
 1
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

The Busy Developer's Guide to the
Chandler repository

Version 0.4

This document is an introduction to the features of the Chandler repository. It's
not meant to give exhaustive coverage of the entire API or all of the cool
features. Instead it is meant help you get up to speed so that you can do
common repository tasks.

The Chandler repository allows you to store semi-structured or loosely structured
information. It forms the basis for the Chandler PIM application by providing the
ability to model, store, and retreive personal information. The repository supports
a number of unusual features (described below) that make it a good fit for
building a PIM. It can also be used as a stand alone storage system for
applications that need to store semi-structured information.

The Chandler repository supports some features which are unusual when
compared to most storage systems. The unit of storage in Chandler is the Item.
Items are interesting in a number of ways. You can extend the schema that
describes an Item by adding a new attribute to an Item -- this causes the schema
to be updated. Chandler Items can also refer to other Chandler Items. In most
object like storage systems references are unidirectional, like pointers. In the
Chandler data model, references can be bidirectional -- each end of the
reference is aware of the other end.

Another unusual feature of the Chandler repository is the concurrency model.
Chandler uses an optimistic concurrency control mechanism based on versions
of Items. If you are familiar with CVS, you will find some conceptual similarities.
The biggest thing to be aware of is that commits can fail due to version conflicts,
and that your application is responsible for recovering from these failures.

Chandler Data Model
Chandler's repository stores and retrieves persistent objects called "Items"; these
Items are arranged in a hierarchy, and are addressable either by their unique
identifier (UUID) or by their path within the hierarchy (e.g. //Schema/Core/Kind).
There are special Items called "Kinds" which play the role of classes in the
object-oriented world. Items can be thought of as instances of Kinds, and take on
the characteristics described by their Kind. For example, a Kind determines what
attributes an Item has and what code implements an Item's behavior. An attribute
contains meta information including its name (how you refer to it in Python),
cardinality (single or multi-valued) and type (what kind of value can be assigned).

 2
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

There are two ways to create Items in the repository: loading them in from XML
files known as "parcels", or by using the repository API directly.

Parcel Loading
A parcel is a set of Items (defined in an XML file) to be loaded into the repository
and, optionally, code implementing custom behavior for those Items. When
Chandler starts up, the Chandler/parcels directory is recursively searched for
"parcel.xml" files which are then parsed by the parcel loader. The Items for a
parcel are loaded into the repository path //parcels, using a path determined by
the parcel's location on disk. For example, a parcel being loaded from
Chandler/parcels/OSAF/contentmodel/calendar/parcel.xml will be stored in the
repository at the path //parcels/OSAF/contentmodel/calendar.

Defining Schema

Let's look at a simple parcel from the repository unit tests,
chandler/application/tests/testparcels/simple/parcel.xml:

<Parcel itsName="simple"
 xmlns="http://osafoundation.org/parcels/core"
 xmlns:simple="http://testparcels.org/simple" >

 <namespace value="http://testparcels.org/simple" />

 <displayName value="Simple Parcel" />
 <description value="Simple Parcel Loader Test Schema" />
 <version value="0.1" />
 <author value="Open Source Applications Foundation" />

 <Kind itsName="TestKind">
 <displayName value="Test Kind" />
 <attributes itemref="simple:TestAttribute"/>
 <attributes itemref="simple:ListAttribute"/>
 <attributes itemref="simple:DictAttribute"/>
 <displayAttribute itemref="simple:TestAttribute"/>
 </Kind>

 <Kind itsName="SubKind">
 <superKinds itemref="simple:TestKind"/>
 <displayName value="Subclass Test Kind" />
 </Kind>

 <Attribute itsName="TestAttribute">
 <displayName value="Test Attribute" />
 <cardinality value="single" />
 <type itemref="String"/>
 <initialValue type="String" value="XYZZY" />
 </Attribute>

 <Attribute itsName="ListAttribute">

 3
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

 <displayName value="List Attribute" />
 <cardinality value="list" />
 <type itemref="String"/>
 <initialValue/>
 </Attribute>

 <Attribute itsName="DictAttribute">
 <displayName value="Dict Attribute" />
 <cardinality value="dict" />
 <type itemref="String"/>
 <initialValue/>
 </Attribute>

</Parcel>
As the parcel loader parses the XML, whenever it sees an element with the itsName
attribute it creates an Item in the repository. For a parcel file, the outermost element
should be Parcel. When defining Kinds and attributes, use elements of Kind and
Attribute. Remember that all elements of these types must be in the XML namespace
http://osafoundation.org/parcels/core. The nesting arrangement of the Items in a parcel
file will be duplicated in the repository hierarchy.

The <namespace> element tells the parcel manager which namespace should
be associated with this parcel. Note that we are using a dummy namespace URI
"http://testparcels.org/simple" in this example. You should use a meaningful
namespace URI for your parcels.

Now let's look at the <Parcel> element: its itsName attribute is used to name the
Item in the repository. By convention a parcel Item's name needs to match the
directory in which the parcel.xml file resides (in this case, "simple"). The parcel
loader will create an Item of Kind "//Schema/Core/Parcel" in the repository, with a
path of //parcels/simple.

When the parcel loader encounters an element that does not have an itsName,
the element is instead used to assign a value to one of the parent element's
attributes. In the example, the parcel's displayName attribute is assigned the
literal "Simple Parcel". Another type of assignment is a reference; if an element
has an itemref, then instead of a literal assignment, a reference to the specified
Item is assigned. For example, within the "TestKind" Item, a reference to the
"TestAttribute" Item (also defined in this file) is assigned to TestKind's "attributes"
attribute.

The result of parsing this file will be:

• A parcel Item at //parcels/simple (with displayName="Simple Parcel")
• A Kind Item at //parcels/simple/TestKind (with displayName = "Test Kind",

attributes = [//parcels/simple/TestAttribute, //parcels/simple/ListAttribute,
//parcels/simple/DictAttribute], and displayAttribute =
//parcels/simple/TestAttribute)

 4
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

• A Kind Item at //parcels/simple/SubKind (with displayName = "Subclass of Test
Kind", superKinds = //parcels/simple/TestKind

• An attribute Item at //parcels/simple/TestAttribute (with displayName = "Test
Attribute", cardinality = "single", and type = //Schema/Core/String)

• An attribute Item at //parcels/simple/ListAttribute (with displayName = "List
Attribute", cardinality = "list", and type = //Schema/Core/String)

• An attribute Item at //parcels/simple/DictAttribute (with displayName = "Dict
Attribute", cardinality = "dict", and type = //Schema/Core/String)

So what does this mean in terms of the data model?

1. Our simple schema has defined two Kinds (TestKind and SubKind) and an
attribute (TestAttribute)

2. We have declared that instances of TestKind (Items whose Kind is TestKind)
have 3 attributes named "TestAttribute", "ListAttribute", and "DictAttribute" (by
assigning to the "attributes" attribute)

3. We have declared that SubKind is a "subclass" of TestKind (by assigning to the
"superKinds" attribute). SubKind will inherit the characteristics of TestKind,
including the list of allowed attributes.

Defining Data

Let's create some data based on this schema. As of the 0.3 release, you need to
put your data (non schema) Items in a separate parcel file from your schema, so
we've put this in
Chandler/repository/parcel/tests/testparcels/simple/data/parcel.xml:

<Parcel itsName="data"
 xmlns="http://osafoundation.org/parcels/core"
 xmlns:simple="http://testparcels.org/simple" >

 <namespace value="http://testparcels.org/simple/data" />

 <simple:TestKind itsName="item1">
 <TestAttribute>xyzzy</TestAttribute>
 </simple:TestKind>

 <simple:SubKind itsName="item2">
 <TestAttribute>plugh</TestAttribute>
 </simple:SubKind>

 <simple:TestKind itsName="item3"/>

</Parcel>

When this parcel is loaded, three new Items will be added to the repository:

• A parcel Item at //parcels/simple/data
• A TestKind Item at //parcels/simple/data/item1 (with TestAttribute="xyzzy")

 5
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

• A SubKind Item at //parcels/simple/data/item2 (with TestAttribute="plugh")
• A TestKind Item at //parcels/simple/data/item3 (with TestAttribute="xyzzy" -

because the initialValue for TestAttribute is "xyzzy")

We were able to assign to the "TestAttribute" for item1 because we declared it
was an attribute of TestKind. Since the data model honors Kind inheritence, all
instances of SubKind also have the "TestAttribute" attribute, and therefore we
could assign it to item2 as well.

Using the Repository API
Now that we've covered how parcels can be used to populate the repository, let's interact
with them via the repository API.

Getting Started

The first thing that we are going to need is a repository object that we can work with.
When you are working within Chandler, there is an application global,
application.Globals.repository whose value is the repository that the current Chandler
instance is using. I'm going to show you how to obtain a repository object from scratch.

Use the Chandler build tool, hardhat, to run an interactive python session. You'll
want to be in the "chandler" directory when you do this.

> cd osaf/chandler
> ../hardhat/hardhat.py -i
Python 2.3.3 (#1, Sep 22 2004, 23:52:03)
[GCC 3.3 20030304 (Apple Computer, Inc. build 1495)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
We'll be using this throughout the rest of the guide.

First we need some modules from Chandler

import os
from repository.persistence.XMLRepository import XMLRepository

Next we need to tell where to find the repository. The Chandler repository stores
its data in a directory somewhere on your computer's filesystem. As a
convention, the repository's directory is named __repository__. Let's create a
brand new repository in the current directory, using the XMLRepository
constructor, which needs the path for the repository directory.

rep = XMLRepository(os.path.join('.', '__repository__'))

Once we have a repository object we can call the create method to actually
create the repository on disk.:

 6
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

rep.create()

The XMLRepository.open() method will create a repository if there isn't one.

The next three lines load the default Chandler schema, which we'll be using for
examples.

schemaPack = os.path.join('repository', 'packs', 'schema.pack')
rep.loadPack(schemaPack)
rep.commit()

Loading Parcels

Next let's load some example parcels from the unit tests. Normally as part of the
Chandler startup process, all parcels in osaf/chandler/Chandler/parcels are
loaded automatically. For this interactive session, however, we'll just explicitly
load our data parcel instead:

from application.Parcel import Manager as ParcelManager

manager = ParcelManager.getManager(rep, ['./application/tests/testparcels', './parcels'])

namespaces = ['http://testparcels.org/simple/data']
manager.loadParcels(namespaces)

The first line imports the packages we need in order to use the Parcel loader. We
call the methodParcelManager.getManager in order to get an instance of the
Parcel loader. The first argument, rep, is the repository that we've just created.
The second argument is a list of directories to search for parcels. The first
element in the list is the directory containing the parcel.xml file for our data
parcel. The second element is the root of the OSAF supplied parcels. The list
namespaces is a list of namespaces (URI's) for the parcels that you want to load.
In this case, our data parcel depends on our schema parcel, and so the schema
will automatically be loaded as well.

To see what's in the repository, we can print out part of its contents using
PrintItem():

from application.Parcel import PrintItem as PrintItem
PrintItem("//parcels/simple", rep)

You should get something like this, a description of //parcels/simple and all of it's
children (recursive):

//parcels/simple (Kind: //Schema/Core/Parcel)
 author: Open Source Applications Foundation <type 'unicode'>
 createdOn: 2004-10-07 17:40:41.01 <type 'DateTime'>
 description: Simple Parcel Loader Test Schema <type 'unicode'>
 displayName: Simple Parcel <type 'unicode'>

 7
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

 file: ./application/tests/testparcels/simple/parcel.xml <type 'str'>
 modifiedOn: 2004-10-07 17:40:41.01 <type 'DateTime'>
 namespace: http://testparcels.org/simple <type 'unicode'>
 namespaceMap: (dict)
 originalValues: (dict)
 : {'namespace': u'http://testparcels.org/simple',
 'version': u'0.1',
 'displayName': u'Simple Parcel',
 'description': u'Simple Parcel Loader Test Schema',
 'author': u'Open Source Applications Foundation'}
 ListAttribute: {'displayName': u'List Attribute',
 'cardinality': u'list',
 'initialValue': '',
 'type': 'ab8c18ea-18c2-11d9-85f4-000a959a114e'}
 TestAttribute: {'displayName': u'Test Attribute',
 'cardinality': u'single',
 'initialValue': u'XYZZY',
 'type': 'ab8c18ea-18c2-11d9-85f4-000a959a114e'}
 TestKind: {'attributes': ['ae479b5e-18c2-11d9-85f4-000a959a114e',
 'ae4b2652-18c2-11d9-85f4-000a959a114e',
 'ae4c3920-18c2-11d9-85f4-000a959a114e'],
 'displayName': u'Test Kind',
 'displayAttribute': 'ae479b5e-18c2-11d9-85f4-000a959a114e'}
 SubKind: {'superKinds': ['ae3f7c80-18c2-11d9-85f4-000a959a114e'],
 'displayName': u'Subclass Test Kind'}
 DictAttribute: {'displayName': u'Dict Attribute',
 'cardinality': u'dict',
 'initialValue': '',
 'type': 'ab8c18ea-18c2-11d9-85f4-000a959a114e'}
 version: 0.1 <type 'unicode'>
Note the inclusion of UUID's (strings that like 'ab8c18ea-18c2-11d9-85f4-
000a959a114e').

Working with Items

One way to retrieve an Item from the repository is to ask for it by its path. So to
fetch item1:

item1 = rep.findPath("//parcels/simple/data/item1")

If you print item1

You'll get something that looks like this:

<Item: item1 843636cc-55bd-11d8-f385-000a95bb2738>

This shows the Item's class name (this may change to be the Kind), name, and
UUID. Every Item in the repository has a unique identifier or UUID. You can use
the itsUUID attribute to get an Item's UUID.

uuid = item1.itsUUID

 8
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

You can use the findUUID method to find by using an Item's UUID.

item2 = rep.findUUID(uuid)

Note: at the moment, you should be careful when using UUID's to find Items,
because UUID's really are unique, are never recycled, and it's possible for you to
use a UUID that existed in some older version of your repository, but which
doesn't exist anymore in the current repository if it was recreated.

Once you have an Item, there are some basic things that you can do with it.
We've already seen that you can get the UUID using getUUID(). Here are some
other things that you can do:

Item.itsName get the name of the Item
Item.itsParent get the Item which is the parent of this Item
Item.itsPath get the path to this Item
Item.getItemDisplayName() get the displayable name for this Item

Note that in our example, item1.getItemDisplayName() will evaluate to "xyzzy".
Why? In our schema we defined TestAttribute to be TestKind's "displayAttribute",
therefore that attribute's value is returned by getItemDisplayName(). If an Item's
Kind does not have a displayAttribute, then the Item's name will be returned
instead.

Parents and children

As you've seen in these examples, Items can be arranged in a parent/child
hierarchy. This can be useful for related groups of Items. When you create an
Item, you specify what its parent will be. Items can have the repository as their
parent.

Let's look at adding a new instance of TestKind. To do this, we first need to
retrieve the TestKind Item:

testKind = rep.findPath("//parcels/simple/TestKind")

Next we need to fetch the Item that will be our new Item's parent:

data = rep.findPath("//parcels/simple/data")

Next we tell the Kind to create a new Item as a child of data:

newItem = testKind.newItem("newItem", data)

 9
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

The first argument to the newItem() method is the name of the Item, and the
second argument is the parent of the Item.

You can test whether or not an Item has any children
print data.hasChildren()

You can iterate through the children of an Item

for child in data.iterChildren():
 print child

You can test whether or not an Item has a child with a particular name

print data.hasChild("newItem")

You can get a child by providing its name. There are 2 ways of doing this. The
first way returns None if the child is not found:

print data.getItemChild("newItem")
The second way raises a KeyError exception instead):
print data['newItem']

You can rearrange the children of an Item by using the placeChild() method.

data.placeChild(data.getItemChild("newItem"), None)

will make the 'newItem' child the first child of data. The first argument is the child
you want to move, the second argument is the child that you want to place the
first child after. You supply None to place the child as the first child.

To change an Item's parent you would use the move() method. If I wanted to take
'newItem' and make it a child of the repository, the code would look like this:

newItem.move(rep)

The first argument to move is the new root for the Item being moved. You can
also specify where the Item will be among the new root's children by specifying a
2nd and 3rd argument, which specify the children preceding and following the
new Item.

Attributes

All of the data in Chandler Items is stored as attributes. Attributes are themselves Items,
albeit of a special type (the recursion has to stop somewhere). The API for attributes has
been designed to look as much like the Python API for working with Python attributes. If
we look at the Item we created, newItem we can set its attribute values using the normal
Python syntax:
newItem.TestAttribute = 'Testing'

 10
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

Sets the value of newItem's TestAttribute attribute to Testing. We can retrieve the
value of the TestAttribute attribute by executing

newItem.TestAttribute

Where do attributes come from? In the Chandler data model, the Kind for an Item
determines what attributes are available. In the case of the Kind for parcels, there
are a number of attributes available. To find out what attributes are available on a
Kind, we can look at the attributes attribute of that Kind:

parcelKindItem = rep.findPath("//Schema/Core/Parcel")
for i in parcelKindItem.attributes:
 print i

Which will produce output that looks like this:

<Attribute: author 0114bf18-4cb5-11d8-d2ac-000a959a114e>
<Attribute: publisher 011593c0-4cb5-11d8-d2ac-000a959a114e>
<Attribute: status 0116b7d2-4cb5-11d8-d2ac-000a959a114e>
<Attribute: summary 0117c802-4cb5-11d8-d2ac-000a959a114e>
<Attribute: icon 0118e868-4cb5-11d8-d2ac-000a959a114e>
<Attribute: version 0119e696-4cb5-11d8-d2ac-000a959a114e>
<Attribute: createdOn 011ad7ea-4cb5-11d8-d2ac-000a959a114e>
<Attribute: modifiedOn 011bc1be-4cb5-11d8-d2ac-000a959a114e>

However, this list only includes attributes that were directly assigned to the
//Schema/Core/Parcel Kind -- this Kind is a Subkind of //Schema/Core/Item and
therefore it inherits Item's attributes as well.

There are two Kinds of attributes. Literal valued attributes store literal values of
various types, such as numbers (integers, longs, complex), strings, dates, and so
forth. Reference valued attributes store bi-directional references to Chandler
Items.

Attributes also have a cardinality. They can be single valued or multiple valued.
Multiple valued attributes are treated as either lists, accessible by numeric index,
or as dictionaries, accessible by keys. Multivalued reference attributes are
treated as lists. The Item.iterAttributeValues() method will produce an iterator that
will let you access all the attributes for an Item, including thos attributes inherited
from Superkinds:

parcel = rep.findPath("//parcels/simple")
for i in parcel.iterAttributeValues():
 print i
The output looks like this:
(u'displayName', u'Simple Parcel')
(u'description', u'Simple Parcel Loader Test Schema')
(u'author', u'Open Source Applications Foundation')
('createdOn', <DateTime object for '2004-02-02 13:34:02.80' at 24b9410>)
(u'version', u'0.1')

 11
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

('modifiedOn', <DateTime object for '2004-02-02 13:34:02.80' at 24b9410>)
('kind', <Kind: Parcel 760888e8-55c7-11d8-f88d-000a95bb2738>)

You can also use the keyword arguments valuesOnly or referencesOnly to True
and iterAttributes() will only produce literal or reference attributes.

for i in parcel.iterAttributeValues(valuesOnly=True):
 print i
produces:
(u'displayName', u'Simple Parcel')
(u'description', u'Simple Parcel Loader Test Schema')
(u'author', u'Open Source Applications Foundation')
('createdOn', <DateTime object for '2004-02-02 13:34:02.80' at 24b9410>)
(u'version', u'0.1')
('modifiedOn', <DateTime object for '2004-02-02 13:34:02.80' at 24b9410>)
and
for i in parcel.iterAttributeValues(referencesOnly=True):
 print i
produces:
('kind', <Kind: Parcel 760888e8-55c7-11d8-f88d-000a95bb2738>)

You can use Python's list and dictionary operations on multivalued literal
attributes. Multivalued references attributes are a different story. Items have an
API that allows you to manipulate the values of multi-valued reference attributes.
Let's try this with the attributes attribute of parcelKindItem which is a list valued
reference attribute.

First we need a UUID to use as the key, so for the sake of example, I'm going to
cheat and grab the UUID using the iterator.

as = parcelKindItem.attributes.itervalues()
a = as.next()
a = as.next()
print a

<Attribute: publisher 7609f124-55c7-11d8-f88d-000a95bb2738>
Now we'll use a's UUID as a key into the attributes attribute.
print parcelKindItem.getValue('attributes', a.itsUUID)

Which produces the expected result:

<Attribute: publisher 7609f124-55c7-11d8-f88d-000a95bb2738>

To add a new Item to the list, all you would do is:

parcelKindItem.addValue('attributes',item.itsUUID, item)

To remove the value of an Item in the list use removeValue:

parcelKindItem.removeValue('attributes',a.itsUUID)

 12
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

You can also use Python operations like del to remove a value from a multi-
valued attribute. The append, insert, pop, remove, reverse, sort, and extend
operations are supported on list valued attributes, and the update operation is
supported on dictionary valued attributes.

Saving data

The whole point of using the repository is that you want your data to become
persistent. When you create an Item or update an Item, that Item becomes dirty.
You can uses the Item.isDirty() method to see if a particular Item is dirty. You use
the commit() method on the repository to make your changed Items persistent.
Your code would look something like this:

rep.commit()

If the word 'commit' makes you think of transactions, that's fine. The Chandler
store is transactional, which means that you can atomically commit groups of
changes. It also means that transactions are used to manage concurrent access
to the repository so that agents and other Python threads can access the
repository safely. An important thing for you to know is that it is possible for
commits to fail. This will happen when an Item that you want to commit has been
modified by someone else between the time that you read it and the time you
tried to commit it. When this happens the commit method will raise an exception.
At this point it is up to you redo the work in your transaction.

For Reference
You can view the repository API documentation on line. You'll probably want to start
with Item, Kind, and Attribute.

To Learn More
We are building out our set of documentation on Chandler. You might be interested in the
following:

• The Chandler Query System
• Repository Working Group Home Page

Additional Topics
• SubAttributes
• More about cardinality

 13
From www.osafoundation.org/docs/current/repository-intro.html 15 May 2005

• More about references

We want to update and improve this document

Please send any comments to dev@osafoundation.org.

$Revision: 1.12 $
$Date: 2004/11/22 23:28:51 $
$Author: twl $
$Log: repository-intro.html,v $ Revision 1.12 2004/11/22 23:28:51 twl Include links to API docs
Revision 1.11 2004/10/21 22:30:39 twl Commit branched docs to trunk Revision 1.9.2.2
2004/10/19 21:19:06 twl Incorporate Ducky's feedback Revision 1.9.2.1 2004/10/18 21:27:03 twl
Committing doc changes to branch Revision 1.10 2004/10/15 18:31:04 twl Bugs 2112, 2113 (Doc
bugs) Incorporate review feedback Revision 1.9 2004/10/12 20:06:12 twl Fix bug 2113 - update
repository overview for 0.4 Revision 1.8 2004/02/28 01:00:13 twl Add motivation paragraphs use
osaf.css Revision 1.7 2004/02/24 21:39:28 markie Typos in ms and add keywords at end.

	The Busy Developer's Guide to the Chandler repository
	22 Nov 2004 Open Source Applications Foundation
	Chandler Data Model
	Parcel Loading
	Defining Schema
	Defining Data

	Using the Repository API
	Getting Started
	Loading Parcels
	Working with Items
	Parents and children
	Attributes
	Saving data

	For Reference
	To Learn More
	Additional Topics

	
	OSAF Title Page

