
A Framework for Building Reputation Systems

Phillip J. Windley, Ph.D.
Dept. of Computer Science
Brigham Young University

Provo, UT
http://xri.net/=windley

Kevin Tew
Dept. of Computer Science
Brigham Young University

Provo, UT
kevin@tewk.com

Devlin Daley
Dept. of Computer Science
Brigham Young University

Provo, UT
devlin.daley@gmail.com

ABSTRACT
This paper introduces a set of principles for governing the
design and operation of online reputation systems. We also
introduce the design, architecture, and implementation of a
flexible, general-purpose framework, called Pythia, for build-
ing reputation systems. We give a sample application of our
framework to illustrate its use.

Categories and Subject Descriptors
H.4.3 [Information System Applications]: Communica-
tions Applications; K.4.2 [Computers and Society]: So-
cial Issues; H.4.m [Information System Applications]:
Types of Systems; Decision support

Keywords
reputation, identity, framework, blogging

1. INTRODUCTION
Most online interactions are devoid of many of the cues

that people use in the physical world to make judgments
about the character, stability, reliability, etc. of people, sys-
tems, and other entities. Yet these cues are critical to so-
phisticated interactions and transactions. Online reputation
systems attempt to remedy this situation.

Reputation has been studied in the context of philoso-
phy [13], psychology [3], economics [17], biology [28], and
sociology [29]. Much of that work is informative of how
reputation works in the physical world and can guide our
thinking about reputation online.

Online reputation can be accessed informally or formally.
Informal assessments are made by people from their ex-
perience on the Internet. For example, I may not trust
email I get from the domain hotmail.com because I’ve re-
ceived substantial Spam from addresses in the domain in
the past. Formal systems collect and process online infor-
mation about specific identifiers in an attempt to calculate
reputation scores in a more systematic manner.

Computational models of reputation are quite recent[24],
yet diverse strategies have been employed to meet specific
needs. In Reputations Systems: Facilitating Trust in Inter-
net Interactions,[22], Resnick et al. define a reputation sys-
tem as a system that “collects, distributes, and aggregates
feedback about participants’ past behavior.”

Copyright is held by the author/owner(s).
WWW2007, May 8–12, 2007, Banff, Canada.
.

The primary domains where computational reputation has
been explored are in artificial intelligence, peer-to-peer net-
working, and electronic commerce. A number of systems
have been devised to provide reputation information for
commercial Web sites. [8] Most of these systems have lim-
ited scope and are built for a single context. [20] They are
effective in their specific domain, but lack generality.

Recent advances in user-centric identity systems such as
CardSpace, OpenID, LID, SXIP and i-names provide a firm
foundation for the establishment of general-purpose, online
reputation systems. [21, 5, 27, 32] This paper presents a set
of principles that we believe should govern the operation of
such systems based on our own work and the work of others.

The paper also presents the design and architecture of a
reputation framework that is consistent with these principles
and that can be specialized to particular tasks. The frame-
work, called Pythia, has been designed and implemented
using a rules engine and plug-in architecture to make it flex-
ible and useful in a variety of contexts. We present one such
application, reducing blog-comment Spam, as a means of
demonstrating Pythia’s operation and flexibility.

It is not our goal to present a novel computational model
for reputation. Rather, our goal is to provide a framework
upon which such computational models can be built and
evaluated.

2. REPUTATION PRINCIPLES
We believe there are important principles that apply to

reputation systems and should govern their design and op-
eration. Understanding these principles is vital to the suc-
cess of any computational reputation system. We base these
principles on our review of the literature, our own research,
and a group discussion from the Berkman Identity Mashup
in June 2006. [31]

Reputation is one of the factors upon which trust
is based. [22, 16] People often confuse trust and reputation
in casual conversation. Trust is “the expectation of one per-
son about the actions of others that affects the first person’s
choice when an action must be taken before the actions of
others are known.”[6] Reputation is a basis for trust.

Mui et al. presents a computational model of reputation
that explicitly accounts for trust. [19] Mui’s model uses rep-
utation and the history of encounters between agents to cal-
culate a value representing the expectation that one agent
will reciprocate another agents actions.

Trust is important in many online systems, implicitly or
explicitly[30], but is beyond the scope of this paper. Con-
sequently, we are not concerned with what factors beside



reputation go into trust, how trust is built, or how trust is
exchanged–we are focused solely on reputation.

The expectation of future reciprocity or retalia-
tion creates an incentive for good behavior in the
present. [22] Obviously the party making the reputation
request is doing so in an attempt to gain information that
will guide some action. However, measuring reputation also
affects the behavior of the targets of reputation requests.
Axelrod calls this the “shadow of the future.” [2]

When present actions will affect future judgments that
others make, present behavior will change. For a reputation
system to be effective, recorded feedback on past interac-
tions must influence the actions of entities in the future.
Put another way, entities must pay some attention to repu-
tations in the system during their decision making process
or it will cease to induce desired behaviors.

Reputation is personal. Fundamental to the operation
of a reputation system is the notion that agents compute
the reputation for other agents based on certain factors. [19]
While one can control some of the factors upon which rep-
utation is based, one cannot control how those factors are
used by another agent in assessing reputation.

This principle leads to the conclusion that reputation com-
putations should be personalized, so that each agent can
compute a different reputation for another based on the
information that it has available. In Sabater and Sierra’s
words, “we cannot talk about the trust/reputation of an in-
dividual x, we have to talk about the trust/reputation of an
individual x from the point of view of individual y. [24]

Reputation is a currency. While you can’t change
reputation directly, reputation can be used as a resource.
For example, Paul Resnick et. al. has shown that a positive
eBay reputation has real economic value. [23]

Reputation is narrative. Put another way, reputation
varies with time. Reputation is dynamic because the factors
that affect it are always changing. One of the problems
with many existing reputation models is that reputation is
treated as uniform across time. [19]

Reputation is based on identity. Reputation isn’t
part of an identity, but is about an identity. Resnick et al.
states that entities in the system must be long lived in order
to ensure a expectation of future interactions. [22] We dis-
tinguish between identity and identifiers. Any given entity
may be known by any number of handles or identifiers.

Linking these identifiers brings together all of the infor-
mation associated with them for subsequent reputation cal-
culations. This linkage reduces or even prevents identity
switching [12] where subjects of bad reputation judgments
simply create a new pseudonym to avoid any negative con-
sequences. By using broad-based identity, with linked iden-
tifiers, as a foundation for the reputation calculation, the
cost of switching is increased.

Reputation is based on verified claims and trans-
actions. Resnick et al. discuss how trust grows in social
situations where by interacting with a person over time, a
history of past interactions is built that characterizes an
individual’s character, abilities, and disposition. [22] Repu-
tation systems collect and record feedback concerning inter-
actions. This information is distributed to entities in the
future.

We used these terms in the following ways. Claims are
facts about an identity that can be verified. A claim may
be something as simple as an email address or a URL. A

claim could also be a fact from some online resource. The
number of years that a domain name has been registered,
the ratio of inbound to outbound email from an account, or
the classification of a URL by a content analysis engine are
examples.

Transactions refer to records of interactions between any
two entities. Transactions facilitate both the direct and
observed interactions that Sabater and Sierra discuss. [24]
Most computational reputation systems take direct interac-
tions into account, only a few allow for observed interactions.
Note that observed interactions are not the same as opin-
ions. Observed interactions are more reliably objective since
they record facts about an interaction, not judgments about
it.

Since reputation is personal, how these factors are used in
determining reputation is individually determined. Individ-
uals may use various evidence in making claims or proposing
a certain rating or endorsement. The penalty for making
false claims or giving false endorsements varies from context
to context.

Lin et al. assert that trust should be based on verifiable
identification of the subject entity, qualification of the entity
to perform the requested service, and the subject entity’s
consistency of performance. [16] Their system, which is built
for peer-to-peer reputation management, bases reputation
on reports of various performance metrics from a service’s
peers.

Reputation is based on opinion (indirect informa-
tion from other witnesses). [24] A reputation isn’t just
based on facts, but is also based on other’s beliefs about
the subject of the reputation calculation. These beliefs are
signaled to others in various ways depending on the context.
Studies of reputation in social networks show the value of
including the opinions of other entities. [29]

As we use the term, opinions are the indirect informa-
tion that other entities may supply about the reputation
subject. These may be ratings, endorsements, or other sub-
jective judgments about an entity or a past transactions in-
volving an entity. Naturally, a certain amount of uncertainty
surrounds this information. Using it involves making more
complicated judgments about its veracity. This makes rep-
utation computations using opinions more costly.

Resnick et al. explain some of the challenges reputation
systems face–many of those challenges are directly related to
the use of opinion. [22] There is a human reluctance to give
negative feedback. In order to mitigate losses and failures,
individuals turn to negotiation and arbitration in place of
giving negative feedback. In some systems, fear of retalia-
tion leads to an acceptance of mediocrity. Finally, disgust
and desires to avoid further confrontation may cause indi-
viduals to leave bad service in the past and move on without
leaving negative feedback.

Reputation exists in the context of community.
Any given context will have specific factors for what is im-
portant in determining reputation. Community provides a
context for evaluating opinions and indirect information.

Sabater et al. discuss this issue under the heading of “vis-
ibility types” and classify the reputation of an individual as
“global” or “subjective.”[24] Global reputation is a single,
universal value calculated from all the transactional data
available to the system. Subjective reputation is calculated
for pairs of individuals based on their interactions and the
opinions of others.



Global reputation is often insufficient because of a lack
of personalization. But Sabater et al. make the point that
subjective systems require strong links between individuals
so that information is shared frequently and a large body of
information upon which to based reputation decisions can
be collected.

But the need to collect large amounts of direct interac-
tions between pairs of individuals can be mitigated through
the increased use of observed interactions. That way the
global set of transactions involving the reputation subject is
available to any one individual, greatly increasing the prob-
ability that a sufficiently large set of data will be available
for a reputation calculation.

Reputation exists in a particular context. When we
speak of reputation we say things like “she has a reputation
for ...” The fact that someone is a good plumber doesn’t
mean they will be a reputable babysitter. One of the failings
of many current computational models for reputation is that
they fail to take context into account or are only useful in a
single domain and cannot be repurposed. [19]

There is a natural tradeoff between reputation and
privacy. As noted above, reputation is calculated, in part,
from a record of past interactions. These interactions record
information that individually or in aggregate could threaten
the privacy of the subject. People make the trade-off be-
tween reputation and privacy in the physical world every
day–giving up some privacy to get a credit report, for ex-
ample. Reputation systems should provide users with infor-
mation and choice about this tradeoff.

The quality of a reputation calculation should be
regularly assessed. As we’ve stated, reputation calcula-
tions are based on a number of factors. However, simply
returning a score can lead to false confidence. For exam-
ple, suppose that reputation is based on a history of past
interactions between two parties. If meta data about the
transactions is not available, such as number, type, and so
on, then a good, or bad, score should not carry as much
weight as it otherwise might.

In A Reputation and Trust Management Broker Frame-
work for Web Applications, Lin et al. describe a multi-level
hierarchy for calculating reputation in a distributed way in
peer-to-peer networks. [16] Examining Lin’s work leads us
to two conclusions:

1. Reputation response should have an accompanying au-
dit trail of external brokers and services used to calcu-
late the reputation.

2. Confidence measures such as the quantity of feedback
transactions used during a reputation calculation can
be used to evaluate the quality of a reputation frame-
work response.

The reputation framework architecture presented in this
paper is designed to be true to the foregoing principles.

3. DESIGN PHILOSOPHY
Beyond the principles discussed in the last section, we also

created a design philosophy that guided the system archi-
tecture. The design philosophy is intended to be consistent
with the principles espoused in the last section and to put
stakes in the ground on specific design issues.

Pythia supports multiple computational models
for reputation. There has been much research in the area

of computational reputation models over the last decade.
Sabater et al. gives a review of a dozen such systems. [24]
Our goal in building Pythia was to create a system that sup-
ported many of these models and thus to provide a platform
for future research in computational reputation.

Pythia pragmatically supports computing reputa-
tion from information already available online or in-
formation that is easily gathered. Many of the available
reputation systems are designed to work in a closed or spe-
cialized environment and thus exploit methods of interaction
and observation that are not common interaction idioms on
the Internet. [1, 9, 25, 10, 26, 4] In keeping with our goal
to build a broad-based, general-purpose framework where
reputation calculations can be performed on the emergent
behavior of a large number of participants, Pythia employs
common online identifiers such email addresses and URLs,
uses online resources to verify those claims and generate ad-
ditional facts about them, and captures transactional data
automatically from systems through a Web-based API.

Pythia supports reputation computations for peo-
ple. As mentioned above, our focus has been leveraging
emerging wide-area identity systems as a foundation for rep-
utation. This goal influenced Pythia design choices in a way
that favors reputation calculations for human subjects. The
choice of which identifiers to support and how they’re veri-
fied is an example of such a decision.

In the discussions that follow, we will refer to two groups
of entities with respect to Pythia. The first is the group we
call users. Users are the subjects of a reputation request. As
we’ll see, a reputation request instigates a context-sensitive
reputation calculation. Pythia aggregates information about
users and uses that information in processing reputation re-
quests.

The second group is a subgroup of the users that we call
relying parties. A relying party is a user making a reputation
request about another user. Any user can be a relying party
without any additional provisioning in the system.

Pythia uses aggregation rather than game-theo-
retic or stochastic methods to calculate reputation.
Reputation systems typically use either what Sabater and
Sierra call “cognitive” or “game-theoretical” conceptual mo-
dels. [24] Cognitive methods take into account the “mental
states that lead [one agent] to trust another agent or assign
a reputation.” At present, Pythia does not use stochastic
computation to any significant degree. Rather reputation
scores are based upon the “weight of evidence” represented
by the aggregated information in the database.

Pythia’s use of aggregate data is similar to that of Sierra.
Sierra is the reference implementation of OpenPrivacy.org’s
Reputation Management System. [14] Sierra uses data called
opinion objects, which are roughly comparable to the trans-
actions in Pythia to calculate reputation. “OpenPrivacy’s
reputation management system can assemble a set of related
opinions into a bias. ... Often, a bias may consist of opinions
from multiple nyms.”[15] Biases are similar by rule sets (see
below) in the Pythia system.

Users are identified by multiple identifiers. Mul-
tiple identifiers (email addresses, URLs, phone numbers,
etc.) can be associated with a single user. The identi-
fiers are validated through mechanisms like email challenges.
As discussed above, linking these identifiers is an impor-
tant method for increasing the body of information available
about any given user for a reputation calculation.



Reputation is a personalized function of claims,
transactions, and opinions. For our purposes, reputation
can be represented as pseudo-mathematical expression:

Ru = Frp(Iu, Txu,u′ , Ou,u′)

where

Rp is the relying party’s identifier
u is the user id
u′ is all users
Iu is a vector of verified identifiers and other claims for u
Txu,u′ is a vector of transactions between u and every

other user in the system
Ou,u′ is a vector of opinions about u

Frp is personalized to each relying party. One of our de-
sign goals it to create a system that supports each relying
party creating their own Frp. In practice, each relying party
can define multiple Frp functions and chose which is used at
the time a reputation query is made.

The choice of vectors in the foregoing expression over sets
is meant to indicate that these values are ordered accord-
ing to the time of their collection. Frp can use all of the
information in any given vector or can exclude values from
vectors by employing filters to select appropriate values for
the calculation.

Pythia does not require that reputation be a single num-
ber. It’s possible that the function could return a vector of
values if that was needed. This allows a single reputation
query to return reputation “fitness for purpose” parameters
for multiple contexts.

The vector Iu corresponds to the notion of claims from
the last section. Any number and type of identifiers can be
used in a reputation calculation. In addition, properties of
identifiers, where available, can also be used. For example,
a domain name that has been in use for a longer period of
time may indicate a more trustworthy Web site since there
the owner has a large stake in its future viability. An email
address with a ratio of inbound to outbound email messages
significantly less than 1 might indicate an address that is
used to send Spam.

Transactions and opinions we discussed in the last sec-
tion. Since opinions are subject to manipulation “it is far
more complex for trust and reputation models to use [them].
...[W]itnesses manipulate or hide pieces of information for
their own benefit”. [24] Because of this complexity the cur-
rent implementation of Pythia does not use opinions in a
significant way. Future work will incorporate opinions into
the reputation computation.

Transactions are jointly owned by the parties to
the transaction. The exact nature of the transactions in
the system depends on the particular use to which it’s being
put. Transactions always contain an identifier for each party
to the transactions and a timestamp in addition to the facts
pertinent to the transaction as defined by the domain.

Ownership implies that all parties to a transaction can
see it, but not change it. Other users, not party to the
transaction, can use it in a computation, but cannot inspect
the details of the transaction.

Transactions are persistent and immutable. Once
the system has recorded a transaction, it cannot be deleted
by any of the parties to the transaction. A later transaction

may record that it was nullified, but cannot remove it.
Transparency. Pythia is designed to favor transparency

wherever possible. Consequently,

• Users can see any information the system knows about
them (e.g. transactions they are party to)

• Users can see any reputation queries about them, what
the results were, and how the result was arrived at.

• As noted, users who are not party to a transaction
cannot see it, but can use it to calculate reputation
about any of the parties to the transaction.

This opens the possibility of information leakage and a
subsequent, unintended loss of privacy. Transaction details
could be “tapped out” through repeated interactions with
the system. We believe that this danger is mitigated by the
benefits that transparency offers.

Online resources should be consulted whenever
possible to garner reputation information. As we’ve
noted, claims about identifiers are validated in various ways.
For example, an email address can be validated by sending a
unique URL to the address that the user clicks on to validate
receipt. URLs can be validated by having the user embed a
unique code in the HTML for the page. [18]

In addition, data stores such as the whois database and
Netcraft1 can be used to gather information about domains
and Web sites respectively. These online sources of infor-
mation provide facts that can be used as evidence in a rep-
utation computation. Facts provide a means of assessing
reputation that is based on information that is vouched for
by a third party.

Pythia is centralized. We made this decision primar-
ily for the sake of simplicity. In Lin’s distributed frame-
work [16], for example, a reputation broker first attempts
to answer a user’s reputation requests based on the broker’s
local reputation database. If a broker lacks sufficient local
feedback to make a recommendation it contacts peer brokers
for reputation information. If the peer brokers lack sufficient
feedback to return a reputation, a broker can contact insti-
tutional reputation authorities before resulting to untrusted
sources. Consequently, Lin’s hierarchy of diminishing trust
is complex:

user ->

broker ->

peer brokers ->

reputation authority

In contrast, Pythia’s model is much simpler, having only
users and relying parties both interacting with a centralized
reputation authority. The Pythia server answers reputa-
tion queries based only on the feedback that it has collected
and publicly available online information. Pythia’s collected
feedback may be thousands of transactions, ten or twenty
transactions, or none at all.

The result of this decision has all the attendant costs of
any centralized system including reliability concerns associ-
ated with a single point of failure, security and privacy con-
cerns for having a large collection of information all in one
place, and the scaling issues surrounding any large system

1http://www.netcraft.com



Figure 1: Reputation Framework Architecture

dependent on a database. We anticipate that these concerns
can be mitigated in the usual ways.

On the other hand, centralization has some benefits in ad-
dition to simplicity including ease of management and per-
formance gains due to the lack of multiple network requests
cascading from an single query.

4. ARCHITECTURE
The architecture of Pythia is based on the foregoing prin-

ciples and design philosophy. Consequently,

• Pythia is identity system neutral and stores multiple
identifiers for any user.

• Pythia uses a rules engine to allow reputation calcula-
tions to be personalized by each relying party accord-
ing to their individual needs.

• Pythia implements a plug-in architecture to customize
the context for reputation computation.

Figure 1 shows the high-level block diagram architecture
for Pythia.

4.1 Identity Subsystem
Pythia is not an identity system, but is meant to rely on

one or more existing identity systems for authentication and
user IDs. As implemented, Pythia uses OpenID as an au-
thentication mechanism, but other authentication systems
could also be used.

The framework allows users to claim and verify identifiers
from identity systems of all kinds. At present, these iden-
tifiers are limited to email addresses and URLs, but other
types of identifiers could be supported without changing the
underlying system significantly. Email addresses are verified
by sending the email address a challenge message asking the
user to click on a URL to claim the email address in Pythia.

URLs are verified using MicroIDs [Mic06], a standard for
claiming online resources. A MicroID is a secure hash of
an email address and a URI. A MicroID is not used to
prove someone owns a resource (since anyone with control of
the resource could insert the MicroID), but rather to verify
claims to a resource.

Pythia generates a MicroID for any claimed URL based
on a verified email already in the system for that user. The
system instructs the user to embed the MicroID in the page
returned by the resource. In this way, the user proves that
they have the ability to control the content of the resource
identified by the URI.

4.2 Reputation Computation Engine
We support each relying party having the ability to calcu-

late the reputation of users in a personalized manner. That
means that reputation calculations are based on informa-
tion (claims, transactions, and opinions) specific to the user,
using an computation that is customizable by the relying
party.

These computations are specified in a rule language de-
signed to facilitate reputation calculations in Pythia.

Reputation computations are performed using rule-sets,
groupings of rules that are executed to carry out the calcu-
lation. Relying parties can store as many rule sets in the
system as they desire. Each rule in the rule-set comprises
an optional filter, a condition, and an action.

Filters operate on transactions and opinions. Some exam-
ple filters would be transactions where the customer satis-
faction score is greater than 5 or transactions where a blog
comment was rejected.

Conditions operate on information in the system as well
as other reputation information from the Internet. For ex-
ample, we have added an interface to the Akismet API,2

a system for tracking URLs associated with Spam and a
content classification engine.

Conditions are simple boolean expressions on information
in the system. Permitted boolean expressions are <, >,
==, <=, >=. Pythia includes a set of aggregate functions
that can be applied to the filtered data. Implemented ag-
gregate functions are count, max, min, sum, average, and
sd (standard deviation). An example condition would be,
if the number (count) of transactions is less than 10... or if
the maximum customer satisfaction value is less than 3...

Actions modify the reputation score when their associated
conditions are satisfied on the filtered data. An action may
add, subtract or multiply any fixed amount or an aggre-
gated amount (per above) to the current reputation score.
If multiple rule conditions in a rule-set are satisfied, all of
the corresponding rule actions will be executed.

Examples of complete rules (combining filters, conditions,
and actions) that could be expressed using the rule language
include the following:

• if the average customer satisfaction value > 2.2 in
transactions where the customer satisfaction value is
not null, then increase the reputation score by 10%.

• if the user has more than 2 verified email addresses in
the system, increase the reputation score by 1.2.

• if any of the user’s claimed URLs can be categorized
as “commercial” then decrease the reputation score by
5.

• if the number of interactions where this users comment
was rejected is > 3 then decrease the reputation score
by 2.

2http://akismet.com/development/api/



One of the dangers of our system is that users might con-
coct rule sets that simply don’t work well or that developing
“good” rule-sets might be more difficult than can be man-
aged by casual users of the system. This can be mitigated
in two ways.

First, Pythia provides a set of system-defined rules can be
used as-is or customized by relying parties for their partic-
ular purpose.

Second, future systems will include methods for conduct-
ing A/B testing of rule sets so that the effect of a rule change
can be clearly determined. The use of A/B testing presup-
poses that the number of reputation queries by the relying
party is sufficient to provide statistically meaningful results
in the testing.

Users create rule sets using the relying party Web inter-
face, which is available to any user. Since we anticipate that
relying parties will not necessarily be programmers, we chose
to develop a Web front end for managing rule sets. Building
rules using a Web form limits the expressive power of the
rule language, but we deem this an acceptable trade-off for
ease of use.

4.3 Plug-In Architecture
Our goal was to build a general-purpose reputation frame-

work, but the base system necessarily needs to be specialized
to a specific domain for most uses. We determined to de-
velop a plug-in architecture so that this specialization could
be accomplished without modifying the code for the base
system.

The base system supports user provisioning, the underly-
ing identity system, identifier claims and verifications, build-
ing rule-sets for that information, and reputation queries.

To specialize the framework for a particular use, a plug-in
specifies what communication and transaction messages are
necessary for each integrating system. For example, an on-
line forum might want to categorize transactions reported
for posted comments using an enumeration of the status of
members (e.g. “veteran”) and use this information in cal-
culating reputation. This same transaction attribute would
not necessarily be useful in a blog system.

A plug-in is defined in an XML-formatted file that spec-
ifies a transaction format. Since plug-ins are stored as files
that are loaded by the system at startup, installing, manag-
ing and transfering plug-ins to other installations is easy.

The transaction format specifies the type of transactions
and their attributes. Transaction attributes are enumerated
in the definition. Each attribute definition include a name,
a type (text, numeric, boolean) and a regular expression for
determining valid values before type conversion.

In addition to the type of transactions for the domain,
the plug-in also specifies the API that relying parties will
use to record transactions in the system. Transactions are
serialized as XML and communicated to the system using
the relying party API built into the framework. The API is
“RESTful” [11]; in other words, the API transfers plain-old
XML (POX) over standard HTTP. Specifics about name-
value pairs for the domain are given in the plug-in.

A plug-in can also add to the default set of operators
available in the rule language so that domain-specific oper-
ators can be added to the language. For example, a plug-in
for specifying transactions from an e-commerce site might
specify an operator that allows transactions to be easily fil-
tered by region or proximity to a certain zip-code. These

operators are specified in Ruby, the language used to build
Pythia.

Plug-ins are where the default rule sets described in the
last section are defined. As mentioned, these rule sets can
be cloned by users of the system and subsequently modified.

One limitation of the current system is that the base sys-
tem can be specialized to only one domain at a time using
one plug-in. This keeps the reputation calculations simple.
Future versions of Pythia will explore how multiple domains
interact and what problems this causes.

4.4 Using Pythia
Relying parties interact with Pythia in two distinct ways:

they make reputation queries for users and they send trans-
actions to the system that record their interactions with the
user.

Reputation queries can be made about unauthenticated
identifiers. A reputation query includes the identifier of the
relying party, an identifier for the subject, and a rule-set
identifier. Any identifier stored in the system, email address
or URLs, can be the subject of a reputation request. The
system uses the rule-set identifier to select a rule set from
those previously defined by the relying party and carries
out the calculation, using the subject identifier to gather
the right data for the rule set to operate on.

Transactions can only be reported about authenticated
subjects to avoid users purposely contaminating the trans-
action store in order to bias future reputation calculations.
Any transaction feedback is done in an authenticated man-
ner that records identifiers for the relying party and the user
involved in the transaction.

5. IMPLEMENTATION
The Pythia framework is implemented in Ruby on Rails.

The system implements Web interfaces for users, relying
parties, and administrators. The user interface allows users
to claim and validate identifiers, view transactions to which
they were a party, and view any reputation requests that
were made about them.

As previously mentioned, authentication for Pythia is pro-
vided using OpenID. The Ruby libraries for OpenID are
from OpenID Enabled3.

The underlying rules engine used by Pythia is Rools. 4

Rule sets can be defined by plug-ins or through the Web
interface by relying parties.

6. AN EXAMPLE APPLICATION
As part of the development and testing, we created a plug-

in that allows Pythia to be used in blog comment moderation
activities. Using this system, a relying party’s blog system
can query the reputation of people leaving comments and
use that score in determine whether to moderate or junk a
comment.

In addition any actions taken by the relying party with
respect to the comment (e.g. deleting it, approving it, etc.)
are automatically sent to the system and recorded as trans-
actions. For purposes of the demonstration, we chose the
MovableType blogging platform, but any blogging system
could be used.

3http://openidenabled.com
4http://rools.rubyforge.com



Customizing the general purpose framework for comment
moderation required that we create a plug-in for the reputa-
tion framework. In addition, we built a module for Movable-
Type that automated the relaying of actions taken by the
blog owner as transactions to Pythia and making reputation
queries about commenters.

The plug-in defines its own schema for legal transaction
types and transaction values specific to blog comments. The
framework uses the plug-in’s schema definition to receive
and store blog comment transactions.

Figure 2 shows the configuration screen in MovableType
for the reputation-based comment moderation system. The
MovableType plug-in we built to integrate with Pythia is
called RepKept.

The blog owner, acting as the relying party, specifies the
URL of the reputation server and gives authentication in-
formation for the reputation server. The relying party also
selects which rule set they want to use to calculate the rep-
utation score and gives thresholds for various actions. The
rule-sets in the drop-down box are automatically populated
from Pythia over the relying party API and represent rule
sets the relying party has created.

In our test, the blogging software asks users to authen-
ticate before they comment. Once the commenter has au-
thenticated, the blog uses that identifier for requesting a
reputation score and later submitting feedback. In our test,
blogs use OpenID as the authentication mechanism, but the-
oretically, any identifier that was associated with the user
in Pythia could be used.

Once a user submits a comment, a reputation request is
made and a reputation value is computed according to the
rule set the relying party has selected in the blog configu-
ration. Depending on the value returned and the threshold
values set by the relying party, the blog either automatically
publishes the comment, holds it for moderation, or deletes
it. Each of these generates feedback events.

Feedback events contain the digital identifier of the rely-
ing party sending the feedback event and the authenticated
digital identifier of the subject of the feedback event. The
payload of a feedback event is simply a list of transaction
records each represented by a key-value pair. The key is the
transaction type and the value is a valid transaction value
as defined by the plug-in schema.

In the blog comment case a transaction type could be the
Commenter’s IP Address and the corresponding transac-
tion value could be 192.168.0.1. A transaction can also be
represented as an enumerated value. In this case the trans-
action type contains the enumerated value and the transac-
tion value is empty.

The transactions in the blog comment example are pre-
dominately enumerated values. These values represent ac-
tions taken by the relying party given the reputation of the
subject. The blog comment example has four types of feed-
back. In this particular example the feedback transaction
types are mutually exclusive. However this need not be the
case in general. The transaction types are generated accord-
ing to the following scenarios:

• When the reputation for a subject exceeds the auto-
publish threshold of the relying party the comment
immediately published and a AutoPublished feedback
event is sent to the reputation server.

• In the case where a subject’s reputation falls below the

relying party’s auto-rejection threshold the comment
is immediately deleted and a AutoDeleted feedback
event is sent.

• If a subject’s reputation lands between the auto-reject
and auto-publish thresholds the comment is placed in
a queue for manual moderation. When a human takes
action on a comment in the manual moderation queue
either a ManualPublish or a ManualDelete feedback
event is sent to the reputation server.

7. FUTURE WORK
The framework we have described is still under develop-

ment. While most of the key ideas are represented in the
system, there is much to be done to complete our vision for
them.

One of the most important additions to Pythia would be
to expand the set of actions and conditional operators avail-
able in the rule language. Having more expressive opera-
tions would allow various computational models to be more
easily implemented. Many of the extant models use sophis-
ticated statistical functions well beyond the average and sd

(standard deviation) operators now available.
The addition of built-in support for A/B testing would al-

low rules to be more easily evaluated for efficacy. Such A/B
testing should be fine-grained so that effects of individual
rules can be reported on.

We’re confident that the current framework can be used in
any single domain with the addition of the appropriate plug-
in to customize the type of transactions stored in the system.
However, the use of information from multiple contexts (e.g.
blog comments and online purchases) in a single system and
the interaction of the transaction and opinion data in that
system promises to be a fruitful are of study.

Right now, Pythia makes use of online data sources such
as the whois database or Akismet by hard-coding support
for the respective API into the framework. It should be
possible to create plug-in style architecture for adding these
online resources so that many more of then can be made
available to Pythia applications.

The system could calculate audit data about the trans-
actions and other information in the system and make that
available to the rule language. In so doing, relying parties
would be able top create rule sets that better take into ac-
count the quality of the data before proceeding with the
calculation.

Dellarocas discusses the kind of gaming and unfair bias
that can be present in online reputation systems. [7] While
the issues surrounding security and data contamination were
something we discussed consistently throughout the design
of Pythia, we have not conducted a formal security audit of
the system in order to elicit as many of these scenarios as
possible and respond to them.

One part of our design that has yet to be implemented
is allowing users to express opinions, ratings, and endorse-
ments about other users. For this to be useful some way of
recording interuser trust is necessary to measure the confi-
dence that should be placed in a particular opinion. Other-
wise, there’s no way for the system to know whose ratings
to use and whose to ignore.

Interuser trust can be defined explicitly by users, but
might also be calculated or otherwise inferred. One way
to infer interuser trust is by tapping into social cues that



Figure 2: RepKept Configuration Screen

are already on the Web. For example, allowing users to
claim OPML files from a site like Bloglines would give an
indication of the URLs of other users whose blogs they read.
FOAF (Friend of a Friend) data or other data from social
networking sites could also be used.

Another avenue for future research is using the system as
an identifier exchange service. The system already validates
claims to identifiers and associates those identifiers together.
Pythia could authoritatively state that a particular URL
is controlled by the same person who controls a particular
email address, for example. Identifier exchange services are
useful in aggregating Web services where a client supplies
one kind of identifier, but the server requires a different kind.

8. CONCLUSIONS
The emergence of identity systems such as CardSpace,

OpenID, LID, SXIP and i-names that are independent of
any particular site, provides an opportunity to build repu-
tation systems that are based on those identifiers and have
broad application. This paper has described such a system
that also employs a rules engine and plug-in architecture to
make it malleable to a variety of tasks.

The flexibility of our framework makes it a good plat-
form for further studies in reputation since the effect of var-
ious policies in various settings can be more easily explored
than when the entire system must be rebuilt from scratch
to change the computation model.

9. ACKNOWLEDGMENTS
This work grew out of a class project at Brigham Young

University in the Winter of 2006. Class participants were

Devlin Daley, Jared Laney, Harshwardhan Nagaonkar, Roger
Pack, Sterling Porter, Jason Read, Michael Reynolds, Na-
than Stocks, Kevin Tew, and Terry Wilcox.

10. REFERENCES
[1] Amazon auctions. http://auctions.amazon.com,

2006.

[2] R. Axelrod. The Evolution of Cooperation. Basic
Books, New York, 1984.

[3] D. B. Bromley. Reputation, Image and Impression
Management. John Wiley & Sons, 1993.

[4] J. Carter, E. Bitting, and A. A. Ghorbani. Reputation
formalization within information sharing multiagent
architectures. Computational Intelligence, 2(5):45–64,
2002.

[5] D. Chappel. Understanding Windows CardSpace.
http://msdn2.microsoft.com/en-gb/library/

aa480189.aspx, April 2006.

[6] P. Dasgupta. Trust: Making and Breaking Cooperative
Relations, chapter Trust As a Commodity, pages
49–72. Department of Sociology, University of Oxford,
2000.

[7] C. Dellarocas. Immunizing online reputation reporting
systems against unfair ratings and discriminatory
behavior. In Proceedings of the 2nd ACM Conference
on Electronic Commerce. ACM, 2000.

[8] C. N. Dellarocas. The digitization of word-of-mouth:
Promise and challenges of online feedback
mechanisms. SSRN eLibrary, 2003.

[9] eBay. http://www.ebay.com, 2006.

[10] B. Esfandiari and S. Chandrasekharan. On how agents



make friends: mechanisms for trust acquisition. In
Proceedings of the Fourth Workshop on Deception,
Fraud and Trust in Agent Societies 2001, pages 27–34,
2001.

[11] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[12] E. Friedman and P. Resnick. The social cost of cheap
pseudonyms. Journal of Economics and Management
Strategy, 10(2):173–199, 2001.

[13] D. Hume. A Treatise on Human Nature. Penguine
Classics (1975), 1739-1740.

[14] F. Labalme and K. Burton. OpenPrivacy.org.
http://www.openprivacy.org/.

[15] F. Labalme and K. Burton. Enhancing the internet
with reputations. Technical Report 0.7,
OpenPrivacy.org, March 2001.

[16] K.-J. Lin, H. Lu, T. Yu, and C.-e. Tai. A reputation
and trust management broker framework for web
applications. In International Conference on
e-Technology, e-Commerce, and e-Services, pages
262–269. IEEE, April 2005.

[17] P. R. Milgrom and J. Roberts. Predation, reputation,
and entry deterrence. Journal of Economic Theory,
27:280–312, 1982.

[18] J. Miller. MicroID - small, decentralized, and
verifiable identity. http://microid.org/.

[19] L. Mui, M. Mohtashemi, and A. Halberstadt. A
computational model of trust and reputation. In
Proceedings of the 35th Hawaii International
Conference on System Sciences. IEEE, IEEE, 2002.

[20] L. Mui, M. Mohtashemi, and A. Halberstadt. Notions
of reputation in multi-agent systems: A review. In
Proceedings of the First International Conference on
Autonomous Agents and MAS, pages 280–287,
Bologna, Italy, July 2002. ACM.

[21] OpenID specification. http://openid.net/specs.bml,
2006.

[22] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman. Reputation systems. Communications of
the ACM, 43(12):45–48, December 2000.

[23] P. Resnick, R. Zeckhauser, J. Swanson, and
K. Lockwood. The value of reputation on eBay: A
controlled experiment. Experimental Economics,
9(2):79–101, June 2006.

[24] J. Sabater and C. Sierra. Review on computational
trust and reputation models. Artificial Intelligence
Review, 24(1):33–60, September 2005.

[25] M. Schillo, P. Funk, and M. Rovatsos. Using trust for
detecting deceitful agents in artificial societies. In
Applied Artificial Intelligence, Special Issue on Trust,
Deception and Fraud in Agent Societies,
14(8):825–848, September 2000.

[26] S. Sen and N. Sajja. Robustness of reputation-based
trust: boolean case. In AAMAS ’02: Proceedings of
the first international joint conference on Autonomous
agents and multiagent systems, pages 288–293, New
York, NY, USA, 2002. ACM Press.

[27] SXIP 2.0 protocol specification. http://sxip.net/
index.php/Specifications and Documents, 2006.

[28] R. L. Trivers. The evolution of reciprocal altruism.

Quarterly Review of Biology, 46:35, 1971.

[29] S. Wasserman and K. Faust. Social Network Analysis:
Methods and Applications. Cambridge University
Press, 1994.

[30] P. J. Windley. Digital Identity. O’Reilly Media, 2004.

[31] P. J. Windley. Principles of reputation. http://www.
windley.com/archives/2006/06/principles of r,
June 2006.

[32] XRI and XDI explained.
http://www.xdi.org/xri-and-xdi-explained.html,
2006.


	A Framework for Building Reputation Systems
	21 Nov 2006 Phillip J. Windley, Kevin Tew, and Devlin Daley, Brigham Young University
	ABSTRACT
	1. INTRODUCTION
	2. REPUTATION PRINCIPLES
	3. DESIGN PHILOSOPHY
	4. ARCHITECTURE
	5. IMPLEMENTATION
	6. AN EXAMPLE APPLICATION
	7. FUTURE WORK
	8. CONCLUSIONS
	9. ACKNOWLEDGMENTS
	10. REFERENCES

	 
	Brigham Young University Title Page

