,
Twn, Ultramandk, Uninverted, Untalker, Vectro, Vikreykja, VladimirKorablin, Vocaro, Vroo, Yakushima, Yaronf, Zetawoof, Zvar, 342 anonymous edits

Image Sources, Licenses and Contributors
File:Erlang logo.png Source: http://en.wikipedia.org/w/index.php?title=File:Erlang_logo.png License: Trademarked Contributors: Kyro, WikipediaMaster
File:Wikibooks-logo-en.svg Source: http://en.wikipedia.org/w/index.php?title=File:Wikibooks-logo-en.svg License: logo Contributors: User:Bastique, User:Ramac

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Erlang (programming language)
	12 Apr 2011 Erlang (programming language)
	History
	Philosophy

	Functional programming examples
	Data structures
	Concurrency and distribution orientation
	Implementation
	Hot code loading and modules
	Distribution
	Projects using Erlang

	Clones
	References
	Further reading
	External links
	License

	
	Wikipedia Title Page

