
Automatic Secure Email
Andy Hertzfeld 11/4/02

Even though secure email technology has existed for decades, and
many email clients currently support it, the vast majority of email
messages sent today still travel through the network in plain text,
naked to the scrutiny of observers on the networks they pass through.
What are the reasons for this? How can we improve the situation?

One reason is that security features are often complex to configure
and administrate, especially for non-technical users who are unfamiliar
with the underlying concepts. Many users don't value security highly
because they don't understand the nature of their vulnerabilities. Even
if you are technically inclined and concerned with security, you can't
adopt secure email all on your own, since your correspondents must,
too, if you want to continue to communicate with them.

So widespread use of secure email won't occur until it is adopted by a
critical mass of mainstream users, and most mainstream users won't
start using it until it is just as convenient and easy to use as the
alternative. Widespread use of secure email won't really happen until
commonly used mail clients deploy it automatically, by default, with
minimal configuration required. That certainly seems like a worthy goal
for Chandler.

The problem is that you can only send an encrypted message to
someone who has set up secure email themselves and somehow made
you aware of their public key, as well as knowledge of the particular
formats they accept. Cryptographic key pairs are too complex for
ordinary users to manage manually. There are also complications
involving trusting that a given key is authentic. And even if you know a
correspondent's public key, they might be receiving your message with
an alternative client (perhaps a hand-held device) that uses a different
key or doesn't support secure email.

In order to be able to automatically send messages securely, we need
a way for our mail client to automatically determine the relevant public

 1
From www.osafoundation.org/automatic_secure_email.htm 1 September 2003

security information for each recipient. One possibility is for each client
to register their public security information with a server, which could
be queried by other clients before sending. However, that information
could get out of sync with the client, and we prefer a solution that
doesn't require additional servers if possible.

A better approach is to define a simple mechanism for email clients to
communicate with each other directly, via email itself, so they can
share descriptions of their capabilities, including the cryptographic
information necessary to talk to them in a secure fashion. With such a
mechanism, your email client could negotiate with your
correspondent's client behind the scenes, to determine the best way to
send a message securely.

Let's examine what such a mechanism would look like, without trying
to specify it formally here. We can define a new, RFC822-style email
header called 'X-Profile-Request', which is used to request a profile
from the receiving email client. When an email client receives a
message that contains a profile request header, it responds with a
'profile response', which is an email message containing an 'X-Profile-
Response' header and the responding client's profile contained in xml
file attached to the response. The profile includes the types of
encryption algorithms and formats supported by the client with their
corresponding public keys, as well as a user-agent string, a list of
supported mime-types, and possibly other descriptive information like
contact info expressed as a vCard.

Clients must guard against revealing too much information to arbitrary
requesters, since you don't necessarily want to even reveal your
existence to spammers or unknown parties. Profile requests contain a
request identifier, generated by the requester, which is included in the
profile response to help verify its authenticity; this helps guard against
trouble-makers providing false keys in phony responses. In order to
help protect ourselves against evil-doers sending out large numbers of
profile requests, we also require a profile request to include a hash-
cash string, which is a string containing numbers that are easy to
verify but are relatively hard to compute. Still, some users will wish to
approve all profile requests explicitly, so there should be a user
interface for dealing with them, perhaps integrated with instant
messaging presence subscription requests.

An email client will remember the results from prior profile requests,
so it will usually only have to send one the first time you communicate
with someone new, or when you explicitly decide to resynchronize (It

 2
From www.osafoundation.org/automatic_secure_email.htm 1 September 2003

can also issue them behind the scenes when you add a new contact).
When the user sends a new message, the client will look up profile
information for the recipients. If present, the profile information allows
the client to send the message securely; if it's not present, the client
will include a profile request in the message, so it can send it securely
the next time. Alternatively, at the user's discretion, it could just send
a profile request with an empty message the first time, and wait for
the profile response so it doesn't have to send the message insecurely
the first time.

Another complication arises from users having more than one email
client for the same email address. We either need a mechanism for
clients to synchronize their private keys (which might not be advisable,
since it's hard to do securely), or to allow each client to have its own
key pair and support multiple profiles associated with a given email
address. In that case, when a client issues a profile request, it might
get multiple responses, one from each recipient client that received
the request. Then, when sending a message, the client must include
multiple versions of the encrypted session key, one for each profile on
hand for the designated recipient. There are some nice benefits for
supporting multiple profiles per address that go beyond security, as it
could be used to avoid sending large attachments to hand-held clients,
for example.

In order to turn on encryption by default, we must be able to deal
gracefully with the situation when someone receives a profile request
or an encrypted message with a client that doesn't know how to
handle it. There should be a simple way for recipients to notify senders
that they received an encrypted message that they can't decode, and
to request an unencrypted version. Encrypted messages could contain
a brief, plain text message in the body area to explain what to do in
the case. One possibility is for the recipient to reply with an empty
message, and have our client recognize that and treat it specially,
offering to send an unencrypted version.
We are interested in your feedback about the approach outlined above.
Is automatic encryption as described above a worthwhile goal, or will it
cause more trouble than its worth, especially during the early stages of
adoption. What can be done to ease the transition?

Other open issues include determining the structure of the profile and
what information it contains. Hopefully, we can leverage xml to allow
an extensible framework, where clients can include optional
information in custom namespaces. Is requiring a hash-cash puzzle in

 3
From www.osafoundation.org/automatic_secure_email.htm 1 September 2003

 4
From www.osafoundation.org/automatic_secure_email.htm 1 September 2003

the request worthwhile or is it adding too much complexity? What kind
of algorithm should it use?

We're also interested in an analysis from a security point of view. What
kind of attacks is our scheme subject to, and what can we do to
remedy them? Is there anything we can do to make "man in the
middle" attacks harder?

	Automatic Secure Email
	4 Nov 2002 Andy Hertzfeld, Open Source Applications Foundation
	
	OSAF Title Page

