
Sakai and Portals

Charles Severance
Portals and Portlets Workshop

July 2006

State of Sakai in one Slide....

� Sakai is used for Collaboration, Teaching, and Learning
� Sakai Project started January 2004 (2.5 years old)
� Non-profit Sakai Foundation October 2005
� Open Source - 100% free - Apache License
� Voluntary financial support from 90+ Higher Education, 15 companies,

each paying $10,000 / year = $ 1M revenue
� Six Sakai Foundation paid staff members
� Over 200 installations of Sakai
� Three full-scale installations > 50,000 users
� Twenty+ installations with > 500 users (often pilot uses)
� 100+ people active in developing and testing Sakai releases

Outline
� History

� Sakai and JSR-168
� Sakai and WSRP
� Sakai and JSR-168 (part 2)

� Going Forward
� JSR-168 portlets
� WSRP / uPortal
� UNISA�s Work
� Sakai and RSS
� Sakai�s internal JSR-168

� This is a moving target and it has been a challenge to
find dedicated resources for this portal/portlet work

History - Sakai and JSR-168
� What we hoped in 2003

� Sakai�s presentation layer *would* be JSR-168
� Using JSR-168 would make Sakai tools portable between JSR-168

compliant portal containers
� Sakai tools would just �be portlets� which would work in any portal

� What happened
� As a standard, JSR-168 was just too small and basic to support

Sakai�s requirements in critical areas
� Navigation
� Cross-portlet context
� Support for �services� that work across portlet

� How we reacted
� Look into WSRP and see if we could solve the problems using two

JVMs (one for the Portal and one for Sakai)

History - Sakai and WSRP 1.0
� What we hoped

� By separating the problem into two JVMs across WSRP
Sakai could provide our tools all the support we needed and
just move markup back and forth.

� What happened
� We built a tightly integrated WSRP producer in Sakai 2.1
� WSRP provisioning is very poor - does not meet user

requirements - perhaps this is just a limitation of how portal
writers architect simple WSRP consumers - but it is reality

� WSRP interoperability is poor between containers
� Dual provisioning does not make administrators happy

� How we reacted
� Wrote the JSR-168 Sakai proxy portlets

Sakai WSRP

� Alpha quality consumer from Daresbury
� Alpha quality producer from SunGard

� Sakai has a �sakai.fragment� - indicates
body only response, and delegated URLs

� Not all tools - velocity tools work best
� CSS is still Sakai�s CSS
� Provisioning is weak - must look at Sakai

tool placement GUIDs and construct
handles

Portlet = Placement

Kernel Tool
Registry

Sakai WSRP
Provider

Tool A Tool B Tool C

Site
Placements

Request Filter

Apache WSRP4J

WSRP Consumer
(uPortal)

Web Services

Mercury
Placements

High Level
Architecture

List Portlets Tool ID

Placement ID

Get Markup

URL Rewriting

Sakai Tools in uPortal 2.4.2

Announcement Tool (Mercury
Context) in LIFERAY Portal

Thanks to Andrew Petro (Yale) for this Screen Shot

History - Sakai and 168 (v2)

� What we hoped
� Provide a simple, basic capability that was totally portable for

people to use as long as they accepted the shortcomings
(iframes)

� What happened
� Using web services and iframes these portlets worked very

simply and pretty well and were pretty portable
� Some uptake - but iframes still limited user satisfaction
� Used in OGCE

� Where we are at
� Reasonable portlets - need to be improved

Sakai Gallery View

Sakai Tree View

How Tree View Works

uP
or

ta
l,

P
lu

to
, o

r G
rid

S
ph

er
e

S
ak

ai

W
eb

 S
vc

s
C

ha
ro

n
P

or
ta

l

S
ak

ai
P

or
tle

t

Login

ToolList

/portal/page/FF96

SakaiSite.getToolsDom
<sites>

<portal>http://localhost:8080/portal</portal>
<server>http://localhost:8080</server>
<gallery>http://localhost:8080/gallery</gallery>
<site>

<title>My Workspace</title>
<id>~csev</id>
<url>http://localhost:8080/portal/worksite/~csev</url>
<pages>

<page>
<id>af54f077-42d8-4922-80e3-59c158af2a9a</id>
<title>Home</title>
<url>http://localhost:8080/portal/page/af54f077-42d8-4922-80e3-59c158af2a9a</url>
<tools>

<tool>
<id>b7b19ad1-9053-4826-00f0-3a964cd20f77</id>
<title>Message of the Day</title>
<toolid>sakai.motd</toolid>
<url>http://localhost:8080/portal/tool/b7b19ad1-9053-4826-00f0-3a964cd20f77</url>

</tool>
<tool>

<id>85971b6b-e74e-40eb-80cb-93058368813c</id>
<title>My Workspace Information</title>
<toolid>sakai.iframe.myworkspace</toolid>
<url>http://localhost:8080/portal/tool/85971b6b-e74e-40eb-80cb-93058368813c</url>

</tool>
</tools>

</page>
</pages>

</site>
</sites>

New WS method is upwards compatible with
getSitesDom

Sakai Proxy Tool

Proxy Tool Selection

How Proxy Portlet Works

uP
or

ta
l,

P
lu

to
, o

r G
rid

S
ph

er
e

S
ak

ai

W
eb

 S
vc

s
C

ha
ro

n
P

or
ta

l

S
ak

ai
P

or
tle

t

Login

SiteList

/portal/page/FF96

1

2

Future Plans

� Explore Sakai and RSS
� Improve JSR-168 Portlets
� Improve WSRP / uPortal
� Review UNISA Portal Integration Plans
� Support JSR-168 within Sakai

� All of this depends on volunteer resources

Sakai Data
Interoperability

... interoperability
and data portability
are key elements...

EnterpriseEnterprise
DirectoryDirectory

StudentStudent
InformationInformation

AuthoringAuthoring
EnvironmentEnvironment

PersonalPersonal
LearningLearning

EnvironmentEnvironment

PortalPortal
EnvironmentEnvironment

CollaboarationCollaboaration
EnvironmentEnvironment

ContentContent
ManagementManagement

LMS SystemsLMS Systems

DataData
RepositoryRepository

Sakai and RSS

� Sakai will likely add a number of RSS
feeds for sites, tools, etc

� User-contextualized
� This can allow Sakai to be integrated

into a wide range of applications
including portals, browsers and desktop
apps

Future - Sakai 168 Portlets
� Improve use of iFrames so tools look as good when

shown as Portlets look as good as good as when
they are shown in Sakai - need auto frame resize

� Add coordinated AuthZ for proxy portlets so that
Sakai �trusts� the AUTHZ in the portal - no standard
for isUserInRole :(

� Allow direct placement of Sakai portlets in new
contexts with AuthZ controlled by the Portal (again
non-standard)

� (really tough) get rid of iFrames through a proxy layer
to rewrite URLs

Future - Sakai WSRP
Producer

� Build WSRP handle �/portal� that
produces the Sakai portal view in
WSRP markup
� Initially use iframes for the tool area
� Later eliminate iFrames

� Improve tool placement support - allow
the separate placement and
provisioning of new tools via WSRP.

Sakai WSRP - Going Forward

� Waited 1 year for community resource to step
forward

� UNISA will experiment with provisioning and
productionizing WSRP with a simple scope.

� Still want to do a replacement for Sakai�s internal
Aggregator which is available at a well-known handle
�/gallery�

WSRP Challenges

� Getting CSS/Javascipt right - solve by
putting Sakai CSS/Javascript into the
portal HEAD

� Eliminating iframes and working through
issues when we do back/refresh
differently

� Performance re-tuning

WSRP - UNISA Version
� UNISA will be replacing Sakai�s portal with uPortal by

January
� Will try to use WSRP - if this is too hard they will fall

back to a web proxy mechanism.
� The basic idea

� Provision from the SIS system into GAPs in uPortal
� Build providers in Sakai that pull from GAPs
� Build a WSRP handle convention that encodes the

�placement� in the handle
� Augment Sakai�s WSRP producer to auto-provision sites and

tools transparently when a new handle is encountered
� UNISA can constrain scope to insure on-time delivery

uPortal

WSRP Consumer
?site=COS101-06-Y1&page=Mesage+of+the+Day&tool=sakai.motd

GAPS
Authentication

& Group Access Control

WSRP Producer
Creates sites, pages,

tools on the fly if they
don't exist

W
SR

P
U

se
r,

Si
te

, P
ag

e,
 T

oo
l

as
 p

ar
am

et
er

s

Tool
Produces a
Fragment

Dispatch
Respond

W
eb

 S
er

vi
ce

s

Providers
Written specifically

for uPortal
API's

Sakai

uPortal Sakai at UNISA

UNISA Effect
� Upsides

� If all goes well - WSRP will be deployed in large-scale
production with a lot of developer eyes on both the uPortal
2.5 WSRP Consumer and Sakai 2.x WSRP producer

� Weaknesses
� UNISA�s limited scope will not produce a universal solution -

but it will move us to the point where iterative improvement
will be possible

� Risks
� UNISA decides WSRP is too hard so just writes their own

proxy tool which uses web services and ends up with a
purely point solution that is unreusable.

JSR-168 Support in Sakai

� Since Sakai�s API and tool environment
are a superset of JSR-168, it *should*
be simple

� Pluto 1.1 was written to be �embedded�
- instead of building �one portal�, make it
so that many applications can support
portlets

Use Cases for Sakai-168
� Prepare a Pluto-style portlet war file and drop it into Sakai as a

webapp
� Sakai finds the portlets in the web app and auto-registers them

as tools
� Users simply use Sakai�s Site Info tool to place portlets like any

other Sakai tool
� Portlets can be stealthable just like Sakai tools
� It will be possible to use any Sakai API within a JSR-168 Portlet
� Sakai will provide a JSR-168 complaint CSS so that portlets

have the same look and feel as Sakai tools
� Will work with all Sakai aggregators (Charon, OSP, Mercury �)

Number Guess A sample JSR-168 portlet which is a game to guess numbers

TestSuite1 JSR-168 Conformance Test Portlets

Major Components of Sakai-
168

� Implementing the PortletServlet to map
between the needs of the Sakai
Aggregator and Portlet

� Implementing the interfaces for
persistence and portlet data structures

Sakai-168 Initialization

� War preparation
� Using Sakai specific implementation for

PortletServlet in shared/lib, we plan to
transparently support Pluto�s war conventions.

� Developers can use Pluto�s ant target or other
Pluto-provided mechanisms to prepare their war
files.

� Portlet registration
� Prefer a completely automatic auto-registration

mechanism - perhaps PortletServlet can do this or
perhaps some system-wide startup process

� PortletID (test.TestSuite2) is fine as ToolID
(equivalent to sakai.chat)

Initialization
webapps/testsuite

<servlet>
<servlet-name>TestPortlet1</servlet-name>
<display-name>TestPortlet1Wrapper (Pluto Invoker)</display-name>
<description>Auto Generated Portlet Invoker Servlet</description>
<servlet-class>org.apache.pluto.core.PortletServlet</servlet-class>
<init-param>
<param-name>portlet-class</param-name>
<param-value>

org.apache.pluto.portalImpl.portlet.TestPortlet
</param-value>

</init-param>
<init-param>
<param-name>portlet-guid</param-name>
<param-value>testsuite.TestPortlet1</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>TestPortlet1</servlet-name>
<url-pattern>/TestPortlet1/*</url-pattern>

</servlet-mapping>

<portlet>
<description>TestSuiteDescription</description>
<portlet-name>TestPortlet1</portlet-name>
<display-name>Test Portlet #1</display-name>
<portlet-class>

org.apache.pluto.portalImpl.portlet.TestPortlet
</portlet-class>
<supports>

<mime-type>text/html</mime-type>
<portlet-mode>VIEW</portlet-mode>
<portlet-mode>EDIT</portlet-mode>
<portlet-mode>HELP</portlet-mode>

</supports>
<portlet-info>

<title>Test Portlet #1</title>
<short-title>Test #1</short-title>
<keywords>Testing</keywords>

</portlet-info>
</portlet>

The implementation for PortletServlet is a Sakai-specific implementation and is placed in
shared/lib for all portlets to use. As each servlet instance starts up, it registers the portlet as
a Sakai Tool using the portlet-guid as the Sakai Tool id.

This servlet will combine the registration functionality of org.sakaiproject.util.ToolListener and
the request processing functionality of org.sakaiproject.util.RequestFilter and the portlet
lifecycle support functionality of the original PortletServlet.

Sakai-168 Run-Time Issues
� Portlet Instance ID

� Instance ID will be same as Sakai Tool placement ID
� Portlet Preferences

� Scoped to Sakai Tool Placement and stored as namespaced properties as part of the
Sakai tool placement

� Portlet Session
� Must be shared with Servlets which run after portlet

� Remote User
� Sakai Enterprise ID is already in remote user

� isUserInRole
� Initially backed directly as a Sakai AuthZ call
� May need some �special� ones or perhaps even add permissions

� PortletRequest.USER_INFO
� user.name, user.name.given, user.namefamily, user.home-info.online.email,

user.name.full
� EncodeUrl

� Already used across Sakai - both for fragment style requests and foll page requests

Sakai-168 Markup Cycle

� Sakai PortletServlet dispatcher
� Will perform the request filter functions
� Will do redirect between action and render to

support book marking
� Will handle the request parameter values placed

by Charon properly
� Supports both fragment approaches

� Normal markup with servlet will generating the head
material

� Fragment request to support the Sakai WSRP producer

Full
Page Markup

Cycle

webapp

org.apache.pluto.core.PortletServlet

Portlet
Code

Helper
Servlet

Sakai Aggregator (Charon)

Browser

In the normal Sakai
markup case, the
PortletServlet will generate
a full page with head, etc
as directed by the Sakai
Aggregator.

In this variant,
PortletServlet will be a little
�mini portal�.

Fragment Markup
Cycle

webapp

org.apache.pluto.core.PortletServlet

Portlet
Code

Helper
Servlet

Sakai WSRP Producer

WSRP Consumer

When Sakai�s WSRP
Producer is making the
request (indicated by
sakai.fragment), the
PortletServlet is operating
more naturally, returning a
fragment, with URLs
encoded using WSRP
Producer�s wrapped
request object�s
EncodeURL() method.

Sakai-168 Plans

� Working with David DeWolf who is the
designer of the embedded version of
Pluto 1.1 to have him do the Sakai
integration

� Have had initial scoping meetings -
things are moving forward

Summary
� There is no magic bullet here - Standards focus on

the simplest use cases
� Sakai has moved from trying to use standards to do

everything to finding the right uses for standards
within the Sakai context

� Lets keep an open mind to HiJacking the WSRP4J
project in an Apache branch - Sakai would be happy
to incubate this

� JSR 286/WSRP 2.0 will not change where these
standards �fit� in our architectures - they will just do a
better job than JSR168/WSRP1.0

	Sakai and Portals
	17 July 2006 Charles Severance, University of Michigan
	State of Sakai in one Slide....
	Outline
	History - Sakai and JSR-168
	History - Sakai and WSRP 1.0
	Sakai WSRP
	(uPortal) High Level Architecture
	Sakai Tools in uPortal 2.4.2
	Announcement Tool (Mercury Context) in LIFERAY Portal
	History - Sakai and 168 (v2)
	Sakai Gallery View
	Sakai Tree View
	How Tree View Works
	SakaiSite.getToolsDom
	Sakai Proxy Tool
	Proxy Tool Selection
	How Proxy Portlet Works
	Future Plans
	Sakai Data Interoperability
	Sakai and RSS
	Future - Sakai 168 Portlets
	Future - Sakai WSRP Producer
	Sakai WSRP - Going Forward
	WSRP Challenges
	WSRP - UNISA Version
	uPortal Sakai at UNISA
	UNISA Effect
	JSR-168 Support in Sakai
	Use Cases for Sakai-168
	Major Components of Sakai- 168
	Sakai-168 Initialization
	webapps/testsuite
	Sakai-168 Run-Time Issues
	Sakai-168 Markup Cycle
	Browser
	WSRP Consumer
	Sakai-168 Plans
	Summary

	
	Sakai Title Page

