

handler Architecture
es

3. Chandler architecture overview

 C
1. An overview of design valu
2. Block Diagram

An overview of design values
f software projects, our goals

ion Manager are ambitious,

olve

 to
g a

ctures evolve,
nd what I present here is only an overview, or summary of our

andards,
choosing projects that are reliable, well documented, and widely

•
igher performance code

As is often the case in the early stages o
for the Chandler Interpersonal Informat
given our limited resources. But by choosing an architecture that uses
the best technologies for what we're trying to achieve, and being
smart about the development process, we should have a great leg up.
We hope to streamline the development process via two main
strategies: First, we'll build on as much existing open source software
as possible, getting help from the open source community to ev
and expand it as necessary. Ideally, the vast majority of code in
Chandler will be code we don't write. Second, we'll combine sound
architectural decisions with improved development methodologies
make software a lot easier to write. Key to our success will be havin
world -- class team of developers head up the effort.

As with most human endeavors, good software archite
a
architecture values. As we get further along in development, I'll revise
this document accordingly, including more details of the design.

Here's a summary of our primary architectural decisions:

• Build on open source software that supports open st

used
Use the Python language at the top level to orchestrate low
level, h

 1
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

• Design a platform that supports an extensible modular
architecture

• For the desktop client, choose a cross platform U/I toolk
provides nativ

it that
e user experience

• up
 communication, and

Guiding Principles

ource software that supports open
standards, choosing projects that are reliable, well

 out which of the vast array of open
source software is best suited for our task, then adding the code

 or
end

olds
together low level, high-performance pieces

 is to use Python --
a dynamic, interpreted language. Compared to static languages like

 written

 to

• Use RDF and a persistent object database
Build in security from the ground

• Build an architecture that supports sharing,
collaboration

Use existing open s

documented, and widely used

Much of our work involves figuring

necessary to make it callable from Python. Some of this software
doesn't currently meet our requirements for quality, performance,
feature sets, so we'll contribute toward improving projects we dep
upon, as necessary. Hopefully these contributions to the open source
community will make it easier for others to write quality application
software in the future. The Mozilla project stands out as potentially
having a number of key pieces we hope to reuse, the most obvious
being the Gecko HTML layout engine and the HTML e-mail editor.

Use an interpreted high-level language to as the glue that h

Perhaps one of our more unconventional decisions

C++ or Java, dynamic languages tend to have poor performance and
lack features for developing large programs like Chandler. But Python
has many other features of modern programming languages, and its
dynamic nature makes it easier to program than its static
counterparts. To mitigate performance deficiencies, we plan to use
Python only at the top level to orchestrate lower-level code
typically in C/C++. Much of this lower-level code already exists in
open source form and in many cases is already accessible to the
Python programmer. As for supporting large programs, Python is
better equipped than most other dynamic languages and we hope
face only minor compromises that will be far outweighed by the
advantages.

 2
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

The Python standard library contains a vast array of modules for
developing applications. Some of these are written completely in
ython and others are written in C/C++. They include a number of

f
r

By designing a platform with well-defined APIs, we hope to enable
les

we call parcels that can be plugged in at a variety of levels. This will

nds of items, for
xample, the calendar view for viewing calendar event items, an email

ou

n
n API for

lugging in new protocols used to enhance or improve communication,

d increase the

ns
intosh and Windows. We want each of these versions to

be better, in terms of the user experience, than the existing
t

P
important protocols like SMTP, POP, IMAP and HTTP, and a host o
useful libraries, including an XML parser, socket libraries, a regula
expression package, and much more.

Build a platform that supports modules at a variety of levels

both ourselves and the open source community to easily write modu

make it possible to replace portions of Chandler to make
improvements or add functionality that we could never anticipate --
and conveniently share them with others users.

Examples of modules include the "viewer parcel," an area of the
desktop user-interface which can view various ki
e
view for viewing email items, a contacts view for viewing contact
items, or a generic table view that can view items of any type. If y
have some experience programming Python, we hope it would be
relatively easy to add a new kind of data, for example your music
collection including information about each song and write a music
viewer that you could use to search and view your music.

Parcels can be used at a many different levels. They might include a
API for filtering email that can be used for spam filtering, a
p
an API for extending the search capabilities in each view, or even an
API to attach a script to a button in the user-interface.
Finally, we hope that these parcels and other building blocks like our
persistent object database can be reused in unrelated software
projects. This will make it easier to develop software an
quality and choice of available application software.

Use a cross-platform U/I toolkit that provides native user
experience

One of our goals for the desktop client is to have a version that ru
on Linux, Mac

counterpart on the same platform. This means the user interface mus
conform to each platform's application conventions. To implement

 3
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

native user interface elements on each platform, we could eit
different U/I toolkit for each platform, or try to find a single toolkit that
allows implementing native elements for all three platforms. We ch
the latter approach, and among the open source options,
wxWindows/wxPython appears to be the best candidate.

There are limits, however, to the number of different user
elements you can abstract to a single cross-platform U/I t

her use a

ose

interface
oolkit. For

lements whose semantics aren't the same on all platforms, we'll have
s

Chandler has a repository, or database that stores a potentially huge
d so on, the

structure of which will have to evolve over time. This database is

and
bility to describe data

 a very flexible format and exchange semantic information between

atabases haven't stored data in a form convenient
r object-oriented programming. This meant extra work for

erent

roblem

asks

e

e
to write special-purpose code for each platform. Also, wxWindows ha
many limitations that will need to be addressed. In particular, the
Macintosh port is new and still needs work, and on all three platforms,
we'll need to improve and add support for various U/I widgets.

Choose data storage that's easy to use and evolve

volume of e-mails, attachments, contacts, documents, an

probably our biggest architectural challenge.

Early in the project, we decided to use RDF (Resource Description
Framework; www.w3.org/RDF) because of its a
in
applications in a standard format without loss. Because RDF is a World
Wide Web Consortium standard, we hope to gain benefit from the
existing tools, validators and applications that have been developed or
will be developed.

For the repository, we've decided to use an object database.
Historically, most d
fo
programmers who had to convert back and forth between diff
data representations, and it introduced a variety of other difficult
housekeeping challenges. Object databases try to solve this p
by transparently storing data in a form that's convenient for object-
oriented programming, and they often solve many housekeeping t
with built-in garbage collection, transactions/undo, and support for
weak object references. While object databases can be difficult to us
because of the limitations of static languages like C/C++, Python's
interpreted nature makes it easier to implement a simple object
database. There's currently a Python special interest group chartered
with the task of coming up with a standard Python object database,
which will likely be based on ZODB (the ZOPE database;

 4
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

www.zope.org/Wikis/ZODB/). We think there's a good chance that
using a standard object database and language like Python that are
tailored to work well together will make it much easier to
applications like Chandler.

So you might ask, are RDF and ZODB compatible? The short ans
almost, but not completely.

write

wer is
 Although people typically store RDF as

iples, there is nothing fundamental about RDF that requires it. If you

 server or as a database local to the machine
ccessing it. One of the Chandler's design goals is to not require a

always

.
B isn't finished, and it has a number of performance

roblems. Second, combining two technologies like RDF and ZODB

ost

tion, and collaboration

ere many of our
s have a presence online, we

can add several important new features that improve sharing,

ing,

tr
look at the Python data structures, you can usually find a simple way
to represent them as RDF. We plan to provide a way to import and
export RDF to ZODB, and also to store the schema for our data in the
database itself.

If we design the interface to the database correctly, it should function
equally well as a
a
server. However, if the server is available, Chandler could provide
some extra features that rely on access to certain shared data
being available. It's not our intention, however, to provide the vast
array of business features that server-based enterprise businesses
require.

There are admittedly a number of risks with an RDF/ZODB approach
First, ZOD
p
that weren't designed to work together, might lead to unforeseen
problems. And there are still other significant tasks to tackle, m
important of which are probably searching and indexing, and
replication.

Improve and simplify the experience of sharing,
communica

Now that we live in such a highly networked world, wh
friends and family as well as workmate

communication, and collaboration. For example, based on people's
calendar entries, schedules can be displayed in a friendly way making
it easy to see the if someone is available for an instant messag
voice, or video conversation. A student planning a trip home for the
holidays can overlay her calendar with her parent's to find the best
time to schedule the visit. And when people update their contact
information, the changes can be propagated to everyone who has
subscribed to a copy of the contact.

 5
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

At the highest level, items in repositories are accessible via their R
URL. However, the communication path varies depending on the
availability of the client storing the da

DF

ta that needs to be accessed. By

le via

 acts

 school, a laptop, and a computer at home. Supporting work on
 common set of data from these different computers requires either a

lly

, and

f
ation, to which

ther users can subscribe. Changes to the item being offered can then

The Model View Controller (MVC) architecture separates the back-end
d user-interface (view).

The controller links the view and model. One big advantage of MVC is

default, the best communication path will be chosen automatically by
the system accessing the data. Each communication path, availab
a common API, might have different capabilities for availability,
latency, and capacity, and communicate using a variety of protocols.
We use Jabber as a low-capacity transport to discover clients, which
once identified, can attempt to establish a direct high-capacity
connection between themselves as peers. When a client is unavailable
via Jabber, the fallback is to communicate transparently via SMTP
(since everyone will have an email account). In this case, SMTP
only as a transport mechanism -- data payloads can be included as
MIME attachments in the email, but nothing would show up in your
inbox.

Many people now have multiple computers: a desktop computer at
work or
a
server to share or store and forward data, or the ability to occasiona
connect the different computers as peers to synchronize and replicate
data that's changed since the last synchronization. We plan for peers
to be able to modify data, whether connected to other peers or not.
When they reconnect after being off-line from one another, an
automatic mechanism will synchronize replicated data between each
computer using the communication paths described above. A version
and/or timestamp can identify which items need to be replicated
on the rare occasion that multiple peers modify the same data, this
versioning can identify which changes conflict so the user can choose
the one to accept. When data resides on a server, or the peers can
always communicate, such conflicts would not occur.

Another type of synchronization will allow users to make an "offer" o
an item in their repository, such as their contact inform
o
automatically propagate to subscribers, ideally using the same
underlying mechanism described above for synchronizing replicated
data.

Use a Model View Controller architecture

data and application (model) from the front-en

 6
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

that it makes it easier to add a new front-end, for example, a Web or
PDA interface for Chandler, without modifying the model. MVC is also
useful in large applications because the data model can be developed
largely independent of the user interface code.

Security is hard

We're just beginning to work out our security strategy, and based on
loration, it doesn't look like there's a completely

transparent, 100 percent secure and easy-to-implement solution that

e,

 for permissions or
apabilities. At the implementation level we hope to provide a flexible

eople

robably our two biggest risks are schedule and unforeseen problems
ce software components we're using.

Software projects are notoriously difficult to schedule, especially
en done before. I've seen two scheduling

techniques used successfully. One is to estimate the total lines of code
0

of a

s

our preliminary exp

interoperates with other clients, especially for the product without a
server. Inevitably, we'll have to make some compromises. In any cas
it has to be easy for users, otherwise they won't use it, and that would
be worse than having no security at all.

For example, to ensure that only certain people or groups have access
to data, we need to provide a mechanism
c
fine-grained control over data access, but at the user level we plan to
simplify access, in part, by associating items with a group of p
and defining access for the group. We haven't yet worked out the
details of implementation or even which model -- permissions,
capabilities, or something else -- to use.

Managing Risks

P
with the open sour

Scheduling is hard

efforts that haven't be

of a similar project and plan on writing somewhere around 20 to 4
lines of code per programmer per day. We don't have precedent
similar project, so we'll attempt the second technique. This is to break
down the project into pieces you can imagine finishing in less than a
day or two, and totaling estimated hours for each piece. As developer
complete their pieces, you adjust remaining estimates to reflect any
average differences between estimated and actual times. We're only
just beginning to break down the project in detail and track our
progress, and much work remains, so we don't yet have a realistic

 7
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

schedule. And once we have one, it will of course be subject to chang
as we make new discoveries and learn from experience along the

Open source software needs revision

e
 way.

Our project depends on certain open source software that's either
nts. The projects that appear

to present the biggest risks are wxWindows/wxPython -- particularly
d

an
n as possible, and

crease software quality. For subsystems we rely on heavily, like

s. Unit

 soon

ws

incomplete or doesn't meet our requireme

on Macintosh -- and ZODB. To mitigate these risks we've contracte
with the author of wxPython to make the necessary improvements,
and we hired an engineer to work on ZODB.

We plan to use a number of standard development techniques that c
help minimize risks, identify problems as soo
in
ZODB, we're writing test programs to measure performance and
identify bottlenecks, so we can code the necessary improvement
tests will be written as part of the subsystem coding and can be
automatically run during the build process to identify problems as
as they're introduced. I also want to make code reviews part of our
culture. Too often skipped because of schedule delays, code revie
are one of the most efficient ways to discover problems.

 8
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

An Overview of the Chandler Architecture
by Michael Toy, OSAF

Introduction

As Chandler is still in the early stages of development, the
architecture is still evolving as we learn more about the
problem space. Our vision of Chandler as a platform for a
variety of information-centric applications requires a
serious upfront investment in planning and design. This
document is a snapshot of OSAF thinking as of the 0.1
release of Chandler.

Overview

The diagram is divided into two pieces labeled Viewer and
Data Sources because Chandler makes more sense seen
this way then across traditional client/server boundaries.
Some code that is over on the Viewer side of the picture
may run on a server, and some of the Data Storage

the upper left corner with types of
data items a Chandler user will typically be interacting

will be perceived by the user to be a single
object or piece of information but will often be composed

ld

or

his "middleware" may be instantiated
in different places depending on the type of Chandler

In the case of a standalone Chandler client, it
would exist in the client. In the case of a web based

facilities may happen on the client.

The diagram begins in

with. The items

of data from many different sources.

The piece labeled Chandler Composite Data Model provides
a unified view of objects whose constituent pieces cou
come from a variety of attached and detached sources. F
highest performance, this piece needs to be close to
viewers of the data. T

installation.

Chandler client, it might exist in the repository server or in
the web based client code.

 9
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

Viewers

As the diagram moves roughly from top to bottom on the

an easily be included
in other applications to provide Chandler behavior on a

ritten

orm specific and performance
sensitive pieces). This application is built on a set of high
level info-centric modules. Some of the modules are
shared with all Chandler viewers, and some are specific to
the Chandler View.

These modules are packaged in a Parcel, which is a piece
of code for which extend the capabilities of Chandler. The
Service Parcels are the modules which are shared across
all applications which view Chandler data, while Viewer
Parcels are modular user-interface components with
domain-specific interactions for different data types. In the
1.0 of Chandler, we will provide parcels for manipulating
calendar, e-mail, contacts and task lists.

Viewer Parcel API

Chandler provides a rich API for implementing info-centric
applications. The foundation of this is the Viewer Parcel
API, which provides simple access to common services
shared by all parcels. This architecture makes it relatively
easy for programmers to create new parcels that can
display new item types, or provide a specialized view on
existing item types. Since parcels are written in Python,
they can be dynamically loaded, allowing the user to
extend Chandler without having to re-compile.

Viewer side, we see the implementation stack of the
interaction space. There will be a variety of ways to
interact with Chandler data, the Chandler application is
just one of them. The code used to build the Chandler
application is split into modules that c

variety of platforms. In the diagram we see; Web Viewer
and PDA Sync applications subscribing to the Chandler
Composite Data Model and using other services.

ChandlerView

The program which most people with think of as Chandler
is the Chandler View application. This application is w
in a combination of Python (for the high level interaction
code) and C++ (for the platf

 10
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

wxPython

 that

ides a

s
c

applications. There will be host of Media Handlers for
, sounds, HTML, etc., that are used in

various parts of the user-interface.

 learn about the
network, allowing Chandler users to interact and share

 central administration. These
features are still in early stages of investigation, but we

n

ion

Chandler's UI framework is based on wxPython, which is in
turn based on wxWindows, a cross platform UI toolkit
uses native widgetry on all three platforms, but prov
common API.

Table Widget, HTML Display, etc ...

Chandler will extend the off-the-shelf interaction
components available with wxWindows to include variou
other pieces that are useful in building data-centri

displaying images

We are planning to develop a custom wxWindows user-
interface Table Widget. It will be used to display
information items in a tree view, where each node in a tree
is a table. An HTML layout engine will be used for both
displaying web pages and editing HTML e-mail.

Other Services

Here is a peek into the application independent portion of
Chandler services. As with the viewer parcels, this list of
services can be extended dynamically by importing new
parcels.

Discovery

Chandler will use a variety of techniques to

data without requiring

expect to depend on whatever the emerging standards are
in these areas.

Replication.

Although the servers may perform replication, the control
over replication lies with the client. Replication is an actio
performed at the user's request, not a transparent act
performed on the user's behalf.

 11
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

Data Model API.

Chandler Extended Persistence

Object persistence has long been favored as a highly
.

Python has an excellent persistent object store, ZODB.

ory,

Data Sources

d

handler data repository operating as a server
sponding to protocol requests from several sources. A

nt may act as a server to other clients. A user
ay have their repository on their own laptop, or they

sitory

ository starts with an authorization layer,
hich provides authentication and access control. Garbage

dexes stored in the

Left to right, across the top of the diagram, we see a rough
outline of the implementation stack for the Chandler Data
Model.

productive way for programmers to deal with data
Chandler extends the concept of persistence to include
network transparency, versioning, and both attribute
based and full text indexes.
ZODB.

Chandler will use ZODB as the base for implementing
extended persistence. As data moves out of mem
Chandler's object store will use RAP (Repository Access
Protocol) to transfer data between clients and Chandler
servers.

A Chandler client will provide access to data from a myria
of sources. The top portion of the Data Sources diagram
shows a C
re
Chandler clie
m
may be accessing their repository remotely through a
Chandler information kiosk. There is another document
Data Sources Configurations that shows several of
these configurations.

Chandler Repo

A Chandler rep
w
collection, or compaction of the data in the repository is
provided transparently to the Viewer. The repository has a
query interface that is used to return references to objects
based on access to the various in

 12
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

repository. Our intention is that this query interface will be
based on a Simple But Currently Unspecified Query

The creation of indexes has to happen in the portion of the
y introspectable, and

this is currently a fuzzy boundary between the client and
 the

h

istant, it makes sense to be
have code running near the data. We are still in the

early stages of thinking on this, but there is a desire to
f

e
e.

Repository Service Interpreters

ories may also be interesting data sources
to other network clients, and so there may be other

s of data, Chandler with have to

inter-operate with a variety of other existing sources of
s will be limited mostly to import

and categorize style of interaction, but as we gain

Language, which for fun (because I have been working on
documents too long) I will now call that SBCUQL.

Chandler cloud where the data is full

server portions, but the data for the indexes will be on
server, and so the intention is to have the code whic
creates the indexes also live on the server.

In a universe where data is d
able to

have a way for the user to delegate authority to pieces o
code (or agents), which are sent to the repository to
perform functions and report back later. Some sort of
protection will need to exist in order to be able to provid
security and privacy guarantees in the face of mobile cod

Chandler reposit

"services" which provide an interpretation of the
repository. On the diagram we have drawn a service that
allows CAP calendar clients to connect to the Chandler
repository and a service that provides an RDF view of the
item store.

External Data Sources

As Chandler is trying to erase the boundaries that exist
between different type

information. Initially thi

experience our hope is to extend the full Chandler
capabilities of sharing and data-composition to as wide a
variety of users as possible.

 13
From www.osafoundation.org/architecture.htm#block_diagram 31 August 2003

	Chandler Architecture
	31 Aug 2003 Open Source Applications Foundation
	An overview of design values
	Guiding Principles
	Use existing open source software that supports open standards, choosing projects that are reliable, well documented, and widely used
	Use an interpreted high-level language to as the glue that holds together low level, high-performance pieces
	Build a platform that supports modules at a variety of levels
	Use a cross-platform U/I toolkit that provides native user experience
	Choose data storage that's easy to use and evolve
	Improve and simplify the experience of sharing, communication, and collaboration
	Use a Model View Controller architecture
	Security is hard

	Managing Risks
	Scheduling is hard
	Open source software needs revision

	An Overview of the Chandler Architecture
	Introduction
	Overview
	Viewers
	ChandlerView
	Viewer Parcel API
	wxPython
	Table Widget, HTML Display, etc ...

	Other Services
	Data Model API.
	Chandler Extended Persistence
	Data Sources

	Chandler Repository
	Repository Service Interpreters
	External Data Sources

	
	OSAF Title Page

