
Michael Ivanov and Jim Farmer 1 28 January 2005

uPortal 3.0 WSRP Producer Development Project

The Need

The implementation of the Web Services Remote Portlet standard permits an
organization’s portal to display a WSRP portlet from a remote site as if it were running
locally.

Figure 1 – The Portal View

Figure 1, adapted from a uPortal presentation, shows a student seeing four windows on
his computer screen. One, the lower left hand corner, is from the university’s computer
center and could be a typical administrative application. For example, a list of current
course enrollments and their schedules. The Sakai Course Management System includes
a WSRP producer. The user’s portal must have a WSRP consumer in order to use the
Sakai Course Management System.1 Two other examples are WSRP consumer portlets
connected via Web Services and the Internet displayed in the two other windows shown
in Figure 1. The local portal shown in Figure 1 must have WSRP consumer installed to
display these WSRP “feeds.” Each of the WSRP data sources, the two libraries and the

1 There is a standalone system, but it has limited integration with other systems. Likely this version will
disappear sometime in the future.

in
st

ru
ct

io
na

l m
ed

ia
 +

 m
a

gi
c

in
st

ru
ct

io
na

l m
ed

ia
 +

 m
a

gi
c

The portal view

Internet Cloud

Local
Information

Services

Oxford Library

JSTOR

External
Information

Services

Sakai Course
Management

System

Michael Ivanov and Jim Farmer 2 28 January 2005

Sakai course management system need an application that produces WSRP or have
WSRP producer that creates a WSRP data stream from an installed portlet.2

The most frequent implementation of WSRP producer will be in conjunction with a JSR
168 compliant portal.3

This project will implement WSRP producer in uPortal so the current installations of
uPortal can support remote WSRP installations. An example of how this would be used
in a proposed Miami-Dade Community College District implementation of uPortal shown
in Figure 2.

Figure 2 – uPortal and WSRP

In this example the Financial Aid System is a JSR 168 compliant portlet installed on
uPortal at the College administrative computer center. This portlet can be seen by
authorized users of the College portal.

The WSRP producer in the College Administration uPortal installation produces the
WSRP Web services messages that permit authorized users at each of the six campuses to

2 Sakai uses WSRP producer code from the Apache Software Foundation’s WSRP4J project. uPortal’s
WSRP portlet type also is based on WSRP4J code.
3 JSR 168 is a specification of the Java Community Process used to develop a standard portlet application
in Java that can be installed, without modification, in any JSR 168 compliant portal. Oracle, IBM, Sun,
PeopleSoft (now Oracle), uPortal version 2.4 or later, and the next version of SCT’s Luminus product are
all now JSR 168 compliant. Plumtree and Vignette also were early supporters of the JSR specification.
There are still some implementation differences that are being resolved with experience.

in
st

ru
ct

io
na

l m
ed

ia
 +

 m
a

gi
c

in
st

ru
ct

io
na

l m
ed

ia
 +

 m
a

gi
c

Proposed Miami-Dade Implementation

Homestead

Kendall

InterAmerican

Medical Center

North

Wolfson

Financial Aid
System

JSR 168

College
Administration

uPortal

WSRP WSRP

Michael Ivanov and Jim Farmer 3 28 January 2005

see the financial aid portlet on the campus portal exactly as it would be seen on the
college administrative portal.

WSRP and uPortal 3.0

WSRP Consumer has been implemented in uPortal 2.4. WSRP producer will be
implemented in uPortal version 3.0. Based on experience with uPortal 2.x., there are three
major enhancements and refactoring that are needed. The new architecture will be
designed to reduce maintenance costs and enhance performance. This is possible as the
standards and uses of portals have become more stable. The new architecture is flexible
designed to support the way that users author, control, and display content. And, with the
number of users increasing in both earlier and recent implementations, a focus on
performance improvement and administration.

Portals began as an aggregated display of data from several sources. This was generally
achieved using complex Web programming. Portals made this aggregation less difficult
and more stable during changes in content and sources. Then portals became the
presentation for administrative systems. The displays were used to cross boundaries
between administrative systems so the display matched the business process. Now the
implementations are beginning to serve faculty that control the content being “pushed” to
students and control communication between faculty and students. This requires
capabilities that do not now exist in commercial portals; businesses tend to centralize
rather than delegate control of content and presentation that is needed for faculty to be
responsive to student needs.

uPortal 3.0 will also introduce “services”—an architecture that makes functions
independent of the portal itself, yet are used by portlets. Sakai services—based on the
MIT Open Knowledge Initiative Interface Service Definitions and the IMS Global
Learning Consortium’s Tool Interoperability Work Group scheduled to be complete
“early 2005.” These services may be needed to supplement some WSRP and JSR 168
portlet developments. (They are required for the WSRP producer used in Sakai. The
proposed implementation of WSRP producer is consistent with and supplements the
Sakai and uPortal integration).

The Work

There are eight subtasks in developing and unit testing the code for WSRP producer in
uPortal 3.0. They begin with interfaces to the database management system used by
uPortal. Then the Java Data Objects must be designed and programmed. The WSRP4J
code from the Apache Foundation has some code specific to their demonstration portal.
This will be replaced with more specific and robust code and integrated with uPortal
code. Currently uPortal uses the Pluto 1.0 portlet container; WSRP producer will be
integrated with Pluto 1.0.4 The WSRP producer will also have to be integrated with the

4 The authors of Pluto 1.1 have advised the uPortal development team not to use Pluto 1.1 since
development has just begun. The code is both incomplete and likely to change during development.

Michael Ivanov and Jim Farmer 4 28 January 2005

uPortal 3.0 portlet and windows registries. (Registries are being introduced in uPortal
version 3.0). uPortal’s URL interpretation will have to be extended to accommodate the
WSRP Producer attributes.

Throughout this process, the work will be unit tested using JUnit. Further implementation
testing involving multiple portals, WSRP producer and consumer, and networking, will
be done in Task 9.

For configuration, ANT Command Line is proposed as Task 8. A graphical user interface
could be developed and incorporated into portal administration. This further development
is estimated as Tasks 13 and 14. This should be done only if a need is established for this
additional capability.

Task
Person-

days
 Programming

1. Abstract persistence layer for the WSRP producer 5
2. JDO implementation of the WSRP persistence 10
3. Integration with the uPortal 3.0 domain object model 8
4. Implementation of Pluto 1.0 providers/factories 15
5. Integration with uP3.0’s portlet entity/window registries 7
6. Integration of uPortal’s URL 5
7. Test cases with JUnit 5
8. Ant-based command line utility to manage the WSRP producer

registry
10

 Total programming 65
 Testing

9. Configure an implementation and test using CREE JSR 168 portlets 5
10. Install and test in the CREE Project environment 5

 Total implementation testing 10
 Documentation

11. Installation and User’s Guide 10
12. Programming Documentation 12

 Total documentation 22
 Further Development

13. Graphical user interface for managing the WSRP producer registry
(based on the command line version from Task 8).

15

14. Additional documentation of the Graphical user interface to be
incorporated into the Installation and User’s Guide.

5

 Total further development 20
 All projects total 117

Table 1 – Project Tasks and Work Estimates

Consistent with this advice, the uPortal team did some early work and found Pluto 1.0 was more complete
and stable.

Michael Ivanov and Jim Farmer 5 28 January 2005

The tasks listed in Table 1 exceed the scope of the current WSRP project—Task 1
through 8. The additional information is provided to plan for future enhancements that
are projected to be useful in the future. However, experience with WSRP may suggest
other alternatives or change in the scope of the tasks.

 Work Assignments

The work is done under the direction of the University of Hull. Cris Aware would be
assigned as project manager.

Tasks 1 through 8 would be assigned to the current uPortal developers. im+m’s Michael
Ivanov would be the lead developer; some tasks may be assigned to others. Unicon’s
Peter Kharchenko is the chief architect for version 3.0; all of the work would be done
consistent with his direction.

Schedule

The work for Tasks 1 through 3 will be completed by the uPortal Developers’ Meeting
March 17th. Tasks 4 through 6 and some of 7 will completed within two weeks of the
Developers’ Meeting; The work for Tasks 1 through 8 should be completed by the end of
April or early May.

Michael Ivanov and Jim Farmer 6 28 January 2005

Appendix
Cost Estimates

Cost Estimates

The estimates in Table 1 represent recent experience with JSR 169, Pluto, and uPortal 3.0
development. In general the early work has taken additional time because of the new
technology. The work here may be done in less time than shown in Table 1 because of
the “learning” that has taken place.

The Table includes broader testing that may be useful to other projects. Typically the JA-
SIG developers will test new versions and provide corrections. Similarly an estimate is
given for product-level documentation should that be needed I the future. And, as uPortal
administration turns to graphical interfaces, the possibility of such an interface after there
has been sufficient experience to determine requirements is also included.

Task

Person-
days

Estimated Cost
 in GBP

 Programming
1. Abstract persistence layer for the WSRP producer 5 £2,000
2. JDO implementation of the WSRP persistence 10 4,000
3. Integration with the uPortal 3.0 domain object model 8 3,200
4. Implementation of Pluto 1.0 providers/factories 15 6,000
5. Integration with uP3.0’s portlet entity/window

registries
7 2,800

6. Integration of uPortal’s URL 5 2,000
7. Test cases with JUnit 5 2,000
8. Ant-based command line utility to manage the WSRP

producer registry
10 4,000

 Total programming project 65 £26,000
 Contributed services5 25 10,000
 Net cost estimate 40 £16,000

5 The estimates are based on recent version 3.0 experience and exceeds the early estimate. The contributed
service includes some work that has been done on the tasks before this estimate was made. The net effort is
consistent with the early estimate. Because of the Learning Curve associated with new technology, it is
likely the final results will be more similar to the early estimates because of the recent JSR 168, WSRP
consumer, and Pluto experience.

	uPortal 3.0 WSRP Producer Development Project
	28 Jan 2005 Michael Ivanov and Jim Farmer, instructional media + magic, inc.
	The Need
	WSRP and uPortal 3.0
	The Work
	Work Assignments
	Schedule
	Appendix Cost Estimates

	
	im+m Title Page

