

Introduction
A bit of history

The Web and Java have a long history in common already. Since its creation in 1994,
Java includes the java.net package and in particular a HTTP client via the
HttpURLConnection class. At that time, Applets were a popular technology running in
Web browsers that needed a way to call back their origin Web server. Using a HTTP
client was a good way to do this, limiting the security issues with firewalls.

Later, around 1998, the Servlet API was introduced as a way to generate dynamic
content on HTTP servers. It basically tries to represent a HTTP request/response
cycle in an object-oriented model. Along with Java Server Pages (JSP), its sister
specification, it became part of a larger effort to bring Java technologies inside
companies. In applications, developers adapt the common object-oriented MVC
(Model-View-Controller) design pattern, also known as the "Model 2" approach. In
this model, Servlets are acting as controllers, JSP pages as views and JavaBeans
objects as models.

At the same period, the XML standard emerged from a W3C working group. Along
with related XSLT, XSL-FO and XPath standards, it provided a new way to generate
dynamic pages competing with Servlets and JSP pages. The reaction was to
embrace XML all over the Java platform and JSP evolved to be able to generate XML
documents. Another path was followed by Stefano Mazzocchi who started Apache
Cocoon, an XML publishing framework built around the concepts of separation of
concerns and component-oriented design.

In 2000, the Struts project defined standard controllers, called Actions, following the
existing Model2/MVC pattern. Application state is exchanged between the model and
the view using ActionForms. It quickly became successful as it provided a higher
level of abstraction than pure Servlets, especially for forms handling. Later, numerous
other frameworks appeared to address similar problems. The most notable is Spring
which is a more comprehensive Java/J2EE application framework than Struts, also
implementing the MVC approach.

The same year, Roy T. Fielding, who co-authored the HTTP & URI specifications and
co-founded the Apache HTTP server, wrote a dissertation on software architectures.
In the chapter 5 he formally defined the architecture style supporting the Web and
called it REST, for Representational State Transfer. It defines a new paradigm that
could be called resource-orientation, in comparison to object-orientation, where
resources represent identifiable concepts of your domain (comparable to objects).
The resources are referenced using the standard URIs (URLs or URNs) and
manipulated by components (browsers, servers, proxies, gateways, etc.) through a
uniform interface. This interface has a limited list of verbs, essentially the HTTP

methods. Also, resources are never exchanged directly, only representations of their
state are. Connectors are the architecture elements that enable the communication of
representations between components, implementing for example the client-side of
the HTTP protocol.

Servlet limitations

At the end of 2003, Greg Wilkins, the author of the Jetty Web container and
contributor to the Servlet specifications, blogged about some issues with Servlets:

• No clear separation between the protocol concerns and the application
concerns.

• Unable to take full advantage of the non-blocking NIO due to blocking IO
assumptions.

• Full Servlet Web containers are overkill for many applications like serving XML
documents for Web services.

He proposed to specify a new API that would be truly protocol-independent and
define contentlets to expose content and its metadata. These ideas were both
thought-provoking and inspiring for the creation of the Restlet project. In a later post,
Greg Wilkins explains with detailed arguments why the current Servlet API, without a
concept like contentlets, limits the efficient usage of the non-blocking NIO API. This
traditionally imposes the use of a separate thread for each HTTP requests to handle.

Another major issue is the possibility for Servlets to store state in-memory, at the
application or user session level. Even though it looks like a nice feature for Web
application developers, it became a major issue for the scalability and high-
availability of Servlet containers. To compensate, complex load-balancing, session
replication and persistence mechanisms must be implemented. But in the end,
scalability inevitably suffers.

Restlet inception

When I recently started the development of a Web site, I wanted it to comply with the
REST architectural style, as much as technically possible. After many researches, I
noted the lack of a REST framework in Java. The only project that came close to it
was 1060 NetKernel developed by 1060 Research but it had too many features for
my needs and I found that the support of REST concepts was not as direct as I was
expecting.

This led me to develop my own REST framework on top of the Servlet API. This
worked well up to a point were the Servlet API was completely hidden. I remembered
about Greg Wilkins's propositions and decided to completely bypass the Servlet API.
Fortunately, Jetty 5 has a nice separation between its HTTP protocol implementation
and its support for the Servlet API. In the end, I was able to develop the first Restlet
connector, a HTTP server connector, directly issuing REST uniform calls.

Also, I wanted to get rid of the unnatural separation between the client-side and
server-side view of the Web in Java, following the sound advice of Benjamin Carlyle
in a recent blog post. In today's networked environment, we shouldn't have to make

such differences; anybody should be able to act, at the same time, as a Web client
and as a Web server. In REST, every component can have as many client and server
connectors as useful, so I simply developed a client HTTP connector based on the
HttpURLConnection class mentioned above. Of course, other implementations could
be provided, like one based on the more advanced Jakarta Commons HTTP Client.

After several iterations, it became clear that it would be beneficial for developers to
separate the Restlet project in two parts. The first part is a generic set of interfaces,
called the Restlet API, including a few helper classes and a mechanism to register a
Restlet implementation. The second part is a reference implementation, called the
Noelios Restlet Engine, including a HTTP server connector; HTTP, JDBC and SMTP
client connectors; a set of representations (based on strings, files, streams, channels
or FreeMarker templates) and a DirectoryRestlet able to serve static files from a tree
of directories with automatic content negotiation base on file extensions.

Conclusion

While powerful for complex centralized models, the object-oriented paradigm isn't the
best suited for Web development. Java developers need realize this and start
thinking more RESTfully when developing new Web services or new AJAX-based
Web clients. The Restlet project is providing a simple yet solid foundation that can
get you started right away on the Web 2.0.

Jérôme Louvel (blog)

Notes

• For an eye-opening view on the Web 2.0, read "Piggy Bank, Cocoon and the
Future of the Web" by Stefano Mazzocchi.

• Thanks to Jean-Paul Figer for the insightful discussions on REST.
• Thanks to Thierry and Fabrice Boileau for the useful feed-back on Restlets.

Version 1.5, last modified on 2006/01/02
Copyright © 2005-2006 Jérôme Louvel. Restlet is a trademark and service mark of Noelios Consulting.

	Restlet Introduction
	2 Jan 2006 Jérôme Louvel
	A bit of history
	Servlet limitations
	Restlet inception
	Conclusion
	Notes

	
	Dyomedea Title Page

