
 1 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

I18N Messages and Logging

by John Mazzitelli
12/06/2006

For many a software developer, the mere mention of a requirement to support internationalization
(aka i18n) is sure to elicit groans. Writing code that is targeted towards an international audience
does require some forethought, because it is not something very easily introduced into an existing
piece of software. If you feel there is even a small possibility that you will need your software to
support different locales and languages, it is always more prudent to internationalize your project
at the start, rather than attempting to retrofit i18n into it after it has begun.

That said, what does "internationalizing" mean? It is more than just providing translations
of your user interface messages into different languages. It involves dealing with
different character encodings, localizing date, time, and currency formats, and other
things that differ across multiple regions around the world.

Introducing i18nlog

While this article will not attempt to discuss all the facets of internationalization, it will
cover how to more easily perform some of the tasks necessary to introduce i18n
functionality by examining a new open source project called I18N Messages and
Logging, or i18nlog for short.

i18nlog allows you to incorporate internationalized messages into your Java applications
by providing an API to:

• Annotate Java classes to identify your i18n messages.
• Obtain i18n messages from resource bundles in any supported locale.
• Create localized exceptions whose messages are internationalized.
• Log i18n messages using any logging framework.
• Automatically generate resource bundles in any supported locale.
• Automatically generate help/reference documentation.

Defining i18n Messages

One of the more tedious tasks involved when internationalizing your software is
maintaining resource bundles. Resource bundles are properties files that contain
"name=value" pairs where "name" is the resource bundle key string and "value" is the
localized message string itself. It is customary to store messages in resource bundles
such that there is one resource bundle per language and each bundle has an identical
set of keys with their associated messages each translated into their locale's language.
The name of the resource bundle file dictates which locale it is for; for example,

 2 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

mybundle_en.properties denotes the messages in that file are written in English, where
mybundle_de.properties contain German messages.

i18nlog provides annotations to define your resource bundle messages and their key
strings--used in conjunction with i18nlog's custom Ant task, you can automatically
generate your resource bundles and not have to do much to ensure consistency
between your properties files and the Java code that accesses them.

The @I18NMessage annotation is placed on constants that you use in place of your
resource bundle key strings. Using these constants inherently forces compile-time
checks; typos introduced in the code (i.e., misspelling a constant name) and usage of
obsolete/deleted messages are detected at compile time. An example usage of this
annotation is:

@I18NMessage("Hello, {0}. You last visited on {1,date}")
public static final String MSG_WELCOME = "example.welcome-msg";

The above defines one i18n message. The value of the constant defines the resource
bundle key string. The value of the annotation is a translation of the actual message.
You can place these annotated constants in any class or interface within your
application. You can put all of them in a single class or interface (to centralize all of your
message definitions in a single location), or you can place these constants in the classes
where they are used.

The @I18NResourceBundle annotation defines the resource bundle properties file where
your messages are to be placed. This can annotate an entire class or interface, or it can
annotate a specific field. If you annotate a class or interface, all @I18NMessage
annotations found in that class or interface will be stored, by default, in that resource
bundle. If the annotation is on a particular constant field, it will be the bundle for that
constant only. An example usage of this annotation would be:

@I18NResourceBundle(baseName = "messages",
 defaultLocale = "en")

which indicates that all associated @I18NMessage-annotated messages will be placed in a
resource bundle file named messages_en.properties. A more complete example that
illustrates an interface that contains a set of i18n messages is shown below:

@I18NResourceBundle(baseName = "messages",
 defaultLocale = "en")
public interface Messages {
 @I18NMessage("Hello, {0}. You last visited on {1,date}")
 String MSG_WELCOME = "welcome-msg";

 @I18NMessage("An error occurred, please try again")
 String MSG_ERR = "error-occurred";

 @I18NMessage("The value is {0}")
 String MSG_VALUE = "value";
}

 3 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

Retrieving i18n Messages

Now that you have defined your i18n constants, you can use the API provided by the
core class in i18nlog: mazz.i18n.Msg. It allows you to load messages from resource bundle
properties files. It will also replace the messages' placeholders (e.g. {0}, {1,date}) with the
values passed as variable argument parameters. Although the API frees you from
having to work directly with some JDK classes, you might want to read the Javadocs on
java.text.MessageFormat to get a feel for how i18nlog does what it does, specifically how it
replaces the placeholders with localized data.

Example usages of the Msg class are as follows:

// using a static factory method to create a Msg object
// this assumes the default bundle base name of "messages"
System.out.println(Msg.createMsg(Messages.MSG_WELCOME,
 name,
 date));

and

// using a constructor to create a Msg object
Msg msg = new Msg(new Msg.BundleBaseName("messages"));
try {
 String hello = msg.getMsg(Messages.MSG_WELCOME, name, date);
 ... do something ...
}
catch (Exception e) {
 throw new RuntimeException(msg.getMsg(Messages.MSG_ERR));
}

The name and date arguments are an example of passing an arbitrary variable
arguments list--each object represents the value to replace the placeholder in its
respective position ({0} and {1,date} respectively, based on the Messages.MSG_WELCOME
definition given earlier).

The Msg object will know which locale's resource bundle to use based on its "bundle
base name" and its current locale setting. The "bundle base name" is the name of the
bundle file minus the locale specifier and extension (in the example above, the bundle
base name is messages). You can define the bundle base name the Msg object will use
by passing it into the Msg constructor or one of its static factory methods (if left
unspecified, the default is messages). While the bundle base name is fixed for the
lifetime of the Msg object, you can switch the locale used by the Msg object by calling its
setLocale() method (its default is the JVM's default locale). This is useful if you pool
Msg objects and have to switch its locale based on the user to which the object is
currently assigned.

Localized Exceptions

i18nlog provides two base exception classes (for both checked and unchecked
exceptions--LocalizedException and LocalizedRuntimeException) that can be used to create your

 4 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

own subclasses of localized exceptions. These have constructors whose signatures are
very similar to the Msg class. They simply allow you to specify your exception message
via a resource bundle key and a variable argument list of placeholder values, with the
ability to optionally specify the bundle base name and locale. This allows your exception
messages to be localized to different languages, just as Msg can retrieve localized
messages.

Logging i18n Messages

i18nlog provides a means by which you can log i18n messages. The main class of the
logging subsystem is mazz.i18n.Logger. It provides the typical set of trace, debug, info,
warn, error, and fatal methods. However, instead of taking a string consisting of the
message itself, you pass in the resource bundle key and a variable arguments list for the
placeholder values that are to be replaced within the message. It uses the mazz.i18n.Msg
class under the covers to get the actual localized message.

You obtain Logger objects by using the factory class mazz.i18n.LoggerFactory in a way that is
basically the same as in log4j and the like. But you log messages in a way that is very
similar to obtaining messages via the mazz.i18n.Msg object:

public static final mazz.i18n.Logger LOG =
 mazz.i18n.LoggerFactory.getLogger(MyClass.class);
...
LOG.debug(Messages.MSG_VALUE, value);
...
try {
 ...
}
catch (Exception e) {
 LOG.warn(e, Messages.MSG_ERR);
}

If a log level is not enabled, no resource bundle lookups are performed and no string
concatenation is done--effectively making log calls very fast under these conditions. If a
log message is to be associated with a particular exception, pass the exception as the
first argument to the log method. This will allow the stack trace to be dumped with the
message if stack dumps are enabled (see below).

There are additional features that i18nlog adds to its logging framework that go above
what the underlying, third-party, logging framework provides. The first is the ability to tell
Logger whether or not to dump stack traces of exceptions. You may or may not care to
see all the exception stack traces during a particular run. Note that this feature cannot
turn off stack dumps for exceptions logged at the FATAL level--fatal exceptions logged
with that method always have their stack traces dumped. For all other log levels, the
loggers will be told to dump stack traces if the i18nlog.dump-stack-traces system property is
set to true (or you programmatically called Logger.setDumpStackTraces(true)).

The second additional feature in the i18nlog logging framework is the ability to log a
message's associated resource bundle key along with the message itself. The resource
bundle key is the same across all locales--so no matter what language the log messages
are in, the keys will always be the same. You can think of these keys as "message IDs"

 5 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

or "error codes." This is very useful if you generate help documentation that references
these codes with additional help text for your users to consult that help them decipher
what the messages are trying to convey (see below for how to generate this type of
documentation). This feature is enabled by default; to disable, set the system property
i18nlog.dump-keys to false or programmatically call Logger.setDumpLogKeys(false).

Providing these message IDs and avoiding string concatenation for disabled log levels
may be enough to justify using this logging mechanism provided by i18nlog. But some
may still argue that internationalizing your log messages (as opposed to just user-
interface messages) is overkill and generally not very useful. I, myself, find it hard to
argue with this point of view sometimes. You certainly do not have to use i18n logging if
your project doesn't warrant it. The other features provided by i18nlog are, of course, still
available even if you choose not to use its logging capabilities.

However, I can envision certain cases where i18n logging can be useful. Note that i18nlog
makes it possible to define a different locale that the loggers will use (the "log locale"),
as compared to the locale Msg instances will use. This is to facilitate the use case where
I want to log messages in a language my support group can read, but my user interface
is in a language that my users can read (which may be different). For example, my users
may be German-speaking, but the software is supported by a group that works in France
and is only French-speaking. In this case, when my German users have a problem, they
will normally send the logs to the support group in France, so the software could, by
default, set its log locale to Locale.FRENCH. On the other hand, if my German users want
to try to debug a problem themselves, having the log files contain messages in French
isn't helpful to them. In this case, my German users can simply set a system property
and have the log messages appear in German. Refer to the mazz.i18n.LoggerLocale
Javadoc for more information on how to switch the log locale.

Resource Bundle Auto-Generation

i18nlog provides an Ant task that automatically generates resource bundle properties files
so the developer isn't responsible for manually adding new messages to them and
manually cleaning up old, obsolete messages that are no longer used.

The Ant task scans your classes looking for @I18N annotations and, based on them, will
automatically create your resource bundles for you. This means that as you add more
@I18NMessage-annotated fields, they will automatically be added to your resource bundles.
If you delete an i18n message constant, that message will be removed from the resulting
resource bundle that the Ant task generates. To run the Ant task, you need to have
something like the following in your Ant build script:

<taskdef name="i18n"
 classpathref="i18nlog-jar.classpath"
 classname="mazz.i18n.ant.I18NAntTask" />

<i18n outputdir="${classes.dir}" verify="true" verbose="true">
 <classpath refid="my.classpath" />
 <classfileset dir="${classes.dir}"/>
</i18n>

 6 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

You must give the Ant task a classpath that can find your I18N-annotated classes and
their dependencies (<classpath>) and you have to give a set of class files to the Ant task
that contain the list of files that are to be scanned for I18N annotations (<classfileset>). It is
recommended that you use the verbose mode the first time you use the Ant task so you
can see what its doing. Once you get the build the way you want it, you can turn off
verbose mode. After this task executes, your resource bundle properties files will exist in
the specified output directory.

Generating Help Documentation

One optional feature you can use with this Ant task is the ability to generate help
documentation that consists of a reference of all your resource bundle key names with
their messages, along with some additional description of what the message means.
There is an optional attribute you can specify in your @I18NMessage annotations--the
help attribute. Its value can be any string that further describes the message. Think of
this as documentation that further describes what situation occurred that the message is
trying to convey. The auto-generated help documents can, therefore, provide a cross-
reference between the message keys, the messages themselves, and more helpful
descriptions of the messages:

@I18NMessage(value="The value is {0}",
 help="This will show you the value of your"
 +" current counter. If this value is over"
 +" 1000, you should reset it.")
String MSG_VALUE = "value";

@I18NMessage(value="Memory has {0} free bytes left",
 help="The VM is very low on memory. Increase -Xmx"
String MSG_LOW_MEM = "low-memory";

Many times, you can use this as a "message code" or "error code" listing, where each of your
resource bundle keys can be considered a "message code" or "error code." To generate help
documentation, you need to use the <helpdoc> inner tag inside of the <i18n> task:

<i18n outputdir="${classes.dir}">
 <classpath refid="my.classpath" />
 <classfileset dir="${classes.dir}"/>
 <helpdoc outputdir="${doc.dir}/help"/>
</i18n>

For every resource bundle generated, you will get an additional help document output in
the given directory specified in <helpdoc>. The document is generated based on
templates that describe what the documents should look like. By default, a simple HTML
page with a <table> of message codes and their help documentation is output. There are
additional attributes you can specify in the <helpdoc> tag that allow you to define a custom
template, should you wish to define your own help documentation look and feel. The
Javadocs of the mazz.i18n.ant.Helpdoc class have more information on this.

Once the help documentation generation is complete, you will end up with a document
(or documents) containing a list of all your message key codes, their messages, and any
"help" attribute text that is defined.

 7 13 December 2006
From www.onjava.com/pub/a/onjava/2006/12/06/i18n-messages-and-logging.html?

Localization

A lot of what we have discussed deals with how you can internationalize your software
by enabling it to obtain translated and localized messages. Once you have enabled your
software, it is now a manual process by which your resource bundle properties files
(those generated by the <i18n> Ant task or those you manually created yourself) have to
be localized. You must ensure that all resource bundle messages are translated into
languages that you intend to support and the data those messages will contain are
localized. A lot of the localization can be done by defining your placeholders properly
(i.e. {0,date} will output the date string using the locale's localized format and language).
But suffice it to say, obtaining the services of a good translation and localization
company is a must.

Summary

This article showed you how you can incorporate i18n capabilities into your application
using a new open source project, i18nlog. This project provides tools and an API that
automatically manages your resource bundle files, retrieves and localizes messages
from those bundles, and can even generate help documentation for your end users.

Resources

• i18nlog user's guide: i18nlog.sourceforge.net/doc/users-guide.html
• i18nlog API: i18nlog.sourceforge.net/api
• Placeholder syntax to localize messages:

java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html

John Mazzitelli is a developer for JBoss, a division of Red Hat, currently focusing on the
implementation of the JBoss Operations Network management platform.

	I18N Messages and Logging
	6 Dec 2006 John Mazzitelli, O'Reilly onJava.com
	Introducing i18nlog
	Defining i18n Messages
	Retrieving i18n Messages
	Localized Exceptions
	Logging i18n Messages
	Resource Bundle Auto-Generation
	Generating Help Documentation
	Localization A lot of what we have discussed deals with how you can internationalize your software by enabling it to obtain translated and localized messages. Once you have enabled your software, it is now a
	Summary
	Resources

	
	OReilly Title Page

