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Abstract: 

 

U.S. legal changes have made it easier to obtain patents on inventions that use software. 
Software patents have grown rapidly and now comprise 15 percent of all patents. They 
are acquired primarily by large manufacturing firms in industries known for strategic 
patenting; only 5 percent belong to software publishers. The very large increase in 
software patent propensity over time is not adequately explained by changes in R&D 
investments, employment of computer programmers, or productivity growth. The residual 
increase in patent propensity is consistent with a sizeable rise in the cost effectiveness of 
software patents during the 1990s. We find evidence that software patents substitute for 
R&D at the firm level; they are associated with lower R&D intensity. This result occurs 
primarily in industries known for strategic patenting and is difficult to reconcile with the 
traditional incentive theory of patents. 
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Introduction   

Federal courts, and to a lesser extent the U.S. Patent and Trademark Office (USPTO), 

dramatically changed standards for patenting software-related inventions over the last 

three decades. During the 1970s, federal court decisions typically described computer 

programs as mathematical algorithms, which are unpatentable subject matter under U.S. 

law.1 Systems using software could be patented, but only if the novel aspects of the 

invention did not reside entirely in the software.2 At this time, the U.S. Congress 

considered the question of patenting software and instead opted to protect computer 

programs under copyright law.3 

But after the Supreme Court decision in Diamond v. Diehr in 1981,4 a series of 

court and administrative decisions gradually relaxed the subject matter exception that 

restricted the patenting of software-related inventions. The 1994 decision In re Alapat 

eliminated much of the remaining uncertainty over the patentability of computer 

programs.5 During this same period, new legislation and other court decisions lowered 

standards for obtaining patents in general, while strengthening aspects of patent 

enforcement. 

This paper explores the general characteristics of software patenting over the last 

two decades, paying particular attention to the rapid growth in software patenting and the 

effect of this growth on R&D. We construct our own definition of a software patent 

(there is no official definition) and assemble a comprehensive database of all such 

patents. In Section I we describe this process, and the process of matching these patents 

to firm data in the Compustat database. In Section II we summarize the general 

characteristics of this data. We find that over 20,000 software patents are now granted 

each year, comprising about 15 percent of all patents. Compared with other patents, 

                                                 
1 See, for example, the Supreme Court decision in Gottschalk v. Benson, 409 U.S. 63 (1972). 
2 Parker v. Flook 437 U.S. 584 (1978). 
3 U.S. Copyright law was amended in 1976, and more explicitly in 1980, to include computer 

programs. See H. Rpt. No. 94-1476 (1976) and P.L. 96-517 (94 Stat 3028). There is a voluminous 
literature on the merits of different forms of intellectual property protection for computer programs. See, 
for example, Dam (1995), Graham and Zerbe (1996), and Samuelson et al. (1994). 

4 450 U.S. 175 (1981). 
5 33 F.3d 1526 (Fed. Cir. 1994). 
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software patents are more likely to be assigned to firms, especially larger U.S. firms, than 

to individuals. They are also more likely to have U.S. inventors. Surprisingly, most 

software patents are assigned to manufacturing firms and relatively few are actually 

assigned to firms in the software publishing industry (SIC 7372). Most software patents 

are acquired by firms in industries that are known to accumulate large patent portfolios 

and to pursue patents for strategic reasons (computers, electrical equipment, and 

instruments). These large inter-industry differences remain even after we control for 

R&D, software development effort, and other factors.  

In Section III we perform regressions that explore the “propensity to patent” 

software inventions. This builds on the model of Hall and Ziedonis (2001) which, in turn, 

builds on the empirical literature of “patent production functions” (including Scherer 

1965, Bound et al. 1984, Pakes and Griliches 1984, and Griliches, Hall, and Hausman 

1986). We find a dramatic growth in software patent propensity even after controlling for 

R&D, employment of computer programmers, and other factors. This growth is quite 

similar to the remarkable growth in patent propensity that Hall and Ziedonis (2001) 

found in the semiconductor industry. Productivity-based explanations are unlikely to 

account for even half of the rise in software patent propensity. The pattern of the residual 

increase is consistent with the explanation that changes in patent law made software 

patents significantly more cost effective. We also find that industries known for strategic 

patenting have much higher patent propensities. 

Section IV explores the effect of software patenting on R&D. According to the 

traditional incentive theory, making software patents more cost effective should increase 

the profitability of firms that make software inventions. This, in turn, should induce them 

to increase their R&D spending. To test whether this in fact happened, we use a well-

established empirical technique for estimating elasticities of factor substitution. We show 

that the incentive hypothesis can be re-stated as the hypothesis that R&D and patents are 

complements. This means that increases in the appropriability of software should lead to 

greater R&D intensity. We find that this is not the case, however. Firms that increased 

their software patenting relative to their overall level of patenting tended to decrease 

their R&D intensity relative to other firms. This result is robust to a variety of 
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econometric and other considerations. But, again, this effect is concentrated in the 

industries known for strategic patenting. 

In Section V, we note that while our empirical analysis does not identify the 

specific causal mechanisms at work, these results are difficult to reconcile with the 

traditional incentive hypothesis. Strategic patenting provides an explanation for a rise in 

patent propensity together with an apparent substitution away from R&D: firms may be 

engaged in a patent “arms race.” The prominence of certain industries—known for 

strategic patent behavior in other contexts—in our empirical results may not be 

coincidental. Section VI concludes. 

I. Background and Data 

A. Changing Legal Treatment and Strategic Patenting Industries 

The erosion of the subject matter exception for computer programs occurred against a 

backdrop of broader changes in patent law following the creation of a unified appeals 

court for patents suits in 1982 (see Hall and Ziedonis 2001, for a nice summary). The 

court raised the evidentiary standards required to challenge patent validity and tended to 

broaden the interpretation of patent scope (Rai 2003, Merges 1997). The court relaxed 

the standards for evaluating whether or not an invention is obvious to practitioners skilled 

in the art (Cooley 1994, Dunner et al. 1995, Hunt 1999, Lunney 2001). The court was 

also more willing to grant preliminary injunctions to patentees (Cunningham 1995, 

Lanjouw and Lerner 2001) and to sustain large damage awards (Merges 1997, Kortum 

and Lerner 1999). Finally, plaintiff success rates in patent infringement suits have 

increased substantially (Lerner 1995). 

Some of these changes made patents “stronger,” in the sense that patents became 

more likely to be upheld in court or more effectively enforced. Others made patents 

“cheaper,” in the sense that lower patentability standards reduced the effort required to 

obtain a patent on a given invention. Together, these changes made patents more cost 

effective than before, generating more appropriability per dollar invested in obtaining and 

asserting them. 
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If patents did become more cost effective, the change is likely greater for software 

than for other inventions, for two reasons. First, the presumption that computer programs 

could not be patented was largely reversed by the mid-1990s. Second, a number of other 

legal decisions relaxed the “enablement” requirement for software patents. Under U.S. 

patent law, filers are required to provide detailed instructions explaining how the 

invention works. It is supposed to be a “best mode” example of all of the patent claims. 

For software patents and business methods, it seems the courts have largely eliminated 

this requirement (Burk 2002, Burk and Lemley 2002).6 In the words of an IBM patent 

attorney, “[the patent standard] currently being applied in the U.S. invites the patenting of 

ideas that may have been visualized as desirable but have no foundation in terms of the 

research or development that may be required to enable their implementation” (Flynn, 

2001). The combined effect of these regulatory changes is that software patents appear to 

have gained greater appropriability and became less costly to obtain in absolute terms 

over time and also possibly relative to other patents. 

Yet the software industry was highly innovative and growing rapidly well before 

software patents became commonplace. Nominal investment in software grew 16 percent 

per annum during the 80s (and 11 percent per annum during the 90s, Grimm and Parker 

2000). This innovativeness is important for two reasons. First, in interpreting results 

below, the growing use of software is an important factor. Second, given this history, it is 

not at all clear that patent protection was essential for innovation in this industry. 

This is not unusual. When surveyed, American firms in a number of other 

innovative industries (including semiconductors and precision instruments) rate patents 

as a relatively less effective form of appropriability (Levin et al. 1987, Cohen, Nelson, 

and Walsh 2000). Instead, they cite lead time advantages, learning curves, 

complementary sales and service and secrecy as generally more important sources of 

appropriability.  

                                                 
6 Reviewing case law, Burk and Lemley (2002, p. 1162) write: “For software patents, however, a series 

of recent Federal Circuit decisions has all but eliminated the enablement and best mode requirements. In 
recent years, the Federal Circuit has held that software patents need not disclose source or object code, 
flow charts, or detailed descriptions of the patented program. Rather, the court has found high-level 
functional description sufficient to satisfy both the enablement and best mode doctrines.” See also Cohen 
and Lemley (2001) on the different treatment of software patents. 
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Yet even in industries where patents are rated as ineffective, we sometimes 

observe that firms sometimes acquire large patent portfolios. These industries, including 

the computer, electrical equipment and instruments industries, are also found to account 

for a major share of the growth in patenting in recent years (Hall 2003). Some researchers 

have suggested that firms in these industries may patent heavily in order to obtain 

strategic advantages, including advantages in negotiations, cross-licensing, blocking 

competitors, and preventing suits (Levin et al. 1987, fn 29, and Cohen, Nelson, and 

Walsh 2000). In principle, strategic patenting can arise whenever individual products 

involve many patentable inventions and the cost of obtaining patents is sufficiently low 

(see Bessen 2003 for a theoretical model). Firms may acquire large numbers of patents so 

that even if they have an unsuccessful product, they can hold up rivals, threatening 

litigation. Innovative firms may acquire “defensive” patent portfolios to make a credible 

counter-threat. The outcome may involve the cross-licensing of whole portfolios, where 

firms agree not to sue each other and those firms with weaker portfolios pay royalties 

(Grindley and Teece 1997).  

So, in what follows, it is natural for us to be alert to the possibility that software 

patents may also be acquired for strategic purposes and we will find distinctive behavior 

in the industries known for strategic patenting. An important implication of strategic 

patenting is that policy changes that “strengthen” patents (or make them cheaper to 

acquire) can lead to a kind of “Prisoner’s Dilemma” game that actually decreases the 

private incentive to engage in R&D.   

B. What Is a Software Patent? 

How many software patents are being granted? Although the patent office maintains a 

system for classifying patents, this system does not distinguish whether the underlying 

technology is software or something else. Researchers must construct their own 

definitions. 

Some observers have sought to identify “pure” software patents where the 

invention is completely embodied in software (e.g. Allison and Lemley 2000). We prefer 

not to use such a definition for two reasons. First, beginning with Diamond v. Diehr, 
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attorneys have drafted software patents in such a way that they did not necessarily appear 

to be patents on software.7 This makes the determination of a “pure” software patent 

somewhat arbitrary and impractical for a comprehensive database. Second, we do not 

necessarily assume that the subject matter exclusion is the only difference between 

software patents and other patents. For example, we noted above that software patents are 

subject to a different “enablement” requirement. So it is useful to study a somewhat 

broader range of patents in any case. 

Our concept of software patent involves a logic algorithm for processing data that 

is implemented via stored instructions; that is, the logic is not “hard-wired.” These 

instructions could reside on a disk or other storage medium or they could be stored in 

“firmware,” that is, a read-only memory, as is typical of embedded software. But we want 

to exclude inventions that involve only off-the-shelf software—that is, the software must 

be at least novel in the sense of needing to be custom-coded, if not actually meeting the 

patent office standard for novelty. 

1. Identifying software patents 

How can we identify patents that fit this description? Griliches (1990) reviews the two 

main techniques that researchers have used to assign patents to an industry or technology 

field: 1) using the patent classification system developed by the patent office; and 2) 

reading and classifying individual patents. In this paper, we use a modification of the 

second technique.  

We began by reading a random sample of patents, classifying them according to 

our definition of software, and identified some common features of these patents. We 

used these to construct a search algorithm to identify patents that met our criteria. We 

used this algorithm to perform a keyword search of the U.S. Patent Office database, 

which identified 130,650 software patents granted in the years 1976 to 1999. Next, to 

                                                 
7 For instance, Cohen and Lemley (2001, p. 9) argue “The Diehr decision and its appellate progeny 

created what might be termed ‘the doctrine of the magic words.’ Under this approach, software was 
patentable subject matter, but only if the applicant recited the magic words and pretended that she was 
patenting something else entirely.” In Diamond v. Diehr, the Supreme Court ruled that an invention using 
temperature sensors and a computer program to calculate the correct curing time in an otherwise 
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validate the accuracy of this algorithm, we compared the results of our search against a 

random sample of 400 patents which we had read and classified into software patents and 

other patents. We also compared our results to samples and statistics generated by other 

researchers. The details of the algorithm and characteristics of the sample are described 

in the Appendix.  

Compared to our random sample of 400 patents, this algorithm had a false 

positive rate of 16 percent (that is, 16 percent of the patents the algorithm said were 

software patents, were not) and a false negative rate of 22 percent (that is, it failed to 

identify 22 percent of the patents we categorized as software patents).  

We performed a number of other checks. First, we compared our list of software 

patents to a set of 330 software and Internet patents identified in research conducted for 

the papers by Allison and Lemley (2000) and Allison and Tiller (2003).8 These patents 

were identified by reading a larger number of patents, but applying a more narrow 

definition of software inventions (again, where the invention is completely embodied in 

software).9 Virtually all (92 percent) of the software patents identified by Allison were 

categorized as software patents by our algorithm. Thus our false negative rate for “pure” 

software patents appears to be quite small (8 percent). Second, using statistics generated 

by the research in Allison and Lemley (2000), we calculated an upper bound on the 

comparable false positive rate of 26 percent.10 Given that we are using a broader 

definition of software patent, it is reassuring to find that this number is not much larger 

                                                                                                                                                 
conventional process of molding rubber goods could be patented. We treat this as a software patent; 
Allison and Lemley would not. 

8 Thanks to John Allison for sharing his data with us. The data used in Allison and Lemley (2000) are 
based on reading 1,000 randomly selected patents issued between mid 1996 and mid 1998. That data was 
augmented in Allison and Tiller (2003) by examining 2,800 patents issued between 1990 and 1999 
identified via a keyword search (for the terms Internet or world wide web) restricted to patents included in 
classes 705, 707, or 709. Note that in the Allison and Tiller taxonomy, internet business method patents are 
a subset of software patents. 

9 Both papers state the following: “Another researcher might include within the Software classification 
those inventions in which the algorithms are embodied in chips, but we have chosen to include within our 
definition of Software only those inventions that consist purely of software that is not embodied in 
hardware.” 

10 Allison reports identifying 92 pure software patents in the sample of 1,000 evaluated in that paper 
(private communication). This is somewhat higher than the 76 reported in the published version of the 
paper. For the same years, the ratio of software patents to total patents calculated using our algorithm was 
11.5%. Thus an upper bound on the false positive rate is (.115-.092*.92)/.115 = 26%. 
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than the false positive rate generated when using our own random sample. Although the 

algorithm does make errors, it performs reasonably well, and it seems unlikely that it 

introduces significant biases to our patent counts or regression coefficients. 

2. Using Patent Classes to Identify Software Inventions  

Why did we use this rather laborious method rather than simply counting patents in 

certain patent classifications? First, in a longitudinal study patent classes are problematic 

because the classification system changes over time and the patent office continually re-

classifies issued patents. Moreover, lawyers are known to draft patents so that they avoid 

falling into certain classes in order to influence the examiner’s prior art search or some 

other aspects of the examination (Lerner 2004, p. 19).  

Second, economists have long recognized the poor correspondence between 

patent classes and economic concepts of industry or technology (see, for example, 

Schmookler 1966, Scherer 1982a, Scherer 1984, Soete 1983, and Griliches 1990). Patent 

classes are not designed with social scientists in mind but are used primarily to aid prior 

art search. Although patent classes can be used effectively when they are confined to 

select sets of well-defined subclasses (e.g., Schmookler 1966, Lerner 2004), or when 

classifications are statistically distributed over industries (e.g., Silverman 1999), or when 

taken as loosely representative (e.g., Graham and Mowery 2003), a definition based on 

patent classes is likely to introduce significantly more inaccuracies than the approach 

chosen in this paper.11  

In the case of the U.S. classification system, there are no patent classes for 

software per se. Instead, software inventions are included in functional categories along 

with hardware inventions. For instance, one class includes “arrangements for producing a 

permanent visual representation of output data.” This is a functional description that 

                                                 
11 Allison and Lemley (2000) and Allison and Tiller (2003) also reject the idea of using patent 

classifications to identify software patents. According to Griliches (1990), a patent class is “based 
primarily on technological and functional principles and is only rarely related to economists’ notions of 
products or well-defined industries (which may be a mirage anyway). A subclass dealing with the 
dispensing of liquids contains both a patent for a water pistol and for a holy water dispenser. Another 
subclass relating to the dispensing of solids contains patents on both manure spreaders and toothpaste 
tubes” (Griliches 1990, p. 1666). 
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includes software programs, hardware computer displays, and even electric and 

mechanical signs that pre-date electronic computers.  

Still, we did examine the efficacy of using the patent classification approach for 

identifying software inventions, as proposed in Graham and Mowery (2003). In that 

paper, the authors identified a number of subdivisions of the International Patent 

Classification system (IPC) where many patents assigned to large U.S. software 

companies may be found.12 We compared the list of software patents identified by this 

approach with our random sample of 400 patents. The results were significantly worse 

than our own algorithm: a 30 percent false positive rate and a 74 percent false negative 

rate. We also found that this definition would exclude half of the patents obtained by the 

top 200 publicly-traded software firms during the 1990s, and a majority of the pure 

software and Internet patents identified in Allison and Tiller (2003). In contrast, our 

definition accounts for about 4/5 of all patents obtained by the top 200 software firms in 

the 1990s.  

Nevertheless, to check whether our main results were robust to our choice of 

algorithm, we ran most of our tabular analyses and regressions below using the Graham-

Mowery definition of software patent. Although standard errors were predictably higher, 

the results were broadly similar. For example, the distribution across industries was 

similar and patents and R&D were found to be statistically significant substitutes. 

Although Graham and Mowery’s approach is useful for obtaining a rough impression, it 

is not the best technique for a more comprehensive study such as ours, and attempts to 

improve its coverage by adding more classes are likely to increase the false positive rate. 

To summarize, our algorithm has a positive error rate. For this reason, one can 

find patents that our algorithm incorrectly classifies as software patents (see Hahn and 

Wallsten 2003). But the rate of false positives is reasonably low and the algorithm 

appears to be substantially more accurate than at least one alternative based on patent 

classes. Moreover, the evidence suggests that there is no systematic bias in these errors: 

our main results hold even when we use a very different definition of software patent. 

                                                 
12 The subdivisions include G06F 3/, 5/, 7/, 9/, 11/, 13/, and 15/; G06K 9/, and 15/; and H04L 9/.  
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C. The Matched Sample 

We also explore the characteristics of the firms that obtained software patents and, in 

particular, the relationship between software patenting behavior and firm R&D 

performance. To do this, we matched a large portion of both software patents and other 

patents to firms in the 1999 vintage of the Compustat database. 

Our main population of interest consists of U.S.-owned public firms that perform 

R&D. This group performs a large share of domestic R&D and it should provide a 

relatively stable group for comparison over time. But it does limit the relevance of our 

conclusions to this group, however, and so our analysis has little to say about start-up 

firms, individuals, universities, etc. 

We begin by matching our patents to firms (i.e. the assignees) using the NBER 

Patent Citations Data File (Hall, Jaffe and Trajtenberg 2001a).13 This data set matches 

patents to the 1989 vintage of firms contained in Compustat, so we do a variety of things 

to supplement those matches:  

1. We added the largest 25 publicly traded software firms ranked by sales (only 

one of which is included in the NBER file). 

2. We merged the data set with a set of firm-patent matches provided to us by 

CHI Research.14 That data encompasses most of the significant patenting 

firms (public or private) over the last 25 years.  

3. Using data contained in Compustat, we identified 100 of the largest R&D 

performers in 1999 that were not already included in our data set. We matched 

these firms and their subsidiaries to their patents using a keyword search on 

the USPTO web site.  

                                                 
13 To be precise, we match patent numbers in our data set with those found in the NBER data set. 

Where available, we use the firm CUSIP assigned by NBER to obtain financial data from Compustat. 
14 We again match by patent number and use the firm CUSIP assigned by CHI. Details on CHI’s 

proprietary data is described at http://www.chiresearch.com/information/customdata/patdata.php3. We are 
grateful to Tony Breitzman for sharing this data with us. 
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The final file held 4,792 distinct subsidiaries and 2,043 parent firms from 1980 to 1999, 

an improvement of 1,230 subsidiaries and 305 firms over the NBER database for the 

same period.15  

To test the coverage of this matched sample, we compared it to the target 

population in Compustat (that is, all U.S. firms that publicly report financials with 

positive R&D). The matched sample performed 91 percent of the deflated R&D in the 

Compustat file over this period and accounted for 89 percent of the deflated sales by 

R&D-performing firms. Moreover, the coverage ratios are roughly constant over the 

entire sample period, varying only a few percentage points in each direction over two 

decades. Over this period, the matched sample also accounts for 68 percent of all 

successful U.S. patent applications by domestic non-government organizations (mostly 

corporations) and 73 percent of software patents granted to these organizations. These 

coverage ratios were also quite stable over the two decades.  

However, only 37 percent of the R&D-performing firms contained in Compustat 

are matched to their patents in our data set and this coverage declined over the sample 

period as an increasing number of small firms have gone public since 1980. Thus this 

matched sample is broadly representative of the firms that perform most of the R&D and 

obtain the majority of patents, but it is not representative of entrants and very small firms. 

Nevertheless, given the extent of our coverage of R&D and patents, the results we obtain 

in our sample regarding patents and R&D will represent the overall interaction between 

patents and R&D. 

It is possible that sample selection may bias regression coefficients within the 

matched sample. To check for this, we implement Heckman two-stage sample selection 

models (below) and find, in general, that sample selection has little effect. 

D. Other data 

We used the NBER Patent Citations Data File (Hall, Jaffe and Trajtenberg 2001a) to 

obtain data on citations received and numbers of claims. To obtain data on employment 

                                                 
15 The original NBER sample accounted for 47% of the successful patent applications to U.S. non-

government organizations; our sample accounts for 68% of these patents. 
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of programmers and engineers, we used the Occupational Employment Survey conducted 

by the BLS. This source provides detailed occupational employment of 3 digit SIC 

industries. Because not all industries were covered in all years of the survey during the 

early years, we linearly interpolated employment shares.16 We also use a number of input 

price indices from the BLS Multifactor Productivity series. 

II. Summary Statistics 

Table 1 reports the number of software patents and other patents granted per year and 

also the numbers of applications per year, conditional on the applications successfully 

resulting in a grant by the end of 1999. As can be seen, their numbers have grown 

dramatically in absolute terms and also relative to other patents. Today almost 15 percent 

of all patents granted are software patents.  

Table 1 also shows estimates of the number of software patents published by Greg 

Aharonian.17 The overall trends are quite similar and the numbers in recent years are also 

quite close. Clearly, our definition of software patents is more inclusive, especially 

during the early years. 

A. Who Owns Software Patents? 

Table 2 shows characteristics of software patents compared with other patents, using data 

from the NBER patent database. Software patents are more likely to be owned by firms 

than by individuals or government. They are also more likely to be owned by U.S. 

assignees and to have U.S. inventors.18 After the U.S., the top countries ranked by 

                                                 
16 Thanks to Joseph Bush of BLS for providing the data. The employment categories we used for 

programmers were occupation codes 25102, systems analysts, and 25105, computer programmers; for 
engineers, we used 22100 (a group code). Because computer support occupations (25103 and 25104) were 
lumped in with the other codes during early years of the survey, we make a proportional adjustment in 
those years, reducing the employment counts of programmers by their relative share in the first year in 
which all categories were reported. 

17 Aharonian used the “I know one when I see one” criterion (private communication). For many years 
Aharonian has written articles on software patents in his Internet Patent News Service 
(www.bustpatents.com). The numbers cited in table 1 are reprinted from p. 319 of Lessig (2001).   

18 Allison and Lemley (2000) find that their sample of software patents has about the average share of 
U.S. inventors, although they use a somewhat different method to classify inventors’ national origins. 
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inventors are Japan (18 percent), Germany (3 percent), Great Britain (2 percent), and 

Canada (2 percent).  

Consistent with the findings of Allison and Lemley (2000), software patents tend 

to receive a larger number of subsequent citations, and they have substantially more 

claims per patent. Other research finds that these statistics may indicate greater private 

value, although not necessarily greater social value (Hall, Jaffe and Trajtenberg 2001b, 

Lanjouw and Schankerman 2001, Allison et al. 2003). In other aspects, software patents 

are similar to other patents. 

To obtain more information about the firms that obtain software patents, Table 3 

shows firm characteristics by patent type (software vs. non-software) for our matched 

sample. Relative to other patents, software patents tend to be obtained by firms with 

larger market value, sales, and R&D budgets. They are slightly more likely to be 

obtained by newly public firms. Allison and Lemley (2000) also find that software 

patents are more likely to be obtained by larger entities as classified by the patent office. 

B. The Distribution of Software Patents Across Industries 

Table 4 shows the industries of the firms obtaining software patents in the sample 

matched to Compustat. Most of the software patents are obtained by manufacturing 

firms, especially in the electronics and machinery industries, which include computers. 

Software publishers (SIC 7372) acquire only 5 percent of the patents in this sample, and 

other software service firms, excluding IBM, account for 2 percent.19 The “usual 

suspects” for strategic patenting—SIC 35, 36, 38 and IBM—account for 68 percent of 

software patents. 

The distribution of software patents across industries appears to reflect something 

other than the creation of software. Columns 2 and 3 include two measures that reflect 

software creation: the share of programmers and systems analysts employed in the 

industry and the share of programmers, systems analysts and engineers. These are the 

occupations most directly involved in the creation of software and so these shares 

                                                 
19 IBM accounts for 13 percent of the software patents in our sample and it is consistently the largest 

software patentee. We break it out separately, as it is not representative of the software services industry. 
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represent the relative software development effort; the first measure more narrowly than 

the second.  

The manufacturing sector acquires 75 percent of software patents but employs 

only 11 percent of programmers and analysts (32 percent of software writers if engineers 

are included). Software publishing and services (SIC 737, including IBM) acquires only 

13 percent of software patents but employs 33 percent of programmers and analysts (18 

percent if engineers are included). There is little reason to expect software developers 

employed in software companies or finance or retailing to be far less productive than 

software developers in manufacturing. These large differences suggest that industries 

differ dramatically in the degree to which they seek patent protection for their software.  

This disparity also appears in the fifth column, which reports the differences in 

the simplest measure of patent propensity, the ratio of patents to R&D. Software 

publishing firms get only a quarter of the number of patents per dollar of R&D that other 

firms obtain. This corresponds to the views expressed by software publishing executives 

that software patents are of little value to them (USPTO 1994).20 The sixth column 

displays a measure of software patent propensity derived from the regression analysis 

described below. Overall, software patents are more likely to be obtained by larger firms, 

established firms, U.S. firms, and firms in manufacturing (and IBM); they are less likely 

to be obtained by individuals, small firms, foreign firms, and software publishers. 

III. The Rising Propensity to Patent Software 

From 1987 to 1996 the number of successful software patent applications (granted by 

1999) increased 16.0 percent per annum. This growth was greater than any of a number 

of yardsticks one might measure it against: during roughly the same period, real 

industrial R&D grew 4.4 percent per annum, employment in computer programming 

related occupations grew at a 7.1 percent rate, and real business spending on own-

account and outsourced programming grew 7.4 percent per year. This growth occurred 

                                                 
20 Also, BEA analysis of software investment (Parker and Grimm 2000) implies that about 30 percent 

of software is produced as packaged software, the primary product of firms in SIC 7372. Yet this industry 
acquires only 5 percent of software patents. 
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against a general background of rising patent propensity—the ratio of all domestic patent 

applications to real R&D—grew about 2.1 percent per year.21 

We can identify several possible factors that might contribute to increased 

software patenting: growth in R&D generally, growth in that portion of R&D which uses 

software, greater productivity in software development, and changes in the cost-

effectiveness of software patents from regulatory or other sources. To help sort out the 

roles played by these different factors, we use a “patent production function” model of 

Hall and Ziedonis (2001).22 This production function relates the number of successful 

patent applications made by a firm each year to its size, relative R&D spending and other 

characteristics, plus a time dummy, which serves to capture residual changes in patent 

propensity. 

A. Specification 

In the preferred specification of this model, the expected number of patents for firm i in 

year t, conditional on firm characteristics for that firm and year, is 

(1)    [ ] 
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where δ is a dummy variable that equals one if the firm is a new entrant and zero 

otherwise. The right hand side variables capture the effects of scale, R&D intensity, 

capital intensity and new entrant status. The time dummy then captures changes in the 

propensity to patent. Differences in the time dummies between two different years 

correspond to log differences in the expected number of patents. This is our initial 

specification to which we add additional controls, including firm effects and a measure of 

software development intensity. 

                                                 
21 Total industrial R&D increased from $121 billion in 1988 to $164 billion in 1998 in 1996 dollars 

(NSF 2003). The BLS Occupational Employment Survey estimates 904,430 employees in “computer 
scientists and related occupations” in 1987-89 and 1,839,760 in 1998. The BEA estimates $38billion in 
1996 dollars for business spending on own-account and custom software in 1989 and $64billion in 1998 
(Parker and Grimm 2000). The general increase in patent propensity has been explored by Kortum and 
Lerner (1999) and Hall and Ziedonis (2001). 

22 The literature on patent production functions also includes Scherer 1965, Bound et al. 1984,  Pakes 
and Griliches 1984, and Griliches, Hall, and Hausman 1986. 
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Since the left hand side variable is a count and many observations are zero, the 

equation can be estimated with a Poisson regression, as is frequently done in the 

literature. The Poisson regression assumes that the variance equals the expected value of 

the left hand side variable, but often Poisson specifications fail to meet this assumption 

and show “over-dispersion.” Tests using a negative binomial specification reveal over-

dispersion in our data too, and, following Hall and Ziedonis (p. 113), we take this as an 

indication to use heteroscedastic-consistent standard errors.  

Our analysis differs from Hall and Ziedonis in two important ways, however. 

First, our dependent variable is not all of the patent applications of the firm, just software 

patent applications. In principle, this should cause no problem—one still expects size, 

R&D intensity, etc. to affect the level of software patents. But we may also want to 

control for the degree to which the firm directs resources to software development, which 

we do below. Second, Hall and Ziedonis study a narrowly defined industry whereas we 

study a broad range of industries. For this reason, we will want to control for industry or 

firm effects in some of our regressions.   

In our base specification nit is the number of software patents applications by firm 

i in year t that resulted in a patent granted by 1999.23 Because patent prosecution 

typically takes two years or so, we conduct our regressions through 1997. The other 

variables are as follows: employees is the number of employees listed in Compustat in 

thousands, R&D is deflated by the GDP deflator, and capital is property, plant and 

equipment deflated by the NIPA capital goods deflator. The “new firm” dummy is equal 

to one for the first five years a firm appears in Compustat. 

B. Results 

Column 1 shows the base regression. Column 2 adds seven industry dummies and 

variables to capture the relative use of programming personnel. The first of these 

variables is the ratio of “computer scientists and related occupations” to total industry 

employment in the BLS Occupational Employment Survey (OES) for the firm’s SIC 3 
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digit industry (or 2 digit if Compustat assigns the firm only two digits). The second 

variable is the comparable share of engineers in total employment. The OES was 

conducted on a three year cycle until 1995, so values for this variable in intervening years 

are linearly interpolated. And for comparability, we only used OES data from 1987 

onwards, so the second column covers a shorter interval. 

The elasticity of the scale variable, employment, is similar to estimates in 

previous studies. Hausman, Hall and Griliches (1984) obtained an elasticity of .87 on 

R&D. Hall and Ziedonis obtained an elasticity of employment of .85 when they included 

some firm controls. The coefficient of the R&D intensity variable is, however, much 

higher than in Hall and Ziedonis, although when we include firm fixed effects below, this 

difference largely disappears, suggesting that it is picking up unmeasured firm/industry 

heterogeneity. Capital intensity (in column 2) is also significant and similar in magnitude 

to one estimate by Hall and Ziedonis, but smaller than another. Hall and Ziedonis 

interpret this coefficient as evidence that capital intensive firms may patent more because 

they are subject to holdup by rivals who patent strategically. That is, this is evidence of 

“defensive patenting.” Our result suggests this hypothesis might apply more generally. 

1. New vs. Old Firms 

We find that the “new firm” dummy variable is not significant. In contrast, Hall and 

Ziedonis find that their dummy variable is highly significant and has a relatively large 

coefficient.24 They suggest that their result arises from new semiconductor design firms 

that need patents to secure financing (see also Hall 2003). These smaller firms do not 

have complementary manufacturing facilities that may provide another means of 

appropriability.  

                                                                                                                                                 
23 In our data, we only observe patent applications that are successful. After November 2000, patent 

applications are generally published 18 months after the filing date. But publication is not required if the 
inventor does not seek patents abroad.  

24 There is also a difference between the definition of our new firm variable and theirs. Hall and 
Ziedonis include all firms that entered Compustat after 1982. We include firms that entered in 1982 or 
later, but our dummy variable equals one only for the first five years of entry. Their initial interest was to 
compare whether incumbent firms in particular benefited from the creation of the Court of Appeals for the 
Federal Circuit. Our interest is whether entrants appear to find additional benefits from software patents, 
something Hall and Ziedonis explored specifically for entrant design firms with an additional dummy 
variable. 
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Although our sample may not be representative of the entire population of new 

firms, this regression does include a reasonably large sample of new firms (1,308 

observations during the first five years of 314 firms). Hence our different result suggests 

that either software patents are not comparably useful for obtaining financing in general 

or this “vertical disintegration” strategy is not broadly relevant outside the semiconductor 

industry, or both. 

We explored this issue further by interacting the new firm dummy variable with 

industry dummy variables. Only one of these interaction terms was statistically 

significant, the one for SIC 73, business services, which in our sample largely consists of 

software services and pre-packaged software firms. Column 3 shows a regression with 

just this interaction term added. The coefficient is negative and statistically significant, 

suggesting that new software firms obtain fewer software patents than established firms.25 

This suggests that new software firms may not obtain the same benefit from patents as do 

new semiconductor firms.  

2. Cross Industry Variation in Software Patent Propensity 

Returning to Column 2, the coefficients on the industry dummies indicate large inter-

industry differences in software patent propensity even after controlling for industry 

employment of programmers and engineers. Given the exponential specification, (1), 

differences between industry coefficients correspond to differences in the log of software 

patent propensity. Column 6 of Table 4 shows corresponding differences in software 

patent propensity itself (that is, the exponential of the coefficients), normalized so that 

the software patent propensity of SIC 73 equals one (this includes IBM). As can be seen, 

the differences are quite large, with SIC 36 and SIC 38 obtaining an order of magnitude 

more software patents, all else equal, and machinery, SIC 35, not too far behind. In 

general, the industries that have a high propensity to patent software also have a high 

patent propensity in general (see column 5 of Table 4), although the differences in 

                                                 
25 We also ran these regressions using the total number of patents, not just software patents, as the 

dependent variable and obtained similar results (not shown). Graham and Mowery (2003) report that the 
software patent propensities of established software publishers rose over the 1990s, but for entrant firms 
(those founded after 1984) there was no discernable trend. 
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software patent propensity are larger. In the literature, these are the industries known for 

strategic patenting (see section IV). 

The magnitude of these differences and the known importance of strategic 

patenting in electronics and computers, suggests that these results may be the outcome of 

strategic patenting. To test this idea further, column 4 drops the industry dummies but 

includes instead a measure of the degree to which other firms in the industry patent. This 

variable is the number of all patents obtained by other firms in the same 2 digit industry 

as the observed firm, divided by the employment of those firms. The positive and 

significant coefficient suggests that firms obtain more software patents in industries that 

patent more overall, all else equal. This result is consistent with “defensive” patenting, 

although it could also arise from other industry differences, such as large differences in 

alternative means of appropriability. 

3. Unobserved Heterogeneity 

Our seven industry dummy variables do not capture the full extent of inter-industry 

heterogeneity or other firm heterogeneity. This was confirmed by tests using the random 

effects and fixed effects Poisson models in Hausman, Hall, and Griliches (1984). We then 

face the choice of better controlling for this unobserved heterogeneity via a random 

effects or a fixed effects model. A Hausman test rejects the null hypothesis that the 

random effects estimates are consistent; that is, the firm effects appear to be correlated 

with the coefficients (P = 0.000), indicating that fixed effects are preferred.  

Column 5 presents the fixed effects Poisson regression. This is a conditional 

maximum likelihood regression where the likelihood of each observation is conditioned 

on the likelihood of the observed sum of software patents for each firm over all years in 

the panel. This is only calculated for firms that have software patents in at least one year. 

Since many firms obtain no software patents, the sample size is reduced considerably for 

this regression. With fixed effects, the scale elasticity is somewhat smaller, and is 

consistent with earlier research (Hausman, Hall, and Griliches 1984) and the R&D 

intensity coefficient is now much more in line with the estimates in Hall and Ziedonis 

(2001).  
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In Figure 1, we plot the year dummies from this regression (normalized to equal 1 

in 1987), those from the Column 1 regression, which spans a longer time period, and the 

corresponding year dummies from Hall and Ziedonis’s preferred specification. As can be 

seen, after the mid-80s, all three series grow rapidly, persistently and at about the same 

rate. Compared to the rate for 1987, and holding all other factors constant, firms were 

successfully applying for nearly 50 percent more software patents in 1991, and 164 

percent more by 1996. 

4. The Ebb and Flow of Copyright Protection 

One factor that may explain the large increase in software patent propensity is 

diminishing protection for computer programs provided by copyright. Lemley and 

O’Brien (1997) describe the rise and fall of the “nonliteral infringement” doctrine. 

Established in the 1986 decision in Whelan Associates v. Jaslow Dental Laboratories, it 

gave copyright holders some protection over the features of their software programs. But 

the doctrine was rejected in the 1992 decision in Computer Associates International v. 

Altai.26 If the alternative of copyright protection affected firms’ propensity to obtain 

patents, then one might expect a decrease in patent propensity after 1986, and then an 

increase after 1992. No significant fluctuation is observed in Figure 1 and regression tests 

for a break find only a very small change in trend.27 Moreover, the industries that patent 

most heavily also tend to use embedded software, so copyright protection was less 

relevant to them. 

C. Interpretation 

We use the fixed effects specification to interpret the relative influence of various right 

hand variables. Because (1) is exponential in form, changes in variables times their 

coefficients affect the log of software patents and can be interpreted as growth rates. To 

calculate annual growth rates, we evaluate the mean of each variable in 1996 and subtract 

                                                 
26 797 F.2d 1222 (3rd Cir 1986) and 982 F.2d 693 (2d Cir 1992), respectively. 
27 We used a regression similar to column 5 of Table 5 with a time trend instead of year dummies. We 

interacted the time trend with an interval dummy for the years 1986-92 and found a very small (-.002), but 
statistically significant reduction in the rate of growth in software patent propensity during this interval. 
This effect is on the order of 5% of the overall growth rate in software patent propensity. 
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the mean in 1987. We then multiply this difference by the estimated coefficient from 

column 5 and divide by 9 (the number of years elapsed) to obtain an annual contribution 

of the variable to the growth of software patents for our sample. The resulting estimates 

are shown to the right of column 5. A similar calculation for the year dummies is shown 

for all columns in a separate row. 

The annual growth of software patenting among the firms in this sample (which 

excludes firms without any software patents over this entire period) is 16.4 percent, 

slightly larger than the aggregate 16.0 percent reported above. The majority of this 

increase is captured by the contribution of the year dummies (10.8 percent). The next 

largest contribution is from greater capital intensity (1.8 percent) followed by the growth 

in programmer employment (1.2 percent), engineering employment (1.2 percent) and 

R&D intensity (1.1 percent). 

Thus the majority of the growth in software patenting is not attributed to any of 

these explicit controls and can be attributed, instead, to rapidly rising patent propensity. 

Note that this increase in patent propensity is quite close to the result obtained by Hall 

and Ziedonis (2001) for all patents in just the semiconductor industry. A comparable 

calculation on their preferred specification also results in a 10.8 percent annual growth in 

patent propensity from 1987 – 95.28 But such growth rates are far from typical for total 

patenting in most industries.  

1. Taking into Account Productivity Growth 

In principal, software patent propensity can be decomposed into two factors: an increase 

in the productivity of software developers, and change in the cost-effectiveness of 

patenting.29 The first factor means that software developers may produce more inventions 

using the same level of inputs. The second means that firms find it more attractive to 

patent a higher proportion of inventions, perhaps because the cost of doing so has fallen, 

or because such patents provide larger benefits than they did in years past, or possibly 

both.  

                                                 
28 Thanks to Rosemarie Ziedonis for graciously sharing data. 
29 See Hall and Ziedonis (2001) for a similar discussion. 
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A thumbnail calculation suggests that changing cost-effectiveness is the major 

factor accounting for the rise in patent propensity. The productivity of software 

developers is notoriously difficult to estimate. Although there has been strong market for 

software development tools, the actual contribution of these tools to productivity is 

widely debated and studies find that computer aided software engineering tools often go 

unused (Kemerer 1992). Nevertheless, we can calculate an upper bound for programmer 

productivity growth using price indices for the pre-packaged software industry. As we 

discuss below, these estimates are likely to exaggerate productivity growth for software 

developers involved in the R&D process. 

From 1992 to 1997 receipts of the pre-packaged software industry (SIC 7372) 

grew 18.5 percent per annum while employment grew 14.2 percent per annum (Census 

2003). From the OES survey, we know that within SIC 737, employment of computer 

science related occupations grew 2.4 percent faster than total employment, so we 

estimate that programmer employment in pre-packaged software grew 16.6 percent per 

annum. Thus nominal growth of software revenue per programmer was about 1.9 percent 

per annum, less than a fifth of the estimated increase in software patent propensity. 

But we must also take into account improvements in the quality of software 

produced. A recent literature has developed price indices for pre-packaged software using 

both matched-model methods and hedonic methods (see Grimm and Parker 2000, and 

Abel, Berndt, and White 2003). The BEA has a matched model estimate of a -3.5 percent 

price change per annum over this period and this corresponds well to other matched 

model estimates. Hedonic price estimates, based on a small number of applications, 

usually show more rapid price declines, although some economists have questioned 

whether these estimates are reliable (Oliner and Sichel 1994). The BEA makes a seat-of-

the-pants quality adjustment to come up with a pre-packaged software price index that 

has a growth rate of -6.8 percent over this same period. Combining these estimates, real 

pre-packaged software per programmer grew either 5.4 percent per annum (using the 

matched model index) or 8.7 percent per annum (using the quality adjusted index). 

These figures are clearly less than the 10.8 percent annual rate of patent 

propensity growth. But they very likely substantially overstate the growth in programmer 
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productivity per se. The BEA, in fact, attributes most of estimated price decline to growth 

in the market for software driven by rapidly falling prices for complementary computer 

hardware (Grimm and Parker 2000, p. 6). With the total market growing rapidly each 

year and small marginal costs of production, much of the estimated price decline is 

attributable to economies of scale. But what matters for patent propensity is the 

productivity of software developers at actually creating new software (e.g., new titles of 

pre-packaged software) rather than duplicating software that already exists. Subtracting 

the large scale economies, this productivity growth rate must be substantially less than 

5.4 percent or 8.7 percent per annum. At the very least, growing cost-effectiveness of 

patents accounts for some substantial portion of the rise in software patent propensity and 

may well account for most of it. 

D. The Cost-Effectiveness of Software Patents 

Software patents may have become more cost-effective because of the regulatory changes 

described in Section I. Eliminating the subject matter exclusion and reducing the non-

obviousness and enablement requirements may have made software patents much easier 

(less costly) to obtain. Stronger enforcement and a greater presumption of validity may 

have increased the appropriability each patent delivered. Both served to decrease the cost 

of appropriability.30 

Strategic patenting may have amplified the effect of these changes. Reductions in 

the cost of appropriability may encourage firms to pursue more aggressive strategic 

behavior (Bessen 2003). This may, in turn, induce other firms to engage in defensive 

patenting, further increasing the patent propensity. Both the importance of capital 

intensity and the large industry effects found above suggest that strategic patenting may 

play an important role and that this role may have increased over time. 

In summary, the outsized growth in software patenting is not adequately 

explained by research inputs, productivity growth, or other observable factors. There is a 

                                                 
30 Another possibility is that alternatives to patents became less effective, increasing the relative cost 

effectiveness of software patents. But survey evidence suggests that trade secrecy did not decrease in 
importance and may have increased (Cohen, Nelson, and Walsh 2000). We address changes in the efficacy 
of copyright protection in section III.   
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significant residual trend in software patent propensity on the order of 5 percent to 10 

percent a year, roughly 2.5 to 4 times larger than the trend for patents in general. Such 

increases would be consistent with firm responses to regulatory changes that have 

increased the appropriability of software patents, made them easier to obtain, or both. 

Moreover, the pattern of large inter-industry differences in patent propensity (and the 

importance of capital intensity) are consistent with models of strategic patenting 

IV. R&D and Software Patents 

The traditional incentive theory suggests that more cost-effective patents for software 

should lead to increased R&D spending, all else equal. With “cheaper” and/or “stronger” 

patent protection, firms should patent more software inventions and/or realize greater 

profits from the software inventions they patent. Expecting greater profits, firms should 

find it profitable to spend more on R&D, all else equal. If the incentive hypothesis is 

correct, the increase in the cost effectiveness of software patents identified in the 

preceding section should be positively correlated with increases in firms’ R&D 

investments. In this section, we test this hypothesis.  

To do so, we must control for other factors so that, to the extent possible, we hold 

“all else equal.” In a dynamic world with shifting demand and supply and changing 

prices, firms may increase or decrease their R&D spending for reasons unrelated to 

changes in the appropriability of software patents. For example, a firm facing growing 

demand may increase R&D because increases in demand may make heretofore 

marginally unprofitable R&D projects profitable. This renders any simple correlation 

between software patenting and R&D spending unpersuasive. 

Of course empirical economists have developed techniques for analyzing the 

relationship between two quantities against a backdrop of shifting prices, namely, by 

estimating elasticities of factor substitution (see Berndt 1991 for a general review). These 

techniques allow economists to identify whether two factors are complements or 

substitutes. The problem here is quite similar if one considers R&D and patents to be 

factors of production (for the production of profits, rather than physical output). In other 

words, the incentive theory is akin to saying that patents and R&D are complements. 
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Greater use of patents should be associated with greater use of R&D. And if patents 

become more cost effective—that is, if their quality-adjusted price falls—then the share 

of resources allocated to R&D relative to other factors of production should increase. 

A. A Simple Model 

To see that the incentive argument is equivalent to complementarity of R&D and patents, 

it is helpful to consider a simple generalization of the formal patent race models that have 

been used as the basis of the incentive hypothesis. In these models, the more R&D a firm 

does on a project, the greater the probability that the firm will make a successful product 

innovation (first). Abstracting away from issues of timing and taking the actions of other 

firms as given, let P(r) be this probability of success. Since R&D activities on this project 

will have diminishing returns, we assume that P is increasing, concave and that 0)0( =P . 

Let r be the quantity of R&D performed at price w. 

If the firm successfully innovates and gets a patent, then it earns a discounted 

stream of rents during the term of the patent (and perhaps some profits afterwards). If the 

discounted stream of production costs associated with the product is C, then the profits 

equal CA ⋅ , where A is the markup above cost. The expected profits on the project are 

(2) rwrPCA −⋅⋅= )(π . 

In the patent literature, policy features such as patent term and scope affect 

expected profits, and these features correspond to different levels of A. In other words, A 

can be interpreted as a measure of appropriability.31 To the extent that a project can be 

protected by software patents, stronger, more cost-effective patents should increase A. 

The firm’s optimal level of r can be found by examining the first order condition of (2). 

Then straightforward calculation shows that increases in A generate increases in the 

equilibrium level of r. Moreover, if the scale of production remains relatively constant, 

then the ratio of R&D expenses, rw ⋅ , to production cost, C , will also increase.  

It is theoretically possible, however, that the scale of production for a successful 

project may increase or decrease with appropriability—for example, an increase in A 

                                                 
31 See Arora, Ceccagnoli, and Cohen (2003) for a similar decomposition taken to the data. 
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might be associated with a change in market structure from a duopoly to a monopoly. 

Diverse empirical evidence suggests that substantial changes in production scale are 

unlikely in the broad range of industries studied here. Cohen and Klepper (1996) argue 

that “the level of output over which rents from R&D are realized is closely related to the 

firm’s output at the time it conducts its R&D.” More generally, in many industries, firms 

achieve appropriability mainly through lead time, learning-by-doing, complementary 

services, etc. and patents only play a secondary role (Levin et al. 1987, Cohen, Nelson, 

and Walsh 2000). Any improvement in appropriability conveyed by patents is unlikely to 

have a drastic effect on market structure in these industries because firms already have 

significant appropriability. In Table 6 below, we find that software patents did not appear 

to influence profit margins significantly, also suggesting that industry structure is 

unlikely to change dramatically in response to the availability of software patents. 

A positive association between appropriability and R&D cost share is a necessary 

condition for patents and R&D to be Hicks-Allen complements. It also fits nicely with a 

standard technique for evaluating factor demand by using cost share equations. This 

technique uses relative cost shares (the cost of an input factor relative to total production 

costs) regressed against log relative prices of input factors. For example, the ratio of 

energy costs to total production costs is regressed against log relative prices of labor, 

capital, energy, etc. These equations are derived from a flexible form translog cost 

function (see Greene, 1997, Chapter 15.6). For a regression that uses one input factor as a 

dependent variable (say, energy), if the relative price of another factor (say, labor) has a 

positive coefficient, then these two goods cannot be complements.32 Moreover, this test 

takes into account both the direct effect of price changes on consumption of the left hand 

side good (the substitution effect) and also the overall effect of the price change on total 

costs (the income effect). 

B. Estimation 

To apply this technique to our problem, we can treat both R&D and patents as input 

factors in addition to conventional input factors. Then, following the standard analysis, a 

                                                 
32 To be complements, the coefficient must be less than ( 1)− ∗ the product of the two cost shares. 
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regression equation can be derived from a procedure of minimizing costs while holding 

revenues constant. This equation would be 

(3) ∑ ⋅+⋅+=
j

j
j pc

C
r lnln0 γγα  

where C is total cost (redefined here to include R&D costs as well as production costs), c 

is the “cost of appropriability” (the quality-adjusted cost of patents, not observed), jp  

are prices of other input factors (taking one as numeraire), and the Greek symbols are 

coefficients to be estimated.33 This technique is preferred to estimating quantities when 

analyzing firm-level data under the assumption that prices are likely to be exogenous to 

the firm (Berndt 1991). 

Since we do not observe the cost of appropriability, we do the following: We 

include time dummies in the regression which will soak up, among other things, overall 

changes in the cost of patenting and the “strength” of patents. We believe that a 

substantial part of the rise in software patenting is a response to increases in the 

“strength” of patents for software inventions and/or decreases in the cost of patenting 

these inventions (see section III). In that case, the share of software patents in a firm’s 

total patenting, denoted s, serves as a proxy that captures variations in the relative cost of 

appropriability across firms and over time.  

Taking differences to sweep out firm fixed effects, our regression equation is 
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We use five-year differences to reduce noise from measurement error and any biases 

associated with partial factor adjustment.  

We calculate the R&D cost share as the ratio of R&D spending to total costs 

measured as the sum of cost of goods sold and selling, general and administrative 

                                                 
33 Typically, a system of equations is jointly estimated for each input factor (but one). Here, we 

estimate only a single equation, in differences, because we do not have full information on other factor 
inputs. Our estimates are still consistent, but not as efficient as they would be if we could estimate multiple 
equations. 
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expenses. Since not all firms report these cost items, we also use an alternative measure, 

R&D/sales (see below). 

The software share of patents, s, is measured as the number of software patents 

applied for in a given year divided by the total number of patents applied for that year, 

conditional on the patents having been issued by 1999. Since patents take on average 

about two years to issue, we only use patent applications through 1997. Also, this 

software patent share measure is subject to sampling error—this measure will have large 

variance for firms with small numbers of patents. To reduce heteroscedasticity, we use 

Weighted Least Squares and we also report heteroscedastic consistent standard errors.34 

Below, we check that our results hold without this weighting. We also check for possible 

correlation between ∆s and the error term.  

The price variables are annual industry price indices from the BLS Multifactor 

Productivity report at the two-digit level for manufacturing and for the private non-farm 

business sector for non-manufacturing firms. In addition to capital, labor, materials, 

energy, and purchased services, we include an index for the price of IT capital, to control 

for the influence of IT.35 To check that our results did not depend on any possible errors 

in these prices, we also ran our main regressions using a full set of interacted year and 

two-digit industry dummies. The coefficients of interest changed only slightly.  

C. Results 

Column 1 in Table 6 shows a regression of equation (4) for the years 1991-97. The 

coefficient on software patent share is negative and significant at the 5 percent level. A 

negative value indicates a negative conditional correlation between our measure of the 

declining relative cost of appropriability and the R&D cost share. That suggests these two 

inputs are substitutes and not complements.  

                                                 
34 The weight used is ( ) 1

51 1 ,t tn n −

−
+  since the sampling variance for s is proportional to n.  

35 We use data from the April 2001 release. Thanks to Bill Gullickson and Steve Rosenthal of BLS for 
providing the data. We also used separate indices for the components of IT capital, but these did not 
change the non-price coefficients and they were highly multi-collinear. 
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As noted above, the cost variable is missing for many observations. Firms 

reporting cost of goods sold tend to fall disproportionately in manufacturing and this 

might bias results. Column 2 tests the significance of this sample selection and also of 

firms not matched to the patent file by running a Heckman sample selection model. This 

model consists of a regression equation and a probit equation (not shown) estimated on a 

binary variable indicating whether the observation is included in the regression reported 

in column 1. The regression coefficients are adjusted to reflect biases arising from the 

sample selection process. For the probit, we used log market value, log deflated sales, a 

new firm flag and year dummies on the right hand side. The probit coefficients are highly 

significant and a likelihood ratio test indicates the probit regression as a whole is highly 

significant. While a Wald test rejects the null hypothesis that the two equations are 

independent, any resulting bias in the coefficient of software patent share seems small. 

Estimated with the sample selection correction, the coefficient remains negative and is 

highly significant. 

Another way to test the incentive hypothesis is to see whether software share 

changed the markup over cost. To do this, column 3 regresses the change in log deflated 

sales against the change in software share and the change in log deflated cost. The 

coefficient of the change in log cost is not significantly different from 1, consistent with 

constant returns to scale. If software patents increased profit margins, then in this 

regression the software share should have a positive coefficient. The estimated 

coefficient is positive but quite small and not statistically significant. It appears the 

software patents did not have any substantial effect on markups. 

Although sample selection does not seem to indicate a substantial bias, our 

regressions will be more representative, and estimated more precisely, if we expand the 

sample size. We can do this by using the ratio of R&D to sales—R&D intensity—as the 

dependent variable instead of R&D cost share. So long as firm profit margins do not 

change dramatically, the ratio of R&D to sales will remain roughly proportional to the 

ratio of R&D to cost. We verified that the ratio of cost to sales does not change much on 

average (there is a variance of about .001 per year) where cost data is not missing. Also, 

the previous regression shows that changes in profit margin are uncorrelated with 
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changes in software share. This means that using R&D intensity instead of R&D cost 

share will not bias the coefficient of software share. Finally, to eliminate cases where 

profit margins were likely to change dramatically, we trimmed a small number of 

observations where R&D spending exceeded half of annual sales.36 

Column 4 of Table 6 repeats the basic regression equation using the change in 

R&D intensity as the dependent variable. The sample size is almost four times larger and 

standard errors are about one third the size of those in column 1. The coefficient on 

software share is quite similar. Further, in column 5 we repeat the Heckman sample 

selection model regression. Here the null hypothesis that the sample selection equation is 

independent of the regression equation cannot be rejected. Thus using the change in R&D 

intensity as the dependent variable appears to provide a more representative and larger 

sample. For this reason, we use this dependent variable in the subsequent analysis.37 

Our historical and legal research suggests that the substitution of patents for R&D 

might be explained by changes in the cost/benefit of software patents—that these patents 

were made “stronger” and/or cheaper during the 90s. Consistent with this view, we 

conducted the previous regressions from 1991 to 1997. To check that this time period is 

not arbitrary, column 6 repeats the regression of column 3 over a longer period with the 

change in software share interacted with three time dummies. These results show that the 

substitution effect follows the same time pattern as was observed for patent propensity in 

the last section. There was a positive, but insignificant effect during the late 80s, and 

negative and highly significant coefficients during the 90s. The magnitude of the 

substitution effect appears to increase in the late 90s, but the difference from the early 

90s is not statistically significant.  

The observed substitution effect is economically significant. Thumbnail 

calculations suggest that by the end of the 1990s, R&D would have been about 10 

                                                 
36 This screen eliminated 121 observations in total of some 39 firms. These firms were mainly startups 

(34), mostly biotech (25) and each of these firms had observations for other years that were included in the 
sample. To verify that this trimming did not introduce a bias, we performed a Heckman sample selection 
analysis on just the selection created by this trimming. The null hypothesis that the sample selection 
equation (with log market value, log sales, new firm flag, R&D intensity, lagged R&D intensity, and year 
dummies as regressors) was independent of the regression equation could not be rejected (P = .859). 
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percent higher without the substitution. This is equivalent to about $16 billion in private 

R&D, or roughly eight years of the long run average increase in R&D intensity among 

American firms.38 

1. Robustness Checks 

To verify that our results were not unduly influenced by the use of weighted least 

squares, we repeated the regression in column 4 using ordinary least squares but 

eliminated observations for years where a firm filed fewer than five patents. This left 

1,933 observations and a coefficient estimate for ∆s of -.010 (.005), suggesting that the 

substitution effect exists without the weights, but WLS estimates are more efficient.  

It is possible that ∆s might be correlated with the error term because R&D and 

patenting decisions are made simultaneously. To test this, we instrumented ∆s with 

lagged values and re-ran the regression in column 4 as an IV regression. When we 

instrumented with one and two year lags, the resulting coefficient was -.103 (.033), 

suggesting that any bias might actually be downwards. Comparing the instrumented and 

non-instrumented regressions, a Hausman test could not reject the null hypothesis that the 

uninstrumented version is consistent with a P value of .999 ( 2χ (13) = 1.74). So 

endogeneity of ∆s does not appear to be a problem. Similar results were obtained using 

just a two-year lag. 

To make sure that the substitution result was not influenced by possible error in 

the BLS price series we used, we replaced the changes in log prices with terms for the 

year dummies interacted with 2 digit industry dummies.39 Thus, we picked up all industry 

trend variables in addition to sweeping out individual firm effects through differencing. 

Given the large industry effects shown in Table 5, undoubtedly some of the variation in 

∆s was picked up in these interaction terms, reducing the coefficient on ∆s. As expected, 

                                                                                                                                                 
37 We also performed all of the following analysis using the change in R&D cost share as the 

dependent variable. Results were generally quite similar, but with larger standard errors 
38 A 10 percent increase in software share over the decade times a coefficient of -.037 divided by mean 

R&D intensity of about 3.5 percent. The dollar estimate is based on the level of industrial R&D in 1998 
(NSF 2003). The average annual increase in the ratio of industrial R&D to net sales, as reported by NSF, is 
.04 percentage points. 

39 Several industries had very few firms, so we combined seven 2 digit industries into other industries. 
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the estimated coefficient was a bit less, but still significant at the 1 percent level,  

-.025 (.010). Thus the substitution effect appears robust to a variety of estimation 

concerns. 

2. Industry 

Column 1 of Table 7 considers whether our results may be limited to one or two 

industries by interacting the change in software share of patents with industry dummies. 

We find a significant negative substitution effect for SIC 35 (which includes the 

computer industry), SIC 36 (electronics, including semiconductors), and SIC 73 

(business services, including software and IBM).40 For other industries, the coefficient is 

not significantly different from zero.  

The substitution effect thus seems to occur mainly in those industries known for 

strategic patenting. Column 2 divides the industries into strategic ones (SIC 357, 36, 38 

and IBM) and the rest. Firms in the strategic patenting industries exhibit a large and 

highly significant substitution effect; for firms in other industries, the coefficient is not 

significantly different from zero, indicating neither a substantial substitution nor 

complementary effect. 

3. Outsourcing Software Production  

The use of software throughout the economy grew rapidly during the 1990s and so it is 

important to examine the possibility that the increasing ubiquity of software may 

somehow spuriously cause the correlations observed in Table 6. There are two potential 

mechanisms to consider: the use of purchased software within the firm generally, and the 

use of software in the R&D process itself. 

Investment in software also grew rapidly during the 90s, especially in the form of 

purchases of pre-packaged software (see Grimm and Parker 2000). It is possible that as 

firms purchased more software from other companies, they reduced the internal 

                                                 
40 If IBM is excluded, the coefficient on SIC 73 is no longer significantly different from zero. 
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production of software, some of which may have been classified in the R&D budget.41 

This would have reduced R&D spending and R&D intensity. 

Two arguments militate against this explanation. First, one would expect that if 

firms are developing less software internally, they are less likely to obtain software 

patents. In that case, software patent share would not rise as much, or might even fall. 

Then the correlation between changes in software patenting share and R&D intensity 

would likely be positive. Second, our regressions control for externally purchased IT, 

which includes software (both outsourced and pre-packaged).42 To test this further, we 

also performed the regressions with separate price indices for computers and software 

(these are components of the BLS IT price index) and found essentially the same results. 

So the use of purchased or outsourced software does not seem to explain the negative 

association between software patent share and R&D intensity reported in Table 6. 

4. The Use of Software in R&D 

The second possible mechanism for a spurious correlation is an increase in the 

importance of software in the R&D process itself. Firms employ software to design 

products, both by using tools, like computer-aided engineering software, and by using 

embedded software in hardware products that were formerly hard-wired. In other words, 

software may reduce the cost of performing R&D. So in principle, it is possible that firms 

that use software to design new products might obtain patents on this software and, under 

certain conditions, they might also spend less on R&D.  

There are several reasons to suggest that this does not explain the negative 

correlation we observe. First, this explanation only works if the demand for R&D is 

relatively inelastic. If software use reduces the cost of performing R&D, then R&D 

projects that were marginally unprofitable before become profitable. If there are a 

sufficient number of marginal projects, then the lower effective cost of each project will 

                                                 
41 In Compustat, software development spending is included in R&D, unless it is paid for by a 

customer. 
42 The coefficient on the change in the log of the IT price index is consistently positive, indicating that 

IT does substitute for R&D. Dropping this variable from the regression only changes the coefficient of s 
slightly. That suggests the relationship between utilization of IT and R&D is different from the interaction 
between software patents and R&D.  
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be offset by the increase in the number of projects performed. That is, if R&D demand is 

sufficiently elastic, any reductions in the effective cost of conducting R&D would cause 

firms to increase R&D intensity. We know from studies of the R&D tax credit that the 

demand for R&D is rather elastic with respect to its tax price. Berger (1993) finds that 

reductions in the tax price of R&D increased R&D intensity. In a survey of the literature, 

Hall and van Reenen (2000) find that the tax price elasticity of R&D is around -1; at this 

level, changes in the price of R&D should have little effect on R&D intensity. Thus, this 

evidence suggests that the demand for R&D is sufficiently elastic so that software use 

cannot explain the negative correlation. 

Second, we can also control for software use. If increased use of software in the 

R&D process is causing the negative coefficient on the change in software share, then 

including the change in the relative employment of programmers and engineers in the 

regression should reduce or eliminate this association. Column 3 of Table 7 repeats the 

R&D intensity regression, but includes the change in the share of programmers and 

systems analysts in industry employment and the change in the share of employment of 

engineers. The coefficient of ∆s hardly changes, indicating that the substitution effect is 

orthogonal to the employment of software writers.43  

Third, it is hard to reconcile this explanation with the cross-industry pattern of the 

substitution effect. Software is used in the design and development of new products and 

processes in a wide range of industries, some of them strategic, such as computers and 

electronic equipment, and some in the non-strategic group, such as automotive, chemical 

processes and non-computer machinery. But although both groups of industries use 

software in products and in the design of products, the substitution effect is observed 

only in the strategic group. It seems unlikely this pattern is simply coincidence. 

                                                 
43 The coefficient for programmers is negative and significant. One interpretation of this is that firms 

shifting from manufacturing to services may reduce their R&D and increase their IT resources, resulting in 
an increase in the employment share of programmers. The mean change in programmer employment share 
is .001, so the net effect is not very large. Moreover, using interaction regressions, we found that this effect 
is largely limited to non-manufacturing industries. 
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5. Variation by Firm Size, Incumbency, and Other Factors 

Some researchers suggest that stronger patent protection for software may facilitate 

vertical dis-integration. In particular, small firms may have increased their software R&D 

in order to acquire more patents to license or sell to large firms. If this were so, software 

patents might complement R&D at small firms. On the other hand, if software patents are 

associated with strategic patenting, then small firms might be forced to acquire 

“defensive” patents and they might also face lower appropriability. Then R&D would 

substitute for software patents at small firms.  

Column 4 explores the effect of firm size by interacting the change in software 

share with dummies for firms of small and medium employment size (less than or equal 

to 1,000 employees and greater than 1,000 but less than or equal to 10,000).44 The 

coefficients on these interaction terms thus indicate differences between the smaller size 

classes and large firms. Large firms exhibit the strongest substitution effect, but the 

effects for the smaller classes are not significantly different statistically. And the smallest 

size class hardly differs from the largest class. These results do not support the view that 

the substitution is purely a large firm effect or that software patents have encouraged 

greater R&D among small firms.  

Column 5 looks at the related question of differences between incumbent and 

entrant firms. It adds an interaction of the change in software share with a dummy 

variable that is 1 if the firm entered Compustat after 1985. There were 297 observations 

where this dummy was set in this regression. Here again, the substitution effect for 

entrants differs only slightly from the effect for incumbents and this difference is not 

statistically significant. We repeated the regressions in Columns 3 to 5 for just the group 

of firms in the strategic patenting industries and obtained similar results. 

We also conducted other regressions (not shown), which included additional 

controls for firm size (lagged log deflated sales), new firms, firm risk (standard deviation 

of annual stock price growth), and liquidity (change in long-term debt divided by 

capital). Including these control variables had little effect on the coefficient on software 
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share. Finally, we considered the role of accounting changes but concluded this could not 

explain the observed relationship between software patents and R&D intensity.45   

V. Interpreting Our Results  

While our empirical technique cannot identify the causal relationships, it does reveal a 

number of patterns we can compare to a variety of theories about the effects of extending 

patent protection to computer programs. For example, the facts seem difficult to reconcile 

with the traditional incentive hypothesis.46  

Our results make quite clear that software patenting by and large has little to do 

with the pre-packaged software industry. That industry acquires a very small fraction of 

all software patents. Although it has been argued that software patents may encourage 

entry into an industry dominated by powerful firms, software entrants have a relatively 

low software patent propensity. However, we do not have a comprehensive picture of all 

entrant firms.  

Two-thirds of all software patents are obtained by a small group of industries 

known for strategic patenting (SIC 35, 36, 38 and IBM). Moreover, this group appears to 

play a unique role throughout our analysis. This group has a much higher propensity to 

obtain software patents and, in the 1990s, appears to have substituted these patents for 

R&D. For firms in other industries, there does not appear to be any relationship between 

an increasing focus on software patenting and R&D investments. 

We think the central role of this group of industries is not accidental—that is, the 

phenomenon we observe with software patents may be the same phenomenon other 

researchers have observed for patenting in general for these industries: 

                                                                                                                                                 
44 Of the 2,991 observations, 432 have employment less than 1,000 and 1,177 have employment greater 

than 10,000. 
45 Beginning in 1985, the FASB required firms to capitalize software development expenses (but not 

research or maintenance expense, which usually account for most software costs). Based on some simple 
calculations (details available from authors) we find that this change can explain neither the timing nor the 
sign of our results. 

46 In this discussion it is important to recall that the estimated effects are based on patentability 
standards as they existed after the early 1980s. It is possible the effects might have been different under 
different (say higher) patentability standards, but that question cannot be addressed here. 
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1. Firms in these industries report that patents are relatively less effective compared to 

firms in other industries, yet they obtain patents to aid negotiations, to cross-

license, to block competitors, and to prevent suits (Levin et al. 1987, Cohen, 

Nelson, and Walsh 2000). Firms in some of these industries engage in strategic 

cross-licensing of whole portfolios (Grindley and Teece 1997, Hall and Ziedonis 

2001). These industries have rapidly increased their rates of patenting in general 

(Hall 2003).  

Our results are consistent with the explanation that these industries acquired large 

numbers of software patents because they became a cost-effective means of 

building strategic portfolios. 

2. The growth in patenting overall exhibits a sharp break in 1984 (Hall 2003). Patent 

propensity in the semiconductor industry also began a sharp and steady rise 

beginning in 1984 (Hall and Ziedonis 2001). We find a sharp rise in software 

patent propensity beginning in about 1984 (see Figure 1) that continues to increase 

at just about the same rate as Hall and Ziedonis found for all patents in the 

semiconductor industry.  

A consistent explanation is that the formation of the unified court of appeals for 

patents in the early 80s initiated changes in patent law that increased the cost 

effectiveness of patents, especially software patents. In industries prone to strategic 

patenting, this might have set off an “arms race” to build large portfolios, and 

obtaining software patents became a convenient way to accomplish this goal. 

3. Among firms in the strategic patenting industries, we find evidence that software 

patents substituted for R&D during the 90s. This, too, is consistent with strategic 

patenting of various sorts (Bessen 2003). Maturing firms with diminished 

competitive advantage from technology might choose to harvest patent royalties 

from their past research in lieu of further R&D, especially if legal changes make 

patents more cost effective.47 In turn, other firms, facing increased payment of 

                                                 
47 For example, when Louis Gerstner Jr. became CEO of IBM in 1993, he slashed R&D by over $1 

billion and also shifted the business much more toward services, so that the R&D-to-sales ratio has 
declined steadily. At the same time he initiated a much more aggressive patent-licensing strategy. 
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royalties, may choose to reduce R&D, possibly diverting resources to build 

“defensive” patent portfolios. In these cases, greater software patenting would be 

associated with decreased R&D intensity. 

Strategic patenting provides a parsimonious explanation for our main results. 

Note that “strategic patenting” may involve several different forms of related behavior 

(see Cohen, Nelson, and Walsh 2000) and different causal mechanisms for the observed 

negative correlation between an increased focus on software patents and declining 

relative R&D intensity (e.g., diminished technological opportunity for mature firms or 

defensive patenting for small firms).  

The combination of our results is difficult to reconcile with the hypothesis that 

software patents increased R&D incentives. It would require several coincidences: Rising 

patent propensity must result from a very large increase in the productivity of R&D 

(beginning about 1984) that occurs in only a handful of industries (but not the software 

industry) and yet without regard to the hardware/software distinction. It must also be the 

case that demand for R&D is price inelastic in those same industries, but not in the rest of 

the economy. This seems a rather unlikely combination.  

Our interpretation might seem to conflict with the findings of Arora, Ceccagnoli, 

and Cohen (2003). They find that firms’ ratings of “patent effectiveness,” as reported in 

the Carnegie Mellon survey (Cohen, Nelson, and Walsh 2000) are positively correlated 

with a measure of patent propensity. They also find that patent effectiveness is often 

positively correlated with R&D spending. But Arora et al. are estimating a cross-

sectional effect, while our results may reflect a shift in an industry equilibrium that 

cannot be observed in cross-sectional data. This is particularly true because strategic 

patenting may have characteristics of a “Prisoner’s Dilemma.” Policy changes may 

encourage firms to acquire more patents, yet, because other firms are also acquiring 

larger portfolios, the equilibrium result may be lower appropriability (Bessen 2003). In 

other words, Arora et al. show how R&D varies with patent effectiveness while we 

explore how changing patent policy might have changed the relationship between patent 

effectiveness and R&D. 
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VI. Conclusion 

The rapid growth in software patenting has not been driven by the software publishing 

industry, but instead by a group of industries in computers, electronics and instruments. 

Other researchers have established the role of strategic patenting in these industries and 

strategic patenting provides a parsimonious explanation for our results. According to this 

theory, software patents are significant because they provide a cost-effective way for 

firms to build strategic patent portfolios.  

Legal scholars sometimes argue that patent law should treat computer programs 

no differently than any other invention. This paper does not address arguments about 

legal consistency, but instead explores the economic effects of granting software patents 

in the U.S. during the 1990s. Our results are difficult to reconcile with the traditional 

incentive theory—that granting more patents will increase R&D investments. Rather, if 

legal changes have encouraged strategic patenting, the result might well be less 

innovation. 
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APPENDIX 

A. Search Algorithm 

The search query used is: 

((“software” in specification) OR (“computer” AND “program” in specification))  

AND (utility patent excluding reissues)  

ANDNOT (“chip” OR “semiconductor” OR “bus” OR “circuit” OR “circuitry” in title) ANDNOT 
(“antigen” OR “antigenic” OR “chromatography” in specification) 

 

Table A1. Summary Statistics 

 Table 5 Sample 
Total R&D 
Performing 

Sample 
Table 7 Sample 

Corresponding 
R&D Performing 

Sample  

 Mean Median Mean Median Mean Median Mean Median 

Annual successful 
patent applications 25.9 1   70.2 10   

Software patent 
applications 3.6 0   13.4% 2.7%   

Firm sales (mill. $96) 2,632.7 375.1 1,032.0 41.6 4,967.5 1,100.1 1,579.0 83.0 

Firm R&D (mill. $96) 100.2 11.7 36.8 2.8 190.9 29.8 59.6 4.0 

Percent not reporting 
R&D 27.9%  --  --  --  

Firm employees 
(1000s) 13.3 2.4   21.4 6.0 7.0 0.6 

Percent new firms 10.0%  37.2%  10.7%  31.6%  

No. of observations 13,136  28,581  2,991  11,107  

No. of firms 1,443  4,559  489  2,351  

 1987 - 97 1991 - 97 
Note: The total R&D sample corresponding to Table 5 consists of all Compustat observations for US firms 
with non-missing R&D. The sample corresponding to Table 7 consists of all Compustat observations for 
US firms with non-missing or non-zero R&D for the current year and the 5-year lag. Sales and R&D are 
deflated using the GDP deflator. New firms are firms during the first five years in which they appeared in 
Compustat. 
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Table 1. Number of Software Patents  
 Patents Issued Successful Patent 

Applications 

 
Software 

Patents 
Aharonian 
Estimates

Total Utility 
Patents

Software/ 
Total

Software 
Patents 

Total Utility 
Patents

1976          765 100       70,226 1.1%        853      65,804 
1977          884 100       65,269 1.4%     1,094      65,978 
1978          897 150       66,102 1.4%     1,170      65,601 
1979          795 200       48,854 1.6%     1,439      65,726 
1980       1,080 250       61,819 1.7%     1,633      66,491 
1981       1,275 300       65,771 1.9%     1,821      63,910 
1982       1,402 300       57,888 2.4%     2,233      65,009 
1983       1,443 350       56,860 2.5%     2,297      61,563 
1984       1,939 400       67,200 2.9%     2,641      67,071 
1985       2,453 500       71,661 3.4%     2,924      71,442 
1986       2,657 600       70,860 3.7%     3,482      75,088 
1987       3,530 800       82,952 4.3%     4,055      81,458 
1988       3,495 800       77,924 4.5%     4,841      90,134 
1989       4,974 1,600       95,537 5.2%     5,755      96,077 
1990       4,704 1,300       90,364 5.2%     6,471      99,254 
1991       5,347 1,500       96,513 5.5%     7,091    100,016 
1992       5,862 1,624       97,444 6.0%     8,149    103,307 
1993       6,756 2,400       98,342 6.9%     9,459    106,848 
1994       8,031 4,569     101,676 7.9%   12,251    120,380 
1995       9,000 6,142     101,419 8.9%   16,617    137,661 
1996     11,359 9,000     109,645 10.4%   17,085    131,450 
1997     12,262 13,000     111,983 10.9%   13,087    114,881 
1998     19,355 17,500     147,519 13.1%  
1999     20,385 21,000     153,486 13.3%  
2000     21,065 --     157,595 13.4%  
2001     23,406 --     166,158 14.1%  
2002     24,891 --     167,438 14.9%  

Note: Utility patents excluding re-issues. Successful patent applications are the number of patent 
applications that resulted in patent grants by the end of 1999.
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Table 2. Characteristics of Software Patents (1990-95) 
 Software 

Patents 
Other Patents 

Assignee type   
  Non-gov’t. org. (firm) 88% 80% 
  Individual/ unassigned 11% 18% 
  Government 2% 2% 
   
U.S. assignee (if assigned) 70% 51% 
   
U.S. inventor 69% 53% 
   
Mean citations received 9.7 4.6 
Number of claims 16.8 12.6 
Percent of self-citations 12% 13% 
   

Percent of patents owned by 
top 5 percent of assignees 

63% 63% 

Note: Total patents: 39,700 software, 546,058 other. Self-citations is average of upper and lower 
bounds (see Hall, Jaffe, and Trajtenberg, 2001a). Differences between the means in the first two 
columns are all significant at the 1 percent level.  
 

Table 3. Firm Characteristics by Patent Type (1990-99) 
 Software 

Patents 
Non-software 

Patents 
Median firm market value  
  (million $96) 

24,485 11,554 

Median firm sales  
  (million $96) 

13,382 8,940 

Median firm R&D 
  (million $96) 

956 376 

Newly public firm 5.8% 5.1% 

Note: Table shows patent characteristics by type for years 1990-99 from the sample matched to 
Compustat. Covers 48,072 software patents and 274,529 non-software patents. Newly public 
firms first appeared in the Compustat file within the last 5 years. 
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Table 4. Successful Software Patent Applications by Industry  
(1994-97) 

 (1) (2) (3) (4) (5) (6) 
 Share of all 

 Software 
patents Prog. 

Prog. +  

Engineers 
All 

patents 

All 
Patents/ 

R&D 

Software 
patent 

propensity 
(Table 5.2) 

Manufacturing 75% 11% 32% 88% 3.8  

  Chemicals (SIC 28) 5% 1% 2% 15% 2.5 1.5 

  Machinery (SIC 35) 24% 3% 7% 17% 4.2 4.4 

  Electronics (SIC 36) 28% 2% 7% 27% 6.8 9.6 

  Instruments (SIC 38) 9% 1% 4% 11% 7.1 8.7 

  Other manu.   9% 5% 13% 18% 2.3 1.9 

Non-manufacturing 25% 89% 68% 12% 3.0  

  Software publishers  
    (SIC 7372) 5% 1% 1.0 

  Other software (SIC 
    737 exc. 7372, IBM) 2% 







  33% 18% 

1% 2.8 

1.0 
(all SIC 73)

  Other non- 
    manufacturing 4% 55% 49% 4% 3.4 3.8 

  Addendum: IBM 6% -- -- 2% 5.0  

Note: covers 28,268 software patents and 148,552 total patents for firms in the sample of 
software patents matched by CUSIP to firms in Compustat. The numbers are for patent 
applications that were resulted in an issued patent by 1999. Programmer employment is the share 
of total employment accounted for by computer programmers and systems analysts in 1997 from 
the Occupational Employment Survey of the BLS (which includes government employees). The 
third column adds employment of engineers. For SIC 737 the combined employment shares also 
include IBM. The fifth column shows patents granted per $10 million of R&D in 1996 dollars. 
The last column is the exponential of the coefficient for the industry given in Table 5, column 3, 
normalized so that the patent propensity of SIC 73 equals one. The last row shows IBM’s patents 
as a portion of all patents (not just those in our matched sample).  
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Table 5. The Propensity to Patent Software 
Dependent Variable: Annual Number of Successful Software Patents Applications 

1  2  3  4  5  
Annual 
Contribution 

Ln employment .88 (.03)* .88 (.03)* .88 (.03)* .88 (.03)* .62 (.02)* 0.5% 

Ln R&D / Emp. 1.01 (.05)* .77 (.06)* .77 (.06)* .78 (.05)* .22 (.02)* 1.1% 

No R&D dummy -1.00 (.17)* -.47 (.18)* -.49 (.18)* -.16 (.19) .35 (.12)* -0.1% 

Ln Capital / Emp. -.08 (.04) .37 (.05)* .37 (.05)* .26 (.05)* .27 (.03)* 1.8% 

Programmers / Emp.   12.44 (3.13)* 12.75 (3.09)* 7.21 (.84)* 13.32 (.75)* 1.2% 

Engineers / Emp.   4.13 (.55)* 4.05 (.55)* 6.57 (.44)* 6.06 (.58)* 1.2% 

New firm dummy .19 (.13) .03 (.13) .12 (.15) .11 (.13)    

New firm x SIC 73     -.90 (.33)*      

Other patents / Emp.       .16 (.02)*    

Industry dummies            

  SIC 28   -5.58 (.32)* -5.52 (.31)*      

  SIC 35   -4.50 (.25)* -4.45 (.25)*      

  SIC 36   -3.73 (.24)* -3.68 (.23)*      

  SIC 38   -3.83 (.25)* -377 (.25)*      

  Other manu.   -5.33 (.25)* -5.26 (.25)*      

  SIC 73   -5.99 (.63)* -5.96 (.62)*      

  Other non-manu.   -4.65 (.28)* -4.58 (.28)*      

Firm fixed effects        Yes 

Period estimated 80 - 97 87 – 97 87 – 97 87 – 97 87 – 97 

Annual growth rate of 
year dummies 

10.3% 9.4% 9.5% 7.2% 10.8% 

No. observations 23,108 13,136 13,136 13,136 6,587 

Log Likelihood -68,548 -42,963 -42,870 -48,528 -9,659 

Note: Heteroscedastic-consistent standard errors in parentheses. All regressions include year 
dummies; columns 1 and 4 include an intercept (not shown). Asterisk indicates significance at 
the 1 percent level. Regressions are Poisson regressions. Column 5 has firm fixed effects 
(Hausman, Hall, and Griliches, 1984). R&D is deflated by the GDP deflator, capital is property, 
plant and equipment deflated by the NIPA capital goods deflator, and employment is in 
thousands. The “new firm” dummy is equal to one for the first five years a firm appears in 
Compustat. Other patents / employees is the ratio of patents to employees for other firms in the 
same 2-digit SIC industry for the given year. Annual growth rate of year dummies is year 
dummy for 1996 minus the year dummy for the earliest year divided by the number of years 
elapsed (no dummy is estimated for 1997). Annual contribution is the estimated coefficient times 
the difference in sample means for the variable between 1996 and 1987 divided by 9 (the number 
of years). 
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Table 6. R&D Cost Share Estimation 
 

Cost
DR &

∆  
Cost

DR &
∆  Salesln∆  

Sales
DR &

∆  
Sales

DR &
∆  

Sales
DR &

∆  

 WLS Heckman WLS WLS Heckman WLS 

 1991-97 1991-97 1991-97 1991-97 1991-97 1985 - 97 

 1  2  3  4  5  6  

∆s  -.039 (.017) -.030 (.003)* .007 (.071) -.037 (.006)* -.037 (.002)*   

Cln∆      1.018 (.024)*       

∆s x (1985-89)           .018 (.012) 

∆s x (1990-93)           -.031 (.012)* 

∆s x (1994-97)           -.050 (.015)* 

No. total 
observations 

(firm years) 
774  29,832  774  2,991  29,832  5,285  

No. selected   757      2,913    

LR test of probit 
  

χ2(9) = 1059.9 

P=.000 
    

χ2(9) = 3370.6 

P=.000 
  

Wald test of 
independent 
equations 

  
χ2(1) = 571.6 

P=.000 
    

χ2(1) = .04 

P=.839 
  

Adjusted 2R  .128  --  .974  .038  --  .066  

Note: Observations are firm-years, but differences are taken over five years. Robust standard 
errors are in parentheses. All regressions include year dummies and changes in log factor prices. 
The prices are for capital, labor, energy, materials, services and IT for the two-digit industry 
from the BLS. Asterisk indicates significance at the 1 percent level. For columns 1, 3, 4, and 6, 
the sample includes firms matched to patent file with positive patents and non-missing data. All 
regressions are weighted by ( )5,111 −+ tiit nn where n is the number of patents granted. s is 
software share of patents applications. The Heckman sample selection equations consist of a 
regression equation and a selection probit. The regression coefficients are shown, the probit 
regressors are log market value, log sales, new firm flag and time dummies. To measure the 
goodness of fit for the probit, we show a likelihood ratio test that all coefficients except the 
constant term are zero. To determine whether sample selection biases the coefficients, we show a 
Wald test that the selection and regression equations are independent. In columns 4-6, 
observations are excluded where R&D > ½ sales (see text). 
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Table 7. R&D Intensity Estimation, 1991-97 

Dependent Variable: 
Sales

DR &
∆  

 1  2  3  4  5  

∆s   .001 (.010) -034 (.011)* -.051 (.018)* -.037 (.011)* 

∆Programmers/Emp.     -.506 (.136)*     

∆Engineers / Emp.     .120 (.087)     

∆s x (Emp. ≤ 1,000)       .007 (.030)   

∆s x (1,000<Emp. 

 ≤ 10,000) 
      .039 (.022)   

∆s x (Entrant)         .002 (.028) 

∆s x strategic industry   -.060 (.019)*       

∆s x SIC 28 .029 (.031)         

∆s x SIC 35 -.029 (.010)*         

∆s x SIC 36 -.090 (.026)*         

∆s x SIC 38 .027 (.028)         

∆s x Other manu. .014 (.013)         

∆s x SIC 73 -.077 (.031)*         

∆s x other non-manu. -.053 (.044)         

No. observations 2,991  2,991  2,967  2,991  2,991  

Adjusted 2R  .060  .051  .058  .045  .043  

Note: Robust standard errors in parentheses. All regressions include year dummies and changes 
in annual log factor prices at the two-digit industry level. Asterisk indicates significance at the 1 
percent level. Time differences are five years and observations are firm years. Sample includes 
firms matched to patent file with positive patents and excludes observations where R&D > ½ 
sales. ∆programmers/total employment and ∆engineers/total employment are the changes in the 
shares of the respective occupational employment for the three-digit industry. All regressions are 
weighted by ( )5,111 −+ tiit nn where n is the number of patents granted. s is software share of 
patents granted, sales are deflated, and “Entrant” is a dummy for firms that entered the 
Compustat database after 1985. “Strategic industries” are SIC 357 (computers), SIC 36 
(electrical), SIC 38 (instruments) and IBM. 

 



 

 53

Figure 1. Year Dummies, Software Patent Propensity Regressions 
 
 

0

0.5

1

1.5

2

2.5

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

Year

Hall-Ziedonis (semiconductor) 

Poisson (Col. 5.1) 

Poisson fixed effects (Col. 5.5) 

 
Source: Hall and Ziedonis (2001) and Table 5. Year dummies from Poisson regressions 
correspond to log relative patent propensity. Normalized to 1 in 1987. 
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