

Michael Hausenblas

Docker Networking and
Service Discovery

978-1-491-95095-1

[LSI]

Docker Networking and Service Discovery
by Michael Hausenblas

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-01-11: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Docker Network‐
ing and Service Discovery, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Foreword. v

Preface. vii

1. Motivation. 1
Go Cattle! 2
Docker Networking and Service Discovery Stack 3
Do I Need to Go “All In”? 4

2. Docker Networking 101. 7
Bridge Mode Networking 9
Host Mode Networking 10
Container Mode Networking 11
No Networking 12
Wrapping It Up 13

3. Docker Multihost Networking. 15
Overlay 16
Flannel 16
Weave 16
Project Calico 17
Open vSwitch 17
Pipework 17
OpenVPN 17
Future Docker Networking 18

iii

Wrapping It Up 18

4. Containers and Service Discovery. 21
The Challenge 21
Technologies 23
Load Balancing 29
Wrapping It Up 30

5. Containers and Orchestration. 33
What Does a Scheduler Actually Do? 35
Vanilla Docker and Docker Swarm 36
Kubernetes 38
Apache Mesos 41
Hashicorp Nomad 44
Which One Should I Use? 45

A. References. 51

iv | Table of Contents

Foreword
Like many others, I’ve been impressed with how much easier
Docker makes application development. Every component I need is
already containerized and available on Docker Hub. All that’s left for
me to do is stitch them together and add in my application logic.
Docker abstracts away most of the details of the environment, so the
application I’ve built on my laptop will run in exactly the same way
on a production server. In other words, with Docker I can just focus
on writing code.

Though Docker-based applications run the same in all environ‐
ments, being in production introduces a whole host of challenges
that don’t apply in development environments. Whereas during
development my app ran in a sandbox on my laptop, in production I
now have to worry about connectivity, scaling to handle load, being
secure against malicious users, and sharing resources with poten‐
tially hundreds of other apps (or microservices) running within the
same environment.

Author Michael Hausenblas addresses these challenges of network‐
ing and service discovery with great advice and practical guidance.
As you’ll see throughout this report, open source NGINX and our
commercial-grade application delivery platform, NGINX Plus, can
be key components in successful production deployments with
Docker.

On the frontend, NGINX Plus acts as a stable entrypoint to your
Docker application, a persistent and reliable place for clients to con‐
nect. This solves one challenge of containers—they’re ephemeral by
design, and clients can’t connect to something that might disappear
at any moment. In addition, NGINX Plus routes and load balances
traffic across your containers, integrates nicely with service discov‐
ery platforms, and can be reconfigured automatically when the set
of service instances changes.

As you move to a containerized infrastructure, we’d be thrilled to
show you how to optimize it with NGINX Plus. We sincerely hope
you enjoy this report, and that it helps you succeed with your first
production deployments of containers.

—Faisal Memon, Product Marketer, NGINX, Inc.

Preface

When you start building your applications with Docker, you’re exci‐
ted about the capabilities and opportunities you encounter: it runs
the same in dev and in prod, it’s straightforward to put together a
Docker image, and the distribution is taken care of by tools like the
Docker hub. So, you’re satisfied with how quickly you were able to
port an existing, say, Python app, to Docker and you want to con‐
nect it to another container that has a database, such as PostgreSQL.
Also, you don’t want to manually launch the Docker containers and
implement your own system that takes care of checking if the con‐
tainers are still running, and if not, relaunch them.

At this juncture, you realize there are two related challenges you’ve
been running into: networking and service discovery. Unfortunately,
these two areas are emerging topics, which is a fancy way of saying
there are still a lot of moving parts, and there are currently few best
practice resources available in a central place. Fortunately, there are
tons of recipes available, even if they are scattered over a gazillion
blog posts and many articles.

The Book
So, I thought to myself: what if someone wrote a book providing
some basic guidance for these topics, pointing readers in the right
direction for each of the technologies?

That someone turned out to be me, and with this book I want to pro‐
vide you—in the context of Docker containers—with an overview of
the challenges and available solutions for networking as well as ser‐

vii

vice discovery. I will try to drive home three points throughout this
book:

• Service discovery and container orchestration are two sides of
the same coin.

• Without a proper understanding of the networking aspect of
Docker and a sound strategy in place, you will have more than
one bad day.

• The space of networking and service discovery is young: you
will find yourself starting out with one set of technologies and
likely change gears and try something else; do not worry, you’re
in good company and in my opinion it will take another two
odd years until standards emerge and the market is consolida‐
ted.

Orchestration and Scheduling
Strictly speaking, orchestration is a more general process than
scheduling: it subsumes scheduling but also covers other things,
such as relaunching a container on failure (either because the con‐
tainer itself became unhealthy or its host is in trouble). So, while
scheduling really is only the process of deciding which container to
put on which host, I use these two terms interchangeably in the
book.

I do this because, first, because there’s no official definition (as in:
an IETF RFC or a NIST standard), and second, because the market‐
ing of different companies sometimes deliberately mix them up, so
I want you to prepare for this. However, Joe Beda (former Googler
and Kubernetes mastermind), put together a rather nice article on
this topic, should you wish to dive deeper: “What Makes a Con‐
tainer Cluster?”

You
My hope is that the book is useful for:

• Developers who drank the Docker Kool-Aid
• Network ops who want to brace themselves for the upcoming

onslaught of their enthusiastic developers

viii | Preface

http://bit.ly/1ObcJq2
http://bit.ly/1ObcJq2

• (Enterprise) software architects who are in the process of
migrating existing workloads to Docker or starting a new
project with Docker

• Last but not least, I suppose that distributed application devel‐
opers, SREs, and backend engineers can also extract some value
out of it.

Note that this is not a hands-on book—besides the basic Docker
networking stuff in Chapter 2—but more like a guide. You will want
to use it to make an informed decision when planning Docker-based
deployments. Another way to view the book is as a heavily annota‐
ted bookmark collection.

Me
I work for a cool startup called Mesosphere, Inc. (the commercial
entity behind Apache Mesos), where I help devops to get the most
out of the software. While I’m certainly biased concerning Mesos
being the best current option to do cluster scheduling at scale, I will
do my best to make sure throughout the book that this preference
does not negatively influence the technologies discussed in each sec‐
tion.

Acknowledgments
Kudos to my Mesosphere colleagues from the Kubernetes team:
James DeFelice and Stefan Schimanski have been very patient
answering my questions around Kubernetes networking. Another
round of kudos go out to my Mesosphere colleagues (and former
Docker folks) Sebastien Pahl and Tim Fall—I appreciate all of your
advice around Docker networking very much! And thank you as
well to Mohit Soni, yet another Mesosphere colleague who took
time out of his busy schedule to provide feedback!

I further would like to thank Medallia’s Thorvald Natvig, whose
Velocity NYC 2015 talk triggered me to think deeper about certain
networking aspects; he was also kind enough to allow me to follow
up with him and discuss motivations of and lessons learned from
Medallia’s Docker/Mesos/Aurora prod setup.

Thank you very much, Adrian Mouat (Container Solutions) and
Diogo Mónica (Docker, Inc.), for answering questions via Twitter,

Preface | ix

http://oreil.ly/1mCsJei

and especially for the speedy replies during hours where normal
people sleep, geez!

I’m grateful for the feedback I received from Chris Swan, who pro‐
vided clear and actionable comments throughout, and by addressing
his concerns, I believe the book became more objective as well.

Throughout the book writing process, Mandy Waite (Google) pro‐
vided incredibly useful feedback, particularly concerning Kuber‐
netes; I’m so thankful for this and it certainly helped to make things
clearer. I’m also grateful for the support I got from Tim Hockin
(Google), who helped me clarify the confusion around the new
Docker networking features and Kubernetes.

Thanks to Matthias Bauer, who read an early draft of this manu‐
script and provided great comments I was able to build on.

A big thank you to my O’Reilly editor Brian Anderson. From the
first moment we discussed the idea to the drafts and reviews, you’ve
been very supportive, extremely efficient (and fun!), and it’s been a
great pleasure to work with you.

Last but certainly not least, my deepest gratitude to my awesome
family: our “sunshine” Saphira, our “sporty girl” Ranya, our son and
“Minecraft master” Iannis, and my ever-supportive wife Anneliese.
Couldn’t have done this without you and the cottage is my second-
favorite place when I’m at home. ;)

x | Preface

1 In all fairness, Randy did attribute the origins to Bill Baker of Microsoft.

CHAPTER 1

Motivation

In February 2012, Randy Bias gave an impactful talk on architec‐
tures for open and scalable clouds. In his presentation, he estab‐
lished the pets versus cattle meme:1

• With the pets approach to infrastructure, you treat the machines
as individuals. You give each (virtual) machine a name and
applications are statically allocated to machines. For example,
db-prod-2 is one of the production servers for a database. The
apps are manually deployed and when a machine gets ill you
nurse it back to health and again manually redeploy the app it
ran onto another machine. This approach is generally consid‐
ered to be the dominant paradigm of a previous (non-cloud-
native) era.

• With the cattle approach to infrastructure, your machines are
anonymous, they are all identical (modulo hardware upgrades),
have numbers rather than names, and apps are automatically
deployed onto any and each of the machines. When one of the
machines gets ill, you don’t worry about it immediately, and
replace it (or parts of it, such as a faulty HDD) when you want
and not when things break.

While the original meme was focused on virtual machines, we apply
the cattle approach to infrastructure to containers.

1

http://slidesha.re/YqJgFB
http://slidesha.re/YqJgFB

2 Typically even very homogenous hardware—see, for example, slide 7 of the PDF slide
deck for Thorvald Natvig’s Velocity NYC 2015 talk “Challenging Fundamental
Assumptions of Datacenters: Decoupling Infrastructure from Hardware”.

Go Cattle!
The beautiful thing about applying the cattle approach to infrastruc‐
ture is that it allows you to scale out on commodity hardware.2

It gives you elasticity with the implication of hybrid cloud capabili‐
ties. This is a fancy way of saying that you can have a part of your
deployments on premises and burst into the public cloud (as well as
between IaaS offerings of different providers) if and when you need
it.

Most importantly, from an operator’s point of view, the cattle
approach allows you to get a decent night’s sleep, as you’re no longer
paged at 3 a.m. just to replace a broken HDD or to relaunch a hang‐
ing app on a different server, as you would have done with your
pets.

However, the cattle approach poses some challenges that generally
fall into one of the following two categories:

Social challenges
I dare say most of the challenges are of a social nature: How do I
convince my manager? How do I get buy-in from my CTO? Will
my colleagues oppose this new way of doing things? Does this
mean we will need less people to manage our infrastructure? Now,
I will not pretend to offer ready-made solutions for this part;
instead, go buy a copy of The Phoenix Project, which should help
you find answers.

Technical challenges
In this category, you will find things like selection of base provi‐
sioning mechanism of the machines (e.g., using Ansible to
deploy Mesos Agents), how to set up the communication links
between the containers and to the outside world, and most
importantly, how to ensure the containers are automatically
deployed and are consequently findable.

2 | Chapter 1: Motivation

http://oreil.ly/1mCsJei
http://oreil.ly/1mCsJei
http://oreil.ly/1PfgBX8

Docker Networking and Service Discovery
Stack
The overall stack we’re dealing with here is depicted in Figure 1-1
and is comprised of the following:

The low-level networking layer
This includes networking gear, iptables, routing, IPVLAN,
and Linux namespaces. You usually don’t need to know the
details here, unless you’re on the networking team, but you
should be aware of it. See Chapter 2 for more information on
this topic.

A Docker networking layer
This encapsulates the low-level networking layer and provides
some abstractions such as the single-host bridge networking
mode or a multihost, IP-per-container solution. I cover this
layer in Chapters 2 and 3.

A service discovery/container orchestration layer
Here, we’re marrying the container scheduler decisions on
where to place a container with the primitives provided by
lower layers. Chapter 4 provides you with all the necessary
background on service discovery, and in Chapter 5, we look at
networking and service discovery from the point of view of the
container orchestration systems.

Software-Defined Networking (SDN)
SDN is really an umbrella (marketing) term, providing essentially
the same advantages to networks that VMs introduced over bare-
metal servers. The network administration team becomes more
agile and can react faster to changing business requirements.
Another way to view it is: SDN is the configuration of networks
using software, whether that is via APIs, complementing NFV, or
the construction of networks from software; the Docker network‐
ing provides for SDN.

Especially if you’re a developer or an architect, I suggest taking a
quick look at Cisco’s nice overview on this topic as well as SDxCen‐
tral’s article “What’s Software-Defined Networking (SDN)?”

Docker Networking and Service Discovery Stack | 3

http://bit.ly/1MTB02b
http://bit.ly/1mGsgqL
http://bit.ly/1mGsgqL
http://bit.ly/1O5p7KB
http://bit.ly/1PfgDyi

Figure 1-1. Docker networking and service discovery (DNSD) stack

If you are on the network operations team, you’re probably good to
go for the next chapter. However, if you’re an architect or developer
and your networking knowledge might be a bit rusty, I suggest
brushing up your knowledge by studying the Linux Network
Administrators Guide before advancing.

Do I Need to Go “All In”?
Oftentimes when I’m at conferences or user groups, I meet people
who are very excited about the opportunities in the container space
but at the same time they (rightfully) worry about how deep they
need to commit in order to benefit from it. The following table pro‐
vides an informal overview of deployments I have seen in the wild,
grouped by level of commitment (stages):

Stage Typical Setup Examples

Traditional Bare-metal or VM, no containers Majority of today’s prod
deployments

Simple Manually launched containers used for app-
level dependency management

Development and test
environments

Ad hoc A custom, homegrown scheduler to launch
and potentially restart containers

RelateIQ, Uber

4 | Chapter 1: Motivation

http://www.tldp.org/LDP/nag2/nag2.pdf
http://www.tldp.org/LDP/nag2/nag2.pdf
http://bit.ly/1ZO0l6R

Stage Typical Setup Examples

Full-blown An established scheduler from Chapter 5 to
manage containers; fault tolerant, self-
healing

Google, Zulily,
Gutefrage.de

Note that not all of these examples use Docker containers (notably,
Google does not) and that some start out, for instance, in the ad-hoc
stage and are transitioning to a full-blown stage as we speak (Uber is
such a case; see this presentation from ContainerSched 2015 in Lon‐
don). Last but not least, the stage doesn’t necessarily correspond
with the size of the deployment. For example, Gutefrage.de only has
six bare-metal servers under management, yet uses Apache Mesos to
manage them.

One last remark before we move on: by now, you might have already
realized that we are dealing with distributed systems in general here.
Given that we will usually want to deploy containers into a network
of computers (i.e., a cluster), I strongly suggest reading up on the
fallacies of distributed computing, in case you are not already famil‐
iar with this topic.

And now, without further ado, let’s jump into the deep end with
Docker networking.

Do I Need to Go “All In”? | 5

http://bit.ly/22L1gr0
http://bit.ly/1IR4tz1
http://bit.ly/1Jus20x

CHAPTER 2

Docker Networking 101

Before we get into the networking side of things, let’s have a look at
what is going on in the case of a single host. A Docker container
needs a host to run on. This can either be a physical machine (e.g., a
bare-metal server in your on-premise datacenter) or a VM either
on-prem or in the cloud. The host has the Docker daemon and cli‐
ent running, as depicted in Figure 2-1, which enables you to interact
with a Docker registry on the one hand (to pull/push Docker
images), and on the other hand, allows you to start, stop, and
inspect containers.

Figure 2-1. Simplified Docker architecture (single host)

7

http://bit.ly/1IR4wL9

1 This might have been a potential limitation of the Docker daemon at that time.

The relationship between a host and containers is 1:N. This means
that one host typically has several containers running on it. For
example, Facebook reports that—depending on how beefy the
machine is—it sees on average some 10 to 40 containers per host
running. And here’s another data point: at Mesosphere, we found in
various load tests on bare metal that not more than around 250 con‐
tainers per host would be possible.1

No matter if you have a single-host deployment or use a cluster of
machines, you will almost always have to deal with networking:

• For most single-host deployments, the question boils down to
data exchange via a shared volume versus data exchange
through networking (HTTP-based or otherwise). Although a
Docker data volume is simple to use, it also introduces tight
coupling, meaning that it will be harder to turn a single-host
deployment into a multihost deployment. Naturally, the upside
of shared volumes is speed.

• In multihost deployments, you need to consider two aspects:
how are containers communicating within a host and how does
the communication paths look between different hosts. Both
performance considerations and security aspects will likely
influence your design decisions. Multihost deployments usually
become necessary either when the capacity of a single host is
insufficient (see the earlier discussion on average and maximal
number of containers on a host) or when one wants to employ
distributed systems such as Apache Spark, HDFS, or Cassandra.

Distributed Systems and Data Locality
The basic idea behind using a distributed system (for computation
or storage) is to benefit from parallel processing, usually together
with data locality. By data locality I mean the principle to ship the
code to where the data is rather than the (traditional) other way
around. Think about the following for a moment: if your dataset
size is in the TB and your code size is in the MB, it’s more efficient
to move the code across the cluster than transferring TBs of data to
a central processing place. In addition to being able to process
things in parallel, you usually gain fault tolerance with distributed

8 | Chapter 2: Docker Networking 101

http://bit.ly/1PfgJFU
http://bit.ly/1OOw6Vm

2 Note that with Docker 1.9, the networking documentation doesn’t mention the con‐
tainer mode anymore, while it’s still supported and listed in the run reference.

systems, as parts of the system can continue to work more or less
independently.

This chapter focuses on networking topics for the single-host case,
and in Chapter 3, we will discuss the multihost scenarios.

Simply put, Docker networking is the native container SDN solution
you have at your disposal when working with Docker. In a nutshell,
there are four modes available for Docker networking: bridge mode,
host mode, container mode, or no networking.2 We will have a
closer look at each of those modes relevant for a single-host setup
and conclude at the end of this chapter with some general topics
such as security.

Bridge Mode Networking
In this mode (see Figure 2-2), the Docker daemon creates docker0, a
virtual Ethernet bridge that automatically forwards packets between
any other network interfaces that are attached to it. By default, the
daemon then connects all containers on a host to this internal net‐
work through creating a pair of peer interfaces, assigning one of the
peers to become the container’s eth0 interface and other peer in the
namespace of the host, as well as assigning an IP address/subnet
from the private IP range to the bridge (Example 2-1).

Example 2-1. Docker bridge mode networking in action

$ docker run -d -P --net=bridge nginx:1.9.1
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
17d447b7425d nginx:1.9.1 nginx -g 19 seconds ago
Up 18 seconds 0.0.0.0:49153->443/tcp,
 0.0.0.0:49154->80/tcp trusting_feynman

Bridge Mode Networking | 9

http://bit.ly/1mGsgqL
http://bit.ly/1VJlBsb
https://tools.ietf.org/html/rfc1918

Because bridge mode is the Docker default, you could
have equally used docker run -d -P nginx:1.9.1 in
Example 2-1. If you do not use -P (which publishes all
exposed ports of the container) or -p host_port:con
tainer_port (which publishes a specific port), the IP
packets will not be routable to the container outside of
the host.

Figure 2-2. Bridge mode networking setup

In production, I suggest using the Docker host mode
(discussed in “Host Mode Networking” on page 10)
along with one of the SDN solutions from Chapter 3.
Further, to influence the network communication
between containers, you can use the flags --iptables
and -icc.

Host Mode Networking
This mode effectively disables network isolation of a Docker con‐
tainer. Because the container shares the networking namespace of
the host, it is directly exposed to the public network; consequently,
you need to carry out the coordination via port mapping.

Example 2-2. Docker host mode networking in action

$ docker run -d --net=host ubuntu:14.04 tail -f /dev/null
$ ip addr | grep -A 2 eth0:
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state

10 | Chapter 2: Docker Networking 101

http://bit.ly/1PNOH9m

UP group default qlen 1000
 link/ether 06:58:2b:07:d5:f3 brd ff:ff:ff:ff:ff:ff
 inet **10.0.7.197**/22 brd 10.0.7.255 scope global dynamic eth0

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
b44d7d5d3903 ubuntu:14.04 tail -f 2 seconds ago
Up 2 seconds jovial_blackwell
$ docker exec -it b44d7d5d3903 ip addr
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state
UP group default qlen 1000
 link/ether 06:58:2b:07:d5:f3 brd ff:ff:ff:ff:ff:ff
 inet **10.0.7.197**/22 brd 10.0.7.255 scope global dynamic eth0

And there we have it: as shown in Example 2-2, the container has
the same IP address as the host, namely 10.0.7.197.

In Figure 2-3, we see that when using host mode networking, the
container effectively inherits the IP address from its host. This mode
is faster than the bridge mode (because there is no routing over‐
head), but it exposes the container directly to the public network,
with all its security implications.

Figure 2-3. Docker host mode networking setup

Container Mode Networking
In this mode, you tell Docker to reuse the networking namespace of
another container. In general, this mode is useful when you want to
provide custom network stacks. Indeed, this mode is also what

Container Mode Networking | 11

Kubernetes networking leverages and you can read more on this
topic in “Kubernetes” on page 38.

Example 2-3. Docker container mode networking in action

$ docker run -d -P --net=bridge nginx:1.9.1
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
eb19088be8a0 nginx:1.9.1 nginx -g 3 minutes ago Up 3 minutes
0.0.0.0:32769->80/tcp,
0.0.0.0:32768->443/tcp admiring_engelbart
$ docker exec -it admiring_engelbart ip addr
8: eth0@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc
noqueue state UP group default
 link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff
 inet **172.17.0.3**/16 scope global eth0

$ docker run -it --net=container:admiring_engelbart ubuntu:14.04
ip addr
...
8: eth0@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc
noqueue state UP group default
 link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff
 inet **172.17.0.3**/16 scope global eth0

The result (as shown in Example 2-3) is what we would have
expected: the second container, started with --net=container, has
the same IP address as the first container with the glorious auto-
assigned name admiring_engelbart, namely 172.17.0.3.

No Networking
This mode puts the container inside of its own network stack but
doesn’t configure it. Effectively, this turns off networking and is use‐
ful for two cases: either for containers that don’t need a network
(such as batch jobs writing to a disk volume) or if you want to set up
your custom networking—see Chapter 3 for a number of options
that leverage this.

Example 2-4. Docker no-networking in action

$ docker run -d -P --net=none nginx:1.9.1
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

12 | Chapter 2: Docker Networking 101

http://bit.ly/1PfgOtb

3 New Relic, for example, found the majority of the overall uptime of the containers, in
one particular setup, in the low minutes; see also update here.

d8c26d68037c nginx:1.9.1 nginx -g 2 minutes ago
Up 2 minutes grave_perlman
$ docker inspect d8c26d68037c | grep IPAddress
 "IPAddress": "",
 "SecondaryIPAddresses": null,

And as you can see in Example 2-4, there is no network configured
—precisely as we would have hoped for.

You can read more about networking and learn about configuration
options on the excellent Docker docs pages.

All Docker commands in this book have been executed
in a CoreOS environment with both Docker client and
server on version 1.7.1.

Wrapping It Up
In this chapter, we had a look at the four basic Docker single-host
networking modes. We will now briefly discuss other aspects you
should be aware of (and which are equally relevant for multihost
deployments):

Allocating IP addresses
Manually allocating IP addresses when containers come and go
frequently and in large numbers is not sustainable.3 The bridge
mode takes care of this issue to a certain extent. To prevent ARP
collisions on a local network, the Docker daemon generates a
random MAC address from the allocated IP address. We will re-
visit this allocation challenge in the next chapter.

Allocating ports
You will find yourself either in the fixed-port-allocation or in
the dynamically-port-allocation camp. This can be per service/
application or as a global strategy, but you must make up your
mind. Remember that, for bridge mode, Docker can automati‐
cally assign (UDP or TCP) ports and consequently make them
routable.

Wrapping It Up | 13

http://bit.ly/1MTBK7q
http://bit.ly/1RinAEQ
https://docs.docker.com/articles/networking/

Network security
Out of the box, Docker has inter-container communication
enabled (meaning the default is --icc=true); this means con‐
tainers on a host can communicate with each other without any
restrictions, which can potentially lead to denial-of-service
attacks. Further, Docker controls the communication between
containers and the wider world through the --ip_forward and
--iptables flags. You should study the defaults of these flags
and loop in your security team concerning company policies
and how to reflect them in the Docker daemon setup. Also,
check out the Docker security analysis Boyd Hemphill of Stack‐
Engine carried out.

Another network security aspect is that of on-the-wire encryp‐
tion, which usually means TLS/SSL as per RFC 5246. Note,
however, that at the time of this writing this aspect is rarely
addressed; indeed, only two systems, which we will discuss in
greater detail in the next chapter, provide this out of the box:
Weave uses NaCl and OpenVPN has a TLS-based setup. As I’ve
learned from Docker’s security lead, Diogo Mónica, on-the-wire
encryption will likely be available after v1.9.

Last but not least, check out Adrian Mouat’s Using Docker, which
covers the network security aspect in great detail.

Automated Docker Security Checks

In order to automatically check against common secu‐
rity best practices around deploying Docker containers
in production, I strongly recommend running The
Docker Bench for Security.

Now that we have a basic understanding of the solution space for a
simple setup, let’s have a look at a likely more interesting case: multi‐
host networking with Docker.

14 | Chapter 2: Docker Networking 101

http://bit.ly/1MTBOUL
http://bit.ly/1SAcaeZ
http://bit.ly/1SAcaeZ
http://bit.ly/1UwGSE5
https://tools.ietf.org/html/rfc5246
http://nacl.cr.yp.to/
http://bit.ly/1Z5VifZ
http://bit.ly/using-docker
https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security

1 For some background on this topic, read DOCKER-8951, which contains a detailed
discussion of the problem statement; also, the Docker docs now has a dedicated section
on multihost networking.

CHAPTER 3

Docker Multihost Networking

As long as you’re using Docker on a single host, the techniques
introduced in the previous chapter are really all you need. However,
if the capacity of a host is not sufficient to sustain the workload, you
will either need to buy a bigger box (scale up) or add more machines
of the same type (scale out).

In the latter case, you end up with a network of machines (i.e., a
cluster). Now, a number of questions arise: How do containers talk
to each other on different hosts? How do you control communica‐
tion between containers and between the outside world? How do
you keep state, such as IP address assignments, consistent in a clus‐
ter? What are the integration points with the existing networking
infrastructure? What about security policies?

In order to address these questions, we will review technologies for
Docker multihost networking in this chapter.1

15

http://bit.ly/1JXUq6b
http://bit.ly/1Pfm0NO

For the options discussed in this chapter, please do
remember that Docker subscribes to a “batteries
included but replaceable” paradigm. By that I mean
that there will always be a default functionality (like
networking or service discovery) that you can
exchange with alternatives.

Overlay
In March 2015, Docker, Inc., acquired the software-defined net‐
working (SDN) startup SocketPlane and rebranded it as Docker
Overlay Driver; this is the upcoming default for multihost network‐
ing (in Docker 1.9 and above). The Overlay Driver extends the nor‐
mal bridge mode by a peer-to-peer communication and uses a plug‐
gable key-value store backend to distribute cluster state, supporting
Consul, etcd, and ZooKeeper.

Flannel
CoreOS flannel is a virtual network that gives a subnet to each host
for use with container runtimes. Each container (or pod, in the case
of Kubernetes) has a unique, routable IP inside the cluster and it
supports a range of backends such as VXLAN, AWS VPC, and the
default layer 2 UDP overlay network. The advantage of flannel is
that it reduces the complexity of doing port mapping. For example,
Red Hat’s Project Atomic uses flannel.

Weave
Weaveworks Weave creates a virtual network that connects Docker
containers deployed across multiple hosts. Applications use the net‐
work just as if the containers were all plugged into the same network
switch, with no need to configure port mappings and links. Services
provided by application containers on the Weave network can be
made accessible to the outside world, regardless of where those con‐
tainers are running. Similarly, existing internal systems can be
exposed to application containers irrespective of their location.
Weave can traverse firewalls and operate in partially connected net‐
works. Traffic can be encrypted, allowing hosts to be connected
across an untrusted network. You can learn more about Weave’s dis‐
covery features in Alvaro Saurin’s “Automating Weave Deployment
on Docker Hosts with Weave Discovery”.

16 | Chapter 3: Docker Multihost Networking

http://bit.ly/1MTMUZI
http://bit.ly/1IR9d7D
http://bit.ly/1IR9d7D
https://serfdom.io/
https://coreos.com/flannel/docs/latest/
http://www.projectatomic.io/
http://bit.ly/1UwQpem
http://weave.works/
http://bit.ly/1n4DSnZ
http://bit.ly/1n4DSnZ

Project Calico
Metaswitch’s Project Calico uses standard IP routing—to be precise,
the venerable Border Gateway Protocol (BGP), as defined in RFC
1105—and networking tools to provide a layer 3 solution. In con‐
trast, most other networking solutions, including Weave, build an
overlay network by encapsulating layer 2 traffic into a higher layer.
The primary operating mode requires no encapsulation and is
designed for datacenters where the organization has control over the
physical network fabric.

Open vSwitch
Open vSwitch is a multilayer virtual switch designed to enable net‐
work automation through programmatic extension while support‐
ing standard management interfaces and protocols, such as Net‐
Flow, IPFIX, LACP, and 802.1ag. In addition, it is designed to sup‐
port distribution across multiple physical servers, quite similar to
VMware’s vNetwork distributed vSwitch or Cisco’s Nexus 1000V.

Pipework
Pipework was created by Jérôme Petazzoni, a rather well-known
Docker engineer, and promises to be “software-defined networking
for Linux containers.” It lets you connect containers in arbitrarily
complex scenarios using cgroups and namespace and works with
LXC containers as well as with Docker. Given the Docker, Inc.,
acquisition of SocketPlane and the introduction of the Overlay
Driver, cf. “Overlay” on page 16, we will have to see how, if at all,
these activities will consolidate.

OpenVPN
OpenVPN, another OSS project that has a commercial offering,
allows you to create virtual private networks (VPNs) using TLS.
These VPNs can also be used to securely connect containers to each
other over the public Internet. If you want to try out a Docker-based
setup, I suggest taking a look at DigitalOcean’s great walk-through
tutorial “How To Run OpenVPN in a Docker Container on Ubuntu
14.04”.

Project Calico | 17

http://www.projectcalico.org/
https://tools.ietf.org/html/rfc1105
https://tools.ietf.org/html/rfc1105
http://openvswitch.org/
https://github.com/jpetazzo/pipework
https://openvpn.net/
http://do.co/1PO0xAg
http://do.co/1PO0xAg

Future Docker Networking
In the recently released Docker version 1.9, a new docker network
command has been introduced. With this, containers can then also
dynamically connect to other networks, with each network poten‐
tially backed by a different network driver. The default multihost
network driver is Overlay (discussed earlier in “Overlay” on page
16).

In order to gather more hands-on experience, I suggest checking out
the following blog posts:

• Aleksandr Tarasov’s “Splendors and Miseries of Docker Net‐
work”

• Project Calico’s “Docker libnetwork Is Almost Here, and Calico
Is Ready!”

• Weave Works’ “Life and Docker Networking – One Year On”

Wrapping It Up
In this chapter, we reviewed multihost networking options, and we
close out with a brief discussion on other aspects you should be
aware of in this context:

IPVLAN
The Linux kernel version 3.19 introduced an IP-per-container
feature. This assigns each container on a host a unique and
(world-wide) routable IP address. Effectively, IPVLAN takes a
single network interface and creates multiple virtual network
interfaces with different MAC addresses assigned to them. This
relatively recent feature, which was contributed by Mahesh Ban‐
dewar of Google, is conceptually similar to the macvlan driver,
but is more flexible because it’s operating both on L2 and L3. If
your Linux distro already has a kernel > 3.19, you’re in luck;
otherwise, you cannot yet benefit from this feature.

18 | Chapter 3: Docker Multihost Networking

http://bit.ly/1Z64f8W
http://bit.ly/1kMxQXn
http://bit.ly/1kMxQXn
http://bit.ly/1VJyKl1
http://bit.ly/1VJyKl1
http://bit.ly/1PO0GDO
http://kernelnewbies.org/Linux_3.19
http://bit.ly/1Z9hD1e
http://bit.ly/1JXUHWI
http://distrowatch.com/

2 As for some background on IPAM, check out the “Mesos Networking” talk from
MesosCon 2015 in Seattle; it contains an excellent discussion of the problem statement
and potential approaches to solving it.

IP address management (IPAM)
One of the bigger challenges concerning multihost networking
is the allocation of IP addresses to containers in a cluster.2

Orchestration tool compatibility
Most if not all of the multihost networking solutions discussed
in this chapter are effectively co-processes wrapping the Docker
API and configuring the networking for you. This means that
before you select one, you should make sure to check compati‐
bility issues with the container orchestration tool you’re using.
More on this topic in Chapter 5.

IPv4 versus IPv6
To date, most Docker deployments use the standard IPv4, but
IPv6 is witnessing some uptake. Docker supports IPv6 since
v1.5 (released in February 2015). The ever-growing address
shortage in IPv4 land might encourage more IPv6 deployments
down the line, also getting rid of NATs, however it is unclear
when exactly the tipping point will be reached here.

At this point in time, you should have a good understanding of the
low-level and Docker networking options and challenges. We now
move on to the next layer in the stack: service discovery.

Wrapping It Up | 19

http://bit.ly/1O5sLE7
http://bit.ly/1ZO6aBk
http://bit.ly/1Riyzyn
http://bit.ly/1Riyzyn

CHAPTER 4

Containers and Service Discovery

The primary challenge arising from adopting the cattle approach to
managing infrastructure (introduced in Chapter 1) is service discov‐
ery. Service discovery and container scheduling are really two sides
of the same coin. If you subscribe to the cattle approach to manag‐
ing infrastructure, you treat all of your machines equally and you do
not manually allocate certain machines for certain applications;
instead, you leave it up to a piece of software (the scheduler) to
manage the life cycle of the containers.

Then the question is: How do you determine on which host your
container ended up being scheduled? Exactly! This is called service
discovery, and we will discuss the other side of the coin, container
orchestration, in Chapter 5 in greater detail.

The Challenge
Service discovery has been around for a while, considered to be part
of zeroconf (see the sidebar that follows).

zeroconf
The idea behind zeroconf is to automatically create and manage a
computer network by automatically assigning network addresses,
automatically distributing and resolving hostnames, and automati‐
cally managing network services.

21

http://bit.ly/1ONl60R

In the context of Docker containers, the challenge boils down to
reliably maintaining a mapping between a running container and its
location. By location, I mean its IP address (or the address of the
host from which it has been launched) and potentially on which
port it is reachable. This mapping has to be done in a timely manner
and accurately across relaunches of the container throughout the
cluster. Two distinct operations must be supported by a container
service discovery solution:

Register
Establishes the container -> location mapping. Because only
the container scheduler knows where containers “live,” we can
consider it to be the absolute source of truth concerning a con‐
tainer’s location.

Lookup
Enables other services or applications to look up the mapping
we stored during registration. Interesting properties include the
freshness of the information and the latency of a query (average,
p50, p90, etc.).

Let’s take a look at a few slightly orthogonal considerations for the
selection process:

• Rather than simply sending a requestor in a certain direction,
how about excluding unhealthy hosts or hanging containers
from the lookup path? You’ve guessed it, it’s the strongly related
topic of load balancing, and because it is of such importance
we’ll discuss options in the last section of this chapter.

• Some argue it’s an implementation detail, others say the position
in the CAP triangle (see “The CAP Theorem and Beyond” on
page 23) matters: the choice of strong consistency versus high
availability in the context of the service discovery tool might
influence your decision. Be at least aware of it.

• Your choice might also be impacted by scalability considera‐
tions. Sure, if you only have a handful of nodes under manage‐
ment then all of the thereafter discussed solutions are a fit. If
your cluster, however, is in the high 100s or even 1,000s of
nodes, then you will want to make sure you did some proper
load testing before you commit to one particular technology.

22 | Chapter 4: Containers and Service Discovery

The CAP Theorem and Beyond
In 1998, Eric Brewer introduced the CAP theorem in the context of
distributed systems. CAP stands for consistency-availability-
partition tolerance, defined as follows:

Consistency
All nodes in a distributed system see the same data at the same
time.

Availability
A guarantee that every request receives a response about
whether it succeeded or failed.

Partition tolerance
The distributed system continues to operate despite arbitrary
partitioning due to network failures.

The CAP theorem has since been the topic of many discussions
among distributed systems practitioners. While in practice you still
hear people arguing mainly about strong consistency versus even‐
tual consistent systems, I suggest reading Martin Kleppmann’s
excellent paper, “A Critique of the CAP Theorem”. This paper pro‐
poses a different, more pragmatic way to think about CAP in gen‐
eral and consistency in particular.

If you want to learn more about requirements and fundamental
challenges in this space, read Jeff Lindsay’s “Understanding Modern
Service Discovery with Docker” and check out what Simon Eskild‐
sen of Shopify shared on this topic at a recent DockerCon.

Technologies
This section briefly introduces each technology, listing pros and
cons and pointing to further discussions on the Web (if you want to
gain hands-on knowledge with these technologies, you should check
out Adrian Mouat’s excellent book Using Docker).

Technologies | 23

http://bit.ly/1RiyM4A
http://arxiv.org/abs/1509.05393
http://bit.ly/1n4E4nm
http://bit.ly/1n4E4nm
http://bit.ly/1IR9uYl
http://bit.ly/1IR9uYl
http://bit.ly/using-docker

1 ZooKeeper was originally developed at Yahoo! in order to get its ever-growing zoo of
software tools, including Hadoop, under control.

ZooKeeper
Apache ZooKeeper is an ASF top-level project and a JVM-based,
centralized tool for configuration management,1 providing compa‐
rable functionality to what Google’s Chubby brings to the table. Zoo‐
Keeper (ZK) organizes its payload data somewhat like a filesystem,
in a hierarchy of so-called znodes. In a cluster, a leader is elected and
clients can connect to any of the servers to retrieve data. You want
2n+1 nodes in a ZK cluster. The most often found configurations in
the wild are three, five, or seven nodes. Beyond that, you’ll experi‐
ence diminishing returns concerning the fault tolerance–throughput
tradeoff.

ZooKeeper is a battle-proven, mature, and scalable solution, but has
some operational downsides. Some people consider the installation
and the management of a ZK cluster as a not-so-enjoyable experi‐
ence. Most ZK issues I’ve seen come from the fact that certain serv‐
ices (Apache Storm comes to mind) misuse it. They either put too
much data into the znodes, or even worse, they have an unhealthy
read-write ratio, essentially writing too fast. If you plan to use ZK, at
least consider using higher-level interfaces, such as Apache Curator,
which is a wrapper library around ZK, implementing a number of
recipes, as well as Netflix’s Exhibitor for managing and monitoring a
ZK cluster.

Looking at Figure 4-1, you see two components: the R/W (which
stands for registration watcher, a piece of software you need to pro‐
vide yourself), and NGINX, controlled by R/W. Whenever a con‐
tainer is scheduled on a node, it registers with ZK, using a znode
with a path like /$nodeID/$containerID and the IP address as it’s
payload. The R/W watches changes on those znodes and configures
NGINX accordingly. This setup also works for HAProxy and other
load balancers.

24 | Chapter 4: Containers and Service Discovery

http://zookeeper.apache.org/
http://research.google.com/archive/chubby.html
http://bit.ly/1ZO6m3z
http://bit.ly/1O5sTU5
http://bit.ly/1O5sTU5
http://curator.apache.org
https://github.com/Netflix/exhibitor

2 Did you know that etcd comes from /etc distributed? What a name!

3 That is, in contrast to ZK, all you need to interact with etcd is curl or the like.

Figure 4-1. Example service discovery with ZooKeeper

etcd
Written in the Go language, etcd is a product of the CoreOS team.2

It is a lightweight, distributed key-value store that uses the Raft algo‐
rithm for consensus (leader–follower model, with leader election)
and employing a replicated log across the cluster to distribute the
writes a leader receives to its followers. In a sense, etcd is conceptu‐
ally quite similar to ZK. While the payload can be arbitrary, etcd’s
HTTP API is JSON-based3 and as with ZK, you can watch for
changes in the values etcd makes available to the cluster. A very use‐
ful feature of etcd is that of TTLs on keys, which is a great building
block for service discovery. In the same manner as ZK, you want
2n+1 nodes in an etcd cluster, for the same reasons.

The security model etcd provides allows on-the-wire encryption
through TLS/SSL as well as client cert authentication, both for
between clients and the cluster as well as between the etcd nodes.

In Figure 4-2, you can see that the etcd service discovery setup is
quite similar to the ZK setup. The main difference is the usage of
confd, which configures NGINX, rather than having you write your

Technologies | 25

https://github.com/coreos/etcd
http://raftconsensus.github.io/
http://raftconsensus.github.io/
https://github.com/kelseyhightower/confd

own script. As with ZK, this setup also works for HAProxy and
other load balancers.

Figure 4-2. Example service discovery with etcd

Consul
Consul, a HashiCorp product also written in the Go language, expo‐
ses functionality for service registration, discovery, and health
checking in an opinionated way. Services can be queried using either
the HTTP API or through DNS. Consul supports multi-datacenter
deployments.

One of Consul’s features is a distributed key-value store, akin to
etcd. It also uses the Raft consensus algorithm (and again the same
observations concerning 2n+1 nodes as with ZK and etcd apply),
but the deployment is different. Consul has the concept of agents,
which can be run in either of the two available modes: as a server
(provides key-value store and DNS), or as a client (registers services
and runs health checks) and with the membership and node discov‐
ery implemented by serf.

With Consul, you have essentially four options to implement service
discovery (from most desirable to least desirable):

• Use a service definition config file, interpreted by the Consul
agent.

26 | Chapter 4: Containers and Service Discovery

https://www.consul.io/
https://www.serfdom.io/
http://bit.ly/1UwR4MN

4 Java, I’m looking at you.

• Use tools like traefik, which have a Consul backend.
• Write your own side-kick process that registers the service

through the HTTP API.
• Bake the registration into the service itself through leveraging

the HTTP API.

Want to learn more about Consul for service discovery? Check out
these two great blog posts: “Consul Service Discovery with Docker”
and “Docker DNS & Service Discovery with Consul and Registra‐
tor”.

Pure-Play DNS-Based Solutions
DNS has been a robust and battle-proven workhorse on the Internet
for many decades. The eventual consistency of the DNS system, the
fact that certain clients aggressively cache DNS lookups,4 and also
the reliance on SRV records make this option something you will
want to use when you know exactly that it is the right one.

I’ve titled this section “Pure-Play DNS-Based Solutions” because
Consul technically also has a DNS server, but this is only one option
for how you can use it to do service discovery. Here are some popu‐
lar and widely used pure-play DNS-based service discovery solu‐
tions:

Mesos-DNS
This solution is specific for service discovery in Apache Mesos.
Written in Go, Mesos-DNS polls the active Mesos Master pro‐
cess for any running tasks and exposes the IP:PORT info via
DNS as well as through an HTTP API. For DNS requests for
other hostnames or services, Mesos-DNS can either use an
external nameserver or leverage your existing DNS server to
forward only the requests for Mesos tasks to Mesos-DNS.

SkyDNS
Using etcd, you can announce your services to SkyDNS, which
stores service definitions into etcd and updates its DNS records.
Your client application issues DNS queries to discover the serv‐
ices. Thus, functionality-wise it is quite similar to Consul,
without the health checks.

Technologies | 27

http://bit.ly/1UwRbrK
http://bit.ly/1Z64QHH
http://bit.ly/1PO1loE
http://bit.ly/1IR9BTB
http://bit.ly/1PO1poB
http://bit.ly/1PO1poB
http://mesosphere.github.io/mesos-dns/
http://bit.ly/1O5sX6n

WeaveDNS
WeaveDNS was introduced in Weave 0.9 as a simple solution to
service discovery on the Weave network, allowing containers to
find other containers’ IP addresses by their hostnames. In
Weave 1.1, a so-called Gossip DNS was introduced, making
lookups faster through a cache as well as timeout functionality.
In the new implementation, registrations are broadcast to all
participating instances, which subsequently hold all entries in
memory and handle lookups locally.

Airbnb’s SmartStack and Netflix’s Eureka
In this section, we’ll take a look at two bespoke systems that were
developed to address specific requirements. This doesn’t mean you
can’t or shouldn’t use them, just that you should be aware of this
heritage.

Airbnb’s SmartStack is an automated service discovery and registra‐
tion framework, transparently handling creation, deletion, failure,
and maintenance work. SmartStack uses two separate service that
run on the same host as your container: Nerve (writing into ZK) for
service registration, and Synapse (dynamically configuring
HAProxy) for lookup. It is a well-established solution for non-
containerized environments and time will tell if it will also be as use‐
ful with Docker.

Netflix’s Eureka is different. This comes mainly from the fact that it
was born in the AWS environment (where all of Netflix runs). Eur‐
eka is a REST-based service used for locating services for the pur‐
pose of load balancing and failover of middle-tier servers and also
comes with a Java-based client component, which makes interac‐
tions with the service straightforward. This client also has a built-in
load balancer that does basic round-robin load balancing. At Netflix,
Eureka is used for red/black deployments, for Cassandra and memc‐
ached deployments, and for carrying application-specific metadata
about services.

Participating nodes in a Eureka cluster replicate their service regis‐
tries between each other asynchronously; in contrast to ZK, etcd, or
Consul, Eureka favors service availability over strong consistency,
leaving it up to the client to deal with the stale reads, but with the
upside of being more resilient in case of networking partitions. And
you know: The network is reliable. Not.

28 | Chapter 4: Containers and Service Discovery

http://bit.ly/1JXV43x
http://bit.ly/1RizleI
https://github.com/airbnb/smartstack-cookbook
https://github.com/Netflix/eureka
http://queue.acm.org/detail.cfm?id=2655736

Load Balancing
One aspect of service discovery—sometimes considered orthogonal,
but really an integral part of it—is load balancing: it allows you to
spread the load (service inbound requests) across a number of con‐
tainers. In the context of containers and microservices, load balanc‐
ing achieves a couple of things at the same time:

• Allows throughput to be maximized and response time to be
minimized

• Can avoid hotspotting (i.e., overloading a single container)
• Can help with overly aggressive DNS caching such as found

with Java

The following list outlines some popular load balancing options
with Docker:

NGINX
A popular open source load balancer and web server. NGINX is
known for its high performance, stability, simple configuration,
and low resource consumption. NGINX integrates well with the
service discovery platforms presented in this chapter, as well as
with many other open source projects.

HAProxy
While not very feature-rich, it is a very stable, mature, and
battle-proven workhorse. Often used in conjunction with
NGINX, HAProxy is reliable and integrations with pretty much
everything under the sun exist. Use, for example, the tutum‐
cloud/haproxy Docker images; because Docker, Inc., acquired
Tutum recently, you can expect this image will soon be part of
the native Docker tooling.

Bamboo
A daemon that automatically configures HAProxy instances,
deployed on Apache Mesos and Marathon; see also this p24e.io
guide for a concrete recipe.

Kube-Proxy
Runs on each node of a Kubernetes cluster and reflects services
as defined in the Kubernetes API. It supports simple TCP/UDP
forwarding and round-robin and Docker-links-based service
IP:PORT mapping.

Load Balancing | 29

http://bit.ly/1ZO6xvw
http://www.nginx.com/
http://www.haproxy.org/
https://github.com/tutumcloud/haproxy
https://github.com/tutumcloud/haproxy
https://github.com/QubitProducts/bamboo
http://bit.ly/1UwRlPZ
http://bit.ly/1UwRlPZ
http://kubernetes.io/v1.0/docs/admin/kube-proxy.html

vulcand
A HTTP reverse proxy for HTTP API management and micro‐
services, inspired by Hystrix.

Magnetic.io’s vamp-router
Inspired by Bamboo and Consul-HAProxy, it supports updates
of the config through REST or Zookeeper, routes and filters for
canary releasing and A/B-testing, as well as provides for stats
and ACLs.

moxy
A HTTP reverse proxy and load balancer that automatically
configures itself for microservices deployed on Apache Mesos
and Marathon.

HAProxy-SRV
A templating solution that can flexibly reconfigure HAProxy
based on the regular polling of the service data from DNS (e.g.,
SkyDNS or Mesos-DNS) using SRV records.

Marathon’s servicerouter.py
The servicerouter is a simple script that gets app configurations
from Marathon and updates HAProxy; see also this p24e.io
recipe.

traefik
The new kid on the block. Only very recently released but
already sporting 1,000+ stars on GitHub, Emile Vauge (traefik’s
lead developer) must be doing something right. I like it because
it’s like HAProxy, but comes with a bunch of backends such as
Marathon and Consul out of the box.

If you want to learn more about load balancing, check out this
Mesos meetup video as well as this talk from nginx.conf 2014 on
load balancing with NGINX+Consul.

Wrapping It Up
To close out this chapter, I’ve put together a table that provides you
with an overview of the service discovery solutions we’ve discussed.
I explicitly do not aim at declaring a winner, because I believe it very
much depends on your use case and requirements. So, take the fol‐
lowing table as a quick orientation and summary but not as a shoot‐
out:

30 | Chapter 4: Containers and Service Discovery

https://vulcand.io/
https://github.com/Netflix/Hystrix
https://github.com/magneticio/vamp-router
https://github.com/martensson/moxy
https://github.com/elasticio/haproxy-srv
http://bit.ly/1PO1GHV
http://bit.ly/1mCBZPx
http://bit.ly/1mCBZPx
http://traefik.github.io/
http://bit.ly/1RizQW7
http://bit.ly/1S4zfqG

Name Consistency Language Registration Lookup

ZooKeeper Strong Java Client Bespoke clients

etcd Strong Go Sidekick+client HTTP API

Consul Strong Go Automatic and through
traefik (Consul backend)

DNS + HTTP/JSON
API

Mesos-DNS Strong Go Automatic and through
traefik (Marathon back-
end)

DNS + HTTP/JSON
API

SkyDNS Strong Go Client registration DNS

WeaveDNS Strong Go Auto DNS

SmartStack Strong Java Client registration Automatic through
HAProxy config

Eureka Eventual Java Client registration Bespoke clients

As a final note: the area of service discovery is constantly in flux and
new tooling is available almost on a weekly basis. For example, Uber
only recently open sourced its internal solution, Hyperbahn, an
overlay network of routers designed to support the TChannel RPC
protocol. Because container service discovery is overall a moving
target, you are well advised to reevaluate the initial choices on an
ongoing basis, at least until some consolidation has taken place.

Wrapping It Up | 31

https://github.com/uber/hyperbahn
https://github.com/uber/tchannel
https://github.com/uber/tchannel

CHAPTER 5

Containers and Orchestration

As mentioned in the previous chapter, with the cattle approach to
managing infrastructure, you don’t manually allocate certain
machines for certain applications—instead, you leave it up to a
scheduler to manage the life cycle of the containers. While schedul‐
ing is an important activity, it is actually just one part of a broader
concept: orchestration.

In Figure 5-1, you can see that orchestration includes things such as
health checks, organizational primitives (e.g., labels in Kubernetes
or groups in Marathon), autoscaling, upgrade/rollback strategies, as
well as service discovery. Sometimes considered part of orchestra‐
tion but outside of the scope of this book is the topic of base provi‐
sioning, such as setting up a Mesos Agent or Kubernetes Kubelet.

Service discovery and scheduling are really two sides of the same
coin. The entity that decides where in a cluster a certain container is
placed is called a scheduler. It supplies other systems with an up-to-
date mapping containers -> locations, which then can be used
to expose this information in various ways, be it in distributed key-
value stores such as etcd or through DNS as the case with, for exam‐
ple, Mesos-DNS.

33

Figure 5-1. Orchestration and its constituents

In this chapter, we will discuss service discovery and networking
from the point of view of the container orchestration solution. The
motivation behind this is simple: assume that you’ve decided to go
with a certain platform, say, Kubernetes. Then, your primary con‐
cern is how service discovery and networking is handled in the con‐
text of this platform.

In the following, I’ve made the choice to discuss con‐
tainer orchestration systems that fulfill two require‐
ments: they are open source and they have a considera‐
ble community up-take (or in Nomad’s case, this is
expected to happen, relatively soon).
There are several other solutions out there you could
have a look at, including Facebook’s Bistro or hosted
solutions such as Amazon EC2 Container Service ECS.
And, should you want to more fully explore the topic
of distributed system scheduling, I suggest reading
Google’s research papers on Borg and Omega.

Before we dive into container orchestration systems, let’s step back
and review what the scheduler—which is the core component of
orchestration—actually does in the context of Docker.

34 | Chapter 5: Containers and Orchestration

https://facebook.github.io/bistro/
http://aws.amazon.com/ecs/details/
http://bit.ly/google-borg
http://bit.ly/g-omega

What Does a Scheduler Actually Do?
A distributed systems scheduler takes an application by request of a
user and places it on one or more of the available machines. For
example, a user might request to have 100 instances (or replicas, in
the case of Kubernetes) of the app running.

In the case of Docker, this means that (a) the respective Docker
image must exist on a host, and (b) the scheduler tells the local
Docker daemon to launch a container based on it.

In Figure 5-2, you can see that the user requested three instances of
the app running in the cluster. The scheduler decides the actual
placement based on its knowledge of the state of the cluster, primar‐
ily the utilization of the machines, resources necessary to success‐
fully launch the app, and constraints such as launch this app only on
a machine that is SSD-backed. Further, quality of service might be
taken into account for the placement decision.

Figure 5-2. Distributed systems scheduler in action

Learn more about this topic via Cluster Management at Google by
John Wilkes.

Beware of the semantics of constraints that you can
place on scheduling containers. For example, I once
gave a Marathon demo that wouldn’t work as planned
because I screwed up concerning the placement con‐
straints: I used a combination of unique hostname and
a certain role and it wouldn’t scale, because there was
only one node with the specified role in the cluster.
The same thing can happen with Kubernetes labels.

What Does a Scheduler Actually Do? | 35

http://bit.ly/1TEWJAs
http://bit.ly/1n4Eryh
http://bit.ly/1n4Eryh

1 See the last section of the “Understand Docker Container Networks” page.
2 Why it’s called ambassador when it clearly is a proxy at work here is beyond me.

Vanilla Docker and Docker Swarm
Out of the box, Docker provides a basic service discovery mecha‐
nism: Docker links. By default, all containers can communicate
directly with each other if they know each other’s IP addresses. Link‐
ing allows a user to let any container discover both the IP address
and exposed ports of other Docker containers on the same host. In
order to accomplish this, Docker provides the --link flag, a conve‐
nient command-line option that does this automatically.

But hard-wiring of links between containers is neither fun nor scala‐
ble. In fact, it’s so bad that, going forward, this feature will be depre‐
cated.1

Let’s have a look at a better solution (if you nevertheless want to or
need to use links): the ambassador pattern.

Ambassadors
The idea behind this pattern, shown in Figure 5-3, is to use a proxy
container that stands in for the real container and forwards traffic to
the real thing.2 What it buys you is the following: the ambassador
pattern allows you to have a different network architecture in the
development phase and in production. The network ops can rewire
the application at runtime, without changing the application’s code.

In a nutshell, the downside of ambassadors is that they don’t scale
well. The ambassador pattern can be used in small-scale, manual
deployments but should be avoided when employing an actual con‐
tainer orchestration tool such as Kubernetes or Apache Mesos.

36 | Chapter 5: Containers and Orchestration

http://bit.ly/1mGGt7e
http://bit.ly/1VJzYg4
http://bit.ly/22L9orB

3 Essentially, this means that you can simply keep using docker run commands and the
deployment of your containers in a cluster happens automagically.

Figure 5-3. Fully configured Docker linking using the Ambassador
pattern

If you want to know how to actually implement the
ambassador pattern in Docker, I’ll again refer you to
Adrian Mouat’s awesome book Using Docker. In fact, in
Figure 5-3, I’m using his amouat/ambassador Docker
image.

Docker Swarm
Beyond the static linking of containers, Docker has a native cluster‐
ing tool called Docker Swarm. Docker Swarm builds upon the
Docker API3 and works as follows: there’s one Swarm manager,
responsible for the scheduling and one each host an agent runs,
which takes care of the local resource management (Figure 5-4).

The interesting thing about Swarm is that the scheduler is plug-able,
so you can, for example, use Apache Mesos rather than one of the
included schedulers. At the time of writing this book, Swarm turned
1.0 and subsequently it was awarded General Availability status; new
features such as high availability are being worked on an ongoing
basis.

Vanilla Docker and Docker Swarm | 37

http://bit.ly/using-docker
https://hub.docker.com/r/amouat/ambassador/
https://docs.docker.com/swarm/
http://bit.ly/1SAlyz0
http://bit.ly/1SAlyz0
http://bit.ly/1JuBErX
http://bit.ly/1mCCitM
http://bit.ly/1mCCitM
http://bit.ly/1n4Ev11

Figure 5-4. Docker Swarm architecture, based on Swarm - A Docker
Clustering System presentation

Networking
We discussed Docker single-host and multihost networking earlier
in this book, so I’ll simply point you to Chapters 2 and 3 to read up
on it.

Service Discovery
Docker Swarm supports different backends: etcd, Consul, and Zoo‐
keeper. You can also use a static file to capture your cluster state with
Swarm and only recently a DNS-based service discovery tool for
Swarm, called wagl, has been introduced.

If you want to dive deeper into Docker Swarm, check out Rajdeep
Dua’s “Docker Swarm” slide deck.

Kubernetes
Kubernetes (see Figure 5-5) is an opinionated open source frame‐
work for elastically managing containerized applications. In a nut‐
shell, it captures Google’s lessons learned from running container‐
ized workloads for more than 10 years, which we will briefly discuss
here. Further, you almost always have the option to swap out the
default implementations with some open source or closed source
alternative, be it DNS or monitoring.

38 | Chapter 5: Containers and Orchestration

http://bit.ly/1n4EwSk
http://bit.ly/1n4EwSk
https://docs.docker.com/swarm/discovery/
http://bit.ly/1TEWTIb
http://ahmetalpbalkan.github.io/wagl/
http://bit.ly/1SAlIqf
http://kubernetes.io/v1.0/

Figure 5-5. An overview of the Kubernetes architecture

This discussion assumes you’re somewhat familiar with Kubernetes
and its terminology. Should you not be familiar with Kubernetes, I
suggest checking out Kelsey Hightower’s wonderful book Kubernetes
Up and Running.

The unit of scheduling in Kubernetes is a pod. Essentially, this is a
tightly coupled set of containers that is always collocated. The num‐
ber of running instances of a pod (called replicas) can be declara‐
tively stated and enforced through Replication Controllers. The logi‐
cal organization of pods and services happens through labels.

Per Kubernetes node, an agent called Kubelet runs, which is respon‐
sible for controlling the Docker daemon, informing the Master
about the node status and setting up node resources. The Master
exposes an API (for an example web UI, see Figure 5-6), collects and
stores the current state of the cluster in etcd, and schedules pods
onto nodes.

Kubernetes | 39

http://oreil.ly/1VJAlqO
http://oreil.ly/1VJAlqO

4 See pause.go for details; basically blocks until it receives a SIGTERM.

Figure 5-6. The Kubernetes Web UI

Networking
In Kubernetes, each pod has a routable IP, allowing pods to commu‐
nicate across cluster nodes without NAT. Containers in a pod share
a port namespace and have the same notion of localhost, so there’s
no need for port brokering. These are fundamental requirements of
Kubernetes, which are satisfied by using a network overlay.

Within a pod there exists a so-called infrastructure container, which
is the first container that the Kubelet instantiates and it acquires the
pod’s IP and sets up the network namespace. All the other contain‐
ers in the pod then join the infra container’s network and IPC name‐
space. The infra container has network bridge mode enabled (see
“Bridge Mode Networking” on page 9) and all the other containers
in the pod share its namespace via container mode (covered in
“Container Mode Networking” on page 11). The initial process that
runs in the infra container does effectively nothing,4 as its sole pur‐
pose is to act as the home for the namespaces. Recent work around
port forwarding can result in additional processes being launched in
the infra container. If the infrastructure container dies, the Kubelet
kills all the containers in the pod and then starts the process over.

Further, Kubernetes Namespaces enable all sorts of control points;
one example in the networking space is Project Calico’s usage of
namespaces to enforce a coarse-grained network policy.

Service Discovery
In the Kubernetes world, there’s a canonical abstraction for service
discovery and this is (unsurprisingly) the service primitive. While

40 | Chapter 5: Containers and Orchestration

http://bit.ly/1SAlNtU
http://bit.ly/1PO2pJa
http://bit.ly/1n4EB8J
http://bit.ly/1mGH6gX

pods may come and go as they fail (or the host they’re running on
fails), services are long-lived things: they deliver cluster-wide service
discovery as well as some level of load balancing. They provide a sta‐
ble IP address and a persistent name, compensating for the short-
livedness of all equally labelled pods. Effectively, Kubernetes sup‐
ports two discovery mechanisms: through environment variables
(limited to a certain node) and DNS (cluster-wide).

Apache Mesos
Apache Mesos (Figure 5-7) is a general-purpose cluster resource
manager that abstracts the resources of a cluster (CPU, RAM, etc.)
in a way that the cluster appears like one giant computer to you, as a
developer.

In a sense, Mesos acts like the kernel of a distributed operating sys‐
tem. It is hence never used standalone, but always together with so-
called frameworks, such as Marathon (for long-running stuff like a
web server), Chronos (for batch jobs) or Big Data frameworks like
Apache Spark or Apache Cassandra.

Figure 5-7. Apache Mesos architecture at a glance

Apache Mesos | 41

http://bit.ly/1n4EF8B
http://mesos.apache.org

5 It should be noted that concerning stateful services such as databases (MySQL, Cassan‐
dra, etc.) or distributed filesystems (HDFS, Quobyte, etc.), we’re still in the early days in
terms of support, as most of the persistence primitives landed only very recently in
Mesos; see Felix Hupfeld and Jörg Schad’s presentation “Apache Mesos Storage Now
and Future” for the current (end 2015) status.

Mesos supports both containerized workloads, that is, running
Docker containers as well as plain executables (including bash
scripts, Python scripts, JVM-based apps, or simply a good old Linux
binary format) for both stateless and stateful services.5

In the following, I’m assuming you’re familiar with Mesos and its
terminology. If you’re new to Mesos, I suggest checking out David
Greenberg’s wonderful book Building Applications on Mesos, a gentle
introduction into this topic, particularly useful for distributed appli‐
cation developers.

In Figure 5-8, you can see the Marathon UI in action, allowing you
to launch and manage long-running services and applications on
top of Apache Mesos.

Figure 5-8. The Apache Mesos framework Marathon, launching an
NGINX Docker image

42 | Chapter 5: Containers and Orchestration

http://bit.ly/1S4zF0k
http://bit.ly/1S4zF0k
http://bit.ly/building-applications-on-mesos

Networking
The networking characteristics and capabilities mainly depend on
the Mesos containerizer used:

• For the Mesos containerizer, there are a few prerequisites such as
a Linux Kernel version > 3.16, and libnl installed. You can then
build a Mesos Agent with the network isolator support enabled.
At launch, you would use something like the following:

mesos-slave --containerizer=mesos
--isolation=network/port_mapping
--resources=ports:[31000-32000];ephemeral_ports:
[33000-35000]

This would configure the Mesos Agent to use non-ephemeral
ports in the range from 31,000 to 32,000 and ephemeral ports in
the range from 33,000 to 35,000. All containers share the host’s
IP and the port ranges are then spread over the containers (with
a 1:1 mapping between destination port and container ID).
With the network isolator, you also can define performance lim‐
itations such as bandwidth and it enables you to perform per-
container monitoring of the network traffic. See the MesosCon
2015 Seattle talk “Per Container Network Monitoring and Isola‐
tion in Mesos” for more details on this topic.

• For the Docker containerizer, see Chapter 2.

Note that Mesos supports IP-per-container since version 0.23 and if
you want to learn more about the current state of networking as well
as upcoming developments, check out this MesosCon 2015 Seattle
talk on Mesos Networking.

Service Discovery
While Mesos is not opinionated about service discovery, there is a
Mesos-specific solution, which in praxis is often used: Mesos-DNS
(see “Pure-Play DNS-Based Solutions” on page 27). There are, how‐
ever, a multitude of emerging solutions such as traefik (see “Wrap‐
ping It Up” on page 30) that are integrated with Mesos and gaining
traction. If you’re interested in more details about service discovery
with Mesos, our open docs site has a dedicated section on this topic.

Apache Mesos | 43

http://bit.ly/1JXVGWN
http://bit.ly/1PKNPAf
http://bit.ly/1PKNPAf
http://bit.ly/1OblEI3
http://bit.ly/1PO2NYh
http://bit.ly/1PfnfN2
http://bit.ly/1PfnfN2

Because Mesos-DNS is currently the recommended
default service discovery mechanism with Mesos, it’s
important to pay attention to how Mesos-DNS repre‐
sents the tasks. For example, the running task you see
in Figure 5-8 would have the (logical) service name
webserver.marathon.mesos.

Hashicorp Nomad
Nomad is a cluster scheduler by HashiCorp, the makers of Vagrant.
It was introduced in September 2015 and primarily aims at simplic‐
ity. The main idea is that Nomad is easy to install and use. Its sched‐
uler design is reportedly inspired by Google’s Omega, borrowing
concepts such as having a global state of the cluster as well as
employing an optimistic, concurrent scheduler.

Nomad has an agent-based architecture with a single binary that can
take on different roles, supporting rolling upgrade as well as drain‐
ing nodes (for re-balancing). Nomad makes use of both a consensus
protocol (strongly consistent) for all state replication and scheduling
and a gossip protocol used to manage the addresses of servers for
automatic clustering and multiregion federation. In Figure 5-9, you
can see a Nomad agent starting up.

Figure 5-9. A Nomad agent, starting up in dev mode

Jobs in Nomad are defined in a HashiCorp-proprietary format
called HCL or in JSON, and Nomad offers both a command-line
interface as well as an HTTP API to interact with the server process.

44 | Chapter 5: Containers and Orchestration

http://bit.ly/22L9T4Q
http://bit.ly/22L9T4Q
https://www.nomadproject.io
http://bit.ly/1Z66gC1
http://bit.ly/1n4ELgj
http://bit.ly/1n4ELgj
http://bit.ly/1TEXlpy
http://bit.ly/1ONmjoO
https://github.com/hashicorp/hcl

In the following, I’m assuming you’re familiar with Nomad and its
terminology (otherwise I suppose you wouldn’t be reading this sec‐
tion). Should you not be familiar with Nomad, I suggest you watch
“Nomad: A Distributed, Optimistically Concurrent Schedule:
Armon Dadgar, HashiCorp” (a very nice introduction to Nomad by
HashiCorp’s CTO, Armon Dadgar) and also read the docs.

Networking
Nomad comes with a couple of so-called task drivers, from general-
purpose exec to Java to qemu and Docker. We will focus on the lat‐
ter one in the following discussion.

Nomad requires, at the time of this writing, Docker in the version
1.8.2. and uses port binding to expose services running in containers
using the port space on the host’s interface. It provides automatic
and manual mapping schemes for Docker, binding both TCP and
UDP protocols to ports used for Docker containers.

For more details on networking options, such as mapping ports and
using labels, I’ll point out the excellent docs page.

Service Discovery
With v0.2, Nomad introduced a Consul-based (see “Consul” on page
26) service discovery mechanism; see the respective docs section. It
includes health checks and assumes that tasks running inside
Nomad also need to be able to connect to the Consul agent, which
can, in the context of containers using bridge mode networking,
pose a challenge.

Which One Should I Use?
The following is of course only a suggestion from where I stand. It is
based on my experience and naturally I’m biased toward stuff I’ve
been using. Your mileage may vary, and there may be other (some‐
times political?) reasons why you opt for a certain technology.

From a pure scale perspective, your options look like this:

Which One Should I Use? | 45

http://bit.ly/1OAIn46
http://bit.ly/1OAIn46
https://www.nomadproject.io/docs/
http://bit.ly/1n4ENEW
http://bit.ly/1RaMIgx
http://bit.ly/1JXVVB5
http://bit.ly/1SAmvrc

Tool Up to 10 nodes 10 to 100 nodes Up to 1,000 nodes 1,000s of nodes

Docker Swarm ++ + ? ?

Kubernetes ++ ++ + ?

Apache Mesos + ++ ++ ++

Nomad ++ ? ? ?

For a handful of nodes, it essentially doesn’t matter: choose any of
the four solutions, depending on your preferences or previous expe‐
rience. Do remember, however, that managing containers at scale is
hard:

• Docker Swarm reportedly scales to 1,000 nodes, see this Hack‐
erNews thread and this Docker blog post.

• Kubernetes 1.0 is known to be scale-tested to 100s of nodes and
work is ongoing to achieve the same scalability as Apache
Mesos.

• Apache Mesos has been simulated to be able to manage up to
50,000 nodes.

• No scale-out information concerning Nomad exists at the time
of this writing.

From a workload perspective, your options look like this:

Tool Non-
containerized

Containerized Batch Long-
running

Stateless Stateful

Docker
Swarm

– ++ + ++ ++ +

Kubernetes – ++ + ++ ++ +

Apache
Mesos

++ ++ ++ ++ ++ +

Nomad ++ ++ ? ++ ++ ?

46 | Chapter 5: Containers and Orchestration

http://bit.ly/1IR4tz1
http://bit.ly/1SAmx2b
http://bit.ly/1SAmx2b
http://bit.ly/1OOJXet
http://bit.ly/1OOJXet
http://bit.ly/1MTOWJw
http://bit.ly/1SAmy6r
http://bit.ly/1SAmCmF
http://bit.ly/1SAmCmF
http://bit.ly/1O5ty8f
http://bit.ly/1O5ty8f

Non-containerized means you can run anything that you can also
launch from a Linux shell (e.g., bash or Python scripts, Java apps,
etc.), whereas containerized implies you need to generate Docker
images. Concerning stateful services, pretty much all of the solu‐
tions require some handholding, nowadays. If you want to learn
more about choosing an orchestration tool:

• See the blog post “Docker Clustering Tools Compared: Kuber‐
netes vs Docker Swarm”.

• Read an excellent article on O’Reilly Radar: “Swarm v. Fleet v.
Kubernetes v. Mesos”.

For the sake of completeness and because it’s an awesome project, I
will point out the spanking new kid on the block, Firmament.
Developed by folks who also contributed to Google’s Omega and
Borg, this new scheduler construct a flow network of tasks and
machines and runs a minimum-cost optimization over it. What is
particularly intriguing about Firmament is the fact that you can use
it not only standalone but also integrated with Kubernetes and
(upcoming) with Mesos.

A Day in the Life of a Container
When choosing a container orchestration solution, you should con‐
sider the entire life cycle of a container (Figure 5-10).

Figure 5-10. Docker container life cycle

The Docker container life cycle typically spans the following phases:

Which One Should I Use? | 47

http://bit.ly/1mGHX1i
http://bit.ly/1mGHX1i
http://oreil.ly/22LabZI
http://oreil.ly/22LabZI
http://www.firmament.io/
https://github.com/ms705/poseidon

6 Now, you may argue that this is not specific to the container orchestration domain but
a general OSS issue and you’d be right. Still, I believe it is important enough to mention
it, as many people are new to this area and can benefit from these insights.

Phase I: dev
The container image (capturing the essence of your service or
app) starts its life in a development environment, usually on a
developer’s laptop. You use feature requests and insights from
running the service or application in production as inputs.

Phase II: CI/CD
Then, the container goes through a pipeline of continuous inte‐
gration and continuous delivery, including unit testing, integra‐
tion testing, and smoke tests.

Phase III: QA/staging
Next, you might use a QA environment (a cluster either on
premises or in the cloud) and/or a staging phase.

Phase IV: prod
Finally, the container image is deployed into the production
environment. When dealing with Docker, you also need to have
a strategy in place for how to distribute the images. Don’t forget
to build in canaries as well as plan for rolling upgrades of the
core system (such as Apache Mesos), potential higher-level
components (like Marathon, in Mesos’ case) and your services
and apps.

In production, you discover bugs and may collect metrics that
can be used to improve the next iteration (back to Phase I).

Most of the systems discussed here (Swarm, Kubernetes, Mesos,
Nomad) offer instructions, protocols, and integration points to
cover all phases. This, however, shouldn’t be an excuse for not trying
out the system end to end yourself before you commit to any one of
these systems.

Community Matters
Another important aspect you will want to consider when selecting
an orchestration system is that of the community behind and
around it.6 Here a few indicators and metrics you can use:

48 | Chapter 5: Containers and Orchestration

http://bit.ly/1O5tEww
http://bit.ly/1O5tEww
http://bit.ly/1Z9jXp5
http://bit.ly/1IR4wL9
http://bit.ly/1kMzUyF

• Is the governance backed by a formal entity or process, such as
the Apache Software Foundation or the Linux Foundation?

• How active is the mailing list, the IRC channel, the bug/issue
tracker, Git repo (number of patches or pull requests), and other
community initiatives? Take a holistic view, but make sure that
you actually pay attention to the activities there. Healthy (and
hopefully growing) communities have high participation in at
least one if not more of these areas.

• Is the orchestration tool (implicitly or not) de facto controlled
by a single entity? For example, in the case of Nomad, it is clear
and accepted that HashiCorp alone is in full control. How about
Kubernetes? Mesos?

• Have you got several (independent) providers and support
channels? For example, you can run Kubernetes or Mesos in
many different environments, getting help from many (com‐
mercial or not) organizations and individuals.

With this, we’ve reached the end of the book. You’ve learned about
the networking aspects of containers, as well as about service dis‐
covery options. With the content of this chapter, you’re now in a
position to select and implement your containerized application.

If you want to dive deeper into the topics discussed in this book,
check out Appendix A, which provides an organized list of
resources.

Which One Should I Use? | 49

APPENDIX A

References

What follows is a collection of links that either contain background
info on topics covered in this book or contain advanced material,
such as deep-dives or tear-downs.

Networking References
• Docker Networking
• Concerning Containers’ Connections: on Docker Networking
• Unifying Docker Container and VM Networking
• Exploring LXC Networking
• Letting Go: Docker Networking and Knowing When Enough Is

Enough
• Networking in Containers and Container Clusters

Service Discovery References
• Service Discovery on p24e.io
• Understanding Modern Service Discovery with Docker
• Service Discovery in Docker Environments
• Service Discovery, Mesosphere
• Docker Service Discovery Using Etcd and HAProxy
• Service discovery with Docker: Part 1 and Part 2

51

http://bit.ly/1JXWf2R
http://bit.ly/1JXWfjl
http://bit.ly/1JuCDs5
http://bit.ly/1kMA2hE
http://bit.ly/1TEXFVr
http://bit.ly/1TEXFVr
http://bit.ly/1n4F4rm
http://bit.ly/22LaqDX
http://bit.ly/1n4E4nm
http://bit.ly/1SAmZ0u
http://bit.ly/1TEXN7i
http://bit.ly/1mGIAb3
http://bit.ly/1RiCNpv
http://bit.ly/1PKOcLm

• Service Discovery with Docker: Docker Links and Beyond

Related and Advanced References
• What Makes a Container Cluster?
• Fail at Scale—Reliability in the Face of Rapid Change
• Bistro: Scheduling Data-Parallel Jobs Against Live Production

Systems
• Orchestrating Docker Containers with Slack
• The History of Containers
• The Comparison and Context of Unikernels and Containers
• Anatomy of a Container: Namespaces, cgroups & Some Filesys‐

tem Magic - LinuxCon

52 | Appendix A: References

http://bit.ly/1PO415P
http://bit.ly/1ObcJq2
http://bit.ly/1JXWqLq
http://bit.ly/1mGIJLC
http://bit.ly/1mGIJLC
http://bit.ly/1PKOfXx
http://red.ht/1mCDpJU
http://bit.ly/1mGIO1W
http://bit.ly/1SAn4RU
http://bit.ly/1SAn4RU

About the Author
Michael Hausenblas is a developer and cloud advocate at Meso‐
sphere. He tries to help devops and appops to build and operate dis‐
tributed applications. His background is in large-scale data integra‐
tion, the Hadoop stack, NoSQL datastores, REST, and IoT protocols
and formats. He’s experienced in standardization at W3C and IETF
and contributes to open source software at the Apache Software
Foundation (Mesos, Myriad, Drill, Spark) and when not hanging out
at conferences, user groups, trade shows, or with customers on site,
he enjoys reading and listening to a good mix of Guns N’ Roses and
Franz Schubert.

	Docker Networking and Service Discovery
	2 Feb 2016 Michael Hausenblas, O'Reilly Media Inc
	Cover
	Copyright
	Table of Contents
	Preface
	The Book
	You
	Me
	Acknowledgments

	Chapter 1. Motivation
	Go Cattle!
	Docker Networking and Service Discovery Stack
	Do I Need to Go “All In”?

	Chapter 2. Docker Networking 101
	Bridge Mode Networking
	Host Mode Networking
	Container Mode Networking
	No Networking
	Wrapping It Up

	Chapter 3. Docker Multihost Networking
	Overlay
	Flannel
	Weave
	Project Calico
	Open vSwitch
	Pipework
	OpenVPN
	Future Docker Networking
	Wrapping It Up

	Chapter 4. Containers and Service Discovery
	The Challenge
	Technologies
	ZooKeeper
	etcd
	Consul
	Pure-Play DNS-Based Solutions
	Airbnb’s SmartStack and Netflix’s Eureka

	Load Balancing
	Wrapping It Up

	Chapter 5. Containers and Orchestration
	What Does a Scheduler Actually Do?
	Vanilla Docker and Docker Swarm
	Ambassadors
	Docker Swarm
	Networking
	Service Discovery

	Kubernetes
	Networking
	Service Discovery

	Apache Mesos
	Networking
	Service Discovery

	Hashicorp Nomad
	Networking
	Service Discovery

	Which One Should I Use?
	A Day in the Life of a Container
	Community Matters

	Appendix A. References
	Networking References
	Service Discovery References
	Related and Advanced References

	
	O'Reilly Title Page

