
- 1 -

Sakai User Id and EID 1
 2

June 13, 2006 3
 4

Please direct questions or comments about this document to: 5
Glenn R. Golden, ggolden@umich.edu 6

 7
This document describes User ID and the EID separation in Sakai 2.2 8
 9
For the last few releases, we've been working to introduce the concept of "internal" and 10
"external" identifiers in Sakai in the User records. We started with a single identifier that 11
had to play both of these roles, and have been tweaking the code to separate these out. 12
For 2.2, we have completed this separation. 13
 14

Internal and External ID 15
 16
An "internal" ID is something that is unique within Sakai; something that never changes 17
for the life of the User record; something that we can use to store references to User 18
objects in other parts of Sakai. This is what the User.getId() returns. It is always used for 19
inner-Sakai references, and should *never* be used when working with anyone or 20
anything outside of Sakai. For instance, it is NOT the thing that we accept as a user ID 21
when the user logs in; end-users have no clue what their internal Sakai identifier is for 22
their User account. It should not be shown on user interfaces to disambiguate a display 23
of an end user's name. It must not be used when talking to the enterprise systems that 24
back our UserDirectory and Group providers. Id is used for things like storing "created 25
by", user preferences, and group membership, and any other inner-Sakai user references. 26
 27
An "external" ID is something that is unique within Sakai; something that has meaning to 28
the end-users of Sakai; something that has meaning to the enterprise systems that back 29
our UserDirectory and Group providers; and something that we might expect to see 30
changed within the lifetime of our User objects in Sakai. This is what the User.getEid() 31
returns. An external ID is also an "enterprise" ID. This is what the end-users know as 32
their login ids. This is a value that we can use to identify our users with the enterprise 33
systems that back our providers (although, there may be other enterprise-assigned 34
identifiers for our end-users). Since an EID can change, it is never used store a reference 35
to a User record in Sakai. 36
 37
While EID is more appropriate for displaying in a user interface (along with the user 38
name, to disambiguate the user) than ID, we provide a getDisplayId() method in the User 39
object specifically for this purpose. 40
 41

- 2 -

Changes 42
 43
Basically, code that is using User.getId() inappropriately needs to be changed to use 44
User.getEid() or User.getDisplayId(). The UserDirectoryService also has two new 45
methods to map ids, in case you don't need the entire User object: 46
 47
String getUserEid(String id) throws UserNotDefinedException 48
String getUserId(String eid) throws UserNotDefinedException 49
 50
So, anytime you are displaying something to the end user, odds are very good that you 51
need an EID, not an ID, and should use getDisplayId(). 52
 53
But don't go overboard and start using EID for ID purposes. If the user interface encodes 54
a user ID, for example, for a selection of users from a list, the ID is appropriate, and 55
required to find the user object. 56
 57
The provider code, for both the UserDirectoryProviders and GroupProviders, needs 58
special attention. These work exclusively with the EID, except for very special cases. So 59
the "ID" sent to a provider from Sakai for authentication or getUser() or to find that user's 60
group memberships is an EID, and any “ID” set back from the provider is an EID. 61
 62
There are some "decorator" classes that wrap over User or some other data structure that 63
has a user ID - and are used for Velocity or JSF interfaces. It might be valuable to add 64
getEid() and getDisplayId() methods to these decorators to surface the EID and the 65
display ID as well as the ID for UI needs. Related to this are some User-like 66
implementations (Agent, Member, Participant) that have a userId - and will likely need to 67
surface an EID as well. 68
 69

Not changed 70
 71
A user's "my workspace" site is still using the user ID, not EID. Using the EID here 72
would be a mistake, as this is a user reference that we don't want to have to worry about 73
changing later when the user's EID changes. But the portal URL to the site is based on 74
the site's ID, which is less than ideal. To resolve this problem, the portal will be trained 75
to use user EID as an alternate URL to the user's “MyWorkspace”. This is sort of like 76
using a site's alias as well as the site ID in a portal URL to the site (which we can train 77
the portal to do as well). 78
 79
A user's "home" content area in ContentHosting is still /user/<user id>, again because it is 80
a User object reference and should not get changed. Most of the user interface already 81
hides this from the end user - but some areas such as the content URLs via Access and 82
Web and WebDav could be further trained (if needed) to use the user's EID as an alias to 83
this content area. 84
 85

- 3 -

User references in session and event records are still using user ID. Scripts that query 86
these need to have a way to get at users’ actual ids - but since we have a nice table in the 87
database to map ID and EID, this should be easy. 88
 89
The "admin" and "postmaster" users are still called that - ID and EID. We could change 90
this, but it's not worth it. To be less fragile, don't use the string "admin" in your code 91
(mostly the test code has this), but use the values defined by the 92
UserDirectoryService API: 93
 94
ADMIN_ID 95
ADMIN_EID 96
 97
That way, if we do every change the ID or EID of the admin, things will continue to 98
work. 99
 100

Implementation Details 101
 102
We are not keeping a full User record for any user we ever see, as once we thought we 103
might. This is misleading, because for external users (i.e. users defined by the provider), 104
we really don't know anything about them inside Sakai except for their ID (which Sakai 105
allocates) and the EID. So instead, we introduce a mapping table that maps ID and EID. 106
This is the SAKAI_USER_ID_MAP table that maps the ID and EID fields. The main 107
SAKAI_USER table is unchanged. When we have a record defined inside Sakai, there is 108
a SAKAI_USER record and an entry in the SAKAI_USER_ID_MAP table. When we 109
have a user who is defined solely by the provider, there's only an entry in the map table, 110
which we make as soon as we first meet this user, by seeing the user's EID. 111
 112

Provider Changes 113
 114
Providers must be changed to work with the User object’s EID field, and ignore the ID 115
field. 116
 117
We are also enhancing the UserDirectoryProvider, to allow it to optionally get involved 118
with the formation of the user displayId(). Usually, the displayId() is the EID value. 119
There are some special cases where the EID is not the best value to display in user 120
interfaces to disambiguate the user’s name display. In these cases, the 121
UserDirectoryProvider will implement the new “display advisor” interface, and be called 122
from the UserDirectoryService impl. whenever User.getDisplayId() is called. 123
 124
The provider can use the User object passed in to get the EID, and lookup information 125
based on that, or it can have already stashed away stuff in the User object’s properties 126
(either when the provider synthesized the User object, or when a bulk-load process 127
created the internally kept User object), information it will use to form the displayId. 128

- 4 -

 129
Internal Sakai User objects, and systems without providers or with providers that are not 130
DisplayAdvisors will simply use the EID as the displayId. 131
 132

	Sakai User Id and EID
	13 Jun 2006 Glenn R. Golden, University of Michigan
	Internal and External ID
	Changes
	Not changed
	Implementation Details
	Provider Changes

	
	Sakai Title Page

