
0.1 Security Framework in Sakai

The Sakai portal framework has implemented a sophisticated internal security mechanism with role-
based access control at a fairly fine grained function based level. We here summarise how this is
implemented and the procedures adopted in applying the rules. Sakai not only provides a portal client
interface rendered as HTML, but also has kernel components which expose a Web services interface
or WebDav. It also has a WSRP producer integrated in the kernel.

Users: Each user of the portal framework has an account. Information stored includes [userid — first
name — last name — e-mail — passwd — type]. We often use e-mail for userid, but it could also
be the FedId. Validation of the userid/ passwd pair is the primary authentication mechanism.
Clearly any other authenticatio can be used provided the user can then be mapped onto a Sakai
account. [The uses of the type field are yet to be understood, but may include any string such as
“friend”, “guest”, “registered”.] The account is identified in the DB with an InternalId, either
the userid or by a unique string, depending on how it was created.

Types: A User can have a Type which is defined when the user is created. This has system-wide
scope. The user’s account is pre-populated using the template !user.template.type. Examples
include “guest”, “registered”.

Sites: A site, or “worksite” is a specific DB area for related content. It can be “public”, which means
it can be joined by any quthenticated user, or it is “private” which means it is moderated by one
or more users with “maintain” or equivalent role for addint participants to the site. Participants
can be added with any of the roles which have been defined for that site; “access” and “maintain”
are the default ones. A site is identified in the DB with a unique SiteId string. A site can also
have a type, e.g. “project” or “course” are defaults.

Pages: A page within a site has an associated left hand menu button and is a view onto a set of tools
and corresponding data. A page has a PageId which is a unique string.

Tools: Each page on a site contains one or more tools arrange in one- or two-column layout A specific
tool has a ToolId which is a unique string. For instance “sakai.resources” is a resource manage-
ment tool which can be configured for each site. Tools can be developed to apply permissions
based on users’ roles.

Role: A role is identified by a RoleId which is a name. Users’ base roles are “.anon” or “.auth”
depending if the have not or have logged into Sakai. Other roles can be defined (see below) and
have scope within a site.

Realms: Realms are used to associate roles with users for a particular activity. A site realm is
identifies as /site/SideId. The definition of the role applies within a Realm. A Realm may
contain many different roles. “access” and “maintain” are the default ones. Other types of realm
are /content/user, /content/group. In addition to these specific realms, there are defaults
such as !group.template, !site.template, !user.template, !site.user, !pubview, etc.

Function: Functions (or permissions) within a set for each role in a realm can be switched on or
off. For instance a user with role “.anon”, i.e. the public, will probably only have function
“content.read” allowed.

Group:

1



Sakai Realm

Role

Permission/
Lock

Worksite

Tool

RWiki

Current 
Page

Previous 
Versions

RWiki.read
RWiki.write

RWiki.admin

RWiki.super
admin

realm has one or more roles

role contains a number of locks

worksites have a realm

user
a user has a role
within a realm

worksites contian one or more tools

rwiki is a tool

rwiki contains current pages

edited pages have previous versions

page 
permissions

A page

current page is a type of page

previous page is a type of page

a page has 8 page permissions

a page has an owner

a page belongs
to a group of users

group 
permissions

owner 
permissions

public 
permissions

public permissions are a 
type of page permissions

group permissions are a
type of page permissions

owner page permissions are
a type of page permission

owner

group

a group is defined by a realm

an owner is a user 
(one user)

what an owner can do to a page
is defined by owner permissions

a user is a member of a group
by virtue of having a role within a realm

what a member of the group can
do to a page is defined by group
permissions and the permissions of
their role within the group

Users are members of worksites

site.visit

RWiki Tool 
Concepts

RWiki Sakai 
Configuration

group permissions require locks

rwiki.create

user must have rwiki.create to create a page

superadmin bypasses all permissions

public access may require other sakai permissions, if the portal 
requires for access

Sakai RWiki Entity Model

Page 
Content

Page has Content

Page SHA1 
Hash

A page has a SHA1 hash

Version 20051026

Changes:
20051017: Restrucutre for move content out of index tables, 
added hashing of content and lazy loading.
20051026: changed user to userid for Oracle.

Figure 1: Rwiki Entity Model for Sakai

Alias: In the system, an alias can be used to provide a user-friendly name for an Id. This is mainly
for presentation purposes, as aliases can be ambiguous and referencing content by alias will not
work. For instance r.j.allan@dl.ac.uk which is my UserId can be aliased to “Rob”. Sites and
other objects can be given an alias.

:

To illustrate some of the complexity of the system we use the entity model diagram developed for the
Rwiki tool at Cambridge, see Figure 1. Similar models could be developed for each tool and used
to ensure consistency and appropriate behaviour within the framework. Note also that the upper
part of this figure illustrates the relationships between realm, worksite, tool, user and role as already
discussed. The concepts of group, owner, permission, page, content, lock are also shown.

Table 1 shows a subset of the functions associated with a few Sakai worksite roles. A list (incom-
plete) of functions is given on Sakaipedia http://bugs.sakaiproject.org/confluence/display/
ENC/Permissions+list.

In an implementation for a teaching extablishement the roles could be extended to be: Affiliate,
Assistant, Candidate, Instructor, Member, Observer, Student in addition to access and maintain
(example from Chuck Severance).

Site templates can be defined; the defaults are “course” and “project”. Each template, such as
!site.template has an associated real containing a number of pre-defined roles, e.g. maintain

2

http://bugs.sakaiproject.org/confluence/display/ENC/Permissions+list
http://bugs.sakaiproject.org/confluence/display/ENC/Permissions+list
http://bugs.sakaiproject.org/confluence/display/ENC/Permissions+list


Table 1: Example Functionality for Tools based on Sakai Worksite Roles.
Function Role Maintain Member * Access
calendar.all.groups yes
calendar.delete.any yes
calendar.delete.own yes yes
calendar.import
calendar.new yes yes
calendar.read yes yes yes
calendar.revise.any yes
calendar.revise.own yes yes
content.all.groups yes
content.delete.any yes
content.delete.own yes yes
content.hidden
content.new yes yes
content.read yes yes yes
content.revise.any yes
content.revise.own yes yes
disc.delete.any yes
disc.delete.own yes
disc.new yes yes yes
disc.new.topic yes
disc.read yes yes yes
disc.revise.any yes
disc.revise.own yes yes yes
rwiki.admin yes
rwiki.create yes yes yes
rwiki.read yes yes yes
rwiki.superadmin
rwiki.update yes yes yes

* “Member” is not a default role, but has been added to illustrate how it can be used.

3



and access. !site.template.course has “Instructor”, “Student” and “Teaching Assistant” pre de-
fined. !site.template.portfolio has “CIG Coordinator”, “CIG Participant”, “Evaluator” and
“Reviewer” pre defined. When a site is first created an appropriate template is chosen for it and these
roles with all their permissions are inherited for the tools it will contain. Very similar templates apply
to groups.

User templates can also be defined according to type, as shown above. With each template comes a
realm and associated roles. There are two which are slightly difference to site roles, namely “.auth”
and “.anon”. The “.auth” role, for an authenticated user, contains the possible “side.add” function
which controls whether the user can create new worksites. This is included by default only in the
!user.template.maintain realm.

How are the rules applied? Hierarchy?

[more]

Publically viewable content and the Gateway site

Currently, only a small number of tools have the option to make the content they control publically
viewable. These include Site Info, Announcement, Resources, Syllabus. Links to viewable content are
automatically included in the output of the Search tool which can be configured into the public-facing
Gateway site. Other tools can be added to this site and pages are configurable as normal. For instance
an iFrame can be used to display a Web page to users not yet logged in using the Web Content tool.
[We are currently investigating how to extend this for other tools.]

Defaults, setting up a new site as admin or as a power user

The default roles for users added to the system and included as members in new sites are “admin” and
“maintain”. All Sakai tools understand these roles and should behave appropriately. A user cannot
have a default role, but one can be set for all users joining a site with the Membership tool or for
multiple participant additions with the Site Info tool. Once a participant is added to a site, their role
can be changed by the site owner or admin to any of the roles defined for that site, e.g. “member” as
above.

Importing Content from other sites

It is possible to select another site from which to import content, e.g. when configuring the Resources
tool. The use of this facility, and its behaviour under the security rules desribed here, requires further
investigation.

Sakai API for using functions and roles

API needs a better description for TPP developers.

Authorisation in Sakai is controlled by “providers”. There are User Provider, Role (Realm) Provider
and Site Provider which access data stored in the underlying DB. The Provider architecture is designed
to take in a wide range of enterprise information sources.

The User (UserDirectory) Provider can fully populate new user objects and responds to API queries
about UserId or passwd, e.g. at log-in time. JLDAP, OpenLDAP, Kerberos, and IMS Enterpries can

4



be plugged into this provider. Future work is to support the existence of proxy credentials inside
Sakai.

The Site Provider is invoked when a new site is created. The type is chosen and the new site populated
with information, such as start date, end date, title. APIs are available to check this information.

The Realm Provider is also checked at log-in time. It defines what sites and roles within each site the
user will have. This information is held in Sakai internal tables. The Realm Provider can take in roles
from external enterprise sources, but will apply rules to ensure there are no security breaches possible.

5


	Security Framework in Sakai
	20 Feb 2008 Sakai Foundation
	How are the rules applied? Hierarchy?
	Publically viewable content and the Gateway site
	Defaults, setting up a new site as admin or as a power user
	Importing Content from other sites
	Sakai API for using functions and roles

	 
	Sakai Title Page

