

SAP Security and Identity
Management

SAP Identity
Management APIs

Target Audience

■ SAP Partners implementing an identity management solution

Document Version 1.00 – September 20, 2005

© Copyright 2005 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior
notice.

Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered
trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex,
MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries,
xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity,
Tivoli, and Informix are trademarks or registered trademarks of IBM
Corporation in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the
Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame,
VideoFrame, and MultiWin are trademarks or registered trademarks of
Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered
trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used
under license for technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and
other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG
in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their
respective companies. Data contained in this document serves
informational purposes only. National product specifications may
vary.

These materials are subject to change without notice. These materials
are provided by SAP AG and its affiliated companies ("SAP Group")
for informational purposes only, without representation or warranty of
any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP
Group products and services are those that are set forth in the express
warranty statements accompanying such products and services, if any.
Nothing herein should be construed as constituting an additional
warranty.

Disclaimer
Some components of this product are based on Java™. Any code
change in these components may cause unpredictable and severe
malfunctions and is therefore expressively prohibited, as is any
decompilation of these components.

Any Java™ Source Code delivered with this product is only to be used
by SAP’s Support Services and may not be modified or altered in any
way.

Documentation in the SAP Service Marketplace
You can find this documentation at the following Internet address:
service.sap.com/instguides

SAP AG
Neurottstraße 16
69190 Walldorf
Germany
T +49/18 05/34 34 24
F +49/18 05/34 34 20
www.sap.com

Typographic Conventions

Type Style Represents

Example Text Words or characters that appear
on the screen. These include
field names, screen titles,
pushbuttons as well as menu
names, paths and options.

Cross-references to other
documentation

Example text Emphasized words or phrases in
body text, titles of graphics and
tables

EXAMPLE TEXT Names of elements in the
system. These include report
names, program names,
transaction codes, table names,
and individual key words of a
programming language, when
surrounded by body text, for
example, SELECT and
INCLUDE.

Example text Screen output. This includes file
and directory names and their
paths, messages, names of
variables and parameters,
source code as well as names of
installation, upgrade and
database tools.

Example text Exact user entry. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example text> Variable user entry. Pointed
brackets indicate that you
replace these words and
characters with appropriate
entries.

EXAMPLE TEXT Keys on the keyboard, for
example, function keys (such as
F2) or the Enter key.

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Identity Management APIs

4 September 2005

Contents

Identity Management APIs ..5

1 Identity Management ABAP APIs ..6
1.1 Concepts... 6

1.1.1 BAPI Explorer ...7
1.1.2 Business Object: USER..7
1.1.3 Authorization Assignments ...9
1.1.4 Role Assignment for IAM Administrator..10

1.2 APIs for User Administration Functions in ABAP............................. 10
1.2.1 BAPIs for User Enquiry...11
1.2.2 BAPI for Creating Users ...12
1.2.3 BAPI for Modifying Users..13
1.2.4 BAPI for Deleting Users..15
1.2.5 BAPIs for Setting Passwords..16
1.2.6 BAPIs for Locking and Unlocking Users...16
1.2.7 BAPIs for Obtaining or Maintaining Company Information...17
1.2.8 BAPIs for Role Assignment ..18
1.2.9 BAPIs for Profile Assignment..20

1.3 Integration With Central User Administration.................................... 22
1.3.1 Considerations for User Administration Functions ...24
1.3.2 Considerations for Role and Profile Assignment Functions25

1.4 Appendix... 26
1.4.1 Overview of IAM BAPIs and Function Modules..26
1.4.2 Sample Parameters for BAPI_HELPVALUES_GET ..27
1.4.3 Includes Used by IAM_API_TESTFRAME ...37

2 Identity Management Java APIs ..38
2.1 APIs for User Administration Functions in Java 39

2.1.1 Reading the Schema ..39
2.1.2 Creating Objects ...39
2.1.3 Modifying Objects ...41
2.1.4 Deleting Objects..43
2.1.5 Changing or Resetting Passwords ...44
2.1.6 Locking and Unlocking Users ...45
2.1.7 Searching for Objects or Obtaining Attribute Values for Objects45
2.1.8 Using Batch Functions..47

2.2 Appendix: Schema Description .. 49

 1 Identity Management ABAP APIs

 1.1 Concepts

September 2005 5

Identity Management APIs
Purpose
As part of the SAP identity management model, we provide a set of application programming
interfaces (APIs) that can be used by identity and access management (IAM) vendors to manage
SAP users and role assignments within their systems.

The APIs exist for both ABAP and Java systems. The ABAP APIs are provided as Business
Application Programming Interfaces (BAPIs). The Java APIs are provided with the User
Management Engine (UME) interfaces.

This documentation provides an overview of how to use the BAPIs and the Java APIs for identity
management. It does not cover all of the details, but shows the general approach and highlights
those aspects where special considerations are necessary. For details about using specific APIs,
see the API documentation.

Prerequisites
Before using this document and the corresponding APIs, you should be familiar with the SAP
identity management concept. For more information, see Users and Roles [SAP Library] (ABAP)
and Users and Authorizations on the J2EE Engine [SAP Library] (Java).

Integration
We also offer a central user administration (CUA) for managing SAP users and role assignments
for ABAP-based SAP systems. When determining how to integrate an external IAM system into a
landscape that uses the CUA, we recommend the following scenarios:

• The customer can connect the IAM system to the CUA central system, which in turn
provides the user and role assignment information to its child systems.

• The customer can connect the IAM system to each of the child systems. In this case, the
customer should remove the SAP CUA from the system landscape.

Customers should not connect the external IAM system to the CUA child systems
and continue using the CUA. This can lead to discrepancies.

About this Document
This documentation is divided into the following sections:

• Identity Management ABAP APIs

 Concepts

 BAPI Explorer

 Business object: USER

 Authorization Assignments

 APIs to use for User Administration Functions in ABAP

 Integration with Central User Administration

1 Identity Management ABAP APIs

1.1 Concepts

6 September 2005

 Appendix

 Overview of the IAM BAPIs and function modules

 Sample parameters for BAP_HELPVALUES_GET

 Includes used by the function module IAM_API_TESTFRAME

• Identity Management Java APIs

 APIs to use for User Administration Functions in Java

 Appendix: Shema Description

1 Identity Management ABAP APIs
Purpose
This section describes how to use the ABAP identity management APIs for managing users and
roles. This API consists primarily of remote functions calls that are available as BAPIs in the
ABAP system.

This documentation does not describe the details of each API as these are documented in the
system; instead it introduces the concepts and highlights those aspects that need special
consideration.

The main functions available with the ABAP API are demonstrated in the example program
IAM_API_TESTFRAME. Each function is available as a program include file which is accessible
from the test program using a simple user interface.

For more information about the individual BAPIs, see the corresponding system documentation,
which is available using the BAPI Explorer [Page 7] (transaction BAPI).

Integration
Systems that use the SAP ABAP-based user management can use the Central User
Administration (CUA) to maintain and distribute user and role information to the individual
systems. There are certain aspects that need to be taken into account when the APIs are used in
CUA landscapes. These are described in Integration With Central User Administration [Page 22].

1.1 Concepts
Before beginning with the APIs, you should be familiar with some of the concepts that apply to
SAP’s identity management technology and how to use the BAPIs. See:

• BAPI Explorer [Page 7]

This topic introduces the BAPI Explorer, which you can use to view and maintain BAPIs in
the ABAP system.

• Business Object: USER [Page 7]

This topic describes the structure of the USER business object and how it relates to the
AddressOrg business object.

 1 Identity Management ABAP APIs

 1.1 Concepts

September 2005 7

• Authorization Assignments [Page 8]

This topic introduces the various methods available for assigning authorizations, for
example, using a reference user and assigning roles or profiles to users.

• Role Assignment for IAM Administrator [Page 10]

This topic provides the role to use to assign the authorizations for IAM administration using
the BAPIs.

1.1.1 BAPI Explorer

Use
BAPIs are remote function calls (RFCs) that represent an object-oriented view of business
objects. The BAPI module accesses the corresponding method that applies to the object.

For example, the RFC module BAPI_USER_GET_DETAIL implements the
GetDetail() method for the business object USER.

To see the BAPI representation for the business objects, use the BAPI Explorer (transaction
BAPI). With the BAPI Explorer, you can view and maintain business objects and their methods.
You can also find the detailed documentation for the objects, methods, and corresponding
parameters.

For more information about using the BAPI Explorer, see the BAPI Explorer [SAP
Library] documentation. If the system is set up to use the online help, you can
access this documentation by choosing Help → Application Help from the BAPI
Explorer menu.

1.1.2 Business Object: USER

Definition
Business object that corresponds to the user who logs on to the system.

Use
The most important business obect used by the identity management APIs is the business object
USER.

USER contains the technical information used for logon and work in the SAP system, for
example, validity, role and profile assignments and printer settings. In addition, it also contains
communication data such as telephone number, fax, e-mail address, company assignment and
additional address data.

1 Identity Management ABAP APIs

1.1 Concepts

8 September 2005

Structure
The following figure shows the structure of the USER business object and how it relates to the
AddressOrg business object, which contains the company address.

USER and AddressOrg Business Objects Attributes

Logon data
Defaults
Address

Building
Room
…

Company
Communication

Telephone
Fax
Pager
E-mail
…

…

USER

AddressOrg

Address
Country
City
Street
House No.
…

Communication
…

The business object USER contains the logon data, default settings, address and communication
data. It also contains a read-only reference to the AddressOrg business object.

Because this is a read-only reference, you cannot change the user’s company
address data using the USER BAPIs. You can only change the user’s
assignment to the company.

Methods
The methods used by the IAM API are described in more detail in the rest of this documentation.
For a list of all of the methods available, see the USER object in the BAPI Explorer.

Integration
The business object USER only contains the technical information about the SAP system user,
but not the user as a business partner. See the SAP Business Partner [SAP Library]
documentation for more information about obtaining this information.

 1 Identity Management ABAP APIs

 1.1 Concepts

September 2005 9

1.1.3 Authorization Assignments

Use
To assign authorizations to users, you can use any of the following approaches:

• Reference users

• Roles

• Profiles

You can use these approaches in parallel, for example, you can assign a reference user as well
as roles and profile to a user.

Reference User
When using the reference user, the administrator assigns authorizations to a reference user
rather than directly to the user. Users then point to the reference user. During an authorization
check, the system first checks the reference user’s authorizations, and then those of the user.

This procedure is best suited to situations involving large numbers of users of the same type.

For example, an online shop hosts a large number of users that are to have the
same authorizations, for example, to browse in the product catalog, order the
contents of a shopping basket, or check the status of an order. Therefore, all of
the authorizations required for these functions are assigned to a reference user,
which is then referenced by the individual users.

Without this procedure, the administrator would have to assign the same authorizations to every
user. For systems with a large number of users, this can lead to significant performance
problems, as the user administration tools then have to handle large amounts of data that are
redundant.

A reference user is assigned when the user is created, but you can also change
this assignment later by modifying the user.

Role Assignment
With this procedure, individual rights are assigned to the user using one or several roles. Unlike
the reference user, this type of authorization assignment is very flexible. You can group together
authorizations for common tasks in a few large roles and create further smaller roles with
individual extensions.

In addition to authorizations, roles can hold additional user settings, for example user menus
provided by the SAP GUI for Windows Easy Access Menu.

If you are dealing with a very large number of users, we recommend using
reference users, even if additional roles are also required.

Roles are assigned after user creation.

1 Identity Management ABAP APIs

1.2 APIs for User Administration Functions in ABAP

10 September 2005

Profile Assignment
Profiles are similar to roles in that they are containers for authorizations. They are assigned in
the same way. However, profiles are older and unlike roles, they cannot contain additional
information, therefore, using roles is the preferred method for assigning authorizations.

1.1.4 Role Assignment for IAM Administrator
The administrator or service user who calls the IAM API function needs the authorizations for
performing user and role maintenance functions remotely. These authorizations are included in
the role SAP_BC_USR_CUA_CLIENT. Therefore, use this role assignment for the user that calls
the IAM API functions.

1.2 APIs for User Administration Functions in
ABAP
This section provides an overview of the user administration functions required by an Identity and
Access Management (IAM) system. The modules that are available for implementation for the
following functions are described. See the following topics:

• BAPIs for User Enquiry [Page 10]

• BAPI for Creating Users [Page 12]

• BAPI for Modifying Users [Page 13]

• BAPI for Deleting Users [Page 15]

• BAPIs for Setting Passwords [Page 15]

• BAPIs for Locking and Unlocking Users [Page 16]

• BAPIs for Obtaining or Maintaining Company Information [Page 17]

• BAPIs for Role Assignment [Page 18]

• BAPIs for Profile Assignment [Page 20]

There are contraints that you consider when the IAM system is to be used in a landscape where
Central User Administration (CUA) is also used. These considerations are described in the
section Integration With Central User Administration [Page 22].

 1 Identity Management ABAP APIs

 1.2 APIs for User Administration Functions in ABAP

September 2005 11

1.2.1 BAPIs for User Enquiry
The following functions and their corresponding BAPIs provide information about a user.

Obtaining a List of Users

BAPI: BAPI_USER_GETLIST
Business object method: USER.GetList()

Use: As of Release 6.20, support package 38, you can use this BAPI to retrieve a list of users
that match complex selection criteria. The use of wildcards in the search is supported. For the
output format, you can you can select either user ID only or user ID with first, last and complete
names.

Examples of selection criteria include assigned roles or lock status. As of SAP NetWeaver
2004s, you can also search using the last modification date.

In older releases, use the value help function BAPI_HELPVALUES_GET to
obtain a list of users.

For an example, see the test program IAM_API_TESTFRAME. Enter the search
criteria and select the option Userlist or Userlist with names.
The corresponding include provided with the test program is IAM_USERLIST.

Obtaining Detailed Information About a User

BAPI: BAPI_USER_GET_DETAIL
Business object method: USER.GetDetail()

Use: Use this BAPI to obtain information about a specific user, for example, logon data, default
parameters, communication information, the user’s company address, and the user’s assigned
roles. As of SAP NetWeaver Release 2004s, a user’s lock status is also returned.

For older releases, use SUSR_USER_LOCKSTATUS_GET and
SUSR_LOGIN_CHECK_RFC to obtain the lock status.

You must provide the user ID for the user you want to search for. Wildcards are
not supported for the search.

For an example, see the test program IAM_API_TESTFRAME. Select the option
User details for a user to obtain the detailed information.
The corresponding include provided with the test program is
IAM_USERDETAILS.

1 Identity Management ABAP APIs

1.2 APIs for User Administration Functions in ABAP

12 September 2005

Getting Value Help for User Parameters

BAPI: BAPI_HELPVALUES_GET
Business object method: Helpvalues.GetList()

Use: This BAPI is an all-purpose BAPI that is also used by the IAM API to retrieve value help
for user parameters. A list of example parameters for using this BAPI to obtain user information
is included in the appendix under Parameters for BAPI_HELPVALUES_GET [Page 27].

For many cases, it is more appropriate to use the designated BAPI to obtain
information such as:
• List of users: BAPI_USER_GETLIST (as of Release 6.20, support

 package 38)
• List of roles: PRGN_ROLE_GETLIST (as of SAP NetWeaver

 2004s)
• Company address: BAPI_ADDRESSORG_GETDETAIL

For an example, see the test program IAM_API_TESTFRAME. Select the option
Company list. This option uses the BAPI_HELPVALUES_GET module to obtain a
list of companies. Although this option shows the use of the BAPI for a specific
parameter, you can use it as an example for obtaining value help for other user
parameters.
The corresponding include provided with the test program is
IAM_COMPANYLIST.

1.2.2 BAPI for Creating Users

BAPI: BAPI_USER_CREATE1
Business object method: USER.Create1()

Use: Use this BAPI to create users in the ABAP system. These users are maintainable using
the transaction SU01. To craete a user, call BAPI_USER_CREATE1 with the parameters listed
below.

• User name: The user name is a required parameter.

• Validity Period of the User: Enter the validity period in the LOGONDATA structure. This
structure contains the fields for valid from (GLTGV) and valid to (GLTGB).

• Initial password: The initial password is a required parameter. The user must change this
password the first time he or she logs on. You can either specify the initial password
directly or generate a random one. To generate a random password, use the function
module RSEC_GENERATE_PASSWORD.

This function module cannot be called remotely.

 1 Identity Management ABAP APIs

 1.2 APIs for User Administration Functions in ABAP

September 2005 13

• Address Data: The field LASTNAME is a required field; all other fields are optional. The
table parameters of the function module are also optional.

Although there are additional address data fields, only those fields that are
relevant for maintenance using transaction SU01 are stored in the user master
record.

• Reference User: This parameter is optional. If applicable, provide the user ID to use as a
reference user.

Next Steps: Once you have created the user, you may need to perform any the following
actions:

• Assign roles: For information about how to assign roles to the user, see BAPIs for Role
Assignment [Page 18].

• Lock the user: You can lock the user if it should be available at a later date, for example,
after being checked by the departmental manager. For more information, see BAPIs for
Locking and Unlocking Users [Page 16].

• Set a productive password: The user is created with an initial password that needs to be
changed the first time the user logs on. However, there may be cases where you want to
set up a user that initially has a productive password. Technically this is not possible,
therefore in this case, you have to create the user with an initial password and then
change it using the function module SUSR_USER_CHANGE_PASSWORD_RFC. For
more information, see BAPIs for Setting Passwords [Page 15].

For an example on creating users, see the test program IAM_API_TESTFRAME.
Enter the data for the user and select the option Create user.
The corresponding include provided with the test program is
IAM_USERCREATE.

In the test program IAM_API_TESTFRAME, the user’s initial password is set to
Initial.

1.2.3 BAPI for Modifying Users

BAPI: BAPI_USER_CHANGE
Business object method: USER.Change()

Use: Use this BAPI to modify users in the ABAP system. USER.Change() has a similar structure
and table parameters as USER.Create1(). In addition, each modifiable parameter has a
corresponding flag parameter that specifies which data is to be changed. Structures have flags
for each field. Table parameters have a flag for each column.

For example, for the parameter Logondata, there is a corresponding flag
parameter Logondatax.

1 Identity Management ABAP APIs

1.2 APIs for User Administration Functions in ABAP

14 September 2005

When changing data, consider the following special cases:

• Address: You can maintain certain address data in the Address structure or alternatively
in tables. For example, data such as telephone number, fax and e-mail address can be
maintained in the tables AddTel, AddFax, and AddSmtp respectively.

We recommend maintaining the information in the tables instead of in the
Address structure for the following reasons:

• You can store multiple entries in the tables. The Address structure only
contains one entry for each of these fields.

• The telephone and fax numbers are stored in international format in the
tables, but not in the Address structure.

• If you change data in the Address structure, any entries in the corresponding
table will be lost.

• Communication data: When changing communication data (Add<Xxx> parameters), you
need to consider the following fields:

 CONSNUMBER: To differentiate between multiple entries for communication data,
use the sequence number that is stored in the field CONSNUMBER. To change a
specific entry, enter the entry’s sequence number in this field. If you want to add an
entry, specify a sequence number that is higher than that for any existing entry.

 R_3_USER: This field applies to the telephone numbers. It indicates the type of
telephone connection and if the number used is the standard number. The following
applies:

 <blank> : The telephone number is a land-line telephone.

 1 : The telephone number is the standard land-line telephone.

 2 : The telephone number is a mobile telephone.

 3 : The telephone number is the standard mobile telephone.

 STD_NO: Only one telephone number appears as the standard telephone number
in the Address structure. Therefore, use this field to indicate that the telephone
number (land-line or mobile) for this entry is the overall standard telephone number
that appears the Address structure.

 STD_RECIP: This field indicates whether the corresponding telephone number can
be used for short messages (SMS). If this is the case, then the number is copied to
the communication data used for paging services.

Not all fields are used by all of the communication data parameters.

 1 Identity Management ABAP APIs

 1.2 APIs for User Administration Functions in ABAP

September 2005 15

• Company Location: The company location address is stored with the business object
AddressOrg and not the object USER. Therefore, when specifying or changing the
company location with the BAPI_USER_CHANGE, you can only specify or assign an
existing company location. To change the company address, use the methods provided for
the business object AddressOrg. For more information, see BAPIs for Obtaining or
Maintaining Company Information [Page 17].

For an example on using BAPI_USER_CHANGE module, see the test program
IAM_API_TESTFRAME. Select the option Modify user for a specific user to
change his or her parameters.
The corresponding include provided with the test program is IAM_
USERCHANGE.

• Table parameters GROUP and PARAMETER1: The flags for these table parameters are
set up according to the columns in each table. Set the flag parameter for the first column
to indicate changes in the table parameter.

PARAMETER1 replaces the table parameter PARAMETER.

For PARAMETER1, the contents of the field PARTXT cannot be changed using
BAPI_USER_CHANGE.

1.2.4 BAPI for Deleting Users

BAPI: BAPI_USER_DELETE
Business object method: USER.Delete()

Use: Use this BAPI to delete users.

Because additional data is associated with users, for example, change
documents, you should consider deactivating users instead of deleting them. To
deactivate a user, either lock it or specify a validity period.
No license fees are collected for deactivated users.

For an example on deleting users, see the test program IAM_API_TESTFRAME.
Select the option Delete user for a specific user.
The corresponding include provided with the test program is IAM_USERDELETE.

1 Identity Management ABAP APIs

1.2 APIs for User Administration Functions in ABAP

16 September 2005

1.2.5 BAPIs for Setting Passwords

Setting an Initial Password

BAPI: BAPI_USER_CHANGE
Business object method: USER.Change()

Use: Use BAPI_USER_CHANGE to set an initial password. Set the initial password in the
Password field and set the flag Passwordx. The user must change this password the next time
he or she logs on.

A password set when creating a user with BAPI_USER_CREATE1 is also set as
an initial password and must be changed when the user logs on for the first time.

The test program IAM_API_TESTFRAME does not support setting the initial
password.

Changing Passwords

Function Module: SUSR_USER_CHANGE_PASSWORD_RFC
Use: You cannot use BAPI_USER_CHANGE to change a password. For this purpose, you can
use the function module SUSR_USER_CHANGE_PASSWORD_RFC. This module requires the
old and the new passwords.

If you use the RFC SDK, then we recommend using the function modules
RfcOpenEx() and RfcRegisterPasswordChanger() that are available with the RFC
API to change the password and to have the SAP system report an expired
password, respectively.

1.2.6 BAPIs for Locking and Unlocking Users

Locking users

BAPI: BAPI_USER_LOCK
Business object method: USER.Lock()

Use: Use this BAPI to lock users.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Lock user for a specific user.
The corresponding include provided with the test program is IAM_USERLOCK.

 1 Identity Management ABAP APIs

 1.2 APIs for User Administration Functions in ABAP

September 2005 17

Unlocking users

BAPI: BAPI_USER_UNLOCK
Business object method: USER.Unlock()

Use: Use this BAPI to unlock users.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Unlock user for a specific user.
The corresponding include provided with the test program is IAM_USERLOCK.

The test program returns a message that the user is unlocked if this is permitted.
This applies to systems where CUA is used. If CUA is used, there may be cases
where unlocking a user in a child system is not possible because of a global lock.
For more information, see Considerations for User Administration Functions
[Page 23].

1.2.7 BAPIs for Obtaining or Maintaining Company
Information
The following functions and their corresponding BAPIs provide information about a company.

Obtaining a List of Companies

BAPI: BAPI_HELPVALUES_GET
Business object method: Helpvalues.GetList()

Use: This BAPI is an all-purpose BAPI that is also used by the IAM API to retrieve value help
for user and company parameters. A list of the parameters for this BAPI are listed in the
appendix under Parameters for BAPI_HELPVALUES_GET [Page 27].

For an example, see the test program IAM_API_TESTFRAME. Select the option
Company list to obtain a list of available companies. The use of wildcards in the
search is supported.
The corresponding include provided with the test program is
IAM_COMPANYLIST.
This example uses BAPI_HELPVALUES_GET, to obtain a list of available
companies. The values for the list are returned in the parameter HELPVALUES.
The parameter DESCRIPTION returns metadata, which, in this example, is used
for the list headings.

You can use BAPI_HELPVALUES_GET to obtain help for other user parameters
as well.

1 Identity Management ABAP APIs

1.2 APIs for User Administration Functions in ABAP

18 September 2005

Obtaining Detailed Information About a Company

BAPI: BAPI_ADDRESSORG_DETAIL
Business object method: AddressOrg.FindDetail()

Use: Use this BAPI to obtain company address information. It can serve as a value help to
obtain the company location information for a user.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Company detail for a specific company (field Company) to obtain the detailed
information. The use of wildcards in the search is not supported.
The corresponding include provided with the test program is
IAM_COMPANYDETAILS.

Modifying Address Data for a Company

BAPI: BAPI_ADDRESSORG_CHANGE
Business object method: AddressOrg.Change()

Use: Use this BAPI to change company address information.

The test program IAM_API_TESTFRAME does not provide an example for using
this BAPI.

1.2.8 BAPIs for Role Assignment

Obtaining a List of Roles

Function Module: PRGN_ROLE_GETLIST (or BAPI_HELPVALUES_GET)
Use: As of SAP NetWeaver Release 2004s, you can use the function module
PRGN_ROLE_GETLIST as a value help to obtain a list of roles. It is implemented as an RFC-
enabled function module, not as a BAPI. Alternatively, you can use BAPI_HELPVALUES_GET to
obtain this information, however, the function module PRGN_ROLE_GETLIST also supports the
use of wildcards and ranges.

Prior to Release 2004s, use BAPI_HELPVALUES_GET to obtain this information.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Role list for a role search pattern (enter the pattern in the Role field). The use of
wildcards in the search is supported.
The corresponding include provided with the test program is IAM_ROLELIST.

 1 Identity Management ABAP APIs

 1.2 APIs for User Administration Functions in ABAP

September 2005 19

Obtaining a List of Role Assignments

BAPI: BAPI_USER_GET_DETAIL
Business object method: USER.GetDetail()

Use: Use this BAPI to obtain information about a user, which includes the user’s role
assignments.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Roles of a user for a specific user. The use of wildcards in the search is not
supported.
The corresponding include provided with the test program is IAM_USERROLES.

Assigning Roles

BAPI: BAPI_USER_ACTGROUPS_ASSIGN
Business object method: USER.ActgroupsAssign()

Use: Use this BAPI to assign roles. Note however, that if you want to change a user’s role
assignments, you must first use BAPI_USER_GET_DETAIL to obtain the user’s role
assignments. You can then add or remove roles and then set the new role assignment using
BAPI_USER_ACTGROUPS_ASSIGN. The system then replaces the old role assignments with
the new ones.

Fields FROM_DAT and TO_DAT: If these fields are not set, then FROM_DAT is
set to the current date and TO_DAT to December 31, 9999.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Assign roles for a specific user and role you want to assign.
The corresponding include provided with the test program is IAM_ROLEASSIGN.

1 Identity Management ABAP APIs

1.2 APIs for User Administration Functions in ABAP

20 September 2005

Deleting Role Assignments

BAPI: BAPI_USER_ACTGROUPS_DELETE
Business object method: USER.ActgroupsDelete()

Use: Use this BAPI to delete all role assignments. The same result occurs if you use
BAPI_USER_ACTGROUPS_ASSIGN and pass an empty table of roles.

This function deletes all role assignments. If you only want to delete some of the
role assignments, modify the role assignments using
BAPI_USER_ACTGROUPS_ASSIGN.

For an example, see the test program IAM_API_TESTFRAME. Select the option
Delete role assignments for a specific user.
The corresponding include provided with the test program is
IAM_ROLEASSIGN_DELETE.

1.2.9 BAPIs for Profile Assignment
Although we recommend using roles to assign authorizations to users, it is possible and
sometimes necessary to still use profiles. For example, you may need to maintain authorizations
based on already existing profiles that have not been migrated to roles, or you may want to
assign authorizations using the SAP-delivered profiles such as SAP_NEW (or SAP_ALL). The
following BAPIs are provided for maintaining authorizations using profiles.

Obtaining a List of Profiles

BAPI: BAPI_HELPVALUES_GET
Use: To obtain a list of profiles, use the general value help BAPI_HELPVALUES_GET. You can
obtain a list of active single or composite roles, or profiles that have been generated from roles.
The corresponding parameter settings are shown in the table below.

Parameters for BAPI_HELPVALUES_GET to Obtain a List of Profiles

Parameter Value

OBJTYPE USER

OBJNAME <blank>

METHOD GETDETAIL

PARAMETER PROFILES

FIELD <blank>

EXPLICIT_SHLP-SHLPNAME PROFILES_SINGLE_ACTIVE

PROFILES_COMPOSITE_ACTIVE

PROFILES_GENERATED_ACTIVE

EXPLICIT_SHLP-SH SH

 1 Identity Management ABAP APIs

 1.2 APIs for User Administration Functions in ABAP

September 2005 21

For an example, see the test program IAM_API_TESTFRAME. Select the option
Profile list. The use of wildcards in the search is supported.
The corresponding include provided with the test program is IAM_PROFILELIST.

Obtaining a List of Profile Assignments

BAPI: BAPI_USER_GET_DETAIL
Business object method: USER.GetDetail()

Use: Use this BAPI to obtain information about a user, which includes the user’s profile
assignments.

For an example, see the test program IAM_API_TESTFRAME. Select the option
User details for a specific user. The use of wildcards in the search is not
supported. The user’s assigned profiles are included in the user’s data obtained
by this call.
The corresponding include provided with the test program is
IAM_USERDETAILS.

Assigning Profiles

BAPI: BAPI_USER_PROFILES_ASSIGN
Business object method: USER.ProfilesAssign()

Use: Use this BAPI to assign profiles to users. All profiles specified in the corresponding
parameters are assigned to the user. Therefore, to change a user’s profile assignments, you
must first use BAPI_USER_GET_DETAIL to obtain the user’s profile assignments. You can then
add or remove profiles and then set the new profile assignment using
BAPI_USER_PROFILES_ASSIGN. The system then replaces the old profile assignments with
the new ones.

Example: There is no example for profile assignments provided with the test
program IAM_API_TESTFRAME. However, the call is similar to the call for
assigning roles.

1 Identity Management ABAP APIs

1.3 Integration With Central User Administration

22 September 2005

Deleting Profile Assignments

BAPI: BAPI_USER_PROFILES_DELETE
Business object method: USER.ProfilesDelete()

Use: Use this BAPI to delete all profile assignments. The same result occurs if you use
BAPI_USER_PROFILES_ASSIGN and pass an empty table of profiles.

There is no example for profile assignments provided with the test program
IAM_API_TESTFRAME. However, the call is similar to the call for deleting role
assignments.

1.3 Integration With Central User Administration
As previously mentioned, there are issues to consider when integrating an external IAM system
in a landscape where the central user administration (CUA) is used for distributing SAP user
information and role assignments.

When using CUA, the customer sets up a system where the administrator maintains the SAP
user attributes and role assignments centrally and then has this information distributed to the
CUA’s child systems.

Recommendations
When determining how to integrate an external IAM system into a landscape that uses the CUA,
we recommend the following scenarios:

• The customer can connect the IAM system to the CUA central system, which in turn
provides the user and role assignment information to its child systems.

• The customer can connect the IAM system to each of the child systems. In this case, the
customer should remove the CUA from the system landscape.

Customers should not connect the external IAM system to the CUA child systems
and continue using the CUA. This can lead to discrepancies.

 1 Identity Management ABAP APIs

 1.3 Integration With Central User Administration

September 2005 23

Maintaining Attributes Globally or Locally
Depending on the configuration, the customer can maintain most of the user attributes either
globally in the central system or locally in the child systems. For the possible settings and the
corresponding effects, see the table below.

CUA Settings for Distributing Attributes

Setting Effect

Global The attribute is maintained in the central system and distributed to the child
systems.

Local The attribute is maintained in the child system and is not distributed.

Default A default value is maintained in the central system and distributed to the child
system when a user is created. Afterwards, the value is maintained in the
child system.

Redistribution The attribute can be maintained either in the central system or in the child
system. If the attribute is changed in a child system, it is also changed in the
central system and redistributed to all child systems.

Everywhere The attribute can be maintained either in the central system or in the child
systems. No redistribution occurs.

This setting is not available for all attributes.

The only settings that are relevant in regard to the IAM APIs are global and local.
The other settings are derivations from these.

Considerations When Using the IAM APIs for a CUA System Landscape
Therefore, when using the IAM APIs, you need to consider these possible distribution strategies
when creating or changing user attributes. Attributes that are specified to be maintained globally
can be maintained by the external IAM system and then distributed by the CUA to the child
systems. However, when attributes that are specified to be maintained locally are changed in the
external IAM system, then changes are only propagated to the CUA central system. They are not
distributed to child systems.

These considerations apply for cases where the customer connects the external
IAM system to the CUA central system. If the customer connects the IAM system
to the child system(s), then he or she should no longer use the CUA for the
distribution of user information.

The considerations to take into account for the individual APIs are described in the sections that
follow. See:

• Considerations for User Administration Functions [Page 23]

• Considerations for Role and Profile Assignment Functions [Page 25]

1 Identity Management ABAP APIs

1.3 Integration With Central User Administration

24 September 2005

1.3.1 Considerations for User Administration Functions

Creating a User
The procedure for creating a user in a CUA landscape is the same as in an individual system
(see BAPI for Creating Users [Page 12]). There are no extensions to the
BAPI_USER_CREATE1 module.

Note however, when you use BAPI_USER_CREATE1 in a CUA landscape, you create a user in
the central system. The user is initially inactive and cannot log on until roles or profiles are
assigned. See BAPIs for Role Assignment [Page 18] or BAPIs for Profile Assignment [Page 20]
and Considerations for Role and Profile Assignment Functions [Page 25].

Modifying a User
When modifying a user in a CUA landscape, take the following into consideration:

• The API for modifying a user is BAPI_USER_CHANGE as described in BAPI for Modifying
Users [Page 13].

• When changing user attributes using this BAPI, you change the attributes in the central
system.

• It is possible to change multiple attributes and the changes are executed according to the
setting associated with each attribute. Therefore, global attributes are changed in the
central system and distributed and those attributes that are to be maintained locally are
filtered out and not changed.

Local attributes should be maintained using the maintenance functions
(transactions SU01 or SU3) in the child systems.

Locking or Unlocking Users
The function modules to use for locking or unlocking users are BAPI_USER_LOCK and
BAPI_USER_UNLOCK respectively.

There are two different types of locks that can be set in a CUA landscape: a global lock in the
central system and local locks in child systems. When setting a lock when using an IAM system
that is connected to the CUA central system, a global lock is set.

If both global and local locks are set, then unlocking a user in the child system does not unlock
the user in the CUA, and therefore, the global lock remains set.

 1 Identity Management ABAP APIs

 1.3 Integration With Central User Administration

September 2005 25

Deleting Users
Because additional data is associated with users, for example, change documents, you should
consider deactivating them instead of deleting them. To deactivate a user, either lock it or specify
a validity period.

No license fees are collected for deactivated users.

If it is necessary to delete users, use the function module BAPI_USER_DELETE. If the IAM
system is connected to the central CUA system, then the user is deleted in the central system
and in the child systems.

Setting Initial Passwords and Changing Passwords
You can use BAPI_USER_CHANGE to set a user’s initial password in the CUA’s central system.
This initial password is distributed to the child systems when a user is created. However, you can
only change existing passwords locally, you cannot change them in the central system.

See also BAPIs for Setting Passwords [Page 15].

1.3.2 Considerations for Role and Profile Assignment
Functions
In a CUA landscape, roles or profiles can be assigned to users either in the child systems or in
the central system. If the role or profile assignment takes place in the central system, the central
system must have information about which roles or profiles exist in which systems. The actual
roles or profiles do not need to exist in the central system.

To maintain a user’s role assignment, use the function module
BAPI_USER_LOCACTGROUPS_READ to read the existing assignment. Modify it, and reassign
the changed roles using the module BAPI_USER_LOCACTGROUPS_ASSIGN. (To maintain
profile assignments, use the function modules BAPI_USER_LOCPROFILES_READ and
BAPI_USER_LOCPROFILES_ASSIGN accordingly.)

To delete role or profile assignments, use the function modules
BAPI_USER_LOCACTGROUPS_DELETE and BAPI_USER_LOCPROFILES_DELETE
respectively.

For the recommended landscape where the IAM system is connected to the CUA
central system, we recommend setting the role or profile assignment
maintenance attribute to global. With this configuration, the assignment is
maintained in the central system and distributed to the child systems.
If the assignment maintenance attribute is set to local, then the role or profile is
only assigned in the central system. The local administrators then have to
maintain the role or profile assignments using the maintenance transactions
SU01 or PFCG.

1 Identity Management ABAP APIs

1.4 Appendix

26 September 2005

1.4 Appendix
The following topics provide summaries of the IAM BAPIs and function modules:

• Overview of IAM BAPIs and Function Modules [Page 26]

• Parameters for BAPI_HELPVALUES_GET [Page 27]

• Includes Used by IAM_API_TESTFRAME [Page 37]

1.4.1 Overview of IAM BAPIs and Function Modules
The table below summarizes the BAPIs and function modules used for identity management in
SAP NetWeaver.

BAPIs and Function Modules Used for Identity Management

Purpose RFC Function BAPI Method

Obtain a list of users BAPI_USER_GETLIST USER.GetList()

Obtain information about users BAPI_USER_GET_DETAIL USER.GetDetail()

Value help BAPI_HELPVALUES_GET Helpvalues.GetList()

Create users BAPI_USER_CREATE1 USER.Create1()

Modify users BAPI_USER_CHANGE USER.Change()

Delete users BAPI_USER_DELETE USER.Delete()

Set initial passwords BAPI_USER_CHANGE USER.Change()

Set a productive password SUSR_USER_CHANGE_
PASSWORD_RFC

None

Lock users BAPI_USER_LOCK USER.Lock()

Unlock users BAPI_USER_UNLOCK USER.Unlock()

Obtain a list of companies BAPI_HELPVALUES_GET Helpvalues.GetList()

Obtain information about a
company

BAPI_ADDRESSORG_
DETAIL

AddressOrg.FindDetail()

Modify address information of a
company

BAPI_ADDRESSORG_
CHANGE

AddressOrg.Update()

Obtain a list of roles PRGN_ROLE_GETLIST None

List role assignments BAPI_USER_GET_DETAIL USER.GetDetail()

Assign roles BAPI_USER_ACTGROUPS_
ASSIGN

USER.ActgroupsAssign()

Delete role assignments BAPI_USER_ACTGROUPS_
DELETE

USER.ActgroupsDelete()

Obtain a list of profiles BAPI_HELPVALUES_GET Helpvalues.GetList()

List profile assignments BAPI_USER_GET_DETAIL USER.GetDetail()

Assign profiles BAPI_USER_PROFILES_
ASSIGN

USER.ProfilesAssign()

Delete profile assignments BAPI_USER_PROFILES_
DELETE

USER.ProfilesDelete()

 1 Identity Management ABAP APIs

 1.4 Appendix

September 2005 27

You can see how these functions are used in the test program IAM_API_TESTFRAME.

The table below summarizes the BAPIs to use for certain functions if the IAM system connects to
a CUA landscape.

BAPIs Used for CUA Identity Management

Purpose RFC Function BAPI Method

Read (prior to modifying)
role assignments

BAPI_USER_LOCACTGROUPS_
READ

USER.LocActgroupsRead

Change role assignments BAPI_USER_LOCACTGROUPS_
ASSIGN

USER.LocActgroupsAssig
n

Delete role assignments BAPI_USER_LOCACTGROUPS_
DELETE

USER.LocActgroupsDelet
e

Read (prior to modifying)
profile assignments

BAPI_USER_LOCPROFILES_
READ

USER.LocProfilesRead

Change profile assignments BAPI_USER_LOCPROFILES_
ASSIGN

USER.LocProfilesAssign

Delete profile assignments BAPI_USER_LOCPROFILES_
DELETE

USER.LocProfilesDelete

1.4.2 Sample Parameters for BAPI_HELPVALUES_GET
The function module BAPI_HELPVALUES_GET can be used to obtain value help (F4-help) for
several IAM-relevant object attributes, for example, roles, profiles or companies.

The tables below show possible uses of the module BAPI_HELPVALUES_GET to obtain such
information.

You can use the function builder (transaction SE37) to test the function module
using these parameters. Use the default values for parameters that are not
provided in the tables, for example OBJNAME=<blank>, FIELD=<blank>, or
DESCRIPTIONONLY=<blank>. Use MAX_OF_ROWS to limit the number of
entries returned.

User Default Values

Value Help: Date Format

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER DEFAULTS

FIELD DATFM

1 Identity Management ABAP APIs

1.4 Appendix

28 September 2005

Value Help: Date Format (continued)

Table Parameter (Export) Value

HELPVALUES <list of available date formats>

VALUES_FOR_FIELD <list of values that apply to the
date formats>

DESCRIPTION_FOR_HELPVALUES <metadata to use for
descriptions, for example, for
list headings>

Example:

* Call the API
 call function 'BAPI_HELPVALUES_GET'
 exporting
 objtype = 'USER'
* OBJNAME = ' '
 method = 'GETDETAIL'
 parameter = 'DEFAULTS'
 field = ‘DATFM’
* EXPLICIT_SHLP =
* MAX_OF_ROWS = 0
* DESCRIPTIONONLY = ' '
 importing
 return = lsreturn
 tables
* SELECTION_FOR_HELPVALUES =
 helpvalues = helpvalues
 values_for_field = values_for_field
 description_for_helpvalues = description
 .

Value Help: Date Format (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER DEFAULTS

FIELD DATFM

EXPLICIT_SHLP: SHLPNAME XUDATFM

EXPLICIT_SHLP: SH FV

Table Parameter (Export) Value

HELPVALUES <list of available date formats>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

 1 Identity Management ABAP APIs

 1.4 Appendix

September 2005 29

Value Help: Decimal Point Formats (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER DEFAULTS

FIELD DCPFM

EXPLICIT_SHLP: SHLPNAME XUDCPFM

EXPLICIT_SHLP: SH FV

Table Parameter (Export) Value

HELPVALUES <list of decimal point formats>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: Printers (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER DEFAULTS

FIELD SPLD

EXPLICIT_SHLP: SHLPNAME H_TSP03

EXPLICIT_SHLP: SH SH

Table Parameter (Export) Value

HELPVALUES <list of available printers>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: Start Menus (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER DEFAULTS

FIELD START_Menu

EXPLICIT_SHLP: SHLPNAME S_TTREE_BMEN

EXPLICIT_SHLP: SH SH

Table Parameter (Export) Value

HELPVALUES <list of available start menus>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

1 Identity Management ABAP APIs

1.4 Appendix

30 September 2005

Company Address

Value Help: Company Address

Parameter (Import) Value

OBJTYPE USRCOMPANY

METHOD DISPLAY

PARAMETER COMPANY

Table Parameter (Export) Value

HELPVALUES <list of available company
addresses>

VALUES_FOR_FIELD <list of values to use for company
addresses>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: Company Address (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USRCOMPANY

METHOD DISPLAY

PARAMETER COMPANY

EXPLICIT_SHLP: SHLPNAME USCOMPANY_ADDR

EXPLICIT_SHLP: SH SH

Table Parameter (Export) Value

HELPVALUES <list of available company addresses

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Profiles

You cannot use the value help to obtain system-specific profiles from the CUA.
You can only obtain profiles from the local systems.

Value Help: Single Profiles (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER PROFILES

EXPLICIT_SHLP: SHLPNAME PROFILES_SINGLE_ACTIVE

EXPLICIT_SHLP: SH SH

 1 Identity Management ABAP APIs

 1.4 Appendix

September 2005 31

Value Help: Single Profiles (with Specific Search Help Type) (continued)

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

TYP

SELECTION_FOR_HELPVALUES:
SIGN

I

SELECTION_FOR_HELPVALUES:
OPTION

EQ

SELECTION_FOR_HELPVALUES:
LOW

S

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <list of available single profiles>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: Composite Profiles (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER PROFILES

FIELD <blank>

EXPLICIT_SHLP: SHLPNAME PROFILES_COMPOSITE_ACTIVE

EXPLICIT_SHLP: SH SH

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

TYP

SELECTION_FOR_HELPVALUES:
SIGN

I

SELECTION_FOR_HELPVALUES:
OPTION

EQ

SELECTION_FOR_HELPVALUES:
LOW

C

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <list of available composite
profiles>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

1 Identity Management ABAP APIs

1.4 Appendix

32 September 2005

Value Help: Generated Profiles (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER PROFILES

EXPLICIT_SHLP: SHLPNAME PROFILES_GENERATED_ACTIVE

EXPLICIT_SHLP: SH SH

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

TYP

SELECTION_FOR_HELPVALUES:
SIGN

I

SELECTION_FOR_HELPVALUES:
OPTION

EQ

SELECTION_FOR_HELPVALUES:
LOW

G

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <list of available generated
profiles>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: All Profiles (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER PROFILES

EXPLICIT_SHLP: SHLPNAME PROFILES_SINGLE_ACTIVE

EXPLICIT_SHLP:SH SH

Table Parameter (Export) Value

HELPVALUES <list of all available profiles>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

 1 Identity Management ABAP APIs

 1.4 Appendix

September 2005 33

Roles

You cannot use the value help to obtain system-specific roles from the CUA. You
can only obtain the roles from the local systems.

Value Help: Single Roles (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD ACTGROUPSASSIGN

PARAMETER ACTIVITYGROUPS

FIELD AGR_NAME

EXPLICIT_SHLP: SHLPNAME AGR_SINGLE

EXPLICIT_SHLP: SH SH

Table Parameter (Export) Value

HELPVALUES <list of available single roles>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: Composite Roles (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD ACTGROUPSASSIGN

PARAMETER ACTIVITYGROUPS

FIELD AGR_NAME

EXPLICIT_SHLP: SHLPNAME AGR_COLL

EXPLICIT_SHLP: SH SH

Table Parameter (Export) Value

HELPVALUES <list of available composite roles>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

1 Identity Management ABAP APIs

1.4 Appendix

34 September 2005

Users

Although you can use the value help BAPI to obtain a list of users, alternatively,
you can use BAPI_USER_GETLIST. (See BAPIs for User Enquiry [Page 10].)

Value Help: User by Last Name (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER USERNAME

EXPLICIT_SHLP: SHLPNAME USER_ADDR

EXPLICIT_SHLP:SH SH

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

MC_NAMELAS

SELECTION_FOR_HELPVALUES:
SIGN

I

SELECTION_FOR_HELPVALUES:
OPTION

EQ

SELECTION_FOR_HELPVALUES:
LOW

<last_name_of_user>

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <user accounts whose last name
matches search criteria>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Value Help: User by User Group

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER USERNAME

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

CLASS

SELECTION_FOR_HELPVALUES:
SIGN

I

 1 Identity Management ABAP APIs

 1.4 Appendix

September 2005 35

Value Help: User by User Group (continued)

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
OPTION

CP

SELECTION_FOR_HELPVALUES:
LOW

L*

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <user accounts whose user group
matches search criteria>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

Reference Users

Value Help: Reference User

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER USERNAME

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

USTYP

SELECTION_FOR_HELPVALUES:
SIGN

I

SELECTION_FOR_HELPVALUES:
OPTION

EQ

SELECTION_FOR_HELPVALUES:
LOW

L

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <list of available reference users>

VALUES_FOR_FIELD <list of values that apply to the
reference users>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

1 Identity Management ABAP APIs

1.4 Appendix

36 September 2005

Value Help: Reference User (with Specific Search Help Type)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER USERNAME

EXPLICIT_SHLP: SHLPNAME USREFUSER

EXPLICIT_SHLP: SH SH

Table Parameter (Import) Value

SELECTION_FOR_HELPVALUES:
SELECT_FLD

USTYP

SELECTION_FOR_HELPVALUES:
SIGN

I

SELECTION_FOR_HELPVALUES:
OPTION

EQ

SELECTION_FOR_HELPVALUES:
LOW

L

SELECTION_FOR_HELPVALUES:
HIGH

<blank>

Table Parameter (Export) Value

HELPVALUES <list of available reference users>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

User Groups

Value Help: User Groups (available as of SAP NW 2004s)

Parameter (Import) Value

OBJTYPE USER

METHOD GETDETAIL

PARAMETER LOGONDATA

FIELD CLASS

EXPLICIT_SHLP: SHLPNAME USGRP

EXPLICIT_SHLP: SH CT

Table Parameter (Export) Value

HELPVALUES <list of available user groups>

DESCRIPTION_FOR_HELPVALUES <metadata to use for descriptions>

 1 Identity Management ABAP APIs

 1.4 Appendix

September 2005 37

1.4.3 Includes Used by IAM_API_TESTFRAME
The table below summarizes the functions demonstrated by the test program
IAM_API_TESTFRAME.

IAM_API_TESTFRAME Functions

Function Include BAPI or Function Module
Used

Get parameters for the input
screen

IAM_TOP None

Obtain a list of users IAM_USERLIST BAPI_USER_GETLIST

Obtain information about
users

IAM_USERDETAILS BAPI_USER_GET_DETAIL

Create users IAM_USERCREATE BAPI_USER_CREATE1

Modify users (also specifies a
second input screen)

IAM_USERCHANGE BAPI_USER_CHANGE

Lock users IAM_USERLOCK BAPI_USER_LOCK

Unlock users IAM_USERLOCK BAPI_USER_UNLOCK

List available companies IAM_COMPANYLIST BAPI_HELPVALUES_GET

Obtain information about a
company

IAM_COMPANYDETAILS BAPI_ADDRESSORG_GETD
ETAIL

List available roles IAM_ROLELIST PRGN_GET_ROLELIST

List role assignments IAM_USEROLES BAPI_USER_GET_DETAIL

Assign roles to users IAM_ROLEASSIGN BAPI_USER_ACTGROUPS_
ASSIGN

Delete role assignments IAM_ROLEASSIGN_DELETE BAPI_USER_ACTGROUPS_
DELETE

List available profiles IAM_PROFILELIST BAPI_HELPVALUES_GET

2 Identity Management Java APIs

1.4 Appendix

38 September 2005

2 Identity Management Java APIs
Purpose
This section describes how to use the identity management Java APIs for managing users,
groups, and roles when using the User Management Engine (UME) for identity management with
SAP systems. When using this scenario, the available UME APIs are provided using the Service
Provisioning Markup Language (SPML) standard.

For more information about SPML, see www.openspml.org or www.oasis-
open.org.

This documentation does not describe the details of each API as these are documented in the
JavaDocs for the API; it simply introduces the concepts and highlights those aspects that need
special consideration.

Integration
The J2EE Engine accepts and processes the SPML request using Simple Object Access
Protocol (SOAP) messages (according to the SPML 1.0 Bindings specification).

The URL address used by SPML service on the J2EE Engine is
<server>:<port>/spml/spmlservice.

Features
• You can perform the following functions on user, group and role objects using the identity

management SPML APIs:

 Creating objects

 Modifying objects

 Searching for objects

 Deleting objects

These functions can also be bundled together in batch requests.

• The APIs can be used for user management with the UME with all of the supported data
sources (SAP system database, LDAP server or other database).

Constraints
• SAP role objects cannot be created or deleted using these APIs.

• The use of digital certificates is not supported.

• Only certain ABAP attributes are supported.

Prerequisites
Available Releases

The APIs are available as of SAP NetWeaver ’04 SPS 14 and SAP NetWeaver 2004s SPS 05.

Security Role Assignments

The user who needs access to the SPML service on the J2EE Engine needs to be assigned a
UME role that contains the action UME.Manage_All_Companies.

 2 Identity Management Java APIs

 2.1 APIs for User Administration Functions in Java

September 2005 39

2.1 APIs for User Administration Functions in
Java
SPML APIs are available for use with the UME for the following functions:

• Reading the Schema [Page 39]

• Creating Objects [Page 39]

• Modifying Objects [Page 41]

• Deleting Objects [Page 43]

• Changing Passwords [Page 44]

• Locking and Unlocking Users [Page 44]

• Searching for Objects or Obtaining Attribute Values for Objects [Page 45]

• Using Batch Functions [Page 46]

2.1.1 Reading the Schema

Use
The schema contains the description, object class names and attribute names defined in the
UME SPML API. Before you perform any functions using the UME SPML API, you need to read
the schema to obtain the available attributes.

The default schema provided with SAP NetWeaver 2004s is provided with the J2EE Engine. You
can find a description of the attributes in the Appendix [Page 48].

Syntax
The SPML request to read the schema is:

<schemaRequest requestID="schema_01">
 <schemaIdentifier
 schemaIDType="urn:oasis:names:tc:SPML:1:0#GenericString">
 <schemaID>SAPprincipals</schemaID>
 </schemaIdentifier>
</schemaRequest>

The SPML response contains the schema defined by the UME SPML API.

2.1.2 Creating Objects

Use
Use the SPML request addRequest to create objects defined in the schema, that is sapuser
and sapgroup objects. The SPML service on the J2EE Engine creates and returns the object’s
ID.

You cannot create roles using the SPML create request. Create roles in the
backend system.

2 Identity Management Java APIs

2.1 APIs for User Administration Functions in Java

40 September 2005

Example
The following examples show how to use the SPML request for creating objects.

SPML Request for Creating a User
 <spml:addRequest requestID="add-1"
 xmlns="urn:oasis:names:tc:SPML:1:0"
 xmlns:spml="urn:oasis:names:tc:SPML:1:0"
 xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

 <spml:attributes>
 <spml:attr name="objectclass"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <dsml:value>sapuser</dsml:value>
 </spml:attr>
 <spml:attr name="logonname"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <dsml:value>spmltest</dsml:value>
 </spml:attr>
 <spml:attr name="lastname"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <dsml:value>Test</dsml:value>
 </spml:attr>
 <spml:attr name="firstname"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <dsml:value>Hugo</dsml:value>
 </spml:attr>
 <spml:attr name="password"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <dsml:value>initial01</dsml:value>
 </spml:attr>
 <spml:attr name="validto"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">
 <dsml:value>20051031000000Z</dsml:value>
 </spml:attr>
 </spml:attributes>
 </spml:addRequest>

SPML Response After Creating a User
 <addResponse xmlns="urn:oasis:names:tc:SPML:1:0"
result="urn:oasis:names:tc:SPML:1:0#success" requestID="add-1">
 <identifier xmlns=""
 type="urn:oasis:names:tc:SPML:1:0#GenericString">
 <id>USER.PRIVATE_DATASOURCE.un:spmltest</id>
 </identifier>
 </addResponse>

 2 Identity Management Java APIs

 2.1 APIs for User Administration Functions in Java

September 2005 41

SPML Request for Creating a Group

This request creates the group with the unique name SAPTestGroup_1.

 <addRequest requestID="create_1">
 <attributes>
 <attr name="objectclass">
 <value>sapgroup</value>
 </attr>
 <attr name="uniquename">
 <value>SAPTestGroup_1</value>
 </attr>
 <attr name="description">
 <value>test group</value>
 </attr>
 </attributes>
 </addRequest>

2.1.3 Modifying Objects

Use
Use the SPML request modifyRequest to modify sapuser and sapgroup objects that
available using the UME SPML API.

Prerequisites
You know the object’s ID.

To obtain the object’s user ID, use the searchRequest request to search for the
object and obtain its ID. For more information, see Searching for Objects or
Obtaining Attribute Values for Objects [Page 45].

2 Identity Management Java APIs

2.1 APIs for User Administration Functions in Java

42 September 2005

Example
The following examples show how to use the SPML request for modifying objects. Insert the
object’s ID in the <id> tag in the <identifier> block.

SPML Request for Changing or Adding New Attributes
 <modifyRequest
 requestID="mod_041104_3">
 <identifier
 type="GenericString">
 <id>USER.PRIVATE_DATASOURCE.un:spmltest</id>
 </identifier>
 <modifications>
 <modification
 name="islocked">
 <value>true</value>
 </modification>
 <modification
 name="validto">
 <value>20061231000000Z</value>
 </modification>
 <modification
 name="lastname">
 <value>Test Last Name</value>
 </modification>
 <modification
 name="email">
 <value>spml.test@mycompany.org</value>
 </modification>
 </modifications>
 </modifyRequest>

SPML Response for Modifying Objects

This response indicates that the changes were processed successfully.

<modifyResponse xmlns="urn:oasis:names:tc:SPML:1:0"
requestID="mod_041104_3"
result="urn:oasis:names:tc:SPML:1:0#success"/>

SPML Request for Assigning a User to a New Group

This request assigns the user Administrator to the group SAPTestGroup_1.

 <modifyRequest>
 <identifier
 type="GenericString">

 <id>GRUP.PRIVATE_DATASOURCE.un:SAPTestGroup_1</id>
 </identifier>
 <modifications>
 <modification
 name="member"
 operation="add">

 <value>USER.PRIVATE_DATASOURCE.un:Administrator</value>
 </modification>
 </modifications>
 </modifyRequest>

 2 Identity Management Java APIs

 2.1 APIs for User Administration Functions in Java

September 2005 43

SPML Request for Assigning a User to a Role

This request assigns the user Administrator to the role TestAdmins.

 <modifyRequest>
 <identifier
 type="GenericString">

 <id>ROLE.UME_ROLE_PERSISTENCE.un:TestAdmins</id>
 </identifier>
 <modifications>
 <modification
 name="member"
 operation="add">

 <value>USER.PRIVATE_DATASOURCE.un:Administrator</value>
 </modification>
 </modifications>
 </modifyRequest>

2.1.4 Deleting Objects

Use
Use the SPML request deleteRequest to delete a single object.

Prerequisites
The object’s unique ID is known.

To obtain the object’s user ID, use the searchRequest request to search for the
object and obtain its ID. For more information, see Searching for Objects or
Obtaining Attribute Values for Objects [Page 45].

Example
The following examples show how to use the SPML request for deleting objects.

SPML Request for Deleting an Object
 <deleteRequest
 requestID="del_1">
 <identifier
 type="GenericString">

 <id>GRUP.PRIVATE_DATASOURCE.un:SAPTestGroup_1</id>
 </identifier>
 </deleteRequest>

SPML Response After Deleting an Object
<deleteResponse xmlns="urn:oasis:names:tc:SPML:1:0"
result="urn:oasis:names:tc:SPML:1:0#success" requestID="del_1"/>

2 Identity Management Java APIs

2.1 APIs for User Administration Functions in Java

44 September 2005

2.1.5 Changing or Resetting Passwords

Use
Use the modify request as described in Modifying Objects [Page 41] to change or reset
passwords. Note the following:

• To change a user’s password, include both the old and new passwords in the modification
element in the request. The corresponding attributes are oldpassword and password.

• To reset a user’s password, only include the new password in the password attribute in the
modification request. In this case, the password has an initial status and must be changed
the next time the user logs on.

Example
SPML Request for Changing a User’s Password
 <modifyRequest
 requestID="mod_041104_3">
 <identifier
 type="GenericString">
 <id>USER.PRIVATE_DATASOURCE.un:spmluser</id>
 </identifier>
 <modifications>
 <modification
 name="oldpassword">
 <value>password</value>
 </modification>
 <modification
 name="password">
 <value>newpassword</value>
 </modification>
 </modifications>
 </modifyRequest>

SPML Request for Resetting a User’s Password
 <modifyRequest
 requestID="mod_041104_3">
 <identifier
 type="GenericString">
 <id>USER.PRIVATE_DATASOURCE.un:spmluser</id>
 </identifier>
 <modifications>
 <modification
 name="init">
 <value>newpassword</value>
 </modification>
 </modifications>
 </modifyRequest>

 2 Identity Management Java APIs

 2.1 APIs for User Administration Functions in Java

September 2005 45

2.1.6 Locking and Unlocking Users

Use
To lock or unlock a user, use the modify request as described in Modifying Objects [Page 41]. To
lock the user set the islocked attribute to true. To unlock the user, set the attribute to false.

Example
SPML Request for Locking a User
 <modifyRequest
 requestID="mod_041104_3">
 <identifier
 type="GenericString">
 <id>USER.PRIVATE_DATASOURCE.un:spmluser</id>
 </identifier>
 <modifications>
 <modification
 name="islocked">
 <value>true</value>
 </modification>
 </modifications>
 </modifyRequest>

2.1.7 Searching for Objects or Obtaining Attribute
Values for Objects

Use
Use the SPML request searchRequest to search for objects defined in the schema. When
sending a search request, you also specify the attributes that should be returned for the object.
In this way, you can also obtain attribute values for specific objects.

The search request consists of three elements:

• <searchBase>: Specifies the starting point for the search

• <filter>: Specifies the filter to use for searching

• <attributes>: Specifies the attributes to return.

Search Filters
The filter contains a set of criteria to search for using either the <equalityMatch> element for
a complete match, or the <substrings> element for a match containing the substring.

Place the filter elements in a conditional operator block using <and> or <or> elements to specify
how the elements are to be considered.

2 Identity Management Java APIs

2.1 APIs for User Administration Functions in Java

46 September 2005

Object Classes
When searching for objects, you first need to specify the object class to search for. The object
classes specified in the schema provided with the J2EE Engine are sapuser, sapgroup, and
saprole. To specify which class to use, you can either:

• Specify the object class as an ID in the search base as shown below

<searchBase
 type="urn:urn:oasis:names:tc:SPML:1:0#GenericString">
 <id>sapuser</id>
</searchBase>

• Specify the object class in the search filter as shown below

<filter>
 <and>
 <equalityMatch
 name="objectclass">
 <value>sapuser</value>
 </equalityMatch>
 <substrings
 name="logonname">
 <initial>d</initial>
 </substrings>
 </and>
</filter>

If you specify the object class within the filter, then set up your filter to search for
the object class and additional filter elements by including an <and> conditional
block in the filter’s first level.
For additional filter elements, only one level of conditions is supported, using
either <and> or <or>. You cannot use additional nested conditions, nor can you
mix <and> and <or> conditional operators.

Obtaining Attributes for an Object
Use the <attributes> element to specify which attributes should be returned by the request.

In this way, you can retrieve attribute values for objects, for example, to obtain
the object’s ID, which is needed for further operations such as modifying or
deleting objects.

Example
For examples of search requests and responses, see Examples for Search Requests and
Responses [SAP Library].

 2 Identity Management Java APIs

 2.1 APIs for User Administration Functions in Java

September 2005 47

2.1.8 Using Batch Functions

Use
Use the SPML request batchRequest to consolidate user management functions and process
them in batch mode.

The application calling the batch request has to set a unique request ID. This ID is used to obtain
the batch process’s status. Therefore, if the request ID set by the application is not unique, then
the batch request will fail.

Single requests are always processed synchronously. Batch requests can be processed
synchronously or asynchronously. For synchronous requests, you can also specify that the
single requests are to be processed sequentially or in parallel. See the table below for an
overview of the possible processing methods.

Batch Processing Methods

Timing Method Queuing Method

Synchronous Sequential or parallel

Asynchronous Parallel

Note the following:

• If you specify a batch request to be processed asynchronously as well as sequentially, it
will be processed synchronously.

• The results of the batch request can only be read using the status request where the
request ID corresponds to the ID used for the original batch request.

• Unless the batch processing type is synchronous and sequential, the batch response
contains the information that the batch request is pending.

• Batch processing results are available for a limited period of time only (one day).

Example
The following example shows how to use the SPML batch request for managing objects.

SPML Batch Request

This request creates the group SAPTestGroup_2 and the users SAPUser1 and SAPUser2.

<batchRequest requestID="b2">
<addRequest requestID="create_1">
<attributes>
<attr name="objectclass">
<value>sapgroup</value>
</attr>
<attr name="uniquename">
<value>SAPTestGroup_2</value>
</attr>
<attr name="description">
<value>test group</value>
</attr>
</attributes>
</addRequest>
<addRequest requestID="create_2">
<attributes>

2 Identity Management Java APIs

2.1 APIs for User Administration Functions in Java

48 September 2005

<attr name="objectclass">
<value>sapuser</value>
</attr>
<attr name="logonname">
<value>SapUser1</value>
</attr>
<attr name="lastname">
<value>User1</value>
</attr>
<attr name="firstname">
<value>SAP</value>
</attr>
</attributes>
</addRequest>
<addRequest requestID="create_3">
<attributes>
<attr name="objectclass">
<value>sapuser</value>
</attr>
<attr name="logonname">
<value>SapUser2</value>
</attr>
<attr name="lastname">
<value>User2</value>
</attr>
<attr name="firstname">
<value>SAP</value>
</attr>
</attributes>
</addRequest>
</batchRequest>

SPML Batch Status Request

The following example shows how to obtain the status of the batch request with the ID b2.

<statusRequest requestID="b2"/>

SPML Cancel Batch Request

The following example shows how to cancel the batch quest with the ID b2.

<cancelRequest requestID="b2"/>

 2 Identity Management Java APIs

 2.2 Appendix: Schema Description

September 2005 49

2.2 Appendix: Schema Description
The tables below provide an overview of the schema description that is provided with the J2EE
Engine and used by the identity management APIs. You can read the schema description using
the SPML request schemaRequest.

The schema description is subject to change in future releases. Therefore, for the
most current and complete description, see the schema.xml file that is provided
with the J2EE Engine.

Schema Identifiers

Identifier Value

providerID SAP

schemaID SAPprincipals

Object Classes

Object Class Description

sapuser SAP system user object

saprole SAP system role object

sapgroup SAP system group object

Attributes Used by Object Classes

Attribute Used by
sapuser

Used by
saprole

Used by
sapgroup

Comment

logonname X Required attribute when
creating users.

firstname X

lastname X

salutation X

title X

jobtitle X

mobile X

telephone X

displayname X X X

description X X X

password X See Changing or Resetting
Passwords [Page 44].

oldpassword X Necessary when changing
passwords. See Changing
or Resetting Passwords
[Page 44].

email X

2 Identity Management Java APIs

2.2 Appendix: Schema Description

50 September 2005

Attributes Used by Object Classes (continued)

Attribute Used by
sapuser

Used by
saprole

Used by
sapgroup

Comment

fax X

locale X

timezone X

validfrom X

validto X

certificate X

lastmodifydate X X X

islocked X Boolean value (true or
false). See also Locking
and Unlocking Users [Page
44].

uniquename X X

member X X Specifies the users
assigned to either groups
or roles.

department X

id X X X Read-only. Set by the J2EE
Engine when an object is
created.

The attribute formats that are specified by the schema are primarily strings.
However, additional formatting rules may apply according to the data source
used, for example, for date formats.

	SAP Identity Management APIs
	21 Sep 2005 SAP AG
	Typographic Conventions
	Contents
	Identity Management APIs
	1 Identity Management ABAP APIs
	1.1 Concepts
	1.2 APIs for User Administration Functions in ABAP
	1.3 Integration With Central User Administration
	1.4 Appendix

	2 Identity Management Java APIs
	2.1 APIs for User Administration Functions in Java
	2.2 Appendix: Schema Description

	
	SAP Title Page

