
Mike Ivanov 1 10 November 2003

Implementing JSR 168: Apache’s Pluto
and JA-SIG’s uPortal

Overview

The Apache Pluto is the implementation of the portlet container that
complies with JSR 168 requirements. The Pluto provides functionality
that allows to run portlets, provide them with the required runtime
environment and manages their life cycles. It also provides persistent
storage mechanisms for the portlet preferences. Since the portal
handles aggregation itself the portlet container is not responsible for
aggregating the content produced by the portlets.
The Pluto implementation provides the following APIs:

1) Portal Container Invoker API – the interface allowing access from
a portal server to a portlet container.
Package: org.apache.pluto.invoker

2) Container Provider SPI (Service Provider Interface) – the
callback interface of the portlet container providing access to
portal-related information (container services).
Package: org.apache.pluto.services

3) Portlet API – the portlet container’s interface for invoking the
portlets.
Package: javax.portlet

Portlet API

The basic classes and interfaces for handling the portlet modes, window
states, content rendering, portlet session/request/response, portlet
preferences and locales can be found in this API.
The Pluto Portlet API implementation supports access to user profile
information via the request attribute USER_INFO as a map. A portlet can
define in the deployment descriptor that user information attributes it
would like to access via this map in the request. The portal can then
either map these attributes at deployment time to the attributes in its
user datastore or ignore them if they are not supported.
The Portlet API provides portlet lifecycle management that consists of:

a) Initializing the portlet using using init() method
b) Request processing, methods processAction() and render()
c) Releasing the portlet from service using destroy() method

Portal context

To let portlets adapt to the portal that calls them, the Portlet API
provides the PortalContext, which can be retrieved from the request.
This portal context provides information such as the portal vendor, the
portal version, and specific portal properties. The information allows
the portlet to use specific vendor extensions when being called by a
portal that supports these extensions and, when being called by other
portals, to return to some simpler default behavior. As the portal
context is attached to the request, it may change from request to
request. This can be the case in the remote scenario, where one portlet
(WSRP provider) may be called from different portals (WSRP consumers).

Mike Ivanov 2 10 November 2003

Localization

The Pluto framework provides localization on two levels: deployment
descriptor and portlet. On the deployment descriptor level, all
settings intended to be viewed or changed by the Web server
administrator (portlet description, init parameters, display name, and
so on) consist of an xml:lang attribute, like the Servlet 2.4
deployment descriptor. The xml:lang tag provides the same tag with
descriptions in different languages (e.g., a display name in English,
German, and Japanese).

Properties

Properties communicate vendor-specific settings between the portlet and
portlet container, and between the portlet and the portal. These
properties show up in several places in JSR 168. The portlet can read
String properties with getProperty() from:

• ActionRequest, to receive properties that are action-request
specific

• RenderRequest, to receive properties that are render-request
specific

• PortalContext, to receive properties that are portal specific and
do not change for different requests

The portlet can write String properties with setProperty() to:

• ActionResponse, to set properties in response to an action
request

• RenderResponse, to set properties in response to a render request

Portlet deployment

A portlet application's resources, portlets, and deployment descriptors
are packaged together in one Web application archive (war file). In
contrast to servlet-only Web applications, portlet applications consist
of two deployment descriptors: one to specify the Web application
resources (web.xml) and one to specify the portlet resources
(portlet.xml). All Web resources that are not portlets must be
specified in the web.xml deployment descriptor. All portlets and
portlet-related settings must be specified in an additional file called
portlet.xml. There are three exceptions to this rule, which are all
defined in the web.xml, as they are valid for the whole Web
application:

1. The portlet application description
2. The portlet application name
3. The portlet application security role mapping

As result of the two deployment descriptor files, portlet application
deployment is a two-step deployment that deploys the Web application

Mike Ivanov 3 10 November 2003

into the application server and the portlets into the portal server. A
portlet.xml file always describes only one specific portlet
application. To create a copy of a portlet application with slightly
different settings, a new portlet application must be created.

Pluto’s portal implementation

The Pluto’s cvs repository contains some classes related to the portal
implementation aggregated in org.apache.pluto.portalImpl package.
Unfortunately most of them are under construction at the moment so it
is rather hard to say anything detailed about their portal design.
There are some classes responsible for portlets aggregation and
navigation, servlet request/response processing. It also provides a few
services for portlet entities, portlets and page fragments.

Pluto and uPortal

The Pluto framework can be effectively used in the future release of
uPortal as a generic set of classes and interfaces that fully complies
with JSR 168 specification.
The use of this framework will definitely simplify the design and
development of the core code that will include uPortal specific
functionality such as aggregated layouts, i18n, groups/permissions
framework, etc. The container-related classes from the packages
javax.portlet and org.apache.pluto can be used in any portal
implementations. The portal-related classes from
org.apache.pluto.portalImpl package can be re-written including the
specific functionality of the current uPortal.

	Implementing JSR 168: Apache’s Pluto and JA-SIG’s uPortal
	10 Nov 2003 Mike Ivanov, instructional media + magic, inc.
	Overview
	Portlet API
	Portal context
	Localization
	Properties
	Portlet deployment
	Pluto’s portal implementation
	Pluto and uPortal

	
	im+m Title Page

