

Agents

This area is for discussing issues related to agents and/or end-user
scripting.

Andy's Agent Framework Proposal (We really want your
feedback!)

• Introduction
• Agent Metaphor
• Modular Framework
• Agent Visualization
• Agent User Interface
• Agent Runtime
• Agent Communications
• Agent Log
• Agent Programming
• Agent Reputation
• Security Issues
• Sample Agents

Movitation for Agents

Chandler's user interface is based on a landscape of views, arranged in
a set of modules, each with an associated URL. Each view presents a
collection of items specified by a query from a (possibly remote) data
repository, displayed in a spreadsheet-like table or in a view-specific,
flexible fashion. While that's fine for browsing and manipulating data,
it doesn't provide an intuitive way to express continuous activity or
initiative. We'd like Chandler to be able to respond automatically to
various situations as they arise, as instructed by the user in a simple,
understandable fashion. Chandler should be capable of orchestrating
complex, multi-step, asynchronous tasks in the background, like
booking reservations for a business trip or arranging a conference call
between multiple parties. Non-programming users should be able to
specify actions that are performed in response to certain events while
programmers should be able to define new types of events and
actions, besides the ones built into Chandler.

 1
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

We propose an agent framework to accomplish the above. Agents are
plug-in modules containing Python scripts and other resources like
images, that perform tasks on behalf of the user, either when explicitly
requested or when the agent notices particular conditions arising.
Agents have a compelling visual representation based on an
anthropomorphic "occupation" metaphor (postman, janitor, secretary,
courier, sleuth, etc), in which we express as much of their internal
state as we can visually (they look busy, alert, bored, sleeping,
impatient, pleased, etc). They can be instructed by the user without
any programming, simply by associating predefined conditions with
predefined actions.

So the Chandler user interface might present two different kinds of
plug-in modules, views (actually sets of related views, currently called
"packages"), and agents. The user will think of views as places in the
landscape of the program, sort of like a web page, and agents as
active characters who can visit the places and accomplish tasks on
their behalf. I think this provides us a with a flexible framework that
will allow Chandler to address a wide variety of applications while
giving users simple yet powerful ways to extend their will into the
software and perform routine tasks automatically.

The rest of this paper discusses aspects of a potential agent framework
for Chandler without attempting a detailed design. This is still a new,
raw set of unproven ideas, with no prototyping or proof of concept
work attempted yet, so we should expect it to evolve and mutate
rapidly as we proceed with development.

Revision r1.1 - 07 Mar 2003 - 20:17 GMT - ChaoLam

The Agent Metaphor

A good user interface should find a way to offer lots of power and
flexibility behind a simple facade. Its basis should illustrate some
organizing principle that aligns complex options, yet aligns them with
concepts already familiar to and understood by the user. The Chandler
Agent Metaphor makes use of familiar occupational roles to represent
the functionality of the program.

This metaphor empowers users because they can apply their lifetime
of experience in the real world to how they want to utilize Chandler.
Most users have more trouble manipulating abstract ideas than
concrete objects. The realization of the agent metaphor should be
highly visual if it's going to be effective for a broad range of users,

 2
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

since that makes it more concrete and real to them. We can use the
graphical representation of an agent to both distinguish it from other
agents and to convey the current details of it's internal state and
portray ongoing activity.

Another strength of the agent metaphor is that it is inherently
modular, since agents are autonomous, and distinct in the user's
perception. It's easy to envision adding more members with different
skills to your virtual staff.

Designing agents that generate and respond to events appears to be
rich, deep and fun. Once the work begins, it almost seems to start
designing itself.

Revision r1.1 -- 07 Mar 2003 - ChaoLam

AgentModularFramework

Chandler is based on a modular architecture, where plug-in modules
containing Python scripts can add new functionality on the fly, without
restarting the application. The modules typically inherit rich behavior
from base classes in the Chandler core, so they can be relatively small
themselves. The agent framework will leverage the modular
architecture to allow agents to be developed and distributed
independently from the core application, and to be added and removed
smoothly at runtime.

A standard plug-in module in Chandler is called a Parcel. Parcels
usually contain a set of related views, as well as the resources
required for the views to render themselves. Parcels can even contain
preference information, schemas, or additional data to augment the
repository, so they can serve as the distribution format for Chandler
applications.

Parcels will often contain one or more agents, sometimes as part of a
set of related views. For example, a postman agent may be part of the
email parcel. Other parcels may contain agents that are independent
from any particular view. The user can also create new agents by
cloning an existing agent, and then modifying it.

There are many other aspects of the framework that have to be
carefully thought through. For example, agents can probably register
with the framework declaring themselves suitable for a set of tasks,
for example being called when the user issues a specific command like

 3
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

'delete'. Agents should also contain a set of cryptographic credentials
identifying them and allowing them to have specific privileges. Some
more of the framework issues are discussed below, but the detailed
design is beyond the scope of this document.

Revision r1.1 - 07 Mar 2003 - 20:22 GMT - ChaoLam

Agent Visualization

Chandler tries to portray as much of the agent's internal state as it can
visually. Agents will typically be around 80 pixels square but they will
also be rendered both smaller and larger as circumstances permit.
They will use text, graphics and animation, and in rare cases sound, to
portray their current status.
An agent's visual appearance will be based on a user selectable set of
base images supplemented by agent-specific images overlayed onto
the base image. Agents will display prominent tokens of their role, like
hats or badges, to make their roles clearer and to help them be more
easily distinguished from each other. Their graphical appearance is
dynamic, changing to reflect their internal state, and their progress
toward fulfilling their assigned tasks. We might want to render
features with a vector-based format like Flash, which would potentially
allow a wider range of expressions than bitmaps.

An agent will express its current level of satisfaction at carrying out its
assigned tasks via its appearance, by appearing happy, sad, neutral,
frustrated, etc. It will portray its activity level by appearing disabled,
sleeping, alert, busy, bored, excited, etc. An agent will illustrate the
completion state of the tasks at hand, and show the current step of a
multi-step process. They will also be able to show magnitudes like
none, one, some or many. Agents use animation to show when they
are communicating and if they are currently sending, receiving or
waiting for data.
The user will have some control of the appearance and style of their
agents. The system will supply a variety of base appearances, from
which the user can choose, and third parties will be able to add even
more choices.

When you hover the mouse over an agent, a pop-up textbox appears
(or possibly a speech balloon), containing even more information
about the agent and it's current status. When you click on an agent, a
dialog box appears to allow you to interact with it in detail.

 4
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

Revision r1.1 - 07 Mar 2003 - 20:23 GMT - ChaoLam

Agent User Interface

Agents are integrated into the user interface in a number of different
ways. There will be an optional "agent bar" stretching horizontally
across the top of a Chandler window, below the other toolbars, that
will display the relevant agents to the current view or activities, with
the most relevant ones toward the left hand-side. The contents and
order of the agents in the bar might change as you navigate between
views, since some agents are specific to certain views or packages.
There is also an Agents view available, which is a place that allows you
to see all of your agents and manage them, as well as creating new
ones and deleting agents that are no longer useful. Finally, agents can
pop up in dialogs as necessary when conditions arise (see below)

An agent continuously reflects activity and progress via its
appearance, but when the user lingers the cursor over it, it displays
more detailed information in a pop up text box or speech balloon.
When the user clicks on an agent, it pops up a dialog box for a more
detailed interaction. Items from the view may also be dragged and
dropped on an agent, which will respond according to its scripts.
At their most basic, agents offer users a number of commands that
they can perform immediately, when the user selects one from a list,
or at a specified time. Sometimes the commands require additional
parameters, obtained by interrogating the user in a step-by-step,
wizard-like manner. Some commands will complete quickly, but others
may execute indefinitely in the background, while the agent offers
progress feedback visually.

Agents also contain a set of event/action pairs, some of which are
enabled by default. If a pair is enabled, the agent will execute the
specified action when it receives the associated event. The user can
choose to enable or disable the pairs, or to create new event/action
pairs by selecting an event and action from lists.
One of the main functions of an agent is to notify the user when
notable events occur, so they will need to get the user's attention with
varying degrees of urgency. They will have multiple ways of engaging
the user's attention, including altering their appearance, animating and
changing colors, making sounds or popping up dialogs as appropriate.

Revision r1.1 - 07 Mar 2003 - 20:25 GMT - ChaoLam

 5
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

Agent Runtime

Agents are Chandler modules, which contain an XML file and possibly
some other resources including Python scripts that usually inherit from
a base class defined by the agent framework, but might also inherit
from other agent modules as well.

The Agent Runtime provides methods controlling the life-cycle of
agents, which are usually accessed through inheritance. These include
methods for creation, destruction, notification, cancellation, etc. There
are also methods allowing agents to register with the framework to
associate themselves with particular activities.

There might be some sort of sandbox-like restricted execution
environment for the agent scripts if they're not fully trusted (see
below), but otherwise an agent has access to the full resources of the
client's Python environment, including performing database operations.
There will be a facility for agents to ask the runtime for a description of
the services that are available, including version numbers, so they can
adapt themselves to multiple versions of the runtime.

One of the main functions of an agent is to generate and respond to
events. Agents may call the agent runtime to define new types of
events. They also invoke the runtime to signal events as necessary to
notify other interested parties when the appropriate conditions arise.
Agents can also subscribe to events generated by the system, or by
other agents, to be notified each time the specified event occurs,
without having to poll for it.

Events are queued by the runtime, and fed to the relevant agents
asynchronously from the main thread of execution, so responses can
be lengthy without interfering with the main task the user is focusing
on in the foreground.

Revision r1.1 - 07 Mar 2003 - 20:26 GMT - ChaoLam

Agent Communications

Agents should be able to communicate with other agents, either
running in the same application instance, or between different
application instances on a local area network, or even across the
Internet, in order for them to negotiate on the behalf of the users they

 6
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

represent. They need to be able to address one another globally,
without requiring intermediating servers or fixed IP addresses. An
interesting approach is to have them communicate using Jabber, so
they can exchange XML-based structured instant messages in order to
accomplish a variety of tasks.

Chandler may employ dozens of agents, so it wouldn't be prudent to
require a unique Jabber ID for each agent. Instead, they can all use
the user's Jabber ID and rely on the Jabber resource ID or an
extension block to designate the intended agent. Since Jabber works
by exchanging XML fragments, agents can carry out structured
conversations using application-defined XML tags to accomplish their
tasks. We can leverage the machinery for XML namespaces to provide
a way for agents to declare the XML vocabularies that they support,
and a way to query if a particular agent supports a particular
vocabulary.

There should also be a way to discover the Jabber IDs of agents
offering a particular service that you're interested in, and what
protocols those agents support. The Chandler agent runtime will allow
you to query what agents are registered with a particular Chandler
instance, but there should also be a way to query across all known
instances for agents that fulfill a particular requirement. Also, we could
leverage Jabber chat rooms to creating meeting places for agents to
congregate.

There also needs to be a mechanism for agents to converse when one
of them is off-line. Chandler will probably have a general mechanism
for store-and-forward communications that agent communications
could utilize; one possibility is using email for store-and-forward agent
conversations in a fashion analogous to the instant messaging
approach under discussion, where text/XML MIME parts would contain
the XML fragments.

Revision r1.1 - 07 Mar 2003 - 20:26 GMT - ChaoLam

Agent Log
Since agents can perform actions in the background without the
explicit consent or awareness of the user, it's important to provide a
way for the user to find out everything that's taken place. So, all
actions performed by agents are logged for the user's inspection. Each
agent has an individual log of the actions it has taken, and there's also

 7
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

a global log available in the Agents view where you can see everything
that's happened. The logs will also be useful for debugging agents;
there will probably be a verbose logging preference, with more details
logged to facilitate agent debugging.

Revision r1.1 - 07 Mar 2003 - 20:27 GMT - ChaoLam

Agent Programming

Agents contain actions defined by scripts that can be executed at the
user's request, or when the agent receives a specified event. There is
a simple user interface for enabling or disabling predefined
event/action associations, and creating new ones by associating an
event with an action.

There will also be a way for power users to create new actions by
combining existing actions and possibly using conditionals and
iteration. Eventually, it will would be nice to have a simple, visual
programming language with conditionals and iteration, possibly based
on a subset of Python, but probably not in our first release.

Programmers will be able to add new types of events and actions to an
agent, or create entirely new types of agents, by writing methods in
Python.

Python, eh? Not AIML? (of course, if designing Agent Poindexter, one
would have to write it in DAML, yes?)

Revision r1.2 - 13 Mar 2003 - 22:09 GMT - JonathanSmith

Agent Reputation

Since agents may be independently developed plug-in modules, there
will eventually be a wide variety of agents available from a wide
variety of sources. Some agents might be unruly, or even malicious,
either by accident or intent. We should provide a reputation
mechanism for rating agents and sharing your ratings with other
users.

 8
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

Chandler's UI should provide an easy way to rate an agent by picking
attributes from a list, as well as capturing free-form text feedback. The
ratings will be kept in the user's repository and also conveyed to a
server that associates the ratings with agents via their MD5 digest.
Chandler can query the server to determine the average ratings
associated with an agent and display them to the user. We might also
want to include a peer-to-peer way of querying ratings to obviate the
need for a server.

See also SharingIssues -- ChaoLam - 07 Mar 2003

Revision r1.1 - 07 Mar 2003 - 20:31 GMT - ChaoLam

Security Issues

Since Chandler agents are independently distributed plug-in modules,
capable of performing arbitrary operations on a data repository and
sending the results across the network, there are lots of security
issues to consider.

Agents should carry a set of credentials, authenticated by digital
signatures, declaring the owner of the agent and granting it specific
privileges. One possibility is using a relatively fine-grained capability-
based security architecture where agents must possess specific
capabilities to perform specific operations; the relevant capabilities
would be passed as parameters to the restricted methods. Another
possibility is restricting access to methods or primitives at the Python
language or library level, executing the agents in a restricted runtime
influenced by the agent's credentials. The reputation mechanism
mentioned above will also help guard against rogue agents.
It's too early in the design cycle to commit to specific security
mechanisms, since we're still not sure how agents will be used, but it's
clear that we'll have to pay close attention to security issues as
development proceeds.

See also SecurityIssues

Revision r1.1 - 07 Mar 2003 - 20:37 GMT - ChaoLam

 9
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

 10
From wiki.osafoundation.org/bin/view/Main/AgentIssues 1 September 2003

Sample Agents

It's easy to think of lots of potential agents; it will be tricky to decide
the best set of them to include in the initial implementation. Here are
some brief descriptions of potential agents to consider implementing,
but I'm sure the list will be revised as our thinking evolves:

• Postman - collect and classify email
• Secretary - arrange meetings between multiple parties
• File Clerk - file items and enforce filing policies
• Janitor - system housekeeping tasks, warn about resource

limitations
• Sleuth - search for items, both locally and remotely
• Switchboard Operator - arrange conference calls or IM meetings
• Social Director: manager personal calendar, arrange recreational

activities
• Security officer: enforce security policies
• Travel agent: book airline and hotel reservations for a business

trip

Revision r1.2 - 09 Mar 2003 - 19:16 GMT - JonathanSmith

	Agents
	13 Mar 2003 Open Source Applications Foundation
	Andy's Agent Framework Proposal (We really want your feedback!)
	Movitation for Agents
	The Agent Metaphor
	AgentModularFramework
	Agent Visualization
	Agent User Interface
	Agent Runtime
	Agent Communications
	Agent Log
	Agent Programming
	Agent Reputation
	Security Issues
	Sample Agents

	
	OSAF Title Page

