

Status Update Number 7 -- June 25 2003

1. Design work.

We're still deep in the design phase, making incremental progress on
the key infrastructural elements. Brian is working on creating a formal
representation of the data model. Once it exists we'll circulate it. Right
now we have notes of various discussions at
http://wiki.osafoundation.org/bin/view/Main/DataModelFeatureDetails,
but no cohesive design document. Discussions of the "document
architecture (formerly the "super-widget" now sometimes know as the
"Table and Outline Widget") continue. We'll be focusing on getting the
useful parts of these discussions written down soon, as soon as we
figure out how to clone Brian's amazing ability to document meetings,
discussions and progress. Andy Hertzfeld and Andrew Francis have
been working on the API for the notification framework for the event
model. It looks like the API is starting to coalesce, and implementation
of the Notification Manager
http://wiki.osafoundation.org/bin/view/Main/NotificationModel may
start soon.

2. Competitive Anaylsis.

We now have a competitive survey and analysis of email and calendar
applications in the Higher Education market. This work has been done
primarily by Ed Chao, who's volunteered his help in the project
management arena over the summer. Many thanks to Ed.

3. 0.2 scheduling.

We're still working on it, both on a bottoms-up approach of planning
specific tasks, and using a top-down approach of estimating general
functionality. No breakthrough news.

 1
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

4. Project pages.

As part of our overall planning and organizational goals, we've decided
to create "project pages" for a handful of high-level pieces of chandler
(such as calendar, data model and agents). Our first goal is to create
an Overview Page, listing the approximately 30 or so areas which
together make up our view of Chandler, and to actually create Project
Pages for the 5 or 6 most pressing areas. The project pages will
ultimately provide an overview of the relevant piece of Chandler. Mtoy
will create the Overview page.

5. Email

Ducky is putting together information about existing email libraries so
we can figure out whether we'll use existing libraries. We also need to
look at the licenses that govern them and make some decisions about
our licensing plans. See the Implications of Third Party Licenses doc
for a discussion of this. Ducky is also working on estimating the time
necessary for getting email working in chandler if we build it all
ourselves and if we use existing libraries. Her thinking so far can be
found at:
http://wiki.osafoundation.org/bin/view/Main/EmailSchedules. If you
have releavant experience and something to add about scheduling,
then please do so.

6. Implementation

Andi (with an "i") is working away madly. He's working on finalizing
the XML format and an implementation of the schema of schemas, and
having code in CVS which developers can use to build schemas on. You
can now create objects, save them and get them back. Andi has also
created a Chandler Data Model Developer Guide can be found at
http://wiki.osafoundation.org/bin/view/Main/DataModelDevGuide. The
code is new and still unpolished, so expect some surprises:-)
Jed's been working on the ActionsBar? and item detail view for new
windows.

On the build front, Morgen has startes a smoketests page at
http://wiki.osafoundation.org/bin/view/Main/SmokeTests and a unit
test page at http://wiki.osafoundation.org/bin/view/Main/UnitTests.
Morgen has merged the newest wxPython release into the Chandler
CVS repository. Morgen also debugged an OS X problem that caused
our Mac builds to be broken for a few days. Builds should be OK now.

 2
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

http://wiki.osafoundation.org/bin/edit/Main/ActionsBar?topicparent=Main.UpdateNumber7

7. Hiring.

We still have open positions which we need to fill. Many thanks to
David Paigen for his assistance with job descriptions, postings and
resumes. We've now identified the hiring issue as a "snake": posted
positions remain unfilled for long time, we don't have an agreed upon,
effective hiring process, and it's a big priority. We decided to review at
our hiring process to see if we can do better.

-- MitchellBaker - 26 Jun 2003

 3
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Referenced Content

Summary of Data Model Features
Here's a summary of the features we're talking about having in the data model.
These features would be available to parcel developers who are creating new
domain-specific schemas, and to end-users who are creating domain-specific
schemas.
Most of the features listed below are here because they have some impact on the
data model itself. Some of the features may not directly impact the data model, but
we've included them here anyway because of their impact on Chandler's end-to-end
data handling infrastructure.

Data Model Features

• "in" features -- features we propose to have
o multiple inheritance (for kinds)
o multi-kind items -- an item can be of more than one kind
o item morphing -- an item can change from one kind to another
o global attributes -- attributes can be defined globally (like in RDF),

or for a kind
o compound attributes -- attributes can have component attributes

(name: first_name, last_name)
o symmetrical relationships between items (but only within a

repository)
o both weak-reference and strong-reference relationships (but only

within a repository)
o references across repositories (only unilateral, weak-references)
o queries represented as a query data structure (e.g. query items)
o both strong-typing and weak-typing for attributes (e.g. "float" vs.

"any")
o simple garbage collection mechanism similar to ref-counting
o unicode string -- all strings in unicode, not ASCII
o UUIDs -- 128-bit ids, unique across all repositories
o replicated items -- local copies of items from other repositories
o enums -- hierarchical enums
o schema info as first class items -- items for kinds, types, and

attribute definitions

• "future ideas" -- features we might add in the fullness of time
o sub-attributes (like in RDF)

• "out" features -- features we want to cut
o no symmetrical relationships across repositories

 4
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o no strong-references across repositories
o no queries that span multiple repositories
o no queries that span foreign data sources (like IMAP)
o no text-based query language
o no versioning -- no DB-level support for item versions

• "open issue" features -- features we haven't decided about
o strong-typing with multiple types (e.g. "string or Task")
o unilateral relationships
o partially replicated items -- proxies for foreign items where the

proxy has only some attributes
o namespaces
o derivation rules -- on kinds vs. on instances -- indexing derived

values -- derived items
o undo and transactions -- multi-user issues, undo across invocations,

etc.
o permissions -- item-level vs. attribute-level -- capabilities vs. ACLs -

- other issues
o notifications -- conditions, triggers, and notifications
o files and attachements -- in-repository vs. references to file-system

files

More detail

• for a more detailed list, see the Data Model Feature List
• and for still more detail, see Data Model Feature Details

Contributors

• BrianDouglasSkinner - 10 Jun 2003

 5
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Data Model Feature Details
In May/June 2003, a few of us got together for a series of meetings about what
features the data model should have. This document started as a distillation of the
meeting notes from those meetings. It may also include some new material, or
material from other documents.

The goal for this document is to try to reflect our current thinking, and to describe
the data model features in a fair amount of detail.
If you'd rather see a summary document, try one of these:

• Summary of Data Model Features
• Data Model Feature List

Goals

Here are a few of the design goals for the data model:

• Meet the needs of parcel programmers -- These are people like the OSAF
engineers, who are writing parcels like the OSAF calendar parcel and the
OSAF e-mail parcel. Also third-party programmers who are writing their own
parcels. Parcel programmers need fixed schemas, strong typing, and
guarenteed enforcement of schema restrictions. Parcel programmers are used
to thinking about data modeling features from object-oriented programming
languages -- inheritance, pointers, etc

• Meet the needs of end users -- These are end users who are using
Chandlers general purpose info management tools to keep track of
unstructured data, and to add structure incrementally. These users need
flexible schemas, weak typing, and the ability to easily make ad-hoc changes.
These users are used to keeping their records in tools like Excel, or Filemaker
Pro, or Access -- which offer slightly different data modeling features.

• Design something that can be implemented -- Keep it simple. Don't
undertake any research projects.

• Avoid creating "made up" requirements

Snakes/Dragons

• Sharing data, sharing schema
• Schema editing, schema evolution
• Query, indexing (we have some rough agreement, still to be worked out)
• Versioning. Recommendation: implement this as an application feature, not a

general repository feature.
• Merge/Sync more than two repositories.

 6
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Block Diagram

 +--------------------------+ +---------------------+
 | Chandler PIM Schema | | Third-party schemas |
 | ("e-mail message", | | |
 | "calendar event", | | |
 | "address book contact", | | |
 | "note", etc.) | | |
 +==+ <--
Repository API
 | Schema Library |\
 | (generally useful items -- e.g. "Enums" | \
 +--+ >
"General Schema Layer"
 | Schema of the Schema | / \
 | ("Kind", "Type", "Schema", "Attribute Definition") |/ \
 +--+ > "The
Data Model"
 | Building Blocks Layer | /
 | ("Item", "Container", "Attribute", "Item-Ref") | /
 +--+__/

Terminology

We settled on the following terminology:

• reserved words:
o "Item" -- a bunch of attribute values -- pretty much everything is an

item -- e.g. "Lunch with Pat"
o "Attribute Definition" -- e.g. "Start Time"
o "Attribute Value" -- e.g. "2:30 pm"
o "Kind" -- a category of items -- a Kind has a set of Attribute

Definitions -- e.g. "Calendar Appointment"
o "Type" -- a type of literal -- "int", "float", "unicode string", etc.
o "Item-Ref" -- a reference from one Item to another -- e.g.

"Employees<-->Department"
o "Domain Schema" -- a set of Kinds and global Attribute Definitions

-- e.g. the "Baseball Schema" or the "Chandler PIM Schema"

• non-reserved words:
o "thing" -- no special meaning in Chandler -- just another fuzzy English

language word
o "schema" -- no special meaning in Chandler -- just another fuzzy

English language word

Building Blocks

At the Building Blocks Layer:

 7
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• Everything is an Item
o Items can have Attributes

 Items are essentially a dictionary of Attributes
o all Items can be accessed through a UUID

 this is a globally unique id, unique across all repositories
o all Items can be accessed through a Path
o each Item has a "name"

 the name may or may not be unique within a Container
 this is not a user-level display name

• Some Items are Containers
o a Container is just an Item and has all the aspects of an Item
o additionally, Containers contain a bunch of other Items
o Containership is purely for "house cleaning"

 Containership DOES NOT IMPLY ANY SEMANTICS
o Containers are a facility for the developer, not a facility that the end

user need be aware of.
o every Item is owned by exactly one Container
o when a Container is deleted, all the contained Items are also deleted

• All semantic references are implemented via Item-Refs
o Items never have pointers to each other, except via Item-Refs
o An Item-Ref is an object that is not an Item
o An Item-Ref can point to an Item, or to another Item-Ref
o One Item-Ref connects two Items, via two Attributes, one on each

Item
o Item-Refs can have policy definitions that dictate how to handle Item

lifecycle events, like what to do when an Item is deleted or cloned.
The policy definitions can dictate when to do deep copies and when to
do shallow copies, whether to include sub-items in a delete operation,
etc.

• A Path can be used to identify an Item
o A Path is a system level thing, not an end-user thing
o users would not see Paths or type in Paths
o programmers, doing debugging, might type in Paths

• Attributes can have Attribute Values
o some Attribute Values are Literals, like a float or an int or a string
o some Attribute Values are Item-Refs

• Conceptually, there are just three things: Items, Containers, and Item-
Refs (plus minutia like Attributes, Literals, etc.)

General Schema Layer

Moving up from the Building Blocks Layer, the rest of this document focuses more
on the features of the General Schema Layer -- the features that will be available
to parcel programmers through the Repository API.

The first source of truth for this stuff is the Data Model Feature List. It gives a high-
level summary of which features are in and which are out. You should read that
document before you read the rest of this one. The rest of this document only has
additional notes about the features -- to avoid creating duplicate sources of truth,

 8
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

this document tries to avoid intentionally including copies of the information from the
Data Model Feature List.

Items and Attributes

At the level of the Repository API:

• We will only persist Items and their Attributes, not random python objects
• Every Item has exactly one UUID
• An Item can have attributes, and values for the attributes
• Every Item is essentially a dictionary with key-value pairs of attributes and

Attribute Values
• An Attribute Value can be a literal, like the number 14 or the string "Foo"
• An Attribute Value can be an Item-Ref
• An Attribute Value can be null
• An Attribute Value can be a Collection

o A Collection can contain literals or Item-Refs
o A Collection can be a List, Set, Dictionary, or Hash

Inheritance

• four kinds of inheritance
o value: an instance inheriting a value from another instance -- similar

to derived values -- Andi has found this to be an extremely useful
feature

o attribute: a Kind inheriting an Attribute Definition from a
"superclass" Kind

o type: for strongly typed schemas, when type-checking, an instance
counts as type Foo either when it is an instance of the Foo Kind, or
when it is an instance of a Kind which is a "subclass" of the Foo Kind

o behavior: in Python or Java, classes inherit methods from superclasss
-- in a database, records do not have behavior -- in our Python
mapping for the data model, we will map Python classes to Kinds in
the database

• we resolved
o to support attribute inheritance
o to support type inheritance
o to support multiple inheritance (and therefore also single inheritance)

 but, to try not to use multiple inheritance in the Chandler PIM
Schema

o to allow an item to be an instance of two kinds
 but, in the Chandler parcels, not to offer any kind of general

data mixing features, but rather in the Chandler PIM Schema,
to handle as the E-mail/Task mix as a special case

 see the dev list discussions with Micah Dubinko:
 http://lists.osafoundation.org/pipermail/dev/2003-

May/000662.html
 http://lists.osafoundation.org/pipermail/dev/2003-

May/000665.html

 9
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o the "Building Blocks" layer will provide the foundation for
implementing value inheritance -- we want to talk more about value
iinheritance later, when we're also talking about derived values in
general -- then we need to decide what support we want to offer for
value inheritance up at the level of the "Repository API"

• "Emergent" typing for kinds vs. Declarative typing for kinds
o see the dev list discussions with Micah Dubinko:

 http://lists.osafoundation.org/pipermail/dev/2003-
May/000662.html

 http://lists.osafoundation.org/pipermail/dev/2003-
May/000665.html

 http://lists.osafoundation.org/pipermail/dev/2003-
May/000666.html

o resolved to pick declarative typing for kinds
o we won't provide any direct support for "emergent" typing, although a

third-party parcel developer could write a parcel that had this feature

Attributes

• end user vs. parcel programmer
o The end user wants malleable data, the ability to construct arbitrary

views and do interesting searches. The programmer wants objects to
use when writing code: some reliance on structure, easy persistence,
etc. We've struggled with these two design goals, we've occasionally
captured this tension as "item centric" vs "object centric". We could
also refer to these two things as the "data model" and the "object
system" respectively.

o It may be a good idea to formally separate attributes (on a given item)
into end-user-visible-attributes and programmer-housekeeping-
attributes, where there are different expectations for the different
types.

• "domain attributes" vs. "house-keeping attributes"
o any given item will have both domain attributes and house-keeping

attributes
o domain attributes

 domain attributes are things that the end-user cares about, like
a baseball player's "name", or "age", or "batting average"

 domain attributes should always be visible to the user
o house-keeping attributes

 house-keeping attributes are things that the chandler
infrastructure code cares about, like "last-modified" time, or
"version" number, or a "logically deleted" flag

 house-keeping attributes may frequently be invisible to the
user, although in some cases the user might want to be able to
look at them (e.g. "creation date")

o probably users should never be able to edit house-keeping attributes
directly

 10
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• "display names" and "identifier names"
o an attribute definition can have an optional identifier name -- e.g.

"startTime"
 the identifier name syntax restrictions that would work in

Python or Java
 the identifier names must be unique within a Kind

o an attribute definition can have an optional display name, which is
what the end-user sees -- e.g. "Start Time"

 the display names are not required to be unique within a Kind -
- we want to be flexible, even though we can imagine this
flexibility will make for some headaches later (e.g. in some
future text-based query language)

o an attribute definition might also have a URL that uniquely identified it
across namespaces, although this might be unnecessary because an
attribute definition can always be uniquely identified by its UUID

• "global attributes" vs. "local attributes"
o see also: DataModelIssues#Global_Attributes
o an Attribute Definition can be a "global attribute"

 a global attribute can be used by more than one Kind
 a global attribute is defined in a Domain Schema
 a global attribute can be used by Kinds from other Domain

Schemas
o an Attribute Definition can be a "local attribute"

 a local attribute is defined within a single Kind, and used only
by that Kind

• "sub-attributes"
o see also: DataModelIssues#Sub_Attributes
o we are not going to support sub-attributes for 1.0
o this should be something that could be added after 1.0 without

breaking anything (although we did note that it might be difficult to
write database code that would be efficient when processing queries
on a super-attribute)

• Domain Schema Diagram
o We settled on diagram showing how the schema info is organized. I

don't have a good way to reproduce the diagram here, but here's what
it shows:

 A Domain Schema item has a collection of Kind items
 A Domain Schema item has a collection of Attribute

Definition items, representing global attributes
 A particular data item (e.g. "Lunch with Pat") has a defining

Kind item
 A Kind item has a collection of Attribute Definition items

 some of those Attribute Definition items may be local
to this Kind item

 some of those Attribute Definition items may be
global attributes that are in the collection of Attribute
Definition items pointed to by the Domain Schema
item that is pointed to by the Kind item

 11
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 some of those Attribute Definition items may be
"imported" global attributes that are in the collection of
Attribute Definition items pointed to by some
unrelated Domain Schema item

 An Attribute Definition item may be pointed to by more than
one Kind item

 An Attribute Definition item may be pointed to by at most
one Domain Schema item

• Attribute Definitions vs. Attribute Bindings
o When a Kind item includes an Attribute Definition item, the Kind

item uses all the general information defined in the Attribute
Definition item, which is shared by all the Kind items that use the
Attribute Definition item

o In addition, there may be some specific information particular to the
use of the Attribute Definition item in this specific Kind item --
information that not's associated with the Attribute Definition item
itself, but with the binding of the Attribute Definition item to the
Kind item

o Here's a breakdown of what we decided about what information should
be associated with the Attribute Definition item and what should be
associated with the binding

 Attribute Definition info
 "type"

 could be something like int, float, string, date...
 could be a specific sort of Item-Ref
 could be "Any", meaning any of the above

 "one vs. many"
 this is really "cardinality" info -- but we want to

be clear that we're only offering the two choices,
"one" and "many", rather than more complicated
things like "4" or "6 to 8"

 defaults to "many" when a "baseball fan" creates
a new Attribute Definition

 "identifier name"
 used as a python token -- e.g. "startTime"

 "display name"
 appears in the UI -- e.g. "Start Time"
 can be a simple ASCII string, or a Unicode string,

or a "Polyglot string" (meaning a dictionary of
localized string translations, keyed by langauge)

 Attribute Binding info
 "required"

 a boolean value -- means the same as "not null"
-- the attribute must be included in every
instance, and must always have a value

o There are a few different options for storing Attribute Binding info:
 We could have separate Attribute Binding items between a

Kind item and an Attribute Definition item
 We could somehow associate it with the Item-Ref that relates a

Kind item to an Attribute Definition item

 12
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 We could somehow associate it with the the (attribute of the
Kind item) that points to the Item-Ref that points to the
Attribute Definition item

 We might be able to do this just by using our
"Compound Attribute" idea

 We didn't pick which option we want -- we'll cross that bridge
when we come to it

• attributes on attributes
o example: Spot is a dog. Spot has an attribute called "age". Spot's age

is "6". Can "Spot's age is 6" have other attributes, that further
describe the "age" of Spot? Maybe attributes like "percent certainty",
or "error term" or something?

o resolution: no, we're not going to support this

Relationships

• Symmetrical Associations
o (see also: DataModelIssues#Symmetrically_Associated_Attribu)
o we will support Symmetrical Associations within a repository, via Item-

Refs

• Item-Refs
o we will have Item-Ref instances (between two Items)
o we will not have "Item-Ref Definitions" that the Item-Ref instances

point to
o End users can create ad-hoc relationships between Items using Item-

Refs

• strong references and weak references
o we will offer support for both "strong references" and "weak

references"
o "strong references" and "weak references" can be implemented via

Item-Ref house-keeping policies like "don't delete on delete"
o "strong references" will be used to do garbage collection using

something similar to reference counting

• referential integrity
o The repository will ensure referential integrity, but only for Item-Ref

relationships
o When you delete the item at one end of an Item-Ref, the Item-Ref

always goes away

• cycles
o We agreed that its ok to have cycles in the schema, the repository will

be able to handle it.
o see the dev list discussions with Micah Dubinko:

 http://lists.osafoundation.org/pipermail/dev/2003-
May/000662.html

 13
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 http://lists.osafoundation.org/pipermail/dev/2003-
May/000665.html

 http://lists.osafoundation.org/pipermail/dev/2003-
May/000666.html

• one-to-many and many-to-many relationships
o we will have support for

 one-to-one relationships -- via attributes that point to Item-
Refs

 one-to-many relationships -- via attributes that point to Lists of
Item-Refs

 many-to-many relationships -- via attributes that point to Lists
of Item-Refs that point to Lists

• unilateral relationships
o use case where you might want this: an item needs to know its kind,

but a kind doesn't want to know about every item.
o instead of a full ItemRef, the item could reference the kind via the

uuid
o the kind/item is a special case (fundamental because it is so common),

but similar desired functionality could be required in other cases
o should a "unilateral relationship" be a first class concept in our data

model?
 pro: would be useful to specify unidirectional relationship and

say something about the domain/range of the relationship.
Useful for introspection. Useful for debugging. Possibly useful
for constraint enforcement. Without it, you can't have a self
describing schema of schemas

 con: proliferation of first class concepts complicates the
repository. Also, more difficult to enforce range or other
restrictions on a unilateral relationship.

o resolved to leave this as an open issue for now.

• remote relationships
o How do we handle strong references across repositories?
o questions:

 do item-refs work across repositories?
 does garbage collection work across repositories?
 how can items in different repositories be related?

o answers:
 trying to get item-refs and garbage collection to work across

repositories constitutes a research problem, which we want to
avoid.

 which should only have simple, low-tech mechanisms for cross-
repository relationships

o how do we refer to a repository?
 we might have local repository items that represent remote

repositories
 items might refer to a repository by the repository items, or by

having a url that points to the remote repository
o resolved:

 14
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 we will have a separate data type to represent an "external
reference" -- an external reference is a weak reference to an
item in a remote repository

 when you subscribe to an item instance in a remote repository,
you get a local copy of the remote item

 you can view items in other people's repositories, but if you're
just viewing (not subscribing) then those items never get
stored in your repository

Compound Attributes

(see also: DataModelIssues#Compound_Attributes)

• a compound attribute will just be a normal Attribute Definition, but one that
has a list of other component Attribute Definitions

• the compound attribute will have all the features of a normal Attribute
Definition, like "identifier name", and "display name", and "one vs. many"
cardinality

• the component-attributes will each have all the features of a normal Attribute
Definition, like "identifier name", and "display name", and "one vs. many"
cardinality

Indexing

• indexes for queries
o in a Domain Schema, Attribute Definitions can be explicitly marked

with a flag to declare that they should be indexed (the Domain
Schema is in a layer above the Building Blocks)

o we could imagine having the repository try to observe queries and
heuristically index, but that would be a research problem, so we're not
going to do that

o full text indexes are a special case. Full text indexes will live with the
data. We hope to use an existing 3rd party one, but may run into
problems, especially getting it to work well with transactions. John's
confident it wouldn't be too hard to roll our own if we needed to.

o when a transaction fails (or on rollback), the index needs to be rolled
back

o when an item is deleted, the entries for it need to be removed from
the index

Queries

• goals
o searches of structured data should be fast
o searches of free-form data should be possible

 15
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• text-based query langauge
o we need to support some kind of programmatic API for submitting a

query -- e.g. using some data structure to represent a query
o we don't want to have a text-based query language that requires

parsing

• joins
o Unlike SQL, we're not doing "joins"

• query sorting
o A query may also need to specify some sort of grouping/sorting

behavior. Queries don't just return result sets, they return the result
set pre-sorted, so that client code can get just a partial result set and
then start interating over the entire result set as needed by the UI.

• query contexts
o For a query, we often want specify the set of things to look through,

and a filter on that set. The key is to narrow the set to be smaller than
the whole repository.

 Kind-specific queries
 Most queries/searches are done in some context, and

you can usually limit the set based on kinds. For
example, a query might look for all the e-mail from a
given person, so then we only have to look at items of
kind e-mail, not all items. And calendar views generally
only look at calendar events.

 Multi-kind queries
 In some cases, queries span different kinds. A calendar

view might be used to view e-mail messages. And a
generic table view might be used to look at lots of
different kinds of items side by side.

 Owners
 The notion of an "owner" seems important for limiting

queries. Many items will be owned by one user -- e.g. I
own my e-mail. For lots of common queries a user will
just want to search through stuff they own -- e.g. I
mostly just want to see my calendar, my e-mail, my
tasks.

o Most queries will only need to search over the set of
InformationItems. InformationItems are things like Email,
contacts, appointments, tasks, notes. The set of Items is more
general, and might include "system info" items, like items representing
parcels, agents, repositories, queries, etc.

Values

(see also: DataModelIssues#Null_Values)

Default Values

 16
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

(see also: DataModelIssues#Default_Attribute_Values)

Restrictions

(see also: DataModelIssues#Restrictions_on_Attributes)

• A schema designer can place three types of restrictions on attribute values:
o Cardinality restrictions
o Requried (non-null) restrictions
o Data-type restrictions

• Cardinality restrictions
o attributes can have cardinalities of One or Many

• Required/optional
o attributes can be either required or optional

• Strong typing
o Questions:

 Can we rely on a "startDate" to always be a date, not just some
random text string?

 Is the user restricted from entering invalid dates? Do we do
data entry validation?

 Does the repository do type checking when it gets a request to
store a value?

 Does some layer of code uniformly do type checking whenever
a value is retrieved from the repository?

 Can a GUI parcel programmer trust that something is what it's
supposed to be, or does that person have to do defensive
coding everywhere?

 Should there be some code that does a repository validation
sweep, traversing the repository and ensuring that it is valid?

o Answers:
 A schema can specify that some Attributes are strongly typed
 A schema can specify that some Attributes are not strongly

typed
 For strongly typed Attributes, we build the plumbing such that

the GUI parcel programmer can blindly trust that the Attribute
will never get a value of the wrong type

 For Attributes that are not strongly typed, an end user is free
to enter whatever value they want (e.g. via an tool like the
SuperWidget)

 For Attributes that are not strongly typed, when the Attribute
Value is stored in the repository, we have to also store
something telling us what "type" the value is (e.g. if we store
xF800, we need to know whether it's a int or a string)

Item Versions

 17
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

(see also: DataModelIssues#Item_Versions)

• item versions
o this is a snake/dragon
o what would it mean to have garbage collection in a system with

change logs and item histories?
o what would it mean to have an explicit delete operation in a system

with change logs and item histories?
o supporting item versions in a general way could end up being a

research project
o resolution: we recommend that any item version features should be

implemented on a case-by-case basis up in the application parcel
code, rather than having the repository offer any kind of ubiquitous
general-purpose version mechanism for all items

Deletion

(see also: DataModelIssues#Garbage_Collection)

• explicit delete
o in addition to garbage collection, we will also provide for an explicit

delete operation
o it will be possible to associate different deletion semantics with

different relationships, by setting the "policy bits" on Item-Refs
o once you delete an item it is gone forever

Strings

(see also: DataModelIssues#Text_Strings)

• strings
o Unicode everywhere at the user level, not ascii
o symbols -- used for python mapping -- ASCII strings with no spaces,

etc.
o Polyglot strings, most likely -- (dictionaries of translations, keyed by

language)
o any string, possibly -- (an attribute of type any string could have a

value that was a unicode string, or a polyglot string, or a rich text
string

o more complex types of strings are allowed (all can be represented by
ascii), but captured at a higher level (building blocks is unaware of
them)

o rich text strings should be represented in some platform independent
way, rather than storing the different platform-specific rich text strings
that one encounters on Linux and Windows and Mac

 18
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Schema Items

• attribute definitions
o we will represent attribute definitions as Items
o for example, there will be a "Start Time" Item, of Kind "Attribute

Definition"
• kinds

o we will represent kinds as Items
o for example, there will be a "Contact" Item, of Kind "Kind"

• types
o We will try and represent each Type as an Item
o for example, there will be an "Int" Item, of Kind "Type"
o 3rd parties being able to define their own types is a possible later

feature, will not be addressed out of the gate.

Basic Data Types

• Can parcel developers define new Literals?
o maybe

RDF

• The Chandler data model differs from the RDF model.
• We do not aim to be a general triple store, capable of storing arbitrary RDF
• We will not be able to import arbitrary RDF -- only RDF that we have exported
• We can easily write some code to export data from a Chandler repository to

some kind of RDF document, as long as we get to pick our own RDF
representation. We want to be able to export to some sort of RDF, but it can
be a general Chandler-centric RDF, not an RDF designed for interoperation
with other apps in specific application domains.

• We haven't yet identified other specific ways that we might want to
interoperate with RDF, and we don't know how well-suited the Chandler data
model will be for interoperating with RDF tools.

• Chandler application level parcels may want to have their own RDF
import/export tools, to express their data in a particular rdf schema
(calendar, foaf, dublin core)

UUIDS

(see also: DataModelIssues#Unique_IDs)

• UUIDS
o UUIDs will be randomly generated 128-bit values
o different types of datastores will not each assign their own flavor of

UUID

 19
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o the UUID will not be a tuple that includes (or encodes) the "home
repository" of an item

o the client be able to assign its own UUIDs, without having to request
them from the server?

o the kind item for "Contact" will have the same UUID in every
repository

Annotations

Foreign Items

(see also: DataModelIssues#Local_Proxies)

• foreign items
o we will definitely want to have local copies of items from foriegn data

sources (like IMAP mail), in order to handle indexing and querying
from within Chandler, and in order to work when off-line

o we will definitely want to have local copies of items from other
Chandler repositories, for example when a user has subscribed to
something from somebody else's repository

o resolutions:
 this problem will probably end up belonging to whoever is doing

replication -- we're going to leave it be for now

Enums

(see also: DataModelIssues#Enumerated_Types)

• there are a couple different options for providing enum support
• we resolved:

o the "Building Blocks Layer" should have support for "symbols"
o the mechanisms in the "Building Blocks Layer" will probably be

sufficient to support whatever type of enum representation we used in
the "General Schema Layer"

Namespaces

(see also: DataModelIssues#Namespaces)

• Do we want the repository to have some notion of namespaces, or are
namespaces something that should be handled by semantic dictionaries?

• namespaces

 20
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o we might not need namespaces, because items can always be refered
to by UUID rather than by name

o resolution: left this as an open issue for now

Derivation Rules

(see also: DataModelIssues#Derived_Attributes)

• Can we live with not having derivation rules associated with individual
attributes of individual items, and instead just have derivation rules
associated with attribute definitions at the class level?

• Can we say that derived values always calculated by the client?
• Can we say that derived values are stored in the repository?

Repositories

(see also: DataModelIssues#Repository_Subsets)

Display Strings

(see also: DataModelIssues#Display_Strings)

Transactions

Permissions

• authorization and permissions
o once we hire a security person then we'll take direction from them

about how our overall authorization system should be designed
o in any case, authorization needs to be enforced on the server side --

code on the client never even gets to see any items or attributes that
the user doesn't have permission to see

o therefore, the database will need to know about the permissions
schema in order to enforce the permissions

o authorization might be handled using "capabilities" or "ACLs"
o resolved: come back to this once we have a security person

Parcels

 21
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Notifications

Sharing

Files

Schema Changes

• background
o parcel programmers may make changes to the schema, but the

changes will be carefully planned, and the new parcel code will be
written so that it (a) can do data conversion on existing items, and (b)
can deal with running into old-format data

o end users will also change the schema information, by doing things
like adding attributes to a kind, or deleting attributes, or changing the
names of attributes. Those changes will impact items that already
exist. But end users won't write data conversion routines, so Chandler
will have to deal gracefully with that.

o in both types of use case, there will be some thorny issues. once we
have a data model design that describes what schemas look like, then
we need to cycle back and think about what types of changes we will
allow people to make to their schemas, and what we need to do to
support those schema changes.

• merging items
o can you take two items that different UUIDs and merge them so that

you end up with only a single item?
o might be desirable from a user's point of view, but implementing this

in a general way would be hard

• schema editing
o can a user edit the Chandler PIM schema?

 example: Joe adds a new "hair color" attribute definition to the
"Contact" kind

 resolution: NO, all the PIM Schema instances are read-only --
more generally, any schema instance should be read-only if
there's ever python code written against it

o can a user create their own sub-kind of "Contact" and add attributes to
that?

 creates lots of complexity when users start sharing items that
come from schemas that were originally related but have been
forked

 22
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Contributors

• BrianDouglasSkinner - 10 Jun 2003

 23
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Menu of possible data model features
This document offers list of possible features we might want to have in the data
model. These features would be available to parcel developers who are creating new
domain-specific schemas, and to end-users who are creating domain-specific
schemas.

As of June 2003, we're in the process of going through this list. We're picking which
features we think are important, which we think we can discard completely, and
which we might think about adding someday in the future. Once we've finished going
through the list, we plan to summarize our suggestions in a proposal.
Once we have a complete proposal, we'd like to have some kind of review for that
proposal. The review should eventually result in "truth" -- meaning we will have
signed off on a feature list that says what data-representation features Chandler will
have. That feature list will end up impacting the design of lots of different parts of
Chandler: the database code, the repositry API, the query langauge, RAP, the
Python-binding code for the data model, the Chandler PIM schema, etc.
This is just a bullet-point list of features -- for more background info, and more
detailed discussion about the features, see:

• Data Model Feature Details
• Data Model Issues

Our recommendations are marked below:

• means "in" -- We propose that Chandler should support this feature.
• means "out" -- We propose that the Chandler platform itself should not

have first-class support for this feature (although in many cases third-party
parcels might be able to offer this feature, built on top of Chandler building
blocks)

• means "idea for future version" -- We think this might be a good idea for
later. We propose not to include this for Chandler 1.0, but to keep it in mind
as a possible later extension.

• means "open question" -- we haven't yet made an in/out recommendation

menu

• kind inheritance -- (see 29 May 2003 meeting and 30 May 2003 meeting)
o single inheritance vs. multiple inheritance

 no kind inheritance
 just single kind inheritance
 multiple kind inheritance

o items as instances of a kind
 an item can be an instance of just one kind
 an item can be an instance of one or more kinds

 declarative typing for kinds
 "emergent" typing for kinds

 24
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 an item can change from one kind to another
 for the case of a kind that does not have associated

Python parcel code
 for the case where there is Python parcel code (e.g.

Calendar Event or E-mail Message), but in carefully
restricted ways, not willy-nilly however the user wants
to

o aspects of inheritance
 "attribute" inheritance -- a sub-kind inherits attribute

definitions from the super-kind
 "type" inheritance -- an instance of a sub-kind counts as

being of the type of the super-kind
 "value" inheritance -- the value of one attribute is derived

from another
 "behavior" inheritance -- sub-kinds inherit functions or

methods
 data model knows about behavior
 behavior stored only in Python classes which are

mapped to Kinds in the schema

• attributes -- (see 30 May 2003 meeting & 02 Jun 2003 meeting)
o global attributes
o attributes bound to a kind
o ad-hoc attributes on an instance
o sub-attributes
o attributes used to describe items
o attributes used to describe other attributes
o attributes flagged as ones to index on -- (see 04 Jun 2003 meeting)

• relationships
o unilateral relationships -- (see 04 Jun 2003 meeting)
o symmetrical relationships -- (see 28 May 2003 meeting)
o one-to-one relationships -- (see 04 Jun 2003 meeting)
o one-to-many relationships -- (see 04 Jun 2003 meeting)
o many-to-many relationships -- (see 04 Jun 2003 meeting)
o weak-reference relationships -- (see 02 Jun 2003 meeting)
o strong-reference relationships -- (see 28 May 2003 meeting)
o inter-repository relationships -- (see 04 Jun 2003 meeting)
o circular references -- (see 04 Jun 2003 meeting)

• compound attributes (wholly-owned sub-items) -- (see 02 Jun 2003
meeting)

o compound attribute definitions as first-class items
o component attribute definitions as first-class items
o component attributes can be Item-Refs
o queries can refer to component attribute definitions
o ad-hoc component attributes

 25
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o component attributes can be required or optional
o component attributes can have cardinality "many"

• queries -- (see 04 Jun 2003 meeting)
o one-off queries
o ongoing queries
o persistent queries
o observable queries
o queries spanning mutiple repositories
o queries spanning foriegn data stores

• values -- (see 28 May 2003 meeting)
o null values
o missing attributes

• default values
o no default value support
o default stored on attribute definition
o default values are set when item is created
o default values are set when attribute is created
o on get(), default values are returned but not set

• restrictions -- (see 28 May 2003 meeting)
o cardinality restrictions
o non-null restrictions
o data type restrictions (e.g. "int")

 strong typing available
 weak typing available

o multiple type options (e.g. "int or Event") <-- probably no; but
maybe if it's easy; talk to Andi

o range restrictions (e.g. "21 to 35")
o inter-attribute restrictions
o transitive restrictions
o "expectations" vs. restrictions

• item versions -- (see 05 Jun 2003 meeting)
o any versioning features are implemented by custom app code
o built in database support for versioning

 past versions of items
 change objects
 current version number in items
 version tumblers

• deletion -- (see 05 Jun 2003 meeting)
o explicit deletion
o explicit deletion of current version

 26
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o explicit deletion of all past versions
o simple garbage collection similar to ref-counting

• strings -- (see 05 Jun 2003 meeting)
o symbols (ASCII, no spaces, etc.) -- (available at system level, but

not user level)
o ASCII strings -- no, store as byte array
o 16-bit unicode strings
o 32-bit unicode strings
o platform independent rich text strings
o platform specific rich text strings
o HTML links in strings
o Chandler links in strings
o polyglot strings -- dictionary of localizations keyed by language
o any string -- matches any of the above

• meta-data as items
o kinds
o attribute definitions
o types

 aliases for types
 third-party parcels can create new types

• basic data types
o data types geared towards end users and third-party schema authors

 int, float, boolean, etc.
 List
 Item-Ref
 cross-repository reference
 blob
 date, time, duration, timespan, timezone
 URL, file

o data types geared towards parcel authors
 symbol
 UUID
 repository containment path
 third-party developers can add basic data types

• import/export -- (see 05 Jun 2003 meeting)
o domain specific RDF formats (e.g. Calendar)
o mappings to other RDF schemas
o Chandler-centric RDF format (bare-bones, and PIM ignorant)

 RDF import
 RDF export

• uids
o tuples (repository, local-id)

 27
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o non-tuple ids (uid)
o homogenious uids
o heterogenious, store-dependent uids
o client assigns it's own uids
o only servers assign uids

• annotations
o item-level annotations
o attribute-level annotations
o simple text-appending annotations
o complicated editing annotations

• foreign items -- (see 04 Jun 2003 meeting)
o local copies from other Chandler repositories
o local copies from foriegn data sources (e.g. IMAP)
o full proxies
o partial proxy copies

• enums
o no support
o single-level enums
o hierarchical enums
o ordered enums
o enums with multiple orderings
o enums implemented as items
o enums implemented as symbols

• namespaces
o namespaces for attributes
o namespaces for items
o semantic dictionaries for mappings

• derivation rules
o derived attributes on a kind
o derived attributes on an instance
o derived values indexed on the server
o circular derivations
o derived items (not derived attributes)

• users
o users
o personas
o profiles
o groups
o contacts
o agents

 28
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• repositories
o repository subsets
o virtual repositories

• display strings
o standard display string attribute
o kind-specific display string attributes
o derived display strings -- e.g. value inheritance

• transactions
o rollback
o undo

 single-user undo
 multi-user undo
 intra-session undo
 inter-session undo

• permissions
o item-level permissions -- (see 04 Jun 2003 meeting)
o partial-item permissions
o group permissions
o kind-instantiation permissions
o domain attribute vs. house-keeping attribute permissions

• parcels
o installing parcels via sharing

• notifications
o conditions
o triggers
o notifications

• sharing
o publishing
o subscription

• files
o attachements
o documents
o in-repository storage
o file-system storage

Contributors

• BrianDouglasSkinner - 21 May 2003 to 11 Jun 2003

 29
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 30
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Data Model -- Issues
This page discusses all the issues that have come up in thinking about the Chandler
data model.
You may also want to look at the other data model pages:

• Data Model
o Data Model Introduction
o Data Model Issues <-- you are here
o Data Model Schema

Contents

(all of these links stay inside this page)

• Background
o Overview
o To Do List

• Discussion Topics
1. Terminology
2. Data Model Requirements
3. Null Values
4. Display Strings
5. Derived Attributes and Derived Items
6. Default Attribute Values
7. Sub-Attributes
8. Global Attributes
9. Enumerated Types
10. Unique IDs
11. Item Versions
12. Namespaces
13. Semantic Dictionaries
14. Restrictions on Attributes
15. Symmetrically Associated Attributes
16. Garbage Collection and Deletion
17. Local Proxies
18. Text Strings
19. Compound Attributes
20. Repository Subsets
21. Division of Labor
22. Proliferation of Items

Overview

 31
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

This document has a list of 20 (or so) discussion topics about that data model
design. There are probably a few more topics that should be in that list, plus some of
the existing topics should be fleshed out a little more.

Each of those discussion topics raises one or more issues, presenting open questions
and sometimes suggesting options or alternatives. Eventually we'll need to resolve
those issues. The issues vary a good deal in how complicated they are, and they also
vary a good deal in when they need to be resolved -- which ones have impact now
and which ones can wait.

In the long run, for each issue we might want to follow some design process, with
steps like these:

• discuss the issue
• propose solutions
• identify dependencies

o identify dependencies between the data model issue and other parts of
the Chandler architecture

o for example: if we want to support some feature Foo in the data
model, then the data store must have support for Foo-tabs, or at least
Foo-proxies.

o in practice, a lot of the data model issues may depend on broader
design decisions, like what features end up getting implemented in the
client vs. the repository vs. the middleware

• decide if this is needed now
o identify features that are needed soon
o identify features that need to be designed for now, to avoid painting

ourselves into a corner
o identify features that could easily be added in later, and don't need to

be considered now
• pick a solution

o document the fact that we've picked the solution

But in the short run we might just want to focus on the most important issues -- the
issues that have the broadest impact, or that need to be resolved first. Here's a first
pass at what I think might be the "top 10" issues to try to get resolved first

1. Terminology
o Sign off on a core set of terms. Maybe just the first couple dozen most

imporant ones, like Thing and Class and Kind-of-Item.
2. Relationships

o Do we want to support symmetrical associations? One-to-One? One-
to-Many? Many-to-Many?

o Do we also have support for non-symmetrical associations?
3. Garbage Collection

o Does the data model provide the notions of both strong and weak
references? Or do we say that everything is a strong reference?

o How do we handle strong references across repositories?
o What does it mean to have garbage collection in a system with change

logs and item histories?

 32
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o Do we provide for an explicit delete operation, and what are the
semantics of that across relationships? Are different deletion semantics
associated with different relationships?

4. Global Attributes
o Are attribute definitions always associated with particular classes, or

are they always global, or can they be either global or associated with
a class?

o Are global attributes truly global, or are they defined within some
scope (e.g. within a parcel)?

5. Derived Attributes
o Can we live with not having derivation rules associated with individual

attributes of individual items, and instead just have derivation rules
associated with attribute definitions at the class level?

o Can we say that derived values always calculated by the client?
o Can we say that derived values are stored in the repository?

6. Namespaces
o Do we want the repository to have some notion of namespaces, or are

namespaces something that should be handled by semantic
dictionaries?

7. Restrictions
o Should we provide for any restrictions on attribute values?

Cardinality? Requried (non-null)? Data-type restrictions?
o If we have restrictions, where are they enforced?
o If we have restrictions, can they be overridden?
o Should we have "expectations" instead?

To Do List

This strawman data model is already a long document, but there's still lots of work
left to do. Right now I (Brian) don't even have a presentable first draft. Here's a list
of pending issues:

• Think about how to have any (item with a date) appear in week view

• Search for "@@@". For each of the dozens of instances, spend an hour
writing the discussion that needs to go there.

• Spell-check this whole thing

Terminology

In building Chandler, OSAF is using Python, and RDF, and other software
components and data standards. Each of these things has its own set of terminology.
Often the terminology overlaps. There are "classes" in Python, and there are
"classes" in RDF, but a Python class isn't the same thing as an RDF class. Chandler
introduces its own set of terms: like "Parcel" and "Item" and "View". Some of these
terms also overlap with existing terms in Python and RDF and other building blocks.

 33
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

In the course of making this strawman data model, I've had the opportunity to think
about what to name all the different things in the data model. Ideally, it'd be good if
the names were short, descriptive, and unambiguous. Those goals are in tension.
You can make a name really short, or you can make it really descriptive, but if you
try to make it short and descriptive you end up making some trade-offs on both
ends.

The goal of being unambiguous is also in tension with the goals of being short and
descriptive. We could say each "item" in a Chandler item store is a member of a
"class" of items, but then when you talk about a "class" it's not clear whether you
mean a Python class, or a Chandler class, or an RDF class.

One solution would be to always say "Chandler class" when you're talking about a
Chandler class. But it's not realistic to expect people to always fully qualify their
language that way. Another solution is to use some short prefix for the Chandler
terms, so that we'd talk in terms of "OsafClasses" and "OsafAttribute". And then the
word "class" always means a Python class or an RDF class, not an OsafClass.

Yet another solution is to try to pick Chandler terms that tend not to overlap too
badly with Python terms and RDF terms. For this first pass at a data model, that's
the approach I've tried to take. Unfortunately, one of the side effects is the terms
can be a little cryptic. These new terms may take some getting used to. And they
may just be a bad idea. If people don't like them, then we can pick a different
solution and just do a few global replaces in this file. In any case, I hope the
terminology won't get in the way of the ideas.

Typical terminology from an object
oriented programming language

Examples

"class" or "type" Dog, Cat, Animal
"object" or "instance" Rover the Dog
"attribute" or "property" or "instance
variable" or "member variable"

Rover.birthday

"instance of" or "isa" or "type"
"Rover is an instance of a Dog" or "Rover
isa Dog" or "Rover is of type Dog"

"subclass of" or "a kind of" of "ako" or
"isa"

"Dog is a kind of Animal" or "Dog is a
subclass of Animal"

"superclass" or "parent class"
"Animal is the superclass of Dog" or
"Animal is the parent class of Dog"

"literal type" or "type" string, int, float

• Python Terminology
o class
o type
o property
o attribute
o instance
o object

• RDF Terminology
o (including terminology from XML, XSD, RDFS, and DAML+OIL)
o element

 34
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o attribute
o attribute name
o attribute value
o triple
o Property
o predicate
o sub-property
o Class
o sub-class
o Datatype
o Individual
o Object
o type
o value

• Database Terminology
o "Database Management System (DBMS)" or "Datastore"
o "Database" or "Datastore"
o Table
o Record
o Column
o Field

Possible Chandler Terminology
name examples description

Kind of
Thing

Person, Place Like a class in an OOPL, or a table in a RDBMS

Kind of Item
Event, Email,
Contact

a sublcass of Thing representing "information items"
-- tends to have a 'body' attribute, and is the major
unit in the Chandler PIM

item
the "Tom Jones"
Contact item

An instance of some Kind-of-Item. A collection of
attribute values, with a uid

Attribute
Definition

"due date"
Meta information about an attribute. Includes type,
cardinality, etc.

Attribute
Value

"6 Oct 2008"
The value of a particular attribute for a particular
Thing

instance of
"Rover is an
instance of a
Dog"

Data Model Requirements

Here's a list of the different requirements I had in mind as I was working on this
strawman data model. As we keep working we can add or remove requirements
here, and we can try to better flesh out the details about exactly what these
requirements mean.

We want to avoid coming up with "made up" requirements. If some part of Chandler
needs a feature to be supported by the data model, then that should become a

 35
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

requirement for the data model. Or, in some cases, we may anticipate a future need,
and recognize that if we ever want to support that need, then we have to design for
it from the beginning. But where possible, we should try to defer adding features
until some later date, when or if they are really needed.

• High Level Requirements
o A user can store relatively unstructured data.
o A user can store structured data.
o A user can add structure to unstructured data.
o A user can create complex queries across a sea of data.

• Possible Basic Requirements
o A user can create a new Item that is an instance of an existing Kind-

of-Item.
o A user can create a new Item that isn't of any specified Kind-of-Item.
o A user can assign an existing Item to be a different Kind-of-Item.
o A user can create a new Kind-of-Item.
o A user can create a new attribute for any Kind-of-Item.
o A user can create a new attribute for any existing Item.
o A user can change the name of an existing attribute, or modify it in

other ways.
o A user can restrict the range of an existing attribute.
o A user can delete an Item.
o A user can delete a Kind-of-Item.
o A user cannot delete basic system Items that are needed to bootstrap

the system.
o A user cannot cause the data model to become corrupt or invalid.
o A user can view an old version of an Item.
o Code in a new parcel can do anything a user can do.

• Specific Requirements
o Support for enumerated types (ENUMs)
o Support for hierarchical ENUMS
o Support for derived attributes

• Possible Further Requirments
o Subclasses

 A Kind-of-Item can be a subclass of another Kind-of-Item.
o Sub-properties

 An attribute can be a sub-property of another attribute
o NULL values for attributes
o Display Strings for Items
o Default Values for attributes
o Namespaces
o Restrictions on attribute values

 required/optional
 cardinality
 data type
 complex restrictions

o Views as Items
o Symmetrically associated attributes
o Local Proxies

 36
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• Import & Export
o Be RDF-compatible -- work and play nicely with other apps that use

RDF
o Be able to export:

 export anything as RDF/XML
 export calendar data as ical or xcal
 export in other formats

o Be able to import:
 import some specific Chandler-formatted subset of RDF/XML
 import calendar data as ical or xcal

For more background on associative data stores, see also:

• Mailing list messages:
o MichaelLeQueux suggests an associative data structure like LazySoft
o KevinSchroeder suggests an associative data structure like InterSys

• JonathanSmith wonders if anyone is paying attention to two other
developments related to RDF issuess:

o pytechnorati
o Technorati API

Null Values

Some types of data stores support the idea of NULL values, while other types of data
stores don't. For example, most relational databases support NULL.
Here's a quick summary how NULL values typically work in a relational database:

• by default, any record can have a field with a NULL value
• in the schema, a column can be required to be NOT NULL, in which case fields

in that column cannot have a NULL value
• any field can have a NULL value, regardless of the required data type of the

column
o example: a text field can have a NULL value
o example: a date field can have a NULL value
o example: a foriegn key field can have a NULL value

• the NULL value is not itself an instance of any one data type, but it
automatically matches any data type requirement

• a NULL value is always distinct from a "zero" value
o example: in a text field, a NULL value is different from "" (a string of

length zero)
o example: in an integer field, a NULL value is different from 0

• new records are typically created with NULL values as the initial default values
in many fields

• a NULL value in a field can be replaced with a normal value (example: NULL is
deleted, and "Bob" is inserted)

 37
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• a normal value in a field can be replaced with a NULL value (example: "Bob"
is deleted, and NULL is inserted)

Missing Attributes

In Chandler, different Items of the same Kind-of-Item tend to have the same
attributes. For example, all the different Event Items will typically each have a "start
time" and and "end time". Typically, each of the instances of an Event has attributes
that match the Attribute Definitions in the attribute template defined for the Kind-of-
Item called an Event. But that's not always the case...

Any given Event instance can have different attributes. In theory, I can create a new
Event instance, and inspect it in some general purpose table view, and add a new
attribute that only that particular Event will have. And similarly, I can delete an
attribute from an particular Event, without deleting that attribute from all the other
Event instances, or from the attribute template in the Kind-of-Item called an Event.
So some Event instances can simply be missing some of the attributes that are
nominally associated with an Event.
So that raises the question...

What's the difference between a missing attribute and an attribute with a NULL
value?

What's the difference?

So if Chandler supports NULL values, and Chandler supports missing attributes, then
do these two things have any semantic difference? For example, is there any real
difference between these two Items:

Item A-1 Item A-2
attribute value attribute value
name "purple jumsuit" name "purple jumsuit"
price $40 price $40
size "medium" size "medium"
seller "Sam" seller "Sam"
buyer NULL

One difference might be in how the user interface displays the Items. For example,
in a general purpose table view, if you inspected Item A-1 alone, it would show up as
a single row in a table with 5 columns. Whereas Item A-2 would show up as a single
row in a table with 4 columns. In the table for Item A-1, the cell for "buyer" may be
empty, but at least the column is there, inviting you to click in it and type
something.

Will Chandler support NULL values?

I'm assuming Chandler will support NULL values. NULL values are a simple concept,
but I think in practice they end up creating a lot of special cases in all sorts of code.
The data store has to support some special representation for them, and serialization
formats need to represent them, and query languages need to account for them, and

 38
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

so on. But I'm assuming we're planning on having them, so this strawman data
model makes frequent use of them.

...Proposed Strawman Solution...

• Have the data model support explicit NULL values.
• Have the data model support the specification of required attributes, which

are attributes that are not allowed to have NULL values.
• New records are created with NULL values as the initial value in most fields.

Display Strings

@@@ -- Discuss this idea in the context of Global Attributes
Many Items have some kind of "display string". Display strings are usually short text
strings, without tabs or line breaks. For example:

• an Email Message has a subject line, like "Weekly status report"
• an Event has a headline, like "Lunch with Tug"
• a Task has a title, like "mail 1040 form to IRS"

In the Calendar parcel, the python code can just be hard-coded to know which
attribute has the headline, and so in any kind of summary list of Events, the user can
see just the headlines. And similarly in the Email parcel. The Email code can hard-
coded to know what attribute to use to display a list of messages.

But Items will also show up in general purpose views, like table views and outline
views. Those views will have no idea what Kind-of-Item they're displaying, or what's
inside the Items. So we maybe need some convention about display strings, so that
if an Item wants to offer a display string, then a general purpose view can find out
what the display string is.

This also comes up in the case of pop-up lists and selection dialogs. In some parts of
the UI, the user may need to pick an instance from a list of instances. For example,
a user may need to select a Group to send an e-mail message to, or select a Folder
to add a Task to, or select a Priority Level to assign to a Bug. In some of those cases
it would be nice to have general purpose pop-up lists and general purpose selection
widgets, where the widgets are automatically capable of displaying any Kind-of-Item,
without having to be configured to know what attribute to use for each Kind-of-Item.
Here are a few options:

• have a single display name attribute
o One option is to just have a standard attribute for the display name.

Maybe call it or "title" (or "name", or "display name", or whatever).
And then if an Item wants to be displayed properly in a general
purpose view, it just needs to have a "title" attribute. So then all the
Email Message items would have "title" attributes instead of "subject"
attributes. And all the Contact items would have "title" attributes
instead of "first name" and "last name" attributes.

 39
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o But that sounds rigid. You could imagine that leading to problems
when you start importing and exporting Items. When you Exported an
Email Message to a foriegn e-mail format, the code would need to map
the "title" attribute into a "subject" field, and vice-versa. That's maybe
not a big deal in that scenario -- that e-mail export code needed to be
hand-coded anyway. But what about when you're importing data in
some more ad-hoc format. Let's say you're importing records from a
comma-delimited text file, or from a relational database. In that case
the attributes already have whatever names they have, and you don't
want to go changing them. Which leads us to option two...

• specify a display attribute
o A second option is to pick an existing attribute, and specify that that

attribute should serve as the display string. So for an Email Message,
the "subject" attribute might be the designated display attribute, and
for an Event, the "headline" attribute might be the designated display
attribute. How would the designation be represented in the data
model? In the Kind-of-Item class, there could be a special attribute
called "display attribute", and in each instance of Kind-of-Item the
value of that attribute could be set to point to another attribute in the
instance -- the attribute to be used as the display string.

• derived display strings
o A third option is to have some kind of general purpose notion of

derived attributes. For example, in an Event, the "duration" attribute
might be a derived attribute, where "duration" equals "end time"
minus "start time". And then for the purposes of display strings, a
"display string" attribute could be derived from other attributes. So for
a Contact, maybe ("display string" := "last name" + ", " + "first
name"). And for Event, maybe ("display string" := "headline").

o Of course, we can only have derived display strings if we have support
for derived attributes. For more on that, see the next section, Derived
Attributes.

...Proposed Strawman Solution...

• Have the data model support both the first & third options mentioned above.
• Have a special attribute named "display name", and have it defined in Item,

so that all instances have it. Have it defined as holding an optional string
literal. Instances of Item can have values for that attribute. Other Kind-of-
Items can "refine" the "display name", and the refined versions can have
derivation rules for deriving the "display name" from other attributes.

Derived Attributes and Derived Items

I don't know whether there's been any talk of Chandler having support for derived
attributes. Derived attributes might well be beyond the scope of the project. I have a
feeling they're just the "tip of an iceburg", and that they would lead to great deal of
complexity. But, if we do want to have derived attributes, then they need to be
represented in the data model.

 40
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Just for context, here's a quick repeat of the example that I gave in the section
above, in case you didn't read that:

• For example, in an Event, the "duration" attribute might be a derived
attribute, where "duration" equals "end time" minus "start time". And then for
the purposes of display strings, a "display string" attribute could be derived
from other attributes. So for a Contact, maybe ("display string" := "last
name" + ", " + "first name"). And for Event, maybe ("display string" :=
"headline").

There are a lot of questions about how derived attributes would be implemented.
Here are a few of the questions:

• Should derivation rules be associated with instances or classes?
o One way to handle derived attributes would be to associate them with

individual instances. For example, if we wanted Events to have display
strings, then each and every Event would have its own "display string"
attribute, each with identical derivation rules as values. Any given
Event could have some different derivation rule, although in practice
that wouldn't come up much.

o Alternatively, the derivation rule could be an attribute of the Event
Item itself (the Kind-of-Item called "Event", rather than the instances
of "Event"). That way the derivation rule would only be stored in one
place, which (a) would save space, and (b) allow you to edit the rule in
just one place but have it take effect "globally". But to implement that,
we'd need some kind of new mechanism for finding the attributes of an
Item. Right now all the attributes of an Item are associated directly
with the Item. But in this new scenario, some attributes would be
associated with the Item directly, while others would be associated
with the Kind-of-Item that the original Item is an "instance of". So, for
example, looking up the value of an attribute would require not just a
dictionary look-up, but also a little walk up the "instance of"
relationship and a look-up in another dictionary. And the same thing
goes for getting a list of all the attributes of an Item.

o One further alternative would be to do both of the above alternatives.
A derivation rule could be associated with an Event Item itself (so that
the derivation rule is "inherited" by all the instances of Event), and
individual instances of Event could also have their own associated
derivation rules, which would override any identically named
"inherited" one.

• When should derivation rules be evaluated?
o Maybe whenever something asks for the value of the attribute?
o Maybe whenever there's a change in the value of one the attributes

that's mentioned in the derivation rule?
• Is the result of the evalution cached?

o Cached in a python object?
o Cached in a repository?

• How do we resolve circular references between two (or more) derivation
rules?

• How does the UI indicate that an attribute is derived?
• What UI does a user use in order to create a derivation rule?

 41
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• If Chandler has a generic table view, and the cells can have derivation rules,
then is Chandler a spreadsheet? (And is that maybe biting off more than
OSAF can chew? ;-)

Derived Items

• @@@ -- Discuss the issue of derived items. Not just objects with attributes
that are derived, but entire objects that are entirely derived -- e.g. birthdays
& infinitely recurring events

...Proposed Strawman Solution...

• @@@ -- need to identify how this impacts other parts of the overall
architecture

• Have the data model support derivation rules.
• Derived results can be cached in the repository.
• A derivation rule can be associated with an Attribute Definition.

o Example: The Kind-of-Item named "Event" can specify that all Events
have a "duration" with the derivation rule: "duration" := "end time"
minus the "start time".

• A derivation rule can not be associated with an individual Attribute Value.
o Example: The Event "Go to Safeway" can not have a "start time" with

the derivation rule: "start time" := "end time" of the "Do laundry"
Event.

Default Attribute Values

I don't know whether there's been any talk of Chandler having support for default
values for attributes. If we want to have default values, I can think of a couple
different ways that they might work:

• initialization values
o When a new Item is created, Chandler could initialize the attribute

values to default values. For each new attribute, the initial value could
be a copy of the default values specified in the corresponding attribute
in the Kind-of-Item that this new Item is an "instance of".

• overriding values
o When a new Item is created, Chandler could initialize the attribute

values to some special value like UNSET. The UNSET value would be a
special value, similar to how NULL is a special value. Like NULL, the
UNSET value would automatically match any data type restrictions
specified for an attribute. When Python code asks for the value of an
attribute, the value UNSET will never be returned. Instead, if the value
is UNSET, then the Item checks to see what the default value is for the
corresponding Attribute Definition in the Kind-of-Item that this Item is
an "instance of", and returns that default value.

 42
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

If Chandler does end up supporting both Default Attribute Values and Derived
Attributes, then I think the implementations will end up being related. Either both
implementations will copy attribute info into new Items whenever a "create" method
is called, or both implementations will walk up the "instance of" relationship to look
up values whenever a "get" method is called. In either case, there's likely to be just
one set of code that does the work.

...Proposed Strawman Solution...

• Have the data model support default values by using the "initialization values"
technique described above.

• Do not support the idea of UNSET values

Sub-Attributes

• KatieCappsParlante, 24 March 2003
o RDF has the concept of one property being a subproperty of another,

which we're interested in. An example: "father", "sister", "aunt"
properties are all sub-properties of "family", which is a sub-property of
"relationship". The "Katie" instance has a "brother" attribute, which
has a value of "Rob". She also has a "husband" attribute, which has a
value of "Nick". If we do a query for all "family" attributes of "Katie",
we get both "Nick" and "Rob". In RDF-land, they usually use examples
like "Creator", "Author", "Director", "Painter", "Actor", etc.

• BrianDouglasSkinner, 24 March 2003
o Do subproperties inherit the restrictions of their parent properties?

(I'm guessing yes to this one.)
o Do subproperties inherit default values? (I'm guessing no to this one.)
o Can a super-property ever be an "abstract" super-property? Meaning,

do you ever restrict people from a assigning a value directly to the
super-property?

• KatieCappsParlante, 25 March 2003
o Subproperties inherit restrictions: not necessarily.
o Subproperties inherit default values: unlikely
o Abstract superproperty: unlikely, I think this adds complexity without

much value
o Mostly, I see super/sub properties as being useful for queries, perhaps

polymorphic uis. (e.g. some view shows a list of all "family" members
for a given "person"). Its not really the query that's using the
sub/superproperty concept, but the view.

o In spirit, we probably don't want to go overboard with the
"restrictions".

• KatieCappsParlante, 25 March 2003
o btw, when we say that an attribute is hierarchical, we mean that the

schema definition of the attribute is hierarchical. When we say

 43
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

attributes are global, we mean they are defined globally. Attribute
values are still tied to an instance.

• see also the example below

• See also DB Topics: Property Types

...Proposed Strawman Solution...

• Have the data model support sub-attributes.
• Sub-attriubtes do not inherit restrictions.
• Sub-attriubtes do not inherit default values.
• Attributes can never be abstract.

Global Attributes

• KatieCappsParlante, 24 March 2003
o Usually in OOP, attributes are defined in relation to a class ...[snip]...

We definitely want to define attributes globally in chandler, with the
idea that these attributes are building blocks that people can use to
extend their schema, and that the attributes will be useful for
interesting queries.

• BrianDouglasSkinner, 24 March 2003
o In practice, how much will global attributes serve as templates, versus

how much they will be used in ways that rely on their having unique,
shared identities?

o Are there any differences, or subtle distinctions, between having an
attribute be a global attribute, versus having the attribute be an
attribute of Item? In both cases, the attribute is defined in the
schema, and a user can make a new Item that has a value for that
attribute.

 Here's one potential difference. If an attribute is an attribute of
Item, then a generic data entry form, like a generic table view,
is likely to offer to display the attribute, along with all the other
attributes of an item. Whereas with a global attribute, a generic
data entry form will probably not prompt the user to assign a
value for that attribute, unless the user says that this particular
item has that attribute.

• KatieCappsParlante, 25 March 2003
o btw, when we say that an attribute is hierarchical, we mean that the

schema definition of the attribute is hierarchical. When we say
attributes are global, we mean they are defined globally. Attribute
values are still tied to an instance.

o Example:
 onDate is an item
 onDate is an attribute
 onDate attributes always have datetime values

 44
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 startTime is an item
 startTime is an attribute
 startTime is a subattribute of onDate
 startTime attributes always have datetime values

 event is an item
 event is a class
 event instances have startTime attributes

 note is an item
 note is a class

 foo is an item
 foo is an instance of the event class
 foo has a startTime of 12/12/2003 11 AM

 bar is an item
 bar is an instance of the note class
 bar has a startTime of 1/3/2003 12 PM

 blah is an item
 blah has a startTime of 3/4/2003 1 PM

 So, even though we have said nothing about notes having

startTimes in our "schema", the bar instance still has a
startTime. Going even further, blah is just an item, with no
class providing schema information. Blah can still have a
startTime. We've made schema assertions about the startTime
attribute, but no schema assertions about blah. In this case,
everything we say about events, notes, and startTimes applies
globally.

o Alternatively, the "restrictions" could apply just to the class, not
globally. (Although, in this case, it seems like you actually want the
restriction to apply globally):

 onDate is an item
 onDate is an attribute

 startTime is an item
 startTime is an attribute
 startTime is a subattribute of onDate

 event is an item
 event is a class
 event classes have startTime attributes
 when event classes have startTime attributes, the value

is a datetime

 note is an item
 note is a class

 foo is an item
 foo is an instance of the event class

 45
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 foo has a startTime of 12/12/2003 11 AM

 bar is an item
 bar is an instance of the note class
 bar has a startTime of 1/3/2003 12 PM

 blah is an item
 blah has a startTime of 3/4/2003 1 PM

...Proposed Strawman Solution...

• @@@ -- We need to identify how this impacts other parts of the overall
architecture.

• Have the data model support both global attributes and attributes that are
defined "within" the context of a Kind-of-Item.

• Have the data model support non-global attributes. Non-global attributes are
defined "within" a single Kind-of-Item, and they are "owned" by that Kind-of-
Item.

• Have the data model support Item-centric attributes. Item-centric attributes
are defined "within" a single Item, and they are "owned" by that Item.

• Have the data model support global attributes. Global attributes can be
defined in a Parcel, and can be used by any Kind-of-Item or any instance of
an Item. Global attributes can be defined in a Parcel, but they are available
"outside" the Parcel, to any Kind-of-Item being defined anywhere else.

Enumerated Types

@@@ -- Figure out how to add support for hierarchical ENUMS

An enumerated type (also called an ENUM) is a simple data type, where the
definition of the data type includes a complete list of the possible values that can be
assigned to an attribute of that type. For example, you could create an ENUM called
"Day of the Week", where the list of all possible values was defined to be (Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday).
Here's a quick summary of how ENUMs are handled in most systems:

• The initial list of values is defined along with the datatype.
• It is impossible to create new "instances" of the type after the type is defined.
• Each instance typically has name -- e.g. "Monday".
• It's usually impossible to define any attributes other than the name.
• The instances typically have an order. It's an ordered list of values, not just a

set of values. For example, the weekdays are (Sun, Mon, Tue, Wed, Thu, Fri,
Sat), NOT (Thu, Mon, Wed, Tue, Sun, Fri, Sat).

ENUMs in forms

ENUMs have lots of good uses. One of the places ENUMs work nicely is with forms.
Once an ENUM has been defined, the system can automatically create pop-up lists

 46
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

showing the possible values. For example, in a bug-tracking database, the bug-entry
form might have a field for "priority", with a pop-up list showing the choices ("High",
"Medium", "Low").

In a Chandler generic table view, a cell with an ENUM value could have widget that
brings up a pop-list when the user clicks in that cell. For example, in the Quicken
application, you can see a table of transations, and Quicken has a nice UI widget for
selecting the "Category" of the transaction.

Requirements

• Chandler needs to have support for ENUMs
• Chandler needs to have support for hierarchical ENUMs.
• It must be possible to assign a defined order to a set of ENUM values.
• We may want to have more than one possible defined order for a set of ENUM

values. Maybe we want to have named orderings.
• ENUMs do not have a fixed set of instances. With the right permissions, a

user can add more instances to an ENUM.
• ENUMs do not have a fixed set of attributes. With the right permissions, a

user can add more attributes to an ENUM.

Implementation Options

Here are two different options for how the data model might represent ENUMs:

• support for explicit ENUMs
o The Chandler data model could specifically model ENUMs, and

Chandler could have special code to handle ENUMs.
o For example, a user could create a "Bug Priority" ENUM with values

("High", "Medium", "Low"). And then in the Kind-of-Item called "Bug",
the user could create an attribute called "priority", and restrict the
"priority" attribute to only having values of type "Bug Priority". In any
part of the UI, whenever a user is editing a "Bug", if the user wants to
change the "priority" then Chandler automatically offers a pop-up list
of "Bug Priority" values. Optionally, Chandler could automatically
restrict the user from ever assigning anything other than a "Bug
Priority" value to the "priority" attribute of a "Bug".

o Chandler could also have support for hierarchical ENUMs. Quicken, for
example, offers hierarchical ENUMs for the "Category" of a transaction.

• support for using a Kind-of-Item as an ENUM
o Rather than having the Chandler data model specifically model ENUMs,

we could instead set things up so that any Kind-of-Item could serve as
an ENUM.

o ENUMs are really just a sort of "lightweight" type of class. ENUMs may
have a small set of instances and a limited number of attributes, but in
most respects they behave just like an ordinary Kind-of-Item:

 users can create types of them
 users can create instances of them
 parcels can create them
 other Items can have instances of them as attribute values

 47
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

 attributes can have types of them as the required type for the
attribute

 schema discovery requests can return types of them
 queries can return all the instances of them for a given type of

them
 etc.

o For example, a user could create a Kind-of-Item called "Bug Priority",
with an attribute "name". And then the user could create three
instances of "Bug Priority", with the names ("High", "Medium", "Low").
And then in the Kind-of-Item called "Bug", the user could create an
attribute called "priority", and restrict the "priority" attribute to only
having values of type "Bug Priority". Now we just need a couple more
features, in order to get our "Bug Priority" set up to behave exactly
like the "explicit ENUM" described in bullet point 2 above.

 For one thing, when a user is editing a "Bug", if the user wants
to change the "priority" then we need Chandler to automatically
offer the pop-up list of "Bug Priority" instances. Chandler needs
to somehow know that there's a small, fixed set of instances.
One way to do that is in the instance of Kind-of-Item called
"Bug Priority", just have an attribute that points to all the
instances. Actually, in principle it would be nice if every Kind-
of-Item had a list of all its instances, or at least pretended to
have a list of all its instances, even in that list had to be
cons'ed up by the repository in response to a request. But you
could imagine a solution where each Kind-of-Item at least
starts out with a list of all its instances, and only abandons the
project if the list gets to large to manage. And then in the UI,
whenever a user goes to change the value of an attribute, if (a)
the attribute is restricted to be some other Kind-of-Item, and
(b) there are some modest number of instances of the target
Kind-of-Item, then (c) the UI offers a pop-up list of the
instances. (Actually, even if (b) isn't true, the UI should have
some affordance for helping the user select one of the
instances.)

 Note: If a Kind-of-Item keeps a list of its instances, that
has implications for how garbage collection works. See
Garbage Collection.

 That brings us to the problem of ordering the instances. In the
pop-up list, the instances should show up in order. A good list
looks like ("High", "Medium", "Low"), not ("Medium", "High",
"Low"). So in the data model, the Kind-of-Item needs to
somehow know the order of its instances. How that's actually
done is "an implementation detail" for later. For now, the
question is how the data model APIs should expose this. Some
Kind-of-Items need to have ordered lists of instances, while
others can just have sets of instances, and others still maybe
won't ever even need to return any kind of collection of all their
instances. API-wise, "Ordered vs. unordered" could maybe be a
property of the "instances" attribute on the Kind-of-Item. Or,
alternatively, Kind-of-Item could have a separate attribute for
specifying that the instances are ordered (e.g. a boolean
attribute named "instances are ordered"). And then there's
another API issues: if a Kind-of-Item has ordered instances,

 48
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

then when a new instance is created, the process of creating it
must also specify where it should appear in the ordering.

 Optionally, if we really want to get a Kind-of-Item to behave
exactly like an ENUM, then we might want to be able to put a
couple restrictions on the Kind-of-Item. We might want to make
it be impossible to add new attributes, or to create new
instances. Each Kind-of-Item could have flags for those
restrictions. For example, the existing "abstract" flag can be
used to mark a Kind-of-Item as an abstract superclass, so that
the repository does not allow it to be instantiated. There could
be a similar "no new instances" flag, that would restrict the
system from allowing new instances to be added to an ENUM.
And there could be a "no new attributes" flag as well. Or simply
a single "ENUM" flag, which would mean both "no new
instances" and "no new attributes".

Right now my vote is for the third option. The first option (no support) seems out of
the question. Between the second and third options, I think the second will end up
being more complicated and clunky. The third definitely creates some complexities,
but I think in the long run it will work out better. That's my two cents. The rest of
this strawman data model basically assumes the third option, although the data-
structures here gloss-over some of the important details.

Discussion

• Chandler will definitely support enumerated types, and it will need to support
hierarchical enums (e.g. the quicken example you mentioned). In the short
term we were thinking of trying to get away with enums being strings (or a
list of strings or list of strings, to get at the hierarchical feature), but we've
also talked about what you're calling "Kind-of-Item as ENUM". I was going to
make an argument that your Enum-as-class solution would be more
cumbersome than an Enum-as-type solution, but thinking on it more carefully
I think they're perhaps nearly the same thing. The ENUM type itelf should be
stored as an item, lets put it that way. -- KatieCappsParlante, 24 March 2003

...Proposed Strawman Solution...

• Have the data model support ENUMs, using the technique described above
under the heading "support for using a Kind-of-Item as an ENUM".

Unique IDs

@@@ -- this section still needs to be written up
@@@ -- Discuss the data model impact of the issue about ids as single (UUID) vs.
tuples (repository ID, local ID)

• UUID discussion from the dev mailing list:
o http://lists.osafoundation.org/pipermail/dev/2003-April/000535.html
o http://lists.osafoundation.org/pipermail/dev/2003-April/000538.html

 49
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Item Versions

@@@ -- this section still needs to be written up
@@@ -- Discuss the data model representation of item versions. Lots of options and
issues:

• Save list of item versions?
• Save list of (forward) change objects?
• Save list of backward change objects?
• Save version number in the current item?

o Add a _p_serial attribute to Item? See the last paragraph of
http://lists.osafoundation.org/pipermail/dev/2003-April/000549.html

• Discuss use of tumblers to track version histories, and recognize uid collisions
o http://lists.osafoundation.org/pipermail/dev/2003-April/000539.html

Namespaces

The idea of namespaces shows up in lots of different kinds of computer system. RDF
has an idea of namespaces. Java has an idea of namespaces. And, in a way, even
the Windows file system has namespaces.

In the Windows file system, files live in directories. A file in a directory is uniquely
identified by its file name (e.g. "Report.doc"). Within a directory, no two files can
have the exact same name. But two files in different directories can both be named
"Report.doc". Each directory serves as a namespace for the file names in it. If you
know that the file is "C:\August\Report.doc", then you know the name of the
namespace and the name of the file, and you have enough information to find the
file and distinguish it from all the other "Report.doc" files on the hard drive.
RDF namespaces work pretty much the same way. In the context of local
namespace, an RDF attribute can have some simple name, like "width". But there
might be a lot of other "width" attributes out there, created by different people, with
different meanings in mind. If you refer to the attribute using both the namespace
and attribute name, then you can uniquely identify the specific "width" attribute that
you want to use.

Does Chandler need namespaces?

Chandler users will create a lot of new Kind-of-Items. A user in a biology lab may
create a new Kind-of-Item called "Virus", to keep track of HIV strains. A user at a
software company might create a different new Kind-of-Item called "Virus", to keep
track of computer viruses. But the two "Virus" definitions are in two separate
repositories, so everything is fine. But then over time, the two definitions may come
to live in the same repository. The software company finally ships its anti-virus
Chandler parcel, and the user in the biology lab loads the parcel into their Chandler
repository.

 50
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Is that a problem, having one repository with two different Kind-of-Items, both with
the same name? No, it's not a problem as far as Chandler is concerned. Each "Virus"
has its own uid, so Chandler knows how to tell them apart. Other instances in the
repository may have a reference to one of the Viruses, but the reference is always
stored as a uid, not as a text string, so the other instances will never be confused
about which Virus is which. It might be confusing for users, but it won't be a problem
for Chandler.

Do users need namespaces?

We want to keep users from being confused by instances with identical names. We
might want to artificially impose some of the idea namespaces, just for the sake of
the user. For example, we could impose a requirement that within each Parcel all the
Kind-of-Items have to have unique names. And then in the UI the display that shows
the Kind-of-Items could be sorted by Parcel, so that the user can see that one
"Virus" is a "Biology Lab" type, and the other "Virus" is an "Acme Fix-it" type.

Namespaces for Attributes?

Just like with Kind-of-Items, Chandler shouldn't need namespaces for attributes
either. At least, strictly speaking, Chandler shouldn't need namespaces for attributes.
In theory, all the Chandler code should be able to reference attributes by uid rather
than by name. But in practice it may be useful to index into attribute dictionaries by
name. And, users would probably find it confusing if an Item could have two different
attributes, both with the same name. So Chandler should probably impose the
requirement that attribute names need to be unique within an Item (and therefore
also unique all the way up and down the inheritance chain for this Item).

String-based References

For the question of whether or not Chandler need namespaces, the answer depends
on whether or not Chandler ever uses string-based references. If attribute
dictionaries are indexed by attribute name, with a string, then namesapces become
more important.

My thinking right now is that we should try to set up the Chandler repository to
never use string based references. I think they lead to a host a problems. For
example, string-based references create new issues for garbage collection. For more
about that, see the discussion about string-based references in the section below
about Garbage Collection.

My recommendation is to never use lexical names to look up instances. Instead, all
references should be handled using UIDs, in the repository, and in the Chandler code
and data structures.
Just for fun, here's an amusing example of a lexical-reference problem. Back around
1990, NeXT Computer created an Objective-C class called NSButton. Objective-C
didn't have namespaces, so NeXT needed some way to differentiate their Button
class from all the other potential Button classes. NeXT created a psuedo-namespace
for themselves by simply prefixing all their classes with "NS", so that "Button"
became "NSButton". Eventually NeXT got bought by Apple, and Apple took the old
NeXT code and turned it into Cocoa. So now, in 2003, Apple is shipping a Cocoa class
called "NSButton". The "NS" doesn't stand for "Apple" or for "Cocoa", and now it

 51
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

doesn't even stand for "NeXTSTEP" anymore. It's just cryptic, archaic cruft. But
there's no way to change it now, because the string "NSButton" is hard-coded in
thousands of files, across hundreds of companies. Oops.

Discussion

• I was assuming the use of namespaces. I'm not convinced that uids do away
with even chandler's need for namespaces. Will the "event" kind-of-item have
the same uid in everyone's repository? I'll have to think about this one more
carefully, but interesting points to bring up. I was assuming there'd be a
"chandler" namespace for the core schema and some core objects --
whatever the app starts out with -- and then a user namespace for new
items. There's the problem of a unique namespace for the user, but I think
that could be solved with email address, jabber id, or some other solution. I'd
think it needs to get solved for other reasons anyway. -- KatieCappsParlante,
24 March 2003

• "Will the "event" kind-of-item have the same uid in everyone's repository?" --
> see also DbOidCoinageProblem

• See also the page NameSpaceIssue, which raises the questions:
o For user defined items, how do we prevent name space collisions? Do

we need a name space hierarchy (e.g.
anEmail.osaf.project=chandler)?

o Are all user defined attributes, attributes of Item (and not for example,
Event or Contact)? Can a contact have a user defined attribute that is
not defined for an event? If so, can the contact and event have the
same attribute 'name' but different semantics?

...Proposed Strawman Solution...

• The Chandler code and data structures never use lexical names to look up
instances. Instead, all references are handled using UIDs.

• Chandler enforces some namespace restrictions, solely for the sake of the
user.

o Within a Parcel, Kind-of-Items must have unique names.
o Within a Parcel, global attributes must have unique names.
o Within an Item, attributes must have unique names.

Semantic Dictionaries

@@@ -- this section still needs to be written up

The idea behind semantic dictionaries is to have some data structure in the Chandler
repository that would provide a mapping between Chandler data and third-party
semantics. For example, the iCalendar standard would be one third-party semantic
we care about.

See also: SharedSchemaIssue

 52
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Restrictions on Attributes

One of the reasons for having a schema is to impose restrictions on a attribute, to
limit what kinds of values can be assigned to that attribute.
For example, in an Event, the "start-date" should always be a date. The user should
not be allowed to create a new Event and set the "start-date" to "yogurt". If the
"start-date" did get set to "yogurt", then the Event would never match any query
generated by Day View, or Week View, or Month View, or any other normal calendar
view. And so the Event would drop out of sight of user, lost to them unless they have
it bookmarked, or make some generic table view query that returns it.

You could argue that this is just the sort of flexibility that Chandler is supposed to
have, but I think Chandler should also have the "flexibility" to let some attributes be
strongly typed. Maybe the user should sometimes be able to override a restriction,
but Chandler should still know about the restriction and at least pop up panel to warn
the user and ask them if they really want to do that.

See also DB Topics: Schema Validation.

Types of restrictions

The most common type of restriction is one that restricts the data type that can be
assigned to an attribute. For example, a "start-date" has to be a date, or "annual
rainfall" has to be a float, or "father" has to be a Person.
Cardinality is another common type of restriction. For example, a Department can
have many "students", but an Employee can have only one "salary". The most
common cardinality restrictions are "1" and "Many", but there are other possible
cardinality restrictions. In relational databases, a field can be restricted to be "NOT
NULL", which is a way of saying that the cardinality is required to be "1", rather than
"0 or 1".

But there can be other types of restrictions too. For example, "end date" could have
the restriction that it must fall after "start date", and "annual rainfall" could have the
restriction that it must be non-negative, and "father" could have the restriction that
a Person's "father" cannot point to any Person's "children".

Where are restrictions enforced?

Okay, so in Chandler, what code is going to enforce the restrictions? And where will
the restrictions be expressed?

One obvious option is to do this all in Python code, on the client. An Event class
serves as the encapsulation of all the knowledge about how Events should behave.
The Event class should know that the "end-date" value must fall after the "start-
date" value. That's probably the traditional object-oriented thing to do.

That works well in traditional object-oriented apps, but unfortunately, in Chandler it
may not work. Part of the problem is that Chandler will have general-purpose views,
the generic table view. So a user may end up editing a "start-time" in a generic table
view, rather than in a calendar view like Week View. That would be still be okay, as

 53
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

long as the generic table view was setting the "start-time" via the Event object. But
we can't guarentee that.

In Chandler, the calendar data may be shared. Alice may have installed the Calander
parcel on her machine, and created an Event with a "start-time". Alice publishes the
Event, and then Bob views it in a generic table view on his machine. Bob has never
installed the Calander parcel on his machine, and his Chandler client doesn't even
know that there is a custom Python class that represents Events. So when Bob edits
the "start-time", his edit is handled by a general-purpose Item class.

Here are a few different options for enforcing restrictions on "start-time":

1. We could refuse to let Bob edit the "start-time", because he's trying to make
the edit from outside the Calendar parcel, and we know that Events are
owned by the Calendar parcel, so only Calendar parcel code is allowed to edit
them. That solution probably isn't in the spirit of Chandler.

1. We could let Bob edit the "start-time" however he damn well pleases. If he
wants to change it to "yogurt", then more power to him. And then in the
Event class, and in the rest of the Python code in the Calendar parcel, we can
have a great deal of error-checking code. All the code would be carefully
written to avoid making any kinds of assumptions about restrictions on
attribute values. The code would gracefully handle exceptional conditions, and
display Events to the best of its ability.

1. We could vigorously enforce restrictions on "start-time", but enforce those
restrictions outside of the Calendar parcel Event code. The restrictions could
be enforced on the client side, in a general-purpose Item class. Or the
restrictions could be enforced by the repository, and editing changes
submitted to RAP could be refused, with an error code that cites the
restriction that was violated.

Restrictions enforced in the repository

If Chandler does end up having restrictions be enforced by the repository, then the
restrictions necessarily have to be expressed in the repository, rather than be
expressed in Python code in classes like the Event class. And actually, even that's
true even in the case where the restriction is enforced on the client, but enforced by
some general-purpose Item class. For any kind of general-purpose code that
enforces restrictions, the code needs to be able to load a set of restrictions, and
those restrictions should be stored in the repository. And if you're going to do that,
then maybe you might as well have the restrictions actually be enforced in the
repository. That way the repository isn't relying on the client to have been coded
correctly. After all, the client may not be a dedicated Chandler client; it might be
some hastily coded conversion routine made for shovelling data from some legacy
system over into a Chandler repository.

Issues

So, after all that discussion, that still leaves us with a lot of unresolved issues:

• What types of restrictions should Chandler support?

 54
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o Data type restrictions?
o Cardinality restrictions?

 One vs. Many cardinality restrictions?
 NOT NULL restrictions? (same thing as required vs. optional

attributes?)
 Other cardinality restrictions? (e.g. min and max?)

o Range restrictions?
 example: "rainfall" must be a non-negative number
 example: "age" must be over 21

o Inter-Attribute restrictions?
 example: "start-time" must come before "end-time"

o Inter-Item restrictions?
 example: my "mother" must have a "birth-date" prior to my

"birth-date"
o Transitive restrictions?

 example: my "mother" cannot be the "daughter" of my "son"

• How should restrictions be represented?
o Hard-coded in Python code?
o In the schema data in the repository?
o Other?

• Where are the restrictions enforced?
o Nowhere?
o On the client?
o In the repository?
o On the client and in the repository?

Discussion

• So we have this question of where restrictions should be enforced. That
question overlaps a little with a larger architecural question about what parts
of the system should be dumb and what should be smart. For some
discussion of that, see DbEndToEndDumbData.

• You describe restrictions on attributes (cardinality, type), presumably
globally. That is, if a starttime attribute has a value it is always a datetime,
wherever it shows up. Usually in OOP, attributes are defined in relation to a
class, and any restrictions apply to that attribute-class pair. We definitely
want to define attributes globally in chandler, with the idea that these
attributes are building blocks that people can use to extend their schema, and
that the attributes will be useful for interesting queries. One could imagine
defining the restriction in terms of the attribute-class relationship, though.
The starttime attribute has a cardinality of 1 when applied to an event, but
might have a cardinality of many when applied to some other class. I'm kind
of on the fence on this issue. The RDF folks seemed to think the global
restrictions could cause problems, but its hard for me to find a compelling
example in our pim space, especially for the most interesting restriction, type.
-- KatieCappsParlante, 24 March 2003

• see also the example above

 55
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• We support data type restrictions for attribute values, and some Attribute
Definitions can specify that the value must be a text literal. For any Attribute
Definition that specifies a text literal value, should we actually allow that
Attribute Value to point to any type of Item whatsoever?

o pro: Sure, why not? What could that possibly break?
o con: Are you crazy? Then what was the point of even specifying the

restriction in the first place?

...Proposed Strawman Solution...

• @@@ -- We need to identify how this impacts other parts of the overall
architecture.

• @@@ -- Maybe restrictions can be handled as "hints". Hints could be stored
in the repository, but the repository wouldn't need to actually enforce the
hints.

• Represent restrictions within schema data the data model.
o Represent simple data type restrictions on the Attribute Definition.
o Represent simple cardinality restrictions (One and Many) on the

Attribute Definition.
o Represent simple required (NOT NULL) restrictions on the Attribute

Definition.
o For all the other more complicated restrictions, have the Attribute

Definition item refer to an Attribute Restriction item. For now, punt on
actually trying to figure out the representation of complex restrictions
within an Attribute Restriction item.

Symmetrically Associated Attributes

For an introduction to symmetrically associated attributes, see Steve Zagieboylo's
design list post. I'm also a fan of symmetrically associated attributes. I included
them as a feature in a database product that I wrote back years ago. They were
simple and they worked great.

In the strawman data model outlined below, I've included support for symmetrically
associated attributes as an optional feature. The data model allows for having some
attributes which are specified as having symmetrically associated attributes and
other attributes which are traditional uni-directional references. Of course, this is the
easy part. It's easy to write a data model design doc that supports symmetrically
associated attributes. It's another thing all together to incorporate that feature into
the repository!

Here's the relevant excerpt from Steve's post:

There was a special type of attribute we called an association, in which items of one
class were related to items of another class. This was like the links that your RDF
data store has, except that they were always kept balanced by the database. For
example, you might have a class "Person," and another class "Project." The Person
class might have an attribute "WorksOn" and the Project class could have an
associated attribute "Workers." The data in association attributes were always

 56
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

symmetrical: For example, if I added the Project ABC to Fred's WorksOn list, then
Fred was automatically added to ABC's Workers list. This symmetry was built into
data store.

The class "Class" also had an attribute "Attributes" which contained the list of
attributes (that is, the instances of class Attribute) for that class. Since the class
"Class" was also an instance of class "Class," it had a value for the attribute
"Attributes:" a list that included "Parent, Children, Instances, Attributes," and more.
The Attribute class (that is, the instance of the class "Class" which describes all
Items of the class "Attribute") also had, of course, a list of attributes. These included
"ForClass, Type, and Associate."

The value for "Associate" was critical for the system to maintain the association
symmetry. For example, the attribute "Person.WorksOn" was an associate of the
attribute "Project.Workers." This is how, when Project ABC was added to Fred's
WorksOn list, the system knew to add Fred to Project ABC's Workers list.
Associations could be many-to-many, many-to-one, one-to-many, and one-to-one.
(Note how a single change to a one-to-many value might change values in a total of
three items. i.e. If Fred currently ReportsTo Mary and I add Fred to Sue's
DirectReports list, then the Items for Sue, Fred, and Mary all change.)

Many of the attributes in the fundamental Items had associates. {Class.Instances ...
Item.Class}, {Class.Attributes ... Attribute.ForClass}, and {Class.Children ...
Class.Parent} were all one-to-many ... many-to-one pairs. Now for the quiz: The
attribute "Associate" was, of course, an instance of the class "Attribute" and
represented an association. All associated attributes have an associate, and this one
is no exception. What was the associate of the attribute "Associate?"
[Answer: "Associate"]

Discussion

• It's possible that the idea of symmetrically associated attributes may having
some bearing on distinguishing between strong references and weak
references. See Garbage Collection.

• @@@ -- Discuss the issue of representing many-to-many relationships

• @@@ -- Discuss the issue of representing cross-repository symettrically
associated relationships

...Proposed Strawman Solution...

• Have the data model include optional support for symmetrically associated
attributes.

• Don't require all inter-item relationships to have symmetrically associated
attributes.

Garbage Collection and Deletion

 57
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Here's a quick summary of garbage collection. It's an excerpt from DB Topics:
Garbage Collection:

• A database should support garbage collection, which means content no longer
reachable from an application's data set should be reclaimed by the database,
without explicit intervention from the application. This frees application
programmers from worrying about manual memory management. In practice,
this means a database must understand inter-object references, so that the
transitive closure of references from a root will keep content alive. Garbage
collection is the process of reclaiming unused space in a storage system, by
scavenging any space that is not reachable from a set of garbage collection
roots. Typically a storage system has well-known entry points where content
is mounted, and these entry points are the roots for deciding what content is
regarded as inside the system. The content in a database that can be reached
by following references from a garbage collection root is considered alive, and
will not be scavenged during the next garbage collection. Whereas content
unreachable from the roots is considered garbage and can be omitted from
the database at the discretion of the system reclaiming space.

And here's some discussion about strong an weak references. It's an excerpt from
DB Topics: Reference:

• Python object pointers tend to be strong references, which keep preferred
objects alive. In contrast, URL based references are typically weak references,
which might become stale and 404 would be referenced. An assumption about
which of these occurs pervasively in a database will dramatically impact the
style of an application following references from one object to another. On a
related topic, string based references can be made more efficient in many
contacts by using interned strings (OsafDbInterningStrings??), which reduces
space overhead and reduces time for comparison. The use of URLs as the
identity of objects is described as a separate topic DB Topics: URL Identity.

See also the related topics:

• DB Topics: Delete vs. Kill.
• Item Versioning.

Issues

Okay, so if we have garbage collection in the data store, that might have some
impact on the data model.

• Should the data model distinguish between strong and weak references?
Should the schema allow for both types?

• Will string-based references be used in some places? Will these be treated as
weak references? Will the user be allowed to change the name of an item if
that name is the target of a string-based reference? Will changing the name
break the references, or will all the references be updated accordingly? In
addition to string-based references within a repository, we need to think
about string-based references stored completely outside Chandler, in word
processing documents and browser bookmark files. See also DB Topic: URL
Identity. And note the connection between this issues and Namespaces.

 58
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

http://wiki.osafoundation.org/bin/edit/Main/OsafDbInterningStrings?topicparent=Main.DataModelIssues

• Could symmetrically associated attributes represent strong references, while
unilateral attributes represent weak references?

• What does it mean to have garbage collection in a system that keep track of
version histories? If old versions of items reference old versions of items, how
do items ever become un-referenced?

• @@@ -- Discuss the issue of deletion semantics and relationships to wholly-
owned items

...Proposed Strawman Solution...

• Never use string-based references. Just say no.
• Items have a "deleted" attribute, that can be used to mark that they have

been logically deleted.
• (@@@ -- Should the schema allow for both strong and weak references?)

Local Proxies

@@@ -- this section needs to be re-drafted to take into account the idea of relay
servers

Repositories can contain proxy-copies for items that come from other repositories.

For example, while a user is working offline, a local repository in a laptop may have
proxy-copies for most of the items that are canonically stored in a server repository.
Or, when one user shares a calendar with another, an item in the repository of the
shared calendar may be proxy-copied into the repository of the subscribing calendar.

Proxy-copies vs. copies

A proxy-copy is different from a regular copy. In Microsoft Word, when you copy and
paste a paragraph from one document to another, the pasted paragraph doesn't
know that it's a copy, and it doesn't keep any kind of pointer back to the orginal
paragraph in the original document. In Chandler you can also copy and paste
paragraphs. And you can copy and paste Items. Just like in Microsoft Word, when
you copy and paste an Item in Chandler, the pasted Item doesn't know that it's a
copy, and it doesn't keep any kind of pointer back to the orginal Item. The new
pasted Item will have its own unique uid, completely unrelated to the uid of the
orginal Item.

In contrast, when a proxy-copy is made, the new proxy Item is created with a
pointer that points back to the original Item. Chandler can use that pointer to keep
the two Items in sync. Changes to the proxy can be folded back into the original, and
changes in the original can be applied to the proxy.

Pointers to original Items

Each proxy Item is created with a pointer that points back to the original Item. That
pointer could be represented in different ways, and I'm not sure what's the best way
to do it. One alternative is for the proxy Item to have a special attribute like "copied

 59
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

item", that points to the copied Item. If Item-A has a "copied item" attribute with a
reference to Item-B, then we now that Item-A is a proxy-copy, and we know that it's
a copy of Item-B. If Item-C has a "copied item" attribute with no value (i.e. a NULL
value), then we know that Item-C is an original Item, not a proxy-copy.

But it might not be necessary to have a special "copied item" attribute. We might be
able to store everything we need to know just by using the UID. Each UID has two
halves: the id of a repository, and the local id of the item within the repository. It
may be the case that original Items always live their entire lives in the repository
where they were first created. If that's true, then we know:

• (a) an Item is an original Item if its uid has a repository id that matches the
repository the Item is in now

• (b) an Item is a proxy-copy if its uid has a repository id that does not match
the repository the Item is in now

• (c) if an Item is a proxy-copy, then the original Item will have the same uid,
and the original Item will be in the repository specified by the repository id in
the uid

See also DbOidCoinageProblem.

Partial proxy-copies

When an Item is proxy-copied, the copying won't be instantious. In some cases,
there will be thousands of Items to copy at once, and the destination repository may
have to chunk the requests that it sends to the source repository. And the network
connection might go down mid-way through the operation. Or, in other cases, the
destination repository may be smaller than the source repository, and Chandler may
intentionally decide to copy only a portion of the interesting Items.
In any case, the result is that a repository may sometimes contain only a portion of a
data model. An proxy Item in a repository may be an incomplete copy, or may
reference objects in remote repositories.

The issues here we're talking about here, partial proxy-copies in repository, is
related to a similar issue, that of having only partial items loaded into client cache
memory. For some discussion of that related issue, see:

• DbWheelMetaphorLayerCakeMarch2003
• OsafMarch2003DatabasePlan#ZodbCaching
• OsafMarch2003DatabasePlan#ZodbPartial

Data model requirements

The representation of an Item in a repository must be expressive enough to support
the semantics of copies. Here are some of the requirements for proxy-copies.

• attributes can reference remote items
o A local item may have an attribute that points to a remote item. In

this case there are no copies.
o example: My calendar includes a reference to an event from your

calendar, and that event is stored in your repository.

 60
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• copies always know what kind they are
o a local copy always knows what Kind-of-Item it is an instance of
o example: My calendar includes a copy of an event from your calendar.

The copy knows that it's an Event.

• copies always know their uid
o A local copy always has its uid attribute, and the value is always

correct and complete.
o The uid of the local copy is always identical to the uid of the original

object.

• copies always reference their original remote items
o A local item may be a copy of a remote item. The local copy will have

a reference to the remote item.
o example: My calendar includes a copy of an event from your calendar,

and the copy includes a reference to the remote item.

• copies always know that they are copies
o A local copy always knows that its a copy.
o An original always knows that its an original.

• copies can contain copies of attribute values
o A local copy may be a complete copy of a remote copy.
o example: My copy of your event includes copies all the values of all

the attributes.

• copies can contain missing attribute values
o A local copy may be a partial copy of a remote copy. Some of the

attribute values have been copied, but other attribute values have not
been.

o example: My copy of your event includes a complete list of the event
attributes, and a copy of the value for the "headline" attribute, but
does not include copies of attribute values for all the other attributes.

• copies can have missing attribute lists
o A local copy may not even know the names of its attributes, much less

their values.
o example: my copy of your event is a completely empty proxy, which

just points to your event

Strawman solution

Here is one mechanism that might be adequate enough meet the needs outlined in
the list of requirements above:

• three manditory attributes
o All instances have three mandiatory attributes. All original instances

have these attributes, and all copies have these attributes.
 uid
 instance of
 attribute list

 61
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

o All instances have valid attribute values for the "uid" and "instance of"
attributes.

o For the value of the "attribute list" attribute:
 In orginal instances, the value of the "attribute list" attribute is

a dictionary of attributes and attribute values
 In copies with missing attribute lists, the value of the "attribute

list" attribute is the special value UNCOPIED
 In copies with missing attribute values, the value of the

"attribute list" attribute is a dictionary of of attributes and
attribute values, in which the attribute values may be special
value UNCOPIED. Having an UNCOPIED attribute value is
different from having a NULL attribute value.

Here are a few examples:

original Event (in repository A)
uid A-349

instance of Event
attributes "headline" "Lunch with Tug"
 "start time" 1:30pm 15 Mar 1994
 "end time" 2:30pm 15 Mar 1994
 "notes" "bring March report"

local proxy (in repository B)
uid A-349

instance of Event
attributes UNCOPIED

local proxy (in repository C)
uid A-349

instance of Event
attributes "headline" "Lunch with Tug"
 "start time" 1:30pm 15 Mar 1994
 "end time" 2:30pm 15 Mar 1994
 "notes" UNCOPIED

local proxy (in repository D)
uid A-349

instance of Event
attributes "headline" "Lunch with Tug"
 "start time" 1:30pm 15 Mar 1994
 "end time" 2:30pm 15 Mar 1994
 "notes" "bring March report"

Proxy-copies of non-Chandler data

All of the above discussion focused on the case where one Chandler repository has
proxy-copies of the Items that live in another Chandler repository. Alternatively, a
Chandler repository may have proxy-copies of data that lives in non-Chandler

 62
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

repositories. For example, a Chandler repository might have a local proxy-copy Event
that points to an original "Event" record on a "foreign" CAP server.

So then, how should those proxy-copies be represented in the Chandler data model?
Here's one option... We could create a new Kind-of-Item, that would represent a
reference to a foreign record. Let's call that a Foreign-Item. A Foreign-Item would
have attributes that could be used to point to records on foreign servers. A proxy-
copy would have an attribute, "proxy for", that would point to an instance of a
Foreign-Item, and then other attributes of the proxy-copy might be filled in, or might
have the value UNCOPIED.

Here are a few examples.

original VEVENT data (on a CAP server)
"UID" 19970901T130000Z-123401@host.com
"SUMMARY" "Annual Employee Review"
"DTSTART" 19970903T163000Z
"DTEND" 19970903T190000Z

Foreign-Item (in repository E)
uid E-596

instance of Foreign-Item
attributes "CAP server" "host.com"
 "UID" "19970901T130000Z-123401"

local proxy (in repository E)
uid E-852

instance of Event
proxy for E-596
attributes UNCOPIED

Foreign-Item (in repository F)
uid F-128

instance of Foreign-Item
attributes "CAP server" "host.com"
 "UID" "19970901T130000Z-123401"

local proxy (in repository F)
uid F-769

instance of Event
proxy for F-128
attributes "headline" "Annual Employee Review"
 "start time" UNCOPIED
 "end time" UNCOPIED

Foreign-Item (in repository G)
uid G-033

instance of Foreign-Item
attributes "CAP server" "host.com"
 "UID" "19970901T130000Z-123401"

local proxy (in repository G)

 63
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

uid G-244
instance of Event
proxy for G-033
attributes "headline" "Annual Employee Review"
 "start time" 4:30pm 03 Oct 1997
 "end time" 7:00pm 03 Oct 1997

Discussion

• We've been talking a lot about partial objects. A use case: In my repository, I
have a bunch of contacts, each item has the attributes "name", "phone" and
"note". In the note attribute I store personal observations about each contact.
I want to share my contacts with you, but I don't want to share the "note"
attributes. When you do a query on my repository, you get items with only
the "name" and "phone" attributes. Perhaps you don't even know that the
"note" attribute exists in my repository. This case is very similar to the case
that you describe as "partial proxy-copies". -- KatieCappsParlante, 24 March
2003

...Proposed Strawman Solution...

• Have the data model use a uid in a Chandler proxy copy that is identical to
the uid in the Chandler original.

• Have the data model support Chandler proxies using the UNCOPIED value.
• Have the data model support foreign proxies using the "proxy for" attribute.

Text Strings

I'm not sure how text strings should be represented in the data model. There are a
number of issues...

Translated strings

Some strings will have different versions for different languages.

Langauge String
English (en) Hello World
German (de) Guten Tag Welt

For example, when a Parcel is localized, the names of different Items in the Parcel
might be translated. There might be translations for the name of the Parcel itself, or
for the names of Items ("Event, "Contact", etc.), or for the names of attributes
("Start Time", "Name", etc.). For that matter, the list of languages themselves will
have different translations ("German", "Deutsch", "Allemand", etc.).

And user-defined Items might also include translated strings. A simple list of
Countries or Cities might include different names in different languages.

 64
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

http://wiki.osafoundation.org/bin/view/Main/KatieCappsParlante
http://wiki.osafoundation.org/bin/view/Main/DataModelIssues?sortcol=0&table=15&up=0
http://wiki.osafoundation.org/bin/view/Main/DataModelIssues?sortcol=1&table=15&up=0

The translated strings are different versions of each other. They're related to each
other, and the data model representation should reflect these relationships. From the
data model, for a given string, you should be able to find out what languages the
string is available in, and what the value of the string is in each language. The UI
should know what language the user wants to work in, and if a String has a
translation into that langauge then the UI should present that version of the string.
And an end-user should be able to add a new translation to a different langauge,
even for an Item they didn't create.

In one of the design list posts, David Neeley talked about the idea of having all items
being multilingual-capable, and the more general idea of having different aliases for
items.

Non-translatable strings

Most strings should probably be allowed to have translations, but some strings, by
definition, should have only a single canonical form. For example, the ISO language
codes ("en", "de", etc.) are definitely string literals, but they should not be allowed
to have translations. And the same for some country codes, or the abbreviations for
US states ("CA", "WA", "TX", etc.). Users should be able to create new Items with
attributes that are specified as being non-translatable strings.

One-liners vs. text blocks

Some strings are one-liners, and some are text blocks. For example, in an address
book, the "name" of an company should be a one-liner, without tabs or carriage
returns, whereas a "directions" field can be a text block, with tabs or carriage
returns. The data model needs to be able to represent the fact that some strings
should be restricted to one-liners.

ASCII vs. rich text

Some strings are plain ASCII text. Other strings have rich text formatting, like bold
and italics and links. One-liners can sometimes have rich text, and text blocks can
sometimes be restricted to plain ASCII text.

The data model needs to be able to represent the fact that some strings should be
restricted to plain ASCII text. And for rich-text strings, the data model needs to be
able to represent the rich text, although probably that can be done with simple in-
line markup, so that the data model doesn't need to know much about it.

Maybe Chandler can get away with only having a single representation for rich text,
but it's possible that Chandler will need to import text in a variety of formats, like
HTML, or RTF. The data model may need to know about these different formats, so
that for a given string the data model knows which format the string is in.

Representation

I'm not sure how all of this should be represented in the data model. There will be a
lot of strings in a repository, so efficiency is important. Simple strings should be
represented simply. But it may be that complicated strings should be represented as
first-class Items, so that a user could look at a table of translations in a generic table

 65
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

http://wiki.osafoundation.org/bin/view/Main/DataModelIssues

view, or use a generic query language to see information about a collection of
strings. And it may be that a user should be able to dynamically change the schema,
so that a simple type of string can become a more complicated type of string.

Anyway, all this deserves some thought. For now I've basically punted, and this
strawman data model has a fairly naive set of representations for string types.

...Proposed Strawman Solution...

• Have the data model support string values as literals, for simple strings and
for non-translatable string codes.

• Have the data model support Language items that represent different
languages, with names and ISO codes.

• Have the data model support String items that have associated Langauge
items.

• Have the data model support table of Strings items, with translations in
different languages.

• Have the data model support text blocks as well as one-line strings.

Compound Attributes

Some items are more complex than literal, but yet still simple enough that they don't
need to be first-class, heavyweight Items.

@@@ -- Example: Timespan (or Daterange), Attribute Value,

Why aren't Compound Attributes just types of Items?

• A Compound Attribute doesn't need to have its own UID. A Compound
Attribute is wholly owned by a single Item. It is never referred to by any
other Item. Furthermore, it is wholly owned by a single attribute of a single
Item. It cannot be pointed to by more than one attribute, nor can it appear in
more than one collection, or more than once on a list.

• A Compound Attribute doesn't need to have any of the attributes that Items
can have. Compound Attribute can never be proxies, and they don't need to
have creation times, and version histories, and annotations.

Why aren't Compound Attribute just simple literals?

• @@@

Why aren't Compound Attribute just kept as independent literals?

• @@@

See March 2003 DB Plan: Opaque Pickles

...Proposed Strawman Solution...

 66
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• @@@

Repository Subsets

Background

An excerpt from a design list post by Rys:

Another big question is: what is a subset of a repository? ... I keep asking people
how we intend to define this for the sake of being able to synchronize only parts of
our repository, because synchronizing all of a repository will cause breakage if the
repository must contain both shared data and data that should be visible locally only
(perhaps because it represents to-do list information in a local client).

(Data hidden for security reasons would work as a means of reducing scope of what
gets shared in synchronization, but that would be the wrong way to do it, since it
would conflate security mechanisms with synchronization policies.)
But no one has an answer, so perhaps I am to make something up.

Alternatively, data with different purposes might be partitioned by using multiple
repositories. But no one really wants to talk about the issues of actually maintaining
multiple repositories either. But that seems like something easy to invent on-the-fly
when it matters.

And David Paigen offers some answers to these questions in another design list post.
Here are some excerpts:

The ideal (a self contained subset of the data&metadata) is not possible because our
knowledge is too interconnected. A subset large enough to be useful (e.g. more than
a post-it note) will have references to data outside the subset. :-(

I think the network of connections within the data needs to account for loose ends,
links that refer to data that is not contained in the local repository and may not be
available at all. But this begs the question, how do you know when to include more
data into a subset and when to cut the link and leave a loose end? Does this mean
that you would have to copy a subset into new memory to operate on it?

I see security as a subset of subset partitioning. The first partition I would want to
define on my repository is what I will share and what I don't want to share. I may
even slice the data several ways and share work stuff with my boss, personal stuff
with my partner, and hobby stuff with a friend.
Partitioning into separate files might be a good answer. Especially if Chandler can
present them to me as seamlessly stitched together. Or mostly seamless, anyway.
:-)

There would need to be some sort of partition tool, where you begin by dropping
some items into a partition (or via a query), and the tool would explore the
connections and allow you to choose which connected data and metadata to add to
that partition.

 67
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

And there would have to be some way of re-inserting a partition into a repository,
some way of restoring those loose end links.

Options

Maybe create a Kind-of-Item named something like "Partition" or "Project" or
"Workspace". Most users would only ever want to have a single Workspace, but if
people wanted to they could create separate Workspaces. For example, if I'm a
lawyer or an independent consultant, I might have one Workspace for each of my
clients. That way I can make independent back-ups of each workspace, and I know
that I won't commingle the proprietary documents of one client with those of
another.

...Proposed Strawman Solution...

• @@@

Division of Labor

Background

An excerpt from a design list post by Rys:

here is a question which comes up repeatedly in our designs:

Does the database do it, or does the application do it?

For example, in the case of synchronization and logged changes, does the database
guarantee (or seem to, in the interface) efficient access to logged changes so they
can be traversed directly? Until an API for this appears in RAP (the repository access
protocol), the answer is no.

Or does the application make sure relevant content is marked with timing info, so
that change time can be indexed, allowing efficient traversal by virtue of an index.
Until we design an API that specifies index behavior in a repository, and then reveal
this in rap, the answer is no.

Middleware

Other Chandler architecture documents have also talked about a middleware layer,
and about how functionality is divided up between the client code, the middleware
code, and the server code.

Implications for the data model

Those decisions, about what functionality is implemented where, may end up having
implications for the design of the data model. Here's a list of some of the areas of
Chandler functionality, and notes about the data model implications of having that
functionality in one place versus another.

 68
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

• timing info: creator, creation time, las modified time, etc.
o implications: @@@

• mapping between change objects and item versions
o implications: @@@

• persistent event queues
o implications: @@@

• observable queries
o implications: @@@

• synchronization and replication
•

...Proposed Strawman Solution...

• @@@

Proliferation of Items

The original descriptions of Chandler talked about a variety of different kinds of
Items, like Events, Email Messages, Contacts, Tasks, and Notes. And in reading
through the wiki pages, it becomes clear there there need to be lots of other kinds of
Items too, like Personas, and Groups, and Notifications. But it's not clear how far all
of this should go. How do you decide what should be an Item, and what shouldn't
be?

Views as Items

I understand that the Chandler team has talked some about the pros and cons of
treating Views as just another type of Item. I'm entering the conversation a little
late, so I don't know what ground has already been covered, or what the current
consensus. But, for a glimpse of some background, see DB Topics: View Model.
From my perspective, approaching things from a data-modeling point of view, it
seems very clear to me that Views should be treated as just another type of Item.
That users can leverage all of Chandler's powerful features in working with the Views
themselves. If Views are just Items, then users can query repositories to find out
about available Views, and see Views that show lists of Views, and publish lists of
Views, and subscribe to Views of Views, and add annotations to their friend's Views,
and collaborate to create better Views.

See also: Mike C. Fletcher's design list post about "View definitions as items in the
the database".

For performance reasons, it's probably necessary to have a client-side cache of the
View meta-data. But that shouldn't be a problem. Client-side caching and off-line
work are already clear architectural goals.
So, for now, in this strawman data model I've gone ahead on the assumption that
Views are Items.

 69
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

Meta-data as Items

Just like the question about whether Views should be first-class Items, there's a
similar question about all the meta-data. Should attributes be Items? Should a Kind-
of-Item be an Item?

I'm sure there are good pro and con arguments, but I haven't talked those through
with anyone, and I'm not up on the current OSAF thinking. From my perspective, it
seems like it'd be great if all the meta-data was just a bunch of Items. And then you
get all the Item-centric benefits of Chandler: the ability to query it, to see it
displayed in generic table views, to share those views with other people, etc.

Everything else as Items

Along with the Views and the meta-data, there are dozens and dozens of other
objects that could be modeled as Items. Things like Queries, Triggers, Preferences,
Timezones, Resources, and Languages. And on and on. Almost across the board, I've
defaulted to treating all these things as just other kinds of Items. I don't know what
the current OSAF thinking is about all this, and I'm worried that I may have
wandered far off from the current consensus vision, but it seems so compelling to
just treat everything as an Item. And I'm having a hard time thinking up good
reasons not to.

So, with that caveat, here's the list of the hundred-odd Kinds of Items, described in
the Data Model Schema.

...Proposed Strawman Solution...

• When in doubt, make it a first-class Item.

Contributors

• KaitlinDuckSherwood - 09 Dec 2002
• BrianDouglasSkinner - 19 Feb 2003
• BrianDouglasSkinner - 17 Mar 2003 to 14 Apr 2003
• BrianDouglasSkinner - 30 May 2003

 70
From wiki.osafoundation.org/bin/view/Main/UpdateNumber7?skin=print 23 August 2003

	Status Update Number 7 -- June 25 2003
	25 Jun 2003 Open Source Applications Foundation
	1. Design work.
	2. Competitive Anaylsis.
	3. 0.2 scheduling.
	4. Project pages.
	5. Email
	6. Implementation
	7. Hiring.
	Summary of Data Model Features
	Data Model Features
	More detail
	Contributors

	Data Model Feature Details
	Goals
	Snakes/Dragons
	Block Diagram
	Terminology
	Building Blocks
	General Schema Layer
	Items and Attributes
	Inheritance
	Attributes
	Relationships
	Compound Attributes
	Indexing
	Queries
	Values
	Default Values
	Restrictions
	Item Versions
	Deletion
	Strings
	Schema Items
	Basic Data Types
	RDF
	UUIDS
	Annotations
	Foreign Items
	Enums
	Namespaces
	Derivation Rules
	Repositories
	Display Strings
	Transactions
	Permissions
	Parcels
	Notifications
	Sharing
	Files
	Schema Changes

	Contributors

	Menu of possible data model features
	menu
	Contributors

	Data Model -- Issues
	Contents
	Overview
	To Do List
	Terminology
	Data Model Requirements
	Null Values
	Missing Attributes
	What's the difference?
	Will Chandler support NULL values?
	...Proposed Strawman Solution...

	Display Strings
	...Proposed Strawman Solution...

	Derived Attributes and Derived Items
	Derived Items
	...Proposed Strawman Solution...

	Default Attribute Values
	...Proposed Strawman Solution...

	Sub-Attributes
	...Proposed Strawman Solution...

	Global Attributes
	...Proposed Strawman Solution...

	Enumerated Types
	ENUMs in forms
	Requirements
	Implementation Options
	Discussion
	...Proposed Strawman Solution...

	Unique IDs
	Item Versions
	Namespaces
	Does Chandler need namespaces?
	Do users need namespaces?
	Namespaces for Attributes?
	String-based References
	Discussion
	...Proposed Strawman Solution...

	Semantic Dictionaries
	Restrictions on Attributes
	Types of restrictions
	Where are restrictions enforced?
	Restrictions enforced in the repository
	Issues
	Discussion
	...Proposed Strawman Solution...

	Symmetrically Associated Attributes
	Discussion
	...Proposed Strawman Solution...

	Garbage Collection and Deletion
	Issues
	...Proposed Strawman Solution...

	Local Proxies
	Proxy-copies vs. copies
	Pointers to original Items
	Partial proxy-copies
	Data model requirements
	Strawman solution
	Proxy-copies of non-Chandler data
	Discussion
	...Proposed Strawman Solution...

	Text Strings
	Translated strings
	Non-translatable strings
	One-liners vs. text blocks
	ASCII vs. rich text
	Representation
	...Proposed Strawman Solution...

	Compound Attributes
	...Proposed Strawman Solution...

	Repository Subsets
	Background
	Options
	...Proposed Strawman Solution...

	Division of Labor
	Background
	Middleware
	Implications for the data model
	...Proposed Strawman Solution...

	Proliferation of Items
	Views as Items
	Meta-data as Items
	Everything else as Items
	...Proposed Strawman Solution...

	Contributors

	
	OASF Title Page

