

CRA-E White Paper

Creating Environments
for

Computational Researcher Education
August 9, 2010

8/9/10 2

Committee Members

Andy van Dam, Brown (chair)

Jim Foley, Georgia Tech

John Guttag, MIT

Pat Hanrahan, Stanford

Chris Johnson, University of Utah

Randy Katz, UC Berkeley

Henry Kelly, DOE (formerly FAS)

Peter Lee, DARPA and CMU

David Shaw, D.E. Shaw Research

Acknowledgements

Thanks to the CRA-E committee members, who provided lively, provocative, and generative

ideas during the four meetings.

Thanks to Jeannette Wing, Lynn Andrea Stein, and Ed Fox for detailed and

relevant reviews that helped refine and shape the raw material of the

report.

Thanks to CRA's Andrew Bernat for support, patience, and timely suggestions.

Thanks to Rosemary Michelle Simpson, who pulled it all together and

uncovered the patterns lurking in the mass of material.

COMPUTING RESEARCH ASSOCIATION

1828 L Street, NW Suite 800,

Washington, DC 20036-4632

Email: info@cra.org

Tel: 202-234-2111

Fax: 202-667-1066

URL: http://www.cra.org

Copyright 2010 by the Computing Research Association. Permission is granted to reproduce the
contents provided that such production is not for profit and credit is given to the source.

CRA-E White Paper: Creating Environments for Computational Researcher Education

8/9/10 3

Table of Contents
Executive Summary - 5
Introduction - 9
Recommendations - 17
 Computationally-Oriented Foundations - 17

1. Introductory Courses -
addressing a broad range of student interests - 17

 Refactoring Computer Science Curricula - 24
2. Core/Foundation for All Computer Science Graduates -

lean core with focus on enduring concepts, techniques, and skills - 25

3. Specialization: Tracks, Threads, and Vectors -
flexible approaches to gaining understanding and skills - 34

4. Specialization: Integrated Joint Majors -
deep collaboration among disciplines - 38

 Establishing Mastery across the Curricula - 42
5. Design Under Constraints and the Gaining of Mastery -

deepening the skill set - 43

6. Attracting, Selecting, and Preparing Students for Research Careers -
developing computationally-oriented researchers - 49

Appendices - 53
A. Recommendations Summary - 54
B. References - 58
 Bibliography - 58
 URLs - 63

CRA-E White Paper: Creating Environments for Computational Researcher Education

8/9/10 4

C. Exemplar Programs - 69
 Denning's Great Principles - 69
 Core plus Tracks, Threads, and Vectors - 72

 CMU - 72

 Cornell - 74

 Georgia Tech - 77

 MIT - 79

 Stanford - 81

 Design under Constraints - 82

 MIT - 82

 UC Berkeley - 82

 University of Washington - 83

D. Prototype and Example Integrated Joint Majors - 84
 Computers in the Arts and Digital Media - 84
 Computational Biology - 85
 Computer Engineering - 88
 Computational Finance and Financial Engineering - 90
 Computational Methods Humanities & Social Sciences - 91
 Computational Science and Engineering - 92
 Premedical Computer Science - 95

Index - 97

CRA-E White Paper: Creating Environments for Computational Researcher Education

Executive Summary

8/9/10 5

Executive Summary
The CRA-E committee was formed in the spring of 2008 and had its first meeting at the CRA Snowbird
2008 conference, with this as its mission statement:

“Our charter is to explore the issues of undergraduate education in computing and computational
thinking for those who will do research in disciplines from the sciences to the humanities.

As technology and teaching methodologies continue to evolve, how should programs in computer
science, computational science, and information science co-evolve? Can we communicate a core set of
ideas, principles, and methodologies that is domain-independent?”

Over the following year and half the committee continued to meet and investigate the issues involved;
this report records the recommendations that have resulted from that process.

Issues
The 20th century was characterized by exponentially rapid technological and societal changes which
produced a heightened need across the population for educational flexibility and lifelong learning.
Though this observation has often been repeated, like many clichés it remains true today and the need to
adapt to the accelerating rate of change has become more apparent and urgent.

The explosive growth of computationally-oriented subjects in particular has deeply affected higher
education – not only in computer science departments, but virtually everywhere else, as demonstrated in
the rise of such diverse fields as computational-linguistics, -finance, and -history, digital arts, and even -
philosophy. At the turn of the century many computer science departments simultaneously experienced
three trends: first, a demand to include more and more topics and courses in the curriculum, second,
decreasing enrollments (now reversed at many schools) and migration of some of the top students to
other fields, such as molecular biology, that seemed newer and were perceived as more attractive, and
third, external and internal pressures for greater flexibility in the selection of course sequences in
parallel with a questioning of ‘what every student graduating with a computer science degree should
know'.

At the same time, as a consequence of growing up in a digital culture, today’s students have very
different skill sets than did students of the 20th century. They are adept at tinkering with online
facilities to obtain - and shape - what they want, skilled at rapidly switching contexts and tasks (a
controversial skill sometimes referred to as multitasking), and are experienced in the kind of ad-hoc
collaboration exemplified by social networking. While many of their mentors acknowledge the value of
these new capabilities, they often decry the loss of other abilities, such as the ability to read deeply and
critically/analytically, and to write coherently and analytically, and point out the difference between
social networking and genuine goal-directed teamwork skills.

Mindful of such changes, CRA asked its education committee, CRA-E, to address an open-ended question
of concern not just to college educators but also employers, funding agencies, and policy makers: how
best to educate students for a future as computationally-oriented researchers in all fields. Note: this
question is related to but deliberately more focused on the needs of future researchers than a general
consideration of computational thinking at all levels or the redesign of the computer science curriculum.

Goal of the CRA-E Committee White Paper
The overall goal of this white paper is to provide guidance that will help institutions create an
undergraduate environment that supports the acquisition and internalization of the computationally-
oriented researcher mindset. To achieve this, we identified two sub-goals: first, to identify the issues
facing faculty charged with educating computationally-oriented researchers in the first part of the 21st
century, and second, to make recommendations that address those issues and that are both relevant and
implementable within the current institutional context.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Executive Summary

8/9/10 6

Mechanisms for Implementing the Goal
Our intention is that colleges and universities adapt the recommendations of this report as appropriate
to the needs of their own student population and institutional structures. To this end, the CRA-E
committee suggests three major mechanisms for meeting the goal of fostering the creation of a
computational researcher mindset:

• Develop flexible curricular structures that can more easily reflect and adapt to change. These
curricular structures range from a “lean core” and specialized tracks to fully integrated joint
majors that reflect and encourage deep collaboration and synergy among disciplines.

• Provide a “research-oriented” environment in the undergraduate program. Among other things
such an environment would include: apprenticeships/internal internships, collaborations with
researchers, projects requiring research skills, and independent study.

• Support the assimilation and putting into practice of enduring cognitive skills and core concepts
over four years and different contexts through the deepening process of building mastery.

Scope of the CRA-E White Paper
Within the rubric of the CRA-E overall goal -- provide institutional guidance for developing
undergraduates with a computationally-oriented researcher mindset -- the white paper addresses overall
directions rather than comprehensive details; it is not a curriculum design. We tried not to duplicate
work being done by related efforts such as the ACM/IEEE Computer Science Curricula 2001 report/2008
update, or any effort having to do with K-12 education such as ACM’s Model Curriculum for K-12
Computer Science and NSF’s CS 10,000 Project, whose goal is the revision of the AP computer science
course. Instead we viewed our work as complementary to these efforts, providing a specific focus that
still underscores and reinforces the overall goal of computationally-oriented education in the 21st
century.

While we have leveraged the work of existing curriculum restructuring efforts and experiments already
under way at a wide variety of schools, we have chosen a small group of schools for a more
comprehensive focus. The common denominator of these efforts combines (1) a rigorous re-evaluation of
what computationally-oriented students need to know with (2) the design of flexible specialization
mechanisms that facilitate modification in response to changing needs, and (3) an emphasis on
grounding the material in physically-situated ‘artifacts'. Furthermore, we advocate relaxing the notion
that every student takes the same sequence of core courses. The core may, in fact, be embedded in the
specialization so that the content will vary.

Given CRA’s focus on research, we have constrained our attention to issues concerned with how to best
educate future computationally-oriented researchers. Within this framework, computer science
departments take on a new and critical role as identifiers and promulgators of the core set of cognitive
skills and computational concepts that inform various computational-X programs, independent of their
domains. Thus, we have focused on computer science departments in Recommendations 2 through 6,
while extracting their essential components in the appendices to aid other departments wishing to
develop domain-specific computationally-oriented courses.

Unfortunately, we were not able to undertake the very important subject of pedagogy and the
appropriate use of Internet- and other technology-based facilities as a component of undergraduate
educational design; we hope that future CRA-E committees will undertake that investigation. However,
[CSTB 2010] "Report of a Workshop on The Scope and Nature of Computational Thinking" contains a
number of pedagogical discussions and references. In addition, the index of this report includes an entry
"pedagogy, related references" with pointers to pedagogy-related references in the bibliography. The two
sets of references complement each other - the CSTB report references focus on current and past
practices, while the CRA-E report references focus on pedagogical theory and background.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Executive Summary

8/9/10 7

Strategy of the CRA-E White Paper
Over the course of its four meetings, from Snowbird, 7/2008 to New York City, 8/2009, the committee
identified a common set of concerns and approaches that we have encoded into six recommendations.
While the recommendations both affect and reflect each other, we have arranged them into three
thematic groups:

• Introduce students to computational thinking by foundational courses that address student
interests within the fundamental range of computational thinking concepts and skills
(Recommendation 1),

• Refactor computer science curricula that provide a flexible and adaptable range of options for
computationally-oriented directions in any domain (Recommendations 2, 3, and 4), and

• Identify cognitive, mastery, and research skills that should pervade the entire curriculum, from
introductory courses through the advanced courses taken by seniors heading to graduate school
(Recommendations 2, 5, and 6).

This paper attempts to lay a foundation for addressing this common set of concerns across educational
institutions of all sizes and types that prepare students for graduate school and potential research
careers. In our descriptions of the recommendations we identify some of the enduring concepts and
principles, as well as cognitive and researcher skills that interweave all the courses.

Recommendations
Note - Appendix A - Recommendations Summary contains a detailed list of all recommendations

Computationally-Oriented Foundations
1. Introductory Courses - addressing a broad range of student interests

 Address student interests while at the same time ensuring that these courses address a
significant subset of the fundamental range of concepts and skills that comprise computational
thinking [See the local appendix at the end of this Introduction: Computational Thinking -
Summary of Views].

 Use these courses to instill a set of cognitive skills such as learning how to create, validate, and
establish relationships among abstractions from data and information on hand, a key skill in
effective modeling, simulation, and validation. This skill in working with abstractions, in turn,
undergirds both the scientific method and computational thinking, and should be a part of every
computationally-oriented course. The differences among such courses help to reinforce the
underlying skills as students meet the same concepts in different contexts.

 Other examples of cognitive skills include: working with the tradeoffs involved with different
representations; moving, where appropriate, from a declarative understanding of a problem to an
imperative understanding of that problem; reducing computationally intractable problems to
related tractable problems; and building, simulating, and validating computational models that
shed light on important questions.

Refactoring Computer Science Curricula
2. Core/Foundation for All Computer Science Graduates - lean core with focus on enduring

concepts, techniques, and skills

 A relatively lean core emphasizes foundational concepts and skills while allowing students more
time to explore areas in depth, both by taking courses and by engaging in undergraduate
research. Additionally, a lean core makes it easier for students with multidisciplinary interests
to pursue a joint major [See Recommendation 4 - Specialization: Integrated Joint Majors] while
still sharing a common experience with computer science majors.

3. Specialization: Tracks, Threads, and Vectors - flexible approaches to gaining understanding
and skills

 Define sets of meaningful specializations to permit students to pursue their interests in a context

CRA-E White Paper: Creating Environments for Computational Researcher Education

Executive Summary

8/9/10 8

that guides their development while providing strong motivation. Ensure that these ‘tracks’ are
specialized enough that a course sequence can lead to a student attaining some reasonable depth
in the area but broad enough that someone in a company or graduate school will be able to fit it
into their institutional context.

4. Specialization: Integrated Joint Majors - deep collaboration among disciplines

 Coherent, integrated multidisciplinary, inter-departmental joint majors provide a balanced
approach that addresses the differences in intellectual culture, concepts, and strategies between
different fields by establishing the common ground between them. Use these integrated joint
majors to provide a creative synthesis beyond that which can be provided by a computer science
department alone, one that blends the cultures and mindsets of multiple departments and
synergistically establishes new techniques for problem solving.

Establishing Mastery across the Curricula
5. Design Under Constraints and the Gaining of Mastery - deepening the skill set

 Provide students the ability to attain mastery by gaining experience in learning new
technologies and techniques, building and analyzing artifacts, and learning to understand design
as an iterative process that involves evaluating tradeoffs, analyzing system performance, and
testing at each step. Create design and development experiences that tap into the actual
interests of the students within a structure that both rewards effort and requires
debugging/dealing with the uncertainties and approximations of real-world non-determinacy.

6. Attracting, Selecting, and Preparing Students for Research Careers - developing
computationally-oriented researchers

 Skillfully introduce research problems and their intellectual excitement in all courses, thus
helping to entice potential research students by disabusing them of the notion that our field has
become routinized. Successful courses that attract and excite students present new concepts
within the context of the ongoing research of the R&D community.

 Combine explicit research skill training with an apprenticeship approach to acculturate future
researchers to their communities of practice. Provide systematic guidance in the practices of
computationally-oriented research from freshman year through graduation combined with the
support provided by close relationships with graduate students, research groups, and professors.

Tools for Using this Report
We have provided several tools to help individual departments and institutions develop approaches that
reflect their culture, goals and resources.

1) Each recommendation section contains background issues, examples, and solution approaches,
with the resulting recommendations summarized at the end of the section.

2) The complete recommendation set is provided as a single document in Appendix A to give a sense
of the set as a whole.

3) The references (Appendix B) contain both a bibliography and the complete set of all the URLs
that are mentioned in the report.

4) The index supports both search and browsing modes through extensive See Also trails.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 9

Introduction
The CRA-E committee was formed in the spring of 2008 and had its first meeting at the CRA Snowbird
2008 conference, with this as its mission statement:

“Our charter is to explore the issues of undergraduate education in computing and computational
thinking for those who will do research in disciplines from the sciences to the humanities.

As technology and teaching methodologies continue to evolve, how should programs in computer
science, computational science, and information science co-evolve? Can we communicate a core set of
ideas, principles, and methodologies that is domain-independent?”

Over the following year and half the committee continued to meet and investigate the issues involved;
this report records the recommendations that have resulted from that process.

Issues
The 20th century was characterized by exponentially rapid technological and societal changes which
produced a heightened need across the population for educational flexibility and lifelong learning.
Though this observation has often been repeated, like many clichés it remains true today and the need to
adapt to the accelerating rate of change has become more apparent and urgent.

The explosive growth of computationally-oriented subjects in particular has deeply affected higher
education – not only in computer science departments, but virtually everywhere else, as demonstrated in
the rise of such diverse fields as computational-linguistics, -finance, and -history and even -philosophy,
not to mention digital arts and entertainment technology. At the turn of the century many computer
science departments simultaneously experienced three trends: first, a demand to include more and more
topics and courses in the curriculum, second, decreasing enrollments (now reversed at many schools)
and migration of some of the top students to other fields, such as molecular biology, that seemed newer
and were perceived as more attractive, and third, external and internal pressures for greater flexibility
in the selection of course sequences in parallel with a questioning of ‘what every student graduating with
a computer science degree should know'1.

At the same time, as a consequence of growing up in a digital culture, today’s students have very
different skill sets than did students of the 20th century. They are adept at tinkering with online
facilities to obtain - and shape - what they want, skilled at rapidly switching contexts and tasks (a
controversial skill sometimes referred to as multitasking), and are experienced in the kind of ad-hoc
collaboration exemplified by social networking2. While many of their mentors acknowledge the value of
these new capabilities, they often decry the loss of other abilities, such as the ability to read deeply and
critically/analytically3, and to write coherently and analytically4, and point out the significant difference
between social networking and genuine goal-directed teamwork skills.

Mindful of such changes, CRA asked its education committee, CRA-E, to address an open-ended question
of concern not just to college educators but also employers, funding agencies, and policy makers: how

1 While some computer science departments viewed it in part as a threat because newer offerings in other
departments might successfully compete for resources and students, others saw these trends as a great opportunity.
Indeed, the question can be generalized as 'What should every college graduate, no matter what his or her major is,
know about computational thinking and computational methods'. Certainly, an argument can be made for a form of
universal literacy that goes well beyond a 'computing-lite' literacy course.
2 [Palfrey & Gasser 2008]. Born Digital: Understanding the First Generation of Digital Natives.

[Boyd 2008] Taken Out of Context: American Teen Sociality in Networked Publics.
3 [Adler & Van Doren 1972]. How to Read a Book.
4 [Palfrey & Gasser 2008].

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 10

best to educate students for a future as computationally-oriented researchers in all fields.5 Note: this
question is related to but deliberately more focused on the needs of future researchers than a general
consideration of computational thinking at all levels or the redesign of the computer science curriculum.

Goal of the CRA-E Committee
The overall goal of this white paper is to provide guidance that will help institutions create an
undergraduate environment that supports the acquisition and internalization of the computationally-
oriented researcher mindset. To achieve this, we identified two sub-goals: first, to identify the issues
facing faculty charged with educating computationally-oriented researchers in the first part of the 21st
century, and second, to make recommendations that address those issues and that are both relevant and
implementable within the current institutional context.

Mechanisms for Implementing the Goal
Our intention is that colleges and universities adapt the recommendations of this report as appropriate
to the needs of their own student population and institutional structures. To this end, the CRA-E
committee suggests three major mechanisms for meeting the goal of fostering the creation of a
computational researcher mindset:

• Develop flexible curricular structures that can more easily reflect and adapt to change. These
curricular structures range from a “lean core”6 and specialized tracks to fully integrated joint
majors that reflect and encourage deep collaboration and synergy among disciplines.

• Provide a “research-oriented” environment in the undergraduate program. Among other things
such an environment would include: apprenticeships/internal internships, collaborations with
researchers, projects requiring research skills, and independent study.7

• Support the assimilation and putting into practice of enduring cognitive skills and core concepts
over four years and different contexts through the deepening process of building mastery.

Scope of the CRA-E White Paper
Within the rubric of the CRA-E overall goal -- provide institutional guidance for developing
undergraduates with a computationally-oriented researcher mindset -- the white paper addresses
general directions rather than comprehensive details; it is not a curriculum design. We tried not to
duplicate work being done by related efforts such as the ACM/IEEE Computer Science Curricula 2001
report/2008 update8, or any effort having to do with K-12 education such as ACM’s Model Curriculum for

5 As [Lewis et al. 2010] point out, educators should also look closely at the attitudes students bring with them at
the beginning of their undergraduate careers and how those attitudes mesh with the educational goals departments
wish to inculcate.
6 What do we mean by "lean core"? We use the term 'lean core' here to mean a set of foundational courses that
embody the content we expect 'every student who graduates with some kind of CS degree to know'. Given that we
advocate broadening the notion of CS to include not just traditional CS but also computational science and
computational-X for almost any field X, we don't think of the core as a set, let alone a sequence of courses that are
identical for all students. For example, computational biology students and students studying digital story telling
(e.g., electronic game design and digital media) should be exposed to the same set of core concepts and techniques
but may see them in quite different contexts/courses starting with the introductory courses. This range of
possibilities could mean that every student still takes the same courses in a foundation-style sequence before
specializing, or - increasingly more common - it could mean a suite of contextually-distinct courses from the very
beginning.
7 CRA-W (CRA Committee on the Status of Women in Computing Research) provides distributed mentoring and
research programs (http://www.cra-w.org/projects). Another point to note here is that while the focus of 4-year
colleges is teaching, not research, they provide a rich background for future researchers. Thus, it is highly
appropriate for them to include computationally-oriented cognitive and research skills, as discussed in this paper, in
their curricula.
8 [ACM/IEEE 2008]ACM/IEEE Computer Science Curricula 2001 report/2008 update. Andrew McGettrick, Chair of
the ACM Education Board and Education Council, reports in a personal communication that "The ACM Education

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 11

K-12 Computer Science9 and NSF’s CS 10,000 Project10, whose goal is the revision of the AP computer
science course. Instead we viewed our work as complementary to these efforts, providing a specific focus
that still underscores and reinforces the overall goal of computationally-oriented education in the 21st
century.

While we have leveraged the work of existing curriculum restructuring efforts and experiments already
under way at a wide variety of schools, we have chosen a small group of schools for a more
comprehensive focus.11 The common denominator of these efforts combines (1) a rigorous re-evaluation
of what computationally-oriented students need to know with (2) the design of flexible specialization
mechanisms that facilitate modification in response to changing needs, and (3) an emphasis on
grounding the material in physically-situated ‘artifacts'12. Furthermore, we advocate relaxing the notion
that every student takes the same sequence of core courses. The core may, in fact, be embedded in the
specialization13 so that the content will vary.

Given CRA’s focus on research, we have constrained our attention to issues concerned with how to best
educate future computationally-oriented researchers. Within this framework, computer science
departments take on a new and critical role as identifiers and promulgators of the core set of cognitive
skills and computational concepts that inform various "computational-X" programs, independent of their
domains. Thus, we have focused on computer science departments in Recommendations 2 through 6,
while extracting their essential components in the appendices at the end of this introduction and of
Recommendation 2 to aid other departments wishing to develop domain-specific computationally-
oriented courses.

Unfortunately, we were not able to undertake the very important subject of pedagogy and the
appropriate use of Internet- and other technology - based facilities as a component of undergraduate
educational design; we hope that future CRA-E committees will undertake that investigation. However,
[CSTB 2010] "Report of a Workshop on The Scope and Nature of Computational Thinking" contains a
number of pedagogical discussions and references. In addition, the index of this report includes an entry
"pedagogy, related references" with pointers to pedagogy-related references in the bibliography. The two
sets of references complement each other - the CSTB report references focus on current and past
practice, while the CRA-E report references focus on pedagogical theory and background.

Strategy of the CRA-E White Paper
Over the course of its four meetings, from Snowbird, 7/2008 to New York City, 8/2009, the committee
identified a common set of concerns and approaches that we have encoded into six recommendations.

Board and the IEEE Computer Society's Educational Activities Board are embarking on a project to produce the
next version of their Computer Science curricular guidelines. Currently this is being referred to as CS 2012.
Preliminary discussions on the matter took place at a meeting of the ACM Education Council (which the British
Computer Society representatives attended) in Berkeley on 21st and 22nd June 2010."
9 [ACM CSTA 2006] ACM's Model Curriculum for K-12 Computer Science
10 NSF's CS 10,000 Project: Jan Cuny. "Computational Thinking will Require Transforming High School Computer
Science: CS / 10,000 Project", http://un-gaid.ning.com/profiles/blogs/computational-thinking-will; Jan Cuny.
"Transforming High School Computing: A Compelling Need, A National Effort",
http://opas.ous.edu/Committees/Resources/Publications/NSF_AP_CS_10000ExecSumm_Ed.pdf.
11 See Recommendations 2-5 for details.
12 We want to argue for balance, that understanding concepts and developing cognitive skills must be joined with the
hands-on experience of building artifacts. Not everything is virtualizable to software or mathematics; you do get
confronted with physicality, the constraints of real devices. Furthermore, we are physical beings, and 'tinkering', to
use John Seely Brown's phrase (http://www.johnseelybrown.com/- Tinkering as a Mode of Knowledge Production
video), helps our brains to better build connections between concepts and the real world. While virtual labs have
great practical and sometimes irreplaceable value, involving the human proprioceptic system in physical labs, with
real devices provides invaluable experience with real physical constraints.
13 The USC games major is one example - [Zyda 2009] "Computer Science in the Conceptual Age"

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 12

While the recommendations both affect and reflect each other, we have arranged them into three
thematic groups:

• Introduce students to computational thinking by foundational courses that address student
interests within the fundamental range of computational thinking concepts and skills
(Recommendation 1), 14

• Refactor computer science curricula that provide a flexible and adaptable range of options for
computationally-oriented directions in any domain (Recommendations 215, 3, and 4), and

• Identify cognitive, mastery, and research skills that should pervade the entire curriculum, from
introductory courses through the advanced courses taken by seniors heading to graduate school
(Recommendations 2, 5, and 6).

This paper attempts to lay a foundation for addressing this common set of concerns across educational
institutions of all sizes and types that prepare students for graduate school and potential research
careers. In our descriptions of the recommendations we identify some of the enduring concepts and
principles, as well as cognitive and researcher skills that interweave all the courses.

Tools for Using this Report
We have provided several tools to help individual departments and institutions develop approaches that
reflect their culture, goals and resources.

1) Each recommendation section contains background issues, examples, and solution approaches,
with the resulting recommendatons summarized at the end of the section.

2) The complete recommendation set is provided as a single document in Appendix A to give a sense
of the set as a whole.

3) The references (Appendix B) contain both a bibliography and the complete set of all the URLs
that are mentioned in the report.

4) The index supports both search and browsing modes through extensive See Also trails.

Recommendations
Computationally-Oriented Foundations

1. Introductory Courses - addressing a broad range of student interests

 Address student interests while at the same time ensuring that these courses address a
significant subset of the fundamental range of concepts and skills that comprise computational
thinking [See the local appendix at the end of this Introduction: Computational Thinking:
Summary of Views].

 Use these courses to instill a set of cognitive skills such as learning how to create, validate, and
establish relationships among abstractions from data and information on hand, a key skill in
effective modeling, simulation, and validation. This skill in working with abstractions, in turn,
undergirds both the scientific method and computational thinking, and should be a part of every
computationally-oriented course. The differences among such courses help to reinforce the
underlying skills as students meet the same concepts in different contexts.

 Other examples of cognitive skills include: working with the tradeoffs involved with different
representations; moving, where appropriate, from a declarative understanding of a problem to an
imperative understanding of that problem; reducing computationally intractable problems to
related tractable problems; and building, simulating, and validating computational models16 that

14 See "Computational Thinking - Summary of Views" at the end of this Introduction.
15 See "Approach to an Integrated Map of Lean Core Cognitive Skills, Concepts, and Techniques" at the end of
Recommendation 2: Core/Foundation for All Computer Science Graduates
16 When we use the terms "model" and "modeling" in this paper we mean symbolic computational models, not
numeric models, which are sets of differential equations.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 13

shed light on important questions.

Refactoring Computer Science Curricula
2. Core/Foundation for All Computer Science Graduates - lean core with focus on enduring

concepts, techniques, and skills

 A relatively lean core emphasizes foundational concepts and skills while allowing students more
time to explore areas in depth, both by taking courses and by engaging in undergraduate
research17. Additionally, a lean core makes it easier for students with multidisciplinary interests
to pursue a joint major [See Recommendation 4 - Specialization: Integrated Joint Majors] while
still sharing a common experience with computer science majors.

3. Specialization: Tracks, Threads, and Vectors - flexible approaches to gaining understanding
and skills

 Define sets of meaningful specializations to permit students to pursue their interests in a context
that guides their development while providing strong motivation. Ensure that these ‘tracks’ are
specialized enough that a course sequence can lead to a student attaining some reasonable depth
in the area but broad enough that someone in a company or graduate school will be able to fit it
into their institutional context.

4. Specialization: Integrated Joint Majors - deep collaboration among disciplines

 Coherent, integrated multidisciplinary, inter-departmental joint majors provide a balanced
approach that addresses the differences in culture, concepts, and strategies between different
fields by establishing the common ground between them. Use these integrated joint majors to
provide a creative synthesis beyond that which can be provided by a computer science
department alone, one that blends the cultures and mindsets of multiple departments and
synergistically establishes new techniques for problem solving.

Establishing Mastery across the Curricula
5. Design Under Constraints and the Gaining of Mastery - deepening the skill set

 Provide students the ability to attain mastery by gaining experience in learning new
technologies and techniques, building and analyzing artifacts, and learning to understand design
as an iterative process that involves evaluating tradeoffs, analyzing system performance, and
testing at each step. Create design and development experiences that tap into the actual
interests of the students within a structure that both rewards effort and requires
debugging/dealing with the uncertainties and approximations of real-world non-determinacy.

6. Attracting, Selecting, and Preparing Students for Research Careers - developing
computationally-oriented researchers

 Skillfully introduce research problems and their intellectual excitement in all courses, thus
helping to entice potential research students by disabusing them of the notion that our field has
become routinized. Successful courses that attract and excite students present new concepts
within the context of the ongoing research of the R&D community.

 Combine explicit research skill training with an apprenticeship approach to acculturate future
researchers to their communities of practice. Provide systematic guidance in the practices of
computationally-oriented research from freshman year18 through graduation combined with the
support provided by close relationships with graduate students, research groups, and professors.

Structure of each recommendation section

17 See an early precedent for this approach in [Gibbs & Tucker 1986]. "A Model Curriculum for a Liberal Arts
Degree in Computer Science".
18 There is a chicken and egg situation here - students may not know that they are potentially interested in a
research career until they've had a chance to do some research. Therefore we advocate institutional support for
programs that make it easy and natural for a student to experiment with doing research rather than a blanket
expectation that every undergraduate should have a research experience.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 14

Each of the recommendation sections has a common structure:

• Problem/issues

• Goals

• Solution mechanisms and strategies

• Recommendations

Computational Thinking - Summary of Views
Introduction
Computational thinking is a rich and evolving set of cognitive skills, concepts, and techniques that
resists exact definition. It includes algorithmic thinking, but is more than that, parallel thinking, but is
more than that, problem solving, but is more than that, data, state, behavior, interaction, and design,
but is more than that. Indeed, the very difficulty of capturing its essential nature provides a key
argument for the need to address it, however imperfectly, incompletely, and provisionally.

In this overview we give brief quotes from Jeannette Wing, Charles Isbell and Lynn Andrea Stein, Peter
Denning, the NRC Workshop on The Scope and Nature of Computational Thinking report, and the CMU
Center for Computational Thinking.

Jeannette Wing
"The essence of computational thinking is abstraction. In computing, we abstract notions beyond the
physical dimensions of time and space. Our abstractions are extremely general because they are
symbolic, where numeric abstractions are just a special case.

In two ways, our abstractions tend to be richer and more complex than those in the mathematical and
physical sciences. First, our abstractions do not necessarily enjoy the clean, elegant or easily definable
algebraic properties of mathematical abstractions, such as real numbers or sets, of the physical world.
For example, a stack of elements is a common abstract data type used in computing. We would not think
‘to add’ two stacks as we would two integers. An algorithm is an abstraction of a step-by-step procedure
for taking input and producing some desired output. What does it mean ‘to interleave’ two algorithms,
perhaps for efficient parallel processing? A programming language is an abstraction of a set of strings
each of which when interpreted effects some computation. What does it mean ‘to combine’ two
programming languages? These kinds of combinators are themselves abstractions that take careful
thought, perhaps an entire research agenda, to define. Second, because our abstractions are ultimately
implemented to work within the constraints of the physical world, we have to worry about edge cases
and failure cases. What happens when the disk is full or the server is not responding? What happens
when a program encounters at run-time an error that should have been caught at compile time? How do
we get a robot to move down a hallway without bumping into people?

...

And so the nuts and bolts in computational thinking are defining abstractions, working with multiple
layers of abstraction and understanding the relationships among the different layers. Abstractions are
the ‘mental’ tools of computing.

The power of our ‘mental’ tools is amplified by the power of our ‘metal’ tools. Computing is the
automation of our abstractions. We operate by mechanizing our abstractions, abstraction layers and
their relationships. Mechanization is possible due to our precise and exacting notations and models.
Automation implies the need for some kind of computer to interpret the abstractions. The most
obvious kind of computer is a machine, i.e. a physical device with processing, storage and
communication capabilities. Yes, a computer could be a machine, but more subtly it could be a
human. Humans process information; humans compute. In other words, computational thinking
does not require a machine. Moreover, when we consider the combination of a human and a machine
as a computer, we can exploit the combined processing power of a human with that of a machine. For
example, humans are still better than machines at parsing and interpreting images; on the other

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 15

hand, machines are much better at executing certain kinds of instructions far more quickly than
humans and processing datasets far larger than a human can handle."19

Charles Isbell and Lynn Andrea Stein
" As a discipline, computing brings together models, languages, and machines to represent and generate
processes. The heart of computing is not the particular artifacts around which our curricula often
revolve. Instead, this key idea—that models, languages, and machines are equivalent—is the
fundamental core of computing. Further, this idea admits a broad set of practices and specialties,
including computer science, information science, human-centered computing, software engineering, and
many others, as well as what we will call more generally contextualized computing.

From this position, we also argue that the curricula of existing courses should be revisited to inculcate
the computationalist mindset—specifically, core competencies in modeling, scales and limits, simulation,
abstraction, automation, and interpretation of data.

For core computationalists for whom the historical computing curriculum centers on understanding or
using the machine, we propose that courses also include a focus on models and languages— the
intellectual frameworks of computationalist thinking. For contextualized computationalists, curricula
grounded in principles of computationalist thinking tailored to domain-specific needs has the potential to
be transformative, not only by encouraging innovation within a domain but also by creating entirely new
disciplines."20

Peter Denning
"...computing is not just algorithms and data structures; it is transformations of representations. The
interactions are the real action of a field. Their complexities and uncertainties demand constant
experimentation and validation in science and engineering. They make things messy and unpredictable.
They are sources of innovation."21

"Today the term [computational thinking] has been expanded to include thinking with many levels of
abstractions, use of mathematics to develop algorithms, and examining how well a solution scales across
different sizes of problems. There is something even more fundamental than an algorithm: the
representation... Representations convey information. A computation is an evolving representation and
an algorithm is a representation of a method to control the evolution... computational thinking is not a
principle; it is a practice. A practice is a way of doing things at which we can develop various levels of
skill."22

Great Principles of Computing: 23

* Computation

* Communication

* Coordination

* Recollection

* Automation

* Evaluation

* Design

NRC Workshop on The Scope and Nature of Computational
Thinking24

19 [Wing 2008] "Computational thinking and thinking about computing"
20 [Isbell, Stein, et al. 2009] "(Re)Defining Computing Curricula by (Re)Defining Computing"
21 [Denning 2009a] "Computing: The Fourth Great Domain of Science"
22 [Denning 2009b] "Beyond Computational Thinking"
23 [Denning 2007] Great Principles of Computing website - http://cs.gmu.edu/cne/pjd/GP/GP-site/welcome.html
24 [NRC 2010] "Report of a Workshop on The Scope and Nature of Computational Thinking"

CRA-E White Paper: Creating Environments for Computational Researcher Education

Introduction

8/9/10 16

"...computational thinking is a fundamental analytical skill that everyone, not just computer scientists,
can use to help solve problems, design systems, and understand human behavior. As such, they believe
that computational thinking is comparable to the mathematical, linguistic, and logical reasoning that is
taught to all children. This view mirrors the growing recognition that computational thinking (and not
just computation) has begun to influence and shape thinking in many disciplines—Earth sciences,
biology, and statistics, for example. Moreover , computational thinking is likely to benefit not only other
scientists but also everyone else—bankers, stockbrokers, lawyers, car mechanics, sales people, health
care professionals, artists, and so on.

To explore these notions in greater depth, the Computer and Information Science and Engineering
Directorate of the National Science Foundation asked the National Research Council to conduct two
workshops to explore the nature of computational thinking and its cognitive and educational
implications. This report summarizes the first workshop, which focused on the scope and nature of
computational thinking and on articulating what "computational thinking for everyone" might mean...

Under NRC guidelines for conducting workshops and developing report summaries, workshop activities
do not seek consensus and workshop summaries (such as the present volume) cannot be said to
represent “an NRC view” on the subject at hand. This workshop report reveals the plethora of
perspectives on computational thinking..."

The range of perspectives is reflected in the themes used to organize the major section of the report,
"What is Computational Thinking":

 Computational Thinking as a Range of Concepts, Applications, Tools, and Skill Sets

 Computational Thinking as Language and the Importance of Programming

 Computational Thinking as the Automation of Abstractions

 Computational Thinking as a Cognitive Tool

 Computational Thinking in Contexts Without Programming a Computer

CMU Center for Computational Thinking
"Computational thinking is a way of solving problems, designing systems, and understanding human behavior
that draws on concepts fundamental to computer science. To flourish in today's world, computational thinking
has to be a fundamental part of the way people think and understand the world. Computational thinking
means creating and making use of different levels of abstraction, to understand and solve problems more
effectively. Computational thinking means thinking algorithmically and with the ability to apply
mathematical concepts such as induction to develop more efficient, fair, and secure solutions.
Computational thinking means understanding the consequences of scale, not only for reasons of efficiency but
also for economic and social reasons."25

25 http://www.cs.cmu.edu/~CompThink/ - accessed, 3 May 2010.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 17

Computationally-Oriented
Foundations

Recommendation 1: Introductory Courses - addressing a
broad range of student interests
Problem
Computational thinking and methods have become essential tools for those wishing to pursue research
careers in engineering, the physical, life, and social sciences, mathematics, art and design, and the
humanities. Consequently, institutions should encourage all undergraduates contemplating research
careers in these areas to learn about computational thinking early in their education. Indeed, some
schools with a CSTEM (Computing, Science, Technology, Engineering, and Mathematics) focus, e.g.,
Georgia Tech and Harvey Mudd26, now mandate that all their students take an ‘introduction to
computational thinking’ course.

To succeed, departments must address students with different mindsets27 as well as different interests.
For example, there are students who think they dislike problem solving and dread the notion of
programming but love exploring, finding patterns, making things, and other such activities that are also
important to computationally-oriented research. The introductory courses, therefore, must address the
following issues:

• How do we address a diverse and talented undergraduate population in these introductory
courses?

• What cognitive skills, concepts, and techniques should be included in these courses?

• How do we leverage the personal interests and abilities of students?

• How do we integrate student experiences with introductory courses into a meaningful research-
oriented undergraduate experience?

Goals
Computational thinking comprises a rich and evolving set of cognitive skills28, concepts29, and
techniques30,that draw from multiple disciplines whose development spans thousands of years. Yet, one
approach31 treats them as a logical extension to those fundamental skills children learn32 that are
accessible to all ages and mindsets33 and relevant to all disciplines. If successfully embedded in the full
pre-K through undergraduate range, computational thinking could become a common language that

26 The name of the course is not significant; Harvey Mudd, for example, calls its foundations course "Introduction to
Computer Science".
27 See [Gardner 1983] "Frames of Mind", [Nisbett 2003] "The Geography of Thought", and [Nisbett 2009]
"Intelligence and How to Get It", for discussions of the nature and impacts of innate and cultural mindsets on
thinking, learning, and behavior.
28 A cognitive skill is a mental skill required by computational subjects, e.g., identifying patterns in an information
space, which may or may not be thought of as data. Another example is representing that pattern by a symbol or set
of symbols and relationships.
29 A concept is a named abstraction that has a definition, e.g., recursion; interaction; concurrency.
30 A technique is a goal-directed set of operations and strategies, e.g., modeling, simulation, machine learning.
31 [ACM CSTA 2006] "A Model Curriculum for K-12 Computer Science"
32 See [Bransford et al. 1999] "How People Learn, [Donovan & Bransford 2005] How Students Learn"
33 In [Bruner 1960] "The Process of Education", Jerome Bruner asserted that "We begin with the hypothesis that
any subject can be taught effectively in some intellectually honest form to any child at any stage of development.", a
statement that underscores the intention of the "pre-K to Grey" initiative reflected in the CSTA report cited above.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 18

helps bridge the divide between the sciences and the humanities described by C.P. Snow in his 1959
lecture "The Two Cultures and the Scientific Revolution".34

Some of the ways in which these foundations can be introduced include the following:

• Offer a set of appropriate introductory courses that have no pre-requisite beyond high school
mathematics. These courses should be designed to be attractive to students potentially
interested in particular areas of study that are not identified as computer science per se, such as
game design35, computational science36, digital art37, or computational philosophy38.

• Develop a core set of concepts and techniques for these courses (discussed under Solutions below)
that enables students attracted to computationally-oriented approaches through one of the
introductory courses to decide subsequently to deepen their understanding through additional
courses in computer science, continuing on to pursue computationally-oriented research in their
area.

• Ensure that some of the material learned in the introductory course is used in a variety of
undergraduate courses throughout the university. Thus, encourage all departments to design
courses that incorporate computational techniques in meaningful ways.

• Provide CS-oriented introductory courses for those students whose main interests are in
computer science, whether theory or practice.39

Solutions - mechanisms for implementing the goals.

Things to know
At the end of one semester students should have learned:

Converting Patterns of Data to Knowledge
• Methods for exploring an interesting domain to understand what constitutes ‘data’ in that

domain, and then extract and represent that data.

• Methods for deriving and validating information from data, including simple statistical and
visualization tools.

• Methods for analyzing the data to determine what the fundamental issues are for modeling,
simulation, and validation. Case studies with primary documents, similar to HBS (Harvard
Business School) case studies could be an interesting approach.

Representing Relationships as Models and Programs
• A systematic approach to designing, writing, and debugging several hundred line programs.

This should include an understanding of the reasons why programming is a way to manipulate
patterns as well as a tool for problem solving and modeling, and how it compares with - and
augments - other strategies such as the scientific method, mathematics, and classic humanities
analytic strategies.

• The process of moving from an ambiguous problem statement to a computational formulation of
a method for decomposing and solving the problem as a set or hierarchy of subproblems that
solve/implement them.

34 [Snow 1959] "The Two Cultures and the Scientific Revolution". Ironically, as some humanists have been decrying
the loss of a common culture engendered to a large extent by the digital revolution, especially the Web, a new
common culture has been arising from the computational culture embraced by 'digital natives'.
35 USC Survey of Digital Games & Their Technologies http://www.cs.usc.edu/admissions/undergrad/bsgames.htm)
36 University of Utah: Introduction to scientific computing http://www.eng.utah.edu/~cs3200/
37 Stony Brook University: ARS 225 Introductory Digital Art http://www.art.sunysb.edu/undergrad.html
38 Augsburg College: Major in Computational Philosophy http://www.augsburg.edu/cs/degree_requirements.html
39 Examples include Brown's CS017/018, which is theory-oriented, and CS015/016, which is practice-oriented.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 19

• The meaning and use of algorithms, including the importance of and strategies for scaling.

Exploring and Validating Hypotheses and Models
• Methods for using simulations to shed light on problems that are ambiguous or that don’t have

an obvious (closed form) solution.

• Validation strategies that analyze the results of a simulation against the initial hypotheses and
data

Approaches to course design

Computer science and engineering

Many students are drawn to computer science for its theoretical, mathematical, and engineering aspects.
These students are well-served by introductory courses that directly address these interests; the table
below gives several examples, such as Brown University's CS015/016, CS017/018, and CS053, and
CMU's CS15-105.

Contextualization

While domain-based approaches to teaching introductory computationally-oriented courses are not
new40, the motivation for doing so has grown much stronger with the drive to provide 'computational
thinking for everyone'. In 2003, Georgia Tech "...adopted an approach that we call contextualized
computing education. We chose to teach computing in terms of practical domains (a “context”) that
students recognize as important. The context permeates the course, from examples in lecture, to
homework assignments, and even to the textbooks specially written for the courses. We decided to teach
multiple courses, to match majors to relevant contexts."41

Much of the learning in a computational methodology course comes through using a programming
language42 to describe, investigate, and work with topics of interest. For example, humanities and social
sciences students could learn how to represent a pattern they want to explore, such as analyzing voting
bloc behavior or patterns of language use in speeches or documents, how to encode a strategy for doing
that exploration, and how to validate the results against their expectations43.

40 At the CRA-E meeting in Snowbird in 2008 Peter Lee described his work with the Pennsylvania Governor's School
for the Sciences (PGSS), a summer program for bright rising high school seniors. [Unfortunately PGSS was
cancelled for lack of funds in 2009] As he described it, in order to get kids involved with computer science areas such
as compilers or genetic algorithms, you have to "trick kids into doing this", e.g., engage their real interests in
projects that they are motivated to do but which require them to work with the concepts you want to convey. As
Peter put it: "So, putting those things together in service of, for example, analyzing or generating music in a certain
style, ends up attracting a dozen of the 90, whereas only two had signed up for computer science. The majority of
them are girls. This has been consistent over the last handful of years."

Another early example from the 1990s was a CUNY course that used the Internet as it's basis: [Gurwitz 1998] "The
Internet as a Motivating Theme in a Math/Computer Core Course for Nonmajors".
41 [Guzdial 2009] "Teaching Computing to Everyone". The term "contextualized computing" was first introduced by
Mark Guzdial in [Rich et al. 2005] "A CS1 Course Designed to Address Interests of Women" and [Yarosh & Guzdial
2008] "Narrating Data Structures: The Role of Context in CS2".
42 Experience suggests that it may be tricky to teach such a course when there is a significant disparity in
programming experience among the students. Students with little or no programming experience can be
intimidated by observing the more experienced students. This inhibits them from actively participating in class
and, worse yet, can lead them to confuse a lack of experience for a lack of aptitude. Some students with
programming experience could place out of the requirement to take an introductory course. However, some students
manage to acquire some programming experience without learning much about computational thinking, problem
solving, or how to produce a well-structured design. These students might benefit from alternate approaches
including a faster-paced version of the class, a project-oriented approach that requires analysis of the results, or
concept-oriented placement exams that require understanding, not just hacking.
43 See Brown’s CS931 - Introduction to Computation in the Sciences and Humanities
(http://www.cs.brown.edu/courses/csci0931/)

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 20

One version of the course could provide projects from a variety of domains44. This would help the
students appreciate the universality of the basic ideas covered in the course. However, it might also be
productive to provide various versions of the course that tailor the programming projects to fit the
interests of different groups of students; this might be a good way to pique student interest and help
them appreciate the immediate relevance and utility of taking a computational approach to working
with data. Such an approach provides design suites relevant to a particular engineering, science,
humanities, or social science discipline. What all such courses should have in common is the notion of
building a computation that provides a model of, and insight into, an interesting problem or area. For
example, students interested in biology45 might be asked to construct a simulation that sheds light on
the interaction between antibiotics, microphages, and bacteria. Students interested in economics might
be asked to formulate a portfolio management strategy as an optimization problem. Other domains
include computer science itself as theory and as experimental science.46

Recommendations 2 through 5 provide many domain-specific examples that could provide materials for
an introductory foundations course.47

Example Introductory Courses Chart
The chart below includes courses from a wide variety of institutions, ranging from small private liberal
arts colleges to large public and private research universities. Six Brown University introductory
computationally-oriented courses have been included to give a sense of the range that a suite of
introductory courses might have.

Course Course Domain

Brown - CS020 - Concepts and Challenges of
Computer Science

Computer science history and trends - literacy course for non-computer
science majors that introduces programming and analytic skills through
HTML, PHP and Python assignments. No prerequisites.

http://www.cs.brown.edu/courses/csci0020/

Brown - CS015-CS016 - Introduction to Object-
Oriented Programming and Computer Science
and Introduction to Algorithms and Data
Structures

Traditional project-oriented, OO programming in Java with graphics
(CS015) and Java-based introduction to algorithms and data structures
(CS016)

http://www.cs.brown.edu/courses/csci0150/
http://www.cs.brown.edu/courses/csci0160/

Brown - CS017-CS018 - CS: An Integrated
Introduction

Multi-lingual two-semester introduction to the functional and imperative
programming paradigms that includes Scheme, ML, and Java.

http://www.cs.brown.edu/courses/csci0170/
http://www.cs.brown.edu/courses/csci0180/

Brown - CS019 - Programming with Data
Structures and Algorithms

One-semester multi-lingual introduction to computer science for students
with a strong prior computer science background.

http://cs.brown.edu/courses/cs019/2009/

Brown - CS040 - Intro for Engineers and
Scientists

Computational problem-solving techniques for scientists and engineers
using MATLAB and C. Currently it may not be used as part of a CS
major.

http://www.cs.brown.edu/courses/csci0040/

44 See Harvey Mudd’s CS for Scientists (http://www.hmc.edu/newsandevents/Grants%20Fall09.html)
45 An early - [NRC 1987] - report by the National Research Council Committee on Computer-Assisted Modeling.
"Computer-Assisted Modeling: Contributions of Computational Approaches to Elucidating Macromolecular
Structure and Function" describes the process and advantages of computational modeling for macromolecular
biology.
46 Note that contextualization applies to cognitive skills as well: Susan Engel in her insightful paper about good
college teaching strategies and techniques [Engel 2009] describes "the relationship between the tools of a discipline
and the problems that discipline could solve".
47 For example, see CMU's Bachelor of Computer Science and the Arts program and Stanford's Symbolic Systems
program, which are referenced in the Recommendation 3 examples charts, as sources of domain-specific examples
that could be mined for domain-specific introductory courses

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 21

Brown - CS053 - Linear Algebra “A computational approach to linear algebra that provides students
interested in computer science an introduction to vectors and matrices
and their use in modeling and data analysis. The course balances
programming, algorithms, and proof techniques.” This course has no
prerequisites and satisfies requirements for linear algebra in the BSCS
degree.

http://www.cs.brown.edu/courses/csci0053/

Brown - CS931 (Intro to Computation in the
Social Sciences and Humanities)

Humanities and social science problem design for non-CS majors. Topics
covered include data gathering, data analysis, web-based interfaces,
security, and scripting.

http://www.cs.brown.edu/courses/csci0931/

CMU - CS15-105 Principles of Computation - “15-105 is an introduction to the principles
that form the foundation of computer science for students with no prior
background in computing. This course is suitable for students with a
non-technical background who wish to study the key principles of
computer science rather than just computer programming”

http://www.cs.cmu.edu/~tcortina/15-105sp09/courseinfo.html

Georgia Tech - CS1315/CS1316 - Introduction
to Media Computation and Representing
Structure and behavior

Contextualized approach to introducing computing using a theme of
manipulating media

http://coweb.cc.gatech.edu/cs1315

Harvard - CS50 Computer Science Introduction - "Introduction to the intellectual
enterprises of computer science and the art of programming. This course
teaches students how to think algorithmically and solve problems
efficiently. Topics include abstraction, encapsulation, data structures,
databases, memory management, software development, virtualization,
and websites. Languages include C, PHP, and JavaScript plus SQL, CSS,
and XHTML. Problem sets inspired by real-world domains of biology,
cryptography, finance, forensics, and gaming. Designed for concentrators
and non-concentrators alike, with or without prior programming
experience."

http://www.cs50.net/

Harvey Mudd - CS for Scientists Computational approaches to science applications.

http://www.hmc.edu/newsandevents/Grants%20Fall09.html

MIT - 6.00 - Introduction to Computer Science
and Programming

Introduction to computer science and programming for students with
little or no programming experience. Students learn how to program and
how to use computational techniques to solve problems. Topics include
algorithms, simulation techniques, and use of software libraries.
Assignments are done using the Python programming language.

http://web.mit.edu/6.00/www/info.shtml

MIT 6.01- Introduction to EECS 1 Mobile robots focus on computational engineering. Assume a previous
knowledge of programming.

http://mit.edu/6.01/mercurial/fall09/www/index.html

Princeton - Computational Universe Computational Universe - Computers have brought the world to our
fingertips. We will try to understand at a basic level the science -- old
and new -- underlying this new Computational Universe. Our quest
takes us on a broad sweep of scientific knowledge and related
technologies: propositional logic of the ancient Greeks (microprocessors);
quantum mechanics (silicon chips); network and system phenomena
(internet and search engines); computational intractability (secure
encryption); and efficient algorithms (genomic sequencing). Ultimately,
this study makes us look anew at ourselves -- our genome; language;
music; "knowledge"; and, above all, the mystery of our intelligence."

http://www.cs.princeton.edu/courses/archive/spring08/cos116/

Purdue - SECANT SECANT: Science Education in Computational Thinking

"SECANT is a community building project funded through the NSF
CPATH (Pathways to Revitalized Undergraduate Computing Education)

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 22

program1). The goal of SECANT is to bring together scientists who
recognize that computer science has become indispensable to scientific
inquiry and is set to permeate science in a manner that is
transformative, changing computing from a service discipline for the
sciences into a fundamental paradigm for science in general. The effort
complements Purdue's recently adopted College of Science curriculum,
which includes a requirement that all science students take at least one
course in computing and at least one course giving a multi-disciplinary
experience.

"http://secant.cs.purdue.edu/

Towson - Honors 223 Honors 223 - Honors Special Seminar Topic: Everyday Computational
Thinking

"This course provides an introduction to "computational thinking,"
defined as the methods, models and other mental tools related to the
understanding, utilization and design of computational processes as
executed by humans or computers. Computational thinking manifests
itself in the everyday tasks of problem solving, the everyday interactions
with systems, and the everyday task of information processing. This
course is one of five new "Computational Thinking" courses to be offered
through the Honors College at Towson University in the 2009-2010
academic year. The development of these courses was supported by
National Science Foundation CPATH grant # 0829661."

http://triton.towson.edu/users/dierbach/Pages/Courses/Honors%20ECT/

HONR223.htm

Union College/Lafayette College Campus Wide Computation Initiative: A New Model for Computing
Education.

"Union and Lafayette Colleges have received a five-year $1.15M National
Science Foundation grant for our proposal Campus Wide Computation
Initiative: A New Model for Computing Education. The motivation of the
CPATH solicitation was to revitalize undergraduate computing
education. Rather than focus specifically on computer science
enrollments, the goal of our project is to broaden the pool of students who
are prepared to integrate computation into their fields of study. We
believe that computation can play a role in disciplines across our
campuses, and have designed the grant activities for the broadest
possible participation."

http://cs.union.edu/~barrv/Grants/computational-science.html

University of Washington

BENEFIT

BENEFIT (Fluency with Information Technology) course.

"Fluency with Information Technology (FIT) is the knowledge to
explore, interact with, and live in a society that has become more and
more dependent not just on technology in general, but on information
technology (IT) in particular. As technology advances, so too must its
users adapt in order to harness the skills necessary to employ IT to their
advantage. By becoming a FIT individual, you are better able to apply
today's information technology effectively in your personal and
professional life, and to adapt it to personally relevant goals.

Gaining technical skills, or technical literacy, is only the first BENEFIT
of your journey towards fluency. BENEFIT goes beyond literacy to
provide the additional concepts and capabilities that will allow you to
ride the wave of ever-changing technology."

Based on [CSTB 1999] "Being Fluent with Information Technology"

http://courses.washington.edu/benefit/FIT100/

University of Utah Access Program and Engineering Scholars Program, University of Utah

http://www.science.utah.edu/access.html

http://www.coe.utah.edu/current-undergrad/esp.php

These are not computational in orientation but do provide excellent
examples of introduction and inspiration in science and engineering.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 1: Introductory Courses

8/9/10 23

Recommendations
• Introduce students to computational approaches through foundation courses across the

spectrum of student interests, instilling a set of cognitive skills such as those described earlier in
the Introduction - "... learning how to create, validate, and establish relationships among
abstractions from data and information on hand, a key skill in effective modeling, simulation,
and validation.... working with the tradeoffs involved with different representations; moving,
where appropriate, from a declarative understanding of a problem to an imperative
understanding of that problem; reducing computationally intractable problems to related
tractable problems; and building, simulating, and validating computational models48 that shed
light on important questions."

• Emphasize the creation of appropriate and usable sets of representations and
relationships among different levels of abstractions; a deep understanding of how to represent
information is one of the most difficult cognitive skills students need to learn. The practice of
presenting accessible but important research papers as part of introductory courses not only
introduces students to actual research work but also starts to build an understanding of how to
compare different representations, analyze unstated assumptions, and build a common
representation structure across a set of related projects.

• Establish collaborative efforts involving a computer science department, which could assume
primary responsibility for the courses, and the departments whose prospective students are
expected to take one of the courses. Additionally, the computer science department should help
other departments in developing follow-on courses that take advantage of computational
thinking taught in the first course.

• Begin to shape a collaborative student culture that will mature into effective professional
teamwork skills, as described in Recommendations Two through Six.

• Encourage students to begin building a digital portfolio, including journal entries,
possibly online [dealing appropriately with privacy issues], that carries through the core ideas
and can be added to and be available for research ideas, building mastery, understanding one's
own perspective, use in applying to graduate school. See Recommendation Six for a more
complete description of this idea.

48 When we use the terms "model" and "modeling" in this paper we mean symbolic computational models, not
numeric models, which are sets of differential equations.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Refactoring Computer Science Curricula

8/9/10 24

Refactoring Computer Science
Curricula

As described in the Introduction, the explosion of computationally-oriented content into essentially all
academic areas has generated a rethinking of what constitutes computer science and how to address the
various forms of "computational-X". Furthermore, rapidly changing situations drive the need for a
flexible environment that facilitates adaptation to constant change, including the changing interests and
mindsets of students. Finally, to attract and prepare top students for research careers, institutions must
provide relevant course offerings, and opportunities to work in areas and with researchers who are on
the leading edge of current research.

As computer science departments have embraced a wider and wider range of subjects, they are finding it
necessary to rethink the foundation set of knowledge and skills. The approach we advocate, and one
which is based in part on what multiple leading computer science departments are doing is to refactor
curricula into a lean core set of foundational concepts and skills that all students learn, followed by an
expanding set of specialized tracks among which students can choose. These tracks allow students to
develop a depth of understanding in one or more sub-fields of interest.

The core+tracks strategy, of course, is not new. Computer science as well as even more mature subject
areas, ranging from sciences such as chemistry and physics to humanities such as history and English
literature have long addressed the wide, expanding, and evolving scope of their domains by identifying
foundational subjects that all undergraduate majors in the field must take followed by upper-level
courses in a specialty.

What is new is the attempt to address the expanding breadth of the subjects being incorporated into the
computational framework as well as the way the methodologies of computational thinking, mathematics,
and science are impacting all academic domains. Thus, the goal of refactoring is to structure curricula to
accommodate change in content, context, and students by supporting flexibility and the gradual
acquisition of skills over the full range of undergraduate courses. In particular, for maxiumum
flexibility we endorse a trend of trimming down the core and moving trimmed material to the
specialization tracks.

Refactoring is not a trivial process and needs to be undertaken with a clear sense of the foundational
abstractions, skills, and topics of computer science in general, as well as the properties and constraints
of departments and their relationship to other groups and fields. Each department must identify the
specific courses that constitute a core for it, articulate why these are, and then identify how the
specialization sequences are to be structured, how they relate to the core, how they interact with each
other, and how they satisfy the requirements that graduates could expect from potential graduate
schools.

A synergistic approach to refactoring addresses major interdisciplinary areas through the establishment
of integrated joint majors. Integrated joint majors work best with domains where there is a strong
balance between two or more major subject areas. Thus, this section has three recommendation areas:

2. Core/Foundation for All Computer Science Graduates - lean core with focus on enduring
cognitive skills, concepts, and techniques

3. Specialization: Tracks, Threads, and Vectors - flexible approaches to gaining understanding
and skills

4. Specialization: Integrated Joint Majors - deep collaboration among disciplines

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 25

Recommendation 2: Core/Foundation for All Computer
Science Graduates - lean core with focus on enduring
cognitive skills, concepts, and techniques
Problem
The computational core plays an important role in defining a common intellectual foundation for the
field of computer science, and is critical to providing students with the flexibility to enter new sub-fields
as they develop or as the student’s interests change. Defining this common intellectual foundation is an
ongoing task, changing as the relationship of computer science within itself and to the rest of the world
changes.

Thus, the problem that must be addressed is what cognitive skills, concepts, and techniques the core
should consist of, how this should be decided, how it should be embodied in specific courses and
programs, and - perhaps most important - what the curricular change mechanisms49 are that can and
should evolve as the inevitable changes occur in the years to come.

Goals
Current attempts to re-envision and reposition computer science have resulted in broad initiatives
ranging from Denning’s Great Principles50 (an approach that attempts to identify the principles
undergirding and interlinking the various subject areas of computer science) to the large ACM/IEEE
curriculum task forces51. CRA-E, advocates a "lean core+specialization" approach that identifies and
emphasizes the foundational core while allowing students more time to explore topics and domains in
depth, both by taking courses and by engaging in undergraduate research52. A lean core makes it easier
for students with multidisciplinary interests to pursue a joint major [See Recommendation 4 -
Specialization: Integrated Joint Majors] while still sharing a common experience with computer science
majors. In addition, the explicit identification of the lean core components [See Content Area Details
below in this recommendation] enables a wide range of institutions to identify resources, establish a
strong basic computer science foundation, and help their graduates pursue computationally-oriented
research careers.

The observations motivating this proposal, and many of the ideas embodied in it, have been derived from
examining recent curricular changes at a number of leading-edge institutions, both large and small,
including CMU53, Cornell54, Georgia Tech55, MIT56, Harvey Mudd57, Olin58, and Stanford59. While these
programs differ from each other in many respects, there is considerable commonality:

• Each of these departments has reduced the number of core requirements by eliminating the need
to take courses, that were once thought central to computer science, e.g., compilers or theory of

49 See Recommendations 3 and 4 for examples of curricular change mechanisms.
50 [Denning 2007] "Great Principles of Computing website"
51 [ACM 2010] "ACM Curriculum Reports"
52 See [Gibbs & Tucker 1986] referred to in Recommendation 1 for an early approach, and the Olin College small
footprint approach for a current example: [Downey & Stein 2006] "Designing a small-footprint curriculum in
computer science"
53 http://www.csd.cs.cmu.edu/education/bscs/currreq.html
54 http://www.cs.cornell.edu/ugrad/CSMajorTransition08-09.htm
55 http://www.cc.gatech.edu/future/undergraduates/bscs/threads
56 http://www.eecs.mit.edu/ug/newcurriculum/SBCS_6-3.html
57 http://www.hmc.edu/academicsclinicresearch1.html
58 http://www.olin.edu/academics/olin_history/cdmb_report.html
59 [Sahami et al. 2010] "Expanding the frontiers of computer science: designing a curriculum to reflect a diverse
field"

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 26

computing. Students interested in learning about these areas will find courses dealing with
them in a specialization [See Recommendation 3 - Specialization: Tracks, Threads, and Vectors].

• Some fields that were typically represented by one or two core courses have evolved into large
and active research areas, for example computer graphics gave rise to computer games and
digital media, deserving of their own tracks.

• Additionally, some areas that have not historically been thought of as central to computer
science, such as probability and statistics, have entered a number of core curricula and play a
prominent role in many of the tracks as the need for dealing with uncertainty, massive data sets,
and simulation has become more prominent. Thus, we recommend some coverage of probability
and statistics in the core.

Solutions - Mechanisms for Implementing the Goals
The components of the lean core comprise cognitive skills, concepts, and techniques embedded within
specific content areas. We first give an overview of each component, with an expanded section on the
content area details. Then, we provide representative lists of cognitive skills, one approach to lean core
concepts, and lastly a small set of techniques. Our set builds upon our experience as well as being
influenced in part by the curricular restructuring at CMU, Cornell, Georgia Tech, Harvey Mudd, MIT,
and Stanford, and the thinking of Peter Denning, Jeannette Wing, Charles Isbell, and Lynn Andrea
Stein and is meant to be representative and illustrative, not definitive.

To repeat and extend the definitions from Recommendation One:

Cognitive skills: A cognitive skill is a mental skill required to understand and practice computational
subjects. Cognitive skills include, among others, traditional problem solving and mathematical skills,
such as pattern recognition, facility with different levels of abstraction and representation, and inductive
reasoning as well as the critical thinking, analysis, and synthesis skills gained from work in the
humanities and social sciences.

Concepts: A concept is a named abstraction that has a definition, such as recursion and concurrency.
Concepts are generators in the sense that they underlie and give meaning to computer/computational
science. They lead to specific techniques that instantiate the concept. They include: algorithmic
thinking and problem analysis, levels of abstractions, representation, approximation, and dealing with
errors, constraints on computation and computational complexity, data structures and algorithms,
transformation and patterns, communication and coordination, optimization, flow of control, and human-
computer interaction.

Techniques: A technique is a goal-directed set of strategies and operations, such as modeling,
simulation, and machine learning. Techniques are strategies and operations that manipulate data,
apply across domains, and are grounded in the real physical world. They include such areas as:
mathematical modeling, numeric simulation, programming languages, massive data set exploration60,
scientific method, and proof techniques.

Content areas/domains: In this description we describe our recommendations for the lean core content
that will provide the foundation for learning the essential and enduring cognitive skills, concepts, and
techniques needed by future computationally-oriented researchers.

Content Area Details
The core, as we envision it, has two parts. The first part, which we call "the shared core", is not specific
to computer science, and describes a set of knowledge and skills that should be acquired by every

60 See [Hey et al. 2009] "The Fourth Paradigm: Data-Intensive Scientific Discovery": "Increasingly, scientific
breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore
massive datasets. The speed at which any given scientific discipline advances will depend on how well its
researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow
management, visualization, and cloud computing technologies."

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 27

undergraduate contemplating a computationally-oriented research career. It will have much in common
with what students in other CSTEM disciplines study as core.

The second part, which we call "the computer science core", discusses additional knowledge and skills
that should be acquired by those contemplating a research career in any branch of computer science and
gives the rationale behind those choices - how they provide a necessary and sufficient foundation for
current, and as yet unforeseen, specialized tracks.

[See Recommendations 1, 5, and 6 for more details about the lean core component skills and how they
could develop throughout the undergraduate curriculum.]

Computational Thinking/Methodology Introduction: In some implementations of these
recommendations the introductory course described in Recommendation One will be part of the
computer science core, while in others it may well be grounded in a domain that lies in the shared core
and would build a bridge between fields. For example, a computationally-oriented linear algebra
course61 could serve as an introductory course for mathematically-inclined students.

A different approach to the introductory course might provide exposure to methods for using
computation to understand specific domains ranging from the sciences to the humanities. While in some
versions the student may do a substantial amount of programming, programming skill is not the goal;
the primary intellectual focus will be on using computation to gain insights into specific domains.

Shared Core: Research is often multidisciplinary. Undergraduates are, therefore, well advised to
acquire a broad multidisciplinary education. However, acquiring any particular set of knowledge or
skills is less important than exposure to the different modes of thought associated with different
branches of mathematics, science, and the humanities, in addition to an introduction to computational
thinking.

Consequently, the particular topics recommended here should be viewed as illustrative rather than
prescriptive.

• Mathematics: calculus and analytic geometry provide exposure both to thinking in the
continuous domain and to geometric thinking. Linear algebra provides exposure to modeling
problems as systems of equations and to the representational roles and relationships of vectors
and matrices. Probability and statistics provide exposure to mathematical reasoning in the
presence of uncertainty. To provide both computational and mathematical undergirding, the
syllabus should include applications, algorithms, and proofs.

• Sciences: physical sciences, such as physics or chemistry, and life sciences, such as biology or
neuroscience, provide experience with the various uses of the scientific method - experimental,
theoretical, and naturalist. The sciences provide training in modeling, simulation, and
validation, including the issues of what constitutes a viable hypothesis, how to choose what to
include in a model, what the assumptions are, validation of results, and what the implications
are.

• Humanities: provide training in critical analysis and synthesis in areas where the information
may be ambiguous, subjective, and controversial. Some classical critical reading, writing, and
thinking skills include building logically correct arguments, detecting logical fallacies,
identifying implicit assumptions, and managing complex and contradictory arguments and
information.

Computer Science Core: The four areas described below can be implemented in a variety of ways,
depending on the particular faculty background and research interests. For example, the advanced
programming area could be implemented in a design studio format or as a software engineering
practicum offered in the context of an industrial partnership.

61 See Brown University's CS053.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 28

The goal is to give undergraduates a foundational set of computationally-oriented concepts and skills,
along with a taste of what research in different areas of computer science might be like. They can then
choose to learn more about specific areas by completing their degree in specialized tracks. The
foundational concepts would include the following:

• Mathematical and logical foundations for computer science: Different kinds of computer science
research build upon different mathematical foundations. For the most part, these are the same
mathematical foundations used by other scientists and engineers. There are, however, a few
areas that are not likely to be touched upon in courses of the kind discussed in under the Shared
Core. This area provides a grounding of some of these topics, including formal logic62 and proof
techniques, induction, and sets/functions/relations. The topics covered should provide the
mathematical tools necessary to study more advanced topics such as program analysis,
algorithm and protocol design, cryptography, etc.

• Algorithms: All research in computer science requires an understanding of algorithmic thinking
and techniques. Some of this will have been introduced in the introductory courses, but this area
should go considerably deeper. Students should acquire a good understanding of orders of
growth, basic optimization techniques, the relationship of data representations to performance
on contemporary computing systems, and the uses of randomness.

• Advanced programming: While all students will have learned to write small programs in their
introductory courses [See Recommendation 1 - Introductory Courses], they will not have learned
much about the engineering that goes into producing high quality software. This area helps
them learn to design, implement, and test moderately-sized (several thousand lines) programs of
the sort produced in academic research groups. The implementation should include a team
project and provide the students with experience of incorporating/modifying existing building
blocks, designing interactive user interfaces, exploiting concurrency and dealing with
probabilistic issues of the sort dealt with in machine learning problems. Note that a design
studio approach is well suited to this area.

• The computation stack: This area provides a vertically integrated look at how a modern
computation system is built. It covers architectures for multi-core chips, computer organization,
operating systems, and distributed systems. Many of these topics are related to the physical
constraints that govern the efficiency of computing hardware. Unlike traditional versions of this
material there should be considerable emphasis on parallelism, communication, and scalability.
A topic of particular relevance is data-intensive, cloud computing that is done on huge clusters
where software rather than hardware is used to achieve reliability.

Approach to an Integrated Map of Lean Core Cognitive Skills,
Concepts, and Techniques
The interactive NSDL AAAS Science Literacy Maps63 cited below provide an excellent model for a tool
that could help guide both students and organizations in learning about and using core computational

62 In [Vardi 2009] Moshe Vardi, current editor-in-chief of ACM Communications, states: "Logic has been called 'the
calculus of computer science'. The argument is that logic plays a fundamental role in computer science, similar to
that played by calculus in the physical sciences and traditional engineering disciplines. Indeed, logic plays an
important role in areas of Computer Science as disparate as architecture (logic gates), software engineering
(specification and verification), programming languages (semantics, logic programming), databases (relational
algebra and SQL), artificial intelligence (automatic theorem proving), algorithms (complexity and expressiveness),
and theory of computation (general notions of computability)."
63 See the NSDL Strand Maps (http://strandmaps.nsdl.org/cms1-2/docs/index.jsp) - "NSDL Science Literacy Maps are
a tool for teachers and students to find resources that relate to specific science and math concepts. The maps
illustrate connections between concepts as well as how concepts build upon one another across grade levels. Clicking
on a concept within the maps will show NSDL resources relevant to the concept, as well as information about
related AAAS Project 2061 Benchmarks and National Science Education Standards."

"The Strand Map Service (SMS) (http://strandmaps.nsdl.org/cms1-2/docs/index.jsp) provides an interactive graphical
interface that helps K-12 teachers and students understand the relationships between science concepts. The

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 29

cognitive skills, concepts, and techniques. We encourage research into methods for creating and
exploring an integrated, interactive map of how the cognitive skills, concepts, and techniques interact
with each other in a lean core. To initiate that endeavor we present here a set of representative lists as
starting seeds.

Cognitive Skills
Abstractions - creating and validating

Algorithmic thinking - representing information, working with constraints and automating the
process

Analysis - examining the components and structure of concepts, data, and research results

Approximations - estimating from data observations and representing in algorithmic form

Assumptions - identifying and validating

Automation - representing processes in terms of repeated operations such as iteration and recursion

Comparing and contrasting - identifying the way in which two or more things are similar and
different. The basis for creating abstractions.

Critical reading and writing - close attention to the semantics of terms, unstated assumptions, and
relationships with other work. Related work sections in research papers and reporting on papers in
seminars provide training in this skill

Debugging - detecting pattern anomalies, using isolation strategies

Decomposing - complex entities into simpler ones

Designing - integrating user, performance, simplicity, and reliability concerns

Evaluating results in terms of assumptions and goals

Exploring - observing and identifying patterns for possible classification

Hypotheses - pattern recognition and assumption use in forming

Integrating disparate data and concepts

Interaction - identifying and representing different roles and their interrelationships; developing
communication mechanisms among the different roles

Logical analysis of representation relationships

Parallel thinking - identifying sub-components that don't share dependencies

Patterns - recognition and classification

Planning - setting goals, developing strategies, and outlining tasks and schedules to accomplish the
goal

Problem solving - working with time and space constraints, decomposing complex problems,

Rapid prototyping - integrating representation relationships, implementing, and evaluating the
outcomes

Reasoning under uncertainty - reasoning and making decisions based on incomplete and/or
uncertain data and models

Representing abstractions and their relationships through notations and language

Scaling - understanding time/space/and power constraints

Searching - focused exploration

Symbols and notations - representing and manipulating information and relationships

interactive maps are available through a public Web 2.0 JavaScript API and a REST API that lets developers embed
the maps in Web sites and display educational resources and other content in the maps."

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 30

Synthesis - combining components of concepts, data, or research into a new construction

Tinkering - manipulating portions of existing entities

Tradeoffs - working with

Translating qualitative insights into computative representations

Concepts and Principles
Note: As many as possible of these core concepts/principles and their simplest expressions as techniques
should be covered at some level in introductory courses - the spiral approach64. As stated above, this
summary, which is not intended to be definitive but only as a starter kit - each institution/department
will have its own collection. Our list builds upon our own experience combined with contributions from
the curricular restructuring at CMU, Cornell, Georgia Tech, Harvey Mudd, MIT, and Stanford, and the
thinking of Jeannette Wing, Lynn Andrea Stein, and Peter Denning.

Algorithmic thinking and problem analysis

 Problem decomposition

 o divide and conquer

 o levels of abstractions

 Reasoning

 o correctness, logics, invariants, verification, debugging

 Time and space constraints

Abstractions (levels of)

 What to model

 o salients, constraints, pitfalls in assumptions and in approximations

 How to model it

 o what type

 o multidisciplinary models

 How to implement the model

 o solve analytically

 o simulate

 - kinds of simulation

 o visualize the results

Representation, approximation, and dealing with errors

 Data

 o types of data to be represented

 o representation techniques and formats, and their limitations

 Behavior

 See the next section - Techniques - and, in this section - Concepts and Principles:

 - Processing techniques and their limitations

 - Flow of control

Processing techniques and their limitations

 Linearization

 Kinds of simulation

 Granularity in spatio-temporal sampling

64 See [Bruner 1960] "The Process of Education"

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 31

Computational models and constraints on computation

 Models of computations...

 o automata and grammars

 o computation graphs

 o dataflow and Petri Nets

 o ATN

 Scaling - constraints and tradeoffs in time, space, power, ...

 Fault tolerance, reliability

 Complexity, intractability, undecidability

Data structures and algorithms

 (the usual and growing collections)

 Graphs and networks

 o physical

 o virtual

 o social

 o hypertext

Transformation and Patterns

 Transformation

 o mapping between representations

 o examples: rule-based systems...

 Patterns

 o defining -> searching vs. discovering/recognizing

 o examples: machine learning...

 Language models

Information, Knowledge, and Machine Learning

 Information

 o data models

 o query languages

 o issues - data integrity, ...

 Knowledge

 o representaton

 o logical reasoning and cognition

 o examples - natural language processing, ...

 Machine learning

 o supervised and unsupervised learning

 o examples - data mining, robotics, ...

Communication and coordination

 Abstraction levels and protocols

 Centralized/distributed

 Models such as

 o synchronous/asynchronous

 o broadcast/P2P

 o client‐server

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 32

 o shared memory/message‐passing

 o blackboard architecture

 o cloud

 Error handling

 o concurrency control problems [Denning] and deadlock

Flow of control

 Sequential

 Conditional

 Iteration

 Recursion

 Parallelism

 o co-routines

 o threads and processes

 o multi-processing

 o multi-core

 o distributed

 Non-deterministic computation

The human element

 Why the human element matters

 What aspects to consider

 o perception

 o cognition

 o interaction

 o social dynamics

 o ...

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 2: Core/Foundation for All Computer Science Graduates

8/9/10 33

Techniques
Abstraction mechanisms

Combinatorics

Distributed processing

Exploration of data-intensive subjects

Machine learning

Modeling

Numerical Methods

Programming

Proof techniques

Scientific method

Simulation

Symbol manipulation

System design

Recommendations
Lean core with focus on the minimum essential cognitive skills, concepts, and techniques.

• Having a relatively lean core emphasizes foundational cognitive skills and concepts while
allowing students more time to explore areas in depth, both by taking courses and by engaging in
undergraduate research.

• The deep issues of mastery and skills faced by the core have strong connections to the issues
discussed in Recommendation 5 - Design under Constraints and the Gaining of Mastery.

• A lean core makes it easier for students with multidisciplinary interests to pursue a joint
major [See Recommendation 4 - Specialization: Integrated Joint Majors], while still sharing a
common experience with computer science majors.

• The explicit identification of the lean core components makes it easier for a wide range of
institutions to identify resources, establish a strong basic computer science foundation, and
help their graduates pursue computationally-oriented research careers.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 3: Specialization - Tracks, Threads, and Vectors

8/9/10 34

Recommendation 3: Specialization - Tracks, Threads, and
Vectors - flexible approaches to gaining understanding
and skills
Problem
Commitment to a lean core of fundamental concept and content areas opens the question of how to guide
students beyond traditional computer science tracks such as systems, languages, AI, and theory. The
discipline of computing is now so broad that we can’t expect students to be conversant with key ideas in
each of the sub-disciplines available to them.

Furthermore, these sub-disciplines themselves are subject to change, evolving rapidly as new areas
become important and older areas fade or change their focus. In addition, students are attracted to
domain-focused content that appeals to their talents, mindsets, and interests. Finally, students benefit
more when they are helped to attain real depth in one or more areas of specialization as opposed to
simply gathering a scattershot collection of electives.

Goal
Define sets of meaningful specializations that represent important aspects of computing and that permit
students to pursue their interests in a context that guides their development while providing significant
motivation to persist. Such contextualized computing tracks should be specialized enough that a course
sequence can lead to a student mastering the fundamentals of an area [See Recommendation 5 - Design
under Constraints and the Gaining of Mastery], yet broad enough that prospective employers and
graduate schools will be able to fit it into their reference frame

During the 4-5 year process of achieving this mastery students develop cognitive skills that persist as
they reencounter those skills in new domains and challenges. For example, they must develop accurate
abstractions from data in all computationally-oriented courses, whether in a digital media track or a
computational biology track.

Solutions - Mechanisms for Implementing the Goal
As Furst, Isbell, and Guzdial point out in their SIGCSE 2007 paper on the design of Georgia Tech’s
Threads program65, specialized ‘tracks’ (Threads in Georgia Tech’s case) are extremely context-sensitive
to the particular school; domain as well as institution type and size and context are critical. Tracks can
be rooted in introductory courses and use the mastery and design courses described in Recommendation
5 - Design under Constraints and the Gaining of Mastery. Related specialization approaches include
vectors and minors. They represent a computer science-focused approach to specialization, while double
majors and traditional joint majors include department-centered courses from other departments as well
as computer science. The most consolidated approach, integrated joint majors which is described in
Recommendation 4 - Specialization: Integrated Joint Majors, represent a blended-culture approach of
computer science and another domain.

Tracks
Tracks provide a set of related courses intended to provide additional depth in one or more areas. At
Stanford, gateway courses provide overviews so that students can sample a track before making a
decision about whether or not to continue in that area. Stanford66 also provides an "unspecialized track
for students who take 4 or 5 gateway courses without finding a single area they like best".

65 [Furst et al. 2007] “Threads™: How to restructure a computer science curriculum for a flat world”.
66 http://csmajor.stanford.edu/Tracks.shtml

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 3: Specialization - Tracks, Threads, and Vectors

8/9/10 35

Threads
Georgia Tech’s approach to specialization is a highly structured and intertwined set of contexts that
[Furst et al 2007] describe as follows: “Threads form a cohesive, coordinated set of contexts for
understanding computing. The union of all threads covers the breadth ‘computer science’. The union of
any two threads is sufficient to cover a computer science degree.”

Vectors
Cornell’s specialization format is called vectors. It describes the reasoning behind it as follows: “The
term ‘vector’ is meant to be evocative. Vectors have a direction (intellectual coherence) and a magnitude
(coursework requirements), and need not be even close to orthogonal, but rather can have high inner
product (overlap). We thus did not take a “top-down” approach of trying to divide computer science up
into a relatively few distinct sub-fields, but rather, a “bottom-up” approach, where we can create new
vectors on the fly as the field evolves.”

Double Majors/Traditional Joint Majors
Double majors range from traditional combinations such as Harvey Mudd’s 67Computer Science and
Mathematics to programs like Brown’s 68Computer Science and Economics, CMU’s 69BCSA (Bachelor of
Computer Science and the Arts), and Georgia Tech’s 70Computational Media.

Minors
Minors fit into the classic major/minor undergraduate path and provide a way for non-computer science
majors to incorporate computer science elements with minimal administrative load, as well as a way for
computer science majors to incorporate their domain of interest, such as history or music71. Harvey
Mudd has an interesting approach in that students who have a non-HMC (Harvey Mudd College) major
at one of the other Claremont colleges (it must be a major that is not offered at HMC) can take a
computer science minor at HMC.

Specialization Program Examples Chart
School Program Type Description

CMU Double Major Bachelor of Computer Science and Arts (BCSA) Degree Program:
Sponsored by the School of Computer Science (SCS) and the College of Fine Arts
(CFA) at Carnegie Mellon. “The BCSA curriculum has three main components:
general core requirements, fine arts concentration requirements, and computer
sciences concentration requirements. Each student’s course of study is structured
so they can complete this rigorous program in four years.”

http://www.cmu.edu/interdisciplinary/programs/bcsaprogram.html

Cornell Vectors Computer science majors are required to complete one vector from among the
following current set: Renaissance (Basis), Network Science, Artificial
Intelligence, Programming Languages, Computational Science and Engineering,
Security and Trustworthy Systems, Data-Intensive Computing, Software
Engineering / Code Warrior, Graphics, Systems, Human-Language Technologies,
Theory

http://www.cs.cornell.edu/ugrad/vectors.htm

http://www.cs.cornell.edu/degreeprogs/ugrad/CSMajor/Vectors/index.htm

http://www.cs.cornell.edu/ugrad/CSMajorTransition08-09.htm

Georgia Tech Threads There are eight threads: Modeling & Simulation, Devices, Theory, Information
Internetworks, Intelligence, Media, People, and Platforms. CS majors are

67 http://www.cs.hmc.edu/program/csmath-major
68 http://www.cs.brown.edu/ugrad/concentrations/cs-econ_scb-reqs.html
69 http://www.cmu.edu/interdisciplinary/programs/bcsaprogram.html
70 http://lcc.gatech.edu/compumedia/
71 CMU requires computer science majors to minor in something else.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 3: Specialization - Tracks, Threads, and Vectors

8/9/10 36

required to complete any two threads for their degree, which provides 28 possible
combinations.

Minors in Computer Science select courses from among the Threads, with a
requirement that at least two of the courses be from the same thread.

http://www.cc.gatech.edu/future/undergraduates/bscs/threads/

http://www.cc.gatech.edu/future/undergraduates/csminor

 Traditional Joint
Major

“The Bachelor of Science in Computational Media (BSCM) was developed in
recognition of computing’s significant role in communication and expression, and
is a joint offering between the College of Computing and the School of Literature
Communication and Culture within the Ivan Allen College of Liberal Arts.”

http://www.cc.gatech.edu/future/undergraduates/bscm

http://lcc.gatech.edu/compumedia/

Harvey Mudd Traditional Joint
Major

This small (~700 students) CSTEM-oriented liberal arts college handles
specialization in several creative ways - utilizing collaboration among
departments of the school, cooperation with area colleges and joint work with
industry and research institutions. Students may elect a computer science and
mathematics joint major, a standard computer science major, or a computer
science minor with a major taken at another area college.

 Minor “The HMC CS minor is designed for students who want to pursue other interests
but who would also like to build a background in computer science. It is available
only to students with an off-campus major.”

http://www.cs.hmc.edu/program/cs-minor

http://www.hmc.edu/academicsclinicresearch/majors/offcampusmajor.html

MIT Theme areas “While breadth is important, it is also crucial for students to attain mastery in
some area. This gives satisfaction and a sense of achievement, as well as the
confidence and ability to go on to master new areas. In this curriculum, we will
ask undergraduates to choose two specialization areas to study in depth, and to
build a curriculum of foundational subjects that support study in those areas.”

http://www.eecs.mit.edu/ug/newcurriculum/ugcur-newsletter06.html

http://www.eecs.mit.edu/ug/newcurriculum/index.html

Olin Specialization
and Realization

"... the Olin curriculum consists of three phases: foundation , which emphasizes
mastering and applying technical fundamentals in substantial engineering
projects; specialization , in which students develop and apply in-depth knowledge
in their chosen fields; and realization , in which students bring their education to
bear on problems approaching professional practice. In all three phases of the
curriculum, students are engaged in interdisciplinary engineering projects that
require them to put theory into practice, to put engineering in context, and to
develop teaming and management skills."

http://www.olin.edu/academics/curriculum.aspx

http://www.olin.edu/academics/olin_history/cdmb_report.html

Stanford Tracks Stanford’s track system provides a broad set of options for exploring different
interests, with a great deal of flexibility ranging from an unspecialized track for
those students who don’t find a single area they like best, to eight approved
tracks, to individually-designed tracks.

http://cs.stanford.edu/degrees/undergrad/Tracks.shtml

 Traditional Joint
Major

“The Symbolic Systems Program (SSP) focuses on computers and minds:
artificial and natural systems that use symbols to represent information.
Symbolic Systems’ affiliated faculty come from several departments at Stanford
University, including Computer Science, Linguistics, Philosophy, Psychology,
Communication, and Education.”

http://symsys.stanford.edu/

Virginia Tech Tracks "There are five advisory tracks organized around a particular theme or sub-topic
in computer science. : Human Computer Interaction; Knowledge, Information and
Data; Media/Creative Computing, Scientific Computing; and Systems and
Networking. Completing a track is not a requirement for graduation, but it allows
a student to focus their undergraduate studies in an area of particular interest or
prepares them for a particular career or graduate school option."

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 3: Specialization - Tracks, Threads, and Vectors

8/9/10 37

http://www.cs.vt.edu/undergraduate/tracks

Mastery and Research
A specialization based on a set of courses can help students develop a sense of mastery, but may not
instill a sense of excitement for a subject or a drive to pursue further studies in graduate school. We are
strong supporters of undergraduate research experiences – working with faculty and graduate students
in a shared endeavor – as well as of summer internships in research or development activities. It is
appropriate, indeed desirable, for some academic credit to be awarded for the experience, particularly
when participants write a report reflecting on the experience or help in writing a research paper. In
Recommendation 6 - Attracting, Selecting, and Preparing Students for Research Careers, we describe in
more detail the process of identifying and developing good research candidates.

Recommendations
Specialized computing, through domain-centered tracks:

• We encourage schools to develop a broad series of specializations. The specifications
reflected in the undergraduate course offerings of a given department will, of necessity, be based
on department faculty interests and capabilities and the availability of courses in other relevant
disciplines.

• The concepts that should guide the specializations include considerations of the ways in which
the components of a particular sequence build the skills and mastery needed post-graduation,
and how graduates will be viewed by graduate schools and potential employers.

• There is also a question of scale – departments with small faculties and student enrollments are
clearly not able to offer as many tracks as larger departments. Concern with “break-even” course
sizes are a necessary pragmatic. So, the number of tracks, and their depth, will vary quite a bit;
small, resource-limited departments may not be able to do this at all, although as described in
the chart above, Harvey Mudd, with an enrollment of only 700, provides a counter-example of
the creative use of resources to create specialized approaches.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 4: Specialization - Integrated Joint Majors

8/9/10 38

Recommendation 4: Specialization - Integrated Joint
Majors - deep collaboration among disciplines
Problem
In the not so distant past, many departments viewed each other as engaged in a zero-sum game with
regard to which department “owned” which course; does machine learning “belong” in applied math or in
computer science? Such questions reflect past attitudes of silo-based knowledge, applications, and
departmental fiefdoms. In recent years, the spread of computational approaches into virtually every
disciplinehas brought an intrinsically multidisciplinary element to the field of computer science which is
not yet fully reflected at the curricular level.72 In an emerging field whose foundations involve both
computational and non-computational subject matter, the practical benefits of training in both areas is
clear. In addition to this practical imperative, however, there is a distinct advantage for a future
researcher to have training in how to interact with different academic cultures, skills, and mindsets.

One approach to the realization of such multidisciplinary training is the introduction of what we refer to
here as “integrated joint majors.” Our use of the qualifier “integrated” is meant to distinguish such
programs from “double majors” (and from “joint” programs of a similar character) that require students
to take coursework in two departments, but without any unified structural and intellectual framework
that ties such studies together. By way of contrast, an integrated joint major would be one that involved
substantial collaboration between departments to (a) decide what knowledge and skills are to be
imparted, (b) design the curriculum and requirements, (c) evaluate how well the program is working,
and (d) make improvements adaptively. Such a program might involve the introduction of at least some
new multidisciplinary courses, and faculty advisors might be associated with the program itself, and not
just with one of its constituent departments.

Many barriers exist, however, to the implementation and successful operation of truly integrated
multidisciplinary joint majors. Below we identify certain potential pitfalls and “failure modes” of such
programs, along with some possible strategies for their mitigation.

Potential Pitfalls and Mitigation Strategies

The joint major provides a solid foundation in only one of the two areas.

Example:

Not enough methodological knowledge in one area and not enough application knowledge in the other.

Mitigation strategy:

Look at both areas to determine the central core of methodological and application knowledge, then focus
on that core, eliminating less essential areas as necessary.

The joint major is not feasible or productive at the undergraduate level

Example:

A major in which meaningful work requires too many

prerequisites, or prerequisites that are too challenging for most of the targeted students

Mitigation strategies:

• Offer the joint major only as part of a five-year combined B.S./M.S. program

• Increase the time spent on prerequisites and decrease exposure to applications. (This may come

72 Computational programs and minors at CMU provide a foretaste of the institutional impact of computational
approaches: computational and applied mathematics, computational biology, computational chemistry,
computational design, computational economics/computational finance, computational linguistics, computational
mechanics, computational neuroscience, computational physics, and computational and statistical learning.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 4: Specialization - Integrated Joint Majors

8/9/10 39

at the cost of a less compelling program, however, and may be less appropriate for a student
pursuing a terminal degree or graduate/professional work in another area.)

The joint major is not well understood outside of the offering institution

Issues:

• Will graduates of the joint program in question find it harder to find a job, gain admission into a
strong graduate department, or switch to another field later on?

• Information asymmetry: Potential employers and graduate departments will know less about the
program than the student and undergraduate institution.

• Prejudice in favor of known majors: Graduate schools and future employers may assume that the
student simply took whatever courses he or she wanted, or may have the perception that joint
majors may be easier.

Mitigation strategies:

• Promote external visibility and understanding of the joint major program. (While this approach
may be more challenging for smaller, lower-profile institutions, a well-designed website may help
to level the playing field.)

• Where possible, encourage coordination across different universities offering similar joint majors
with respect to the naming and requirements of these programs.

The costs of establishing the joint major proves prohibitive

Issues:

The institutional costs of setting up and maintaining the joint major may be too high in time, money,
and/or human resources relative to other priorities that the institution (and/or its faculty) has to meet.
Furthermore, the heavyweight process of establishing a joint major may not be flexible enough to adapt
to the rapidly changing nature of technology, the global economy, and student interests.

Mitigation strategies:

Explore more

lightweight approaches within specific departments while encouraging close cross-departmental ties
with the related departments. Cross-departmental seminars, team-based research, and joint research
facilities all provide mechanisms for increasing collaboration and cross-departmental culture exchanges
without the high cost of a full joint major. A further advantage is the flexibility and adaptability these
mechanisms provide.

Goals
A fully integrated joint major should:

• Address the needs of students whose interests are in computational approaches to another
discipline such as biology, finance, journalism, or music. This differs from the specialized tracks
described in Section 3 in that the focus is more on the application domain, and courses will more
strongly reflect that balance.

• Enable students to find a job or gain admission to graduate school in both computational fields
and in other fields where computation is and/or will be important. This goal impacts careers in
research areas of academia, industry, and government (e.g., National Laboratories), as well as in
application areas in corporations, startups, not-for-profits, and public service and policy.

• Provide a durable foundation of knowledge and skills that is likely to remain relevant and useful
10 to 20 years from now.

Solutions - Mechanisms for Implementing the Goals

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 4: Specialization - Integrated Joint Majors

8/9/10 40

Joint majors usually evolve from earlier collaborative ventures and shared research interests. The
earliest instantiations of the idea typically involved identifying a set of existing courses from two or more
departments and identifying sequences through them that met appropriate multidisciplinary
educational objectives. More recently there has been a growing, and we think healthy, interest in
developing new multidisciplinary courses around which joint majors can be built.

A deep understanding of both cultures individually and of their nature when merged into a blended
culture is key to the effective development of joint majors. Explicitly identifying the components of the
computer science core [See Recommendation 2 - Core/Foundation for All Computer Science Graduates]
establishes a solid foundation for this process, ensures that the computational dimension is not diluted,
and helps the domain culture to effectively incorporate the computational dimensions.

Within the spectrum of cross-disciplinary efforts, three stages of development can be identified.
Appendix X includes prototypes for each of the stages described below. Here we include one example:
computational biology.

Existing – There are well established multidisciplinary areas, e.g., computer engineering and scientific
computing. In these areas there are existing groups who have already designed joint majors.

Emerging - Several institutions have implemented examples of these, but they are not as well
understood and accepted, so there will need to be more consensus-building among the faculty and more
curriculum design efforts to fit the new program within the context of the specific institution. Examples
include digital arts and media, and computational finance.

Opportunities - Possibilities for such programs are being explored but have just begun to be
implemented. The implications and value of such programs need more research, so there needs to be
even more design and consensus-building as well as the addition of new faculty and new infrastructure.
Examples include law and humanities areas such as history and philosophy.

Prototype: Computational biology

Departmental involvement:

Computer science

Biology

Possibly one or more faculty members from, for example, chemistry, physics, applied mathematics

and/or statistics who have related research interests

Distinctive subject matter (required and/or elective):

Bioinformatics and systems biology

Exposure to simple applications of statistical analysis and data mining

Use of large databases containing genomic, proteomic, and other biological data

Biomolecular modeling and simulation

Focus on molecular structures and dynamics

Use of iterative numerical algorithms

Applications of basic computational physics (mechanics, electrostatics, etc.)

Visualization of biological data

Graphical representation of statistical data and network models

Abstraction, rendering, and animation of three-dimensional molecular structures

Recommendations

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendaton 4: Specialization - Integrated Joint Majors

8/9/10 41

Deep collaboration among disciplines, exemplified by integrated joint majors:

• Coherent, integrated multidisciplinary, interdepartmental joint majors provide a balanced
approach that addresses the differences in culture, concepts, and strategies between different
fields by establishing the common ground between them.

• To undertake the considerable resource cost of joint major development, we recommend
encouraging—indeed, incentivizing—the additional faculty effort required to design and
implement new integrated courses and curricula. Incentives could include summer salary,
release time, the designation of a dedicated ‘curriculum czar’, and the supervision of students
with appropriate prior background and motivation as research and teaching assistants to help
with design and implementation

• Initial exploration of collaborative possibilities can include multi-disciplinary curriculum
committees, individual experimental courses, support for multi-disciplinary GISPs (Group
Independent Study Projects), plus Internet-based collaboration using existing tools such as
wikis.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Building Mastery Throughout the Curriculum

8/9/10 42

Building Mastery Throughout the
Curriculum

Overview
The recommendations in Section II - Refactoring the Computer Science Curricula concerned the curricula
restructuring necessary to support the 21st century environment of rapid change. This section, Section
III - Building Mastery Throughout the Curriculum focuses on the strategies needed to develop mastery:
depth in the understanding of cognitive skills, concepts, and techniques that will support researchers
through graduate school and throughout their careers.

As we describe the process in Recommendation 5 - Design under Constraints and the Gaining of Mastery,
mastery involves: “...(1) learning how to do things in better, simpler, and more aesthetically pleasing
ways, (2) developing “wizardry” via learning increasingly sophisticated tricks of the trade, and (3)
computing with a purpose, by understanding an application and its requirements, and the impact it can
have on people and their lives, that motivates the technology they are learning.”73

Some of the mastery components include creating abstractions from data and establishing relationships
among them, building, simulating, and validating models, working with the tradeoffs involved with
different representations, and dealing with different levels of detail. These components are needed by all
students as preparation for whatever they do in life, whether they find themselves becoming
computational practitioners, researchers, or following some entirely different path.

In addition, researchers need specific preparation and skills that should be addressed from the
introductory courses right on through the entire period of their undergraduate career. The pursuit of
mastery begins in the foundational material and skills of introductory courses (described in
Recommendation 1 - Introductory Courses), influences the decisions to pursue a research career, and
guides the undergraduate preparation needed by future researchers.

Thus, the goal of mastery support is to create a coherent environment that begins with introductory
courses that capitalize on domain enthusiasms to introduce students to important cognitive skills and
computational content, and then deepens undergraduate cognitive skills in a variety of contexts over the
entire four years of the undergraduate program.

Note that attracting and educating future researchers requires an apprenticeship framework that
formerly had characterized just the graduate-level programs. This means access to collaboration with
professors and graduate students from the beginning rather than positioning the student as passive
recipient of knowledge. The student must be seen as active agent, not passive consumer. This section
has two recommendation areas:

5. Design under Constraints and the Gaining of Mastery - deepening the skill set

6. Attracting, Selecting, and Preparing Students for Research Careers - developing
computationally-oriented researchers

73 See Recommendation 5 - Design under Constraints and the Gaining of Mastery.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 5: Design under Constraints and the Gaining of Mastery

8/9/10 43

Recommendation 5: Design under Constraints and the
Gaining of Mastery - deepening the skill set
Problem
As students proceed through the curriculum they need to deepen their understanding and mastery of
cognitive skills and concepts, and to extend their set of skills beyond those they were introduced to in
their introductory courses. In addition, during this period they need to be provided with opportunities to
focus their intentions on career decisions: do they wish to become computationally-oriented researchers
at some point in their careers [See Recommendation 6- Attracting, Selecting, and Preparing Students for
Research Careers] or do they want to become practitioners?

This paper is primarily concerned with the choices involved in educating researchers, but the gaining of
mastery and learning to design under constraints is necessary for both researchers and practitioners.
Indeed, it is critical for all human endeavors. Note also that while this section talks in terms of
computer science, the comments and recommendations apply to all computationally-oriented fields.

Students frequently fail to understand the broad applicability of the design skills and implementation
abilities they have acquired because of the compartmentalized way in which computer science is
currently taught. Gaining mastery and learning how to design systems under real-world constraints is
critical for their success. Problems with the current computer science curriculum include:

• Knowledge is too compartmentalized and students lack opportunities for synthesis and
integration across the sub-disciplines of computing. Also, existing courses give students
inadequate exposure to human-centric issues, particularly in terms of how and for what purpose

 information technology systems are used.
• There is a gap in time and order of presentation between the introduction of a concept and its

application in context. This yields a sense of “technology for technology’s sake” that can give
students a misleading view of the field early in their education and perhaps dissuade them from
becoming computer scientists.

• There is inadequate experience with many aspects of real-world system design, including open-
ended design under constraint, social context of design teams, systems-level thinking, complex
systems design, and nondeterministic system behavior.

Accreditation bodies, such as ABET (Accreditation Board for Engineering and Technology)74, demand
that curricula include integrative experiences, and most departments have such courses. The problem is
that these so-called “capstone design” courses are encountered by students finishing their programs, not
earlier when such courses can have a positive influence on the trajectory of a student’s studies.

Goals
Our goal is to better motivate students to enter and remain in the field of computer science and go into
research by experiencing the excitement and satisfaction that comes from gaining mastery of a field. We
define mastery as (1) learning how to do things in better, simpler, and more aesthetically pleasing ways,
(2) developing “wizardry” via learning increasingly sophisticated tricks of the trade, and (3) computing
with a purpose, which involves understanding an application as well as its requirements, and the impact
it can have on people and their lives to motivate learning.

To better achieve this motivation, the teaching of the field requires:

• Gaining experience: learning new technologies and techniques in a context that considers how
they will be applied, in what way, and for what purpose. This includes identifying assumptions
and understanding the implications of model limitations.

74 http://www.abet.org/

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 5: Design under Constraints and the Gaining of Mastery

8/9/10 44

• Building real artifacts: integrating knowledge gained by constructing real systems whose
performance and effectiveness can be measured. This includes understanding the pitfalls of
validation methods.

• Designing as an iterative process: building, evaluating, —and throwing away—initial
prototypes, to better understand the space of possible designs, their implementations, and the
tradeoffs in the solution, performance, and cost design spaces.

• Experiencing projects that tap into enthusiasms: engaging in projects that provide the
student with opportunities to develop creativity, have societal impact, and leverage strong extra-
curricular interests.

• Debugging/dealing with real-world issues: building systems of a size and scale that confronts
students with the challenges of making distributed systems actually work. This comes in the
later part of the undergraduate curriculum.

It should also be clear that these skills and experiences are as important for the development of
outstanding graduate researchers as for developing excellent undergraduates who intend to become
system designers for industry.

Mechanisms for Implementing the Goals
In this subsection, we suggest a set of educational experiences that motivate students to incrementally
develop increasing mastery of the field, through substantial design experiences that allow them to
integrate knowledge through the construction of real computer-based artifacts.

Integrating Design Early in the Curriculum75
“Design” is an intrinsic component of many computer science courses. However, the design experience is
often constrained and overly specified in such a way that it limits room for creativity by the student in
formulating the artifact to be designed or the solution approach.

Furthermore, the design project is often computer science discipline-specific, such as a compiler, an
operating system, or a hardware control system, rather than a complete, albeit modest, system. Course
design projects rarely involve large teams even in the university context, sometimes work on their own,
although groups of two students are frequently the norm. Thus, students rarely gain experience in
working in teams, an important practical element of an engineering career.

Examples of Early Design Experience
MIT 6.01 - Introduction to EECS I First course in electrical engineering and computer science, at

MIT, which combines computing and sensing/actuating in a
“first” course in computer science and electrical engineering,
crossing these disciplines in order to construct a physical
artifact, in this case a mobile robot.

http://mit.edu/6.01/mercurial/spring10/www/index.html

Berkeley EE 120 - Signals and Systems Sophomore/junior course in signal processing and system-level
thinking at Berkeley. This course presents an introduction to
signal processing in the context of a robot design project.

http://www-inst.eecs.berkeley.edu/~ee120/fa08/

These appear to be successful integrative courses because they combine theory with hands-on reduction
to practice in the form of a real-world and exciting project.

75 [NRC 2009], the new NRC report on Engineering Education for K-12 makes the point that engineering is about
design, e.g. creativity.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 5: Design under Constraints and the Gaining of Mastery

8/9/10 45

Capstone Design Experiences
A more open-ended design experience, incorporating a project of substantially larger size and complexity,
has traditionally been reserved for the end of the undergraduate program. These are commonly known
as capstone design courses.

Often they are in specific subdisciplines of the field, such as software engineering or embedded systems,
although the projects can be selected from an extensive range of applications.

Software engineering capstone courses typically cover the following critical aspects of building
software-based computing systems. They differ from advanced programming courses in the scope of
their integrated focus that draws upon the undergraduate experience:

• Designing and implementing a software system to “a customer specification,” sometimes
iteratively determined.

• Development and specification of service-level objectives.
• Evaluation of systems to demonstrate that implementation meets its specification.
• Working in larger-scale teams, sometimes with a project leader (perhaps an MBA or School of

Information student).
• Experience in formal presentations.

Examples of Software Engineering Capstone Courses
Berkeley CS169 - Software Engineering Unusual in the computer science curriculum in that students are

involved in a large-team project. They experience what it takes to
collaborate with people with different skills and approaches to
software development. The project is substantially open-ended: the
students select the topics of the projects and almost all aspects of
development (programming language, libraries, build environment,
etc.)

http://www-inst.eecs.berkeley.edu/~cs169/sp10/doku.php?id=info

Harvey Mudd - CS and Engineering Clinic76 A year-long upperclass program in which teams of 4-5 students,
faculty advisors, and industrial liaisons work with company-specified
requirements to propose, create, test, and demonstrate solutions.
Some “Clinic” projects are multidisciplinary and are jointly run by
several HMC departments.

http://www.eng.hmc.edu/EngWebsite/index.php?page=Clinic.php

Embedded systems courses offer an alternative experience in capstone design, but the fundamental
design and project management processes remain the same. The integrative project focuses on
combining processing with sensing of the real world. This kind of course requires students to consider

real-world constraints such as limited volume, payload, electrical power, processing power and time.
Oral and written reports justify design choices. Students are evaluated in part by the by quantitative
performance and robustness of their designs.

Such courses typically involve the following:

• An integrative design experience that spans hardware, software, sensing, actuating, and control.
• Some kind of robotic application, but at a higher level of complexity than MIT 6.01 or Berkeley

EE 120.
• Real-world constraint-based design, including being limited to a bag of parts, confronting size +

power limitations, etc.

Example of Embedded Systems Capstone Courses
Berkeley EE 192 - Mechatronics Design Laboratory A typical class project is to design racing robots that can

follow an embedded wire over a curving and self-crossing

76 [Harvey Mudd 2007] "Engineering Department. Engineering clinic handbook"

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 5: Design under Constraints and the Gaining of Mastery

8/9/10 46

path at speeds greater than 3 meters per second.

Each team starts with a radio-controlled car and a
predesigned CPU/FPGA board and undertakes the design of
sensors, electronics, and control algorithms to develop a
winning optimal strategy. National Semiconductor
Corporation sponsors a contest that pitted teams from
different schools against each other. This adds the real-
world element of competition into the experience.

http://www-inst.eecs.berkeley.edu/~ee192/sp10/

“Computing for Good” Capstone Courses: “Computing for Good” capstone project courses,
sometimes called "service learning” courses, explicitly focus on societal impact of technology. We note
that such hardware-software co-design courses may be difficult to duplicate in computer science
departments that lack computer engineering programs. Nevertheless, creating a course with a focused
design project, with well-specified performance goals and constructed from constrained building blocks,
is also possible in software engineering courses and other software-intensive courses.

Example of “Computing for Good” Capstone Courses
Georgia Tech’s C4G optional course for upper division
undergraduates

C4G centers on the concept of applying computing to social
causes and improving quality of life. It draws on the self-
focused and altruistic sides of students by presenting
computer science as a cutting-edge discipline that
empowers them to solve problems of personal interest as
well as problems important to society at large.

http://www.cc.gatech.edu/about/advancing/c4g

Purdue’s EPIC (Engineering Programs in Community
Service) program

EPICS is a unique program in which teams of
undergraduates are designing, building, and deploying real
systems to solve engineering-based problems for local
community service and education organizations. EPICS was
founded at Purdue University in Fall 1995.

https://engineering.purdue.edu/EPICS/About

Design Studio Courses
These kinds of courses combine the open-ended design experience of the software engineering courses
with the real-world constraints of the embedded systems courses. While the design theme of the course
is determined early - one example being designing systems to assist physically-challenged individuals -
the instructor is actively engaged with individual student teams to define feasible projects.

Often these courses are structured to span quarters or semesters to allow substantial time for project
formulation, followed by sufficient time for project implementation. Artifacts created during one
sequence may be reused by later sequences, increasing in scale and complexity on a year-by-year basis.
They typically develop the following:

• Skills in reverse engineering, construction and use of reusable building blocks, reading and
reusing code and libraries, elements that persist and are enhanced from semester to semester.

• An understanding of design as a continuous learning process, i.e., design thinking: define,
research, ideate (brainstorm on design approaches), prototype (explore the space to refine the
design), choose, implement, and learn.

• Student mastery in the development of a design portfolio of implementation projects with a
graded assessment that indicates the level of proficiency in skills obtained. This is now required
for ABET accreditation.

Examples of Design Studio Courses

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 5: Design under Constraints and the Gaining of Mastery

8/9/10 47

Berkeley CS194 - Internet of Everyday Things The theme of the course is to tear everyday appliances apart
and put communication and programmability into their core,
allowing them to become software controlled, interact with
other devices, integrated with powerful servers, and able to
draw from or provide information to the web.

With these new capabilities, the students investigate what
interesting and unusual things they can do with these
integrated, scriptable, and now networked devices. The course
spans elements of hardware design, embedded systems
software, networking, server integration, web services, and
use-case and business analysis.

http://www-inst.eecs.berkeley.edu/~cs194-5/sp08/

Berkeley CS 98/198 - GamesCrafters A unique element of this course, which can be repeated many
times, is that it is open to students at levels from beginners to
experts, allowing the more junior students to learn “the tricks
of the trade” from more experienced students, the latter also
developing their own teaching and mentoring skills.

http://www.eecs.berkeley.edu/Courses/Data/485.html

Common Themes and Methods
The common themes and methods that emerge in these courses are:

• Integrate - even in the first course in computing - an individual or small team design
experience that makes concrete the foundational concepts being introduced in the course.

• Build on student-accumulated knowledge and experience to permit greater choice in the
formulation of individual projects, even if they remain constrained in theme (e.g., a game, a race
car, a networked appliance) or choice of implementation approach (e.g., software-only, embedded
system, etc.).

• Introduce human-centric design experiences through projects that involve human-directed
inputs based on system communicated outputs. Encourage the development of communications
skills through frequent design presentations, project write-ups, and engagement within the
project team and with external “customers.”

• Introduce constrained design by imposing user requirements and limitation to the
implementation approach on the projects. Evaluate projects not simply on functionality (e.g.,
meeting functional requirements), but also on performance, cost/performance, and elegance (e.g.,
fewest components, lines of code, etc.).

• Use cooperation (e.g., sharing tools and libraries) and competition (e.g., bragging rights)
where appropriate to undertake larger design or to motivate students.

• Re-conceptualize curriculum around the project focus to introduce materials “just in time” to be
useful in project design and implementation.

• Develop the capacity for professional teamwork.

Recommendations
Deepen the skill set and the pursuit of depth and mastery through attention to design under constraints
across the full undergraduate spectrum. Attaining mastery entails gaining experience in learning new
technologies and techniques, building real artifacts, and learning to understand design as an iterative
process. Design and development experiences should tap into the actual interests of the students within
a structure that both rewards effort and requires debugging/dealing with real-world nondeterminacy.

Specific recommendations include the following:

• Provide integrative design experiences earlier in the curriculum, including the first course,
and throughout the curriculum, building on the student’s increasing skills.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 5: Design under Constraints and the Gaining of Mastery

8/9/10 48

• Incorporate skill descriptions in addition to course topics in all courses. Articulate how the
elements of mastery, wizardry and purpose form part of the course outcomes.

• Integrate success stories of project integration across the curriculum into individual
courses, to better leverage instructor time and resources. Make course developments widely
available on the web, so that others may use, adapt, and extend them for their own courses and
for the community at large.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 6: Attracting, Selecting, and Preparing Students for Research Careers

8/9/10 49

6. Attracting, Selecting, and Preparing Students for
Research Careers - developing computationally-oriented
researchers
Problem
Computing researchers know that computing is an exciting area that that touches our lives directly on a
daily basis, greatly impacts all scientific and other quantitative disciplines, and offers rich opportunities
for multidisciplinary research in other fields such as medicine, business, and the arts and humanities.
Computing research advances in the last two decades have changed the way we work, play, learn, and
communicate.

In this section we discuss four questions that need to be addressed as we consider attracting and
preparing students for computationally-oriented research careers in the 21st century.

• How do we identify those students best suited to research careers, or how do they self-identify?

• How do we attract these students?

• What skills do they need above and beyond those we’ve described earlier in this report?

• How should we prepare them for this goal, starting with the introductory courses and moving
through the curriculum?

Goal
To identify and attract the best candidates for computationally-oriented research careers, and to prepare
them to succeed in getting into graduate school, as the essential gateway into such a career.

Solutions - Mechanisms for implementing this goal

How do we identify those students best suited to research careers?
• We need to look for students who manifest curiosity, motivation, persistence, tolerance for

frustration, courage, and a desire to explore new areas. Perhaps most importantly, future
researchers should stand out as idea-generators because otherwise they can’t make strong
contributions to advancing research frontiers.

How do we attract them to computationally-based research careers?
• Attracting students to research careers starts in the introductory courses with research-oriented

professors who are accessible to undergraduates. Attraction is personal and is enhanced by the
excitement of professors who infuse lectures with research questions77 and ideas and
assignments with simplified versions of research problems, etc.

• Students need opportunities to learn what research is and how to do it; without those
opportunities it is a totally abstract concept. The mechanisms for providing these include -
among others - in-class descriptions of the research process relative to the topic under
consideration, professors who are willing to work with a class on areas with which they are still
grappling, departmental and instructor webpages about what the current research work is and
what qualities are looked for in undergraduate collaborators78.

• Further, students need to be made aware that advances in computing were responsible for many

77 “In my first year as an undergraduate back in Brazil, one of my professors said, ‘There’s this thing called the
Web. It’s growing rapidly and it’s raising lots of interesting problems.’ So I started reading and studying about it,”
Fonseca said, “and my interest grew along with it. That was 1997.” in [Nickel 2009]"Rodrigo Fonseca Assistant
Professor of Computer Science"
78 See webpage of Prof. John Hughes, Brown University for an example:
http://www.cs.brown.edu/~jfh/working/working.htm

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 6: Attracting, Selecting, and Preparing Students for Research Careers

8/9/10 50

of the most important life-changing innovations of the past 30 years and that there is
tremendous opportunity for future computing research advances, in for example, creating the
future of communication, empowering developing countries, and revolutionizing predictive,
preventative, and personalized medicine.

What cognitive skills do they need above and beyond those we’ve described
earlier in this report?

• Ability to read different authors with different perspectives, assumptions, vocabularies, etc. and
do an ‘apples to apples’ comparison. The ‘related work’ sections of research papers reflect this
skill. This is a higher form of abstraction-creation and is a form of pattern-finding synthesis
skill.

• Ability to identify hidden assumptions, in oneself and in other researchers.

• Ability to balance vision (seeing a new or ‘big’ picture) with great detail/rigor skill. This involves
being able to handle multiple levels of detail within an (un)common framework.

• Ability to be constructively dissatisfied with ‘what is’, to challenge, to ask ‘what if...’, to come up
with new ideas in response to failure.

How should we prepare them for this goal?
• The fundamental approach is to provide an apprenticeship environment from introductory

courses through graduation that helps students assimilate the computationally-oriented
researcher mindset. The long-term exposure is important because the attitudes and cognitive
skills must be learned over time in many contexts.

Introductory courses:

• Possible approaches include working with grad students in labs, references to research-level
problems in class, in assignments, and in labs; and providing examples of the process through
articles, such as the interview with David Shaw in the October CACM79 and interviews with
Turing Award winners such as Barbara Liskov80.

Mastery courses, all levels:

• Students at all levels, from freshmen through seniors, can work in research labs with graduate
students and their professors, making contributions, and then participate in writing and
reviewing proposals, research papers, and research sponsor visits, attending symposia and
conferences, perhaps including presentations of poster sessions, and even papers.

• One interesting example of using a senior level course as a researcher-training course is Brown’s
CS237 - Interdisciplinary Scientific Visualization81. In this class students work in small
multidisciplinary groups, to identify scientific problems, propose solutions involving
computational modeling and visualization82, design and implement the solutions, apply them to
the problems, and evaluate their success. As part of the process they investigate related work,
write papers and proposals, and demo their projects. Some of these papers have been accepted to
major conferences, and some of the work has gone on to be the basis for more significant projects
in the area.

• Purdue's Doctoral Program illustrates another approach to training future researchers: first-

79 [Shaw 2009] "A conversation with David E. Shaw"
80 [Frenkel 2009] "Liskov's creative joy"
81 David Laidlaw - http://www.cs.brown.edu/courses/csci2370.html
82 Visualization techniques grow increasingly critical as massive data sets become the norm. Brian Cantwell Smith
in "On the Origin of Objects", p. 19 points out that "It has even been speculated that the entire field of non-linear
dynamics, popularly called 'chaos theory', could not have happened without the development of such [graphics]
displays. No one would have 'seen' the patterns in textual lists of numbers." All of Edward Tufte's books are
valuable resources, as are the facilities of MATLAB and Mathematica.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 6: Attracting, Selecting, and Preparing Students for Research Careers

8/9/10 51

year graduate students must take one research methods course and two research practicum
courses, followed by a series of written and oral qualifying exams.83

Integration into a researcher-oriented environment
We believe that students will find it valuable to capture their insights and ideas from the very beginning
of their undergraduate career, including records of their projects, journals of their process and future
plans, notes from class discussions, as well as materials obtained during the class. In the past, spiral
notebooks typically served as repositories of the experience of a particular class, but accessing this
handwritten material was difficult, incomplete, and less than satisfactory as an ongoing portfolio.
Research environments frequently require researchers to maintain dated and page-numbered bound lab
notebooks as legal documentation for potential patent applications and while some advanced courses
provide training in their use, they also fall short of a complete and extensible digital record.
Encouraging students to form the idea of a digital portfolio from the beginning of their first introductory
classes could not only provide a persistent and useful tool over time, enabling them to evolve project
notions from year to year, it could also become the basis for an emergent sense of themselves as
researchers and, ultimately, provide a record for future papers and graduate school work.

Recommendations
Attract students to research careers through the introduction of research approaches and skills across
the full undergraduate spectrum:

• Combine explicit research skill training with an apprenticeship approach to acculturate
future researchers to their community of practice. This means systematic guidance in the
practices of computationally-oriented research from freshman year through graduation combined
with the support provided by close relationships with graduate students, research groups, and
professors.

• Attract and prepare the best qualified students by exposing them to and engaging them in
exciting computing research – the earlier, the better.

• Engage undergraduates in research via various means: focused study groups that include
graduate students, student-initiated GISPs (Group Independent Study Projects), seminars that
undergraduates are encouraged to attend, undergraduate research assistantships, summer
programs and internships, university-sponsored internships, and special scholarship programs,
such the University of Utah Access Program84 and Engineering Scholars Program85.

• Facilitate the creation and use of a persistent digital portfolio from the beginning of their
first introductory classes, continuing through all of their ongoing courses, to provide both an idea
resource base and a record for future papers and graduate school work

• Emulate the model for project-oriented courses provided by the domain-specific introduction
to graduate research methods (Brown’s CS237 - Interdisciplinary Scientific Visualization),
described in the “How should we prepare them for this goal?” section above.

• Provide small classes including a large percentage of qualified students to enable significant
teacher interaction for the students.

Finally, several CRA reports that address the issues of recruiting and retaining graduate students have
suggestions 86 that are relevant to attracting and preparing undergraduates for research careers.

83 http://www.cs.purdue.edu/academic_programs/graduate/curriculum/doctoral.sxhtml#Research
84 http://www.science.utah.edu/access.html
85 http://www.coe.utah.edu/current-undergrad/esp.php
86][CRA 2006b] Graduate Recruitment & Retention in CSE - http://people.virginia.edu/~jlc6j/gradrr/

This research studies the effectiveness of computer science departments' efforts to recruit and retain women
graduate students.

[CRA 2007] CRA Taulbee Survey - http://www.cra.org/resources/taulbee/

CRA-E White Paper: Creating Environments for Computational Researcher Education

Recommendation 6: Attracting, Selecting, and Preparing Students for Research Careers

8/9/10 52

The Taulbee Survey is the principal source of information on the enrollment, production, and employment of Ph.D.s
in computer science and computer engineering (CS & CE) and in providing salary and demographic data for faculty
in CS & CE in North America.

[CRA 2006a] Recruiting and Retaining Women Graduate Students in Computer Science and
Engineering - http://www.cra.org/uploads/documents/resources/workforce_history_reports/gradrr07.pdf

This NSF-funded study was initiated to test the validity of an earlier report, "Recruitment and Retention of Women
Graduate Students in Computer Science and Engineering" (Cuny and Aspray, 2001). It summarizes and expands on
the results of a 2006 workshop and outlines research-based practices likely to promote gender balance in graduate
computing programs.

[CRA 2000a] Recruitment and Retention of Women Graduate Students in Computer Science and
Engineering - http://www.cra.org/uploads/documents/resources/workforce_history_reports/rrwomen.pdf

The report, written by Jan Cuny (U. of Oregon) and William Aspray (CRA), is the result of a workshop that was held
in June, 2000. Workshop participants included long-time members of the CSE academic and research communities,
social scientists engaged in relevant research, and directors of successful retention efforts. The report's goal is to
provide departments with practical advice on recruitment and retention in the form of a set of specific
recommendations.

[CRA 2000b] Recruitment and Retention of Underrepresented Minority Graduate Students in Computer
Science - http://www.cra.org/uploads/documents/resources/workforce_history_reports/rrminorities.pdf

Report of a committee convened by the Coalition to Diversify Computing (CDC). The report offers 25 practical
suggestions for departments to consider. Each contains a general discussion followed by a recommended course of
action. Examples of successful and promising new programs are given, along with contact information for those who
want to explore further.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices

8/9/10 53

Appendices
In addition to the Recommendations Summary (Appendix A) and the References (Appendix B),
Appendices C and D include a set of essays and outlines by individual authors as well as summary
descriptions from course websites. Each exemplar or prototype essay or outline includes the name and
affiliation of the author.

A. Recommendations Summary
B. References
 Bibliography
 URLs

C. Exemplar Programs
 Denning's Great Principles
 Core plus Tracks, Threads, and Vectors

 CMU

 Cornell

 Georgia Tech

 MIT

 Stanford

 Design under Constraints

 MIT

 UC Berkeley

 University of Washington

D. Prototype and Example Integrated Joint Majors
 Computers in the Arts and Digital Media
 Computational Biology
 Computer Engineering
 Computational Finance and Financial Engineering
 Computational Methods in the Humanities & Social Sciences
 Computational Science and Engineering
 Premedical Computer Science

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Recommendations Summary

8/9/10 54

Recommendations Summary
Computationally-Oriented Foundations
1. Introductory Courses - addressing a broad range of student
interests

Address student interests while at the same time ensuring that these courses address a significant
subset of the fundamental range of concepts and skills that comprise computational thinking [See
the local appendix at the end of this Introduction: Computational Thinking - Summary of Views].

Use these courses to instill a set of cognitive skills such as learning how to create, validate, and
establish relationships among abstractions from data and information on hand, a key skill in
effective modeling, simulation, and validation. This skill in working with abstractions, in turn,
undergirds both the scientific method and computational thinking, and should be a part of every
computationally-oriented course. The differences among such courses help to reinforce the
underlying skills as students meet the same concepts in different contexts.

 Other examples of cognitive skills include: working with the tradeoffs involved with different
representations; moving, where appropriate, from a declarative understanding of a problem to an
imperative understanding of that problem; reducing computationally intractable problems to related
tractable problems; and building, simulating, and validating computational models that shed light
on important questions.

Specific recommendations
• Introduce students to computational approaches through foundation courses across the

spectrum of student interests, instilling a set of cognitive skills such as those described earlier in
the Introduction - "... learning how to create, validate, and establish relationships among
abstractions from data and information on hand, a key skill in effective modeling, simulation,
and validation.... working with the tradeoffs involved with different representations; moving,
where appropriate, from a declarative understanding of a problem to an imperative
understanding of that problem; reducing computationally intractable problems to related
tractable problems; and building, simulating, and validating computational models87 that shed
light on important questions."

• Emphasize the creation of appropriate and useable sets of representations and
relationships among different levels; a deep understanding of how to represent information is
one of the most difficult cognitive skills students need to learn. The practice of presenting
accessible but important research papers as part of introductory courses not only introduces
students to actual research work but also starts to build an understanding of how to compare
different representations, analyze unstated assumptions, and build a common representation
structure across a set of related projects.

• Establish collaborative efforts involving a computer science department, which could assume
primary responsibility for the courses, and the departments whose prospective students are
expected to take one of the courses. Additionally, the computer science department should help
other departments in developing follow-on courses that take advantage of computational
thinking taught in the first course.

• Begin to shape a collaborative student culture that will mature into effective professional
teamwork skills, as described in Recommendations Two through Six.

• Encourage students to begin building a digital portfolio, including journal entries,

87 When we use the terms "model" and "modeling" in this paper we mean symbolic computational models, not
numeric models, which are sets of differential equations.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Recommendations Summary

8/9/10 55

possibly online [dealing appropriately with privacy issues], that carries through the core ideas
and can be added to and be available for research ideas, building mastery, understanding one's
own perspective, use in applying to graduate school. See Recommendation Six for a more
complete description of this idea.

Refactoring Computer Science Curricula
2. Core/Foundation for All Computer Science Graduates - lean core
with focus on enduring concepts, techniques, and skills

A relatively lean core emphasizes foundational concepts and skills while allowing students more
time to explore areas in depth, both by taking courses and by engaging in undergraduate research.
Additionally, a lean core makes it easier for students with multidisciplinary interests to pursue a
joint major [See Recommendation 4 - Specialization: Integrated Joint Majors] while still sharing a
common experience with computer science majors.

Specific recommendations
Lean core with focus on the minimum essential cognitive skills, concepts, and techniques.

• Having a relatively lean core emphasizes foundational cognitive skills and concepts while
allowing students more time to explore areas in depth, both by taking courses and by engaging in
undergraduate research.

• The deep issues of mastery and skills faced by the core have strong connections to the issues
discussed in Recommendation 5 - Design under Constraints and the Gaining of Mastery.

• A lean core makes it easier for students with multidisciplinary interests to pursue a joint
major [See Recommendation 4 - Specialization: Integrated Joint Majors], while still sharing a
common experience with computer science majors.

• The explicit identification of the lean core components makes it easier for a wide range of
institutions to identify resources, establish a strong basic computer science foundation, and
help their graduates pursue computationally-oriented research careers.

3. Specialization: Tracks, Threads, and Vectors - flexible
approaches to gaining understanding and skills

Define sets of meaningful specializations to permit students to pursue their interests in a context
that guides their development while providing strong motivation. Ensure that these ‘tracks’ are
specialized enough that a course sequence can lead to a student attaining some reasonable depth in
the area but broad enough that someone in a company or graduate school will be able to fit it into
their institutional context.

Specific recommendations
Specialized computing, through domain-centered tracks:

• We encourage schools to develop a broad series of specializations. The specifications
reflected in the undergraduate course offerings of a given department will, of necessity, be based
on department faculty interests and capabilities and the availability of courses in other relevant
disciplines.

• The concepts that should guide the specializations include considerations of the ways in which
the components of a particular sequence build the skills and mastery needed post-graduation,
and how graduates will be viewed by graduate schools and potential employers.

• There is also a question of scale – departments with small faculties and student enrollments are
clearly not able to offer as many tracks as larger departments. Concern with “break-even” course
sizes are a necessary pragmatic. So, the number of tracks, and their depth, will vary quite a bit;
small, resource-limited departments may not be able to do this at all, although as described in

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Recommendations Summary

8/9/10 56

the chart above Harvey Mudd, with an enrollment of 700, provides a counter-example of the
creative use of resources to create specialized approaches.

4. Specialization: Integrated Joint Majors - deep collaboration
among disciplines

Coherent, integrated multidisciplinary, inter-departmental joint majors provide a balanced approach
that addresses the differences in intellectual culture, concepts, and strategies between different
fields by establishing the common ground between them. Use these integrated joint majors to
provide a creative synthesis beyond that which can be provided by a computer science department
alone, one that blends the cultures and mindsets of multiple departments and synergistically
establishes new techniques for problem solving.

Specific recommendations
Deep collaboration among disciplines, exemplified by integrated joint majors:

• Coherent, integrated multidisciplinary, interdepartmental joint majors provide a balanced
approach that addresses the differences in culture, concepts, and strategies between different
fields by establishing the common ground between them.

• To undertake the considerable resource cost of joint major development, we recommend
encouraging—indeed, incentivizing—the additional faculty effort required to design and
implement new integrated courses and curricula. Incentives could include summer salary,
release time, the designation of a dedicated ‘curriculum czar’, and the recruitment of students as
research and teaching assistants to help with design and implementation.

• Initial exploration of collaborative possibilities can include multi-disciplinary curriculum
committees, individual experimental courses, support for multi-disciplinary GISPs (Group
Independent Study Projects), plus Internet-based collaboration using existing tools such as
wikis.

Establishing Mastery across the Curricula
5. Design Under Constraints and the Gaining of Mastery -
deepening the skill set

Provide students the ability to attain mastery by gaining experience in learning new technologies
and techniques, building and analyzing artifacts, and learning to understand design as an iterative
process that involves evaluating tradeoffs, analyzing system performance, and testing at each step.
Create design and development experiences that tap into the actual interests of the students within
a structure that both rewards effort and requires debugging/dealing with the uncertainties and
approximations of real-world non-determinacy.

Specific recommendations
• Provide integrative design experiences earlier in the curriculum, including the first course,

and throughout the curriculum, building on the student’s increasing skills.

• Incorporate skill descriptions in addition to course topics in all courses. Articulate how the
elements of mastery, wizardry and purpose form part of the course outcomes.

• Integrate success stories of project integration across the curriculum into individual
courses, to better leverage instructor time and resources. Make course developments widely
available on the web, so that others may use, adapt, and extend them for their own courses and
for the community at large.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Recommendations Summary

8/9/10 57

6. Attracting, Selecting, and Preparing Students for Research
Careers - developing computationally-oriented researchers

Skillfully introduce research problems and their intellectual excitement in all courses, thus helping
to entice potential research students by disabusing them of the notion that our field has become
routinized. Successful courses that attract and excite students present new concepts within the
context of the ongoing research of the R&D community.

Combine explicit research skill training with an apprenticeship approach to acculturate future
researchers to their communities of practice. Provide systematic guidance in the practices of
computationally-oriented research from freshman year through graduation combined with the
support provided by close relationships with graduate students, research groups, and professors.

Specific recommendations
Attract students to research careers through the introduction of research approaches and skills across
the full undergraduate spectrum:

• Combine explicit research skill training with an apprenticeship approach to acculturate
future researchers to their community of practice. This means systematic guidance in the
practices of computationally-oriented research from freshman year through graduation combined
with the support provided by close relationships with graduate students, research groups, and
professors.

• Attract and prepare the best qualified students by exposing them to and engaging them in
exciting computing research – the earlier, the better.

• Engage undergraduates in research via various means: focused study groups that include
graduate students, student-initiated GISPs (Group-Independent Study Programs), seminars that
undergraduates are encouraged to attend, undergraduate research assistantships, summer
programs and internships, university-sponsored internships, special scholarship programs, such
the University of Utah Access Program88 and Engineering Scholars Program89.

• Facilitate the creation and use of a persistent digital portfolio from the beginning of their
first introductory classes, continuing through all of their ongoing courses, to provide both an idea
resource base and a record for future papers and graduate school work

• Emulate the model for project-oriented courses provided by the domain-specific introduction
to graduate research methods (Brown’s CS237 - Interdisciplinary Scientific Visualization),
described in the “How should we prepare them for this goal?” section above.

• Provide small classes including a large percentage of qualified students to enable significant
teacher interaction for the students.

88 http://www.science.utah.edu/access.html
89 http://www.coe.utah.edu/current-undergrad/esp.php

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 58

References
Bibliography

[ACM CSTA 2006] ACM CSTA (Computer Science Teachers Association). A Model Curriculum for K-12
Computer Science: Final Report of the ACM K-12 Task Force Curriculum Committee, Second
edition. http://www.csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf

[ACM 2010] ACM Curriculum Reports. http://www.acm.org/education/curricula-recommendations

[ACM/IEEE 2005] ACM/IEEE Computing Curricula 2005: The Overview Report.
http://www.acm.org/education/education/curric_vols/CC2005-March06Final.pdf

[ACM/IEEE 2008] ACM/IEEE Computer Science Curricula 2001 Report/2008 Update.
http://www.acm.org education/curricula/ComputerScience2008.pdf

[Adler & Van Doren 1972] Mortimer J. Adler and Charles Van Doren. How to Read a Book: The Art of
Getting a Liberal Education, Revised Edition. Touchstone, 1972.

[AHC 2005] Association for History and Computing. Humanities, Computers and Cultural Heritage:
Proceedings of the XVI International Conference of the Association for History and Computing.
Royal Netherlands Academy of Arts and Sciences, Amsterdam.
http://www.knaw.nl/publicaties/pdf/20051064.pdf

 [Allen et al. 2010] Vicki Allan, Valerie Barr, Dennis Brylow, and Susanne Hambrusch. "Computational
thinking in high school courses" in Proceedings of ACM SIGCSE '10.

[Barr et al. 2010] Valerie Barr, Chun Wai Liew, and Rich Salter. "Building bridges to other departments:
three strategies" in Proceedings of ACM SIGCSE '10.

[Boonstra et al. 2004] Onno Boonstra, Leen Breure, and Peter Doorn. Past, Present and Future of
Historical Information Science. Radboud University of Nijmegen.
http://www.niwi.knaw.nl/nl/geschiedenis/onderzoek/onderzoeksprojecten/past_present_future_of_
historical_information_science/draft_report/toonplaatje

[Boyd 2008] Danah Boyd. Taken Out of Context: American Teen Sociality in Networked Publics. PhD
Dissertation. University of California-Berkeley, School of Information.
http://www.danah.org/papers/TakenOutOfContext.pdf

[Bransford et al. 1999] John D. Bransford, Ann L. Brown, and Rodney R. Cocking, editors. How People
Learn: Brain, Mind, Experience, and School. National Academy Press.

[Breck et al. 2008] Eric Breck, David Easley, K-Y Daisy Fan, Jon Kleinberg, Lillian Lee, Jennifer
Wofford, and Ramin Zabih. "A New Start: Innovative Introductory {AI}-Centered Courses at
Cornell" in Proceedings of 2008 AAAI Spring Symposium on Using AI to Motivate Greater
Participation in Computer Science. http://www.cs.cornell.edu/home/kleinber/aaaiss08-courses.pdf

[Brown 2008] John Seely Brown. Tinkering as a Mode of Knowledge Production. Carnegie Foundation for
the Advancement of Teaching video, October 2008. http://www.johnseelybrown.com/

[Bruner 1960] Jerome Bruner. The Process of Education. Cambridge, MA: Harvard University Press.

[Catmull 2008] Ed Catmull. "How Pixar Fosters Collective Creativity" in Harvard Business Review,
September 2008. http://corporatelearning.hbsp.org/corporate/assets/content/Pixararticle.pdf

[CBMS 2001] Conference Board of the Mathematical Sciences. The Mathematical Education of Teachers:
Issues in Mathematics Education, Volume 11.

[Cornell 2010] Cornell University curriculum change.
http://www.cs.cornell.edu/ugrad/CSMajorTransition08-09.htm;
http://www.cs.cornell.edu/ugrad/vectors.htm.

[COSEPUP 1997] Committee on Science, Engineering, and Public Policy. Adviser, Teacher, Role Model,
Friend: On Being a Mentor to Students in Science and Engineering. National Academy Press -
http://www.nap.edu/openbook.php?record_id=5789.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 59

[Countryman 1992] Joan Countryman. Writing to Learn Mathematics: Strategies that Work. Heinemann.

[CRA 2000a] Jan Cuny and William Aspray. CRA Workshop: Recruitment and Retention of Women
Graduate Students in Computer Science and Engineering.
http://www.cra.org/uploads/documents/resources/workforce_history_reports/rrwomen.pdf.

[CRA 2000b] William Aspray and Andrew Bernat. CRA Workshop - Recruitment and Retention of
Underrepresented Minority Graduate Students in Computer Science, March 4-5, 2000.
http://www.cra.org/uploads/documents/resources/workforce_history_reports/rrminorities.pdf.

[CRA 2006a] Holly Lord and J. McGrath Cohoon. Recruiting and Retaining Women Graduate Students
in Computer Science and Engineering.
http://www.cra.org/uploads/documents/resources/workforce_history_reports/gradrr07.pdf.

[CRA 2006b] Graduate Recruitment & Retention in CSE. http://people.virginia.edu/~jlc6j/gradrr/.

[CRA 2007] CRA Taulbee Survey. http://www.cra.org/resources/taulbee/.

[CSTB 1999] CSTB Committee on Information Technology Literacy. Being Fluent with Information
Technology. National Academy Press.

[Cuny 20009a] Jan Cuny. Computational Thinking will Require Transforming High School Computer
Science: CS / 10,000 Project. http://un-gaid.ning.com/profiles/blogs/computational-thinking-will.

[Cuny 2009b] Jan Cuny. Transforming High School Computing: A Compelling Need, A National Effort.
http://opas.ous.edu/Committees/Resources/Publications/NSF_AP_CS_10000ExecSumm_Ed.pdf.

[Damasio 2003] Antonio Damasio. Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harcourt,
Inc.

[Darwin 1839] Charles Darwin. The Voyage of the Beagle. http://darwin-
online.org.uk/EditorialIntroductions/Freeman_JournalofResearches.html

[Davidson & Goldberg 2009] Cathy N. Davidson and David Theo Goldberg. The Future of Learning
Institutions in a Digital Age. The John D. and Catherine T. MacArthur Foundation Reports on
Digital Media and Learning, MIT Press.
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11841

[Denning 2007] Peter Denning. Great Principles of Computing website. http://cs.gmu.edu/cne/pjd/GP/GP-
site/welcome.html.

[Denning 2009a] Peter Denning. "Computing: The Fourth Great Domain of Science", in Communications
of the ACM (CACM), 52: 9, pp.27-29.

[Denning 2009b] Peter Denning. "Beyond Computational Thinking", in Communications of the ACM
(CACM), 52: 6, pp. 28-30.

[Devlin 1998] Keith Devlin. The Language of Mathematics: Making the Invisible Visible. W. H Freeman
& Co.

[Dodds et al. 2008] Zachary Dodds, Ran Libeskind-Hadas, Christine Alvarado, and Geoff Kuenning.
"Evaluating a Breadth-first CS 1 for Scientists" in Proceedings of ACM SIGCSE '08.

[Donovan & Bransford 2005] M. Suzanne Donovan and John D. Bransford, editors. How Students Learn:
Mathematics in the Classroom. National Academic Press.

[Downey & Stein 2006] Allen B. Downey and Lynn Andrea Stein. "Designing a small-footprint
curriculum in computer science" in Proceedings of ASEE/IEEE Frontiers in Education
Conference, October 2006.

[Engel 2009] Susan Engel. "What is Good College Teaching" in Educause Forum Futures 2009 - Forum
for the Future of Higher Education. net.educause.edu/ir/library/pdf/ff0914s.pdf

[Forte & Guzdial 2005] Andrea Forte and Mark Guzdial. "Motivation and Non-Majors in CS1:
Identifying Discrete Audiences for Introductory Computer Science" in IEEE Transactions on
Education. 48: 2, pp. 248-253.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 60

[Frenkel 2009] Karen A. Frenkel. "Liskov's creative joy" in Communications of the ACM (CACM) 52: 7,
pp. 20-22.

[Friedman 2005] Thomas L. Friedman. The World Is Flat: A Brief History of the Twenty-first Century.
Farrar, Straus and Giroux.

[Furst & DeMillo 2006] Merrick L. Furst and Richard DeMillo. Creating Symphonic-Thinking Computer
Science Graduates for an Increasingly Competitive Global Environment. Technical Report.
http://www.cc.gatech.edu/sites/default/files/Threads%20Whitepaper.pdf

[Furst et al. 2007] Merrick L. Furst, Charles L. Isbell, and Mark Guzdial. "Threads™: How to
restructure a computer science curriculum for a flat world" in Proceedings of ACM SIGCSE 2007,
pp 420-424.

[Gardner 1983] Howard Gardner. Frames of Mind: The Theory of Multiple Intelligences. Basic Books.

[Gibbs & Tucker 1986] Norman E. Gibbs and Allen B. Tucker. "A Model Curriculum for a Liberal Arts
Degree in Computer Science" in Communications of the ACM (CACM), 29: 3, pp. 202-210.

[Goldin et al. 2006] Dina Goldin, Scott A. Smolka, and Peter Wegner, editors. Interactive Computation:
The New Paradigm. Springer.

[Grossman & Minow 2001] Lawrence K. Grossman and Newton N. Minow. A Digital Gift to the Nation:
Fulfilling the Promise of the Digital and Internet Age. Century Foundation Press.

[Gurwitz 1998] Chaya Gurwitz. "The Internet as a Motivating Theme in a Math/Computer Core Course
for Nonmajors" in Proceedings of ACM SIGCSE 1998.

[Guzdial & Forte 2005] Mark Guzdial and Andrea Forte. "Design Process for a Non-majors Computing
Course" in Proceedings of ACM SIGCSE 2005.

[Guzdial 2009] Mark Guzdial. "Teaching Computing to Everyone" in Communications of the ACM
(CACM), 52: 5, p. 31.

[Hagel et al. 2010] John Hagel III, John Seely Brown, and Lang Davison. The Power of Pull: How Small
Moves, Smartly Made, Can Set Big Things in Motion. Basic Books.

[Hartmanis & Lin 1992] Juris Hartmanis and Herbert Lin, editors. Computing the Future: A Broader
Agenda for Computer Science and Engineering. National Academies Press,
http://www.nap.edu/catalog.php?record_id=1982 .

[Harvey Mudd 2007] Engineering Department. Engineering Clinic Handbook.
http://www.eng.hmc.edu/EngWebsite/Clinic/07-08ClinicHandbook.pdf

[Hey et al. 2009] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research (October 16, 2009).

[Hodges 2000] Andrew Hodges. Alan Turing: The Enigma. Walker & Company.

[Hyde 2007] Lewis Hyde. The Gift: Creativity and the Artist in the Modern World, 25th Anniversary
Edition. Vintage Books.

[Isbell, Stein, et al. 2009] Charles L. Isbell and Lynn Andrea Stein, plus Robb Cutler, Jeffrey Forbes,
Linda Fraser, John Impagliazzo, Viera Proulx, Steve Russ, Richard Thomas, and Yan Xu.
"(Re)Defining Computing Curricula by (Re)Defining Computing" in ACM SIGCSE Bulletin, 41: 4,
pp. 195-207.

[Klein 1990] Julie Thompson Klein. Interdisciplinarity: History, Theory, & Practice. Wayne State
University Press.

[Lewis et al. 2010] Clayton Lewis, Michele H. Jackson, and William M. Waite. "Student and faculty
attitudes and beliefs about computer science" in Communications of the ACM (CACM), 53: 5,
pp.78-85.

[Ma 1999] Liping Ma. Knowing and Teaching Elementary Mathematics: Teachers' Understanding of
Fundamental Mathematics in China and the United States (Studies in Mathematical Thinking
and Learning Series). Routledge.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 61

[Markoff 2010] John Markoff. "In a Video Game, Tackling the Complexities of Protein Folding" in NY
Times, August 4, 2010, http://www.nytimes.com/2010/08/05/science/05protein.html.

[Martin 2009] Roger L. Martin. The Oposable Mind: Winning Through Integrative Thinking. Harvard
Business Press. http://www.rotman.utoronto.ca/integrativethinking/definition.htm

[Mitchell et al. 2003] William J. Mitchell, Alan S. Inouye, and Marjory S. Blumenthal, editors. Beyond
Productivity: Information Technology, Innovation, and Creativity. National Academies Press.

[Morrison et al. 1982] Philip Morrison, Phyllis Morrison, and the Office of Charles and Ray Eames.
Powers of Ten: A Book About the Relative Size of Things in the Universe and the Effect of Adding
Another Zero. W.H. Freeman & Company, http://www.powersof10.com/.

 [Nickel 2009] Mark Nickel. "Rodrigo Fonseca Assistant Professor of Computer Science" in Today at
Brown, September 9, 2009, http://today.brown.edu/faculty/2009/fonseca.

[Nisbett 2003] Richard E. Nisbett. The Geography of Thought: How Asians and Westerners Think
Differently...and Why. Free Press.

[Nisbett 2009] Richard E. Nisbett. Intelligence and How to Get It: Why Schools and Cultures Count.
W.W.Norton & Company.

[NRC 1987] National Research Council Committee on Computer-Assisted Modeling. Computer-Assisted
Modeling: Contributions of Computational Approaches to Elucidating Macromolecular Structure
and Function. National Academy Press.

[NRC 2003] National Research Council. BIO 2010: Transforming Undergraduate Education for Future
Research Biologists. National Academies Press.

[NRC 2004] National Research Council. Computer Science: Reflections on the Field; Reflections from the
Field. National Academies Press.

[NRC 2009] National Research Council and National Academy of Engineering, Linda Katehi, Greg
Pearson, and Michael Feder, Editors. Engineering in K-12 Education: Understanding the Status
and Improving the Prospects. National Academies Press.

[NRC 2010] National Research Council Committee for the Workshops on Computational Thinking.
Report of a Workshop on The Scope and Nature of Computational Thinking, National Academies
Press. http://www.nap.edu/catalog/12840.html.

[Olin 2002] Olin College Curriculum Decision Making Board. Once Upon a College.
http://www.olin.edu/academics/olin_history/cdmb_report.html.

[Palfrey & Gasser 2008] John Palfrey and Urs Gasser. Born Digital: Understanding the First Generation
of Digital Natives. Basic Books.

[PCAST 1997] Presidents Committee of Advisors on Science and Technology, Panel on Educational
Technology. Report to the President on the Use of Technology to Strengthen K-12 Education in the
United States. http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-
nov2007k12.pdf

[Petzold 2008] Charles Petzold. The Annotated Turing: A Guided Tour through Alan Turing's Historic
Paper on Computability and the Turing Machine. Wiley.

[Rich et al. 2005] Lauren Rich, Heather Perry, and Mark Guzdial. "A CS1 Course Designed to Address
Interests of Women" in Proceedings ACM SIGCSE 2005. pp. 190-194.

[Rico 2000] Gabriele Rico. Writing the Natural Way. Jeremy P. Tarcher/Putnam, 2000.

[Sahami et al. 2010] Mehran Sahami, Alex Aiken, and Julie Zelenski. "Expanding the frontiers of
computer science: designing a curriculum to reflect a diverse field" in Proceedings of ACM
SIGCSE 2010.

[Shaw 2009] CACM Staff. "A conversation with David E. Shaw" in Communications of the ACM (CACM),
52: 10, pp. 48-54.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 62

[Simpson 1998]Rosemary Michelle Simpson. Principles of Rich Indexing.
http://www.cs.brown.edu/~rms/IndexingPrinciples.html

[Smith 1996] Brian Cantwell Smith. On the Origin of Objects. MIT Press.

[Snow 1959] Charles P. Snow. The Two Cultures and the Scientific Revolution. Cambridge University
Press.

[Stein 1998] Lynn Andrea Stein. "What we've Swept under the Rug: Radically Rethinking CS1" in
Computer Science Education 8: 2, pp. 118-129.

[Stein 2001] Lynn Andrea Stein. Reconceptualizing Computation: Radically Rethinking CS1.
http://faculty.olin.edu/~las/2001/07/www.ai.mit.edu/people/las/papers/cs101-proposal.html.

[Stein 2006a] Lynn Andrea Stein. "A Small Footprint Curriculum for Computing: (And Why on Earth
Anyone Would Want Such a Thing)" in J. of Comput. Small Coll. 21: 6, pp. 3-3.

[Stein 2006b] Lynn Andrea Stein. "Interaction, Computation, and Education" in [Goldin et al. 2006] Dina
Goldin, Scott A. Smolka, and Peter Wegner, editors. Interactive Computation: The New
Paradigm. Springer.

[Stevens 1974] Peter S. Stevens. Patterns in Nature. Atlantic Monthly Press - Little, Brown and
Company.

[Taraban & Blanton 2008] Roman Taraban and Richard L. Blanton, editors. Creating Effective
Undergraduate Research Programs in Science: The Transformation from Student to Scientist.
Columbia University Teachers College Press.

[Thomas & Brown 2009] Douglas Thomas and John Seely Brown. Learning for a World of Constant
Change: Homo Sapiens, Homo Faber & Homo Ludens Revisited. 7th Glion Colloquium,
University of Southern California, June 2009.
http://www.johnseelybrown.com/Learning%20for%20a%20World%20of%20Constant%20Change.
pdf

[Tobias 1990] Sheila Tobias. They're Not Dumb, They're Different. Research Corporation.

[Tufte 2006] Edward Tufte. Beautiful Evidence. Graphics Press LLC

[van Dam 2003] Andries van Dam. "Grand Challenge 3. Provide a Teacher for Every Learner" in Grand
Research Challenges in Information Systems. Anita Jones and William Wulf, editors, pp. 17-22,
Computing Research Association. URL: http://archive.cra.org/reports/gc.systems.pdf

[Wing 2006] Jeannette Wing. "Computational Thinking" in Communications of the ACM (CACM), 49: 3,
March 2006, pp. 33-35.

[Wing 2008] Jeannette Wing. "Computational thinking and thinking about computing" in Philosophical
Transactions of The Royal Society, 366: 1881, pp. 3717-3725.

[Yarosh & Guzdial 2008] Svetlana Yarosh and Mark Guzdial. "Narrating Data Structures: The Role of
Context in CS2" in Proceedings of the ACM Third International Workshop on Computing
Education Research, pp. 87-98.

[Zyda 2009] Michael Zyda. "Computer Science in the Conceptual Age" in Communications of the ACM
(CACM), 52: 12, pp. 67-72, http://gamepipe.usc.edu/USC_GamePipe_Laboratory/Home.html.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 63

URLs
This set of URLs is alphabetically organized by the main topic. See the index for additional pointers to
these URLS, e.g., bibliography; courses and programs; agencies, institutions, and centers; and projects.
All URLs were accessed on Monday, 9 August 2010.

Bibliography
[ACM CSTA 2006] http://www.csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf.

[ACM 2010] http://www.acm.org/education/curricula-recommendations.

[ACM/IEEE 2005] http://www.acm.org/education/education/curric_vols/CC2005-March06Final.pdf.

[ACM/IEEE 2008] http://www.acm.org/education/curricula/ComputerScience2008.pdf.

[AHC 2005] http://www.knaw.nl/publicaties/pdf/20051064.pdf

[Boonstra et al. 2004]
http://www.iono.noa.gr/hellinomnimon/Books%20and%20Papers/historical%20information%20sci
ence.pdf

[Boyd 2008] http://www.danah.org/papers/TakenOutOfContext.pdf.

[Breck et al. 2008] http://www.cs.cornell.edu/home/kleinber/aaaiss08-courses.pdf.

[Brown 2008] http://www.johnseelybrown.com/.

[Catmull 2008] http://corporatelearning.hbsp.org/corporate/assets/content/Pixararticle.pdf.

[Cornell 2010] http://www.cs.cornell.edu/ugrad/CSMajorTransition08-09.htm;
http://www.cs.cornell.edu/ugrad/vectors.htm.

[COSEPUP 1997] http://www.nap.edu/openbook.php?record_id=5789.

[CRA 2000a] http://www.cra.org/uploads/documents/resources/workforce_history_reports/rrwomen.pdf.

[CRA 2000b]
http://www.cra.org/uploads/documents/resources/workforce_history_reports/rrminorities.pdf.

[CRA 2006a] http://www.cra.org/uploads/documents/resources/workforce_history_reports/gradrr07.pdf.

[CRA 2006b] http://people.virginia.edu/~jlc6j/gradrr/.

[CRA 2007] http://www.cra.org/resources/taulbee/.

[Cuny 20009a] http://un-gaid.ning.com/profiles/blogs/computational-thinking-will.

[Cuny 2009b]
http://opas.ous.edu/Committees/Resources/Publications/NSF_AP_CS_10000ExecSumm_Ed.pdf.

[Darwin 1839] http://darwin-online.org.uk/EditorialIntroductions/Freeman_JournalofResearches.html.

[Davidson & Goldberg 2009] http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11841

[Denning 2007] http://cs.gmu.edu/cne/pjd/GP/GP-site/welcome.html.

[Engel 2009] net.educause.edu/ir/library/pdf/ff0914s.pdf

[Furst & DeMillo 2006] http://www.cc.gatech.edu/sites/default/files/Threads%20Whitepaper.pdf.

[Hartmanis & Lin 1992] http://www.nap.edu/catalog.php?record_id=1982 .

[Harvey Mudd 2007] http://www.eng.hmc.edu/EngWebsite/Clinic/07-08ClinicHandbook.pdf.

[Markoff 2010] http://www.nytimes.com/2010/08/05/science/05protein.html.

[Martin 2009] http://www.rotman.utoronto.ca/integrativethinking/definition.htm

[Morrison et al. 1982] http://www.powersof10.com/.

[Nickel 2009] http://today.brown.edu/faculty/2009/fonseca.

[NRC 2010] http://www.nap.edu/catalog/12840.html.

[Olin 2002] http://www.olin.edu/academics/olin_history/cdmb_report.html.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 64

[PCAST 1997] http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nov2007k12.pdf.

[Simpson 1998] http://www.cs.brown.edu/~rms/IndexingPrinciples.html.

[Stein 2001] http://faculty.olin.edu/~las/2001/07/www.ai.mit.edu/people/las/papers/cs101-proposal.html.

[Thomas & Brown 2009]
http://www.johnseelybrown.com/Learning%20for%20a%20World%20of%20Constant%20Change.
pdf.

[van Dam 2003] http://archive.cra.org/reports/gc.systems.pdf.

[Zyda 2009] http://gamepipe.usc.edu/USC_GamePipe_Laboratory/Home.html.

Courses and programs
ASU (Arizona State University)

http://engineering.asu.edu/undergraduate/cse

Augsburg College
Computational philosophy major - http://www.augsburg.edu/cs/degree_requirements.html

Brown University
CS931 - http://www.cs.brown.edu/courses/csci0931/

CS020 - http://www.cs.brown.edu/courses/csci0020.html

Mentoring - http://www.cs.brown.edu/~jfh/working/working.htm

CS040 - http://www.cs.brown.edu/courses/csci0040/

CS053: The Matrix in Computer Science - http://www.cs.brown.edu/courses/cs053/

CS015 - http://www.cs.brown.edu/courses/csci0150/

CS016 - http://www.cs.brown.edu/courses/csci0160/

CS017 - http://www.cs.brown.edu/courses/csci0170/

CS018 - http://www.cs.brown.edu/courses/csci0180/

CS019 - http://www.cs.brown.edu/courses/cs019/2009/

CS931: Introduction to Computation for the Humanities and Social Sciences -
http://www.cs.brown.edu/courses/csci0931/

CS 237 - Interdisciplinary Scientific Visualization http://www.cs.brown.edu/courses/csci2370/

http://www.cs.brown.edu/ugrad/concentrations/cs-econ_scb-reqs.html	

CMU
CS15-251 - Great Theoretical Ideas in Computer Science - http://www.cs.cmu.edu/~15251/

http://www.cmu.edu/interdisciplinary/programs/bcsaprogram.html	

http://www.cs.cmu.edu/~tcortina/15-105sp09/courseinfo.html

http://www.csd.cs.cmu.edu/education/bscs/currreq.html	

Cornell
Vectors -

http://www.cs.cornell.edu/degreeprogs/ugrad/CSMajor/Vectors/index.htm

http://www.cs.cornell.edu/ugrad/vectors.htm

Introductory AI-centered courses -
http://www.cs.cornell.edu/home/llee/papers/teachai.home.html

CS Major Changes -

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 65

http://www.cs.cornell.edu/ugrad/CSMajorTransition08-09.htm

http://www.cs.cornell.edu/ugrad/InfoMtgPresent_12-2008.pdf

http://www.cs.cornell.edu/ugrad/TownHallPresent_1-2009.pdf

Georgia Tech
CS1315 Introduction to Media Computation - http://coweb.cc.gatech.edu/cs1315

Computational Media -

http://lcc.gatech.edu/compumedia/

http://www.cc.gatech.edu/future/undergraduates/bscm

Computing for Good - http://www.cc.gatech.edu/about/advancing/c4g

Threads - http://www.cc.gatech.edu/future/undergraduates/bscs/threads/

Computer Science Minor - http://www.cc.gatech.edu/future/undergraduates/csminor

Great Principles of Computing
http://cs.gmu.edu/cne/pjd/GP/gp_overview.html

http://cs.gmu.edu/cne/pjd/GP/GP-site/welcome.html

Harvard
Introduction to Computer Science - http://www.cs50.net/

Harvey Mudd
CS Minor - http://www.cs.hmc.edu/program/cs-minor

CS and Mathematics Joint Major - http://www.cs.hmc.edu/program/csmath-major	

Engineering Clinic Handbook - http://www.eng.hmc.edu/EngWebsite/Clinic/07-
08ClinicHandbook.pdf

Engineering Clinic - http://www.eng.hmc.edu/EngWebsite/index.php?page=Clinic.php

Off Campus Major -
http://www.hmc.edu/academicsclinicresearch/majors/offcampusmajor.html

Research, Academics, and Clinichttp://www.hmc.edu/academicsclinicresearch1.html	

 CS for Scientists course - http://www.hmc.edu/newsandevents/Grants%20Fall09.html

MIT
6.01 - Introduction to EECS

http://mit.edu/6.01/mercurial/fall09/www/index.html

http://mit.edu/6.01/mercurial/spring10/www/index.html

6.00 - Introduction to Computer Science and Programming

http://web.mit.edu/6.00/www/info.shtml

EECS New Curriculum

http://www.eecs.mit.edu/ug/newcurriculum/index.html

http://www.eecs.mit.edu/ug/newcurriculum/SBCS_6-3.html	

http://www.eecs.mit.edu/ug/newcurriculum/ugcur-newsletter06.html

Olin
Curriculum

http://www.olin.edu/academics/curriculum.aspx

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 66

http://www.olin.edu/academics/olin_history/cdmb_report.html

http://www.olin.edu/academics/curriculum_facts.aspx

http://www.olin.edu/academics/docs/Yr1-4%20website%20diagram%2008-09.pdf

PGSS (Pennsylvania Governor's School for the Sciences)
 PGSS (Pennsylvania Governor's School for the Sciences). Wikipedia description and Danah
Boyd's eulogy,
http://en.wikipedia.org/wiki/Pennsylvania_Governor%27s_School_for_the_Sciences.

http://www.zephoria.org/thoughts/archives/2009/04/20/rip_pennsylvani.html.

Princeton
The Computational Universe - http://www.cs.princeton.edu/courses/archive/spring08/cos116/

Purdue
CS4EDU Project. http://cs4edu.cs.purdue.edu

SECANT Project. http://secant.cs.purdue.edu/

Research training course.
http://www.cs.purdue.edu/academic_programs/graduate/curriculum/doctoral.sxhtml#Researc
h	

EPICS Project. https://engineering.purdue.edu/EPICS/About

Rice
Computational Logic Course website http://www.cs.rice.edu/~vardi/comp409/

Stanford
Tracks. http://csmajor.stanford.edu/Tracks.shtml	

Symbolic Systems. http://symsys.stanford.edu/

Stony Brook
Digitial Arts Minor - http://www.art.sunysb.edu/undergrad.html

Towson
Everyday Computational Thinking -
http://triton.towson.edu/users/dierbach/Pages/Courses/Honors%20ECT/HONR223.htm

UC Berkeley
GamesCrafters -

http://gamescrafters.berkeley.edu/

http://www.eecs.berkeley.edu/Courses/Data/485.html

Internet of Everyday Things -

http://www-inst.eecs.berkeley.edu/~cs194-5/sp08/

http://www.eecs.berkeley.edu/~culler/eecs194/

Mechatronics Design Lab -

http://www-inst.eecs.berkeley.edu/~ee192/sp09/

http://www-inst.eecs.berkeley.edu/~ee192/sp10/

Signals and Systems - http://www-inst.eecs.berkeley.edu/~ee120/fa08/

Software Engineering - http://www-inst.eecs.berkeley.edu/~cs169/sp10/doku.php?id=info

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 67

UC Davis
Electrical and Computer Engineering -
http://www.ece.ucdavis.edu/undergrad/programdescription.html

UIUC
Computational Science and Engineering - http://www.cse.uiuc.edu/

Union/Lafayette
Union-Lafayette NSF CPATH grant. Creating a Campus-wide Computation Initiative.
http://cs.union.edu/~barrv/Grants/computational-science.html.

USC
BS in Computer Games -

http://www.cs.usc.edu/academics/undergrad.html

http://www.cs.usc.edu/brochures/ugcsgm.pdf

Utah
CS 3200 - Introduction to Scientific Computing. http://www.eng.utah.edu/~cs3200/

Engineering Scholars Program - http://www.coe.utah.edu/current-undergrad/esp.php

Access Program for Women in Science and Mathematics -
http://www.science.utah.edu/access.html

Virginia
Masters Degree in Digital Humanities - http://www.iath.virginia.edu/hcs/MDST.MA.html

Gender Diversity Workshops - http://people.virginia.edu/~jlc6j/gradrr/

Virginia Tech
Tracks - http://www.cs.vt.edu/undergraduate/tracks

Washington
BeneFIT: Fluency with Information Technology (FIT)
http://courses.washington.edu/benefit/FIT100/

Capstone: Technology for Low-Income Regions -
http://www.cs.washington.edu/education/courses/477/08sp/

Agencies, Institutions, Centers
[ABET] http://www.abet.org/

[CMU Center for Computational Thinking. 2010] http://www.cs.cmu.edu/~CompThink/.

[CRA] http://www.cra.org

Projects
CRA-W Projects - http://www.cra-w.org/projects

 Digital Promise Project 2010 - http://www.digitalpromise.org/

Strand Maps

 [NSDL 2007] NSDL. AAAS Science Literacy Maps - Atlas of Science Literacy Science Literacy
Maps. http://strandmaps.nsdl.org/ Strand Map Service - http://strandmaps.nsdl.org/cms1-
2/docs/index.jsp

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: References

8/9/10 68

[SECANT 2010] SECANT: Science Education in Computational Thinking Project, Purdue
University, http://secant.cs.purdue.edu/.

CRA-E White Paper: Creating Environments for Computational Researcher Education
Appendices: Exemplar programs - Great Principles of Computing

8/9/10 69

Exemplar Programs
Great Principles of Computing

Extract from the Great Principles Overview webpage -
http://cs.gmu.edu/cne/pjd/GP/gp_overview.html

Peter Denning

George Mason University

What is Computation?
What is computation? Information? What can we know through computing? What can we not know
through computing?

Computer scientists have studied these questions since the 1940s. But today, people in all fields of
science, engineering, business, and even politics are asking the same questions.

The tradition that computing is the science of phenomena surrounding computers is being superseded.
Computing is -- in fact, always has been -- the science of information processes. Starting around 1995,
many scientists began announcing they had discovered natural information processes in their fields.
Their discoveries initiated a new tradition: computing is a science of the natural as well as the artificial.

In its older tradition, computing was most naturally described by the ideas in its core technologies --
such as programming, graphics, networks, or supercomputing. However, the new tradition calls for a
description in terms of fundamental principles. A principles-oriented descriptive framework reveals
computing's deep structures and how they apply in many fields. The framework reveals common aspects
of technologies and creates opportunities for innovation. It opens entirely new ways to stimulate the
excitement and curiosity of young people about the world of computing.

In the 1940s, computation was seen as a tool for solving equations, cracking codes, analyzing data, and
managing business processes. By the 1980s, computation had advanced to become a new method in
science, joining the traditional theory and experiment. During the 1990s, computation advanced even
further as people in many fields discovered they were dealing with information processes buried in their
deep structures -- for example, quantum waves in physics, DNA in biology, brain patterns in cognitive
science, information flows in economic systems. Computation has entered everyday life with new ways
to solve problems, new forms of art, music, motion pictures, and commerce, new approaches to learning,
and even new slang expressions.

The fundamental questions of computing, listed at the start, have become important in many fields,
which rely heavily on computation and computational methods to advance their work. In fact, studying
which aspects of computing are most useful traditional science fields helps to identify fundamental
computing principles.

Computational metaphors have entered the common language with everyday phrases like "I am
programmed to react that way," and "My brain crashed and had to be rebooted." The University of
Washington has developed "fluency in information technology", widely used in high schools and colleges
to help students learn and apply basic computational principles90. Many people now speak of
"computational thinking,"91 referring to the use of computational principles in many fields and everyday
life. Computation is everywhere.

90 University of Washington course BENEFIT - Fluency with Information Technology.
http://courses.washington.edu/benefit/FIT100/; [CSTB 1999] "Being Fluent with Information Technology",
91 [Wing 2006] "Computational Thinking"

CRA-E White Paper: Creating Environments for Computational Researcher Education
Appendices: Exemplar programs - Great Principles of Computing

8/9/10 70

There is another advantage to a principles-framework: it's easier to learn than a technology framework.
Describing the field in terms of technology ideas was a good approach in the early days when the core
technologies were few. In 1989, ACM listed 9 core technologies. In 2001, however, ACM listed about
three dozen. For the newcomer, learning the inner workings of 36 technologies and their 630 possible
direct interactions presents a daunting challenge.

In the computing field, we have not yet developed an articulation of the field in terms of fundamental
principles. Principles-based approaches are common in other fields. Computing has only recently
reached a level of maturity where it can do the same.

Project Objectives
The Great Principles project aims to develop and maintain a principles articulation of computing. The
benefits of doing this are:

• Expose the deep structure of the field. Doing so can reduce the apparent complexity of the field,
contributing to greater understanding, better designs, and simpler, more reliable systems.

• Enable designers and users to see connections among technologies based on similar principles.
This will facilitate sound designs, cross fertilization among technologies, new discoveries, and
innovations.

• Establish a new relationship with people from other fields by offering computing principles in
language that shows them how to map the principles into their own fields.

• Provide inspiring stories about the development of the field and its principles for young people.

• Develop new approaches to teaching computing that inspire curiosity and excitement.

A principles framework will complement the existing technology frameworks for understanding
computing. We will discuss this further below in the section on using a principles oriented
representation of a body of knowledge.

The project is ongoing because the body of principles needs to be constantly updated. Some principles
once ascendant will be retired as they go out of use -- for example, construction of logic gates from
discrete transistors. We will surely discover new principles that will enable the solutions of
contemporary issues -- for example, problems with user interfaces, identity theft, network security,
spam, information overload, dependable software, hastily formed networks, distance learning, and
discovering terrorist plots. Thus a great principles framework is a living depiction of the field, always
open to births and retirements.

Outline of the Framework
By a principle, we mean a statement that guides or constrains future action. Computing principles are of
two kinds: (1) recurrences, including laws, processes, and methods that describe repeatable cause-effect
relationships, and (2) guidelines for conduct. An example of a law is that the fastest sorting algorithms
take time at least order of n log n to arrange n items in order. An example of a conduct guideline is that
network programmers should divide protocol software into layers. The purpose of such principles is to
reduce apparent complexity, increase understanding, and enable good design.

We analyzed many computing technologies to identify the principles on which they are based, and we
studied how what aspects of computation are influencing other fields. From this, we concluded that
computing principles can be grouped into seven categories:

Computation (meaning and limits of computation)

Communication (reliable data transmission)

Coordination (cooperation among networked entities)

Recollection (storage and retrieval of information)

Automation (meaning and limits of automation)

CRA-E White Paper: Creating Environments for Computational Researcher Education
Appendices: Exemplar programs - Great Principles of Computing

8/9/10 71

Evaluation (performance prediction and capacity planning)

Design (building reliable software systems)

These categories resulted from a functional analysis of many computing technologies and applications:

1. Computing systems are built from processing elements that process and store information
(computation, recollection);

2. Processing elements exchange information (communication);

3. Processing elements cooperate toward common goals (coordination);

4. Humans delegate tasks to systems of processing elements (automation);

5. Humans predict the speed and capacity of systems (evaluation); and

6. Humans decompose systems into processing elements and organize their construction (design).

These categories are like windows into the one computing knowledge space rather than slices of the
space into separate pieces. Each window sees the space in a distinctive way; but the same thing can be
seen in more than one window. Internet protocols, for example, are sometimes seen as means for data
communication, sometimes as means of coordination, and sometimes as a means for recollection.

We also found that most computing technologies draw principles from all seven categories. This finding
confirmed our suspicion that a principles interpretation will help us see many common factors among
technologies.

This set of categories satisfied our goal to have a framework with a manageable number of categories.
While the list of computing technologies may continue to grow, the number of categories is likely to
remain stable for a long time.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 72

Exemplar Programs
Core plus Tracks, Threads, and

Vectors

CMU (Carnegie Mellon University)
Thoughts on Foundations, Tracks, and Refactoring Content From a
CMU Perspective
Peter Lee

Carnegie Mellon University

Problem Statement
How does one foster a broad view of computer science while simultaneously ensuring technical depth and
the ability to solve problems collaboratively?

Solutions/Applicability
CMU offers several computing-related programs at the undergraduate level. They have grown up
organically rather than conceived through any overarching master plan. Hence, what is described here is
just my personal view. However, much of this also reflects certain precepts of the institution.

• The broad view of the field: “Computer science is the study of all phenomena related to
computers.”

• The need for depth: “Every graduate should know what it takes to think deeply, and in a
sustained manner.”

• Team problem-solving skills: The ability to work in teams, to solve problems collaboratively, is a
necessary skill for all scientists and engineers.

The CMU undergraduate program in computer science reflects the broad view of the field by attempting
to encompass all computing-related areas with a primary focus on problem solving. Toward this end, the
program is not owned by the CS Department. It operates at the School of Computer Science level,
drawing faculty and grad student teaching support from all six academic units (CS, Machine Learning,
Language Technologies, Human-Computer Interaction, Robotics, and Computation/Organization/Policy).

The program is unusual in being a full four-year CS curriculum, meaning that students enter CMU as
CS majors from day one. This means that most students complete a relatively comprehensive CS core
before the end of the sophomore year:

• Data structures and algorithms. The standard course.

• “Great ideas in computer science”. An intensive, problem-solving course in computational
thinking92.

• Introduction to computer systems. Taught from the Bryant/O’Hallaron book, giving a software-
oriented introduction to the low-level structure of computers

• Principles of programming. Taught in ML, designed to challenge conventional thinking in
programming and analysis/proofs of programs

92 CS15-251 - Great Theoretical Ideas in Computer Science - http://www.cs.cmu.edu/~15251/

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 73

Most courses, starting with the four-course core, require students to work in teams. This is intended to
build up, through experience, team problem-solving skills.

At the completion of this core, there are very few hard requirements. Students must take one “Deep
Thinking” course, drawn from a menu of courses that the faculty have deemed provide opportunities to
develop deep, sustained thinking. Students must also take an advanced algorithms course, and at least
one advanced course in systems, in foundations, and in applications.

Other than that, students are encouraged to explore. We provide “suggested options”, which are simply
small groupings of upper-level courses that constitute coherent directions in computer science. The
currently listed options are:

• artificial intelligence

• cognitive modeling

• computational biology

• computer systems

• entrepreneurship

• graphics/VR

• HCI

• language technologies

• robotics

• scientific computation

• software systems

• theory

The course offerings are extensive, and in principle the fact that they are all included in a single
overarching CS program means there are no barriers preventing students from exploring and including
the full range of computing-related courses into their CS major.

A proliferation of computing-related majors puts pressure on the core,
leading to consideration of tracks.
While the CS program expresses an approach to achieving breadth in concept and depth in ability, it is
focused on a particular “paradigm” of computational thinking, namely the problem-solving paradigm. As
the field has expanded, however, a need has arisen for truly distinct programs. A sample of these
include:

• Computational Biology. Distinguished by laboratory science, observation of phenomena, the
search for fundamental truths.

• Human-Computer Interaction. Distinguished by human-oriented exploration and
experimentation, involving human subjects, industrial design, social science.

• Computer Science and the Arts. Distinguished by creative exploration, studio activity,
exhibition/performance.

• Robotics. Distinguished by significant engineering and field experimentation.

While the rationale for these programs may be well justified, each chooses different parts of, and puts
different stresses on, the four-course core.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 74

Cornell University
CS Department curriculum reform: "Vectors"
Lillian Lee

Cornell University

The Cornell CS Department, which offers the (same) CS major to students in both the College of Arts
and Sciences and the College of Engineering, is in the midst of a multi-year revision of our educational
offerings. We began with a several-year build-up of an array of novel introductory non-required courses
to attract students to computing --- one example is David Easley and Jon Kleinberg's "Networks" course,
which regularly draws over 300 students from all 7 undergraduate colleges at Cornell, representing over
30 different majors. A description of some of these courses can be found in a AAAI symposium paper.93

Having worked very hard on introductory "attractor" courses, we have now turned our attention to
education within the CS major.

Problem(s) being solved with the new curriculum
How can we balance "core" versus "specialization" in a way that can seamlessly preserve the "product" of
the two while our field continues to quickly evolve? "Core" knowledge should be that which is
fundamental for all CS undergraduates to know, but deciding what deserves to be "core" can be tricky,
especially as the "cutting edge" moves forward at lightning pace.

"Specialization" is, by dint of dichotomy, not "core", but we still want to provide support for students to
learn about rich and mature or maturing sub-areas that have developed either within CS or in
interactions with other fields. This is no minor consideration, given that students often have very little
inkling of how broad, deep, and enabling computer science is.

Unfortunately, framing the debate explicitly as one of "what is core, versus what isn't" can lead to
standoffs based on (perfectly reasonable) philosophical differences.

What is the solution
We instead framed our central question as, what are some "*vectors*"(so called to suggest "directions of
study"), that we want a CS education to enable our students to be able to pursue, and what knowledge
supports these vectors singly or as a whole?

The term "vector" is meant to be evocative. Vectors have a direction (intellectual coherence) and a
magnitude (coursework requirements), and need not be even close to orthogonal, but rather can have
high inner product (overlap). We thus did not take a "top-down" approach of trying to divide CS up into a
relatively few distinct sub-fields, but rather, a "bottom-up" approach, where we can create new vectors
on the fly as the field evolves. Thus, we have vectors for traditional fields ("graphics"), newly-emerging
fields ("network science"), fields that are quite close to each other ("AI" and "human-language
technologies", or "systems" and "security and trustworthy computing"), and collections of knowledge or
practice such as "software engineering/code warrior" and a breadth-emphasizing "Renaissance/basis
vector" (think "Renaissance person"). (In the latter two cases, one can also think of the "vector" notion as
representing the normal to a "cross-cutting plane".) The full set of 12 vectors we currently offer is:

• Renaissance (Basis)

• Artificial Intelligence

• Computational Science and Engineering

• Data-Intensive Computing

• Graphics

93 http://www.cs.cornell.edu/home/llee/papers/teachai.home.html

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 75

• Human-Language Technologies

• Network Science

• Programming Languages

• Security and Trustworthy Systems

• Software Engineering / Code Warrior

• Systems

• Theory

(Again, recall that these represent vectors we can currently reliably offer, not a conception of a partition
of CS. We considered other vectors during our study, as well, and we expect to add more pending future
faculty hires.)

Our subsequent analysis of what knowledge supports the vast majority of the vectors --- and thus can be
deemed "core" --- triggered the following major changes. (Many other changes increasing flexibility were
made, too; see the URLs below94 for more info). We added a requirement that students take a full
rigorous upper-level course in probability (we specified a menu of courses across the university, and
allow the course to double-count towards other requirements, easing the burden of the addition). This
meant that room was made in our early required discrete-math course, since much of the probability
material was moved out. We removed the requirement of an automata/computability course. The finite-
state-machines material was re-located to the "probability hole" in the required discrete math course.
 The undecidability material was re-located to the required algorithms course. We also removed the
scientific computing requirement.

This makes our core courses beyond the two intro programming courses as follows: discrete math,
probability, functional programming + data structures, algorithms, computer architecture, and systems.
Furthermore, we added the requirement of completion of at least one vector, and increased flexibility in
myriad technical ways. So, in terms of number of semester-long courses required by the major (ignoring
requirements of the student's College, which could be either Arts & Sciences or Engineering), we have:

Students must take the following courses

(A) 2 intro CS/programming courses (many get AP credit for the 1st)

(B) 5 core CS courses

(C) 3 CS electives

(D) 5 CS practicum

(E) 3 technical electives (e.g., math, chemistry, psychology)

(F) 3 upper level external specialization courses (coherent program in something other than CS)

(G) 1 free elective (the Colleges have additional free elective requirements)

The courses the students take to fulfill the above or their College requirements must also include a
probability course and must fulfill at least one vector. Thus, the probability and vector requirement are
implemented as "predicates" on a student's transcript: so that courses can be counted both towards a
vector and towards another requirement; this is part of the reason why it is easy for students to complete
more than one vector, and for us to allow different vectors to require different numbers of courses.

94 http://www.cs.cornell.edu/ugrad/InfoMtgPresent_12-2008.pdf

http://www.cs.cornell.edu/ugrad/TownHallPresent_1-2009.pdf

http://www.cs.cornell.edu/ugrad/CSMajorTransition08-09.htm

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 76

Success - what can we say so far, either quantitatively or qualitatively?
The new rules were only instituted in Spring 2009, so it is too early to measure impact on enrollments,
placement, etc. However, here are some preliminary data of interest.

The CS classes of '10, '11, and '12 could choose between the "old major" and the "vectors major" because
they entered Cornell when the "old major" was in place. Having completed most of the old-major
requirements, 30% of class of '10 went with the old major; but 70% of '11 chose the vectors one, and while
most of class of '12 hasn't affiliated yet, 100% of our currently very small sample have chosen vectors.

Moreover, the students' vector selections across these three classes are surprisingly evenly distributed
(except that the Renaissance/basis vector is very popular, as can be expected because we encourage all
students to complete it whether or not they choose other vectors as well). Thus, we believe that we are
identifying and satisfying the diverse interests of our student body.

In what contexts/situations is this solution applicable
We believe the vector-driven analysis led to much more productive discussions than simply asking,
"should course X be required?" We also think a "bottom-up" approach, in which a new vector can be
added any time a subfield arises, makes the approach very adaptable to future changes, avoids
sometimes irresolvable debates about what is "most important", and allows for smaller fields to be
brought to students' attention.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 77

Georgia Institute of Technology
College of Computing - Threads
Jim Foley

Georgia Institute of Technology

“The underlying goal of Threads™ is to increase the value of an undergraduate computer science degree
from The College of Computing at Georgia Tech – to produce graduates who will be in high demand and
who will continuously contribute value throughout successful careers. An aim is to produce graduates
who have a broad set of skills and are not easily outsourceable. Facing the challenges of an increasingly
global economy and competitive information technology workforce, the rapid convergence of technologies
… Threads™… empowers students with the directions, tools, and opportunities needed to figure out
what kind of computationalists they want to become. Threads™ aims to attract a diverse undergraduate
population and produce lifetime-learning graduates tuned to the future, globally competitive economy.”95

Problem
Declining enrollments / interest, believed to be in part caused by:

• Concern that traditional CS jobs might be outsourced96 – what we were producing might not
match future job opportunities.

• CS seen as uninteresting – not clear what it is good for – why study it? Students may not see
enough of how computing relates to the real world.

Companies might in future not want to hire our grads.

Computing has become too broad for an undergrad to know something about each aspect of computing
(just as has happened to engineering over the past 150 years).

Solution
‘Contextualize’ computing – make it more purpose/goal oriented. Not just bunch of CS courses without
knowing why they are being studied. Contextualizing has been shown to increase learning and ability to
transfer that learning to other contexts.

Do this by developing a set of threads97 – a collection of required and elective courses, from CS and other
disciplines, such that any two threads, along with university general education requirements,
constitutes a BSCS degree and satisfies ABET accreditation requirements. GT has 8 threads and thus 28
combinations of 2 threads that lead to a degree. The threads are: Modeling and Simulation; Devices;
Theory; Information Internetworks; Intelligence; Media: People; Platforms.98

All 8 threads are built on a set of core courses totaling 23 semester credit hours.99

Applicability
The threads approach can be applied by any computing school with sufficient courses to define at least
three threads100, which thus provides students with three paths to a degree (4 threads => 6 paths, 5
threads => 10 paths, etc).

According to Mark Guzdial, the greatest challenges of Threads are administrative:

95 [Furst & DeMillo 2006] "Creating Symphonic-Thinking Computer Science Graduates for an Increasingly
Competitive Global Environment"
96 See [Friedman 2005] "The World Is Flat: A Brief History of the Twenty-first Century"
97 [Furst et al. 2007] “Threads™: how to restructure a computer science curriculum for a flat world”
98 Threads BSCS web site: http://www.cc.gatech.edu/future/undergraduates/bscs/threads/
99 http://www.cc.gatech.edu/future/undergraduates/bscs/corereq
100 See the Southern Polytechnic State University NSF CPATH project: http://cse.spsu.edu/jwang/research/NSF-
CPATH/main.html

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 78

• How do you advise students when they are choosing among C(8,2) = 28 degree options?

• How do you predict what classes you should offer when you don’t know students’
combination/thread intentions? This is a variant of the pre-req problem, but it’s forward
planning rather than resolving courses backwards.

• How do you deal with students having a variety of different Thread interests and perhaps
different Foundation courses (e.g., an introduction to computer science focusing on robots vs.
media, the Gameboy programming in in our computer architecture course for media students vs.
the Yale Patt processor simulator for learning low-level issues) in later classes? In your OS
class, for example, how do you deal with students’ prior knowledge when it can be so radically
different?

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 79

MIT (Massachusetts Institute of Technology)
Department of Electrical Engineering and Computer Science: New
Undergraduate Curriculum
— Members of the EECS Curriculum Innovation Committee, Tomás Lozano-Pérez, chairman

http://www.eecs.mit.edu/ug/newcurriculum/ugcur-newsletter06.html- text of the webpage

The department is undertaking its first major curriculum revision in a dozen years. A key aim of this
revision is to take significant advantage of our joint EECS department. The intersections between EE
and CS, as technical disciplines, are deep and varied. One visible point of contact is in computer
architecture and digital design; but there are also important contacts between artificial intelligence and
estimation and control; between computer networking and information theory and coding; between
numerical methods and computational biology; between hearing and speech and natural language;
between computer vision and speech and signal processing. Our goal is to have students experience
EECS, not just EE and CS. To that end, we will immerse them early in an integrated experience,
exposing them to the breadth and richness of the field.

The field of EECS is so broad, however, that no student can be grounded in everything EECS has to
offer. Traditionally, we have focused on a small set of “core” topics that all students are required to
study.

Because there is a huge range of important, elementary material, any particular subset will necessarily
omit many fascinating and fundamental topics. Instead, our new approach is to insist that students
study a broad set of fundamentals, but not that every student study exactly the same set. We believe
that a combination of the integrated introductory experience and early exposure to a broader choice of
subjects will help students appreciate the range of possible intellectual and career opportunities in
EECS.

While breadth is important, it is also crucial for students to attain mastery in some area. This gives
satisfaction and a sense of achievement, as well as the confidence and ability to go on to master new
areas. In this curriculum, we will ask undergraduates to choose two specialization areas to study in
depth, and to build a curriculum of foundational subjects that support study in those areas. This
experience will serve well students who do not continue on for the Masters degree; and it will provide a
depth of knowledge that will enhance and deepen the MEng experience for those who do.

The current proposed SB requirements can be described in terms of a 4-level classification of subjects:

• The Introductory subjects are fully integrated introductions to EECS that introduce the big ideas
of EECS in an applied context. All students will take the same two introductory subjects. In
addition students are required to take two Mathematics subjects beyond the Institute-required
calculus subjects.

• The Foundation subjects are intended to lay the technical foundations for study in EECS.
Students will select three of these subjects from a list that currently includes: Circuits and
Electronics, Signals and Systems, Computation Structures, Software Design, Analysis and
Design of Algorithms.

• The Concentration subjects begin an in-depth exploration of the major areas of EECS. Students
will select three subjects from a list that currently includes seven subjects; initially this list is
very similar to our existing Header101 subjects. In addition, the students must select one
laboratory subject from a list that includes approximately 10 subjects.

• Advanced subjects are undergraduate subjects that build on the concentration subjects and go

101 An MIT Header subject is similar to a Stanford gateway, e.g., an introduction to a particular field or
specialization or track.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 80

deeper into some area. Students will take two advanced subjects. One of our key objectives is to
ensure that students explore some of the concentrations in department

The intent is that each level of subject has, in general, prerequisites from the previous level, with the
introductory level having prerequisites in the general Institute requirements. Our expectation is that
this new curriculum will balance breadth and depth, give students a range of foundational knowledge,
and provide mastery in some subareas of EECS.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Core and Tracks, Threads, and Vectors

8/9/10 81

Stanford University
CS Department - Track Models
Pat Hanrahan

Stanford University

Problem
The redesign of the Stanford program was motivated by several concerns:

• The curriculum was dated and badly in need of a thorough update

• The growing every-increasing importance of computing throughout the university and the rapid
increase in interdisciplinary aspect of these programs

• The desire to market computer science to students with diverse interests. Potential majors were
electing to major in programs like symbolic systems and management sciences instead of
computer science.

Solution
Stanford has changed the curriculum to a core and tracks model102. The core is what every computer
science major would take. Each person selects a track103. The core contains 6 courses. Each course is one
quarter long. There are two subsequences: theory and systems.

The theory core consists of three courses:

Theory 1: Mathematical foundations of Computing

Theory 2: Introduction to Probability for Computer Scientists

Theory 3: Data structures and algorithms

The systems core consists of:

Systems 1: Programming Abstractions

Systems 2: Computer Organization

Systems 3: Principles of Computer Systems

The number of courses required by all students has decreased. Some topics that were required but are no
longer required include logic, automata theory, and artificial intelligence. These courses have been
moved into the theoretical computer science and artificial intelligence track. Previously, we required a
separate probability course taught in another department, but will now be taught by CS faculty.
Finally, the systems track is a condensed version of a series of operating systems courses.

The initial set of tracks includes: artificial intelligence, theoretical computer science, tracks, computer
systems, human-computer interaction, graphics, information sciences, bio-computation, and traditional
computer science.

Tracks typically consist of 4 required courses.

Success
The new curriculum was deployed in the fall of 2008. Faculty and students have enthusiastically
endorsed it, but it is too early to judge its success. Most of the core courses are being taught by the first
time, and we expect it will take several years to optimize the courses.

102 [Sahami et al. 2010] "Expanding the frontiers of computer science: designing a curriculum to reflect a diverse
field"
103 http://csmajor.stanford.edu/Tracks.shtml

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Design Under Constraints

8/9/10 82

Exemplar Programs
Design under Constraints

MIT (Massachusetts Institute of Technology)
EECS 6.01 Introduction to EECS I

http://mit.edu/6.01/mercurial/spring10/www/index.html

“6.01 explores fundamental ideas in electrical engineering and computer science, in the context of
working with mobile robots. Key engineering principles, such as abstraction and modularity, are applied
in the design of computer programs, electronic circuits, discrete-time controllers, and noisy and/or
uncertain systems.”

UC Berkeley
EECS 120: Signals and Systems

http://inst.eecs.berkeley.edu/~ee120/fa08/

“One of the key abilities of an engineer is system-level thinking. Taking EECS 120 will help you develop
this skill. In particular, you will see how the math and physics you have learned in other courses help
you understand rather complex systems that occur in engineering and computer science (with
applications to communication systems, biomedical imaging, control, and robotics). The knowledge and
skills that you will acquire in EECS 120 are at the heart of an entire series of senior-level and graduate
classes, including 121, 123, 125, 128, 192, 221A, 224, and 226A. EECS 126 (Probability and Random
Processes) is not required for this course and gives a complementary set of tools needed for advanced
material, especially in the areas of communications and signal processing. We assume that you have
familiarity with lower division physics and circuits since these are the source of many examples.”

CS169 Software Engineering

http://www-inst.eecs.berkeley.edu/~cs169/sp10/doku.php?id=info

“Building large software systems is hard, but experience shows that building large software systems that
actually work is even harder. And trying to do all this before your competitors has proved fatal to many
software projects. This course covers techniques for dealing with the complexity of software systems. We
will focus on the technology of software engineering for the individual and small team, rather than
business or management issues. Topics will include, among others, specifications, principles of design
and software architecture, testing, debugging, static analysis, and version control. You are expected to
actively participate in the classes.”

EE192 Mechatronics Design Lab

http://inst.eecs.berkeley.edu/~ee192/sp09/

“The Mechatronics Design Lab is a design project course focusing on application of theoretical principles
in electrical engineering and computer science to control of mechatronic systems incorporating sensors,
actuators and intelligence. This course gives you a chance to use your knowledge of (or learn about)
power electronics, filtering and signal processing, control, electromechanics, microcontrollers, and real-
time embedded software in designing a racing robot.”

EECS194 – Internet of Everyday Things

http://www.eecs.berkeley.edu/~culler/eecs194/

"Everyday we deal with a myriad of sophisticated devices that have sensors, controllable actions, and
intelligence that transforms inputs and intention into action. These devices are the appliances in the
kitchen, the gadgets in living room, the lighting, heating, cooling, watering, draining facilities in the
building, the array of thermometers, scales, and health meters, the many forms of recreational

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Exemplar programs - Design Under Constraints

8/9/10 83

equipment, and so on. They are stand-alone and fixed function. The intelligence is sometimes digital,
often analog, and almost inevitably human.”

GamesCrafters

http://gamescrafters.berkeley.edu/

“At the core is a group project called GAMESMAN, an open-source AI architecture developed for solving,
playing, and analyzing two-person abstract strategy games (e.g., Tic-Tac-Toe or Chess). Given the
description of a game as input, our system generates a command-line interface and graphical application
that will solve it (in the strong sense), and then play it perfectly. Programmers can easily prototype a
new game with multiple rule variants, learn the strategy via color-coded value moves (win = go = green,
tie = caution = yellow, lose = stop = red), and perform extended analysis.”

University of Washington
CSE477 Capstone Design - Technology for Low-Income Regions
http://www.cs.washington.edu/education/courses/477/08sp/

“The theme for the course is ‘Technology for Low-Income Regions’. In the fall quarter’s seminar we used
a set of readings to familiarize ourselves with several interesting problem domains. By the end of the
quarter, we had determined some possible project ideas. The past quarter, we developed and refined
those ideas into detailed implementation plans for the spring quarter (the CSE477 CompE capstone
design course). This quarter it is time to turn these ideas into working prototypes.”

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 84

Prototypes and Example Integrated
Joint Majors

Computers in the Arts and Digital Media
Jim Foley

Georgia Institute of Technology

"The Bachelor of Science in Computational Media (BSCM) was developed in recognition of computing’s significant role
in communication and expression, and is a joint offering between the College of Computing and the School of Literature,
Communication, and Culture within the Ivan Allen College of Liberal Arts. The two schools offer CM majors a thorough
education in understanding the computer as an expressive medium, and in creating interactive media not only with
commercial software packages but also by writing code. … CM majors work as interns in the design and development
of video games, animation and special effects, and user interfaces. Most CM alumni have gone on to work for major
video-game studios and interactive-media firms. Some are now pursuing graduate degrees in digital media, human-
computer interaction, and even film studies.
“The BSCM curriculum gives students a grasp of the computer as a medium: the technical, the historical-critical, and the
applied. Students gain significant hands-on and theoretical knowledge of computing, as well as an understanding of
visual design and the history of media. Our graduates are uniquely positioned to plan, create, and critique new digital
media forms for entertainment, education and business." 104

Problem
• Declining enrollments / interest

• Concern that traditional CS jobs might be outsourced105 – what we were producing might not
match future job opportunities

• CS seen as uninteresting – not clear what it is good for – why study it?

Solution
‘Contextualize’ computing – make it more purpose/goal oriented. Not just bunch of CS courses without
knowing why they are being studied. Contextualizing has been shown to increase learning and ability to
transfer that learning to other contexts.

Do this by defining a degree that includes computing courses and new media courses. The latter set of
courses provides the context (goal, use) for the computing courses. Computing is an ends to a means, not
a means in and of itself.

Applicability
Interdisciplinary degrees such as the BSCM can be developed given the existence of two schools such as
CoC and LCC, appropriate courses, and faculty and administrative champions in both schools.

104 Computational Media web site: http://lcc.gatech.edu/compumedia/
105 See [Friedman 2005] "The World Is Flat: A Brief History of the Twenty-first Century"

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 85

Computational biology
David Shaw

D. E. Shaw Research

Departmental involvement:
Computer science

Biology

Possibly one or more faculty members from, for example, chemistry, physics, applied mathematics
and/or statistics who have related research interests

Distinctive subject matter (required and/or elective)

Bioinformatics and systems biology

Exposure to simple applications of statistical analysis and data mining

Use of large databases containing genomic, proteomic, and other biological data

Biomolecular modeling and simulation

Focus on molecular structures and dynamics

Use of iterative numerical algorithms

Applications of basic computational physics (mechanics, electrostatics, etc.)

Visualization of biological data

Graphical representation of statistical data and network models

Abstraction, rendering, and animation of three-dimensional molecular structures

Sample Course Outline

Overview

This document is intended to provide an informal sketch of a hypothetical survey course on (a) various
applications of computer science within the biological sciences, and (b) the understanding of biological
systems from the perspective of a computer scientist. I’ve chosen to focus on biology only because my
own research involves the design of algorithms and machine architectures for biochemical applications.
Biology should thus be regarded only as an example domain, which could just as easily be replaced by
any of a number of other domains.

One of the goals of the course described below would be to convey to students who have had little
exposure to the field of computer science a feeling for the power of computational methods and
technologies within non-obvious application domains. Of equal importance, the course is intended to
develop—by way of example rather than description—some feeling for the conceptual framework
sometimes referred to as “computational thinking.”

Intended Audience

The canonical student for whom the course was designed might be a college sophomore who has not
declared a major in computer science, but who might become interested in the field if exposed to
intellectually compelling applications and ideas that fall outside the province generally associated with
the stereotypical computer nerd.

A different version of the course could be designed that might be more appropriate for junior- and senior-
level students who have already gained some familiarity with various topics and tools within the fields of
computer science, biology, chemistry, mathematics, or any of several engineering disciplines. Analogous

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 86

courses could also be developed for students majoring in other fields within not only the physical and
social sciences, but the arts and humanities as well.

Prerequisites

The prerequisites for a version of the course designed for sophomores might include nothing more than a
one-semester introduction to computer programming in any commonly used high-level language that
might be available at the institution for use in completing homework assignments or class projects.
(Such programming would typically involve straightforward computational experimentation with very
simple mathematical models, though many such exercises would in any case involve the use of domain-
specific applets written by the instructor or curriculum designer.)

A somewhat more advanced version of the course might target students who have already completed
one-semester freshman- or sophomore-level courses in biology, chemistry and physics, but who would not
be assumed to have any additional background (beyond the above introductory programming course) in
computer science or mathematics.

Course Outline

Living things are computing devices

DNA is a programming language

The genome is a computer program

Application: Reconstructing the human genome from DNA fragments

Genes describe proteins

Proteins attach themselves to small molecules and to other proteins

The molecular jigsaw puzzle

Lots of missing pieces

No picture on the box

What do proteins do?

Some proteins are building blocks

Usually lots of them, all stuck together

Hair and fingernails

Application: Cellulosic biofuels (making energy out of corn husks)

Some proteins serve as plumbing

Pipes, pumps and faucets

Nerves and brains

Some proteins carry messages

Proteins talk to each other

Application: Systems biology (who’s talking with whom?)

Application: Computers in evolutionary biology (who’s your daddy?)

Some proteins form machines

Rotors, sliders, and bead-stringers

Application: Nanotechnology (building molecular machines)

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 87

How proteins work

What they look like

Application area: Building a molecular microscope

How they get that way

Application area: The protein folding problem

How they fit together

How they move

Basically, we still don’t know

Application area: Molecular dynamics simulations in science and medicine

How drugs work

Drugs are small molecules (usually)

Drugs attach themselves to specific proteins (usually)

Application: “Rational” drug design (molecular matchmaking)

Drugs gum up the machinery (sometimes)

Application area: Molecular dynamics simulations in science and medicine

Discovering drugs is very hard and very expensive

Combinatorial chemistry

If you don’t know the answer, try everything

Side effects: A case of mistaken identity

Gene therapy: Designing the perfect impostor

Stranger than fiction

Computing with biological molecules

DNA-based computers

Biomimetic materials

Application: Biomimetic materials (walking on water and flying like a bird)

Computer-designed organisms

Quantum chemistry: The weirdness under the hood

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 88

Computer Engineering
Randy Katz

UC Berkeley

From Wikipedia
“Computer Engineering is a discipline that combines elements of both Electrical Engineering and
Computer Science. Computer engineers usually have training in electrical engineering, software design
and hardware-software integration instead of only software engineering or electrical engineering.
Computer engineers are involved in many aspects of computing, from the design of individual
microprocessors, personal computers, and supercomputers, to circuit design. Usual tasks involving
computer engineers include writing software and firmware for embedded microcontrollers, designing
VLSI chips, designing analog sensors, designing mixed signal circuit boards, and designing system and
control/monitoring software.”

Observations
• A mature interdisciplinary area between CS and EE; it’s been around for decades

• Popular among undergraduates

• Students with this background have traditionally been in high demand by employers

• Also a foundation for more advanced work at the graduate level

• Deep background in signal processing, devices, circuits, digital logic, computer architecture,
system and real-time software

• Integrated curriculum in the sense of a coherent collection of required courses and sequences
from CS and EE disciplines

• Integrative “capstone” design courses, e.g., Hardware/Software Co-design or Design Studio
Courses

What Made Computer Engineering a Successful Joint Program:
• Industry demand

• Relatively close intellectual proximity of computer science and electrical engineering

Examples
Bachelor of Science in Engineering in Computer Systems Engineering, Arizona State
University

 http://engineering.asu.edu/undergraduate/cse

The Computer Systems Engineering program is concerned with the analysis, design and evaluation of
computer systems, both hardware and software. The program emphasizes computer organization and
architecture, systems programming, operating systems and digital hardware design.

Computer engineers often find themselves focusing on problems or challenges that result in new "state of
the art" products that integrate computer capabilities. They work on the design, planning, development,
testing and even the supervision of manufacturing of computer hardware -- including everything from
chips to device controllers. They also focus on computer networks for the transmission of data and
multimedia. They work on the interface between different pieces of hardware and strive to provide new
capabilities to existing and new systems or products.

The work of a computer engineer is grounded in the hardware -- from circuits to architecture -- but also
focuses on operating systems and software. Computer engineers must understand logic design,
microprocessor system design, computer architecture and computer interfacing, while continually
focusing on system requirements and design.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 89

Students are required to complete 120 credit hours to earn a B.S.E. in Computer Systems Engineering.
In addition to general studies courses, students complete math, science, introduction to engineering,
circuits and computer science foundation courses. Upper division courses include software engineering,
computing ethics, data structures and algorithms, computer architecture, computer networks, digital
hardware, embedded micro systems and operating systems. Students can also choose from a number of
400-level electives, including special topics courses. As a culminating experience in the program,
students take a two semester sequence of Capstone courses, where they work on a real-world project
provided by industry in a team setting. Students can choose to concentrate their studies in information
assurance.

Electrical and Computer Engineering Curriculum, UC Davis
http://www.ece.ucdavis.edu/undergrad/programdescription.html

The program in Computer Engineering provides the student with a broad and well-integrated
background in the concepts and methodologies that are needed for the analysis, design, development,
organization, theory, programming, and application of information processing systems. Although such
systems are popularly called "computers," they involve a far wider range of disciplines than merely
computation, and the Computer Engineering curriculum is correspondingly broad. The programs present
the essential material in electronic circuits, digital logic, discrete mathematics, computer programming,
data structures, and other topics.

The Computer Engineering curriculum prepares students for careers in computer engineering or
graduate studies by providing a solid background in mathematics, physical sciences, and the traditional
computer engineering subjects: electronics, computer hardware, and computer software. Here electronics
refers to the five Electrical Engineering specialty areas (1) physical electronics, (2) electromagnetics, (3)
analog electronics, (4) digital electronics, and (5) communications, control, and signal processing. The
upper division units required in electronics, computer hardware and computer software consist of 13
units in electronics courses, 18 units in computer hardware courses, and 12 units in computer software
courses. The remaining units consist of 11 units of design electives and 9 units of technical electives. By
carefully selecting these 20 design and technical electives, students can focus on electronics, computer
hardware, or computer software, or distribute these units among the three areas. Students who complete
the Computer Engineering curriculum will receive a Bachelor of Science in Computer Engineering.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 90

Computational finance and financial engineering
David Shaw

D.E. Shaw Research

Departmental involvement:

Computer science

Economics and/or business school finance department

Possibly one or more faculty members from, for example, applied mathematics, statistics or

operations research who have related research interests

Distinctive subject matter (required and/or elective):

Underlying theory

Tobin’s separability theorem and Markowitz mean-variance optimization

Diversification theory, Sharpe’s Capital Asset Pricing Model, and factor models

The Black-Scholes options model and path-dependent options

Methods

Algorithms for the static and dynamic construction of optimal portfolios

Techniques for prediction based on financial time series data

Analytical and numerical methods for option valuation

Applications

Risk management (within private and public sectors)

Managing institutional assets (e.g., pension funds, university endowments)

Economic policy, systemic risk, long-term investments in “public goods”

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 91

Computational Methods in the Humanities and Social
Sciences
Randy Katz

UC Berkeley

Definition from Wikipedia
“Digital humanities is a field of study, research, teaching, and invention concerned with the intersection
of computing and the disciplines of the humanities. It is methodological by nature and interdisciplinary
in scope. It involves investigation, analysis, synthesis and presentation of knowledge using
computational media. It studies how these media affect the disciplines in which they are used, and what
these disciplines have to contribute to our knowledge of computing. Academic departments of the digital
humanities typically include technical practitioners as well as traditionally trained scholars with
experience or expertise in digital media. Such departments tend to be heavily involved in collaborative
research projects with colleagues in other departments. The interdisciplinary position of the digital
humanities is comparable to that of comparative literature in relation to literary studies. It involves
experts in both research and teaching; in all of the traditional arts and humanities disciplines (history,
philosophy, linguistics, literature, art, archaeology, and music of many cultures, for example); specialists
in electronic publication and computational analysis, in project design and visualization, in data
archiving and retrieval.”

Observations
• Digital Humanities: Information management, with elements of digital media creation and

management

• New approaches for on-line publication and dissemination of materials, including such things as
virtual environments for exploring historical times and places (e.g., UVa project on Shenandoah
Valley during the Civil War)

• Library science for the 21st Century? Emerging MS programs

• Simulation/Counter-factual history, e.g., fivethirtyeight.com

These areas are on the leading edge of research in the humanities and social sciences, are mostly
realized as new graduate programs, and have not as yet filtered down to the undergraduate level. There
is not much evidence of joint programs involving computer scientists and humanities undergraduates
(there are some double majors, such as CS + Cog Sci, and alternative programs in “Schools of
Information” that are focused on these areas).

Examples
Master's Degree in Digital Humanities, Media Studies Program, University of Virginia
http://www.iath.virginia.edu/hcs/MDST.MA.html
“making humanities content tractable to computational methods”

“Successful completion of this MA program requires students to have, or to acquire, a working
familiarity with major computer operating systems (PC, Macintosh, Unix) and software more specialized
than the usual office applications (e.g., visual programming software, multimedia authoring tools,
databases), as well as with markup languages (e.g., SGML, XML) and programming languages (e.g.,
Perl, Java).”

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 92

Computational Science and Engineering
Randy Katz

UC Berkeley

Definition from Wikipedia
“Computational science is the field of study concerned with constructing mathematical models and
numerical solution techniques and using computers to analyze and solve scientific, social scientific and
engineering problems. In practical use, it is typically the application of computer simulation and other
forms of computation to problems in various scientific disciplines. The field is distinct from computer
science (the mathematical study of computation, computers and information processing). It is also
different from theory and experiment, which are the traditional forms of science and engineering. The
scientific computing approach is to gain understanding, mainly through the analysis of mathematical
models implemented on computers. Scientists and engineers develop computer programs, application
software, that model systems being studied and run these programs with various sets of input
parameters.”

Observations
• A mature field: the earliest uses of computer were to solve scientific and engineering applications

• Requires knowledge of applied mathematics, a science or engineering domain, and computer
science

• Such broad and deep knowledge is difficult to obtain in a four year undergraduate program, so
these are more typically graduate level joint programs

• Traditionally have been more attractive to scientists and engineers that seek knowledge of
computational methods for their research than for computer scientists who seek application of
their computing technology

• Mostly domain-specific courses (e.g., “computational materials science”) with some integrative
courses (e.g., “applications of parallel computers”)

What Makes Computational Science and Engineering A Less Successful Joint
Program?

• Application-domain students learn some computing e.g., “E77-Introduction to Computer
Programming for Scientists and Engineers”106; the computer science students don’t study much
science (or engineering) or mathematics beyond the freshman-sophomore level; modest
undergraduate interest

• Computer science students prefer more advanced mathematics classes when they are taught be
computer scientists, e.g., discrete math courses taught within CS. Generally, interest is
numerical analysis has waned, and these have not been replaced with more modern courses on
mathematics for computation.

Expected Outcomes of E77-Introduction to Computer Programming for
Scientists and Engineers
Ability to apply knowledge of mathematics, science, and engineering to answer subject matter questions
appropriate to first year studies using computing techniques. Ability to design and conduct
computational experiments, as well as to analyze and interpret data generated from numerical
computations. Ability to design a computational system (program), component (subroutine, object), or
process (code fragment) to meet desired needs within realistic constraints such as realizability within a

106 http://www.me.berkeley.edu/ABET/2005/courses/E77web.shtml

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 93

fixed computational environment. Ability to identify, formulate, and solve basic level engineering
problems using modern computational techniques. Ability to communicate technical methods and results
effectively. Recognize the need for, and an ability to engage in life-long learning about computing. Ability
to use the techniques, skills, and modern engineering computation for engineering practice.

Topics
Course Introduction; MATLAB Basics. MATLAB Arrays, Vectors, Matrices. Control Structures.
Functions and writing MATLAB. Data Structures and Classes. Systems of Linear Equations. Least-
Squares. Approximation by polynomials. Internal representation of numbers. Numerical Root.
Numerical Integration. Numerical Differentiation. Numerical Solution of ODEs. Linear Recursion and
Tree Recursion. Sorting and Searching.

Contrast with a first course in computing for computer science students
This	 first	 course	 concentrates	 mostly	 on	 the	 idea	 of	 abstraction,	 allowing	 the	 programmer	 to	 think	 in	 terms	
appropriate	 to	 the	 problem	 rather	 than	 in	 low-‐level	 operations	 dictated	 by	 the	 computer	 hardware.	 …	 We	 are	
interested	 in	 teaching	 you	 about	 programming,	 not	 about	 any	 particular	 programming	 language.	 We	 consider	 a	
series	 of	 techniques	 for	 controlling	 program	 complexity,	 such	 as	 functional	 programming,	 data	 abstraction,	
object-‐oriented	 programming,	 and	 query	 systems.	

Examples
Computational Science and Engineering, University of Illinois

http://www.cse.uiuc.edu/
CSE Graduate Option Programs in Participating Departments

CSE is an interdisciplinary graduate option program with many participating departments whose
individual CSE Options are broadly similar but may vary in some details. Each department has
determined a set of specific requirements that students must satisfy to complete the CSE Option for a
given degree program in that particular department. The departmental program descriptions specify
required and recommended courses as well as any relevant examination or thesis requirements. Upon
satisfying the degree requirements of the students' graduate department and the department's CSE
Option requirements, the student is awarded a CSE Certificate signifying successful completion of the
CSE Option.

• Aerospace Engineering

• Agricultural and Biological Engineering

• Astronomy

• Atmospheric Sciences

• Bioengineering

• Biophysics and Computational Biology

• Chemical and Biomolecular Engineering

• Chemistry

• Civil and Environmental Engineering

• Computer Science

• Electrical and Computer Engineering

• Industrial and Enterprise Systems Engineering

• Materials Science and Engineering

• Mathematics

• Mechanical Science and Engineering

• Nuclear, Plasma and Radiological Engineering

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 94

• Physics

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 95

Premedical computer science programs
John Guttag

MIT

Departmental involvement

Computer science

Biology

Chemistry

Distinctive subject matter (required and/or elective)

Requirements for admission to medical school

Physics

Biology

Chemistry/bio-chemistry

Algorithmic thinking

Computational aids for decision making

Probability and statistics

Machine learning

Visualization and analysis of continuous and categorical data

Comments
I have spent the last 30+ years teaching at MIT, so my views are heavily shaped by my interactions with
an atypical group of undergraduates. Similarly, my views on medical school education are shaped
primarily by interactions with Harvard Medical School.

• Many undergraduates who profess an interest in medicine are unsure whether their long term
interest lies in treating patients or contributing to medicine by developing technology or doing
research. These students often choose "pre-med" majors to keep their options open.

• Typical pre-med course requirements are similar in character to much of the medical school
curriculum in their emphasis on the mastery of facts. In contrast, many engineering programs
(including computer science) place more of an emphasis on problem solving.

• Premier medical schools understand that the skills acquired in studying engineering are
extremely valuable, in part because they expect many of the their graduates to advance as well
as practice medicine.

• HMS requires roughly the following of their applicants:

o Biology: 2 terms

o Chemistry/bio-chemistry: 4 terms

o Physics: 2 terms

o Mathematics: 2 terms of calculus (don't ask me why, since they don't appear to make any
use of it)

Even for a student with no AP credits, this only totals 10 terms. At MIT, it is only 4 terms beyond the
general requirements. At all universities engineering majors have an overlap with these requirements.

• A joint major between computer science and any of biology, chemistry, chemical engineering, bio-
chemistry, or bio-engineering would likely satisfy the admissions requirements of most medical

CRA-E White Paper: Creating Environments for Computational Researcher Education

Appendices: Prototypes and Example Integrated Joint Majors

8/9/10 96

schools.

• A student would be well-advised to choose such a joint major. If the student elects to go on to
medical school, the computer science training will make them a better physician and better
prepared for many kinds of medical research. If the student decides on a different career path
(even medical research), the CS background will be a great asset.

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 97

Introduction to Index Use
Just as the Web is a hypertextual structure that encourages both directed search and exploratory
browsing strategies, so this index is a paper hypertext. The See and See Also trails provide
alternative perspectives, while the substructure of the main entries pull together the different
contexts in which a term or phrase appears. These miniature structures provide alternative
structures to the main structure of the report and help in clarifying complex concepts whose
components are sometimes widely separated. [Simpson 1998] describes these principles in more
detail.
AAAS (American Association for the

Advancement of Science)
 See also professional committees and

societies
NSDL	 Science	 Literacy	 Maps,	 [NSDL	 2007],	 28,	 67	

ABET (Accreditation Board for Engineering
and Technology), 43

 See also agencies
design	 portfolio	 requirement,	 46	

abstraction(s)
 See also cognitive skills; computational

thinking; hypotheses; logic;
model(s)/modeling; pattern(s); reasoning;
representation(s)
as	 technique,	 33	
automation	 of	
computational	 thinking	 characterized	 as,	 16	
computing	 characterized	 as,	 14	

cognitive	 skills	
fundamental	 cognitive	 skill,	 12,	 23,	 54	
list	 component,	 29	

computational	 thinking	 role,	 14	
creating	
from	 data,	 as	 mastery	 component,	 42	
related	 work	 analysis	 role,	 50	

defining	
computational	 thinking	 role,	 14	

introductory	 course	 use,	 21	
levels	 of	
cognitive	 skill	 category	 component,	 26	
computational	 thinking	 role,	 14,	 15,	 16	
concepts	 and	 principles	 related	 to,	 30	
lean	 core	 concept	 component,	 26	

numeric	
symbolic	 abstractions	 compared	 with,	 14	

representation	 of	
as	 cognitive	 skill,	 29	

skills	 with	
as	 core	 competancy,	 15	

ACM (Association for Computing Machinery)
 See also professional committees and

societies
CSTA	 (Computer	 Science	 Teachers	 Association)	
model	 curriculum	 for	 K-‐12	 computer	 science,	 11,	
58,	 63	

curriculum	 reports	
[ACM	 2010],	 25,	 58,	 63	

ACM/IEEE
 See also professional committees and

societies
Computer	 Science	 Curricula	 2001	 report/2008	
update,	 10,	 58,	 63	

Computing	 Curricula	 2005	
The	 Overview	 Report,	 58,	 63	

CS	 2012	 plans,	 10	
curriculum	 task	 forces,	 25	

Adler, Mortimer J.
[Adler	 &	 Van	 Doren	 1972],	 9,	 58	

agencies
 See ABET; CISE; NSF
AI
 See artificial intelligence (AI)
Aiken, Alex
[Sahami	 et	 al.	 2010],	 25,	 61	

algorithm(s)/algorithmic thinking
 See also automation; computational

thinking; constraint(s); mathematics; proof
techniques
abstractions	 relationship	 to,	 14	
as	 cognitive	 skill,	 29	
computational	 thinking	 role,	 14,	 15,	 16	
computer	 science	 core	 component,	 28	
concepts	 and	 principles	 related	 to,	 30	
data	 structures,	 31	
design,	 mathematical	 tools	 for,	 28	
introductory	 courses,	 19,	 20,	 21	
lean	 core	 concept	 component,	 26	
logic	 role	 in,	 28	

Allan, Vicki
[Allen	 et	 al.	 2010],	 58	

Alvarado, Christine
[Dodds	 et	 al.	 2008],	 59	

ambiguity
 See also uncertainty
humanities	 strategies	 for	 dealing	 with,	 27	

AMS (American Mathematical Society)
 See also mathematics; pedagogy;

professional committees and societies
[CBMS	 2001],	 58	

analysis/analytical
 See also critical analysis, thinking;

synthesis
as	 cognitive	 skill,	 26,	 29	
humanities	 strategies	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 98

as	 shared	 core	 component,	 27	
programming	 compared	 with,	 18	

problem	
concepts	 and	 principles	 related	 to,	 30	

skills	
computational	 thinking	 as,	 16	

analytic geometry
as	 shared	 core	 component,	 27	

application(s)
 See also context(s)/contextualization; real-

world
context	
gap	 between	 concept	 and	 it's,	 43	

knowledge	 of	
integrated	 joint	 major	 issues,	 38	

apprenticeship framework
 See also mentoring; research/researchers,

strategies for developing
combining	 with	 explicit	 research	 skill	 training,	 51	
role	 in	 developing	 future	 researchers,	 42,	 50	

approximation(s)
 See also algorithm(s)/algorithmic thinking;

model(s)/modeling; numerical methods;
probability
as	 cognitive	 skill,	 29	
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 30	

architecture (computer)
logic	 role	 in,	 28	
multi-‐core	
as	 computer	 science	 core	 component,	 28	

argument(s)
 See also logic/logical; reasoning
complex	 and	 contradictory	
humanities	 strategies	 for	 managing,	 in	 shared	
core,	 27	

art(s)
 See digital, arts; humanities
artifacts
 See physical/physicality
artificial intelligence (AI)
 See also cognition/cognitive; logic/logical;

machine learning; reasoning
logic	 role	 in,	 28	

Aspray, William, 59
[CRA	 2000b],	 59,	 63	

assimilation
 See also encapsulation
cognitive	 skills	
CRA-‐E	 role,	 10	

researcher	 culture,	 51	
Association for History and Computing
[AHC	 2005],	 58,	 63	

assumption(s)
 See also abstraction(s); core, cognitive

skills; critical analysis, thinking;
hypotheses; model(s)/modeling;
representation(s); simulation; validation
as	 cognitive	 skill,	 29	

hidden	
identifying,	 importance	 of,	 50	

identifying	
as	 component	 of	 mastery,	 43	

implicit	
identification	 of	 as	 humanities	 strategy	 in	 shared	
core,	 27	

validation	
scientific	 training	 in,	 27	

attitude(s)
potential	 researchers,	 49	
student	
relationship	 to	 educational	 goals,	 10	

attitudes
 See also student interests; modes of thought
Augsburg College
 See also universities and colleges
computational	 philosophy	 major,	 18	
computational	 philosopy	 major,	 64	

automation
 See also algorithm(s)/algorithmic thinking;

computational thinking
as	 cognitive	 skill,	 29	
as	 great	 principle	 of	 computing,	 15	
of	 abstractions	
computational	 thinking	 characterized	 as,	 16	
computing	 characterized	 as,	 14	

skills	 with	
as	 core	 competancy,	 15	

Barr, Valerie
[Allen	 et	 al.	 2010],	 58	
[Barr	 et	 al.	 2010],	 58	

behavior (computational)
 See also process(es)
component	 of	 computational	 thinking,	 14	
concepts	 and	 principles	 related	 to,	 30	

BENEFIT (Fluency with Information
Technology) course, 22

Berkeley
 See UC Berkeley
Bernat, Andrew
[CRA	 2000b],	 59	

bibliography
references,	 58–62	
URLs,	 63–68	

BIO 2010 project, 61
biology (computational)
 See computational domains:biology
Blanton, Richard L.
[Taraban	 &	 Blanton	 2008],	 62	

Blumenthal, Marjory S.
[Mitchell	 et	 al.	 2003],	 61	

Boonstra, Onno
[Boonstra	 et	 al.	 2004],	 58,	 63	

Boyd, Danah
[Boyd	 2008],	 9,	 58,	 63	
PGSS	 RIP],	 66	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 99

Bransford, John D.
 See also pedagogy
[Bransford	 et	 al.	 1999],	 58	
[Donovan	 &	 Bransford	 2005],	 59	

Breck, Eric
[Breck	 et	 al.	 2008],	 58,	 63	

Breure, Leen
[Boonstra	 et	 al.	 2004],	 58,	 63	

Brown University
 See also universities and colleges
CS015-‐CS016,	 20	
CS017-‐CS018,	 20	
CS019,	 20	
CS020,	 20	
CS040,	 20	
CS053,	 21,	 27	
CS931,	 19,	 21	

Brown, Ann L.
 See also pedagogy
[Bransford	 et	 al.	 1999],	 58	

Brown, John Seeley
[Hagel	 et	 al.	 2010],	 60	

Brown, John Seely, 11
 See also pedagogy
[Brown	 2008],	 58,	 63	
[Thomas	 &	 Brown	 2009],	 62	

Bruner, Jerome
 See also pedagogy
[Bruner	 1960],	 58	
spiral	 approach	 to	 learning,	 30	

Brylow, Dennis
[Allen	 et	 al.	 2010],	 58	

C programming language
introductory	 course	 component,	 21	

C4G capstone course
Georgia	 Tech	
characteristics,	 46	

calculus
 See also mathematics/mathematical
as	 shared	 core	 component,	 27	

capstone courses
 See also mastery
characteristics	 and	 examples,	 45–46	
computing	 for	 good	
characteristics	 and	 examples,	 46	

embedded	
characteristics	 and	 examples,	 45	

enhanced	 role	 throughout	 undergraduate	
curriculum,	 43	

software	 engineering	
characteristics	 and	 examples,	 45	

themes	 and	 methods,	 47	
career decisions
 See also research/researchers
impact	 of	 integrated	 joint	 majors,	 39	
issues	 and	 strategies,	 43	

Catmull, Ed
[Catmull	 2008],	 58,	 63	

CBMS (Conference Board of the
Mathematical Sciences)

 See also professional committees and
societies
[CBMS	 2001],	 58	

CISE (Computer and Information Science)
Directorate (NSF)

 See also agencies
NRC	 computational	 thinking	 workshops	 sponsored	
by,	 16	

cloud computing
as	 computer	 science	 core	 component,	 28	

CMU (Carnegie Mellon University), 26
 See also universities and colleges
BCSA	 degree,	 35	
Center	 for	 Computational	 Thinking,	 16,	 67	
computational	 programs	 and	 minors	
list,	 38	

core	 and	 track	 exemplar	 program,	 72	
CS15-‐105,	 21	
curriculum	 changes,	 25	
double	 major,	 35	

Cocking, Rodney R.
[Bransford	 et	 al.	 1999],	 58	

cognitive skill(s), 29–30
 See also abstraction(s); assumption(s);

critical analysis; pattern(s);
representation(s)
abstractions,	 12,	 23,	 54	
as	 lean	 core	 component,	 26	
assimilation	 of	
CRA-‐E	 role,	 10	

component	 of	 computational	 thinking,	 14	
computational	 thinking	 characterized	 as,	 16	
core	
	 See	 assumption(s),	 identifying;	 assumptions,	
validation;	 pattern(s),	 recognition;	 and	
representation(s)	

CRA-‐E	 white	 paper	 theme,	 12	
critical	 analysis	
[Adler	 &	 Van	 Doren	 1972],	 58	

deepening	 the	 mastery	 of	
issues	 for,	 43	

definition,	 17,	 26	
depth	 in	 understanding	 of	
mastery	 role,	 42	

potential	 researchers,	 50	
relationships	 with	 lean	 core	 concepts,	 principles,	 and	
techniques,	 28–33	

representations,	 12,	 23,	 54	
Cohoon, J. McGrath
[CRA2006a],	 59	

collaboration/collaborative
 See also integrated joint majors; social,

networks; team(s)
activities	
integrated	 joint	 majors	 arising	 out	 of,	 40	

ad-‐hoc	
as	 skill	 of	 current	 students,	 9	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 100

among	 disciplines	
strategies	 for	 integrated	 joint	 majors,	 41	

cross-‐departmental	
mechanisms	 for	 encouraging,	 39	

culture	
introductory	 course	 component,	 23	

departmental	
in	 unified	 joint	 majors,	 38	
introductory	 course	 development,	 23	

with	 professors	 and	 graduate	 students	
role	 in	 developing	 researchers,	 42	

college(s)
 See also universities and colleges
four-‐year,	 as	 rich	 background	 for	 future	 researchers,	
10	

combinatorics
 See also data-intensive computing;

mathematics; probability
as	 technique,	 33	

common ground
 See also culture(s); multidisciplinary
[Friedman	 2005],	 60	
[Nisbett	 2003],	 61	
[Snow	 1959],	 62	
integrated	 joint	 major	 role	 in	 evolving,	 38	

communication
 See also network(s)/networking; social
as	 computer	 science	 core	 component,	 28	
as	 great	 principle	 of	 computing,	 15	
coordination	 and	
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 31	

integrated	 joint	 majors	
importance	 for	 promoting,	 39	

models,	 31	
skills	
development	 in	 capstone	 courses,	 47	

community service
 See also capstone courses
Purdue's	 capstone	 course	 for,	 46	

comparing and contrasting
 See also abstraction(s); cognitive skill(s);

critical analysis, reading; related work
sections; research/researcher, skills
as	 cognitive	 skill,	 29	
different	 representations	
introductory	 course	 component,	 23	

compartmentalization
 See silo-based knowledge
competition
 See also collaboration/collaborative
competition role in capstone courses, 45, 47
complexity
 See also cognitive skill(s)
computational	
[Petzold	 2008],	 61	
as	 concept	 component	 of	 lean	 core,	 26	
introduction	 in	 introductory	 courses,	 23	

decomposition	

as	 cognitive	 skill,	 29	
systems	 design	
as	 component	 of	 real-‐world	 system	 design,	 43	

computability
 See also logic; mathematics; paradigms;

theory
logic	 role	 in,	 28	
Turing	 [Petzold	 2008],	 61	

computation/computational
as	 great	 principle	 of	 computing,	 15	
complexity	
introduction	 in	 in	 introductory	 courses,	 23	

core	
Recommendation	 2,	 25–33	

introduction	 to	 principles	 of,	 21	
models,	 31	
stack	
as	 computer	 science	 core	 component,	 28	

theory	 of	
logic	 role	 in,	 28	

computational domains
applied	 mathematics	 and	
CMU	 program	 or	 minor,	 38	

biology	
CMU	 program	 or	 minor,	 38	
Foldit	 protein	 folding	 game	 success,	 61	
integrated	 joint	 major	 prototype,	 40,	 85	
modeling	 problems	 of,	 in	 introductory	 courses,	 20	

chemistry	
CMU	 program	 or	 minor,	 38	

design	
CMU	 program	 or	 minor,	 38	

economics	
CMU	 program	 or	 minor,	 38	
introductory	 course	 component,	 20	

finance	 and	 financial	 engineering	
as	 emerging	 integrated	 joint	 major,	 40	
CMU	 program	 or	 minor,	 38	
integrated	 joint	 major	 prototype,	 90	

humanities	 and	 social	 sciences	
integrated	 joint	 major	 prototype,	 91	

linguistics	
CMU	 program	 or	 minor,	 38	

mechanics	
CMU	 program	 or	 minor,	 38	

neuroscience	
CMU	 program	 or	 minor,	 38	

philosophy	
introductory	 course	 component,	 18	

physics	
CMU	 program	 or	 minor,	 38	

science	
introductory	 course	 component,	 18	

science	 and	 engineering	
integrated	 joint	 major	 prototype,	 92	

statistical	 learning	 and	
CMU	 program	 or	 minor,	 38	

universe	
as	 introductory	 course,	 21	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 101

computational thinking
 See also abstraction(s);

algorithm(s)/algorithmic thinking;
automation; cognitive skills; critical
analysis; exploration; logic/logical;
model(s)/modeling; reasoning;
representation; pattern(s)
[NRC	 2010],	 61	
as	 a	 practice	 not	 a	 principle,	 15	
as	 lean	 core	 component,	 27	
characteristics,	 14	
Charles	 Isbell,	 15	
CMU	 Center	 for	 Computational	 Thinking,	 16	
Jeannette	 Wing,	 14	
Lynn	 Andrea	 Stein,	 15	
NRC	 Workshop	 on	 The	 Scope	 and	 Nature	 of	
Computational	 Thinking,	 15	

Peter	 Denning,	 15	
introductory	 courses,	 17–23	
scope	 and	 nature	
NRC	 workshop	 exploration	 of,	 16	

summary	 of	 views,	 14	
what	 every	 college	 graduate	 should	 know,	 9	

computationalist(s)
[Isbell,	 Stein,	 et	 al.	 2009],	 60	
[Smith	 1996],	 62	
mindset	 characteristics,	 15	

Computer and Information Science and
Engineering Directorate (NSF)

 See CISE (Computer and Information
Science and Engineering) Directorate (NSF)

computer science
 See also computational domains;

computational thinking
as	 domain	
introductory	 course	 component,	 20,	 21	
lean	 core	 component,	 27	

core	
component	 topics,	 27	

curricula	
refactoring,	 24–41	

history	 and	 trends	 course,	 20	
computer(s)
architecture	
logic	 role	 in,	 28	

engineering	
as	 integrated	 joint	 major	 example,	 40	
integrated	 joint	 major	 prototype,	 88	
introductory	 courses	 focused	 on,	 19	

graphics	
computer	 games	 and	 digital	 media	 relationship	 to,	
26	

in	 the	 arts	 and	 digital	 media	
integrated	 joint	 major	 prototypes,	 84	

organization	
as	 computer	 science	 core	 component,	 28	

science	
introductory	 courses	 focused	 on,	 19	

Computing for Good capstone courses, 46
 See also capstone courses
concept(s)
 See also abstraction(s); cognitive skill(s)
as	 lean	 core	 component,	 26	
assimilation	 of	
CRA-‐E	 role,	 10	

component	 of	 computational	 thinking	 component	 of	
computational	 thinking,	 14	

deepening	 the	 understanding	 of	
issues	 for,	 43	
mastery	 role,	 42	

definition,	 17,	 26	
gap	 between	 application	 context	 and	
as	 mastery	 issue,	 43	

list,	 30–32	
relationships	
between	 real	 world	 and	
tinkering	 role	 in	 building,	 11	

with	 lean	 core	 cognitive	 skills,	 concepts,	 principles,	
and	 techniques,	 28–33	

concurrency
 See also multi-core; parallel/parallelism
exploiting,	 28	

constraint(s)
 See also context/contextualization;

model(s)/modeling; real-world
computational	
as	 concept	 component	 of	 lean	 core,	 26	

concepts	 and	 principles	 related	 to,	 31	
design	 under	
in	 capstone	 courses,	 47	
learning	 how	 to,	 importance	 in	 the	 education	 of	
research,	 43	

mechanisms	 for,	 43–48	
handling	
as	 core	 competancy,	 15	

real	 world	
impact	 on	 abstraction	 definition,	 14	
in	 embedded	 systems	 capstone	 courses,	 45	

time	 and	 space	
in	 algorithmic	 thinking,	 30	

constructivism (computer science)
 See physical/physicality; tinkering
content area (lean core), 26–28
 See also cognitive skills; concept(s); lean

core; technique(s)
contest(s)
 See also motivation
National	 Semiconductor	
in	 Berkeley	 EE192	 mechatronics	 design	 course,	 45	

context/contextualization
 See also environment; motivation;

specialization
application	
gap	 between	 concept	 and,	 43	

as	 domain-‐based	 approach	 to	 computing	 education,	
19	

in	 cognitive	 skills,	 20	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 102

media-‐oriented	 introductory	 course,	 21	
multiple	
role	 in	 mastery	 development,	 42	

continuous learning process
 See also design; portfolio (digital);

research/researcher, skills
understanding	 of	 design	 as,	 46	

contrasting
 See comparing and contrasting
cooperation
 See collaboration/collaborative; social
coordination
 See also collaboration/collaborative;

multidisciplinary; social
among	 institutions	
importance	 for	 promoting	 integrated	 joint	 majors,	
39	

as	 great	 principle	 of	 computing,	 15	
communication	 and	
concepts	 and	 principles	 related	 to,	 31	

core
 See also cognitive skills; concept(s); content

areas; technique(s)
cognitive	 skills	
	 See	 assumption(s);	 pattern(s),	 recognition;	
representation(s)	

computational	
Recommendation	 2,	 25–33	

computer	 science	
component	 topics,	 27	
description	 as	 component	 of	 lean	 core,	 27	

concepts	 and	 techniques	
introductory	 course	 component,	 18	

lean	
	 See	 lean	 core	
methodological	 and	 application	 knowledge	
determining,	 for	 integrated	 joint	 majors,	 38	

reduction	 in	 number	 of	 requirements,	 25	
shared	
component	 topics,	 27	
description	 as	 component	 of	 lean	 core,	 26	

Cornell University, 26
 See also universities and colleges
[Cornell	 2010],	 58,	 63	
curriculum	 changes,	 25	
vectors,	 35	
exemplar	 appendix,	 74	

COSEPUP (Committee on Science,
Engineering, and Public Policy)

 See also professional committees and
societies
[COSEPUP	 1997],	 58,	 63	

cost(s)
 See also real-world; tradeoffs
integrated	 joint	 major	
alternative	 strategies,	 39	

Countryman, Joan
[Countryman	 1992],	 59	

courses
 See apprenticeship framework; capstone

courses; curricula; design studio; GISP
(Group Independent Study Project);
introduction, courses; research/researcher
training;

CRA (Computing Research Association)
 See also professional committees and

societies
recruitment	 of	 underrepresented	 minority	 graduate	
students	 [CRA	 2000b],	 52,	 59,	 63	

recruitment	 of	 women	 graduate	 students	
[CRA	 2000a],	 52,	 59,	 63	
[CRA	 2006a],	 52,	 59,	 63	
[CRA	 2006b],	 51,	 59,	 63	

related	 reports,	 51	
Taulbee	 survey	 [CRA	 2007],	 51,	 59,	 63	

CRA-E (CRA education committee)
 See also professional committees and

societies
executive	 summary,	 5–8	
goals,	 10	
members,	 2	
mission	 statement,	 9	
recommendations,	 12,	 54–57	
1.	 Introductory	 courses,	 17–23	
2.	 Core/Foundation,	 25–33	
3.	 Specialization	 -‐	 Tracks,	 Threads,	 and	 Vectors,	
34–37	

4.	 Specialization	 -‐	 Integrated	 Joint	 Majors,	 38–41	
5.	 Design	 under	 Constraints	 and	 the	 Gaining	 of	
Mastery,	 43–48	

6.	 Attracting,	 Selecting,	 and	 Preparing	 Students	 for	
Research	 Careers,	 49–51	

CRA-W (CRA Committee on the Status of
Women in Computing Research)

 See also professional committees and
societies
mentoring	 and	 research	 programs,	 10	

creativity
 See also research/researcher, attitudes,

abilities, and mindsets
development	 of	
role	 in	 gaining	 mastery,	 44	

potential	 researcher	 ability,	 49	
critical analysis
 See also cognitive skills; computational

thinking
and	 synthesis	 humanities	 strategies	
as	 shared	 core	 component,	 27	

reading	
[Adler	 &	 Van	 Doren	 1972],	 58	
as	 cognitive	 skill,	 29	
as	 shared	 core	 component,	 27	

thinking	
as	 cognitive	 skill,	 26	
as	 shared	 core	 component,	 27	

writing	
as	 cognitive	 skill,	 29	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 103

as	 shared	 core	 component,	 27	
cross-disciplinarity
 See multidisciplinary
cryptography
 See also mathematics
mathematical	 tools	 for,	 28	

CSTA (Computer Science Teachers
Association)

 See ACM, CSTA (Computer Science Teachers
Association)

CSTB (Computer Science and
Telecommunications Board)

 See also professional committees and
societies
[CSTB	 1999],	 22,	 59,	 69	
[CSTB	 2010],	 63	
[NRC	 2010],	 15,	 61	

CSTEM (Computing, Science, Technology,
Engineering, and Mathematics), 17, 27

culture(s)
 See also integrated joint majors;

multidisciplinary
[Nisbett	 2003],	 61	
[Snow	 1959],	 62	
academic	
evolving	 a	 common	 ground	 with	 integrated	 joint	
majors,	 38	

blended	
as	 key	 to	 success	 of	 integrated	 joint	 major,	 40	

researcher,	 integration	 of	 students	 into,	 51	
Cuny, Jan
[CRA	 2000a],	 59,	 63	
[Cuny	 2009a],	 59,	 63	
[Cuny	 2009b],	 59,	 63	

curricula of computer science
 See also core; exemplar programs; five-year

programs; integrated joint majors;
paradigms; specialization; themes
refactoring,	 24–41	
as	 one	 of	 CRA-‐E	 white	 paper	 themes,	 12	

Cutler, Robb
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

Damasio, Antonio
[Damasio	 2003],	 59	

Darwin, Charles
[Darwin	 1839],	 59,	 63	

data
 See also data-intensive computing;

paradigms; process(es); visualization
analysis	
computational	 linear	 algebra	 introductory	 course	
component,	 21	

component	 of	 computational	 thinking,	 14	
deriving	 and	 validating	 information	 from,	 18	
gathering	 and	 analysis	
humanities-‐oriented	 introductory	 course	
component,	 21	

interpretation	 skills	
as	 core	 competancy,	 15	

patterns	 of	
converting	 to	 knowledge,	 18	

representation	 of,	 30	
structures	
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 31	
introductory	 courses,	 20,	 21	

data-intensive computing
 See also pattern(s); paradigms;

visualization
[Hey	 et	 al.	 2009],	 60	
exploration	
as	 lean	 core	 technique,	 26	

impact	 on	 core	 curricula,	 26	
Davidson, Cathy N.
[Davidson	 &	 Goldberg	 2009],	 59,	 63	

Davison, Lang
[Hagel	 et	 al.	 2010],	 60	

debugging
 See also assumption(s); hypotheses;

model(s)/modeling; validating/validation
as	 cognitive	 skill,	 29	
real-‐world	 systems	
as	 mastery	 skill,	 44	

decomposing/decomposition
 See also cognitive skills
as	 problem	 solving	 method,	 18	
complex	 entities	
as	 cognitive	 skill,	 29	

deepening/depth
 See also mastery
mastery	 and	 understanding	
issues	 for,	 43	
recommendations	 for,	 47	
role	 in	 developing	 mastery,	 42	

defining abstractions
computational	 thinking	 role,	 14	

defining/definition
 See also abstraction(s); cognitive skills;

representation(s)
DeMillo, Richard
[Furst	 &	 DeMillo	 2006],	 60,	 63	

Denning, Peter, 26
[Denning	 2007],	 15,	 25,	 59,	 63	
[Denning	 2009a],	 15,	 59	
[Denning	 2009b],	 15,	 59	
computational	 thinking	 characteristics,	 15	
Great	 Principles	 of	 Compluting	
exemplar	 description,	 69	

Great	 Principles	 of	 Computing,	 25	
design studio courses
 See also mastery
advanced	 programming	 use,	 28	
characteristics	 and	 examples,	 46	

design/designing
 See also mastery
as	 great	 principle	 of	 computing,	 15	
capstone	 courses,	 47	
characteristics	 and	 examples,	 45–46	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 104

component	 of	 computational	 thinking,	 14	
experiences	
as	 mastery	 component,	 44	
examples,	 44	

introductory	 courses	
approaches	 to,	 19	

iterative	 process	 of	
as	 component	 of	 mastery,	 44,	 47	

portfolio	
ABET	 requirement,	 46	

skills	
as	 cognitive	 skill,	 29	
broad	 applicability	 of,	 43	

suites	
introductory	 course,	 20	

under	 constraints	
learning	 how	 to,	 importance	 for	 education	 of	
researchers,	 43	

mechanisms	 for,	 13,	 43–48	
Devlin, Keith
[Devlin	 1998],	 59	

digital
art(s)	
as	 emerging	 integrated	 joint	 major,	 40	
introductory	 course	 component,	 18	

culture,	 as	 issue	 for	 CRA-‐E,	 9	
media	
computer	 graphics	 relationship	 to,	 26	
manipulating,	 introductory	 course,	 21	

portfolio	
building	
introductory	 course	 component,	 23	

design,	 ABET	 requirement,	 46	
importance	 for	 future	 reseachers,	 51	
persistent	 use	 throughout	 curriculum,	 51	

Digital Promise project, 67
discovering
 See cognitive skills; data-intensive

computing; exploration; pattern(s);
visualization

distributed
 See also networks/networking
processing	
as	 technique,	 33	

systems	
as	 computer	 science	 core	 component,	 28	
implementation,	 as	 mastery	 component,	 44	

Dodds, Zachary
[Dodds	 et	 al.	 2008],	 59	

domain
 See computational domains; content area

(lean core); context/contextualization
Donovan, M. Suzanne
[Donovan	 &	 Bransford	 2005],	 59	

Doorn, Peter
[Boonstra	 et	 al.	 2004],	 58,	 63	

double majors
 See also specialization
as	 specialization	 mechanism,	 35	
integrated	 joint	 majors	 distinguished	 from,	 38	

Downey, Allen B.
[Downey	 &	 Stein	 2006],	 25,	 59	

Eames, Charles
[Morrison	 et	 al.	 1982],	 61	

Eames, Ray
[Morrison	 et	 al.	 1982],	 61	

Easley, David
[Breck	 et	 al.	 2008],	 58	

elegance
 See also evaluation
as	 evaluation	 criteria	 in	 capstone	 courses,	 47	

embedded systems capstone courses, 45
 See also capstone courses; mastery
Engel, Susan
[Engel	 2009],	 20,	 59,	 63	

engineers
 See also computational domains;

context/contextualization
introductory	 course	 for,	 20	

environment
coherent	
as	 goal	 of	 mastery	 support,	 42	

context	
domains.	 See	 computational	 domains;	
context/contextualization	

students.	 See	 social;	 student	 interests	
institutions	
	 See	 core;	 specialization;	 universities	 and	 colleges	
research-‐oriented	
components	 of,	 10	
Recommendation	 6	
Attracting,	 Selecting,	 and	 Preparing	 Students	 for	
Research	 Careers,	 49–51	

skills	
	 See	 cognitive	 skills;	 research/researcher,	 skills	

EPIC (Engineering Programs in Community
Service)
Purdue's	 computing-‐for-‐good	 capstone	 course,	 46	

error(s)
 See also debugging; evaluation; real-world;

simulation; validation
errors (dealing with)
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 30	

e-science
 See data-intensive computing; paradigms;

science
evaluation
 See also assumption(s); cognitive skills;

debugging; hypothesis(es);
model(s)/modeling; validation
as	 cognitive	 skill,	 29	
as	 great	 principle	 of	 computing,	 15	
criteria	
performance	 and	 elegance,	 47	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 105

systems	
in	 software	 engineering	 capstone	 courses,	 45	

exemplar programs, 72–83
 See also core; curricula; prototypes;

specialization
CMU	
core	 and	 tracks,	 72	

core	 and	 tracks,	 72–81	
Cornell,	 74	
Georgia	 Tech,	 77	
Great	 Principles	 of	 Computing,	 69	
MIT	
core	 and	 tracks,	 79	
design	 under	 constraints,	 82	

Stanford,	 81	
UC	 Berkeley,	 82	
University	 of	 Washington,	 83	

exploration
 See also cognitive skills; pattern(s);

visualization
as	 cognitive	 skill,	 29	
as	 precursor	 to	 theory,	 [Darwin	 1839],	 59	
domain	
to	 understand	 the	 data,	 18	

hypotheses	 and	 models,	 19	
love	 of	
motivating	 power,	 17	

of	 data-‐intensive	 subjects	
as	 lean	 core	 technique,	 26	
as	 technique,	 33	

Fan, K-Y Daisy
[Breck	 et	 al.	 2008],	 58	

Feder, Michael
[NRC	 2009],	 44,	 61	

FIT (Fluency with Information Technology)
[CSTB	 1999]	 report,	 59	
University	 of	 Washington	 introductory	 course	
based	 on,	 22,	 69	

five-year programs
 See also curricula; specialization
integrated	 joint	 major	 possibilities,	 38	

flexibility
 See also lean core; research/researcher,

skills; specialization
curricular	 structure	
as	 goal	 of	 refactoring,	 24	
development	 of,	 CRA-‐E	 role,	 10	
importance	 for	 design	 of,	 9	

lightweight	 approaches	 to	 integrated	 joint	 major	
development,	 39	

flow of control
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 32	

Foldit protein folding game
as	 e-‐science	 success,	 61	

Foley, Jim
computers	 in	 the	 arts	 and	 digital	 media	 prototype	
description,	 84	

CRA-‐E	 committee	 member,	 2	

Georgia	 Tech	 exemplar	 description,	 77	
Fonseca, Rodrigo, 61
[Nickel	 2009],	 49	

Forbes, Jeffrey
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

Forte, Andrea
[Forte	 &	 Guzdial	 2005],	 59	
[Guzdial	 &	 Forte	 2005],	 60	

framework(s)
 See also apprenticeship frameworks
structural	 and	 intellectual	
for	 integrated	 joint	 majors,	 38	

Fraser, Linda
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

Frenkel, Karen A.
[Frenkel	 2009],	 50,	 60	

Friedman, Thomas L.
[Friedman	 2005],	 60	

functions
 See also mathematics
as	 computer	 science	 core	 component,	 28	

Furst, Merrick L.
[Furst	 &	 DeMillo	 2006],	 60,	 63	
[Furst	 et	 al.	 2007],	 34,	 60	

game(s)
 See also motivation
Berkeley	 CS	 98/198	 -‐	 GamesCrafters,	 47	
computer	 graphics	 relationship	 to,	 26	
design	
introductory	 course	 component,	 18	

Foldit	 protein	 folding	 game	 success,	 61	
USC	 major,	 11	

Gardner, Howard
[Gardner	 1983],	 60	

Gasser, Urs, 9
[Palfrey	 &	 Gasser	 2008],	 9,	 61	

Georgia Tech (Georgia Institute of
Technology), 17, 26

 See also universities and colleges
BSCM	 degree,	 36	
C4G,	 46	
contextualization	 approach	 to	 computing	 education,	
19	

CS1315/CS1316,	 21	
curriculum	 changes,	 25	
threads,	 34,	 35	
exemplar	 appendix,	 77	

Gibbs, Norman E.
[Gibbs	 &	 Tucker	 1986],	 13,	 25,	 60	

GISPs (Group Independent Study Projects)
 See also courses; team(s)/teamwork
researcher	 training	 role,	 51	

goal(s)
 See also recommendations of CRA-E

committee; strategy(s); themes
computational	 researcher	 education,	 49–51	
computer	 science	 core,	 28	
CRA-‐E	 committee,	 10	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 106

Goldberg, David Theo
[Davidson	 &	 Goldberg	 2009],	 59,	 63	

Goldin, Dina
[Goldin	 et	 al.	 2006],	 60	

Gray, Jim
 See also data-intensive computing;

paradigms; visualization
[Hey	 et	 al.	 2009],	 60	

Great Principles of Computing, 15
exemplar	 appendix,	 69	

Grossman, Lawrence K.
[Grossman	 &	 Minow	 2001],	 60	

Gurwitz, Chaya
[Gurwitz	 1998],	 60	

Guttag, John
CRA-‐E	 committee	 member,	 2	
premedical	 computer	 science	 programs	 prototype	
description,	 95	

Guzdial, Mark
[Forte	 &	 Guzdial	 2005],	 59	
[Furst	 et	 al.	 2007],	 34,	 60	
[Guzdial	 &	 Forte	 2005],	 60	
[Guzdial	 2009],	 19,	 60	
[Rich	 et	 al.	 2005],	 19,	 61	
[Yarosh	 &	 Guzdial	 2008],	 19,	 62	

Hagel, John III
[Hagel	 et	 al.	 2010],	 60	

Hambrusch, Susanne
[Allen	 et	 al.	 2010],	 58	

Hanrahan, Pat
CRA-‐E	 committee	 member,	 2	
Stanford	 track	 exemplar	 description,	 81	

hardware design
 See also design/designing
Berkeley	 CS194,	 47	

Hartmanis, Juris
[Hartmanis	 &	 Lin	 1992],	 60,	 63	

Harvard University
 See also universities and colleges
CS50,	 21	

Harvey Mudd College, 17, 26
 See also universities and colleges
CS	 and	 Engineering	 Clinic,	 45	
CS	 for	 Scientists,	 20,	 21	
CS	 for	 Scientists	 course,	 65	
curriculum,	 25	
enginneering	 clinic	
[Harvey	 Mudd	 2007],	 60,	 63	

minors,	 36	
HCI (human-computer interaction)
concepts	 and	 principles	 related	 to,	 32	

Hey, Tony
[Hey	 et	 al.	 2009],	 26,	 60	

history (computational)
 See also humanities
[AHC	 	 2005],	 58,	 63	
[Boonstra	 et	 al.	 2004],	 58,	 63	
as	 potential	 integrated	 joint	 major,	 40	

Hodges, Andrew
[Hodges	 2000],	 60	

Hughes, John F., 49
human(s)
 See also culture(s); humanities; social
-‐centric	
experiences	 in	 capstone	 courses,	 47	
issues,	 inadequate	 exposure	 to,	 as	 issue	 for	 gaining	
mastery,	 43	

computational	 capabilities	 of,	 14	
computational	 role	 of	
concepts	 and	 principles	 related	 to,	 32	

human-computer interaction (HCI)
concepts	 and	 principles	 related	 to,	 32	

humanities
 See also history (computational); cognitive

skills; critical analysis. reading; liberal
arts; philosophy
computational	
as	 potential	 integrated	 joint	 major,	 40	

computational	
history	 [AHC	 2005],	 58,	 63	
history	 [Boonstra	 et	 al.	 2004],	 58,	 63	

introductory	 courses	
component,	 21	
strategies,	 19	

shared	 core	 components,	 27	
Hyde, Lewis
[Hyde	 2007],	 60	

hypotheses
 See also assumption(s); modeling;

simulation; validation
choice	 and	 validation	
scientific	 training	 in,	 27	

exploring	 and	 validating,	 19	
formation	
as	 cognitive	 skill,	 29	

IEEE (Institute of Electrical and Electronics
Engineers)

 See ACM/IEEE
Impagliazzo, John
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

incentives
 See also cost(s); motivation
integrated	 joint	 major	 development,	 41	

induction/inductive
as	 computer	 science	 core	 component,	 28	
reasoning	
as	 cognitive	 skill,	 26	

role	 in	 computational	 thinking,	 16	
industry
 See also collaboration/collborative;

multidisciplinary
liason	 with	
in	 Harvey	 Mudd	 capstone	 course,	 45	

information
knowledge	 and	 machine	 learning,	 concepts	 and	
principles	 related	 to,	 31	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 107

Inouye, Alan S.
[Mitchell	 et	 al.	 2003],	 61	

institutions
 See agencies; environment; professional

committees and societies; universities and
colleges

integration/integrated
as	 cognitive	 skill,	 29	
design	 early	 in	 the	 curriculum,	 as	 mastery	
component,	 44	

experiences,	 capstone	 courses	 role	 in,	 43	
joint	 majors	
	 See	 also	 culture(s);	 multidisciplinary;	 prototypes;	
specialization	
[Friedman	 2005],	 60	
[Nisbett	 2003],	 61	
[Snow	 1959],	 62	
advantages,	 13	
characteristics,	 39	
double	 majors	 distinguished	 from,	 38	
pitfalls	 and	 mitigation	 strategies,	 38	
promotion	 strategies,	 39	
track	 differences,	 39	
unified	 structural	 and	 intellectual	 framework	 in,	
38	

interaction/interactive
 See also human-computer interaction (HCI);

paradigms
as	 cognitive	 skill,	 29	
computational	 thinking	 component,	 14	
paradigm	 [Goldin	 et	 al.	 2006],	 60	
user	 interfaces	
design	 as	 computer	 science	 core	 component,	 28	

Internet of Everyday Things
Berkeley	 CS194,	 47	

introduction/introductory
computational	 thinking	 and	 methods	
CRA-‐E	 white	 paper	 theme,	 12	

courses	
approaches	 to	 the	 design	 of,	 19	
examples	 (chart),	 20–22	
opportunities	 for	 preparing	 future	 researchers	 in,	
50	

Recommendation	 1,	 17–23	
role	 in	 attracting	 potential	 researchers,	 49	

CRA-‐E	 white	 paper,	 9–14	
Isbell, Charles L., 26
[Furst	 et	 al.	 2007],	 34,	 60	
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	
computational	 thinking,	 characteristics,	 15	

issues
 See also recommendations of CRA-E

committee; strategy(s); themes
CRA-‐E,	 9	
identification	 of	
as	 CRA-‐E	 Phase	 One	 committee	 goal,	 10	

integrated	 joint	 majors	
mitigation	 strategies	 for,	 38–39	

introductory	 courses,	 17	

Jackson, Michelle H.
[Lewis	 et	 al.	 2010],	 10,	 60	

Java programming language
introductory	 courses,	 20	

JavaScript programming language, 21
Johnson, Chris
CRA-‐E	 committee	 member,	 2	

joint research facilities
as	 collaboration	 mechanism,	 39	

Katehi, Linda
[NRC	 2009],	 44,	 61	

Katz, Randy
computational	 methods	 in	 the	 humanities	 and	 social	
sciences	 prototype	 description,	 91	

computational	 science	 and	 engineering	 prototype	
description,	 92	

computer	 engineering	 prototype	 description,	 88	
CRA-‐E	 committee	 member,	 2	

Kelly, Henry
CRA-‐E	 committee	 member,	 2	

Klein, Julie Thompson
[Klein	 1990],	 60	

Kleinberg, Jon
[Breck	 et	 al.	 2008],	 58	

knowledge
 See also abstraction(s); artificial

intelligences (AI); machine learning;
pattern(s); representaton(s)
converting	 patterns	 of	 data	 to,	 18	
information	 and	 machine	 learning,	 concepts	 and	
principles	 related	 to,	 31	

Kuenning, Geoff
[Dodds	 et	 al.	 2008],	 59	

Lafayette College
 See also universities and colleges
Campus-‐wide	 computation	 initiative,	 22	
NSF	 CPATH	 grant,	 67	

Laidlaw, David
[Laidlaw	 2006],	 50	
CS	 237	 -‐	 Interdisciplinary	 Scientific	 Visualization,	 64	

language(s)
 See also representation(s)
computational	 thinking	 as,	 16	
models	
and	 machines	 equivalence,	 15	

programming	
	 See	 C;	 Java;	 JavaScript;	 Mathematica;	 MATLAB;	 ML;	
Perl;	 PHP;	 Python;	 Scheme	

usage	 patterns	
analysis	 in	 humanities-‐oriented	 introductory	
course,	 19	

law (computational)
 See also computational domains
as	 potential	 integrated	 joint	 major,	 40	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 108

lean core, 25–33
 See also core; recommendations of CRA-E

committee, 2. Core/Foundation;
specialization
advantages,	 13,	 25	
content	 area	 details,	 26–28	
CRA-‐E	 description	 and	 use,	 10	
recommendations,	 33,	 55	
relationships	 with	 cognitive	 skills,	 concepts,	
principles,	 and	 techniques,	 28–33	

Lee, Lillian
[Breck	 et	 al.	 2008],	 58	
Cornell	 exemplar	 description,	 74	

Lee, Peter, 19
CMU	 exemplar	 description,	 72	
CRA-‐E	 committee	 member,	 2	

levels
 See also data, structures;

networks/networking
of	 abstraction	
	 See	 abstraction(s),	 levels	 of	
of	 detail	
balancing	 vision	 with,	 as	 researcher	 skill,	 50	

Lewis, Clayton
[Lewis	 et	 al.	 2010],	 10,	 60	

liberal arts
combining	 with	 computer	 science,	 13	

Libeskind-Hadas, Ran
[Dodds	 et	 al.	 2008],	 59	

Liew, Chun Wai
[Barr	 et	 al.	 2010],	 58	

limits
 See constraint(s)
Lin, Herbert
[Hartmanis	 &	 Lin	 1992],	 60	

linear algebra
 See also mathematics
as	 shared	 core	 component,	 27	
computationally-‐oriented	
Brown's	 CS053,	 21,	 27	

linguistic reasoning
 See also computational thinking;

language(s); structure(s)/structural
computational	 thinking	 comparable	 to,	 16	
mathematics	 [Devlin	 1998],	 59	

Liskov, Barbara, 50, 60
literacy (computer science)
 See also computational thinking
course	 for	 non-‐CS	 majors,	 20	

logic/logical
 See also critical analysis, thinking;

mathematics; reasoning; theory
analysis	
as	 cognitive	 skill,	 29	

as	 calculus	 of	 computer	 science,	 28	
fallacies	
humanities	 strategies	 for	 dealing	 with,	 as	 shared	
core	 component,	 27	

foundations	 for	 computer	 science	

as	 computer	 science	 core	 component,	 28	
reasoning	
computational	 thinking	 comparable	 to,	 16	

Lord, Holly
[CRA	 2006a],	 59	

Lozano-Pérez, Tomás
MIT	 exemplar	 description,	 79	

Ma, Liping
[Ma	 1999],	 60	

MAA (Mathematical Association of America)
 See also mathematics/mathematical;

pedagogy; professional committees and
societies
[CBMS	 2001],	 58	

machine learning
 See also artificial intelligence (AI)
as	 computer	 science	 core	 component,	 28	
as	 technique,	 33	
concepts	 and	 principles	 related	 to,	 31	

machine(s)
 See also computer(s); physical/physicality
computers,	 human	 abilities	 compared,	 14	
models	 and	 languages	 equivalence,	 15	

making things
 See also motivation; physicality; tinkering
[Brown	 2008],	 58	
love	 of,	 as	 motivating	 force,	 17	

mapping
 See also functions; model(s)/modeling;

pattern(s); relationships
representations,	 31	

Markoff, John
[Markoff	 2010],	 61,	 63	

Martin, Roger L.
[Martin	 2009],	 61,	 63	

massive data sets
 See data-intensive computing
mastery
 See also capstone courses; real-world;

understanding
building	 throughout	 the	 curriculum,	 42–51	
components	 and	 characteristics,	 42,	 43	
courses,	 opportunities	 for	 preparing	 future	
reseachers	 in,	 50	

deepening,	 issues	 for,	 43	
design	 under	 constraints	 role	 in	 developing,	 47	
gaining	 of	
CRA-‐E	 white	 paper	 theme,	 12	
mechanisms	 for,	 13,	 43–48	

goals	
mechanisms	 for	 implementing,	 44–47	

role	 in	 lean	 core	 recommendations,	 33	
specialization	 role	 in,	 37	

Mathematica
 See also mathematics; visualization
visualization	 importance,	 50	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 109

mathematics/mathematical
 See also abstraction(s); computational

thinking; logic/logical; pattern(s); reasoning
core	 components	
computer	 science	 core,	 28	
shared	 core,	 27	

modeling	
as	 lean	 core	 technique,	 26	

reasoning	
computational	 thinking	 comparable	 to,	 16	

MATLAB
 See also mathematics; visualization
introductory	 course	 for	 scientists	 and	 engineers,	 20,	
93	

visualization	 importance,	 50	
McGettrick, Andrew
ACM/IEEE	 CS2012	 plans,	 10	

mechanization
 See automation
media
 See digital, media
mentoring, 64
 See also apprenticeship framework
Brown	 University	 CS237,	 64	
undergraduates	 in	 research	 skills	 and	 expectations,	
49	

University	 of	 Utah	 programs,	 51	
University	 of	 Utah	 programs,	 67	

metaphors
 See representation(s)
methods
 See technique(s)
minors
 See also specialization
as	 specialization	 mechanism,	 35	

Minow, Newton N.
[Grossman	 &	 Minow	 2001],	 60	

mission statement of CRA-E committee, 9
MIT (Massachusetts Institute of Technology),

26
 See also universities and colleges
6.00,	 21	
6.01,	 21,	 44	
curriculum	 changes,	 25	
design	 under	 constraints	 examplar	 course,	 82	
EECS	 curriculum	
exemplar	 appendix,	 79	

theme	 areas,	 36	
Mitchell, William J.
[Mitchell	 et	 al.	 2003],	 61	

ML programming language
introductory	 course,	 20	

model(s)/modeling
 See also abstraction(s); assumption(s);

hypotheses; real-world; simulation;
validation
abstractions	
as	 key	 cognitive	 skill	 in,	 12,	 23,	 54	
automation	 of,	 14	

concepts	 and	 principles	 related	 to,	 30	
analyzing	 data	 for,	 18	
as	 core	 competancy,	 15	
as	 technique,	 33	
building,	 simulation,	 and	 validating	
as	 mastery	 component,	 42	

communication	 and	 coordination,	 31	
computational	
concepts	 and	 principles	 related	 to,	 31	
linear	 algebra	 introductory	 course	 component,	 21	

CRA-‐E	 term	 usage,	 12,	 23,	 54	
exploring	 and	 validating,	 19	
languages	
and	 machines	 equivalence,	 15	

limitations	
understanding	 as	 component	 of	 mastery,	 43	

representing	 relationships	 as,	 18	
scientific	 training	 in,	 27	

modes of thought
 See also cognitive skills;

context(s)/contextualization; student
interests
varieties	 of	
importance	 to	 lean	 core,	 27	

Morrison, Philip
[Morrison	 et	 al.	 1982],	 61,	 63	

Morrison, Phyllis
[Morrison	 et	 al.	 1982],	 61	

motivation
 See also context(s)/contextualization;

games; pedagogy; student interests;
tinkering
power	 of	 engaging	 student	 interests,	 19	

multi-core
 See also concurrency; parallel/parallelism
architecture	
as	 computer	 science	 core	 component,	 28	

multidisciplinary
 See also culture(s); integrated joint majors;

specialization
attitudes	
silo-‐based	 knowledge	 vs.,	 38	

capstone	 courses	
	 See	 also	 capstone	 courses	
Harvey	 Mudd	 example,	 45	

courses	
genesis	 of	 integrated	 joint	 majors	 from,	 40	

interests	
integrated	 joint	 majors	 incorporation	 of,	 13	
lean	 core	 advantages	 for,	 13,	 25	
lean	 core	 recommendations	 for,	 33	

nature	 of	 research	
impact	 on	 lean	 core	 recommendations,	 27	

multitasking
 See also cognitive skills
as	 skill	 of	 current	 students,	 9	

networks/networking
 See also social, networks
in	 Berkelely	 CS194,	 47	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 110

Nickel, Mark
[Nickel	 2009],	 61,	 63	

Nisbett, Richard E.
[Nisbett	 2003],	 61	
[Nisbett	 2009],	 61	

nondeterminism/nondeterministic
 See also computability; interaction
nondeterminism/nondeterministic system

behavior
as	 component	 of	 real-‐world	 system	 design,	 43	
mastery	 role	 of	 dealing	 with,	 47	

notation(s)
 See also representation(s);

symbol(s)/symbolic
abstraction	 automation	 role,	 14	
cognitive	 skill	 use,	 29	

NRC (National Research Council)
 See also professional committees and

societies
[NRC	 1987],	 61	
[NRC	 2003],	 61	
[NRC	 2004],	 61	
[NRC	 2009],	 44,	 61	
[NRC	 2010],	 15,	 61	
Workshop	 on	 The	 Scope	 and	 Nature	 of	
Computational	 Thinking,	 15	

NSDL (National STEM Distributed Learning)
 See also professional committees and

societies
AAAS	 Science	 Literacy	 Maps,	 [NSDL	 2007],	 28,	 67	

NSF (National Science Foundation)
 See also agencies
CS	 10,000	 Project,	 11	

numeric/numerical
 See also mathematics; representation(s);

symbol(s)/symbolic; visualization
abstractions	
symbolic	 abstractions	 compared	 with,	 14	

methods	
as	 technique,	 33	

models	
vs.	 symbolic	 computational	 models,	 23	

simulation	
as	 lean	 core	 technique,	 26	

Olin College
 See also universities and colleges
[Olin	 2002],	 61,	 63	
curriculum,	 25	
small	 footprint	 curriculum,	 25	
specialization	 and	 realization,	 36	

optimization
 See also validation
as	 concept	 component	 of	 lean	 core,	 26	
techniques	
as	 computer	 science	 core	 component,	 28	

orders of growth
as	 computer	 science	 core	 component,	 28	

Palfrey, John, 9
[Palfrey	 &	 Gasser	 2008],	 9,	 61	

paradigms
 See also computability; data-intensive

computing; interaction/interactive
computability	 [Petzold	 2008],	 61	
data-‐intensive	 computing	 [Hey	 et	 al.	 2009],	 60	
interaction	 [Goldin	 et	 al.	 2006],	 60	

parallel/parallelism
 See also concurrency; multi-core
as	 computer	 science	 core	 component,	 28	
control	 flow	 concepts,	 32	
thinking	
as	 cognitive	 skill,	 29	
component	 of	 computational	 thinking,	 14	

pattern(s)
 See also exploration; data-intensive

subjects; mathematics/mathematical;
model(s)/modeling; representation;
visualization
classification,	 as	 cognitive	 skill,	 29	
data	
converting	 to	 knowledge,	 18	
Foldit	 protein	 folding	 game	 success,	 61	

exploration	 of	
humanities-‐oriented	 introductory	 course	
component,	 19	

programming	 as	 method	 for	 manipulating,	 18	
recognition,	 31	
	 See	 also	 assumption(s);	 core,	 cognitive	 skills;	
representation(s)	
and	 manipulation,	 as	 motivating	 force,	 17	
as	 cognitive	 skill,	 26	
in	 related	 work,	 50	
visualization	 importance	 for,	 50	

transformation	 of	
concepts	 and	 principles	 related	 to,	 31	

PCAST 1998 Report
[PCAST	 1997],	 61,	 64	

Pearson, Greg
[NRC	 2009],	 44,	 61	

pedagogy
 See also cognitive skills;

context;contextualization; environment
limitations	 of	 CRA-‐E	 white	 paper	 scope,	 11	
related	 references	
	 See	 [Adler	 &	 Van	 Doren	 1972];	 [Bransford	 et	 al.	
1999];	 [Brown	 2008];	 [Bruner	 1960];	 [Countryman	
1992];	 [Donovan	 &	 Bransford	 2005];	 [Engel	 2009];	
[Guzdial	 2009];	 [Ma	 1999];	 [Nisbett	 2003];	 [NSDL	
2007];[PCAST	 1997];	 	 [Rico	 2000];	 [Taraban	 &	
Blanton	 2008];	 [Thomas	 &	 Brown	 2009];	 [Tobias	
1990];	 [Wing	 2008];	 [van	 Dam	 2003]	

performance
 See also mastery
project	
as	 evaluation	 criteria	 in	 capstone	 projects,	 47	

real	 systems	
evaluation	 as	 component	 of	 mastery,	 44	

relationship	 of	 data	 representation	 to	
as	 computer	 science	 core	 component,	 28	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 111

Perry, Heather
[Rich	 et	 al.	 2005],	 19,	 61	

Petzold, Charles
[Petzold	 2008],	 61	

PGSS (Pennsylvania Governor's School for
the Sciences), 19, 66

philosophy (computational)
 See also humanities
as	 potential	 integrated	 joint	 major,	 40	
introductory	 course	 component,	 18	

PHP programming language
introductory	 course	 component,	 21	

physical/physicality
 See also robot(s); tinkering
artifacts	
building	
MIT	 6.01,	 44	
role	 in	 gaining	 mastery,	 44	

mastery	 role	 of	 building,	 47	
real-‐world	 constraints,	 11	

Recommendation	 5	 -‐	 Design	 under	 Constraints,	 43	
planning
as	 cognitive	 skill,	 29	

portfolio (digital)
building,	 introductory	 course	 component,	 23	
design	
ABET	 requirement,	 46	

importance	 for	 future	 researchers,	 51	
persistent	 use	 throughout	 curriculum,	 51	

practice(s)/practitioners
 See also design/designing; mastery;

specialization
definition	 of,	 15	
gaining	 of	 mastery	 importance	 for,	 43	
reduction	 to	 practice,	 combining	 theory	 with,	 44	

premedical computer science programs
integrated	 joint	 major	 prototype,	 95	

Princeton University
Computational	 Universe	 course,	 21	

probability
 See also mathematics; statistics
as	 component	 of	 core	 curricula,	 26	
as	 computer	 science	 core	 component,	 28	
as	 shared	 core	 component,	 27	

problem(s)
 See also exploration; issues;

recommendations of CRA-E committee
analysis	
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 30	

decomposition	 strategies,	 30	
solving	
as	 cognitive	 skill,	 26,	 29	
computational	 thinking	 component,	 14,	 16	
dislike	 of,	 addressing,	 17	
programming	 as	 tool	 for,	 18	

process(es)
representation	 and	 generation	 of,	 15	

professional committees and societies
 See AAAS; ACM; ACM/IEEE; AMS; CBMS;

COSEPUP; CRA; CRA-E; CRA-W; CSTA;
CSTB; MAA; NRC; NSDL;

program(s)/programming
advanced	
as	 computer	 science	 core	 component,	 28	
software	 engineering	 capstone	 courses	 vs.,	 45	

as	 pattern	 manipulating	 tool,	 18	
as	 technique,	 33	
dislike	 of,	 addressing,	 17	
functional	
introductory	 course,	 20	

imperative	
introductory	 course,	 20	

languages	
as	 abstraction,	 14	
examples.	 See	 C;	 Java;	 JavaScript;	 Mathematica;	
MATLAB;	 ML;	 Perl;	 PHP;	 Python;	 Scheme	

logic	 role	 in,	 28	
novices	
introductory	 course,	 21	

OO	 in	 Java	
introductory	 course,	 20	

representing	 relationships	 as,	 18	
proof techniques
 See also cognitive skills; mathematics;

reasoning
as	 computer	 science	 core	 component,	 28	
as	 lean	 core	 technique,	 26	
as	 technique,	 33	
computational	 linear	 algebra	 introductory	 course	
component,	 21	

protocols (design)
mathematical	 tools	 for,	 28	

prototypes
 See also exemplars;integrated joint

majors;specialization
and	 example	 integrated	 joint	 majors,	 84–96	
computational	
biology,	 40,	 85	
finance	 and	 financial	 engineering,	 90	
methods	 in	 the	 humanities	 and	 social	 sciences,	 91	
science	 and	 engineering,	 92	

computer(s)	
engineering,	 88	
in	 the	 arts	 and	 digital	 media,	 84	

premedical	 computer	 science	 programs,	 95	
Proulx, Viera
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

Purdue University
 See also universities and colleges
EPIC	 (Engineering	 Programs	 in	 Community	 Service),	
46	

SECANT	 (Science	 Education	 in	 Computational	
Thinking),	 21	

randomness
 See also probability
uses	 of,	 as	 computer	 science	 core	 component,	 28	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 112

rapid prototyping
 See also cognitive skill(s)
as	 cognitive	 skill,	 29	
as	 component	 of	 mastery,	 44	

reading, critical
 See also cognitive skills; critical

analysis;research/researchers, skills
[Adler	 &	 Van	 Doren	 1972],	 58	
as	 cognitive	 skill,	 29	

real-world
 See also constraint(s); mastery;

physical/physicality; simulation; tinkering
constraints	
in	 embedded	 systems	 capstone	 courses,	 45	
learning	 to	 design	 under,	 43	

issues	
debugging	 and	 dealing	 with,	 as	 mastery	
component,	 44	

system	 design	
components	 of,	 43	

reasoning
 See also cognitive skills; computational

thinking; critical analysis, thinking;
logic/logical; pattern(s), recognition
algorithmic	 thinking	 use,	 30	
logical	
computational	 thining	 comparable	 to,	 16	

under	 uncertainty	
as	 cognitive	 skill,	 29	
as	 shared	 core	 component,	 27	

recollection
as	 great	 principle	 of	 computing,	 15	

recommendations of CRA-E committee, 12,
54–57
1.	 Introductory	 courses,	 17–23	
2.	 Core/Foundation,	 25–33	
3.	 Specialization	 -‐	 Tracks,	 Threads,	 and	 Vectors,	 34–
37,	 34	

4.	 Specialization	 -‐	 Integrated	 Joint	 Majors,	 38–41	
5.	 Design	 under	 Constraints	 and	 the	 Gaining	 of	
Mastery,	 43–48	

6.	 Attracting,	 Selecting,	 and	 Preparing	 Students	 for	
Research	 Careers,	 49–51	

refactoring computer science curricula, 24–41
 See also environment; lean core;

specialization
CRA-‐E	 white	 paper	 theme,	 12	
goal,	 24	
processes	 and	 costs,	 24	

references, 58–62
related work sections
 See comparing and contrasting;

research/researcher, skills
relations (mathematical)
 See also mathematics/mathematical;

pattern(s)
as	 computer	 science	 core	 component,	 28	

relationships
 See also pattern(s); social;

transformation(s)
among	 abstraction	 levels	
computational	 thinking	 role,	 14	

between	 concepts	 and	 real	 world	
tinkering	 role	 in	 building,	 11	

representation	 of	
as	 models	 and	 programs,	 18	

representation(s)
 See also assumption(s); core, cognitive

skills; language(s); notation;
pattern(s):recognition; symbol(s)/symbolic
as	 cognitive	 skill,	 26	
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 30	
creation	 of	
introductory	 course	 component,	 23	

fundamental	 cognitive	 skill,	 12,	 23,	 54	
mapping,	 31	
of	 abstractions	 and	 their	 relationships	
as	 cognitive	 skill,	 29	

of	 data	
in	 a	 particular	 domain,	 18	

of	 relationships	
as	 models	 and	 programs,	 18	

tradeoffs	 among	
as	 mastery	 component,	 42	

transformation	 of	
computing	 characterized	 by,	 15	

visualization	 importance	 for,	 50	
requirements
core	
	 See	 also	 lean	 core	
reduction	 in	 number	 of,	 25	

integrated	 joint	 major	 issues,	 38	
research/researchers
attitudes,	 abilities,	 and	 mindsets,	 49	
attracting,	 selecting,	 and	 preparing	 students	 for	
careers	 as,	 49–51	

characteristics	
teaching	 potential	 researchers	 about,	 49	

introduction	 to	
as	 goal	 of	 computer	 science	 core,	 28	

mastery	 role	 in	 development	 of,	 42	
personal	 traits	 needed,	 49	
	 See	 also	 cognitive	 skills	
shared	 interests	
integrated	 joint	 majors	 arising	 out	 of,	 40	

skills	
CRA-‐E	 white	 paper	 theme,	 12	
explicit	 training	 importance,	 51	

specialization	 role	 in	 preparing	 students	 for,	 37	
strategies	 for	 developing,	 13	
training	 undergraduates,	 9,	 50	

Rich, Gabriele
[Rico	 2000],	 61	

Rich, Lauren
[Rich	 et	 al.	 2005],	 19,	 61	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 113

robot(s)
 See also artificial intelligence (AI); HCI

(human-computer interaction); machine
learning; physical/physicality
building	
Berkeley	 EE120,	 44	
MIT	 6.01,	 44	

introductory	 course	 component,	 21	
robustness
 See also mastery; real-world; validation
as	 evaluation	 component	
in	 embedded	 system	 capstone	 courses,	 45	

Russ, Steve
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

Sahami, Mehran
[Sahami	 et	 al.	 2010],	 25,	 61	

Salter, Rich
[Barr	 et	 al.	 2010],	 58	

scale(s)/scaling
 See also model(s)/modeling
as	 cognitive	 skill,	 29	
as	 computer	 science	 core	 component,	 28	
as	 core	 competancy,	 15	
computational	 thinking	 role,	 15,	 16	
institutional	
role	 in	 developing	 specialization	 sequences,	 37	

introductory	 course	 component,	 19	
Scheme programming language
introductory	 course,	 20	

science(s)/scientific
 See also mathematics/mathematical;

simulation
computational	
as	 integrated	 joint	 major	 example,	 40	
introductory	 course	 component,	 18	

introductory	 course,	 20,	 21	
method	
	 See	 also	 computational	 thinking	
as	 lean	 core	 technique,	 26	
as	 shared	 core	 component,	 27	
as	 technique,	 33	
programmming	 compared	 with,	 18	

shared	 core	 components,	 27	
scope of CRA-E white paper, 10
searching
 See also cognitive skills; exploration
as	 cognitive	 skill,	 29	

SECANT (Purdue)
Science	 Education	 in	 Computational	 Thinking	 Project,	
68	

scientist-‐oriented	 introductory	 course	 development,	
21	

set(s)
 See also mathematics
as	 computer	 science	 core	 component,	 28	

shared core
 See also core; curricula; specialization
component	 topics,	 27	
description,	 26	

Shaw, David E.
[PCAST	 1997],	 61,	 64	
[Shaw	 2009],	 50,	 61	
computational	 biology	 prototype	 description,	 85	
computational	 finance	 and	 financial	 engineering	
prototype	 description,	 90	

CRA-‐E	 committee	 member,	 2	
signal processing
Berkeley	 EE120,	 44	

silo-based knowledge
as	 problem	 for	 gaining	 mastery,	 43	
multidisciplinary	 attitudes	 vs.,	 38	

Simpson, Rosemary Michelle
[Simpson	 1998],	 62,	 64,	 103	

simulation
 See also abstraction(s); assumption(s);

hypotheses; model(s)/modeling; real-world;
validation
abstractions	 as	 key	 cognitive	 skill	 in,	 12,	 23,	 54	
analyzing	 data	 for,	 18	
as	 technique,	 33	
biology	 problems	
introductory	 course	 component,	 20	

exploring	 ambiguous	 problems	 with,	 19	
impact	 on	 core	 curricula,	 26	
scientific	 training	 in,	 27	
skills	 with	
as	 core	 competancy,	 15	

skills
cognitive	
	 See	 cognitive	 skill(s)	
researcher	
	 See	 research/researcher:skills	

Smith, Brian Cantwell
[Smith	 1996],	 50,	 62	

Smolka, Scott A.
[Goldin	 et	 al.	 2006],	 60	

Snow, C.P., 18
[Snow	 1959],	 62	

social
 See also collaboration/collaborative;

team(s)/teamwork
context	 of	 design	 teams	
as	 component	 of	 real-‐world	 system	 design,	 43	

impact	
capstone	 courses	 that	 address,	 characteristics	 and	
examples,	 46	

importance	 of	 projects	 with,	 for	 gaining	 mastery,	
44	

networks	
[Boyd	 2008],	 58	

sciences	
introductory	 course	 component,	 21	
introductory	 course	 strategies,	 19	

software engineering
capstone	 courses	
	 See	 also	 capstone	 courses	
characteristics	 and	 examples,	 45	

logic	 role	 in,	 28	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 114

specialization
 See also double majors; exemplars;

integrated joint majors; lean core; minors;
prototypes; refactoring computer science
curricula; threads (Georgia Tech); tracks;
vectors (Cornell)
guidelines	 for	 developing,	 37	

Stanford University
 See also universities and colleges
curriculum,	 25	
Symbolic	 Systems	 Program	 (SSP),	 36	
tracks,	 34,	 36	
exemplar	 appendix,	 81	

statistics
 See also mathematics; probability
as	 core	 curricula	 component,	 26	
as	 shared	 core	 component,	 27	

Stein, Lynn Andrea, 26
[Downey	 &	 Stein	 2006],	 25,	 59	
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	
[Stein	 1998],	 62	
[Stein	 2001],	 62,	 64	
[Stein	 2006a],	 62	
[Stein	 2006b],	 62	
on	 computational	 thinking,	 15	

Stevens, Peter S.
[Stevens	 1974],	 62	

Stony Brook University
 See also universities and colleges
introductory	 digital	 arts	 course,	 18	

Strand Maps
 See NSDL Science Literacy Maps
strategy(s)
 See also context(s)/contextualization;

integrated joint majors; refactoring; student
interests; themes, CRA-E white paper
collaboration	
for	 integrated	 joint	 major	 development,	 39	

CRA-‐E	 white	 paper,	 11	
encoding	
introductory	 course	 component,	 19	

for	 developing	 mastery,	 42	
lightweight	
	 See	 also	 cost(s);	 refactoring	 computer	 science	
curricula	
for	 cross-‐departmental	 collaboration,	 39	

structure(s)/structural
 See also environment; institutions;

pattern(s); refactoring computer science
curricula
data	
concepts	 and	 principles	 related	 to,	 31	

framework	
integrated	 joint	 majors	 characterized	 by,	 38	

student interests
 See also contexts/contextualization; games;

modes of thought; motivation
building	 on	 in	 capstone	 courses,	 47	
motivation	 power	 of	 engaging,	 19	

role	 of	 projects	 that	 engage,	 in	 developing	 mastery,	
44	

symbol(s)/symbolic
 See also abstraction(s); representation(s)
as	 cognitive	 skill,	 29	
characteristic	 of	 computational	 abstractions,	 14	
computational	 models	
vs.	 numerical	 models,	 23	

manipulation	
as	 technique,	 33	

Symbolic Systems Program (Stanford), 36
synthesis
 See also analysis; cognitive skills; critical

analysis
as	 cognitive	 skill,	 26,	 30	
humanities	 strategies	
as	 shared	 core	 component,	 27	

related	 work	
as	 researcher	 cognitive	 skill,	 50	

system(s)
design	
as	 technique,	 33	
importance	 for	 instilling	 mastery,	 44	

-‐level	 thinking,	 Berkeley	 EE120,	 44	
Tansley, Stewart
[Hey	 et	 al.	 2009],	 26,	 60	

Taraban, Roman
[Taraban	 &	 Blanton	 2008],	 62	

team(s)/teamwork
 See also collaboration/collaborative;

mastery; social
cross-‐departmental	
as	 multidisciplinary	 strategy,	 39	

in	 software	 engineering	 capstone	 courses,	 45	
large	
Berkeley	 CS169,	 45	

professional	
capstone	 course	 development	 of	 skill	 in,	 47	

projects	
as	 computer	 science	 core	 component,	 28	

social	 context	 of,	 43	
technique(s)
 See also cognitive skills; concept(s); mastery
as	 lean	 core	 component,	 26	
component	 of	 computational	 thinking,	 14	
definition,	 17,	 26	
depth	 in	 understanding	 of	
mastery	 role,	 42	

knowledge	 of	
integrated	 joint	 major	 issues,	 38	

list,	 33	
relationships	 with	 lean	 core	 cognitive	 skills,	 concepts,	
principles,	 and	 techniques,	 28–33	

themes
 See also environment; strategy(s);
CRA-‐E	 white	 paper,	 12	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 115

theory
 See also computability; logic; mathematics;

paradigms
combing	 with	 hands-‐on	 reduction	 to	 practice	
in	 early	 design	 experiences,	 44	

computability	 [Petzold	 2008],	 61	
data-‐intensive	 computing	 [Hey	 et	 al.	 2009],	 60	
interaction	 [Golden	 et	 al.	 2006],	 60	
philosophical	 foundations	 [Smith	 1996],	 62	

thinking, critical
 See cognitive skills; critical analysis;

reasoning
Thomas, Douglas
[Thomas	 &	 Brown	 2009],	 62,	 64	

Thomas, Richard
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

threads (Georgia Tech), 34, 60
 See also refactoring; specialization
[Furst	 et	 al.	 2007],	 34	
as	 specialization	 mechanism,	 35	
description,	 35	
exemplar	 program,	 77	
purpose,	 13	

tinkering
 See also making things; physicality
[Brown	 2008],	 58	
as	 cognitive	 skill,	 30	
as	 mode	 of	 knowledge	 production,	 11	

Tobias, Sheila
[Tobias	 1990],	 62	

Tolle, Kristin
[Hey	 et	 al.	 2009],	 26,	 60	

Towson University
 See also universities and colleges
Honors	 223,	 22	

tracks
 See also specialization; threads (Georgia

Tech); vectors (Cornell)
as	 specialization	 mechanism,	 34	
integrated	 joint	 major	 differences,	 39	
purpose,	 13	
Stanford,	 36	

tradeoffs
 See also cognitive skills
among	 representations	
as	 mastery	 component,	 42	
introductory	 course	 component,	 23	

design	
understanding	 of,	 as	 component	 of	 mastery,	 44	

working	 with	
as	 cognitive	 skill,	 30	

transformation(s)
 See also mapping; model(s)/modeling;

representation(s)
of	 representations	
computing	 characterized	 by,	 15	

patterns	 and	
as	 concept	 component	 of	 lean	 core,	 26	
concepts	 and	 principles	 related	 to,	 31	

translating
qualitative	 insights	 into	 computative	 representations	
as	 cognitive	 skill,	 30	

trends
cultural	
impact	 on	 CRA-‐E	 goals,	 9	

Tucker, Allen B.
[Gibbs	 &	 TUcker	 1986],	 13,	 25,	 60	

Tufte, Edward
[Tufte	 2006],	 50,	 62	

Turing, Alan
 See computability; paradigms]
[Hodges	 2000],	 60	
[Petzold	 2008],	 61	

UC Berkeley
 See also universities and colleges
CS	 98/198,	 47	
CS169,	 45	
CS194,	 47	
design	 under	 constraints	 exemplar	 courses,	 82	
EE	 120,	 44	
EE	 192,	 45	

uncertainty (reasoning under)
 See also ambiguity; probability
as	 cognitive	 skill,	 29	
as	 shared	 core	 component,	 27	

understanding
 See also cognitive skill(s); mastery
characteristics	
as	 component	 of	 mastery,	 43	

deepening	
issues	 for,	 43	

depth	
role	 in	 developing	 mastery,	 42	

integrated	 joint	 major	
strategies	 for	 promoting,	 39	

Union College
 See also universities and colleges
Campus-‐wide	 computation	 initiative,	 22	
NSF	 CPATH	 grant,	 67	

universities and colleges
 See Augsburg; Brown; CMU; Cornell;

Georgia Tech; Harvard; Harvey Mudd;
Lafayette; MIT; Olin; Purdue; Stanford;
Stony Brook; Towson; UC Berkeley; Union;
University of Utah; University of
Washington; USC

University of Utah
 See also universities and colleges
introduction	 to	 scientific	 computing	 course,	 18	

University of Washington
 See also universities and colleges
BENEFIT	 course,	 22	
design	 under	 constraints	 exemplar	 course,	 83	

URLs, 63–68
USC (University of Southern California)
 See also universities and colleges
digital	 games	 survey,	 18	
games	 major,	 11	

CRA-E White Paper: Creating Environments for Computational Researcher Education

Index

8/9/10 116

validating/validation
 See also assumptions; debugging;

hypotheses; model(s)/modeling
data	 analysis	 for,	 18	
hypotheses	 and	 models,	 19	
pitfalls	 of	
understanding	 as	 component	 of	 mastery,	 44	

scientific	 training	 in,	 27	
simulations	
against	 initial	 hypotheses,	 19	

van Dam, Andy
[van	 Dam	 2003],	 62,	 64	
CRA-‐E	 committee	 chair,	 2	

Van Doren, Charles
[Adler	 &	 Van	 Doren	 1972],	 9,	 58	

Vardi, Moshe, 66
[Vardi	 2009],	 28	

vectors (Cornell)
 See also specialization
as	 specialization,	 35	
description,	 35	
exemplar	 program,	 74	
purpose,	 13	

Virginia Tech
tracks,	 36	

visualization
data	 manipulation	 use,	 18	
data-‐centric	 computing,	 50	

Waite, William M.
[Lewis	 et	 al.	 2010],	 10,	 60	

web services
in	 Berkeley	 CS194,	 47	

website(s)
role	 in	 communicating	
integrated	 joint	 major	 goals,	 39	

Wegner, Peter
[Goldin	 et	 al.	 2006],	 60	

wesbsite(s)
role	 in	 communicating	
course	 developments,	 48	

Wing, Jeannette, 26
[Wing	 2006],	 62,	 69	
[Wing	 2008],	 15,	 62	
computational	 thinking	 characteristics,	 14	

wizardry
 See also mastery; cognitive skills
development	 of,	 as	 mastery	 component,	 42,	 43	

Wofford, Jennifer
[Breck	 et	 al.	 2008],	 58	

writing, critical
 See also cognitive skills; critical analysis
as	 cognitive	 skill,	 29	

Xu, Yan
[Isbell,	 Stein,	 et	 al.	 2009],	 15,	 60	

Yarosh, Svetlana
[Yarosh	 &	 Guzdial	 2008],	 19,	 62	

Zabih, Ramin
[Breck	 et	 al.	 2008],	 58	

Zelenski, Julie
[Sahami	 et	 al.	 2010],	 25,	 61	

Zyda, Michael
[Zyda	 2009],	 11,	 62,	 64	

	Creating Environments for Computational Researcher Education
	9 Aug 2010 Andy van Dam et al, Computing Research Association
	Table of Contents
	Executive Summary
	Introduction
	Computationally-Oriented Foundations
	Refactoring Computer Science Curricula
	Building Mastery Throughout the Curriculum
	Appendices
	Recommendations Summary
	References
	Exemplar Programs Great Principles of Computing
	Exemplar Programs Core plus Tracks, Threads, and Vectors
	Exemplar Programs Design under Constraints
	Prototypes and Example Integrated Joint Majors

	
	CRA Title Page

