
Developers and Deployers Guide to the
Composite Group Service

Contents

Introduction
What's In This Document?
Goals and Rationale of the Composite Service
The Service Design
Groups, Keys and Service Names
Assembling the Composite
Configuring the Composite
The LDAP Group Store
Next Steps

Introduction

Early in the uPortal project, it became clear that some mechanism was needed for
grouping portal users, chiefly for the purpose of authorization. The org.jasig.portal.groups
package evolved in response. It defines an api for managing groups of portal entities
such as IPersons and IChannels. The groups framework does not actually operate on
IPersons or IChannels; it manipulates stub objects whose keys and types point to the
underlying entities. The stubs are implementations of org.jasig.portal.groups.IEntity, and
their only concern is their group memberships. A stub knows nothing about its
underlying entity except its key and type. The groups it belongs to are implementations
of org.jasig.portal.groups.IEntityGroup. The groups are recursive (groups can contain other
groups) and homogeneous (their IEntities have only one type of underlying entity.)
Prior to version 2.1, groups came from a group service with a single store. With the
release of version 2.1, uPortal ships with a composite group service made up of multiple
component services, each with its own group store. This document describes the
composite design and explains how to configure a composite group service for your
environment. It is principally aimed at implementors and developers, but it may also be
helpful to planners evaluating uPortal's support for native sources of group information.
Although it is hidden from clients, the design of the composite group service is significant
to the uPortal Implementor who must configure the composite service and to the uPortal
Developer who may have to write a custom group service or group store to adapt a
native source of group information to the portal groups design. The implementor assigns
the appropriate role to each source of group information and represents the composition
in an xml configuration file, while the group service or store developer must implement
the various group api's.

What's In This Document?

The rest of the document is organized as follows: the first section (Goals and Rationale
of the Composite Service) sets out the argument for a composite service. The next

Dan Ellentuck, Columbia University 1 4 March 2003

http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/

section (The Service Design) describes the service api and and the service class
hierarchy. This is followed by a discussion of group keys and their relationship to the
composite design (Groups, Keys and Service Names) . These first 3 sections are aimed
at developers, and if you are interested only in deploying a composite service, you can
skim them or skip them entirely. The next 3 sections are aimed at deployers. They
describe the process of composite service assembly (Assembling the Composite), the
configuration file that controls the assembly process (Configuring the Composite) and
the design of the LDAP group store that ships with uPortal 2.1 (The LDAP Group Store).
The last section (Next Steps) presents a very general outline for getting started with
groups.
Unless otherwise noted, all referenced classes are in the org.jasig.portal.groups package.
 I'm assuming some familiarity with the basic groups types, IGroupMember, IEntity and
IEntityGroup, and with the service façade, org.jasig.portal.services.GroupService, which have
changed little since uPortal 2.0. The best source for information about these types is
javadoc for org.jasig.portal.groups. The following terms are used interchangeably:
IEntityGroup and group; IGroupMember and group member; composite group service
and service. Depending on the context, entity may refer to an IEntity or to the underlying
entity that is referred to by the IEntity.

Goals and Rationale of the Composite Service

Many institutions have group information that is not under the control of the portal, more
often than not in an LDAP server. In addition, some organizations have this information
spread over a number of external sources. In order to use it, the portal needs a way to
adapt external group information to the portal groups design and to combine group
information from multiple sources. An LDAP adaptor, for instance, would let the portal
recognize attributes in LDAP as group memberships. These memberships,
supplemented by memberships stored in the reference portal database, could be
associated with permissions that govern what a user could and could not do. In this way,
portal authorization could be driven from LDAP and modified from within the portal.
The composite groups system is a framework for creating and managing these
adaptors. Its job is to aggregate group information from a variety of sources and present
it in a consistent format to clients who can remain unaware of its origins. In fact, group
service clients never interact directly even with the composite group service. A client
makes a request to the service façade to obtain a group member, and the group
member acts as an entry point into the composite group system. Once the client has a
reference to a new or pre-existing group member, it makes subsequent requests to the
group member itself, and henceforth, the client can ignore the service of origin of any
group member it navigates to.

The Service Design

The Service Hierarchy. The composite group service api is divided among 3 service
types, IComponentGroupService, ICompositeGroupService and IIndividualGroupService, each
of which defines responsibilities for a specific service role. An IComponentGroupService is
a composite component. It is concerned with composite service assembly and with
identifying components in the composite. The ICompositeGroupService represents the

Dan Ellentuck, Columbia University 2 4 March 2003

http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/services/

composition as a whole, encapsulating service components and delegating requests for
group services. The IIndividualGroupService defines responsibilities for a specific group
service that reads and possibly writes groups. It is the leaf component in the composite.
Together, they form the following class hierarchy:

IComponentGroupService
 ICompositeGroupService extends IComponentGroupService
 IIndividualGroupService extends ICompositeGroupService

IComponentGroupService. An IComponentGroupService can get and set its name and, as
a component in a composite, answer its component group services. A component
service can either contain other component services or be a leaf service and serve
groups. While it may seem unlikely that services with groups of IPersons, like LDAP or
ERP-based services would be nested inside of other service components, services with
groups of IChannels actually might, particularly those representing groups of channels
running on remote portals.

public interface IComponentGroupService {
 public Map getComponentServices();
 public Name getServiceName();
 public boolean isLeafService();
 public void setServiceName(Name newServiceName);
}

The reference implementation is a true composite only at service start-up, when each
IComponentGroupService performs a recursive retrieval of its components. Once the
elements of this composite have been retrieved, the composite service keeps its
components in a one-dimensional collection. Since it does not contain nested group
services, the reference composite group service does not have a direct implementation
of IComponentGroupService but only implementations of its subtypes,
ICompositeGroupService and IIndividualGroupService.
ICompositeGroupService. An ICompositeGroupService represents the entire
composition. It is responsible for delegating requests to the appropriate component
service(s) and for aggregating results. Requests come to the composite from either the
outside, (the service façade), or the inside, (a component service). Some requests can
be handled by a single group service, for example, a request to find a specific group
(findGroup(), newGroup(), etc.) Other requests may span some or all of the component
services, for example, a request to find groups that contain a particular group member
(findContainingGroups()) or a request to find groups whose names contain a particular
String (searchForGroups()).

public interface ICompositeGroupService extends IComponentGroupService
{

Dan Ellentuck, Columbia University 3 4 March 2003

 public Iterator findContainingGroups(IGroupMember gm)
 throws GroupsException;
 public IEntityGroup findGroup(String key) throws GroupsException;
 public ILockableEntityGroup findGroupWithLock(String key, String owner)
 throws GroupsException;
 public IEntity getEntity(String key, Class type)
 throws GroupsException;
 public IGroupMember getGroupMember(String key, Class type)
 throws GroupsException;
 public IGroupMember getGroupMember(EntityIdentifier
 underlyingEntityIdentifier) throws GroupsException;
 public IEntityGroup newGroup(Class type, Name serviceName)
 throws GroupsException;
 public EntityIdentifier[] searchForEntities
 (String query, int method, Class type)
 throws GroupsException;
 public EntityIdentifier[] searchForEntities
 (String query, int method, Class type, IEntityGroup ancestor)
 throws GroupsException;
 public EntityIdentifier[] searchForGroups
 (String query, int method, Class leaftype)
 throws GroupsException;
 public EntityIdentifier[] searchForGroups
 (String query, int method, Class leaftype, IEntityGroup ancestor)
 throws GroupsException;
}

IIndividualGroupService. The third type, IIndividualGroupService defines the methods
that a specific or leaf group service uses to read and write groups.
IIndividualGroupService inherits find() methods from ICompositeGroupService, but
whereas an ICompositeGroupService would probably delegate these requests, an
IIndividualGroupService would more likely perform them itself. In addition, an
IIndividualGroupService must answer if it can be updated (isEditable()), and more
specifically, if it is possible to edit a particular group (isEditable(IEntityGroup group)). An
attempt to update a group that is not editable should throw a GroupsException.

public interface IIndividualGroupService extends ICompositeGroupService
{

Dan Ellentuck, Columbia University 4 4 March 2003

 public void deleteGroup(IEntityGroup group)
 throws GroupsException;
 public IEntityGroup findGroup(CompositeEntityIdentifier ent)
 throws GroupsException;
 public Iterator findMembers(IEntityGroup group)
 throws GroupsException;
 public boolean isEditable();
 public boolean isEditable(IEntityGroup group)
 throws GroupsException;
 public IEntityGroup newGroup(Class type)
 throws GroupsException;
 public void updateGroup(IEntityGroup group)
 throws GroupsException;
 public void updateGroupMembers(IEntityGroup group)
 throws GroupsException;
}

The reference implementation, ReferenceIndividualGroupService, delegates most requests
to one of three sub-components, an IEntityGroupStore, an IEntityStore and an
IEntitySearcher. It also may use the portal's Entity Locking and Entity Caching services.

Groups, Keys and Service Names

Component Services and Their Names. Once it has been assembled, the composite
structure of the group service is reflected in the names given to services, which are
instances of javax.naming.Name with a node for each nested service. A service named
"columbia" contained by a service named "remoteChannels" would be named
"remoteChannels.columbia”. Since a component cannot be expected to know in
advance which components will contain it, the fully-qualified service name of a given
component may not be known until the composite is fully assembled. In the reference
implementation, the service name is built up node by node as the composite is
composed.
IEntityGroups and Their Service Names. In a composite service, the significance of
service identifiers -- names -- is that they let us find the specific service that can answer
a request. They also uniquely identify individual service entries, in this case groups,
whose keys may not be unique across different services. Thus, a client wishing to find a
group called "English101" in a component service named "ldap" needs to ask the
composite service for "ldap.English101" rather than "sis.English101" or simply
"English101". The ldap service may know the group as "English101" but the client must
know it as "ldap.English101".
Conversely, for a service to support foreign entries, where an entry from one service
participates in some way in another service, the foreign entry must be able to answer its
home service identifier so that it can be retrieved, if need arises, from its service of

Dan Ellentuck, Columbia University 5 4 March 2003

origin. This means that for a group to be a member of a group in another service, the
member group must be able to answer its home service name. As of version 2.1,
IEntityGroup inherits from org.jasig.portal.IBasicEntity, therefore a group can already answer
a key and a type, in the form of an org.jasig.portal.EntityIdentifier. In the reference
implementation, a group (an instance of EntityGroupImpl) answers a subclass of
EntityIdentifier, CompositeEntityIdentifier, whose key contains the fully-qualified service
name in addition to the native service key.
Group Members and Their Keys. From the point of view of the composite group service,
the key of a group is its key in the home service concatenated to its fully-qualified
service name (e.g., “ldap” + “English101” = “ldap.English101”). By contrast, the key of
an entity is simply its native key, and all component group services are obligated to know
it by that key. Thus, to get containing groups for IPerson “kweiner”, the client would ask
the service façade for an IGroupMember for IPerson “kweiner”, not “ldap.kweiner” or
“local.kweiner”, and then ask the group member to get containing groups. The
composite service would ask each of its components to get containing groups for group
member IPerson kweiner, and each component service would be obligated to recognize
membership information for IPerson kweiner, rather than IPerson ldap.kweiner, IPerson
local.kweiner, etc. This changes our previous specification for a composite group
service, but we decided to remove entity key translation from the group service api
because it seemed overly burdensome and frequently unnecessary, though it may still
be required internally when an ICompositeGroupService searches for entities.

Assembling the Composite

In the reference implementation, the composite service is an instance of
org.jasig.portal.groups.ReferenceCompositeGroupService and is responsible for assembling
the composite structure. Each leaf component is an instance of
ReferenceIndividualGroupService and is customized with an IEntityGroupStore, an
IEntityStore and an IEntitySearcher. A factory class for each of these types is specified in
the configuration file.
The configuration file. The composite configuration is stored in xml format in
properties/groups/compositeGroupServices.xml. The group service deployer edits this file to
control the composition of the composite group service. The root element of this
document is a service list whose service elements describe group services that are
components of the top-level composite service. The configuration document is
represented in Java as a GroupServiceConfiguration, essentially a parser with a Map of
ComponentServiceDescriptors. Each ComponentServiceDescriptor is itself a Map containing
the elements and attributes of a single service element. These elements are:

name required
service_factory required
entity_store_factory required for reference

implementation
group_store_factory required for reference

implementation

Dan Ellentuck, Columbia University 6 4 March 2003

entity_searcher_factory required for reference
implementation

internally_managed optional, defaults to false
caching_enabled optional, defaults to false

Here is the service entry for the reference portal group service, which is named "local":

<service>
 <name>local</name>
 <service_factory>org.jasig.portal.groups.ReferenceIndividualGroupServiceFactory</service_factory>
 <entity_store_factory>org.jasig.portal.groups.ReferenceEntityStoreFactory</entity_store_factory>
 <group_store_factory>org.jasig.portal.groups.ReferenceEntityGroupStoreFactory</group_store_factory>

<entity_searcher_factory>org.jasig.portal.groups.ReferenceEntitySearcherFactory</entity_searcher_factory
>
 <internally_managed>true</internally_managed>
 <caching_enabled>true</caching_enabled>
</service>

Creating the component services. On service start-up, the composite service gets a
GroupServiceConfiguration and asks it for its service descriptors. The composite passes
each description to the appropriate service factory and gets back a new service
instance.
If the component is an individual or leaf service, the factory creates an
IIndividualGroupService, in the reference implementation, a
ReferenceIndividualGroupService. The service instance uses the descriptor to customize
itself, for example, by getting its group store from the group store factory designated in
the descriptor. When the component has been initialized, the composite service adds
the new service to its service Map.
If the service is not a leaf but a component service, the composite service asks it for its
component services, which starts a recursive retrieval of leaf services. The composite
service completes the naming of each leaf service by prepending the name of the top-
level component to the service name, and then adds each leaf component to its service
Map.
At the end of the process, non-leaf components have been eliminated, and the
composite service may have multiple instances of the same IIndividualGroupService
implementation, each customized by its own service descriptor.

Configuring the Composite

The configuration described in compositeGroupServices.xml is made available to group
service classes via the utility class GroupServiceConfiguration. This class exposes the
servicelist attributes and service elements via:

public Map getAttributes();

public List getServiceDescriptors()

uPortal 2.1 ships with the following configuration:

Dan Ellentuck, Columbia University 7 4 March 2003

<?xml version="1.0"?>
<!-- $Revision: 1.8 $ -->
<!--
This list of component group services is processed by the composite, or "root" service as it assembles itself.
Each service element has 2 required elements: name and service_factory. The values of all service
elements are delivered to the service_factory.
-->

<servicelist defaultService="local"
compositeFactory="org.jasig.portal.groups.ReferenceCompositeGroupServiceFactory">
 <service>
 <name>local</name>
 <service_factory>org.jasig.portal.groups.ReferenceIndividualGroupServiceFactory</service_factory>
 <entity_store_factory>org.jasig.portal.groups.ReferenceEntityStoreFactory</entity_store_factory>
 <group_store_factory>org.jasig.portal.groups.ReferenceEntityGroupStoreFactory</group_store_factory>

<entity_searcher_factory>org.jasig.portal.groups.ReferenceEntitySearcherFactory</entity_searcher_factory
>
 <internally_managed>true</internally_managed>
 <caching_enabled>true</caching_enabled>
 </service>

<!--
 <service>
 <name>ldap</name>
 <service_factory>org.jasig.portal.groups.ReferenceIndividualGroupServiceFactory</service_factory>
 <entity_store_factory>org.jasig.portal.groups.ldap.LDAPEntityStoreFactory</entity_store_factory>
 <group_store_factory>org.jasig.portal.groups.ldap.LDAPGroupStoreFactory</group_store_factory>

<entity_searcher_factory>org.jasig.portal.groups.ldap.LDAPEntitySearcherFactory</entity_searcher_factory
>
 <internally_managed>false</internally_managed>
 <caching_enabled>false</caching_enabled>
 </service>
-->

</servicelist>

Note that the servicelist element has 2 attributes and the "ldap" service entry is
commented out.
Required servicelist Attributes. The attributes defaultService and compositeFactory are
both required.

<servicelist defaultService="local"
 compositeFactory="org.jasig.portal.groups.ReferenceCompositeGroupServiceFactory"

The defaultService is the service that responds to requests for new group members when
the request does not include a service name, e.g., GroupService.newGroup(Class type).
The entity factory in the default service supplies those IEntities that are entry points into
the composite group service (group members not obtained from other group members.)
One way to substitute an alternate IEntity implementation for these entry points would be
to change the default service. (Another would be to change the entity_store_factory
element in the default service.) The compositeFactory attribute designates the class that
creates the composite service instance. You would change its value if you wanted to
substitute your own composite service implementation (and still use the configuration
file.)
Additional servicelist Attributes. The GroupServiceConfiguration stores all servicelist
attributes. If you wish to make additional composite service attributes available to one or

Dan Ellentuck, Columbia University 8 4 March 2003

more of your component services, you can add them to the configuration document and
retrieve them via:

String myAttribute = (String)
 GroupServiceConfiguration.getAttributes().get("myAttribute");

The servicelist elements. The elements of the servicelist describe top-level component
services. The default configuration contains 2 service elements, "local", which describes
the group service whose group store is the reference portal database and "ldap", which
is commented out. Both of these are leaf services. The service named "local" has the
following entry:

<service>
 <name>local</name>
 <service_factory>org.jasig.portal.groups.ReferenceIndividualGroupServiceFactory</service_factory>
 <entity_store_factory>org.jasig.portal.groups.ReferenceEntityStoreFactory</entity_store_factory>
 <group_store_factory>org.jasig.portal.groups.ReferenceEntityGroupStoreFactory</group_store_factory>

<entity_searcher_factory>org.jasig.portal.groups.ReferenceEntitySearcherFactory</entity_searcher_factory
>
 <internally_managed>true</internally_managed>
 <caching_enabled>true</caching_enabled>
</service>

Child Elements of the service element. Within the service element, the name and
service_factory child elements are required for the assembly of the composite. In
addition, the reference implementation of IIndividualGroupService requires all child
elements except internally_managed and caching_enabled for a fully-functioning leaf
service. The elements are as follows:
service_factory designates the class name of the factory that creates the service
implementation. You only need to change this value if you are substituting your own
implementation for the reference service implementation,
ReferenceIndividualGroupService.
name of the service is significant if you need to use a group from the service as a
composite service entry point, since you find such a group using a key that contains both
the native key and the service name, e.g.,

String nativeKey = "100";
String serviceName = "local";
String groupKey = serviceName + "." + nativeKey;
IGroupMember myGroup = GroupService.findGroup(groupKey);

Warning: do not change the service name of an already-deployed group service. The
service name is part of the member key in membership entries for member groups
(groups that are members of other groups.) If you change it, you must change the keys
of all membership entries for member groups originating in that service.

Dan Ellentuck, Columbia University 9 4 March 2003

entity_store_factory is the factory class name for the entity store, the service factory for
IEntities, group members that can be used to search the composite service for entity
memberships. Since the keys of IEntities do not contain service names, an entity store
can be shared by multiple group services. You would change this value only if you were
substituting your own implementation of IEntityStore for the reference implementation.
group_store_factory is the factory class name for the group store, the adaptor that
connects the group service with the native source of groups information. Although entity
stores can be shared, each service will almost certainly have its own group store. The
group store for "local", RDBMEntityGroupStore, refers to tables in the reference portal
database, contains sql statements and retrieves group information via jdbc. The group
store for "ldap", org.jasig.portal.groups.ldap.LDAPGroupStore, refers to an LDAP database
and submits LDAP queries over ldap://.
entity_searcher_factory is the factory class name for the entity searcher implementation.
The entity searcher is a class that refers to one or more portal entity stores and returns
EntityIdentifiers for potential group members. It is likely, though by no means certain, that
each group service would have its own entity searcher implementation. The entity
searcher for "local" returns EntityIdentifiers for IChannels and IPersons from the reference
portal database. The entity searcher for "ldap" returns EntityIdentifiers for IPersons from
the same LDAP database that contains its group information.
internally_managed contains a boolean value, either true or false. If a service is
internally-managed, it is under the control of the portal and presumably is capable of
writing as well as reading groups. In the reference implementation, if internally_managed
is true, the service will attempt to satisfy a request to add, update or delete a group. If it
is not internally-managed, an attempt to update a group will throw a GroupsException. An
alternate implementation of IIndividualGroupService could be more selective and decide if
updates are allowed on a group-by-group basis.
caching_enabled has a boolean value, either true or false, which controls whether the
component service uses the portal's entity caching service to cache groups. The value
for the "local" service is set to true to eliminate excess database calls. It is set to false
for "ldap" because the ldap service has its own caching mechanism.
The ldap service. Comment in the service element named "ldap" if you want to hook up
an ldap group service:

 <service>
 <name>ldap</name>
 <service_factory>org.jasig.portal.groups.ReferenceIndividualGroupServiceFactory</service_factory>
 <entity_store_factory>org.jasig.portal.groups.ldap.LDAPEntityStoreFactory</entity_store_factory>
 <group_store_factory>org.jasig.portal.groups.ldap.LDAPGroupStoreFactory</group_store_factory>

<entity_searcher_factory>org.jasig.portal.groups.ldap.LDAPEntitySearcherFactory</entity_searcher_factory
>
 <internally_managed>false</internally_managed>
 <caching_enabled>false</caching_enabled>
 </service>

Note that the value of service_factory is the same for both the "local" and "ldap" service
elements. This is because both the local and ldap group services are instances of

Dan Ellentuck, Columbia University 10 4 March 2003

ReferenceIndividualGroupService, customized by their respective service configurations.
The entries for entity_store_factory, group_store_factory and entity_searcher_factory all
designate different factory classes. Nonetheless, they all return the same (singleton)
instance of org.jasig.portal.groups.ldap.LDAPGroupStore, which implements the IEntityStore,
IEntityGroupStore and IEntitySearcher interfaces. The internally_managed element is set to
false because in most environments, the LDAP store will not be updatable by the portal
and in any event, LDAPGroupStore does not support updates.

The LDAP Group Store

The LDAP group store gets its entity memberships from LDAP and its group structure
from a configuration file, properties/groups/LDAPGroupStoreConfig.xml. The configuration
file also defines the location of the native group store. (The dtd for
LDAPGroupStoreConfig.xml is LDAPGroupStore.dtd.) Understanding the configuration file is
crucial to understanding how the group store works.
Configuration file elements. The configuration file has a single config element that
describes the LDAP connection and some number of group elements that establish the
groups structure and ultimately, map LDAP queries to groups. The config element
currently points to the Columbia University public LDAP server:

<config>
 <url>ldap://ldap.columbia.edu:389/o=Columbia%20University,c=US</url>
 <logonid></logonid>
 <logonpassword></logonpassword>
 <keyfield>uni</keyfield>
 <namefield>cn</namefield>
 <usercontext></usercontext>
 <refresh-minutes>120</refresh-minutes>
</config>

Group elements. The group element contains the IEntityGroup attributes key, name and
description. Just as an IEntityGroup can contain groups and entities, a group element can
contain other member group elements, and it can contain member entities in the form of
a single entity-set. At its simplest, an entity-set can contain a filter element that defines an
LDAP query that returns entities. Or it may contain a union, intersection, difference or
subtract element, which, in turn, contains entity-sets whose results are combined through
one of the following operations:

union all entities from all contained entity-sets
intersection all common entities from all contained entity-

sets
difference all entities that occur in only one contained

entity-set
subtract all entities in the first entity-set minus any

that occur in the rest

Dan Ellentuck, Columbia University 11 4 March 2003

The Group Samples. The samples provide examples of each of these entity-set types.
The configuration file ships with 7 sample groups, described below. They form the
following structure (the group key is in parentheses):

All LDAP Groups (all)
 Vigdors(1)
 Fracapanes and Ellentucks (2)
 Union test (3)
 Intersection test (4)
 Difference test (5)
 Subtract test (6)

• All LDAP Groups (all) contains groups "1" thru "6" but contains no member
entities. It does not (directly) pull information from LDAP.

• Vigdors (1) contains an entity-set with a filter element whose String value is
cn=*vigdor. The members of Vigdors are the entities returned by this query.

• Fracapanes and Ellentucks (2) contains an entity-set with a union element that or's
the results of two entity-set elements, each of which has a filter element describing
an LDAP query. The resulting entity-set contains those entities returned by LDAP
from the query cn=*fracapane plus those entities returned by cn=*ellentuck.

• Union test (3) is similar to Fracapanes and Ellentucks (2) in that it contains an
entity-set with a union element containing 2 entity-sets each of which has a filter
element. The resulting entity-set contains the union of cn=donald f* and cn=*frac*.

• Intersection test (4) contains an entity-set with an intersection element that and's
the results of two entity-set elements, each of which has a filter element. The
resulting entity-set contains the intersection of cn=donald f* and cn=*frac*.

• Difference test (5) contains an entity-set with a difference element that exclusive-
or's the results of two entity-set elements, each of which has a filter element. The
resulting entity-set contains the entities returned by one but not both of cn=donald

f* and cn=*frac*.

• Subtract test (6) contains an entity-set with a subtract element that subtracts the
results of one entity-set from another. Each entity-set has a filter element, and the
resulting entity-set contains the entities returned by cn=donald f* but not by
cn=*frac*.

Dan Ellentuck, Columbia University 12 4 March 2003

Limitations of the LDAP Group Store. It is important to understand what the
LDAPGroupStore does and does not do and why it does not support updates. The store
queries LDAP to discover entities that are group members, but it looks at its
configuration file to discover groups and their relationships. As a result, the store will
discover an entity added to LDAP (provided it is returned by an entity-set defined in the
configuration file.) But it will not discover any group beyond those defined in the
configuration file. The way to add a group to the store is to add a group element to the
configuration document. Likewise, the way to make a group a member of another group
in the store is to add a group element to another group element in the configuration
document. On the other hand, the way to add an entity to a group from the store is to
add or update the entity in LDAP. The LDAP group store could support updates to the
group structure (adding or deleting member groups) if it had the ability to update the
configuration document. It could support updates to entity memberships if it had the
ability to update LDAP.
Deploying the LDAP Group Store Locally. The configuration file as delivered points to
the Columbia University public LDAP server and defines a few not-terribly-useful
groups. To implement a local LDAP group service that uses the LDAPGroupStore, modify
the configuration file so that the config element points to your LDAP server. Then,
replace the entity-sets and filters with queries that return meaningful results in your
environment. When you do this, give your groups appropriate names and make sure
their keys are unique. For example, you might convert the structure into something like:

All LDAP Groups (all)
 Faculty Groups (1)
 Biology Department (3)

 Chemistry Department (4)

 Portal Staff (2)

 Portal Administrators (5)

 Portal Developers (6)

Now un-comment the "ldap" service element in compositeGroupServices.xml and start up
the portal. In the Groups Manager channel, try adding All LDAP Groups to the root
group Everyone. (For instructions on using Groups Manager, see The Groups Manager
Channel.) The groups that you defined in your LDAP configuration file should now be
available for browsing in Groups Manager, although you won't be able to update them.
Once you are comfortable with the process of defining groups in the configuration file,
you can begin the task of deriving a group structure from LDAP that includes your portal
population and models your organization.

Next Steps

The process of deploying a composite group service involves (at least) the following
steps:

Dan Ellentuck, Columbia University 13 4 March 2003

http://mis105.mis.udel.edu/ja-sig/uportal/implementors/groupsmanager.html
http://mis105.mis.udel.edu/ja-sig/uportal/implementors/groupsmanager.html

Dan Ellentuck, Columbia University 14 4 March 2003

• analyze why you need group information
• identify the necessary sources of group information
• find or create adaptors for these sources
• configure the composite service

Most portals will at least use groups to manage authorization, so this is a common
starting point. Many institutions will rely on an LDAP service as the primary source of
group information and supplement it with information from the portal database. Others
may require additional information from human resources, student information or other
systems. uPortal currently ships with 2 adaptors, 1 for LDAP
(org.jasig.portal.groups.ldap.LDAPGroupStore) and 1 for the reference portal database
(RDBMEntityGroupStore). If you only intend to use these 2 sources, you do not have to
write a custom group store. If you do need to draw groups from another source, you will
have to implement the IEntityGroupStore and IEntitySearcher interfaces. You should not
have to write a custom group serivce (an IIndividualGroupService) unless you need to
change the transactional rules of the service. Of course, you can always re-implement
or sublcass the reference implementations for reasons of efficiency, correctness or to
add new functions. Please contribute your code back to the project so that the entire
uPortal community can benefit from your improvements.
The final step is to represent your composite group service in the configuration file.
 Describe each top-level service in a service element and designate the default service.
 Unless you have a specific reason for changing it, keep the initial default value of
"local". If a service supports updates, set internally_managed to true. Note that you must
implement the update methods for such a service in any custom group store class.
 Caching of groups is a must in a production system. Either use the portal Entity
Caching Service or implement your own caching mechanism.
Please post your questions, comments, suggestions and ideas to the JA-SIG Portal
Discussion List. Good luck!
de 3/4/03

mailto:jasig-portal@unm.edu
mailto:jasig-portal@unm.edu

	Developers and Deployers Guide to the Composite Group Service
	4 Mar 2003, Dan Ellentuck, Columbia University
	Contents
	Introduction
	What's In This Document?
	Goals and Rationale of the Composite Service
	The Service Design
	Groups, Keys and Service Names
	Assembling the Composite
	Configuring the Composite
	The LDAP Group Store
	Next Steps

	
	JA-SIG Title Page

