
 1
From www.spectrum.ieee.org/careers/careerstemplate.jsp?ArticleId=i070305 29 December 2006

July 2005

Software Patents Don't
Compute

No clear boundary between math and software
exists

First of two articles on software patents

By Ben Klemens

In 1997 the U.S. Patent and Trademark Office
granted Amazon.com a patent for "one-click
shopping"—a system that lets customers make
purchases without having to go through an online
checkout. The patent started a fierce debate in
both the business and the technical press. Critics
felt the Amazon.com patent was the poster child
for everything that was wrong with software
patents, charging that such patents allowed
obvious applications of existing technology to be
wrapped up in intellectual property monopolies.

The Amazon.com patent is no fluke. Consider
the following recently issued patents:

• Method and system for solving linear systems (U.S. Patent No. 6078938).

• Cosine algorithm for relatively small angles (No. 6434582).

• Method of efficient gradient computation (No. 5886908).

• Methods and systems for computing singular value decompositions of matrices
and low rank approximations of matrices (No. 6807536).

The arcane details of these patents are not relevant. What is relevant is that these
patents are for purely mathematical algorithms, and for centuries prior to the 1990s,
mathematics was not patentable. So how did these patents come to be granted?

 2
From www.spectrum.ieee.org/careers/careerstemplate.jsp?ArticleId=i070305 29 December 2006

By U.S. law, scientific principles may not be patented. Electromagnetism, the theory of
relativity, and a menagerie of quantum particles were all discovered after the inception of
the U.S. Patent and Trademark Office, now based in Alexandria, Va. Yet none of these
discoveries could have received patents, because until the early 1990s it was universally
agreed that mathematical algorithms were in the category of scientific principles that
could not be owned by an individual.

What has changed is that mathematics has become increasingly reliant on machines.
Abstract algorithms that involve inverting large matrices or calculating hundreds of
coefficients in a sequence are routine today and of only limited use without physical
computers to execute them.

Conversely, devices such as video drivers, network interface cards, and robot arms
depend on algorithms for their operation. Because of the machine-intensiveness of
modern mathematics and the math-intensiveness of modern machines, the line between
mathematical algorithms and machinery is increasingly blurred. This blurring is a
problem, because without a clear line delimiting what is patentable and what is not,
creative entrepreneurs will eventually be able to claim sole ownership of abstract
mathematical discoveries. But how do we draw a line that would ensure that
mathematical algorithms are not patentable while innovative machines are?

THE EASIEST LINE TO DRAW would be simply to say that if an invention is physical,
then it should be patentable, and if it is abstract, then it should not be. But what do we do
with inventions that involve both the physical and the abstract? For example, the case of
Diamond v. Diehr involved a rubber-curing machine that relied on a significant amount of
software to control the machine's timing. The U.S. Supreme Court ruled in 1981 that the
patent was for industrial equipment, not an abstract algorithm, and thus the overall
patent—software plus machine—was valid. But the court left a key question hanging:
how much physical invention is necessary before the overall device is patentable? If all
of the inventiveness is in the algorithm, which is then applied in a trivial manner to a
simple machine, is the overall patent okay?

In a long series of rulings, culminating in 1994 with In re Alappat and In re Lowry, the
U.S. Court of Appeals for the Federal Circuit ruled that an uninventive physical
component added to an inventive abstract component makes the whole patentable. In
other words, "a new algorithm to calculate Fourier transforms" is not patentable, but "a
stock PC on which is programmed a new algorithm to calculate Fourier transforms" has
enough of a physical component to be patentable.

Further, the court ruled that since a computer is so integral to a computational algorithm,
patent examiners are obliged to assume that one exists. If an application is for "a pure
computational algorithm," then the examiner must read it as if the words "a computer on
which is programmed" had been prepended to the description of the algorithm.

This is the bottom of the slippery slope: there is no longer any meaningful barrier to the
patenting of abstract algorithms. The use of any inventive mathematical algorithm that
requires more calculation than can be reasonably done by hand is now patentable.

 3
From www.spectrum.ieee.org/careers/careerstemplate.jsp?ArticleId=i070305 29 December 2006

ANOTHER APPROACH MIGHT BE to distinguish between the pure mathematical
algorithm, which should not be patentable, and its application to real-world problems,
which should be.

For example, the case of Gottschalk v. Benson concerned the patentability of a program
to convert between binary-coded decimal and plain old binary. Evidently, this was too
close to unapplied pure math; the Supreme Court struck down the patent in 1972,
because "the patent would wholly pre-empt the mathematical formula and in practical
effect would be a patent on the algorithm itself."

In contrast, State Street Bank and Trust Co. v. Signature Financial Group Inc. was a suit
over alleged infringement of State Street's patented system for doing the bookkeeping
for a suite of mutual funds. The system did not push around physical objects, but the
Court of Appeals for the Federal Circuit ruled that the share prices and other numbers it
derived still have a real, tangible effect and may therefore be considered to be a valid
subject for a patent. So this attempt to distinguish the patentable from the unpatentable
is too unreliable.

TO FIND OUT WHY all these distinctions fail, we turn to one of the founders of computer
science, Alan Turing. In 1936, Turing described a theoretical computer that is effectively
equivalent to every computer in existence today. His design included an infinitely long
tape and read/write head, which did different things depending on the data on the tape
and the machine's state. Because different states cause the machine to do different
things, his contraption is often called a state machine.

A modern PC is equivalent to Turing's tape and head—a physical device that can store
data and execute various operations. The programs that instruct the computer's
operation generate the states that dictate how it will operate: they make up the
impermanent information that guides the computer, but they do not change its
fundamental design or composition.

Because almost all modern programming languages encompass the ability to turn a
computer into a state machine, they are all, at a deep level, equivalent—a program
written in one such language can be directly translated to any other language, such as
from Perl to C++ or from Microsoft Visual Basic to Lisp. So all software is essentially
made of the same stuff.

In 1936, Alonzo Church proved that that stuff is mathematics. Church created lambda
calculus, a formal means of writing mathematical expressions and also a tool that can be
used to program a state machine. That is, any program written in a language such as C
is a trivial translation of a set of purely mathematical lambda-calculus expressions.

So where is the line drawn between software and mathematical expression? Based on
Church's and Turing's work, there is none. Any legal attempt to force a wedge between
pure math and software will fail because the two are one and the same. A patent on a
program is a patent on a mathematical expression, regardless of whether it is expressed
in C, Lisp, or lambda calculus.

 4
From www.spectrum.ieee.org/careers/careerstemplate.jsp?ArticleId=i070305 29 December 2006

BUT WHILE DEMOLISHING the distinction between software and math, Turing and
Church's work offers a natural division between patentable machinery and unpatentable
mathematics—exactly what we have been looking for. Let the devices that implement
state machines—physical objects such as computers—be patentable, and the states to
which they are set—information such as programs and data—remain unpatentable. The
distinction meets the goal of ensuring that pure mathematics is not patentable while
letting those who design faster and better computing devices patent their inventions.

The distinction is clear, and it offers no slippery slope down which the courts could slide.
An innovative field-programmable gate array (FPGA) is a state machine and so would
fall on the patentable side of this fence, while code loaded onto the FPGA would be an
unpatentable state to which the state machine has been set.

A Java machine constructed on an application-specific integrated circuit (ASIC) would be
a state machine, but a Java machine existing only in software running on a general-
purpose central processing unit would be a state. A robot arm would be a state machine,
but its device driver would be a state.

The courts failed to review the mathematics literature and as a result made several vain
attempts to reinvent the wheel. Software and lambda calculus are in the same
equivalence class, which means any law that allows software to be patentable allows the
patenting of the evaluation of certain mathematical expressions.

But, fundamentally, if we are to disallow the patenting of pure scientific and
mathematical discoveries to foster basic research and innovation, the only way to do so
is to disallow the patenting of the states to which state machines may be set—that is, to
abolish software patents.

Editor's Note: This is the first of two articles on software patents. This article focuses on
how the U.S. patent system attempts to draw a dividing line between patentable
machines and unpatentable mathematics—and why the system is failing. Next month's
article will discuss the economic and legal impact of software patents and a proposed
solution.

ABOUT THE AUTHOR
Ben Klemens has a Ph.D. in social sciences from California State Polytechnic University,
in San Luis Obispo. He is currently a guest scholar at The Brookings Institution,
Washington, D.C. His book Math You Can't Use: Patents, Copyright, and Software is to
be published by the Brookings Institution Press.

ILLUSTRATION: DAVID RODRIGUEZ

	Software Patents Don't Compute
	Jul 2005 Ben Klemens, IEEE Spectrum
	THE EASIEST LINE TO DRAW
	ANOTHER APPROACH MIGHT BE
	TO FIND OUT WHY
	BUT WHILE DEMOLISHING
	ABOUT THE AUTHOR

	
	IEEE Spectrum Title Page

