
Caching in Sakai

Charles Severance
Notes - 5/20/2006
csev@umich.edu



Clustered Caching Issues

� Problem is that bad caching in clustered 
environments = bug reports

� Length of cache
� Within one (exactly one) request-response cycle 

(0.5 - 2 sec) - Very safe
� Across multiple request-response cycles (10 sec -

5 minutes) - Source of �bugs�
� This covers the multiple request scenario

� App-aware caching / event bus caching
� Hibernate / EHCache style



API

Cache

Sakai App-Aware Cache

Event Bus

API

Cache

Has Changed Has Changed

1

2

3 4

1) Some tool modifies an object and saves it via the API
2) The local cache is invalidated
3) An event is generated indicating which object was modified
4) The event is delivered across cluster causing invalidation as necessary
Note: TTL is still on the order of 3 minutes to keep caches small and fresh

�



Hibernate / EHCache

API

EHC

API

EHC

1

3

64 7

7

2

1) Object is modified in a node
2) It is invalidated in the local 

cache
3) It is updated in the DB
4) When a new request happens,
5) It is properly re-retrieved

5

6) Until TTL expires, requests 
come from cache on other 
nodes and get bad data

7) When TTL expires and a 
request is made for the object

8) It is properly re-retrieved from 
disk

�



Possible Future Directions

� Improve Event Implementation
� Use JGroups instead of Database

� Early experiments worked well
� Must solve the issues in dynamic cluster configuration
� Likely to improve scaling nicely

� Have Hibernate use Cluster-aware caching
� Will need careful performance analysis -

coordination in large clusters could easily 
overwhelm benefits

� oscache, jbosscache, swarmcache (From Josh)



Recommendations

� TTL of < 10 seconds in EHCache or any other non-
cluster aware cache - Even things that seem �read-
mostly� are dangerous to cache - because when 
these change often they are broad settings like �test 
start time� that are important to propogate quickly.

� A short cache TTL approximates �request scope 
caching� as well as �app-aware caching�

� Developers may want a TTL of zero to insure that 
they truly are encouraged to look at generated SQL.



Summary
� Increasing EHCache TTL as a performance tuning 

approach is very bad
� Developers on single systems will *never* encounter bugs
� Synthetic tests in clustered environments may not catch 

bugs
� Users will catch bugs when making changes because of 

user-support or student request - user behavior causes 
worst-case need for synchronization

� Sakai�s app-aware caching is not *easy*
� Requires the use of events

� Improve performance of applications which use 
Hibernate by looking at the data model and SQL and 
improving it - not just using EHCache


	Caching in Sakai
	20 May 2006 Charles Severance, University of Michigan
	Clustered Caching Issues
	Sakai App-Aware Cache
	Hibernate / EHCache
	Possible Future Directions
	Recommendations
	Summary

	 
	Sakai Foundation Title Page

