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Summary

THE PROMISE AND PERILS OF MASSIVE DATA

Experiments, observations, and numerical simulations in many areas 
of science and business are currently generating terabytes of data, and in 
some cases are on the verge of generating petabytes and beyond. Analyses 
of the information contained in these data sets have already led to major 
breakthroughs in fields ranging from genomics to astronomy and high-
energy physics and to the development of new information-based industries. 
Traditional methods of analysis have been based largely on the assumption 
that analysts can work with data within the confines of their own comput-
ing environment, but the growth of “big data” is changing that paradigm, 
especially in cases in which massive amounts of data are distributed across 
locations. 

While the scientific community and the defense enterprise have long 
been leaders in generating and using large data sets, the emergence of 
e-commerce and massive search engines has led other sectors to confront 
the challenges of massive data. For example, Google, Yahoo!, Microsoft, 
and other Internet-based companies have data that is measured in  exa bytes 
(1018 bytes). Social media (e.g., Facebook, YouTube, Twitter) have exploded 
beyond anyone’s wildest imagination, and today some of these companies 
have hundreds of millions of users. Data mining of these massive data sets 
is transforming the way we think about crisis response, marketing, enter-
tainment, cybersecurity, and national intelligence. It is also transforming 
how we think about information storage and retrieval. Collections of docu-
ments, images, videos, and networks are being thought of not merely as bit 
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strings to be stored, indexed, and retrieved, but also as potential sources of 
dis covery and knowledge, requiring sophisticated analysis techniques that 
go far  beyond classical indexing and keyword counting, aiming to find rela-
tional and semantic interpretations of the phenomena underlying the data. 

A number of challenges in both data management and data analysis 
require new approaches to support the big data era. These challenges span 
generation of the data, preparation for analysis, and policy-related chal-
lenges in its sharing and use, including the following:

•	 Dealing with highly distributed data sources,
•	 Tracking data provenance, from data generation through data 

preparation,
•	 Validating data,
•	 Coping with sampling biases and heterogeneity,
•	 Working with different data formats and structures,
•	 Developing algorithms that exploit parallel and distributed 

architectures,
•	 Ensuring data integrity,
•	 Ensuring data security,
•	 Enabling data discovery and integration,
•	 Enabling data sharing,
•	 Developing methods for visualizing massive data,
•	 Developing scalable and incremental algorithms, and
•	 Coping with the need for real-time analysis and decision-making.

To the extent that massive data can be exploited effectively, the hope is 
that science will extend its reach, and technology will become more adap-
tive, personalized, and robust. It is appealing to imagine, for example, a 
health-care system in which increasingly detailed data are maintained for 
each individual—including genomic, cellular, and environmental data—and 
in which such data can be combined with data from other individuals and 
with results from fundamental biological and medical research so that opti-
mized treatments can be designed for each individual. One can also envision 
numerous business opportunities that combine knowledge of preferences 
and needs at the level of single individuals with fine-grained descriptions of 
goods, skills, and services to create new markets. 

It is natural to be optimistic about the prospects. Several decades of 
research and development in databases and search engines have yielded a 
wealth of relevant experience in the design of scalable data-centric tech-
nology. In particular, these fields have fueled the advent of cloud comput-
ing and other parallel and distributed platforms that seem well suited 
to massive data analysis. Moreover, innovations in the fields of machine 
learning, data mining, statistics, and the theory of algorithms have yielded 
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data-analysis methods that can be applied to ever-larger data sets. How-
ever, such optimism must be tempered by an understanding of the major 
difficulties that arise in attempting to achieve the envisioned goals. In part, 
these difficulties are those familiar from implementations of large-scale 
databases—finding and mitigating bottlenecks, achieving simplicity and 
generality of the programming interface, propagating metadata, designing 
a system that is robust to hardware failure, and exploiting parallel and 
distributed  hardware—all at an unprecedented scale. But the challenges 
for massive data go beyond the storage, indexing, and querying that have 
been the province of classical database systems (and classical search en-
gines) and, instead, hinge on the ambitious goal of inference. Inference 
is the problem of turning data into knowledge, where knowledge often is 
expressed in terms of entities that are not present in the data per se but 
are present in models that one uses to interpret the data. Statistical rigor is 
necessary to justify the inferential leap from data to knowledge, and many 
difficulties arise in attempting to bring statistical principles to bear on 
massive data. Overlooking this foundation may yield results that are not 
useful at best, or harmful at worst. In any discussion of massive data and 
inference, it is essential to be aware that it is quite possible to turn data into 
something resembling knowledge when actually it is not. Moreover, it can 
be quite difficult to know that this has happened.

Indeed, many issues impinge on the quality of inference. A major one 
is that of “sampling bias.” Data may have been collected according to a 
certain criterion (for example, in a way that favors “larger” items over 
“smaller” items), but the inferences and decisions made may refer to a dif-
ferent sampling criterion. This issue seems likely to be particularly severe 
in many massive data sets, which often consist of many subcollections of 
data, each collected according to a particular choice of sampling criterion 
and with little control over the overall composition. Another major issue is 
“provenance.” Many systems involve layers of inference, where “data” are 
not the original observations but are the products of an inferential proce-
dure of some kind. This often occurs, for example, when there are missing 
entries in the original data. In a large system involving interconnected infer-
ences, it can be difficult to avoid circularity, which can introduce additional 
biases and can amplify noise. Finally, there is the major issue of controlling 
error rates when many hypotheses are being considered. Indeed, massive 
data sets generally involve growth not merely in the number of individuals 
represented (the “rows” of the database) but also in the number of descrip-
tors of those individuals (the “columns” of the database). Moreover, we 
are often interested in the predictive ability associated with combinations 
of the descriptors; this can lead to exponential growth in the number of 
hypotheses considered, with severe consequences for error rates. That is, a 
naive appeal to a “law of large numbers” for massive data is unlikely to be 
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justified; if anything, the perils associated with statistical fluctuations may 
actually increase as data sets grow in size.

While the field of statistics has developed tools that can address such 
issues in principle, in the context of massive data care must be taken with 
all such tools for two main reasons: (1) all statistical tools are based on as-
sumptions about characteristics of the data set and the way it was sampled, 
and those assumptions may be violated in the process of assembling massive 
data sets; and (2) tools for assessing errors of procedures, and for diagnos-
tics, are themselves computational procedures that may be computationally 
infeasible as data sets move into the massive scale.

In spite of the cautions raised above, the Committee on the Analysis of 
Massive Data believes that many of the challenges involved in performing 
inference on massive data can be confronted usefully. These challenges must 
be addressed through a major, sustained research effort that is based solidly 
on both inferential and computational principles. This research effort must 
develop scalable computational infrastructures that embody inferential 
principles that themselves are based on considerations of scale. The research 
must take account of real-time decision cycles and the management of 
trade-offs between speed and accuracy. And new tools are needed to bring 
humans into the data-analysis loop at all stages, recognizing that knowledge 
is often subjective and context-dependent and that some aspects of human 
intelligence will not be replaced anytime soon by machines.

The current report is the result of a study that addressed the following 
charge:

•	 Assess the current state of data analysis for mining of massive sets 
and streams of data,

•	 Identify gaps in current practice and theory, and 
•	 Propose a research agenda to fill those gaps.

Thus, this report examines the frontiers of research that is enabling the 
analysis of massive data. The major research areas covered are as follows:

•	 Data representation, including characterizations of the raw data 
and transformations that are often applied to data, particularly 
transformations that attempt to reduce the representational com-
plexity of the data;

•	 Computational complexity issues and how the understanding of 
such issues supports characterization of the computational re-
sources needed and of trade-offs among resources;

•	 Statistical model-building in the massive data setting, including 
data cleansing and validation;
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•	 Sampling, both as part of the data-gathering process but also as a 
key methodology for data reduction; and 

•	 Methods for including humans in the data-analysis loop through 
means such as crowdsourcing, where humans are used as a source 
of training data for learning algorithms, and visualization, which 
not only helps humans understand the output of an analysis but 
also provides human input into model revision.

CONCLUSIONS

The research and development necessary for the analysis of massive 
data goes well beyond the province of a single discipline, and one of the 
main conclusions of this report is the need for a thoroughgoing interdis-
ciplinarity in approaching problems of massive data. Computer scientists 
involved in building big-data systems must develop a deeper awareness of 
inferential issues, while statisticians must concern themselves with scalabil-
ity, algorithmic issues, and real-time decision-making. Mathematicians also 
have important roles to play, because areas such as applied linear algebra 
and optimization theory (already contributing to large-scale data analysis) 
are likely to continue to grow in importance. Also, as just mentioned, the 
role of human judgment in massive data analysis is essential, and contribu-
tions are needed from social scientists and psychologists as well as experts 
in visualization. Finally, domain scientists and users of technology have 
an essential role to play in the design of any system for data analysis, and 
particularly so in the realm of massive data, because of the explosion of 
design decisions and possible directions that analyses can follow. 

The current report focuses on the technical issues—computational and 
inferential—that surround massive data, consciously setting aside major 
issues in areas such as public policy, law, and ethics that are beyond the 
current scope.

The committee reached the following conclusions:

•	 Recent years have seen rapid growth in parallel and distributed 
computing systems, developed in large part to serve as the back-
bone of the modern Internet-based information ecosystem. These 
systems have fueled search engines, electronic commerce, social 
networks, and online entertainment, and they provide the platform 
on which massive data analysis issues have come to the fore. Part of 
the challenge going forward is the problem of scaling these systems 
and algorithms to ever-larger collections of data. It is important to 
acknowledge, however, that the goals of massive data analysis go 
beyond the computational and representational issues that have 
been province of classical search engines and database processing 
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to tackling the challenges of statistical inference, where the goal 
is to turn data into knowledge and to support effective decision-
making. Assertions of knowledge require control over errors, and 
a major part of the challenge of massive data analysis is that of de-
veloping statistically well-founded procedures that provide control 
over errors in the setting of massive data, recognizing that these 
procedures are themselves computational procedures that consume 
resources.

•	 There are many sources of potential error in massive data analysis, 
many of which are due to the interest in “long tails” that often 
accompany the collection of massive data. Events in the “long 
tail” may be vanishingly rare, even in a massive data set. For ex-
ample, in consumer-facing information technology, where the goal 
is increasingly that of providing fine-grained, personalized services, 
there may be little data available for many individuals, even in very 
large data sets. In science, the goal is often that of finding unusual 
or rare phenomena, and evidence for such phenomena may be 
weak, particularly when one considers the increase in error rates 
associated with searching over large classes of hypotheses. Other 
sources of error that are prevalent in massive data include the 
high-dimensional nature of many data sets, issues of heterogeneity, 
biases arising from uncontrolled sampling patterns, and unknown 
provenance of items in a database. In general, data analysis is based 
on assumptions, and the assumptions underlying many classical 
data analysis methods are likely to be broken in massive data sets.

•	 Massive data analysis is not the province of any one field, but 
is rather a thoroughly interdisciplinary enterprise. Solutions to 
massive data problems will require an intimate blending of ideas 
from computer science and statistics, with essential contributions 
also needed from applied and pure mathematics, from optimiza-
tion theory, and from various engineering areas, notably signal 
processing and information theory. Domain scientists and users 
of technology also need to be engaged throughout the process of 
designing systems for massive data analysis. There are also many 
issues surrounding massive data (most notably privacy issues) that 
will require input from legal scholars, economists, and other social 
scientists, although these aspects are not covered in the current re-
port. In general, by bringing interdisciplinary perspectives to bear 
on massive data analysis, it will be possible to discuss trade-offs 
that arise when one jointly considers the computational, statisti-
cal, scientific, and human-centric constraints that frame a problem. 
When considering parts of the problem in isolation, one may end 
up trying to solve a problem that is more general than is required, 
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and there may be no feasible solution to that broader problem; a 
suitable cross-disciplinary outlook can point researchers toward an 
essential refocusing. For example, absent appropriate insight, one 
might be led to analyzing worst-case algorithmic behavior, which 
can be very difficult or misleading, whereas a look at the totality 
of a problem could reveal that average-case algorithmic behav-
ior is quite appropriate from a statistical perspective. Similarly, 
knowledge of typical query generation might allow one to confine 
an analysis to a relatively simple subset of all possible queries that 
would have to be considered in a more general case. And the dif-
ficulty of parallel programming in the most general settings may be 
sidestepped by focusing on useful classes of statistical algorithms 
that can be implemented with a simplified set of parallel program-
ming motifs; moreover, these motifs may suggest natural patterns 
of storage and access of data on distributed hardware platforms.

•	 While there are many sources of data that are currently fueling 
the rapid growth in data volume, a few forms of data create par-
ticularly interesting challenges. First, much current data involves 
human language and speech, and increasingly the goal with such 
data is to extract aspects of the semantic meaning underlying the 
data. Examples include sentiment analysis, topic models of docu-
ments, relational modeling, and the full-blown semantic analyses 
required by question-answering systems. Second, video and image 
data are increasingly prevalent, creating a range of challenges in 
large-scale compression, image processing, computational vision, 
and semantic analysis. Third, data are increasingly labeled with 
geo-spatial and temporal tags, creating challenges in maintaining 
coherence across spatial scales and time. Fourth, many data sets 
involve networks and graphs, with inferential questions hinging 
on semantically rich notions such as “centrality” and “influence.” 
The deeper analyses required by data sources such as these involve 
difficult and unsolved problems in artificial intelligence and the 
mathematical sciences that go beyond near-term issues of scaling 
existing algorithms. The committee notes, however, that massive 
data itself can provide new leverage on such problems, with ma-
chine translation of natural language a frequently cited example.

•	 Massive data analysis creates new challenges at the interface be-
tween humans and computers. As just alluded to, many data sets 
require semantic understanding that is currently beyond the reach 
of algorithmic approaches and for which human input is needed. 
This input may be obtained from the data analyst, whose judgment 
is needed throughout the data analysis process, from the framing 
of hypotheses to the management of trade-offs (e.g., errors versus 
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time) to the selection of questions to pursue further. It may also 
be obtained from crowdsourcing, a potentially powerful source of 
inputs that must be used with care, given the many kinds of errors 
and biases that can arise. In either case, there are many challenges 
that need to be faced in the design of effective visualizations and 
interfaces and, more generally, in linking human judgment with 
data analysis algorithms.

•	 Many data sources operate in real time, producing data streams 
that can overwhelm data analysis pipelines. Moreover, there is 
often a desire to make decisions rapidly, perhaps also in real time. 
These temporal issues provide a particularly clear example of the 
need for further dialog between statistical and computational re-
searchers. Statistical research has rarely considered constraints due 
to real-time decision-making in the development of data analysis 
algorithms, and computational research has rarely considered the 
computational complexity of algorithms for managing statistical 
risk.

•	 There is a major need for the development of “middleware”—
software components that link high-level data analysis specifica-
tions with low-level distributed systems architectures. Much of the 
work on these software components can borrow from tools already 
developed in scientific computing instances, but the focus will 
need to change, with algorithmic solutions constrained by statisti-
cal needs. There is also a major need for software targeted to end 
users, such that relatively naive users can carry out massive data 
analysis without a full understanding of the underlying systems is-
sues and statistical issues. However, this is not to suggest that the 
end goal of massive data analysis software is to develop turnkey 
solutions. The exercise of effective human judgment will always be 
required in data analysis, and this judgment needs to be based on 
an understanding of statistics and computation. The development 
of massive data analysis systems needs to proceed in parallel with 
a major effort to educate students and the workforce in statistical 
thinking and computational thinking.

As part of the study that led to this report, the Committee on the 
Analysis of Massive Data developed a taxonomy of some of the major 
algorithmic problems arising in massive data analysis. It is hoped that that 
this proposed taxonomy might help organize the research landscape and 
also provide a point of departure for the design of the middleware called 
for above. This taxonomy identifies major tasks that have proved useful in 
data analysis, grouping them roughly according to mathematical structure 
and computational strategy. Given the vast scope of the problem of data 
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analysis and the lack of existing general-purpose computational systems 
for massive data analysis from which to generalize, there may certainly be 
other ways to cluster these computational tasks, and the committee intends 
this list only to initiate a discussion. The committee identified the following 
seven major tasks:

1.  Basic statistics,
2.  Generalized N-body problem,
3.  Graph-theoretic computations,
4.  Linear algebraic computations,
5.  Optimization,
6.  Integration, and
7.  Alignment problems.

For each of these computational classes, there are computational con-
straints that arise within any particular problem domain that help to deter-
mine the specialized algorithmic strategy to be employed. Most work in the 
past has focused on a setting that involves a single processor with the entire 
data set fitting in random access memory (RAM). Additional important set-
tings for which algorithms are needed include the following:

•	 The streaming setting, in which data arrive in quick succession, and 
only a subset can be stored;

•	 The disk-based setting, in which the data are too large to store in 
RAM but fit on one machine’s disk;

•	 The distributed setting, in which the data are distributed over mul-
tiple machines’ RAMs or disks; and

•	 The multi-threaded setting, in which the data lie on one machine 
having multiple processors that share RAM.

Training students to work in massive data analysis will require ex-
perience with massive data and with computational infrastructure that 
permits the real problems associated with massive data to be revealed. The 
availability of benchmarks, repositories (of data and software), and com-
putational infrastructure will be a necessity in training the next generation 
of “data scientists.” The same point, of course, can be made for academic 
research: significant new ideas will only emerge if academics are exposed 
to real-world massive data problems.

Finally, the committee emphasizes that massive data analysis is not 
one problem or one methodology. Data are often heterogeneous, and the 
best attack on a problem may involve finding sub-problems, where the best 
solution may be chosen for computational, inferential, or interpretational 
reasons. The discovery of such sub-problems might itself be an inferen-
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tial problem. On the other hand, data often provide partial views onto a 
problem, and the solution may involve fusing multiple data sources. These 
perspectives of segmentation versus fusion will not be in conflict often, but 
substantial thought and domain knowledge may be required to reveal the 
appropriate combination.

One might hope that general, standardized procedures might emerge 
that can be used as a default for any massive data set, in much the way that 
the Fast Fourier Transform is a default procedure in classical signal pro-
cessing. However, the committee is pessimistic that such procedures exist 
in general. That is not to say that useful general procedures and pipelines 
will not emerge; indeed, one of the goals of this report has been to suggest 
approaches for designing such procedures. But it is important to emphasize 
the need for flexibility and for tools that are sensitive to the overall goals of 
an analysis; massive data analysis cannot, in general, be reduced to turnkey 
procedures that consumers can use without thought. Rather, the design of 
a system for massive data analysis will require engineering skill and judg-
ment, and deployment of such a system will require modeling decisions, 
skill with approximations, attention to diagnostics, and robustness. As 
much as the committee expects to see the emergence of new software and 
hardware platforms geared to massive data analysis, it also expects to see 
the emergence of a new class of engineers whose skill is the management 
of such platforms in the context of the solution of real-world problems.
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Introduction

THE CHALLENGE

Although humans have gathered data since the beginning of recorded 
history—indeed, data gathered by ancestral humans provides much of the 
raw material for the reconstruction of human history—the rate of acquisi-
tion of data has surged in recent years, with no end in sight. Expectations 
have surged as well, with hopes for new scientific discoveries pinned on 
emerging massive collections of biological, physical, and social data, and 
with major areas of the economy focused on the commercial implications 
of massive data.

Although it is difficult to characterize all of the diverse reasons for the 
rapid growth in data, a few factors are worth noting. First, many areas 
of science are in possession of mature theories that explain a wide range 
of phenomena, such that further testing and elaboration of these theories 
requires probing extreme phenomena. These probes often generate very 
large data sets. An example is the world of particle physics, where massive 
data (e.g., petabytes per year for the Large Hadron Collider; 1 petabyte is 
1015 bytes) arises from the new accelerators designed to test aspects of the 
Standard Model of particle physics. Second, many areas of science and en-
gineering have become increasingly exploratory, with large data sets being 
gathered outside the context of any particular theory in the hope that new 
phenomena will emerge. Examples include the massive data arising from 
genome sequencing projects (which can accumulate terabytes (1012 bytes) 
of data for each project) as well as the massive data expected to arise from 
the Large Synoptic Survey Telescope, which will be measured in petabytes. 
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Rapid advances in cost-effective sensing mean that engineers can readily 
collect massive amounts of data about complex systems, such as those for 
communication networks, the electric grid, and transportation and finan-
cial systems, and use that data for management and control. Third, much 
human activity now takes place on the Internet, and this activity generates 
data that has substantial commercial and scientific value. In particular, 
many commercial enterprises are aiming to provide personalized services 
that adapt to individual behaviors and preferences as revealed by data as-
sociated with the individual. Fourth, connecting these other trends is the 
significant growth in the deployment of sensor networks that record bio-
logical, physical, and social phenomena at ever-increasing scale, and these 
sensor networks are increasingly interconnected. 

In general, the hope is that if massive data could be exploited effec-
tively, science would extend its reach, and technology would become more 
adaptive, personalized, and robust. It is appealing to imagine, for example, 
a health-care system in which increasingly detailed data are maintained for 
each individual—including genomic, cellular, and environmental data—and 
in which such data can be combined with data from other individuals and 
with results from fundamental biological and medical research, so that 
optimized treatments can be designed for each individual. One can also 
envision numerous microeconomic consequences of massive data analysis 
where preferences and needs at the level of single individuals are combined 
with fine-grained descriptions of goods, skills, and services to create new 
markets. In general, what is particularly notable about the recent rise in 
the prevalence of “big data” is not merely the size of modern data sets, but 
rather that their fine-grained nature permits inferences and decisions at the 
level of single individuals.

It is natural to be optimistic about the prospects. Several decades of 
research and development in databases and search engines have yielded a 
wealth of relevant experience in the design of scalable data-centric technol-
ogy. In particular, these fields have fueled the advent of cloud computing 
and other parallel and distributed platforms that seem well suited to massive 
data analysis. Moreover, innovations in the fields of machine learning, data 
mining, statistics, and the theory of algorithms have yielded data-analysis 
methods that can be applied to ever-larger data sets. When combined with 
arguments that simple algorithms can work better than more sophisticated 
algorithms on large-scale data (see, e.g., Halevy et al., 2009), it is natural 
to be bullish on big data.1

While not entirely unwarranted, such optimism overlooks a number 
of major difficulties that arise in attempting to achieve the goals that 

1  This report uses the terms “big data” and “massive data” interchangeably to refer to data 
at massive scale. 
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are envisioned in discussions of massive data. In part these difficulties 
are those familiar from implementations of large-scale databases—involv-
ing finding and mitigating bottlenecks, achieving simplicity and generality 
of the programming interface, propagating metadata, designing a system 
that is robust to hardware failure, and exploiting parallel and distributed 
hardware—all at an unprecedented scale. But the goals for massive data go 
beyond the storage, indexing, and querying that have been the province of 
classical database systems (and classical search engines), instead focusing 
on the ambitious goal of inference. Inference is the problem of turning data 
into knowledge, where knowledge often is expressed in terms of variables 
(e.g., a patient’s general state of health, or a shopper’s tendency to buy) that 
are not present in the data per se, but are present in models that one uses to 
interpret the data. Statistical principles are needed to justify the inferential 
leap from data to knowledge, and many difficulties arise in attempting to 
bring these principles to bear on massive data. Operating in the absence 
of these principles may yield results that are not useful at best or harmful 
at worst. In any discussion of massive data and inference, it is essential to 
be aware that it is quite possible to turn data into something resembling 
knowledge but which actually is not. Moreover, it can be quite difficult to 
know that this has happened.

Consider a database where the rows correspond to people and the 
columns correspond to “features” that are used to describe people. If the 
database contains data on only a thousand people, it may suffice to mea-
sure only a few dozen features (e.g., age, gender, years of education, city of 
residence) to make the kinds of distinctions that may be needed to support 
assertions of “knowledge.” If the database contains data on several billion 
people, however, we are likely to have heightened expectations for the data, 
and we will want to measure many more features (e.g., latest magazine 
read, culinary preferences, genomic markers, travel patterns) to support the 
wider range of inferences that we wish to make on the basis of the data. We 
might roughly imagine the number of features scaling linearly in the number 
of individuals. Now, the knowledge we wish to obtain from such data is 
often expressed in terms of combinations of the features. For example, if 
one lives in Memphis, is a male, enjoys reading about gardening, and often 
travels to Japan, what is the probability that the person will click on an ad 
about life insurance? The problem is that there are exponential numbers of 
such combinations of features and, in any given data set, a vast number of 
these combinations will appear to be highly predictive of any given outcome 
by chance alone.

As this scenario suggests, a naive appeal to a “law of large numbers” 
for massive data is unlikely to be justified. If anything, we should expect the 
perils associated with statistical fluctuations to increase as data sets grow 
in size. Of course, if we do not ask new questions as the data grow in size, 
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but are content to more precisely answer old questions, then statistical error 
rates may not grow as the data scale. But that is not the perspective that 
underlies the current interest in massive data.

The field of statistics aims to provide a mathematical understanding of 
inference, quantifying the degree of support that data offer for assertions 
of knowledge as well as providing a basis for evaluating actions that are 
proposed on the basis of these assertions. The field has developed tools 
not only for computing estimates and evaluating hypotheses, but also for 
assessing the error rates of such procedures. One example of such a tool 
is “cross-validation,” whereby one holds out a certain fraction of the data 
(the “held-out data”), runs the estimation procedure on the rest of the data 
(the “training data”), and tests on the held-out data. This accords well with 
the intuitive notion that an assertion can be viewed as “knowledge” if it 
applies not merely to the data at hand, but also to additional data. A dif-
ficulty, however, is that if one runs such a procedure many times on a fixed 
set of held-out data, for example, with many combinations of features, then 
many combinations will appear to be highly supported by both the training 
data and the held-out data, again by chance alone.

There are many additional issues that impinge on the quality of infer-
ence. A major issue is that of sampling bias. Data may have been collected 
according to a certain criterion (for example, in a way that favors “larger” 
items over “smaller” items), but the inferences and decisions we wish to 
make may refer to a different sampling criterion. This issue seems likely 
to be particularly severe in many massive data sets, which often consist of 
many subcollections of data, each collected according to a particular choice 
of sampling criterion and with little control over the overall composition. 
Another major issue is provenance. Many systems involve layers of infer-
ence, where “data” are not the original observations but are the products of 
an inferential procedure of some kind. This often occurs, for example, when 
there are missing entries in the original data. In a large system involving 
interconnected inferences, it can be difficult to avoid circularity. Circularity 
can introduce additional biases and amplify noise.

Many of these issues can be addressed in principle. For example, 
there are sophisticated statistical tools that can assess the errors in error-
assessment procedures. But in the context of massive data, care must be 
taken with all such tools, for two main reasons: 

1. These tools are all based on assumptions and they can fail when 
the assumptions are not met. Such assumptions include various as-
sertions regarding sampling, stationarity, independence, and so on. 
Unfortunately, massive data sets are often collected in ways that 
seem most likely to break these assumptions. 
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2. Tools for assessing errors of procedures and for diagnostics are 
themselves computational procedures that make demands on the 
computing infrastructure. These demands may be infeasible for 
massive data sets, even when the underlying procedure is feasible.

Having aimed to temper some of the optimism that is often found in 
contemporary discussions of massive data, the committee does not want to 
align itself with an unduly pessimistic stance. The committee believes that 
many of the issues involved in performing inference on massive data can be 
confronted usefully, giving rise to an engineering discipline that is based sol-
idly on both inferential and computational principles. But this will necessi-
tate a major, sustained research effort that will require due attention to both 
the opportunities and the perils of massive data. It is necessary to develop 
scalable computational infrastructures that embody inferential principles 
that themselves are based on considerations of scale. Researchers will need 
to worry about real-time decision cycles and the management of trade-offs 
between speed and accuracy. While inference is increasingly used to power 
“data products” that are generated by machines—advanced search engines, 
movie recommender systems, news story and advertisement selection, and 
so on—there is also a need to develop tools for bringing humans into the 
data-analysis loop at all stages, because knowledge is often subjective and 
context-dependent, and there are aspects of human intelligence that (for the 
foreseeable future) are beyond the capability of machines.

This effort goes well beyond the province of a single discipline, and 
one of the main conclusions of this report is the need for a thoroughgoing 
interdisciplinarity in approaching problems of massive data. The major 
roles that computer scientists and statisticians have to play have already 
been alluded to above, and the committee emphasizes that the computer 
scientists involved in building big data systems must develop a deeper 
awareness of inferential issues, while statisticians must concern themselves 
with scalability, algorithmic issues, and real-time decision-making. Math-
ematicians also have important roles to play, with areas such as applied 
linear algebra already contributing to large-scale data analysis and likely 
to continue to grow in importance. But while the focus in much applied 
mathematical work has historically been on the control of small numeri-
cal errors, in massive data analysis, small numerical errors are likely to be 
dominated by statistical fluctuations and biases, and new paradigms need 
to be considered. This report also highlights the transdisciplinary domain 
of optimization theory, which already plays a major role in modern data 
analysis, but which also needs further shaping so as to meet the particular 
context of massive data. Also, as mentioned above, the role of human judg-
ment in massive data analysis is essential, and contributions are needed 
from social scientists and psychologists as well as experts in visualization. 
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Finally, domain scientists and users of technology also have an essential 
role to play in the design of any system for data analysis, and particularly 
so in the realm of massive data, with the explosion of design decisions and 
possible directions that analyses can follow.

The focus in this report is on the technical issues—computational and 
inferential—that surround massive data. The committee recognizes that 
this focus is restrictive; there are also major issues to consider in areas 
such as public policy, law, and ethics. In particular, issues of privacy and 
the ownership of data are of major concern, and there are few established 
cultural or legal frameworks in place to deal with such issues. Privacy is 
especially important in the context of massive data because of the potential 
for finding associations across sets of data. Given this potential, should it 
be acceptable for a cell-phone company to make available tracking data for 
a large number of customers for academic research without restrictions or 
controls? Would it be acceptable for law-enforcement purposes? For map-
makers or the news media? What if the phone data were correlated with 
other information to give a picture of the owners’ patterns of activities? 

The companion to data privacy is data ownership. If Google were to 
go out of business, who owns all the stored email data? If Google’s email 
service were sold off as a separate business to an overseas entity, who owns 
that data, and what country’s laws apply? If InstaBook were to decide to 
sell all of the user-posted pictures in its system and also declare copyright 
ownership of them, is that acceptable, and do the people who posted the 
data have any recourse? If a government pays for plot maps of all properties 
in its jurisdiction, are these maps public or private? Can mapping compa-
nies use them for free? Can they be kept from taxpayers of the jurisdiction? 
Many transit agencies now track their buses in real time. Does the public 
own that data? Can services access it for free to show arrival times for 
future buses and other useful information?

Such thorny issues of privacy and ownership will need to be resolved 
as society continues to collect data on individuals and their activities. It is 
easy to see why such topics merit a full study of their own by a committee 
with a broad set of expertise.

While these issues will not be addressed in this report, the committee 
does hope to see them addressed in complementary studies. Two comments 
may help to connect this report to future reports that focus on privacy and 
other issues of public policy. First, the committee believes that it is impos-
sible to achieve absolute levels of privacy while exploiting the data that 
arise from human activity. There will necessarily have to be a trade-off, 
one which is based on an assessment of the relative value of privacy when 
compared with the possible gains from data analysis. For society to agree 
on the terms of this trade-off, it will be necessary to understand exactly 
what are the possible gains from data analysis. The possible gains are part 
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of the focus of this report. Second, the focus of this report on computation 
and inference aims to understand not only what can be achieved from data 
analysis, but also what cannot be achieved (cf. the earlier discussion of 
statistical errors above). In the context of privacy considerations, it may be 
desirable that certain inferences cannot be obtained reliably; thus, a clear 
understanding of computation and inference will help feed an understand-
ing of mechanisms for achieving privacy.

WHAT HAS CHANGED IN RECENT YEARS?

In 1995 the National Research Council’s Committee on Applied and 
Theoretical Statistics held a workshop to examine the challenges and prom-
ises of the ability to process massive data. The workshop was documented 
in Massive Data Sets: Proceedings of a Workshop (NRC, 1996). Comparing 
the situation depicted in that report with the current situation allows three 
areas to be highlighted where changes have been particularly noteworthy.

First, there has been a qualitative leap in the amount of data regard-
ing human interests and activities, much of it generated voluntarily via 
human participation in social media. Crowdsourcing is also a new phe-
nomenon, as are massive multiplayer online games. With the rise of such 
human-oriented data sources comes a number of technical challenges. For 
example, social data are often relational, taking the form of networks that 
link people and objects along a variety of dimensions. Moreover, such data 
are often fragmentary and subject to a variety of sampling biases. There 
are also issues of willful misrepresentation and governmental restrictions 
on access. Finally, human-oriented data often involve natural language and 
other representations, with a rich underlying semantics, and the inferential 
problems of interest often involve reasoning about underlying causes and 
human intentions.

Second, distributed computing systems have become a reality, with 
major implications for the collection and processing of massive data. The 
1995 workshop clearly recognized that existing algorithms for data analysis 
would not scale to the kinds of data set sizes that were beginning to accrue, 
even accounting for the ongoing increase in central processing unit speed, 
and solutions were sought in parallel and distributed processing systems. 
Such systems have begun to emerge, driven by a variety of technological 
and economic factors, and have opened up new vistas and new challenges. 
In particular, cloud computing now allows access to very large computing 
infrastructures through a network on an as-needed basis. This has led to 
new trade-offs involving storage, networking, and processing. It is also im-
portant to emphasize that the issue is not solely that of distributed comput-
ing, but also that of distributed data. Mobile platforms have proliferated, 
and data often originate on small devices that have bandwidth limitations 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

18 FRONTIERS IN MASSIVE DATA ANALYSIS

that limit or preclude data movement. Moreover, the inferential goals for 
data analysis often involve bringing together multiple data sources that may 
have been collected independently. For example, as already noted, social 
media often provide partial and fragmentary perspectives on individuals, 
and many questions of interest can only be answered if these perspectives 
are brought into register. In general, many new challenges have arisen 
involving computational frameworks that are capable of integrating data 
across spatial, representational, and administrative domains.

Third, many issues involving the geo-temporal nature of data have 
come to the forefront. For example, a significant fraction of the data on 
the Internet is in the form of video streams, a trend that is accelerating. 
Moreover, a growing number of social media and mobile technologies are 
generating geo- and time-tagged data. Computer networks generate mas-
sive data streams. Scientific data often take the form of time series. In such 
cases, even if an individual time frame does not involve a massive data set, 
the temporal sequence can quickly overwhelm storage and computing re-
sources. Indeed, it is common in such cases to develop streaming algorithms 
that attempt to process the data on the fly, avoiding storage. However, the 
inferential goals associated with such data often involve the discovery and 
indexing of temporally extended behaviors, and this generally requires some 
form of storage. It is also the case that many instances of streaming data 
require real-time or near-real-time processing; examples include the online 
auctions run for ad placement in search engines and early alert systems for 
disease outbreaks. This requirement creates new algorithmic challenges 
where answer quality need to be traded off against answer timeliness. 
Finally, many data sets are also indexed by spatial coordinates (an issue 
emphasized in the 1996 NRC report). This creates new algorithmic chal-
lenges where answer quality and timeliness need to be traded off against 
the geographic granularity of the answer. The overall issue is often that of 
coping with massive spatio-temporal and geo-temporal data.

Another way to contrast the situation in 1995 with the current situa-
tion is to compare the areas of science and technology that were thought 
to be impacted by massive data issues. Table 1.1 provides a partial listing 
of these areas, focusing on scientific and engineering fields. Many of the 
differences depicted in this table can be attributed to the rapid growth in 
social media, mobile devices, and sensor networks during the past decade 
and a half.
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ORGANIZATION OF THIS REPORT

The statement of task for the study that led to this report reads as 
follows:

The study will carry out the following tasks:

•	 Assess the current state of data analysis for mining of massive sets 
and streams of data,

•	 Identify gaps in current practice and theory, and 
•	 Propose a research agenda to fill those gaps.

TABLE 1.1 Scientific and Engineering Fields Impacted by Massive Data

Area Affected in 1995 Area Affected in 2012 Noteworthy Use Cases

Physical sciences Physical sciences Astronomy, particle physics

Climatology Climatology

Signal processing Signal processing

Medicine Medicine Imaging, medical records

Artificial intelligence Artificial intelligence Natural language processing, 
computer vision

Marketing Marketing Internet advertising, corporate 
loyalty programs

N/A Political science Agent-based modeling of 
regime change 

N/A Forensics Fraud detection, drug/human/
CBRNe trafficking

N/A Cultural studies Human terrain assessment, 
land use, cultural geography

N/A Sociology Comparative sociology, social 
networks, demography, belief 
and information diffusion

N/A Biology Genomics, proteomics, 
ecology

N/A Neuroscience fMRI, multi-electrode 
recordings

N/A Psychology Social psychology

NOTE: CBRNe, chemical, biological, radiological, nuclear, enhanced improvised explosive 
devices; fMRI, functional magnetic resonance imaging; N/A, not applicable.
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A primary audience for this report is the community of researchers who 
need to be adept at analyzing massive data. Because, as will be seen, this is 
an inherently multidisciplinary subject, the report assumes the reader has 
(or is willing to develop) an understanding of topics in computer science 
(including databases and distributed systems), statistics, and optimiza-
tion. Another important audience consists of the research organizations, 
especially federal funding agencies, which are building capabilities for the 
analysis of massive data. The report’s identification of research challenges 
should help those organizations target their programs. 

Chapter 2 provides an overview of some of ways in which massive data 
are currently arising in various scientific and technological fields. Focusing 
on systems and computer architecture issues, it discusses general trends and 
then turns to several examples: Earth and planetary science, astronomy, 
biological and medical research, large numerical simulations, telecommu-
nications and networking, social network analysis, and national security. 
Chapter 3 pursues the systems perspective further, discussing recent de-
velopments in parallel and distributed systems, databases, and streaming 
architectures.

Chapter 4 addresses issues surrounding the temporal nature of data, 
serving to highlight the fact that many massive data sets arise as temporal 
streams and that many interesting inferential questions revolve around the 
detection of temporal trends, changes, and patterns. Moreover, it is often 
the case that real-time responses are needed.

In Chapter 5, a more general discussion of data representation is pro-
vided, including some of the ways in which massive data arrive in raw 
form and the transformations that are often applied to data, particularly 
transformations that attempt to reduce the representational complexity of 
the data.

Chapter 6 turns to a formal treatment of some of the computational 
complexity issues that arise in the setting of massive data analysis. The 
discussion focuses on computational resources and the theoretical charac-
terization of trade-offs among these resources.

Chapters 7 and 8 focus on inferential issues. Chapter 7 addresses sta-
tistical model-building in the massive data setting, discussing several of the 
stages in the inferential pipeline, including data cleansing and validation. 
In Chapter 8 sampling is discussed, focusing on the data-gathering process 
but also making links to Chapter 5, where sampling is a key methodology 
for data reduction. 

Chapter 9 treats some of the issues that arise when humans are included 
in the data-analysis loop. This includes crowdsourcing, where humans are 
used as a source of training data for learning algorithms, as well as visu-
alization, which not only helps humans to understand the output of an 
analysis, but also allows human input into model revision.
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Chapter 10 attempts to bring several of the strands of the report to-
gether into a proposal for a taxonomy of some of the major algorithmic 
problems arising in massive data analysis. The committee hopes that the 
ideas in this section will serve to organize the research landscape and also 
provide a point of departure for the design of “middleware” that links high-
level inferential goals to the algorithms and hardware needed to achieve 
those goals. 

In accordance with the study’s statement of task, Chapters 2 through 
10 identify gaps in current theory and practice, and Chapters 3 through 10 
propose a number of elements of a research agenda. Finally, Chapter 11 
presents the committee’s primary conclusions.
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2

Massive Data in Science, 
Technology, Commerce, National 

Defense, Telecommunications, 
and Other Endeavors

WHERE ARE MASSIVE DATA APPEARING?

Experiments, observations, and numerical simulations in many areas of 
science nowadays generate terabytes of data and, in some cases, are on the 
verge of generating many petabytes. This rapid growth heralds an era of 
“data-centric science,” which requires new paradigms addressing how data 
are captured, processed, discovered, exchanged, distributed, and analyzed. 
While traditional methods of analysis have largely focused on analysts be-
ing able to develop and analyze data within the confines of their own com-
puting environment, the growth of big data is changing that paradigm for 
many disciplines, especially in cases in which massive amounts of data are 
distributed across locations. The distributed and heterogeneous nature of 
the data provides substantial challenges for many disciplines in the physical 
and life sciences and also in commerce, medicine, defense, finance, telecom-
munications, and other industries.

The fact that scientific data sets across a wide range of fields are multi-
plying is an important driver for modern science. Analyses of the informa-
tion contained in these data sets have already led to major breakthroughs 
in fields ranging from genomics to astronomy and high-energy physics, 
encompassing every scale of the physical world. Yet much more remains, 
and the great increase in scale of the data creates complex challenges for 
traditional analysis techniques.

It is not only experimental measurements that are growing at a rapid 
pace. As stated in Szalay (2011, p. 34): “The volume of data produced by 
computer simulations (used in virtually all scientific and engineering disci-
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plines today) is also increasing at an even faster rate. Intermediate simula-
tion steps must often be preserved for future reuse because they represent 
substantial computational investments. The sheer volume of these data sets 
is only one of the challenges that scientists must confront.” Data analyses 
in some other disciplines (e.g., environmental sciences, wet laboratories in 
life sciences) are challenged to work for thousands of distinct, complex data 
sets with incompatible formats and inconsistent metadata. 

While the scientific community and the defense industry have long been 
leaders in generating large data sets, the emergence of e-commerce and 
massive search engines has led other sectors to confront the challenges of 
massive data. For example, Google, Yahoo!, Microsoft, and other Internet-
based companies have data that are measured in exa bytes (1018 bytes). 
The availability and accessibility of these massive data sets is transforming 
society and the way we think about information storage and retrieval.

Social media (e.g., Facebook, YouTube, Twitter) have exploded be-
yond anyone’s wildest imagination, and today some of these companies 
have hundreds of millions of users. Social-media-generated texts, images, 
photos, and videos comprise an unexpected and rapidly growing corpus of 
data. Data mining of these massive data sets is transforming the way we 
think about crisis response, marketing, entertainment, cybersecurity, and 
national intelligence. New algorithms that assess these data in ways other 
than counting hits on key words, such as the analysis of social relationships, 
involves large graph analyses and requires new scalable algorithms. 

Understanding and characterizing typical Web behavior dynamically 
(because the time scale of changes on the Internet is in minutes) presents 
remarkable challenges. In this cyber-oriented world, behavior that does not 
fit the patterns is often related to malware or denial-of-service attacks. Rec-
ognizing these in time, estimating the impact on human behavior, and re-
sponding is a new and emerging challenge that has few parallels in science.

Capturing and indexing the Internet has created whole sets of new 
industries. Some of the world’s largest companies are trading in infor-
mation and have built their business model on appropriately customized 
advertisements. Interpreting user behavior and providing just-in-time adver-
tisements customized to the users’ profiles require very sophisticated data 
management capabilities and efficient algorithms. Service-sector companies 
specializing in Internet-based auctions, like eBay or Amazon, have devel-
oped sophisticated analytics capabilities. Almost all Web-based companies 
today are capturing user actions, even if they do not immediately analyze 
them. This confluence of technologies has created a whole new industry, 
one based inherently on massive data. 
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CHALLENGES TO THE ANALYSIS OF MASSIVE DATA

A number of challenges exist in both data management and data analy-
sis that require new approaches to support the “big data” era. These 
challenges span generation of the data, preparation for analysis, and policy-
related challenges in its sharing and use. Initiatives in research and develop-
ment that are leading to improved capabilities include the following:

 
•	 Dealing with highly distributed data sources,
•	 Tracking data provenance, from data generation through data 

preparation,
•	 Validating data,
•	 Coping with sampling biases and heterogeneity,
•	 Working with different data formats and structures,
•	 Developing algorithms that exploit parallel and distributed 

architectures,
•	 Ensuring data integrity,
•	 Ensuring data security,
•	 Enabling data discovery and integration,
•	 Enabling data sharing,
•	 Developing methods for visualizing massive data, and
•	 Developing scalable and incremental algorithms.

As data volumes increase, the ability to perform analysis on the data 
is constrained by the increasingly distributed nature of modern data sets. 
Highly distributed data sources present challenges due to diverse natures of 
the technical infrastructures, creating challenges in data access, integration, 
and sharing. The distributed nature also creates additional challenges due 
to the limitations in moving massive data through channels with limited 
bandwidth. In addition, data produced by different sources are often defined 
using different representation methods and structural specifications. Bring-
ing such data together becomes a challenge because the data are not properly 
prepared for data integration and fusion, and the technical infrastructures 
lack the appropriate information infrastructure services to support analysis 
of the data if it remains distributed. Statistical inference procedures often 
require some form of aggregation that can be expensive in distributed archi-
tectures, and a major challenge involves finding cheaper approximations for 
such procedures. Finally, security and policy issues also limit the ability to 
share data. Yet, the ever-increasing generation of data from medicine, physi-
cal science, defense, and other industries require that analysis be performed 
on data that are captured and managed across distributed databases.

In addition to challenges posed by the distributed nature of most mas-
sive data, the increase of data can also limit, in other ways, the amount 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

MASSIVE DATA 25

of analysis that can be performed. For example, some data require high-
performance computational infrastructures for data preparation before 
analysis can even begin, and access to such capabilities may be limited. An 
example would be an Earth science investigation that requires first convert-
ing the data to a common spatial grid. In cases where the analysis depends 
on such an expensive pre-processing step, the usefulness of the massive data 
is enhanced if the data-collection system is engineered to collect data of 
high quality in forms that are ready for analysis without the pre-processing. 

However, rather than having data pre-processed for all scenarios, and 
thus taking up substantial storage, ad hoc investigations may require that 
data be processed, and thus sufficient computing infrastructures must be in 
place to support such ad hoc analysis. This can be desirable scientifically, 
because understanding of what data are needed may become clearer as an 
investigation proceeds. In order to support this evolutionary cycle, software 
systems that handle massive data must be inherently information-driven. 
That means that their content should be based on explicit information 
models that capture rich semantics that improve the provenance and un-
derstanding of the data. This in turn makes it easier to correlate distributed 
data sets, thus improving the ability to effectively search large collections of 
data without requiring changes and updates to the software (and hardware) 
as the data model evolves and changes during the scientific process.

Finally, challenges exist in better visualizing massive data sets. While 
there have been advances in visualizing data through various approaches, 
most notably geographic information system-based capabilities, better 
methods are required to analyze massive data, particularly data sets that 
are heterogeneous in nature and may exhibit critical differences in informa-
tion that are difficult to summarize. This topic is discussed in Chapter 9.

TRENDS IN MASSIVE DATA ANALYSIS1

While improvements in computer hardware have enabled today’s ex-
plosion in data, the performance of different architectural components 
increases at different rates. Central processing unit (CPU) performance has 
been doubling every 18 months, following Moore’s Law. The capacity of 
disk drives is doubling at a similar rate, somewhat slower than the original 
Kryder’s Law prediction (Walter, 2005), driven by higher density platters. 
On the other hand, the disks’ rotational speed has changed little over the 
past 10 years. The result of this divergence is that while sequential input/
output (I/O) speeds slowly increase with density, random I/O speeds have 
changed only moderately. Because of the increasing difference between the 
sequential and random I/O speeds of disks, only sequential disk access is 

1  The first four paragraphs of this section follow Szalay (2011).
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possible—if a 100-terabyte (TB) computational problem requires mostly 
random access patterns, it cannot be done. Finally, network speeds, even 
in the data center, are unable to keep up with the increases in the amount 
of data. Said differently, with petabytes (PB) of data, we cannot move the 
data to where the computing is; instead, we must bring the computing to 
the data. More discussion of hardware and software for managing massive 
data is found in Chapter 3.

The typical analysis pipeline of a data-intensive scientific problem starts 
with a low-level data access pattern during which outliers are filtered 
out, aggregates are collected, or a subset of the data is selected based on 
custom criteria. The more CPU-intensive parts of the analysis happen dur-
ing subsequent passes. Such analyses are currently often implemented in 
research environments in small clusters of linked commodity computers 
(e.g., a “Beowulf cluster”) that combine compute-intensive, but storage- 
and I/O-poor, servers with network-attached storage. These clusters can 
handle problems of a few tens of terabytes, but they do not scale above 
100 TB because they are constrained by the very high costs of petabyte-
scale enterprise storage systems. Furthermore, as these traditional systems 
grow to meet modern data analysis needs, we are hitting a point where the 
power and space requirements for these systems exceed what is available 
to individual investigators and small research groups. 

Existing supercomputers are not well suited for data-intensive compu-
tations either, because while they maximize CPU cycles, they lack I/O band-
width to the mass storage layer. Moreover, most supercomputers lack disk 
space adequate to store petabyte-size data sets over the multi-month periods 
that are required for a detailed exploratory analysis. Finally, commercial 
cloud computing platforms are not the answer either, at least not today. 
The data movement and access fees are excessive compared to purchasing 
physical disks, the I/O performance they offer is substantially lower (e.g., 
20 megabytes per second), and the amount of provided disk space (often in 
the range of, say, 10-50 gigabytes) is woefully inadequate for massive data. 

Based on these observations, it appears that there is an unmet need 
today for capabilities to enable data-intensive scientific computations: an 
inexpensive yet efficient product for data-intensive computing in academic 
environments that is based on commodity components. The current situa-
tion is not scalable and not maintainable in the long run. This situation is 
analogous to the one that led to the development of the Beowulf cluster.

As data sets are growing at, or faster than, Moore’s Law, they are grow-
ing at least as fast as computing power increases. This trend tends to limit 
analytical techniques to those that scale, at most, linearly with the number 
of data points (N), although those that scale as N log N are also acceptable 
because the log N factor can be made up through parallelism. It becomes 
increasingly difficult to tackle computationally challenging data analyses 



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

MASSIVE DATA 27

using existing algorithmic tools, and there is a need to develop new tools 
that target near-linear computational complexity.

The large-data analytics and e-commerce companies have spent sub-
stantial resources on creating a hardware/software framework with per-
formance that scales well with massive data. The typical approach is to 
create large data centers consisting of hundreds of thousands of low-end 
computers managed with an extreme economy of scale. Their main features 
include the following:

•	 Centralization of large-scale infrastructure,
•	 Data sizes at the petabyte to exabyte scale,
•	 Architectures that are highly fault-tolerant, and
•	 Computing that is collocated with the data for large-scale analytics. 

While large businesses in the past have used relational databases, these 
do not scale well to such extreme sizes. Industries dealing with big data 
are reacting to data that is more distributed, heterogeneous, and generated 
from a variety of sources. This is leading to new approaches for data analy-
sis and the demand for new computing approaches. Various innovative data 
management solutions have emerged, many of which are discussed in Chap-
ter 3. These models work well in the commercial setting, where enormous 
resources are spent on harvesting and collecting the data through actions 
such as Internet crawling, aerial photos for geospatial information systems, 
or collecting user data in search engines. Some of the technical trends that 
have been occurring to address the data challenges include the following:

•	 Distributed systems (access, federation, linking, etc.),
•	 Technologies (MapReduce algorithms, cloud computing, Work-

flow, etc.),
•	 Scalable infrastructures for data- and compute-intensive applications,
•	 Service-oriented architectures,
•	 Ontologies, models for information representation,
•	 Scalable database systems with different underlying models (rela-

tion to triple stores),
•	 Federated data security mechanisms, and
•	 Technologies for moving large data sets. 

Many of these technologies are being used to drive toward more systematic 
approaches. 

As discussed in the examples below, many groups are setting up tools 
that support pipeline or workflow approaches to data analysis. Rather than 
constructing one large database, the general concept is to enable analysis 
by bringing together a variety of tools that allow for capture, preparation, 
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management, access, and distribution of data. This collection of tools is 
configured as a series of steps that constitute a complex workflow for gener-
ating and distributing data sets. Such a pipeline may also extract data from 
operational databases and systems and put that data into environments 
where it can be prepared and fused with other data sets and staged into 
systems that support analysis. Challenges include co-utilization of services, 
workflow discovery, workflow sharing, and maintaining information on 
metadata, information pedigree, and information assurances as data moves 
through the workflow.

Several multi-organizational groups are addressing the big-data issue 
and helping to bring the required scientific expertise and attention to this 
important problem. Examples are the groups that organize the Extremely 
Large Databases workshop series,2 those working in the database research 
community, and those that have produced open-source technologies such as 
Hadoop (see Chapter 3). As the state of research in data-intensive systems 
is focusing on new ways to process data, these groups are leveraging open-
source technologies and similar approaches to handle the orchestration of 
data-processing algorithms and the management of massive amounts of 
heterogeneous data. A major challenge in the big-data area is in evaluat-
ing ways in which distributed data can be analyzed and in which scientific 
discoveries can be made. Many of the aforementioned technologies, such as 
Hadoop, and also the proposed SciDB database infrastructure for science 
data management, have been co-developed across several organizations 
(both research laboratories and industry) and deployed across organiza-
tional boundaries to support analysis of massive data sets. The challenge is 
both one of developing appropriate systems as well as creating novel meth-
ods to support analysis, particularly across highly distributed environments. 

In many ways, the big-data problem is simplified when data are cen-
trally stored. However, modern data sets often remain distributed because 
of technical, social, political, and economic reasons, increasing the chal-
lenge to efficiently analyze the data and driving the need to build vir-
tual data systems that integrate assets from multiple organizations. In this 
emerging paradigm, these virtual systems require elasticity, separation of 
concerns, scalability, distribution, and information-driven approaches. 

Cloud computing is offering an attractive means to acquire computa-
tional and data services on an “as needed” basis, which addresses the need 
for elasticity. This option requires, however, that systems are architected to 
take advantage of such an infrastructure, which is not often the case. Many 
systems must be rethought from first principles in order to better exploit 
the possibilities of cloud computing. For example, systems that decouple 
data storage, data management, and data processing are more likely to rap-

2  See the Extremely Large Databases website at http://www.xldb.org.
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idly take advantage of elastic technology paradigms like cloud computing 
because they are more suited to leveraging the generic services that cloud 
computing can readily provide. 

EXAMPLES

Earth and Planetary Observations

In the physical sciences domain, there is an increasing demand for im-
proving the throughput of data generation, for providing access to the data, 
and for moving systems toward greater distribution, particularly across 
organizational boundaries. Earth, planetary, and astrophysics missions, for 
example, have all seen an order-of-magnitude increase in data over the past 
decade, rising from hundreds of gigabytes in some cases to well into the 
tens to hundreds of terabytes range. The Square Kilometer Array project, 
as an example, is predicted to produce hundreds of terabytes a second!3 
Studies released by each of these disciplines in their decadal reports sug-
gest that this trend will continue. Many Earth and planetary missions have 
instruments that will continue to generate observations of massive size 
that will substantially increase the scientific archives worldwide. Climate 
research also continues to grow at a rapid pace as climate models and sat-
ellite observations grow and are needed to support new discovery. NASA’s 
Earth Science enterprise, for example, now manages data collections in the 
several-petabyte range. In planetary science, the amount of data returned 
from robotic exploration of the solar system between 2002 and 2012 was 
100 times the amount of data collected from the previous four decades. 
Astrophysics has seen similar increases, and all of these disciplines have 
experienced a continued increase in the geographic distribution of the data.

As already noted, the increase of data within these science environ-
ments has, in many cases, led to the construction of data “pipelines” that 
acquire data from instruments, process and prepare that data for scientific 
use, capture the data into well-engineered data management systems, and 
then provide ad hoc services for data distribution and analysis. Such infra-
structures have required advanced computing capabilities that often span 
multiple institutions and support well-orchestrated information services. 

While, traditionally, many of these workflows are constructed for each 
instrument or mission, there is an increasing interest in performing analysis 
across data sets that may span different instruments or missions, even from 

3  This unprecedented increase will require innovation beyond our current understanding of 
computation and storage over the next 10 years to achieve the project’s ambitious require-
ments and science goals. Background on the Square Kilometer Array project may be found at 
http://www.skatelescope.org.
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different disciplines. This type of data integration and inter-comparison is 
not limited to just observational data sets. Within the climate research com-
munity, effort is under way to prepare observational data so that it can be 
inter-compared against the output of climate models. However, within the 
climate discipline, as with others, data from different institutions, systems, 
and structures use different standards and measurements, and this lack of 
standardization makes such analysis difficult, due to the heterogeneity.

Astronomy4

Astronomy is a good example for studying how the data explosion hap-
pened and how long it might continue. In this realm, successive generations 
of exponentially more-capable sensors, at the same cost, are the reason for 
the data explosion (all being traceable to advances in semiconductor tech-
nology and, ultimately, to Moore’s Law). New generations of inexpensive 
digital cameras come out every 6 months, and satellites have ever-higher 
resolution and more pixels. Even old telescopes are getting new instruments 
that collect more data. For example, the Dark Energy Survey is building 
a huge array of charge-coupled devices (CCDs) to be placed on an older 
telescope in Chile. 

However, not every domain of science has such growth areas. One 
could argue that optical astronomy will soon reach the point when increas-
ing the size of collector arrays will become impractical, and the atmospheric 
resolution will constrain the reasonable pixel size, causing a slow-down in 
data collection. But time-domain astronomy is emerging, and by taking im-
ages every 15 seconds, even a single telescope (e.g., the Large Synoptic Sur-
vey Telescope) can easily generate data that can reach 100 PB in a decade. 

New instruments and new communities emerge to add to the big-data 
movement. Radio astronomy, with focal plane arrays on the horizon, is 
likely to undergo a paradigm shift in data collection, resembling the time 
when CCDs replaced photographic plates in optical telescopes. Amateur 
astronomers already have quite large, cooled CCD cameras. When a com-
munity of 100,000 people starts collecting high-resolution images, the 
aggregate data from amateur astronomers may easily outgrow the profes-
sional astronomy community. 

Biological and Medical Research

A substantial amount of analysis is being performed using data col-
lected by medical information systems, most notably patient electronic 
health records. This information represents a wealth of data both to im-

4  This section is adapted from Szalay (2011). 
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prove individual health-care decisions as well as to improve the overall 
health-care delivery enterprise. The U.S. Food and Drug Administration, 
for example, is building an active drug safety surveillance system utilizing 
data from de-identified medical record databases. Medical researchers are 
gathering together to share information about interventions and outcomes 
in order to perform retrospective analysis, and insurance companies con-
tinue to mine data to improve their own models.

The genomics revolution is proceeding apace, with the cost of se-
quencing a single human genome soon to drop below $1,000. As the cost 
decreases, it becomes feasible to sequence multiple genomes per individual, 
as is being envisaged in tumor genomics initiatives. Overall, data volumes 
in genomics are growing rapidly. The Short Read Archive at the National 
Center for Biological Information is soon expected to exceed a petabyte. 
As more and more high-throughput sequencers are deployed, not just in 
research but also in hospitals and other medical facilities, we will see an 
even faster data growth in genomic information. 

Neuroscience is increasingly using functional magnetic resonance imag-
ing, where each session can easily result in tens of terabytes of data. Longi-
tudinal studies of hundreds of patients generate data measured in petabytes 
today. Studies of the cardiovascular systems are creating multiscale simula-
tions from the molecular scale to those of the human circulation system. 
The European Human Brain Project is setting out to integrate everything we 
know about the brain in massive databases and detailed computer simula-
tions. And ultra-high-resolution microscopy is also generating very large 
data sets in cell biology.

Large Numerical Simulations5

Numerical simulations are becoming another new way of generating 
enormous amounts of data. This has not always been the case. Tradition-
ally, these large simulations (such as gravitational N-body simulations in 
astrophysics or large simulations of computational fluid dynamics) have 
been analyzed while the simulation was running, because checkpointing and 
saving the snapshots was overly expensive. This fact traditionally limited 
the widespread use of simulation data.

Even when a few snapshots have been saved and made public, down-
loading large files over slow network connections made the analysis highly 
impractical once simulations reached the terabyte range. The Millennium 
simulation in astrophysics has changed this paradigm by creating a re-
motely accessible database with a collaborative environment, following the 
example of the Sloan Digital Sky Survey SkyServer. The Millennium data-

5  This section is adapted from Szalay (2011).
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base drew many hundreds, if not thousands, of astronomers into analyzing 
simulations as easily as if the observational data were publicly available.

The emerging challenge in this area is scalability. The Millennium has 
10 billion particles. The raw data is about 30 TB, but the 1 TB database 
does not contain the individual dark matter particles, only the halos, sub-
halos, and the derived galaxies. Newer simulations are soon going to have 
a trillion particles, where every snapshot is tens of terabytes, so the data 
problem becomes much worse. At the same time, there is an increasing 
demand by the public to get access to the best and largest simulations; it is 
inevitable that the Millennium model is going to proliferate. There may be 
a need for a virtual observatory of simulations that can provide adequate 
access and the ability to do analysis, visualization, and computations of 
these large simulations remotely. This need cuts across all disciplines, be-
cause simulations are becoming more commonplace in all areas of physical 
science, life sciences, economics, and engineering.

As data become increasingly unmovable, the only way to analyze them 
is “in place.” Thus, new mechanisms are needed to interact with these large 
simulations, because it is not feasible to simply download raw files. For 
interactive visualizations, it would be easier to send a high-definition, three-
dimensional video stream to every interested scientist in the world than it 
would be to move even a single snapshot of a multi-petabyte simulation 
from one place to another. 

New and interesting paradigms for interacting with large simulations 
are emerging.

In a project related to isotropic turbulence, data are accessed via a Web 
service where users can submit a set of about 10,000 particle positions 
and times and then retrieve the interpolated values of the velocity field at 
those positions. This can be considered as the equivalent of placing small 
“virtual sensors” into the simulation instead of downloading all the data 
or significant subsets of it. The service is public and is typically delivering 
about 100 million particles per day worldwide. Several papers appearing 
in the top journals have used this facility. 

Telecommunications and Networking

Managing a modern globe-spanning highly reliable communications 
network requires extensive real-time network monitoring and analysis capa-
bilities. Network monitoring and analysis is used for tasks such as securing 
the network from intruders and malefactors, rapid-response troubleshoot-
ing to network events, and trend prediction for network optimization.

Large telecommunication providers such as AT&T and Verizon offer 
a wide range of communication services, ranging from consumer (mobile 
voice and data, wired broad band, television over Internet protocol, and 
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plain old telephone service) to business (data centers, virtual private net-
works, multiprotocol label switching, content caching, media broadcast), 
to a global long-haul communications backbone. Each of these services 
contains many interacting components, and understanding network issues 
generally requires that data about the interacting components be corre lated 
and analyzed. Further, the global network contains tens of thousands of 
network elements distributed worldwide.

In addition to the large volumes of data involved, the major problem 
in telecommuni cations and networking data analysis is the complexity of 
the data sets (hundreds to thousands of distinct data feeds) and the require-
ment for real-time response. Monitoring the health of tens of thousands of 
backbone routers generates large data sets, but backbone routers are only 
one component of the global end-to-end communications network. Many 
user applications—for example, streaming music to a smartphone—require 
the correct and efficient operation of dozens of different network elements. 
Troubleshooting a bad connection requires that dozens of data feeds be 
monitored and correlated.

Responding to network events, such as misbehaving routers, stalled 
routing convergence algorithms, and so on, or to network intruders, re-
quires fast response; delays result in customer dissatisfaction, or worse. 
Therefore, all of the hundreds of data feeds must be managed in a real-time 
warehouse, which can provide timely answers to troubleshooting queries. 
The technology for such real-time warehousing is still being developed.

Social Network Analysis

Social network analysis is the science of understanding, measuring, 
and predicting behavior from a relational or structural perspective. Using a 
blend of graph-theoretic and nonparametric statistical techniques, research-
ers in this area take data, such as phone data or observations indicative 
of interpersonal connections, and identify who are the key actors and key 
groups within and across networks, also identifying special patterns and 
important pathways. Traditional data sets focused on information within 
groups—such as who worked with whom or who is friends with whom—or 
between groups, such as which countries are allied or which organizations 
supplied goods to which others. The network in those traditional investiga-
tions might be a simple one- or two-mode network (i.e., a network with 
nodes that fall into just one or two classes), and the links were often binary. 
Often the data were from a small contained group. 

Today the field of social network analysis has exploded, and data 
often take the form of meta-networks in which information about who, 
what, where, how, why, and when are linked using multi-mode, multi-link, 
multi-level networks. (See, e.g., Carley, 2002.) The links are probabilistic, 
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and the nodes have states that may change over time. The size of networks 
of interest are often larger than in the past, such as the entire citation net-
work in the web-of-science or the network of phone calls in all countries 
over a period of 12 months. The availability of, and interest in, such mas-
sive network data has increased as social media sites have become more 
prevalent; as data records for public functions (such as home sales records 
and criminal activity reports) have increasingly been made public; and as 
various corporations make such data available, at least in anonymized form 
(such as phone records, Internet movie databases, and the web-of-science).

Massiveness for network data arises on several fronts. First, the number 
of nodes in data of interest has grown from hundreds to several million or 
billion. Second, the number of classes of nodes that need to be included in 
a single analysis has grown. For example, web-of-science data have  authors, 
topics, journals, and institutions, with each of these “nodes” having mul-
tiple attributes. Third, the data are often collected through time and/or 
across regions. For example, Twitter, Lexis-Nexis, AIS, and various sensor 
feeds all have networks embedded in space and time. In particular, social 
media contain meta-network data that are massive and still growing.

Each source of massiveness presents the following technical challenges: 

•	 The increase in the number of nodes whose data are being analyzed 
means that many of the traditional algorithms must be replaced by 
ones that scale better. This has been easy for metrics that rely only 
on measures associated with individual nodes and their direct links 
to other nodes—i.e., on local information for each node. For ex-
ample, degree centrality, the number of links to/from a node, scales 
well, and it also can be readily adapted to streaming data. How-
ever, algorithms that do not scale well are those (such as between-
ness) that rely on examining paths through an entire network or on 
local simulations that use multi-mode, multi-link data. In general, 
many single-node algorithms that include key node identification 
and grouping algorithms either scale well, are already parallelized, 
or have heuristic-based approximation approaches (Pfeffer and 
Carley, 2012). The main challenges here are rapid re-estimation 
given streaming data, estimating emergence and degradation of 
a node’s position over time given dynamic data with missing in-
formation, comparison of multiple networks, and enumeration of 
motifs of interest.

•	 Multi-mode data are challenging in that there are few metrics, 
and new ones are needed for each application. To be sure, a set 
of metrics exists for two-mode networks; however, most of the 
massive data is n-mode. From a massive data perspective, the key 
challenge is that the search paths tend to increase exponentially 
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with the number of node classes (i.e., modes). Improved metrics, 
scalable multi-mode clustering algorithms, improved sets of inter-
pretations, and improved scaling of existing metrics are the core 
challenges. 

•	 For temporal data there are two core challenges: incremental as-
sessment and atrophication/emergence. Incremental assessment 
requires new algorithms to be defined that reflect social activity, 
which can be rapidly computed as new data become available. 
Even newly developed incremental algorithms are still exponential 
with network size; more importantly, it is not clear that the existing 
metrics (e.g., betweenness), even if sufficiently scalable incremental 
algorithms were to be developed, are meaningful in truly massive 
networks. Other challenges center around the problem of identify-
ing points of atrophication and emergence, where portions of the 
network are fading away or emerging. The identification of simple 
temporal trends is not particularly a challenge, as Fourier analysis 
on standard network metrics provides guidance and scales well. 
With temporal data such as email and Twitter, not all nodes (the 
people who send information) are present in every time period. Un-
derstanding whether this lack of presence represents missing data 
due to sampling, temporary absence, or to a node actually leaving 
the network is a core challenge.

Thus, the harder problems that are particularly impacted by massive 
data include (1) identifying the leading edge in a network as it is being 
activated (e.g., who is starting to contract a disease or where is a revolu-
tion spreading), (2) identifying what part of the network is contributing 
to anomalous behavior, and (3) updating metrics as data changes. Geo-
temporal network data present still further challenges, due in part to the 
infrastructure constraints that inhibit transmitting and sharing geo-images 
and the lack of large-scale, well-validated, spatial data for locations of 
interest in network analyses. However, even if these technical and data 
problems were solved, dynamic geo-enabled network analysis would still be 
problematic due to the lack of a theoretical foundation for understanding 
emergence in spatially embedded networks. A major problem in this area 
is diffusion. Well-validated spatial and social network models exist for the 
spread of distinct entities such as disease, ideas, beliefs, technologies, and 
goods and services. However, these models often do not make consistent 
predictions; that is, spatial and social network models disagree, and they 
typically do not operate at the same scale. Having an integrated spatial-
social-network model for the diffusion of each type of entity is critical in 
many areas. The increase in geo-temporal tagged network data is, for the 
first time, making it possible to create, test, and validate such models; how-
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ever, current mathematical and computational formulations of these models 
do not scale to the size of the current data.

Much current network analysis is done on individual standalone single-
processor machines. However, that is changing. There are a few tools (e.g., 
the Organizational Risk Analyzer (ORA) toolkit) that have parallelized 
the algorithms and make use of multi-processors. In addition, there are 
Hadoop versions for some of the basic algorithms,6 thus enabling utili-
zation of cloud computing. Many diffusion routines can now be run on 
Condor clusters. In general, there is a movement to distributed computing 
in this area; and although the trend will continue, the existing technolo-
gies for network analysis in this area are in their infancy. New tools are 
appearing on a regular basis, including special tools for supercomputers, 
tools that take advantage of special processors, chips with built-in network 
calculations, and algorithms that utilize the memory and processors in the 
graphics display. 

Social networking—the use of a social media site to build, maintain, 
review, and disseminate information through connections—is a growing 
trend. Such sites include Twitter, Facebook, LinkedIn, and YouTube, and 
they are a growing source of massive data. In general, social media are be-
ing applied as a means to gather, generate, and communicate data in a rapid 
fashion. They are used in marketing by companies to announce products 
and collect consumer feedback and also by companies to discern other 
companies’ secrets. They are used by groups to organize social movements, 
protests, track illegal activity, record the need for social services (e.g., pot-
hole filling and snow removal), provide feedback on quality of restaurants, 
hotels, services, and safety of areas, and so on. Most technologies applied 
to such social media do little more than collect data—sometimes providing 
simple visualizations—and simply count the frequency of messages, key 
words, hashtags, etc. Truly making use of these data requires scalable clus-
tering techniques, real-time ontology abstraction, and on-the fly  thesauri 
creation for extracting the complete network associated with a topic of 
interest.

Social network analysis technologies can be used to assess social me-
dia data, while social network theory can be used to address how people 
will connect via social media and how it will change the nature of their 
interactions. However, many challenges remain. Social network analysis 
has traditionally focused on small, complete networks (i.e., fewer than 100 
members, in which all members were contacted), where interaction can 
be face-to-face, and all data come from one time period. To exploit social 
media data, techniques have to be expanded to handle large networks (e.g., 
thousands or millions of nodes), where the data are sampled rather than 

6  See, for example, X-Rime, available at http://xrime.sourceforge.net.
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complete (so there may be sampling biases in what data are captured), and 
for which the data are typically dynamic and the dynamics are of interest. 
Hence, issues of missing data, link inference, bias, forecasting, and dynam-
ics are now of great interest. Also, network metrics are highly sensitive to 
missing and erroneous data, and so alternative metrics, confidence inter-
vals on existing metrics, and procedures for inferring missing data are all 
needed. Advances in these areas are occurring rapidly. An emerging chal-
lenge, however, is how one can cross-identify the same person in multiple 
social media. This is particularly important for tracking criminal activity, 
terrorists, or pedophiles.

Social media are still evolving. As they mature, the shape of the technol-
ogy itself will be different, and new users that will have grown up with them 
will be the dominant group. As such, cultural norms of usage will emerge. 
Changes in security and privacy options on social media sites are liable to 
make such cross-identification even more challenging than it is currently. 
Because the technology is a major source for collecting and processing mas-is a major source for collecting and processing mas-
sive data, the needs and challenges facing data analysis are likely to change 
as the technology matures.

Some of the common questions of analysis with respect to social net-
works include the following:

•	 Effective marketing with social media. How can companies and 
governments measure the effectiveness of their social media cam-
paigns, assess change in the resulting culture, and understand when 
the message changes what people do?7 What new scalable social 
network tools, techniques, and measures are needed for identifying 
(1) key actors for spreading messages, (2) early adopters, (3) the 
rate of spread, and (4) the effectiveness of the spread, given the 
nature of social media data, to track crises and identify covert 
activity?8

•	 Sentiment assessment monitoring and control. How can one meas-
ure, assess, forecast, and alter social sentiment using diverse social 
media? What new scalable social-network techniques are needed 
for assessing sentiment, identifying sources of sentiment, track-
ing changes in groups and sentiment simultaneously, determining 
whether the opinion leaders across groups are the same or differ-
ent, and so on? (Pfeffer et al., Forthcoming).

•	 Social change in images. A vast amount of the data in social media 
sites is visual—videos and photographs. How can these data be 

7  See, e.g., Minelli et al. (2013).
8  See, e.g., De Choudhury et al. (2010), Wakita and Tsurumi (2007), and Morstatter et al. 

(2013).
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assessed, measured, and monitored in a scalable fashion so as to al-
low social change to be tracked and individuals identified through 
a fusion of verbal and visual data? (Cha et al., 2007).

•	 Geo-temporal network analysis. An illustrative problem is the 
assessment, by area within a city and time period, of the Twitter 
network during disasters in order to rapidly identify needs and 
capabilities. Currently there are few geo-network metrics; however, 
the increasing prevalence of geo-tagged data is creating the need 
for new metrics that scale well and support drill-down analysis on 
three dimensions at once—space, time, and size of group. Current 
clustering algorithms scale well on a single dimension, but scalable 
algorithms are needed that cluster in space and time. Finally, most 
spatial visualization techniques take the form of heat maps, which 
are often too crude to visually convey nuances in the data. But if 
the fullness of big data is exploited, then the overlay of points on 
a map becomes confusing, so new visual analytic techniques are 
needed (Joseph et al., 2012).

The sheer size and complexity of data about social networks, cultural 
geography, and social media are such that systems need to be designed to 
meet three goals: automation, ease of use, and robustness. Analysts simply 
do not have the time to capture and run even basic analyses in a time-
sensitive fashion. Hence, the data-collection and analysis processes need 
to be automated so that information extraction can operate independently, 
and basic statistics identifying key actors and groups can be continually 
updated. Transparency must be maintained, and the analysts must be able 
to check sources for any node or link in an extracted network. An increas-
ing number of jobs require tracking information using social network data, 
and an increasing number of activities that individuals engage in can be 
discerned from information on the individual’s social network, particularly 
when multiple networks, multiple types of nodes, and multiple relations can 
be overlain on one another. 

National Security

The rise of the Internet has enormously increased the volumes of data 
potentially relevant to counterterrorism, counter-proliferation, network se-
curity, and other problems of national security. Many problems in national 
defense involve flows of heterogeneous, largely unstructured data arriving 
too rapidly to be aggregated in their entirety for off-line analysis.

As an example, consider the problem of computer network defense, or 
cyberdefense. Network-based attacks on computer systems pose threats of 
espionage and sabotage of critical public infrastructure. If one can observe 
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network traffic, one may wish to know when an attack is under way, who 
is conducting the attack, what are the targets, and how a defense may be 
mounted. Both real-time and post-hoc (forensic) capabilities are of interest. 
The metadata associated with the traffic—e.g., entity X communicated with 
entity Y at time T using protocol P, etc.—can be regarded as a dynamic 
graph or arrival process whose analysis may be useful.

To cope with such problems, advances are needed across the board, 
from statistics to computer system architecture, but three areas can be 
highlighted. First, streaming algorithms that can process data in one pass 
with limited memory are clearly important. Second, for data at rest, trans-
actional databases are generally not needed, but highly usable systems 
for hosting and querying massive data, including data distributed across 
multiple sites, will be essential. The MapReduce framework, discussed in 
Chapter 3 of this report, is perhaps a good first step. Third, better visual-
ization tools are also needed to conserve the scarce and valuable time of 
human analysts. 

Two areas in national security that are particularly impacted by mas-
sive data are the potential capability for the remote detection of weapons 
of mass destruction and improved methods of cyber command and control. 
Although many details of national security problems are classified, ap-
proaches to these problems often parallel current efforts in academia and 
industry.
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3

Scaling the Infrastructure 
for Data Management

Very-large-scale data sets introduce many data management challenges. 
Two notable ones are managing the complexity of the data and harnessing 
the computational power required to ingest and analyze the data. Tools for 
analyzing massive data must be developed with an understanding of the 
developing capabilities for management of massive data.

SCALING THE NUMBER OF DATA SETS

Increasing the number of data sets brought to bear on a given prob-
lem increases the ability to address the problem, at least in principle. Sets 
that add rows (e.g., adding more patient records in a health-care data set) 
to existing data tables can increase their statistical power. Sets that add 
columns (e.g., adding the patient’s smoking history to each patient record) 
can enable new applications of the data. In the health-care domain, cross-
collection data mining can enable exciting advances in personalized medi-
cine. Another example is in the finance domain, where an ability to evaluate 
loans across multiple banks (e.g., as mortgages are bought and sold) is more 
powerful than an analysis that is limited to the records of just one bank.

Unfortunately, scaling the number of data sets is very difficult in prac-
tice due to heterogeneity in data representations and semantics, data qual-
ity, and openness. These aspects are explored below.
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Data Representation and Semantics

Data sets managed by different (sub)organizations tend to have dis-
parate representations and semantics. These attributes are described by 
metadata, which is critical for ensuring that the data can be effectively in-
terpreted. Metadata consist of both structural and discipline-specific meta-
data. The structural metadata describe the structures of the data and its 
organization. The discipline-specific metadata describe the characteristics 
or uniqueness of the data for a particular discipline.

Many disciplines are working toward defining rich semantic models 
that can help in data searching and understanding. Ideally, data repre-
sentation standards would permit improvisation; for example, a standard 
might stipulate a set of structured fields with a free-form key/value map 
that accommodates unforeseen information. Such an approach can inter-
polate between the current extremes of restrictive up-front standardization 
versus free-form chaos. Rich semantics allows tools to be developed that 
can effectively exploit relationships, thus enabling improved discovery and 
navigation, and several standards and technologies are emerging. How-
ever, current capabilities are still highly dependent on defining well-formed 
models and structures up-front. It may be important to consider how to 
evolve data standards over time so that as patterns are recognized in free-
form entries, they can be gradually folded into the structured portion of 
the representation.

An alternative to requiring extensive metadata up-front is to aim 
for more of a “data co-existence” approach, sometimes referred to as a 
“dataspace.” A good description of that concept is captured in the follow-
ing Wikipedia entry:

[Dataspaces provide] base functionality over all data sources, regardless 
of how integrated they are. For example, a [system] can provide keyword 
search over all of its data sources, similar to that provided by existing 
desktop search systems. When more sophisticated operations are required, 
such as relational-style queries, data mining, or monitoring over certain 
sources, then additional effort can be applied to more closely integrate 
those sources in an incremental [“pay-as-you-go”] fashion. Similarly, in 
terms of traditional database guarantees, initially a dataspace system can 
only provide weaker guarantees of consistency and durability. As stronger 
guarantees are desired, more effort can be put into making agreements 
among the various owners of data sources, and opening up certain inter-
faces (e.g., for commit protocols).1 

1  The Dataspaces entry is available at http://en.wikipedia.org/wiki/Dataspaces, accessed 
May 8, 2013.
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In a sense, this approach postpones the labor-intensive aspects of data 
fusion until they are absolutely needed.

Data Quality and Provenance

Real-world data sets vary in quality, due to a range of factors, including 
imperfect data collection instruments, human data entry errors, data fusion 
mistakes, and incorrect inferences. When dealing with a large number of 
data sets from diverse sources, systematic recording and tracking of data-
quality metadata are very important. Unfortunately, in full generality that 
goal appears to be extremely challenging.

A less daunting but still very ambitious goal is to track the provenance 
of data elements—that is, their origin, movement, and processing histo-
ries. Provenance is also useful for purposes other than reasoning about 
quality, such as in propagating data updates efficiently, and to attribute 
data properly in scientific publications. Provenance capture, representation, 
and querying are active research topics in the communities dealing with 
scientific workflow, file systems, and databases. The three communities’ 
approaches emphasize different priorities among various trade-offs (e.g., 
the trade-off between capture overhead and query expressiveness). None 
of these approaches has reached significant levels of adoption in practice. 
Currently, provenance is managed with one-off approaches and standards—
for example, in planetary science research, each observation is tagged with 
the time, location, and platform from which it originated—and there is 
little systematic support for propagating provenance metadata with data 
wherever it travels.

Representation and propagation of constrained forms of data-quality 
metadata, such as confidence scores and error bars, is also an active area of 
research, although to date most work in that area has concentrated on theo-
retical issues. There could be an opportunity to consider how more formal 
statistical notions of uncertainty might be incorporated. Overall, there has 
been little work on scalable systems for the management of uncertain data.

Openness

Non-public data sets require great care when being shared across or-
ganizations. To maximize the pool of data that can be shared openly, tech-
nologies are needed that fuse open data while protecting proprietary data 
and preserving anonymity requirements. Data being shared that has been 
derived from private data (e.g., statistics created by aggregating private 
data points) is especially problematic, due to data leakage issues (accidental 
leakage as well as “harvesting” by malicious parties).
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SCALING COMPUTING TECHNOLOGY THROUGH 
DISTRIBUTED AND PARALLEL SYSTEMS

Massive data processing, storage, and analysis will require support 
from distributed and parallel processing systems. Because the processing 
speed of microelectronics is not increasing as rapidly as it used to, modern 
central processing units (CPUs) are instead becoming highly parallel. That 
is the only way to continue the performance improvements in large-scale 
processing that are demanded by applications. 

In order to enable performance improvements in processing, input/
output (I/O) and storage must also become parallelized and distributed. 
Amdahl’s Law—a rule of thumb that has been valid for nearly 50 years—
states that a balanced system needs one bit of I/O per CPU cycle, and thus 
improvements in processing speed must be matched by improvements in 
I/O. And high I/O performance necessitates a heavy use of local (on-chip) 
data storage, so that storage is as distributed and parallel as is processing.

The reason that single-threaded computation is still so common is that 
parallel and distributed systems are difficult to configure and maintain, and 
parallel and distributed software is difficult to write. The end of the ever-
faster CPU era has led to once-exotic technologies becoming commonplace 
and to new parallel programming and data management systems that are 
easier to use. This section outlines recent trends in parallel and distributed 
computing and I/O.

Hardware Parallelism

“Hardware parallelism” is defined here as the presence in a system of 
many separate computing elements that operate simultaneously. In some 
cases the elements perform highly specialized tasks and, as a result, can do 
so very quickly with many elements operating in parallel. A long-standing 
example of hardware parallelism is integrated circuits for signal processing 
that can perform Fast Fourier Transforms as a hardware operation. More 
recent developments are motivated by problems in network management 
and by the hardware developed to accelerate computer graphics.

Specialized networking equipment, such as very-high-speed network 
monitoring and firewall gear, commonly makes use of specialized hardware 
known as field programmable gate arrays (FPGAs) and ternary content ad-
dressable memory (TCAM). FPGAs are customizable integrated circuits that 
can be configured for high performance on special-purpose tasks. A TCAM 
is akin to a cache memory, but TCAM chips allow the user to specify tie-
breaking rules in the case of multiple matches. For example, TCAMs store 
subnetwork address ranges of interest and the FPGAs perform specialized 
tasks, such as regular expression matching on the packet content and rout-
ing (perhaps to a host for monitoring) based on the results of the TCAM 
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and other analyses. FPGAs have also found use in data warehouse analytics 
engines, performing filtering and other tasks on data streaming from disk. 

Another recent development in hardware parallelism is motivated by 
the graphics processing units (GPUs) developed to accelerate computer 
graphics. GPUs are highly parallel processors, originally developed for high-
end graphics applications and computer games. Various vendors (NVIDIA, 
ATI, IBM) have developed such platforms, which are increasingly used for 
applications requiring very high floating-point performance. (Many of the 
world’s top 500 computers are hybrid machines consisting of a large array 
of traditional CPUs and GPUs.) A typical GPU card can outperform a CPU 
by up to an order of magnitude, depending on the application, and the 
performance of a typical high-end graphics card exceeds a teraflop. Sorting 
performance is also spectacular, exceeding the rate of 1 billion records per 
second on some benchmarks. The performance per unit power dissipated 
is also significantly better with GPUs than with traditional processors, an 
issue that is becoming increasingly important for the total cost of ownership 
of high-end computing systems.

The main disadvantage in applying GPUs to large-scale data-intensive 
problems is the rather limited memory (typically 2-3 gigabytes (GB), up to 
6 GB currently) attached to the cards. While data access for the on-board 
memory is very fast, over 100 GB/s, moving data in and out of the cards 
can be a bottleneck.

Also, GPU programming is still rather complicated, requiring special 
environments (e.g., CUDA, OpenCL). Because of the single-instruction/
multiple-data nature of the hardware, special attention must be paid to 
laying out the data to match the configuration of the low-level hardware. 
The situation is getting better every year, as more and more algorithms are 
ported to the GPU environment, and increasingly sophisticated debugging 
environments are emerging. Much of the Linear Algebra PACKage library 
(LAPACK) has been ported, the Fastest Fourier Transform in the West 
(FFTW) library for performing discrete Fourier transforms is part of the 
basic CUDA library, and many graph algorithms have also been successfully 
ported to GPUs.

The hardware is quickly evolving. Upcoming GPU cards will support 
more generic memory access, better communication with the host, more 
flexible task switching, and preemptive multitasking, making them increas-
ingly comparable in programmability to traditional multicore architectures. 
There are many current efforts to integrate GPUs with databases and stream 
processing systems.
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Multicore CPUs

Over the past decade, conventional server-class CPUs have gained inter-
nal parallelism in two ways: by growing the number of cores (independent 
execution engines) per chip or per package and by increasing the number 
of operations a core can execute per cycle, largely by means of parallel 
operations on short vectors of data. Both trends increase the challenge of 
making good use of the available computational resources in real applica-
tions. Tools for automatically parallelizing and vectorizing applications are 
not currently very effective.

To date, the growth in the number of cores per chip has been somewhat 
restrained by market forces, in particular the need to retain good perfor-
mance on non-parallel code. But the industry is well aware that higher peak 
performance, and higher performance per watt, can be achieved by inte-
grating a much larger number of cores running at lower speeds. Whether 
massively multicore CPUs will soon play a major role in data analysis is 
hard to predict, but their eventual arrival now seems all but inevitable 
(Asanovic et al., 2006).

Flash Memory

The rapid proliferation in flash memory is another very relevant trend. 
As noted in a recent publication on the topic,

Traditionally, system designers have been forced to choose between perfor-
mance and safety when building large-scale storage systems. Flash storage 
has the potential to dramatically alter this trade-off, providing persistence 
as well as high throughput and low latency. The advent of commodity flash 
drives creates new opportunities in the data center, enabling new designs 
that are impractical on disk or RAM infrastructure (Balakrishnan et al., 
2012, p. 1).

To date, flash memory has been used as a fast alternative for disk storage, 
but it appears to be a promising technology for lowering power requirements 
while maintaining high reliability and speed for large-scale data systems. 

Data Stream Management Systems

Data stream management systems (DSMS) have emerged as a significant 
research topic over the past decade, with many research systems (Stream, 
Niagara, Telegraph, Aurora, Cougar) and commercial systems (Streambase, 
Coral8, Aleri, InfoSphere Streams, Truviso) having been developed. A DSMS 
runs a collection of standing queries on one or more input streams. The 
source streams are generally real-time reports of live phenomena. Examples 
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include stock ticker and other financial streams, feeds from sensor networks 
(e.g., highway monitoring), Web click-streams, video streams, streams of 
data from scientific experiments (e.g., astronomical or high-energy physics 
observations), and communications network traffic monitoring. These feeds 
are processed, correlated, and summarized by the DSMS on a continual basis 
for immediate action or further analysis.

There are two main methods for writing a query set for a DSMS. The 
first method uses a highly structured query language, often a variant of SQL 
(Structured Query Language), such as Contextual Query Language, CQL, 
which was developed for Stream. Another class of common stream query 
language incorporates regular expression-matching features to perform 
complex event detection. These stream languages differ from conventional 
SQL in that they generally require queries to use windowing constructs to 
limit the scope of the data used to compute any output record. For example, 
a stream query might ask, “for each five minute period, report the number 
of distinct source Internet protocol addresses of packets flowing through 
this network interface.”

The second method for specifying a query set to a DSMS uses a graphi-
cal “boxes-and-arrows” approach. Boxes represent data-processing tasks 
(or data sources), and arrows represent data flow. The programmer selects 
and customizes the boxes, then connects them with arrows to develop a 
data processing specification—often through a graphical user interface 
(e.g., Streambase, Infosphere Streams). The motivation for the boxes-and-
arrows method of programming is that many stream analyses are difficult 
to express in an SQL-like language (e.g., time-series analysis for financial 
applications, facial recognition in video streams). However, a DSMS query 
set expressed using a structured query language is generally easier to write 
and maintain, and it can be more readily optimized. 

There is not a rigid boundary between language-based and “boxes and 
arrows” data stream systems, as one can generally incorporate special-
purpose operators into a language-based DSMS, and structured language 
programming tools have been developed for “boxes-and-arrows” DSMSs 
(e.g., Streambase, InfoSphere Streams).

If the DSMS is programmed using a declarative query language, the 
query analyzer will convert the textual queries into a collection of stream 
operators so that in either case a collection of interconnected stream op-
erators is presented to the query optimizer. A directed graph of stream 
operators presents special opportunities for the query optimizer because 
a large and long-running system is presented to optimization. A stream 
query system presents many opportunities for multi-query optimization, 
ranging from scan sharing to identifying and merging common execution 
subtrees, which are not normally available in a database management sys-
tem (DBMS). The well-structured and explicit nature of the data flow in 
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a data stream system can enable highly effective optimizations for parallel 
and distributed stream systems.

For example, GS Tool from AT&T Labs Research will analyze its query 
set to determine an optimal hash partitioning of the packet stream from the 
network interfaces that it monitors. The output of a high-speed interface, 
such as 10 Gigabit Ethernet, is normally split into multiple substreams. 
Very-high-speed links (e.g., the optical transmission rate OC-768) are nor-
mally split into eight 10-Gigabit Ethernet streams by specialized networking 
equipment, at the direction of the query optimizer. The InfoSphere Streams 
system makes many optimizations to the query graph to optimize paral-
lel and distributed processing: splitting streams to enable parallelism of 
expensive operators, coalescing query operators into processing elements 
to minimize data copying, and allocating processing element instances to 
cluster nodes to maximize parallelism while minimizing data copy and 
network transmission overhead.

Cluster Batch (Grid) Systems

A cluster of high-performance servers can offer powerful computing 
resources at a moderate price. One way to take advantage of the computa-
tional resources of a cluster of servers is to use grid software. Examples of 
grid systems are Sun Grid and Load Sharing Facility. A typical grid system 
allows users to submit collections of jobs for execution, and the jobs are 
queued by the grid job manager, which schedules them for execution on 
nodes in the cluster. The job manager performs load balancing among the 
cluster nodes and shares compute resources among the users. A grid system 
can use a storage area network to create a local file system for a user’s job, 
or it can use a cluster file system.

A cluster file system is a common solution to the challenge of access-
ing massive distributed data. Such a system provides location-transparent 
access to data files to the servers on the cluster. The discussion that follows 
distinguishes between two types of cluster file systems, those which are 
POSIX compliant (or nearly so), and those which are not.2

A POSIX-compliant cluster file system is attractive to programmers 
because it provides a traditional interface for data access while requiring 
minimal reworking of a code base to take advantage of a cluster’s resources. 
POSIX-compliant cluster file systems are often built on top of a storage area 
network, typically one or more racks of hard drives attached to a high-
speed network such as Fibre Channel.

2  POSIX refers to the Portable Operating System Interface standards developed by the Insti-
tute of Electrical and Electronics Engineers and International Organization for Standardization 
to ensure compatibility between software and operating systems.
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A high-performance cluster file system such as Sun Microsystems’ 
Quick File System (QFS) separates metadata processing from disk block 
access. A metadata server manages one or more file systems, maintaining 
directories and I-nodes (perhaps on separate and specialized storage device 
such as an array of solid-state drives) and serving file metadata requests 
to the compute clients on the cluster. The clients access the actual data by 
direct access to the disks of the storage area network. File reliability and 
availability is typically provided by using the redundant array of indepen-
dent disks (RAID) technology.

Although a POSIX-compliant cluster file system is intended to be a 
transparent replacement for a local file system, the complexities of imple-
menting a distributed file system generally result in some gaps in compli-
ance. These gaps generally occur where complex synchronization would be 
involved, e.g., file locks and concurrent file access by processes on different 
servers. 

The difficulties of providing POSIX-compliance in a very-large-scale 
cluster have motivated the development of non-POSIX-compliant file sys-
tems, for example the Google file system and the Hadoop distributed file 
system (HDFS). The discussion below is based on the Google file system 
(Ghemawat et al., 2003), but HDFS is similar.

The Google file system is designed to support distributed analysis tasks, 
which primarily make scans of very large files. The underlying assumptions 
of the Google file system are as follows:

•	 Files are very large and contain well-defined records.
•	 Files are usually updated by processes that append well- defined 

 records. The sequential ordering of the appended records is 
not critical, and many processes may be appending records 
concurrently.

•	 Analysis processes generally make large sequential scans of the data 
files.

•	 Actual files are stored in the local file systems of servers configured 
into one or more racks in a data center.

As with QFS and similar systems, the Google file system separates the 
metadata server from the data servers. The metadata server keeps a hot 
spare in sync by logging all metadata operations to the hot spare before re-
sponding to client requests. A single metadata server might coordinate a file 
system distributed over thousands of nodes, so minimizing the number of 
metadata requests is critical. Therefore the file block size is very large—64 
megabytes (as compared to 4 kilobytes typical on a local file system).

To minimize the overhead and complexity of metadata-server failure 
recovery, the Google file system makes only weak guarantees about the cor-
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rectness of the data written into a file. Duplicate records might be written 
into the file, and the file might contain garbage areas. The clients that use 
the Google file system must make provisions for these problems: records 
should contain consistency information (e.g., checksums), and analysis 
clients must filter out duplicate records. File availability is ensured using 
replication; a file block is, by default, replicated to three storage hosts, 
although critical or frequently accessed files might have a higher degree of 
replication.

An interesting aspect of the Google file system is that a single server 
with a hot spare controls thousands of file server nodes. This type of con-
trol system can be highly reliable because any single server is unlikely to 
fail. Instead, provisions are made for recovering from failures among the 
thousands of file servers—a failure among thousands of nodes is far more 
likely. Synchronization is achieved using lightweight mechanisms such as 
logging and the use of file leases. Heavyweight synchronization mechanisms 
such as Paxos are reserved for the file lock mechanism.

MapReduce

MapReduce is a style of distributed data analysis that was popularized 
by Google for its internal operations (see Dean and Ghemawat, 2004). 
Hadoop is an open-source version of MapReduce. MapReduce takes its 
name from a pair of functional programming constructs, map and reduce. A 
map invocation applies a function to every element of a list, while a reduce 
invocation computes an aggregate value from a list.

As used in a MapReduce system, the map phase will organize a collec-
tion of compute nodes to divide up a data source (e.g., one or more files) 
and apply the map’ed function to every record in the file(s). The result is the 
value of the function on the record, as well as a hash value. In the reduce 
phase, the map results are reshuffled among the compute nodes, using the 
result hash to ensure that common records get sent to the same node. The 
reduce node combines records with the same hash into an aggregate value.

As stated, MapReduce would not seem to provide a powerful program-
ming construct. However, in the context of a large cluster, a MapReduce 
system provides a couple of critical services:

1. The master server that organizes the MapReduce computation 
hands out portions of the computation to participating nodes and 
monitors their progress. If a node fails, or is slow to finish, the 
master will hand the unit of work to another node.

2. The master server will ideally have a map of data locations (espe-
cially if the Google file system or the HDFS is used), node locations, 
and the network interconnecting them. The master server can at-
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tempt to assign processing close to the data (same server or same 
rack), distribute work evenly among servers, coordinate among 
concurrent jobs, and so on.

By providing reliability and basic optimizations, MapReduce (or 
Hadoop) greatly simplifies the task of writing a large-scale analysis on 
distributed data for many types of analyses.

The abstraction offered by a single MapReduce job is rather con-
strained and low-level, relative to the needs of applications that are moving 
to MapReduce-based platforms. Such applications range from Web data 
management to genomics to journalism. As a result, there are numer-
ous efforts to layer more flexible and high-level abstractions on top of 
MapReduce. Examples include machine-learning libraries (e.g., Mahout), 
structured query languages (e.g., Jaql, Hive, Pig Latin), and workflow man-
agers (e.g., Cascading, Oozie).

For some application scenarios, using a MapReduce job as a building 
block is not considered a good fit in terms of system performance consider-
ations such as latency and throughput. Hence, several projects are creating 
variations on MapReduce. One group of projects offers a general directed-
acyclic-graph (DAG) processing model (e.g., Dryad, Hyracks, Nephele). 
Another group caters to applications that require iterative processing of a 
data set, such as many machine learning algorithms (e.g., HaLoop, Spark). 
Lastly, there are projects such as Mesos, which aim to separate cluster 
management and scheduling concerns from the particulars of a given data-
processing framework (e.g., MapReduce, general DAGs, iterative process-
ing) and permit multiple such frameworks to coexist on the same cluster.

Cloud Systems

The computational demand of a particular user can be highly variable 
over time. Efforts to make more efficient use of resources include grid and 
cloud computing systems. These systems make a collection of resources 
available to a user and allow increases or decreases in resource allocation. 
Cloud computing can be attractive because the overhead of managing a 
large and complex system can be outsourced to specialists.

Amazon started offering cloud computing services in 2006. With its 
Elastic Compute Cloud, users can specify an operating system and ap-
plication disk image to be loaded on virtual servers ranging from low-end 
to high-end. The Simple Storage Service (S3) provides rentable persistent 
storage. Large-scale distributed applications can run on the Amazon cloud. 
For example, Apache Hadoop is designed to use Elastic Compute Cloud 
servers accessing data stored in S3. The success of Amazon’s cloud service 
has encouraged the development of other cloud computing offerings. For 
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example, Microsoft offers the Azure cloud service, providing compute and 
persistent storage services similar to those provided by Amazon.

Parallel and Distributed Databases

A database is a system that provides facilities for reliably storing data 
and later retrieving it using a convenient program. For the purposes of this 
discussion, it is assumed that the database is relational—i.e., that its records 
consist of a particular set of fields each with a specific data type, and all 
records in a table have the same set of fields. It is further assumed that the 
database provides an SQL interface for accessing the data. Most commer-
cial and open-source databases fit this description. These databases might 
also provide extensions for storing and querying semi-structured data (e.g., 
Extensible Markup Language, XML) and might support an extended query 
language; for example, one that supports recursive queries. However, these 
extensions are not necessary for this discussion.

Most commercial and open-source databases are parallelized in the 
sense that they can use multiple compute cores to evaluate a query when 
executed on a multicore server. One method of parallelization is to use mul-
tiple threads for performing expensive tasks, such as sorting or joining large 
data sets. Another method of parallelization takes advantage of the nature 
of the programs that a query in a language such as SQL will generate. An 
SQL query is converted into a collection of query operators connected into 
a rooted DAG (the query graph); the edges of the graph indicate data flow 
among the query operators. If the query operators operate in a pipelined 
fashion (continually accepting input and producing output), multiple query 
operators can execute in parallel, in a manner similar to the inter-operator 
parallelism exploited by data stream systems. Parallelizing database pro-
cessing has been an active research topic for several decades.

Very-large-scale parallel database systems are generally spread over a 
collection of servers using a shared-nothing architecture—that is, there is no 
cluster file system to provide a shared state. The tables in a shared-nothing 
database are horizontally partitioned, and the partitions are distributed 
among the database servers. Each of the database servers can run a paral-
lelized database in the sense of taking advantage of all available cores. 

A table can be partitioned among the database servers in many ways. 
Two common choices are round-robin (new data are spread evenly among 
the servers) and hash (data are spread among the servers based on a hash 
of one or more fields of the table). Different tables can be partitioned using 
different techniques. Critical or frequently accessed tables can be stored two 
or more times using different partitioning for each copy. The servers in a 
shared-nothing database cooperate to evaluate a query. Recall that a query 
is transformed into a rooted DAG of query operators. The root of the DAG 
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produces the query result, while the leaves access database tables. Subtrees 
of the query plan that operate on single tables are sent to the database 
servers, which compute the partial result represented by the subtree execut-
ing on the table partition local to the database server. The partial results 
generally need to be combined to form a result, whether for aggregation 
(which is similar to the reduce phase of a MapReduce program), or to join 
the result of the subtree with data from another subtree. This data transfer 
is represented by an operator commonly called shuffle. A complex query 
can involve a large query graph with many shuffle operators.

A shared-nothing parallel database can take many steps to optimize 
query evaluation. Some of the available techniques are as follows:

•	 Modify the way that one or more tables are partitioned among 
the database servers. For example, if tables R and S are frequently 
joined on key k, than one possible optimization is to partition both 
R and S on k, using the same hash function, to avoid a data shuffle 
when processing the join.

•	 If the result of two subtrees is to be joined, shuffle the results of 
the subtree that produces less data to the matching locations of the 
data from the other subtree result.

•	 Pipeline the operators to avoid the need to store very large partial 
results.

A database generally collects extensive statistics about the data that 
it manages and the queries that it processes to guide these and other op-
timizations. Shared-nothing databases were first developed in the 1980s 
(the Gamma and Grace research prototypes and the Teradata commercial 
DBMS), and extensive research has been performed on parallel database 
optimization. DeWitt and Stonebraker (2008) found that for data analy-
sis tasks for which a relational database is well-suited, a shared-nothing 
relational database significantly outperforms a MapReduce program im-
plemented using Hadoop. However, they also found that tuning parallel 
databases is often a difficult task requiring specialized expertise, whereas 
MapReduce systems are more readily configured to give good performance. 
Modern shared-nothing parallel databases include Teradata, Netezza, 
Greenplum, and extensions to Oracle and DB2.

However, a relational DBMS is not suitable for many analysis tasks. 
One well-known problem is that relational DBMSs are not well structured 
for managing array data—which are critical for many analyses. While the 
ability of modern databases to optimize storage layout and query evalua-
tion plans makes array management with a database an attractive idea, the 
query optimization for array data is difficult, and the relational model is 
based on sets, not ordered data. Several efforts to incorporate array data 
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into the relational model have appeared in the research literature, but with-
out lasting effect. The open-source project SciDB is developing a parallel 
shared-nothing database system designed to support array data. This system 
supports parallelism by chunking large arrays and distributing them among 
the database servers.

A NoSQL database is loosely defined as being a data store that pro-
vides fewer consistency guarantees than a conventional database and/or 
a database that stores non-relational data, such as documents or graphs. 
NoSQL databases attempt to improve scaling by providing only weak or 
eventual consistency guarantees on the stored data, eliminating much of the 
complexity and overhead of the traditional strong consistency provided by 
conventional databases, which is especially marked in a distributed setting. 
Examples of NoSQL databases include MongoDB (document store), Neo4j 
(graphs), Bigtable, and Cassandra.

Parallel Programming Languages and Systems

Developing parallel and/or distributed programs is notoriously dif-
ficult, due to the problems in finding resources, distributing work, gather-
ing results, recovering from failures, and understanding and avoiding rare 
conditions. A variety of tools have been developed to reduce the burden 
of developing parallel and distributed programs, for example, the Message 
Passing Interface and Remote Method Invocation in Java. However, paral-
lel programming with these intermediate-level tools is still difficult because 
the programmer is forced to specify many details of how the parallelism 
is managed. Simple access to parallel programming seems to require lan-
guages that are at least partly functional (e.g., MapReduce) or declarative 
(e.g., SQL).

One method for achieving simple user parallelism is to create languages 
whose primitives perform expensive operations on very-large data struc-
tures. Large matrix operations, such as multiplication or inversion, are 
expensive but readily parallelizable. Languages such as Matlab, S, Splus, 
and R, for which the basic data structure is a matrix, may therefore be 
promising aids to parallelism. R is the open-source version of S-plus, and 
it has attracted the most development effort. Open-source efforts include 
Multicore-R and R/parallel, which add a parallelized Apply construct to the 
language. Revolution Analytics produces a commercial version of R with 
a variety of extensions to support large-scale data analysis, for example, 
external memory versions of commonly used statistical analyses, and par-
allelized versions of looping functions such as “foreach” and “apply,” as 
well as multicore implementations of matrix operators. Ricardo interfaces 
R to Hadoop through Jaql and uses Jaql to run parallelized data analysis 
queries before loading the results into R for local analysis (Das et al., 2010).
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Some new programming languages are designed to readily support 
parallel programming. For example, F# is a functional language derived 
from OCaml, but with simplified syntax. While F# supports an imperative 
programming style, its nature encourages a functional style. 

TRENDS AND FUTURE RESEARCH

The clear trend for large-scale data analysis is to make increasing use 
of multicore parallel and distributed systems. The method for achieving 
enhanced performance through parallelism will depend on the nature of 
the data and the application. The largest analyses will be performed in 
large data centers running specialized software such as Hadoop over HDFS 
to harness thousands of cores to process data distributed throughout the 
cluster. Other large and centrally maintained facilities might run streaming 
analysis systems that reduce massive qualities of real-time data into a more 
manageable high-level data product.

However, actual analysts need to explore these data sets for them to 
be useful. One option is a grid-style environment in which users submit 
batch jobs to a large cluster and sometime later retrieve a result. While this 
result might be highly reduced, e.g., a plot in a graphical user interface, it 
might also be a processed data set delivered to the analysts’ workstation (or 
cluster). Even inexpensive personal computers currently provide four high-
performance cores and access to a powerful GPU. The local workstation 
will provide parallelized tools for exploring and analyzing the local data set. 

While large server farms provide immense computing power, managing 
them is expensive and requires specialized technical expertise. Therefore 
the trend of outsourcing large computing tasks to cloud services such as 
Amazon’s SC2 is likely to continue. One roadblock to using cloud services 
for massive data analysis is the problem of transferring the large data sets. 
Maintaining a high-capacity and wide-scale communications network is 
very expensive and only marginally profitable. 

Software systems tend to develop greater power and performance until 
the complexity of the system exceeds human (or organizational) ability to 
manage it. Parallel databases allow naive users to compose and execute 
complex programs over petabytes of data. Similarly, MapReduce removes 
enough of the complexity of writing very-large-scale distributed programs 
that a large user group can access the power of a large cluster. Hadoop 
overlays further reduce the complexity of large-scale data analysis.

However, using and maintaining large parallel and distributed systems 
remains difficult for the following reasons:

•	 While parallel databases are readily queried by casual users, they 
are very hard to tune, and data loading remains a bottleneck.
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•	 Although modern systems and languages have made parallel pro-
gramming much easier than previously, they remain significantly 
more difficult than serial programs.

•	 While modern systems and languages abstract away many of the 
difficulties of parallel and distributed programming, debugging 
remains difficult.

•	 Architecting, building, and maintaining a large cluster requires 
specialized expertise.

•	 Understanding the performance of parallel and distributed pro-
grams and systems can be extremely difficult. Small changes to 
program phasing, data layout, and system configuration can have 
a very large effect on performance. Very large systems are typically 
accessed by a user community; the effect of the interaction of mul-
tiple parallel programs compounds the problem of understanding 
performance.

Achieving greater use of the power of parallel and distributed systems 
requires further innovations that simplify their use and maintenance. Many 
very-large data systems need to store very-large amounts of historical data, 
but also provide real-time or near-real-time alerting and analytics. How-
ever, systems designed for real-time response tend to have a very different 
architecture than historical, batch-oriented large-data systems. A typical re-
sponse to these needs is to build two separate and loosely coupled systems. 
For example, a streaming system might provide real-time alerting, while 
historical analyses are made on a batch-oriented system. Transparently 
bridging real-time systems with large-data systems remains a research issue.

Similarly, data integration and data-quality assurance are difficult prob-
lems, which, in spite of tools such as Clio (Haas et al., 2005) or IBM’s 
 InfoSphere Information Analyzer, are generally bespoke, labor-intensive 
tasks. A significant direction of future research is the development of simple 
but powerful data-integration and data-quality tools that use machine 
learning techniques to automate these tasks.
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4

Temporal Data and  
Real-Time Algorithms

INTRODUCTION

Temporal data are associated with real-time acquisition and prediction 
of either human-generated data (e.g., Web traffic) or physical measure-
ments (e.g., speech and video data). Temporal information sources are very 
relevant to the challenges of analyzing massive data because many massive 
streams of data exhibit real-time properties. Thus, real-time algorithms for 
managing temporal streams comprise a broadly useful foundation on which 
to create new analysis capabilities. This chapter focuses on the current so-
lutions for and the specific challenges that time imposes on tasks such as 
data acquisition, processing, representation, and inference. It illuminates 
the challenges of dynamic data, and it will also touch on the hardware 
infrastructure required for storing and processing temporal data.

An example of the changes wrought by time upon massive data sets 
for human-generated data is the “click-through rate” estimation problem in 
online advertising systems. Millions of new data elements are accumulated 
every day, and the number of dimensions (number of discrete click-through 
paths) may grow by a few thousand per day. However, old dimensions, 
also referred to as coordinates, also disappear, such as when a proper noun 
that was frequent in the past is no longer used. For example, a new word 
like “iPad” adds a dimension, while a specific typewriter that is no longer 
manufactured may disappear from the relevant data, eliminating a dimen-
sion. Natural sequences such as speech and audio signals exhibit similar 
characteristics, although the dimension does not grow as rapidly. A notable 
example here is speech excerpts collected from mobile devices. Here the 
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sheer number of utterances, their variability (e.g., accents and dialects), 
and the vocabulary size pose serious challenges in terms of storage, rep-
resentation, and modeling. Last, but not least, is the domain of real-time 
imaging streams from satellites, surveillance cameras, street-view cameras, 
and automated navigation machines (such as unmanned cars and small 
aerial surveillance vehicles), whose collective data is growing exponentially.

DATA ACQUISITION

The initial phase of a temporal data analysis system is the acquisition 
stage. While in some cases the data are collected and analyzed in one loca-
tion, many systems consist of a low-level distributed acquisition mecha-
nism. The data from the distributed sources must generally be collected 
into one or more data analysis centers using a real-time, reliable data feeds 
management system. Such systems use logging to ensure that all data get 
delivered, triggers to ensure timely data delivery and ingestion, and intel-
ligent scheduling for efficient processing. For social media, data are often 
analyzed as they are collected, and the raw data are often not archived due 
to lack of storage space and usage policies.

Real-time massive data analysis systems generally use some type of 
eventual consistency, which, as the term implies, means that eventually the 
data arrive to all servers. Eventual consistency is often used in large-scale 
distributed systems to minimize the cost of distributed synchronization. 
Eventual consistency is also appropriate for real-time data analysis, because 
generally one does not know when all relevant data have arrived. Failures 
and reconfigurations are common in very-large-scale monitoring systems, 
so, in general, one cannot determine whether a data item is missing or 
merely late. Instead, the best strategy is generally to do as much processing 
as possible with the data that are available, and perhaps recompute answers 
as additional data come in.

Large-scale real-time analysis systems not only collect a data stream 
from many sources, they also typically collect many data streams and cor-
relate their results to compute answers. Different data streams typically 
are collected from different sources, and they often use different data-feed 
delivery mechanisms. As a result, different data streams typically exhibit 
different temporal latencies—one might reflect data within 1 minute of the 
current time, another within 10 minutes of the current time. Differing laten-
cies in data streams, combined with the uncertainty associated with deter-
mining when all data up to time t for a stream have been collected, make it 
difficult to produce definitive results for a query without a significant delay. 
The problem of determining when a collection of data streams can produce 
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a sufficiently trustworthy answer up to time t is called temporal consistency. 
The theory and practice of temporal consistency of streams is at its infancy.1

Large real-time data analysis systems will often collect many real-time 
data streams and compute many higher-level data products (materialized 
views) from them. Many data-ingest and view-update tasks must compete 
for limited system resources. Conventional real-time scheduling theories 
(such as hard, firm, or soft real-time scheduling) are not appropriate, be-
cause tasks that miss deadlines either break the system (hard real-time), are 
discarded (firm real-time), or are ignored (soft real-time). The recent theory 
of bounded-tardiness scheduling (Leontyev and Anderson, 2010) provides 
the most appropriate way to model a real-time data analysis system. Tasks 
can miss their deadline without breaking the system or being discarded, but 
their tardiness in completion after their deadline is bounded. Most conven-
tional real-time scheduling algorithms, such as earliest-deadline first, are 
bounded-tardiness algorithms.

Massive real-time data warehouses also need to cope with the breakage 
of one or more temporal feeds. Such a breakage might be the failure of a 
server at the feed side, an unannounced change in schema, and so on. When 
the feed source recovers, its past stream needs to be ingested and all tran-
sitively dependent data products updated. This task places a huge load on 
a temporal massive data warehouse, throwing it into temporary overload 
and creating the need for a graceful recovery of the affected tables without 
degrading the timeliness of updates to the other tables in the warehouse. 
The problem becomes more pronounced when a stream warehouse system 
needs to store a long history of events, e.g., years or decades, and is continu-
ously loaded. Moreover, such stream warehouses also need to cope with the 
need of providing both immediate time alerts and long-range aggregated 
statistics. There is thus a tension in such systems between timely serving 
needs and the synchronization latency, which is necessary for maintaining 
consistency. 

In some online transaction processing systems, fast real-time synchro-
nization can become an issue (Kopetz, 1997). When data integrity is a 
mandatory requirement, the state-of-the art systems use some variation of 
the Paxos algorithm. Paxos is actually a family of protocols for determining 
consensus in a network of unreliable processors; consensus is the process 
of agreeing on the result among a group of computing units, which is dif-
ficult when the units or their communication medium experience temporal 
failures. However, the Paxos family of algorithms was designed for main-
taining consistency in small- to medium-scale distributed data warehousing 
systems, and scaling Paxos-based and other consistency preserving storage 

1  For an initial keynote paper that suggests a formal treatment of stream consistency, see 
Golab and Johnson (2011).
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mechanisms is currently a critical open issue. In practice, implementing a 
consistent distributed real-time system in a massive computing environment 
with frequent transactions requires special technical expertise. As described 
in the President’s Council of Advisors on Science and Technology report 
Designing a Digital Future (PCAST, 2010), the challenge in building large-
scale temporal systems is that they must be robust to hardware failures as 
well as software bugs. For example, because a modern central processing 
unit (CPU) has a failure rate of about one fatal failure in 3 years, a cluster 
of 10,000 CPUs would be expected to experience a failure every 15 minutes 
on average. A temporal system for massive data must maintain a consistent, 
temporally coherent view in spite of this. As a real-world example, the 
Paxos algorithm lies at the heart of Google’s cluster servers for real-time 
transactions and services. Despite the fact that the Paxos algorithm, which 
was invented more than 20 years ago, is well understood and analyzed, a 
1-year effort by one of the world’s experts in the field of distributed pro-
cessing was still necessary to implement the algorithm on Google’s cluster 
system at a speed that will sustain the required transaction rate as well as 
survive a burst of failures.2

DATA PROCESSING, REPRESENTATION, AND INFERENCE

The next stage in time-aware data analysis includes building an ab-
stract representation of the data and then using it for inference. Methods 
for abstract data representation include coding and sketching. The coding 
sub-phase is based on either perceptual codes, which are often lossy, or loss-
less source coding techniques. Lossless source codings are naturally suitable 
for encoding temporal streams because they are often based on Markov 
models, efficiently represented as a context tree.3 The context modeling 
is combined with a backend stage, which is based on arithmetic coding. 
Coding systems are typically designed under the assumption that only a 
constant space is available. While this assumption is asymptotically valid, 
recent advances in flash-based memory architectures may greatly enhance 
the current state-of-the-art algorithms.

To cope with the computational needs that real-time and long-range 
temporal queries impose, analytic tools for summarizing temporal data 
streams are a must. A common and very effective summarization tool is 
called sketching. There are several types of sketching representations, bro-
ken down into two broad categories: those that retain data in its native 
format (e.g., sliding windows, a technique for randomly sub-sampling time 

2  For further details see Chandra et al. (2007).
3  See Eindhoven University of Technology, The Context-Tree Weighting Project, available at 

http://www.sps.ele.tue.nl/members/F.M.J.Willems/RESEARCH_files/CTW/ResearchCTW.htm.
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series) and those that use some derived format (e.g., random projections 
of one or more data coordinates, histograms of underlying distribution). 
Combinations of these two types of representation are also used. Chapter 6 
contains more discussion of sketching. 

Many data sources have an inherent periodic component or a natural 
time scale, and natural time-aware representations include averaged snap-
shots or windows of data over time, e.g., averaged over every basic time 
scale (such as a day) or repeated for many periods of time. See the tutorial 
by Garofalakis et al.4 for a number of examples of representation types and 
techniques. One key mathematical feature (albeit not a necessary feature) of 
any time-aware representation method is that it be linear; the representation 
of changes over time in the data are easily reflected and easily computed in 
changes to the original representation.

Going past the representation phase, which can be the sole stage of a 
real-time system, the core of many temporal data streams is a learning and 
inference engine. There has been an immense amount of work on online 
algorithms that are naturally suitable for time-aware systems.5 Most on-
line algorithms impose constant or at least sublinear memory assumptions, 
similar to data-streams algorithms. However, to cope with non-stationarity 
effects (changes in the distribution of the input stream) and to achieve 
high accuracy, more computationally demanding and space-consuming ap-
proaches are needed. One notable and promising approach is mixed online 
and batch learning by follow-the-regularized-leader (FTRL) algorithms, an 
overview of which is given in the book by Cesa-Bianchi and Lugosi.6 To 
date, however, there have been few implementations of large-scale massive 
data analysis systems based on FTRL.

In addition to the use of temporal data to form accurate predictions, 
the processing of temporal data often gives rise to specialized inference 
problems such as change-point detection. When the input data rate exceeds 
the computing capabilities of online learning and prediction algorithms, one 
needs to resort to methods that provide approximate representations. This 
paradigm is often referred to as the data-stream approach. Data-stream 
algorithms provide temporal tools for representing and processing input 
data that come at a very high rate. The high-rate input stresses the com-
munication, storage, and computing infrastructure to the point that it is 
difficult, if not impossible, to transmit the entire input, compute complex 
functions over large portions of the input stream, and store and capture 

4  M. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and Mining Data Streams: You 
Only Get One Look. A Tutorial,” presented at the 28th International Conference on Very 
Large Data Bases (VLDB 2002), August 20-23, 2002, available at http://www.cse.ust.hk/
vldb2002/program-info/tutorial-slides/T5garofalalis.pdf, accessed June 16, 2012.

5  Cesa-Bianchi and Lugosi (2006) provides a broad in-depth description of online algorithms.
6  Ibid.
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temporally the entire input stream. Numerous effective fast algorithms ex-
ist for extracting statistical quantities such as median, mean, quantiles, and 
histograms and, more generally, for answering queries of the data set or 
multiple data sets. In the past 10 years, there have been a number of stream-
based data management systems developed to address these questions. One 
such example is the Stanford Data Stream Management System. Theory 
and applications of streaming data have developed to the point where a 
whole book has been dedicated to the subject (Muthukrishnan, 2005). 
However, the fusion of stream approaches with efficient statistical inference 
for general models remains a major research challenge. This fusion poses 
significant challenges because state-of-the-art learning algorithms are not 
designed to cope with partial summaries and snapshots of temporal data.

SYSTEM AND HARDWARE FOR TEMPORAL DATA SETS

The discussion thus far has focused on software, analysis, and algo-
rithmic issues and challenges that are common to massive temporal data. 
Massive temporal data also pose high demands on the hardware and sys-
tems infrastructure. Such systems need to employ a very large distributed 
file system such as Google’s file system (GFS) and tens of data-acquisition 
machines to funnel the data to thousands of processors using very fast in-
terconnects. This type of architecture has a very high throughput but is very 
difficult to replicate and expensive to maintain, requiring a good comple-
ment of reliability engineers. Massive temporal systems cannot be deployed 
by boutique-size data warehouses because there are only a handful of tools 
that can help in large-scale processing. Noise-tolerant storage of temporal 
data also places a high bar on maintaining data integrity because storage 
error patterns tend to be local and bursty in nature. Although the theory of 
error correction for communication over channels prone to burst errors is 
well established (e.g., McAuley, 1990), applications of the theory to mas-
sive storage of temporal data are mostly confined to proprietary systems 
such as the aforementioned GFS. In addition to the storage requirements, 
substantial computing infrastructure is required even for simple tasks. Here 
again there is a lack of publicly available source code for near-real-time 
processing of temporally stored data.

CHALLENGES

Major current and future challenges that arise in time-aware systems 
for massive data include the following:

•	 Design and implementation of new representation algorithms and 
methods for perpetually growing, non-stationary massive data, 
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especially in conjunction with learning and modeling. Although 
sketching algorithms for streaming data naturally incorporate 
changes in the data streams, they do not necessarily give an easy 
and straightforward method for adjusting and updating models 
and inferences derived from these sketches over time. Current 
algorithms permit efficient model-building but do not efficiently 
change the models over time. Furthermore, there is not a natural 
way to identify or to detect model changes in a streaming setting, 
perhaps with limited data. The current algorithms for updating net-
work metrics permit efficient calculation only for certain network 
structures.

•	 Streaming and sketching algorithms that leverage new architec-
tures, such as flash memory and terascale storage devices. As dis-
cussed in the chapter on sampling, software and hardware models 
for acquiring data quickly over time is an area of active current 
research. Many streaming and sketching algorithms are designed 
in the absence of a specific hardware or software system; yet it is 
only when practical systems are built that both the limitations of 
the theoretical algorithms as well as potential new algorithms are 
seen.

•	 Distributed real-time acquisition, storage, and transmission of tem-
poral data.

•	 Consistency of data. Most systems perform acquisition in an asyn-
chronous manner. When consistency is important, Paxos-based 
algorithms are employed. Can these solutions scale when the input 
stream is one or two orders of magnitude more massive, as in the 
case of audio and video data?

•	 Lack of effective tools for the design, analysis, implementation, 
and maintenance of real-time, temporal, time-aware systems for 
nonprofit, educational, and research institutions, including lack of 
realistic data sources for benchmarking algorithms and hardware 
performance.

REFERENCES

Cesa-Bianchi, N., and G. Lugosi. 2006. Prediction, Learning and Games. Cambridge Univer-
sity Press, New York, N.Y.

Chandra, T., R. Griesemer, and J. Redstone. 2007. Paxos made live—An engineering perspec-
tive. PODC ‘07: 26th ACM Symposium on Principles of Distributed Computing. Avail-
able at http://labs.google.com/papers/paxos_made_live.html.

Golab, L., and T. Johnson. 2011. Consistency in a stream warehouse. Pp. 114-122 in Proceed-
ings of the 2011 Conference on Innovative Data Systems Research (CIDR). Available at 
http://www.cidrdb.org/cidr2011/program.html.



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

TEMPORAL DATA AND REAL-TIME ALGORITHMS 65

Kopetz, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. Kluwer Academic Publishers, Norwell, Mass.

Leontyev, H., and J.H. Anderson. 2010. Generalized tardiness bounds for global multiproces-
sor scheduling. Real-Time Systems 44(1):26-71.

McAuley, A.J. 1990. Reliable broadband communication using burst erasure error correcting 
code. ACM SIGCOMM Computer Communication Review 20(4):297-306.

Muthukrishnan, S. 2005. Data Streams: Algorithms and Applications. Now Publishers, 
 Hanover, Mass.

PCAST (President’s Council of Advisors on Science and Technology). 2010. Designing a Digi-
tal Future: Federally Funded Research and Development in Networking and Information 
Technology. Office of Science and Technology Policy, Washington, D.C.



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

66

5

Large-Scale Data Representations

OVERVIEW

Data representation refers to the choice of a mathematical structure 
with which to model the data or, relatedly, to the implementation of that 
structure. The choice of a particular data representation is dictated by 
various considerations, such as hardware, communication, data-genera-
tion process, input-output, data sparsity, and noise. As such, questions of 
large-scale data representation typically have algorithmic, statistical, and 
implementation or systems aspects that are intertwined and that need to be 
considered jointly. In addition, the nature of data representation changes 
depending on the task at hand, the context in which the data are acquired, 
the aspect of data analysis being addressed, and what features of the data 
are being captured.

A closely related but somewhat more vague notion is that of a data 
feature. In many cases, a data feature is an externally defined property of 
the data that can be easily computed from the data or measured directly and 
then plugged into a data-processing algorithm. Designing such features is 
often difficult, because it requires substantial domain-specific insight, but it 
is often the most important step in the data-analysis pipeline. In other cases, 
however, standard mathematical operations are used to transform the data 
and, thereby, define features. For example, properties of the eigenvectors 
or eigenvalues of matrices associated with the data can be used as features.

For consistency, the following taxonomy is used to distinguish between 
several basic uses of the term “data representation”:
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•	 Basic data structures. This category includes structures such as 
hash tables, inverted indices, tables/relations, etc. These are data 
structures that one finds in standard textbooks on algorithms and 
databases (Cormen et al., 2009; Garcia-Molina et al., 2008).

•	 More abstract, but basic, mathematical structures. This category 
includes structures such as sets, vectors, matrices, graphs, and 
metric spaces. Many of these mathematical structures have sparse 
variants, e.g., vectors and graphs with few non-trivial components, 
matrices of low rank, and so on. Each mathematical structure can 
be represented using many data structures, with different imple-
mentations supporting different operations and optimizing differ-
ent metrics.

•	 Derived mathematical structures. This category includes more 
sophisticated structures such as clusters, linear projections, data 
samples, and such. Although these representations are often basic 
mathematical structures, they do not directly represent the original 
data, but are instead derived from the data and often can be viewed 
as representations of components in a model of the data.

The committee also differentiates between two different “design goals” 
that one has to keep in mind in choosing appropriate data representations:

•	 First, on the upstream or data-acquisition or data-generation side, 
one would like a structure that is “sufficiently close” to the data. 
Such a representation supports the process of generating, storing, 
or accessing the data while providing a model for the noise or un-
certainty properties of the data. The goal of such representations 
is to support all of these operations without significantly altering 
the data.

•	 Second, on the downstream or data analysis side, one would like a 
structure that has both a flexible description and is tractable algo-
rithmically. That is, it should be expressive enough so that it can 
describe a range of types of data, but it should not be so expres-
sive that it can describe anything (in which case computations and 
inferences of interest would likely be intractable).

GOALS OF DATA REPRESENTATION

Although a picture may be worth a thousand words, a good representa-
tion of data is priceless: a single data representation, or sometimes multiple 
ones, allows one to carry out a large number of data processing and analy-
sis tasks in a manner that is both algorithmically efficient and statistically 
meaningful. This section presents an overview of the various goals of data 
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representations, together with illustrative examples of representations that 
accomplish those goals.

Reducing Computation

In the massive data context, a key goal in data representation is that 
of reducing computation. In order to understand the relationship between 
data representation and computational efficiency, one has to examine spe-
cific data structures that are most suitable for different computational 
primitives.

One basic operation in data processing is to query parts of the data. 
The main technique to facilitate efficient querying is indexing, and thus one 
needs advanced indexing algorithms that can retrieve desired data and attri-
butes efficiently. The indices can be regarded as additional representations 
of the data that are derived from the raw data and added to the data set as 
auxiliary information. Moreover, different classes of queries and different 
data require different indexing methods in order to be performed efficiently.

For example, for queries on text documents, a standard indexing tech-
nique is an inverted index table (Baeza-Yates and Ribeiro-Neto, 1999). That 
is, one stores a mapping from content (such as words or numbers) to its 
physical locations in the data set. One may map different contents into one 
index; for example, an indexer for text search usually records words with 
the same underlying meaning (e.g., “drives,” “drove,” and “driven” would 
be related to the single concept word “drive”). In some applications (e.g., 
biology) it is important to allow more general pattern matching queries, 
where the goal is to find arbitrary substrings (not only words) in the text. 
Suffix trees, suffix arrays, and variations of these are some of the popular 
structures solving the pattern matching problem (Jones and Pevzner, 2004). 
In general, approximate matching may require more complex indexing 
schemes. Example are locality-sensitive hashing (Andoni and Indyk, 2008) 
and min-hashing (Broder, 1997), which can efficiently find approximate 
nearest neighbors of a query from a database.

For many other aspects of data analysis, the more traditional data 
representations have been geared toward algorithms that process data 
sequentially on a single machine. Additional considerations are needed for 
large-scale distributed computing environments that use computational 
resources from multiple computers. 

Reducing Storage and/or Communication 

In addition to reducing computation time, proper data representations 
can also reduce the amount of required storage (which translates into 
reduced communication if the data are transmitted over a network). For 
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example, text documents can be efficiently compressed using Lempel-Ziv 
compression, the Burrows-Wheeler transform, or similar representations 
(Salomon, 1998). Compression can be also applied to data structures, not 
just data. For the aforementioned pattern-matching search problem, there 
exist data structures (based on the Burrows-Wheeler transform) that store 
only a compressed representation of the text (Ferragina and Manzini, 2000; 
Langmead et al., 2009).

One can reduce the storage size even further by resorting to lossy com-
pression. There are numerous ways this can be performed. This is often 
achieved by transform coding: one transforms the data (e.g., images or 
video) into an appropriate representation (e.g., using Fourier or wavelet 
transforms) and then drops “small” coefficients. For matrices, lossy com-
pression can be achieved by truncating the Singular Value Decomposition 
or the eigenvalue decomposition (Hansen, 1987). This involves retaining 
just the dominant part of the spectrum of the data matrix and removing 
the “noise.” Different forms of lossy compression can be used to improve 
space efficiency of data structures as well. Examples include Bloom filters, 
for approximate set-membership queries (Broder and Mitzenmacher, 2002), 
and Count-Sketch (Charikar et al., 2002) and Count-Min (Cormode and 
Muthukrishnan, 2005) representations for estimating item counts. These 
methods randomly map (or hash) each data item into a lower-dimensional 
representation, and they can be used for other tasks, such as estimating 
similarity between data sets. Other related techniques for obtaining low-
dimensional representations include random projections, based either on 
the Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss, 1984) or its 
more time-efficient versions (Ailon and Chazelle, 2010; Ailon and Liberty, 
2011). 

Reducing Statistical Complexity and Discovering the Structure in the Data 

One can also use data representations to reduce the statistical complex-
ity of the problem—the amount of data needed to solve a given statistical 
task with a given level of confidence—by approximating the data set by 
simpler structures. Specifically, by carefully selecting a small number of 
data attributes, data points, or other parameters, one can apply more con-
strained statistical models with fewer parameters and improve the quality 
of statistical inference. The reduced representation should represent the 
sufficient statistics for inference, while the “dropped” data should either be 
irrelevant or simply be noise. Alternatively, one can view this process from 
a model-based perspective as discovering the latent structure of the data. 

Typically, this approach also leads to reduced running time and storage. 
This can be exploited as a filtering approach to data analysis: if we have 
a data set with many features that cannot be processed by complex algo-
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rithms, we may use a simple feature-selection algorithm to filter the features 
and obtain a smaller (but still reasonably large) set of features that can be 
handled by the complex algorithm. This leads to a multi-stage approach 
that goes back and forth between representations with different accuracies 
and algorithmic complexity.

Two basic approaches to structure discovery are dimensionality reduc-
tion and clustering.

Dimensionality reduction refers to a broad class of methods that re-
express the data, typically in terms of vectors that are formally of very high 
dimension, in terms of a small number of actual data points or attributes, 
linear or nonlinear combinations of actual data points/attributes, or lin-
ear combinations of nonlinearly transformed actual data points/attributes. 
Such methods are most useful when one can view the data as a perturbed 
approximation of some low-dimensional scaffolding. There are numerous 
algorithms for discovering such structures in data, either linear (e.g., Princi-
pal Component Analysis; see van der Maaten et al., 2009) or nonlinear ones 
(locally linear embedding, isomap, Laplacian eigenmaps, diffusion maps; 
see Roweis and Saul, 2000; Tenenbaum et al., 2000; Belkin and Niyogi, 
2003; and Coifman and Lafon, 2006).

It is critically important to understand what kind of properties must 
be preserved via dimensionality reduction. In the simplest unsupervised 
settings, it is often the variance or some other coarse measure of the infor-
mation in the data that must be preserved. In supervised settings, the goal 
is to reduce the dimension while preserving information about the relevant 
classification directions. A popular method for achieving this goal when it 
is thought that some sort of sparsity is present is to augment a regression 
or classification objective with an L1 constraint, which reduces the number 
of attributes used by the classifier (Tibshirani, 1996). A different class of 
methods, known as sufficient dimension reduction methods, search over 
projections of the data to find a projection that retains as much information 
about the response variable as possible.

Although algorithms that implicitly incorporate sparsity (e.g., local 
spectral methods or local diffusion-based or sampling-based methods) have 
been less well-studied than algorithms that explicitly add a regularization 
term to the original objective, the former have clear advantages for very-
large-scale applications. Relatedly, randomization as a computational or 
algorithmic resource, and its implicit regularization properties, is also a 
subject of interest, in particular for large-scale data analysis. By implicitly 
incorporating regularization into the steps of an approximation algorithm 
in a principled manner, one can obtain algorithmic and statistical benefits 
simultaneously. More generally, although the objects in the reduced dimen-
sional space are often represented as vectors, other useful data representa-
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tions such as relational or hierarchical representations can be useful for 
large-scale data that are not naturally modeled as matrices.

Dimensionality reduction is often used after increasing the dimension-
ality of the data. Although at first this may appear counter-intuitive, the 
additional dimensions may represent important nonlinear feature interac-
tions in the data. Including these additional dimensions can simplify sta-
tistical inference because the interaction information they capture can be 
incorporated into simpler linear statistical models, which are easier to deal 
with. This forms the basis of kernel-based methods that have been popular 
recently in machine learning (Hofmann et al., 2008), and, when coupled 
with matrix sampling methods, forms the basis of the Nystrom method 
(Kumar et al., 2009).

Clustering (also known as partitioning or segmentation) is a widely 
performed procedure that tries to partition the data into “natural groups.” 
Representing the data by a small number of clusters necessarily loses certain 
fine details, but it achieves simplification, which can have algorithmic and 
statistical benefits. From a machine learning perspective, this task often 
falls under the domain of unsupervised learning, and in applications often 
the first question that is asked is, How do the data cluster? Many cluster-
ing algorithms are known in the literature. Some of the most widely used 
are hierarchical clustering, k-means, and expectation maximization (Jain 
et al., 1999).

There is a natural relationship between clustering and dimensionality 
reduction methods. Both classes of methods try to make data more compact 
and reveal underlying structure. Moreover, one may view clustering as a 
form of dimensionality reduction. Some methods, e.g., latent Dirichlet al-
location (Blei et al., 2003), explicitly exploit this connection.

Exploratory Data Analysis and Data Interpretation

Both dimensionality reduction and clustering are highly useful tools for 
visualization or other tasks that aid in initial understanding and interpreta-
tion of the data. The resulting insights can be incorporated or refined in 
more sophisticated inference procedures. More generally, exploratory data 
analysis refers to the process of simple preliminary examinations of the 
data in order to gain insight about its properties in order to help formu-
late hypotheses about the data. One might compute very simple statistics, 
use some of the more sophisticated algorithms discussed earlier, or use 
visualization tools. Sampling the data, either randomly or nonrandomly, is 
often important here, because working interactively with manageable sizes 
of data can often be a first step at determining what is appropriate for a 
more thorough analysis, or whether a more sophisticated analysis is even 
needed. It should be noted, however, that in addition to reducing storage, 
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sampling methods such as CUR decompositions1 can also be also useful for 
exploratory data analysis tasks, because they provide actual data elements 
that are representative in some sense. For example, when applied to  genetics 
data, CUR decompositions can provide actual information about actual 
patients or actual DNA single-nucleotide polymorphisms that can then 
be typed in a laboratory by a geneticist for further downstream analysis 
( Paschou et al., 2007).

Sampling and Large-Scale Data Representation

Many questions of large-scale data representation have to do with 
questions of sampling the data, and there are several complementary per-
spectives one can adopt here. 

On the one hand, one can imagine that the data have been collected 
(either actually or conceptually), and one is interested in performing rela-
tively expensive computations on the data. One possible solution, men-
tioned above, is to perform the expensive computation on a small sample 
of the data and use that as an approximation for the exact solution on the 
full data set. In this case, sampling is effectively a dimensionality-reduction 
method and/or a technique for reducing storage that makes it possible to 
obtain approximate solutions to expensive problems. Many randomized, 
as well as nonrandom, sampling techniques are known as well, including 
core-sets, data squashing, and CUR decompositions (Agarwal et al., 2005; 
DuMouchel, 2002; Mahoney and Drineas, 2009). More generally, data 
clustering (also mentioned above) can be used to perform data compression 
by replacing each cluster element with a cluster “representative,” a process 
sometimes known as vector quantization (Gersho and Gray, 1992). 

On the other hand, sampling can refer to the process of collecting data 
in the first place, and typically it is of interest when collecting or analyz-
ing all of the data is unreasonable. A more detailed discussion of this is 
provided in Chapter 8, and here the committee simply notes some simi-
larities and differences. When sampling to collect data, one is interested 
in sampling enough to reduce the uncertainty or variance of, for example, 
estimates, but a major concern is also on controlling the bias. That is, one 
wants to collect at least some data from all groups or partitions that are 
thought to be relevant to the outcomes of the data analysis. When sampling 
is used to speed up computation, one is also interested in minimizing vari-
ance, but controlling bias is often less of an issue. The reason is that one 
can typically construct estimators that are unbiased or that have a small 
bias and then focus on collecting enough samples in such a way that the 

1  The decomposition of a data matrix into the factors “C,” “U,” and “R” is explained in 
Mahoney and Drineas (2009). 
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variance in the computed quantities is made sufficiently small. Because the 
goal is simply to speed up computations, one is interested in not introducing 
too much error relative to the exact answer that is provided by the larger 
data set. Thus, many of the underlying methodological issues are similar, 
but in applications these two different uses of the term “sampling” can be 
quite different.

CHALLENGES AND FUTURE DIRECTIONS

The discussion to this point has addressed some of the challenges in 
data representation in general, but it has not highlighted the additional 
burdens that massive data impose on data representations. The following 
subsections address key issues in representing data at massive scales. The 
challenges of data management per se are important here, but they have 
already been discussed in Chapter 3.

The Challenge of Architecture and Algorithms:  
How to Extend Existing Methods to Massive Data Systems

A large body of work currently exists for small-scale to medium-scale 
data analysis and machine learning, but much of this work is currently 
difficult or impossible to use for very-large-scale data because it does not 
interface well with existing large-scale systems and architectures, such as 
multicore processors or distributed clusters of commodity machines. Thus, 
a major challenge in large-scale data representation is to extend work that 
has been developed in the context of single machines and medium-scale 
data to be applicable to parallel, distributed processing and much larger-
scale situations. A critical concern in this regard is taking into account 
real-world systems and architectural constraints. Many of these issues are 
very different than in the past because of the newer architectures that are 
emerging (Asanovic et al., 2006).

In order to modify and extend existing data analysis methods (that 
have implicitly been developed for serial machines with all the data stored 
in random access memory), a critical step will be choosing the appropriate 
data representation. One reason is that the choice of representation affects 
how well one can decompose the data set into smaller components so that 
analysis can be performed independently on each component. For example, 
intermediate computational results have to be communicated across differ-
ent computational nodes, and thus communication cost should be mini-
mized, which also affects and is affected by the data representation. This 
issue can be rather complicated, even for relatively simple data structures 
such as matrix representations. For example, to perform matrix-vector 
multiplication (or one of many linear algebra operations that use that step 
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as a primitive), should the matrix be distributed by columns (in which 
case each node keeps a small set of columns) or should it be distributed 
by rows (each node keeps a small set of rows)? The choice of representa-
tion in a parallel or distributed computing environment can heavily impact 
the communication cost, and thus it has far-reaching consequences on the 
underlying algorithms.

The Challenge of Heavy-Tailed and High-Variance Data

Although dimensionality reduction methods and related clustering and 
compact representations represent a large and active area of research with 
algorithmic and statistical implications, it is worth understanding their 
limitations. At a high level, these methods take advantage of the idea that 
if the data are formally high-dimensional but are very well-modeled by a 
low-dimensional structure—that is, the data are approximately sparse in 
some sense—then a small number of coordinates should suffice to describe 
the data. On the other hand, if the data are truly high-dimensional, in the 
sense that a high-dimensional structure provides the best null model with 
which to explain the data, then measure concentration and other intrinsi-
cally high-dimensional phenomena can occur. In this case, surprisingly, 
dimensionality reduction methods can often be appropriate again. Both 
very-high-dimensional and very-low-dimensional extremes can have ben-
eficial consequences for data analysis algorithms. 

Unfortunately, not all data can fruitfully be approximated by one of 
those two limiting states. This is often the case when the processes that 
underlie the generation of the data are highly variable. Empirically, this 
situation often manifests itself by so-called heavy-tailed distributions, for 
example, degree distribution or other statistics of informatics graphs that 
decay much more slowly than do the tails of Gaussian distributions (Clauset 
et al., 2009).

As an example of this, social and information networks often have 
very substantial long-tailed or heavy-tailed behavior. In this case, there 
are a small number of components that are “most important,” but those 
components do not capture most of the information in the data. In such 
cases, data often cluster poorly—there may be local pockets of structure, 
but the data might be relatively unorganized when viewed at larger size 
scales—and thus the vast majority of traditional algorithmic and statisti-
cal methods have substantial limitations in extracting insight (Leskovec 
et al., 2009).

Far from being a pathological situation, the phenomenon of data hav-
ing good small-scale structure but lacking good large-scale structure arises 
in many applications. In Internet applications, a major challenge is to “push 
mass out to the heavy tail.” For example, in a recommender system, the 
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“heavy tail” may refer to the large number of users who rate very few mov-
ies, in which case a challenge is to make useful personalized recommenda-
tions to those users; or it may refer to the large number of movies that are 
not blockbuster hits and that have received very few ratings, in which case a 
challenge is to create new markets by suggesting these movies to potentially 
interested users. In both cases, there is substantial competitive advantage to 
be exploited by making even slightly more reliable predictions in this noisy 
regime. Similarly, in many scientific applications, the “heavy tail” is often 
where new scientific phenomena manifest themselves, and thus methods for 
extracting small signal from a background of noise is of interest. 

Thus, a major challenge in large-scale data representation is to develop 
methods to deal with very-high-variance situations and heavy-tailed data.

The Challenge of Primitives: Develop a Middleware 
for Large-Scale Graph Analytics

From the computer systems perspective, it would be very helpful to 
identify a set of primitive algorithmic tools that (1) provide a framework 
to express concisely a broad scope of computations; (2) allow program-
ming at the appropriate level of abstraction; and (3) are applicable over a 
wide range of platforms, hiding architecture-specific details from the users. 
To give an example of such a framework, linear algebra has historically 
served as such middleware in scientific computing. The mathematical tools, 
interactive environments, and high-quality software libraries for a set of 
common linear algebra operations served as a bridge between the theory 
of continuous physical modeling and the practice of high-performance 
hardware implementations. A major challenge in large-scale data represen-
tation is to develop an analogous middleware for large-scale computations 
in general and for large-scale graph analytics in particular. The Graph 500 
effort2 may be helpful in this regard, and Chapter 10 of this report discusses 
a possible classification of analysis tasks that might underpin a library of 
such middleware.

A good example of an archetypal problem for this challenge is the need 
for methods appropriate for the analysis of large but relatively unstructured 
graphs, e.g., on social networks, biological networks, certain types of 
noisy graphical models, etc. These problems represent a large and growing 
domain of applications, but fundamental difficulties limit the use of tradi-
tional data representations in large-scale applications. For example, these 
problems are characterized by poor locality of reference and data access, 
nontraditional local-global coupling of information, extreme sparsity, noise 
difficulties, and so on. 

2  See The Graph 500 List, available at http://www.graph500.org/.
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Of particular importance is the need for methods to be appropriate 
for both next-user-interaction applications and interpretable analytics ap-
plications. In many applications, there is a trade-off between algorithms 
that perform better at one particular prediction task and algorithms that 
are more understandable or interpretable. An example of the former might 
be in Internet advertising, where one may wish to predict a user’s next 
behavior. The most efficient data-analysis algorithm might not be one that 
is interpretable by a human analyst. Examples of interpretable analytics 
applications arise in fields such as biology and national security, where 
the output of the data-analysis algorithm is geared toward helping an ana-
lyst interpret it in light of domain-specific knowledge. Ideally, middleware 
would be designed to serve both of these purposes.

One of the potential approaches to this challenge is to use the existing 
middleware for linear-algebraic computation, using deep theoretical con-
nections between graph theory and linear algebra (both classic (e.g., Chung, 
1992) and more recent ones (e.g., Spielman, 2010). However, it is not clear 
yet to what extent these connections can be exploited practically to cre-
ate an analogous middleware for very-large-scale analytics on graphs and 
other discrete data. Because the issues that arise in modern massive data 
applications of matrix and graph algorithms are very different than those 
in traditional numerical linear algebra and graph theory—e.g., the sparsity 
and noise properties are very different, as are considerations with respect 
to communication and input/output cost models—a central challenge will 
be to deal with those issues. 

The Challenge of Manipulation and Integration of Heterogeneous Data

The manipulation and integration of heterogeneous data from different 
sources into a meaningful common representation is a major challenge. For 
example, in biology, one might have mRNA expression data, protein-pro-
tein interaction data, gene/protein sequence data, and phenotypic data to fit 
to something, such as whether a gene is up-regulated or down-regulated in a 
measurable way. Similarly, on a Web page, one may have text, links to and 
from, images, html structure, user click behavior, and data about which site 
the user came from and goes to. A common way to combine these diverse 
non-numerical data is to put everything into a feature vector. Alternatively, 
one might construct several similarity graphs or matrices and then combine 
them in a relatively ad hoc way. The very real danger is that doing so dam-
ages the structure in each representation, e.g., linear combinations of the 
combined data might not be meaningful, or the rule for combining similar-
ity graphs implicitly introduces a lot of descriptive flexibility. 

It is thus important to develop principled ways to incorporate meta-
data on top of a base representation. Such methods should have theoretical 
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foundations, as well as respect the constraints of communication, hardware, 
and so on. 

Relatedly, large-scale data sets may contain information from multiple 
data sets that were generated individually in very different ways and with 
different levels of quality or confidence. For example, in a scientific study, 
multiple experiments may be conducted in different laboratories with vary-
ing conclusions. In Web-page analysis, information such as content, click-
through information, and link information may be gathered from multiple 
sources. In multi-media analysis, video, speech, and closed captions are 
different information sources. In biological applications, if one is interested 
in a specific protein, information can be obtained from the literature in free-
text form describing different research results, or from protein interaction 
tables, micro-array experiments, the protein’s DNA sequence, etc.

One issue is that the most appropriate data representation can differ 
across these heterogeneous sources. For example, structured data, such as 
in a relational database, are usually represented in tabular form. Another 
kind of data, which is becoming increasingly important, is unstructured 
data such as free-form text and images. These require additional processing 
before the data can be utilized by computers for statistical inference. An-
other challenge is how to take advantage of different information sources 
(or views) to improve prediction or clustering performance. This is referred 
to as multi-view analysis, a topic that has drawn increasing interest in re-
cent years. Much research has been focused on more sophisticated ways to 
combine information from different sources instead of naively concatenat-
ing them together into a feature vector.

The Challenge of Understanding and Exploiting the Relative 
Strengths of Data-Oblivious Versus Data-Aware Methods

Among the dimensionality reduction methods, there is a certain dichot-
omy, with most of the techniques falling into one of two broad categories.

•	 Data-oblivious dimensionality reduction includes methods that 
compute the dimensionality-reducing mapping without using (or 
the knowledge of) the data. A prime example of this approach is 
random projection methods, which select the mapping at random 
(Johnson and Lindenstrauss, 1984). In this case, the projection 
is guaranteed to work (in the sense that it preserves the distance 
structure or other properties) for arbitrary point-sets. In addition, 
generating such projection requires very little resources in terms of 
space and/or time, and it can be done before the data are even seen. 
Finally, this approach leads to results with provable guarantees. 
Thus, it is popular in areas such as theory of algorithms (Vempala, 
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2005), sketching algorithms (see Chapter 6), or compressive sens-
ing (Donoho, 2006). 

•	 Data-aware dimensionality reduction includes methods that tailor 
the mapping to a given data set. An example is principal compo-
nents analysis and its refinements. The mapping is data-dependent 
in that the algorithm uses the data to compute the mapping, and, 
as a result, it identifies the underlying structure of the data. Empiri-
cally, these methods tend to work better than random projections 
(e.g., in the sense of preserving more information with shorter 
sketches), as long as the test data are consistent with the data 
used to construct the projection. This approach is popular with 
researchers in machine learning, statistics, and related fields.

A challenge is to merge the benefits of data-oblivious and data-aware 
dimensionality reduction approaches. For example, perhaps one could de-
velop methods that “typically” achieve the performance of data-aware 
techniques while also maintaining the worst-case guarantees of random 
projections (to have something to fall back on in case the data distribution 
changes rapidly). 

The Challenge of Combining Algorithmic and Statistical Perspectives3

Given a representation of data, researchers from different areas tend to 
do very different and sometimes incompatible things with it. For example, 
a common view of the data in a database, in particular historically among 
computer scientists interested in data mining and knowledge discovery, has 
been that the data are an accounting or a record of everything that hap-
pened in a particular setting. The database might consist of all the customer 
transactions over the course of a month, or it might consist of all the friend-
ship links among members of a social networking site. From this perspec-
tive, the goal is to tabulate and process the data at hand to find interesting 
patterns, rules, and associations. An example of an association rule is the 
(possibly mythical) finding that says that people who buy beer between 5 
p.m. and 7 p.m. also buy diapers at the same time. The performance or 
quality of such a rule is judged by the fraction of the database that satisfies 
the rule exactly, which then boils down to the problem of finding frequent 
itemsets. This is a computationally hard problem, and much algorithmic 
work has been devoted to its exact or approximate solution under different 
models of data access.

A very different view of the data, more common among statisticians, 
is that a set of data represents a particular random instantiation of an 

3  This section is adapted from Mahoney (2008).
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underlying process describing unobserved patterns in the world. In this 
case, the goal is to extract information about the world from the noisy or 
uncertain data that is observed. To achieve this, one might posit a model, 
such as a distribution that represents the variability of the data around 
its mean. Then, using this model, one would proceed to analyze the data 
to make inferences about the underlying processes and predictions about 
future observations. From this perspective, modeling the noise component 
or variability well is as important as modeling the mean structure well, in 
large part because understanding the former is necessary for understanding 
the quality of predictions made. With this approach, one can even make 
predictions about events that have yet to be observed. For example, one 
can assign a probability to the event that a given user at a given Web site 
will click on a given advertisement presented at a given time of the day, 
even if this particular event does not exist in the database. See Chapter 7 
for further discussion of the model-based perspective. 

The two perspectives need not be incompatible. For example, statistical 
and probabilistic ideas are central to much of the recent work on develop-
ing improved randomized approximation algorithms for matrix problems. 
Otherwise-intractable optimization problems on graphs and networks yield 
to approximation algorithms when assumptions are made about the net-
work participants. Much recent work in machine learning also draws on 
ideas from both areas. Thus, a major challenge in large-scale data represen-
tation is to combine and exploit the complementary strengths of these two 
approaches. The underlying representation should be able to support in an 
efficient manner operations required by both approaches. One promising 
direction takes advantage of the fact that the mathematical structures that 
provide worst-case guarantees often have fortuitous side effects that lead to 
good statistical properties (Mahoney and Orecchia, 2011).
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6

Resources, Trade-offs, and Limitations

INTRODUCTION

This chapter discusses the current state of the art and gaps in funda-
mental understanding of computation over massive data sets. The commit-
tee focuses on general principles and guidelines regarding which problems 
can or cannot be solved using given resources. Some of the issues addressed 
here are also discussed in Chapters 3 and 5 with a more practical focus; 
here the focus is on theoretical issues.

Massive data computation uses many types of resources. At a high 
level, they can be partitioned into the following categories:

•	 Computational resources, such as space, time, number of process-
ing units, and the amount of communication between them;

•	 Statistical or information-theoretic resources, such as the number 
of data samples and their type (e.g., whether a sample is random or 
carefully selected by the algorithms, whether the data are “labeled” 
or “unlabeled,” and so on); often, one might also like to minimize 
the amount and type of information revealed about the data set 
in order to perform certain computations, to minimize the loss of 
privacy; and

•	 Physical resources, such as the amount of energy used during the 
computation.

The use of these resources has been studied in several fields. Reviewing 
the state of the art in those areas, even only in the context of massive data 
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processing, is a task beyond the scope of this report. Nevertheless, identi-
fying the gaps in current knowledge requires at least a brief review of the 
background. To this end, the following section begins with a short overview 
of what theoretical computer science can reveal about the computational 
resources needed for massive data computations. This is a complement to 
the background material on statistics in the next two chapters.

RELEVANT ASPECTS OF THEORETICAL COMPUTER SCIENCE

Theoretical computer science studies the strengths and limitations of 
computational models and processes. Its dual goals are to (1) discover and 
analyze algorithms for key computational problems that are efficient in 
terms of resources used and (2) understand the inherent limitations of com-
putation with bounded resources. The two goals are naturally intertwined; 
in particular, understanding the limitations often suggests approaches for 
sidestepping them.

In this section the committee surveys an illustrative list of concepts and 
notions developed in theoretical computer science, with the emphasis on 
material relevant to computing over massive data sets.1 

Tractability and Intractability

One of the central notions in understanding computation is that of 
polynomial time. A problem is solvable in polynomial time if there is an 
algorithm that can solve it that runs in time Nc for some constant c (i.e., 
it is O(Nc)) on inputs of size N. Polynomial-time algorithms have the fol-
lowing attractive property: doubling the input size results in running time 
that is only a fixed factor larger (its value depends on c). Therefore, they 
scale gracefully as the input size increases. This should be contrasted with 
algorithms with running time exponential in N—e.g., of O(2N). Here, dou-
bling the input size can increase the running time in a much more dramatic 
fashion. As such, problems that have polynomial-time algorithms are often 
referred to as tractable. In contrast, problems for which such algorithms 
are conjectured to not exist are called intractable. 

Perhaps surprisingly, most of the natural problems are known to fall 
into one of these two categories. That is, either a polynomial-time algorithm 
for a problem is known, or the best-known algorithm has exponential 
running time. Many of the latter problems have the property that if one 
is given a solution to the problem, it only takes polynomial time to verify 
whether it is correct. Such problems are said to run in non-deterministic 

1  For a broader overview, the Theory Matters blog entry “Vision Nuggets,” available at 
http://thmatters.wordpress.com/vision-nuggets/, provides a good background.



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

84 FRONTIERS IN MASSIVE DATA ANALYSIS

polynomial time (NP). Some such problems have the “one-for-all and all-
for-one” property: if any of them can be solved in polynomial time, then 
all of them can. Those problems are called NP-complete. Examples of NP-
complete problems include the Traveling Salesman Problem (given a set 
of cities and distances between them, is there a tour of a given length that 
visits all cities?) and the Satisfiability Problem (given a set of m constraints 
over n variables, is there a way to satisfy them all?). The (conjectured) dif-
ficulty of such problems comes from the (apparent) need to enumerate an 
exponential number of possible solutions in order to find the feasible one.

Although it is not known whether an NP-complete problem can be 
solved in polynomial time—this question, called “P versus NP,” is one of 
the central open problems in computer science—it is widely conjectured 
that such algorithms do not exist.2 The notion of NP-completeness thus 
provides a very useful tool guiding algorithm design. Specifically, showing 
that a problem is NP-complete means that instead of trying to find a com-
plete solution, one likely needs to modify the question. This can be done, 
for example, by allowing approximate answers or exploiting the particular 
structure of inputs. For a recent overview of such developments in the con-
text of satisfiability, see Malik and Zhang (2009).

Given the usefulness of NP-completeness and other computational 
hardness tools when dealing with computational problems, it is natural 
to explore their uses in the context of massive data sets. This question is 
examined in more depth later in this chapter.

Sublinear, Sketching, and Streaming Algorithms 

In the search for efficient algorithms for large-scale problems, research-
ers formulate more stringent models of computation. One such notion that 
is particularly relevant to massive data is that of sublinear algorithms. They 
are characterized as using an amount of resources (e.g., time or space) that 
is much smaller than the input size, often exponentially smaller. This, in 
particular, means that the algorithm cannot read or store the whole input, 
and instead it must extrapolate the answer from the small amount of in-
formation read or stored.

One of the popular computational models of this type is data-stream 
computing. In the data-stream model, the data need to be processed “on 
the fly”—i.e., the algorithm can make only a single pass over the data, 
and the storage used by the algorithm can be much smaller than the input 
size. Typically, streaming algorithms proceed by computing a summary or 
“sketch” of the input, which is much shorter but nevertheless sufficient to 
approximate the desired quantity. Perhaps surprisingly, for many problems, 

2  Fortnow (2009) provides an overview.
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efficient sketching methods are known to exist (Muthukrishnan, 2005; 
Indyk, 2007). For example, consider the problem of counting the number 
of distinct elements in a stream. This task is known to require space that is 
at least as large as the actual number of distinct items; the items have to be 
stored temporarily to avoid double-counting the items already seen. How-
ever, it is possible to approximate this quantity using only a logarithmic 
amount of space (Flajolet and Martin, 1985).

Other models of sublinear computation include sublinear time compu-
tation (where the algorithm is restricted to using an amount of time that 
scales sublinearly with the input size) and approximate property testing 
(where one tests whether the input satisfies a certain property using few 
data samples). See Czumaj and Sohler (2010) or Rubinfeld and Shapira 
(2011) for an overview.

Communication Complexity

The field of communication complexity (Kushilevitz and Nisan, 1997) 
studies the amount of information that needs to be extracted from the 
input, or communicated between two or more parties sharing parts of the 
input, to accomplish a given task. The aforementioned sketching approach 
to sublinear computation is one of the studied models, but many other 
models have been investigated as well. In contrast to NP-completeness, 
communication complexity techniques make it possible to prove that some 
tasks cannot be accomplished using limited communication. For example, 
consider the following set disjointness problem, where two parties want to 
determine whether two data sets of equal size, each held locally by one of 
the parties, contain any common items. It has been shown that in order to 
accomplish this task, the parties must exchange a number of bits that is 
linear in the size of the data set (Razborov, 1992; Kalyanasundaram and 
Schnitger, 1992).

External Memory

Another way of modeling space-limited computation is to focus on the 
cost of transferring data between the fast local memory and slow external 
memory (e.g., a disk). This approach is motivated by the fact that, in many 
scenarios, the transfer cost dominates the overall running time. The external 
memory model (Vitter, 2008) addresses precisely that phenomenon. Specifi-
cally, the computer system is assumed to be equipped with a limited amount 
of main memory (which is used to perform the computation) and an un-
bounded external memory such as disk drive (which stores the input and 
any intermediate data produced by the algorithm). The data are exchanged 
between the main and external memories via a sequence of input/output 
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(I/O) operations. Each such operation transfers a contiguous block of data 
between the memories. The complexity of an algorithm is then measured by 
the total number of I/O operations that the algorithm performs. 

The algorithms that are efficient in the external memory model mini-
mize the need to refer to data that are far apart in memory storage or in 
time. This approach enables the computation to limit the required number 
of block transfers. See Vitter (2008) for an overview.

In general, external memory algorithms are “cache-aware”; that is, they 
must be supplied with the amount of available main memory before they 
can proceed. This drawback is removed by “cache-oblivious algorithms” 
(Frigo et al., 1999), which automatically adapt to the amount of memory 
(in fact, general caching mechanism) available to the algorithm.

Parallel Algorithms

A fundamental and widely studied question is to understand for which 
problems one can obtain a speedup using parallelism. Many models of 
parallel computation have been studied. Perhaps the one that has attracted 
the greatest amount of attention is the class of problems having polynomial-
time sequential algorithms for which one can obtain exponential speedups 
by using parallelism. Such speedups are known to be possible for surpris-
ingly many problems, such as finding a perfect matching in a graph. That 
problem calls for finding a subset of edges that contains exactly one edge 
incident to any vertex, given a set of nodes and edges between them. There 
are also problems that are conjectured to be inherently sequential, i.e., they 
appear to not be amenable to exponential speedups.

Computational Learning Theory

The field of computational learning theory (Blum, 2003) studies the 
computational aspects of extracting knowledge from data. Specifically, 
it addresses the following question: How much data and computational 
resources are needed in order to “learn” a concept of interest with a given 
accuracy and confidence? For example, a well-studied task is to infer a lin-
ear classifier that can separate data into positive and negative classes, given 
a sequence of labeled examples and using a bounded amount of computa-
tional resources. Variations of the basic framework include semi-supervised 
learning (where the labels are specified for only some of the examples) and 
active learning (where the algorithm can query the value of a label for some 
or all examples). Computational learning theory has natural connections 
to statistics, especially statistical learning theory, and utilizes and builds on 
notions from those fields.
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GAPS AND OPPORTUNITIES

Despite the extensive amount of work devoted to the topic, the funda-
mentals of computation over massive data sets are not yet fully understood. 
This section examines some of the gaps in the current knowledge and pos-
sible avenues of addressing them. 

Challenges for Computer Science

Computational Hardness of Massive Data Set Problems

Given the usefulness of computational hardness in guiding the devel-
opment of general polynomial-time algorithms, it would be helpful to be 
able to apply such tools to algorithms designed for massive data as well. 
However, polynomial-time is typically not a sufficient condition for tracta-
bility when the input to a problem is very large. For example, although an 
algorithm with running time N4 can be quite efficient for moderate values 
of N (say, a few thousand), this is no longer the case when N is of the order 
of billions or trillions. One must therefore refine the approach. This will 
involve (1) defining more refined boundaries between the tractable and the 
intractable that model the massive-data computation more accurately and 
(2) identifying new “hard” problems that are (conjectured to be) unsolvable 
within those boundaries. 

The class of sublinear algorithms presented in the earlier section is a 
well-studied example of this line of research. However, the limitations im-
posed by that class are quite restrictive, and they exclude some tasks (such 
as sorting) that can be successfully performed even on very large data sets. 
Two examples of more expressive classes of problems are those requiring 
sub-quadratic time and those requiring linear time. 

Quadratic time is a natural boundary of intractability for problems 
over massive data because many problems have simple quadratic-time 
solutions. For example, the generalized N-body problem class discussed in 
Chapter 10—which consists of problems involving interactions between 
pairs of elements—and the class of alignment problems also discussed in 
that chapter are amenable to such algorithms. For massive data, however, 
one typically needs algorithms that run in time faster than quadratic. In 
some cases, obtaining better algorithms is possible. For example, the basic 
N-body problem (involving particles interacting in a three-dimensional 
space) can be solved in O(N log N) time by use of the Fast Multipole 
Method.

Unfortunately, unlike for polynomial-time computation, versatile tools 
are lacking that would help determine whether a given problem has a sub-
quadratic-time algorithm or not. A few proposals for such tools exist in the 
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literature. For example, the 3SUM problem (given a set of N numbers, are 
there three numbers in the set that sum to zero?) is a task that appears to 
be unsolvable in less than quadratic time (Gajentaan and Overmars, 1995). 
As a result, 3SUM plays a role akin to that of an NP-complete problem: 
if 3SUM can efficiently be reduced to a problem of interest, this indicates 
that the problem cannot be solved in less than quadratic time. Several such 
reductions are known, especially for computational-geometry and pattern-
matching problems. However, the “web of reductions” is still quite sparse, 
especially when compared to the vast body of work on polynomial time/
NP-complete problems. A better understanding of such reductions is sorely 
needed.

Linear running time is a gold standard of algorithmic efficiency. As long 
as an algorithm must read the whole input to compute the answer, it must 
run in at least linear time. However, as in the case of sub-quadratic-time 
algorithms, there are no methods that would indicate whether a problem is 
likely to have a linear time solution or not. 

One problem that has been identified as “hard” in this regime is the 
problem of computing the discrete Fourier transform. The Fast Fourier 
Transform algorithm performs this task in time O(N log N), and despite 
decades of research no better algorithm is known. Thus, if a given problem 
requires computation of the discrete Fourier transform, that is a strong 
indication that (at the very least) it will be difficult to obtain a linear time 
algorithm for that problem. Still, it would be helpful to develop a better 
foundation for the study of such problems, for example, by developing a 
richer or more refined set of problems that are conjectured to be hard.

More study is needed for each of these classes of algorithms.

The Role of Constants

To this point, the discussion of running times involved asymptotic 
analysis—that is, the running times were specified up to a leading constant. 
Even though it is generally understood that the value of the leading con-
stants can make a difference between a practical algorithm and an unfea-
sible “galactic algorithm” (Lipton, 2010), asymptotic analysis nevertheless 
remains the standard theoretical tool. Optimizing constant factors is often 
thought to belong to algorithm engineering rather than algorithm design. 
A notable exception to this trend includes the study of classic problems like 
median finding or sorting, especially in the context of average-case analysis. 

There are several good reasons for this state of affairs. For one, the 
asymptotic running time provides a simple and convenient way to describe, 
compare, and reason about the algorithm performance: one has to deal with 
only one parameter, namely the exponent. Moreover, the actual running 
times of an algorithm can be highly variable, even for a particular input, 
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because they are both time-dependent (computers gain processing power 
every few months) and platform-dependent (different instructions can have 
different execution times on different machines). All of these reasons mo-
tivate a constant-free approach to running time analysis, unless the cost 
model is very well defined.

At the same time, there exist potential opportunities in trying to un-
derstand constants in more depth. For one, ignoring constant factors can 
obscure the dependencies on implicit data parameters, such as the dimen-
sion of the underlying space, precision, etc. Moreover, some of the afore-
mentioned motivating factors are no longer as relevant. For example, it is 
no longer the case that computers are getting faster: the increase in process-
ing power in coming years is projected to come from increased parallelism 
rather than clock speed. 

The platform-dependence issue continues to be significant. However, as 
described in Chapter 10, it is often the case that an algorithm is assembled 
from a relatively small set of building blocks, as opposed to being designed 
entirely from scratch. In such scenarios it could be possible to encapsulate 
platform dependence in implementations of those blocks, while making 
the rest of the algorithm platform-independent. The number of times the 
subroutine is invoked could then be optimized in a platform-independent 
fashion.

New Models for Massive Data Computation 

Understanding the quickly evolving frameworks and architectures for 
massive data processing will likely require constructing and investigating 
new models of computation. Many such models have been designed in 
recent years, especially in the context of parallel data processing (see Chap-
ter 3). This includes models such as MapReduce, Hadoop and variations, 
multicores, graphic processing units (GPUs), and parallel databases. The 
new models and their relationship to more traditional models of parallel 
computation have already been a subject of theoretical studies.3 However, 
more work is certainly needed. 

Challenges for Other Disciplines

Perhaps the biggest challenge to understanding the fundamentals of 
computing over massive data lies in understanding the trade-offs between 
resources traditionally studied by computer science and those typically 

3  For example, see the website for DIMACS Workshop on Parallelism: A 2020 Vision, 
March 14-16, 2011, Piscataway, N.J., available at http://dimacs.rutgers.edu/Workshops/
Parallel/slides/slides.html.
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studied by statistics or physics. This section examines some of the issues 
that lie at these intersections. 

Statistics

Traditionally, computer sciences view the input data as a burden: the 
larger it is, the more work that needs to be done to process it. If one views 
the input as a “blob” of arbitrary data, this conclusion appears inevitable. 
However, if one assumes that the data have some statistical properties—
that is, they are a sequence of samples from some distribution or that the 
data have sparsity or other structural properties—then the result might be 
different. In fact, some problems have the property that the more data are 
available, the easier it becomes to solve them. 

Quantitative trade-offs of this type have been investigated, for example, 
in computational learning theory (Blum, 2003), machine learning (Bottou 
and Bousquet, 2008), and sublinear algorithms (Chien et al., 2010;  Harsha 
et al., 2004). However, many questions remain open. For example, in 
computational learning theory, the computational limitations are typically 
specified in terms of polynomial-time computability, and thus the limita-
tions of that topic (as discussed earlier) apply. 

Another issue that spans statistical and computational aspect of mas-
sive data is privacy. This line of research addresses the question of how 
much information about the data must be revealed in order to perform 
some computation or answer some queries about the data. The problem 
has been extensively studied in statistics and, more recently, in applied 
(Sweeney, 2002) and theoretical (Dwork, 2006) computer science. Privacy 
is a very large topic in its own right, and this report does not attempt to 
address the privacy issues associated with massive data and its analysis.

Physical Resources 

Computation is ultimately a physical phenomenon, consuming and 
emitting energy. Over the past decade, this aspect of computation has at-
tracted renewed attention. There are several factors responsible for this 
state of affairs:

•	 The large amount of consumed and dissipated energy is the key 
reason why the steady increase in processor clock rates has slowed 
in recent years.

•	 The ubiquity of energy-limited mobile computing devices (smart 
phones, sensors, and so on) has put a premium on optimizing en-
ergy use.
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•	 The impact of computation and data storage on the environment 
has motivated the development of green computing (Hölzle and 
Weihl, 2006).

A fair amount of theoretical research has been devoted to reversible 
computing (Bennett, 1973), which aims to understand the necessary condi-
tion for computation to be energy efficient. However, the lower bounds for 
energy use in computation, and the trade-offs between energy efficiency and 
computation time, are still not fully understood (Snir, 2011). For example, 
what are the lower bounds on the amount of energy required to perform 
basic algorithmic tasks, such as sorting? While there have been a number 
of applied studies aimed at finding energy efficient architectures and algo-
rithms for sorting,4 no non-trivial lower bounds for energy consumptions 
appear to be known. In fact, even formulating this question rigorously 
presents a challenge, because the input and the output to the problem can 
take many physical forms. More research is needed to clarify the model, 
limitations, and trade-offs.
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7

Building Models from Massive Data

INTRODUCTION TO STATISTICAL MODELS

The general goal of data analysis is to acquire knowledge from data. 
Statistical models provide a convenient framework for achieving this. 
 Models make it possible to identify relationships between variables and to 
understand how variables, working on their own and together, influence an 
overall system. They also allow one to make predictions and assess their 
uncertainty.

Statistical models are usually presented as a family of equations (math-
ematical formulas) that describe how some or all aspects of the data might 
have been generated. Typically these equations describe (conditional) prob-
ability distributions, which can often be separated into a systematic com-
ponent and a noise component. Both of these components can be specified 
in terms of some unknown model parameters. These model parameters are 
typically regarded as unknown, so that they need to be estimated from the 
data. For a model to be realistic and hence more useful, it will typically 
be constrained to honor known or assumed properties of the data. For 
example, some measurements might always be positive or take on values 
from a discrete set. Good model building entails both specifying a model 
rich enough to embody structure that might be of use to the analyst and 
using a parameter estimation technique that can extract this structure while 
ignoring noise.

Data-analytic models are rarely purely deterministic—they typically 
include a component that allows for unexplained variation or “noise.” 
This noise is usually specified in terms of random variables, that is, vari-
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ables whose values are not known but are generated from some probability 
distribution. For example, the number of people visiting a particular web-
site on a given day is random. In order to “model”—or characterize the 
distribution of—this random variable, statistical quantities (or parameters) 
might be considered, such as the average number of visits over time, the 
corresponding variance, and so on. These quantities characterize long-term 
trends of this random variable and, thus, put constraints on its potential 
values. A better model for this random variable might take into account 
other observable quantities such as the day of the week, the month of the 
year, whether the date is near some major event, and so on. The number 
of visits to the website can be constrained or predicted by these additional 
quantities, and their relationship will lead to a better model for the variable. 
This approach to data modeling can be regarded as statistical modeling: 
although there are no precise formulas that can deterministically describe 
the relationship among observed variables, the distribution underlying the 
data can be characterized. In this approach, one can only guess a certain 
form of the relationship up to some unknown parameters, and the error—
or what is missed in this formulation—will be regarded as noise. Statistical 
modeling represents a powerful approach for understanding and analyzing 
data (see McCullagh, 2002). 

In what follows, the committee does not make a sharp distinction be-
tween “statistics” and “machine learning” and believes that any attempt 
to do so is becoming increasingly difficult. Statisticians and machine learn-
ers work on similar problems, albeit sometimes with a different aesthetic 
and perhaps different (but overlapping) skill sets. Some modeling activities 
seem especially statistical (e.g., repeated measures analysis of variance), 
while others seem to have more of a machine-learning flavor (e.g., support 
vector machines), yet both statisticians and machine learners can be found 
at both ends of the spectrum. In this report, terms like “statistical model” 
or “statistical approach” are understood to include rather than exclude 
machine learning.

There are two major lenses through which statistical models are framed, 
which are described briefly below.

The Frequentist View

The first viewpoint is from classical statistics, where models can take 
a variety of forms, as can the methods for estimation and inference. One 
might model the conditional mean of the response (target for prediction) as 
a parametrized function of the predictors (e.g., linear regression). Although 
not a requirement, this model can be augmented with an additive noise 
component to specify the conditional distribution of the response given 
the predictors. Logistic regression models the conditional distribution of 
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a categorical response given predictors, again using a parametrized model 
for the conditional probabilities. Most generally, one can specify a joint 
distribution for both response and predictors. Moving beyond regression, 
multivariate models also specify a joint distribution, but without distin-
guishing response and predictor variables.

The frequentist approach views the model parameters as unknown con-
stants and estimates them by matching the model to the available training 
data using an appropriate metric. Minimizing the empirical sum-of-squared 
prediction errors is popular for regression models, but other metrics (sum 
of absolute errors, trimmed sum-of squares, etc.) are also reasonable. 
Maximum likelihood estimation is a general approach when the model is 
specified via a (conditional) probability distribution; this approach seeks 
parameter estimates that maximize the probability of the observed data.

The goal of the statistician is to estimate the parameters as accurately 
as possible and to make sure the fit of the model to the observed data is 
satisfactory. The notion of accuracy is based on average frequencies. For 
example, it should be the case that, on average, over many possible draws 
of similar data from the model, the estimation procedure yields a value of 
the parameter that is close to the true underlying parameter. Thus mean-
squared error, sampling variance, and bias are used to characterize and rate 
different estimation procedures. It should also be the case that were the 
sample size to increase, the estimate should converge to the true parameter, 
which is defined in terms of the limiting empirical distribution of the data. 
This is the frequentist concept of consistency. 

As an example, consider the problem of modeling customer arrivals at 
a service center. One can model the data using a Poisson distribution, with 
an unknown parameter r indicating the daily arrival rate. If one estimates 
r from the historic observations, then the approximate behavior (probabil-
ity distribution) of the observations (customer visits per day) is specified. 
The estimate is random, because it depends on the random data, and one 
would like for it to be close to the true parameter when averaging over this 
randomness, that is, when considering all possible draws from the Poisson 
distribution.

The frequentist view focuses on the analysis of estimation procedures 
and is somewhat agnostic about the nature of the procedures that are con-
sidered. That said, the analysis often suggests the form of good procedures 
(even optimal procedures). For example, members of a broad class of esti-
mation procedures, known as M-estimators, take the form of optimization 
problems. This class includes maximum likelihood estimation, but is much 
broader.
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The Bayesian View

The second viewpoint is from Bayesian statistics. In this case, the model 
specifies a family of (conditional) probability distributions, indexed by pa-
rameters. These parameters are considered random as well, and so a prior 
distribution needs to be specified for them. For website visits, for example, 
it might be assumed that the rate parameter r has a flat distribution over the 
positive interval (0,∞), or that it decays as 1/r. Once a prior is assumed, the 
joint distribution over the parameters and the observations is well defined. 
The distribution of the model parameter is characterized by the posterior 
distribution of the parameters given historic data, which is defined as the 
conditional distribution of the parameter given the data. The posterior can 
be calculated from Bayes’s theorem. Bayesian models replace the “param-
eter estimation” problem by the problem of defining a “good prior” plus 
computation of the posterior, although when coupled with a suitable loss 
function, Bayesian approaches can also produce parameter estimates. The 
concept of a loss function is discussed in later sections.

From a procedural point of view, Bayesian methods often take the 
form of numerical integration. This is because the posterior distribution is 
a normalized probability measure, and computing the normalization factor 
requires integration. The numerical integration is generally carried out via 
some form of Monte Carlo sampling procedure or other type of numerical 
approximation.

Thus, procedurally, methods studied in frequentist statistics often take 
the form of optimization procedures, and methods studied in Bayesian sta-
tistics often take the form of integration procedures. The relevance of these 
viewpoints to massive data analysis comes down in part to the scalability 
of optimization versus integration. (That said, it is also possible to treat 
integration problems using the tools of optimization; this is the perspective 
of the variational approach to Bayesian inference (Wainwright and Jordan, 
2003).)

It should also be noted that there are many links between the frequen-
tist and Bayesian views at a conceptual level, most notably within the gen-
eral framework of statistical decision theory. Many data analyses involve a 
blend of these perspectives, either procedurally or in terms of the analysis.

Nonparametrics

Although the committee has framed its discussion of models in terms 
of “parameters,” one often sees a distinction made between “parametric 
models” and “nonparametric models,” perhaps confusingly, because both 
classes of models generally involve parameters. The difference is that in 
a parametric model, the number of parameters is fixed once and for all, 
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irrespective of the number of data points. A nonparametric model is (by 
definition) “not parametric,” in that the number of parameters is not fixed, 
but rather grows as a function of the number of data points. Sometimes 
the growth is explicitly specified in the model, and sometimes it is implicit. 
For example, a nonparametric model may involve a set of functions that 
satisfy various constraints (e.g., smoothness constraints), and the choice of 
parameters (e.g., coefficients in a Fourier expansion) may be left implicit. 
Moreover, the growth in the number of parameters may arise implicitly as 
part of the estimation procedure.

Although parametric models will always have an important role to 
play in data analysis, particularly in situations in which the model is speci-
fied in part from an underlying scientific theory (such that the parameters 
have meaning in the theory), the committee finds that the nonparametric 
perspective is particularly well aligned with many of the goals of massive 
data analysis. The nonparametric perspective copes naturally with the fact 
that new phenomena often emerge as data sets increase in size.

The distinction between parametric and nonparametric models is 
orthogonal to the frequentist/Bayesian distinction—there are frequentist 
approaches to nonparametric modeling and Bayesian approaches to non-
parametric modeling. The Bayesian approach to nonparametrics generally 
involves replacing classical prior distributions with stochastic processes, 
thereby supplying the model with an open-ended (infinite) number of ran-
dom parameters. The frequentist approach, with its focus on analysis, 
shoulders the burden of showing that good estimates of parameters can be 
obtained even when the number of parameters is growing.

It is also possible to blend the parametric and nonparametric perspec-
tive in a hybrid class of models referred to as “semiparametric.” Here the 
model may be based on two subsets of parameters, one which is fixed and 
which is often of particular interest to the human data analyst, and the 
other which grows and copes with the increasing complexity of the data as 
a function of the size of the data set.

Loss Functions and Partially Specified Models

One rarely wishes to model all aspects of a data set in detail, particu-
larly in the setting of massive data. Rather, there will aspects of the model 
that more important than others. For example, particular subsets of the 
parameters may be of great interest and others of little interest (the latter 
are often referred to as “nuisance parameters”). Also, certain functions of 
parameters may be of particular interest, such as the output label in a clas-
sification problem. Such notions of importance or focus can be captured via 
the notion of a “loss function.” For example, in binary classification, one 
may measure performance by comparing the output of a procedure (a zero 
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or one) with the true label (a zero or one). If these values disagree, then the 
loss is one, otherwise it is zero. In regression it is common to measure 
the error in a fitted function via the squared-error loss. 

Both frequentists and Bayesians make use of loss functions. For fre-
quentists the loss is a fundamental ingredient in the evaluation of statistical 
procedures; one wishes to obtain small average loss over multiple draws of 
a data set. The probabilistic model of the data is used to define the distribu-
tion under which this average is taken. For Bayesians the loss function is 
used to specify the aspects of the posterior distribution that are of particular 
interest to the data analyst and thereby guide the design of posterior infer-
ence and decision-making procedures.

The use of loss functions encourages the development of partially speci-
fied models. For example, in regression, where the goal is to predict Y from 
X, if the loss function only refers to Y, as is the case with the least-squares 
loss, then this encourages one to develop a model in which the distribu-
tion of X is left unspecified. Similarly, in binary classification, where the 
goal is to label a vector X with a zero or one, one can forgo an attempt to 
model the class-conditional distributions of X and focus only on a sepa-
rating surface that predicts the labels well. For example, if one considers 
the class of all hyperplanes, then one has a parametric model in which the 
parameters are those needed to define a hyperplane (note that the number 
of parameters is fixed in advance in this case). Alternatively, one can con-
sider flexible surfaces that grow in complexity as data accrue; this places 
one in the nonparametric modeling framework. Note that the use of the 
term “model” has become somewhat abstract at this point; the parameters 
have a geometric interpretation but not necessarily a clear interpretation in 
the problem domain. On the other hand, the model has also become more 
concrete in that it is targeted to the inferential goal of the data analyst via 
the use of a loss function.

Even if one makes use of a partially specified model in analyzing the 
data, one may also have in mind a more fully specified probabilistic model 
for evaluating the data analysis procedure; that is, for computing the “aver-
age” loss under that procedure. While classically the model being estimated 
and the model used for evaluation were the same, the trend has been to 
separate these two notions of “model.” A virtue of this separation is that 
it makes it possible to evaluate a procedure on a wider range of situations 
than the situation for which it was nominally designed; this tests the “ro-
bustness” of the procedure.

Other Approaches

In addition to the statistical modeling perspectives discussed above, 
which have been extensively studied in the statistical and machine-learning 
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literature, other forms of data-analysis algorithms are sometimes used in 
practice. These methods also give meaningful descriptions of the data, but 
they are more procedure-driven than model-driven.

Some of these procedures rely on optimization criteria that are not 
based on statistical models or even have any underlying statistical under-
pinning. For example, the k-means algorithm is a popular method for clus-
tering, but it is not based on a statistical model of the data. However, the 
optimization criterion still characterizes what a data analyst wants to infer 
from the data: whether the data can be clustered into coherent groups. This 
means that instead of a statistical model, appropriately defined optimization 
formulations may be more generally regarded as models that capture use-
ful descriptions of the data. In such a case, parameters in the optimization 
formula determine a model, and the optimal parameter gives the desired 
description of the data. It should be noted that many statistical parameter 
estimation methods can be regarded as optimization procedures (such as 
maximum-likelihood estimation). Therefore, there is a strong relationship 
between the optimization approach (which is heavily used in machine learn-
ing) and the more traditional statistical models.

Some other data-analysis procedures try to find meaningful character-
izations of the data that satisfy some descriptions but are not necessarily 
based on optimization. These methods may be considered as algorithmic 
approaches rather than models. For example, methods for finding the most 
frequent items in a large-scale database (the “heavy hitters”) or highly cor-
related pairs are computational in nature. Although the specific statistical 
quantities these algorithms try to compute provide models of the data in 
a loose sense (i.e., as constraints on the data), the focus of these methods 
is on computational efficiency, not modeling. Nevertheless, the algorithmic 
approaches are important in massive data analysis simply because the need 
for computational efficiency goes hand-in-hand with massive data analysis.

DATA CLEANING

In building a statistical model from any data source, one must often 
deal with the fact that data are imperfect. Real-world data are corrupted 
with noise. Such noise can be either systematic (i.e., having a bias) or ran-
dom (stochastic). Measurement processes are inherently noisy, data can be 
recorded with error, and parts of the data may be missing. The data pro-
duced from simulations or agent-based models, no matter how complex, 
are also imperfect, given that they are built from intuition and initial data. 
Data can also be contaminated or biased by malicious agents. The ability 
to detect false data is extremely weak, and just having a massive quantity 
of data is no guarantee against deliberate biasing. Even good data obtained 
by high-quality instrumentation or from well-designed sampling plans or 
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simulations can produce poor models in some situations. Noisy and biased 
data are thus unavoidable in all model building, and this can lead to poor 
predictions and to models that mislead. 

Although random noise can be averaged out, loosely speaking, using 
multiple independent experiments—that is, the averaged noise effect ap-
proaches zero—this is not the case with systemic noise. In practice, both 
kinds of noise exist, and thus both kinds should be incorporated into 
 models of the data. The goal is often to build statistical models that include 
one or more components of noise so that noise can be separated from sig-
nal, and thus relatively complex models can be used for the signal, while 
avoiding overly complex models that would find structure where there is 
none. The modeling of the noise component impacts not only the parameter 
estimation procedure, but also the often informal process of cleaning the 
data and assessing whether the data are of high-enough quality to be used 
for the task at hand. This section focuses on this informal activity of data 
cleaning in the setting of massive data.

The science and art of cleaning data is fairly well developed when data 
sets are of modest size,1 but new challenges arise when dealing with mas-
sive data. In small-scale applications, data cleaning often begins with simple 
sanity checking. Are there any obvious mistakes, omissions, mislabelings, 
and so on, that can be seen by sampling a small subset of the data? Do any 
variables have obviously incorrect values? This kind of checking typically 
involves plotting the data in various ways, scanning through summaries, 
and producing particular snapshots that are designed to expose bad data. 
Often the result of this process is to return to the source to confirm suspi-
cious entries, or to fill in omitted fields. 

How does this approach change with massive data? The sanity check-
ing and identification of potential problems can still be performed using 
samples and snapshots, although determining how to find representative 
samples can sometimes pose problems (see Chapter 8). However, the abil-
ity to react to issues will be constrained by time and size, and most human 
intervention is impossible. There are at least two general approaches to 
overcoming this problem:

•	 One can build auto-cleaning mechanisms into data-capture and 
data-storage software. This process requires monitoring via report-
ing and process-control mechanisms. Ideally, an audit trail should 
accompany the data, so that changes can be examined and reversed 
where needed.

•	 Certain problems can be anticipated and models built that are 
resistant to those problems.

1  See, e.g., Dasu and Johnson (2003).
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Although there has been a lot of research in “robust” modeling in ac-
cordance with the second approach, the vast majority of models currently 
in use are not of this kind, and those that are tend to be more cumber-
some. Hence the first approach is more attractive, but the second should 
be considered.

For example, features that are text-based lead to many synonyms or 
similar phrases for the same concept. Humans can curate these lists to re-
duce the number of concepts, but with massive data this probably needs to 
be done automatically. Such a step will likely involve natural language pro-
cessing methodology, and it must be sufficiently robust to handle all cases 
reasonably well. With storage limitations, it may not be feasible to store 
all variables, so the method might have to be limited to a more valuable 
subset of them. This subset may well be the “cleanest.” With text-based 
features, some are so sparse they are ultimately useless and can be cleaned 
out of the system.

Missing data is often an issue, and dealing with it can be viewed as 
a form of cleaning. Some statistical modeling procedures—such as trees, 
random forests, and boosted trees—have built-in methods for dealing with 
missing values. However, many model-building approaches assume the 
data are complete, and so one is left to impute the missing data prior to 
modeling. There are many different approaches to data imputation. Some 
simple methods that are practical on a massive scale are to replace the 
missing entries by the mean for that variable. This implicitly assumes that 
the omissions are completely random. Other more sophisticated methods 
treat the missing data imputation as a prediction problem—predicting the 
missing entries for a variable using that variable as a response, and all the 
values as input variables. This might create a computational burden that is 
prohibitive with massive data, so good compromises are sought.

Whatever approaches are used to clean and preprocess the data, the 
steps should be documented, and ideally the scripts or code that were used 
should accompany the data. Following these steps results in a process that 
is reproducible and self-explanatory.

CLASSES OF MODELS

Data analysts build models for two basic reasons: to understand the 
past and to predict the future. One would like to understand how the data 
were generated, the relationships between variables, and any special struc-
ture that may exist in the data. The process of creating this understanding 
is often referred to as unsupervised learning. A more focused task is to build 
a prediction model, which allows one to predict the future value of a target 
variable as a function of the other variables at one’s disposal, and/or at a 
future time. This is often referred to as supervised learning.
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Data-generating mechanisms typically defy simple characterization, and 
thus models rarely capture reality perfectly. However, the general hope is 
that carefully crafted models can capture enough detail to provide useful 
insights into the data-generating mechanism and produce valuable predic-
tions. This is the spirit behind the famous observation from the late George 
Box that all models are wrong, but some are useful. While the model-
building literature presents a vast array of approaches and spans many 
disciplines, model building with massive data is relatively uncharted terri-
tory. For example, most complex models are computationally intensive, and 
algorithms that work perfectly well with megabytes of data may become 
infeasible with terabytes or petabytes of data, regardless of the computa-
tional power that is available. Thus, in analyzing massive data, one must 
re-think the trade-offs between complexity and computational efficiency.

This section provides a summary of major techniques that have been 
used for data mining, statistical analysis, and machine learning in the con-
text of large-scale data, but which need re-evaluation in the context of mas-
sive data. Some amplification is provided in Chapter 10, which discusses 
computational kernels for the techniques identified here.

Unsupervised Learning

Unsupervised learning or data analysis aims to find patterns and struc-
tures in the data. Some standard tasks that data analysts address include 
the following: 

•	 Clustering, which is partitioning data into groups so that data 
items within each group are similar to each other and items across 
different groups are not similar. K-means and hierarchical cluster-
ing are popular algorithmic approaches. Mixture models use a 
probabilistic framework to model clusters. 

•	 Dimension reduction, which finds a low-dimensional space that 
approximately contains the data; another view is to represent high-
dimensional data points by points in a lower-dimensional space so 
that some properties of the data can be preserved. For example, 
one approach might be to preserve enough information to fully 
reconstruct the data, and another may be to preserve only enough 
information to recover distances among data points. Dimension 
reduction can be either linear or nonlinear depending on the un-
derlying model. Statistically, dimension reduction is closely related 
to factor analysis. Factor models treat dimensions as factors, and 
each observation is represented by a combination of these factors. 

•	 Anomaly detection, or determining whether a data point is an 
outlier (e.g., is very different from other typical data points). This 
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is often achieved by defining a criterion that characterizes how a 
typical data point in the data set behaves; this criterion is then used 
to screen all the points and to flag outliers. One general approach 
is to use a statistical model to characterize the data, and an outlier 
is then a point that belongs to a set with a small probability (which 
can be measured by a properly defined p-value) under the model. 

•	 Characterizing the data through basic statistics, such as mean, vari-
ance, or high-order moments of a variable, correlations between 
pairs of variables, or the frequency distribution of node degrees in 
a graph. Although simple from a modeling perspective, the main 
challenge of these methods is to find computational algorithms that 
can efficiently work with massive data. 

•	 Testing whether a probability model of the data is consistent with 
the observed statistics, for example, whether the data can be gener-
ated from a Gaussian distribution, or whether a certain statistical 
model of a random graph will produce a graph with observed 
characteristics such as the power law of node degrees, etc. 

A variety of approaches are used in practice to address many of these 
questions. They include the probabilistic modeling approach (with a well-
defined statistical model), the non-probabilistic approach based on opti-
mization, or simply a procedure that tries to find desired structures (that 
may or may not rely on optimization). For example, a mixture model can 
be used as a statistical model for addressing the clustering problem. With 
a mixture model, in order to generate each data point, one first generates 
its mixture component, then generates the observation according to the 
probability distribution of the mixture component. Hence the statistical 
approach requires a probabilistic model that generates the data—a so-called 
generative model. By comparison, the k-means algorithm assumes that the 
data are in k clusters, represented by their centroids. Each data point is 
then assigned to the cluster whose centroid is closest. This is iterated, and 
the algorithm converges to a local minimum of an appropriate distance-to-
center criterion. This approach does not hinge on a statistical model, but 
instead on a sensible optimization criterion. There are also valid clustering 
procedures that are not based on optimization or statistical models. For 
example, in hierarchical agglomerative clustering, one starts with each 
single data point as a cluster, and then iteratively groups the two closest 
clusters to form a larger cluster; this process is repeated until all data are 
grouped into a single cluster. Hierarchical clustering does not depend on 
a statistical model of the data nor does it attempt to optimize a criterion. 
Nevertheless, it achieves the basic goal of cluster analysis—to find partitions 
of the data so that points inside each cluster are close to one another but 
not close to points in other clusters. In a loose sense, it also builds a useful 
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model for the data that describes similarity relationship among observa-
tions. However, the model is not detailed enough to generate the data in a 
probabilistic sense.

Statistical models in the unsupervised setting that focus on the underly-
ing data-generation mechanism can naturally be studied under the Bayesian 
framework. In that case, one is especially interested in finding unobserved 
hidden information from the data, such as factors or clusters that reveal 
some underlying structure in the data. Bayesian methods are natural in 
this context because they work with a joint distribution, both on observed 
and unobserved variables, so that elementary probability calculations can 
be used for statistical inference. Massive data may contain many variables 
that require complex probabilistic models, presenting both statistical and 
computational challenges. Statistically one often needs to understand how 
to design nonparametric Bayesian procedures that are more expressive 
than the more traditional parametric Bayesian models. Moreover, in order 
to simplify the specification of the full joint probability distribution, it is 
natural to consider simplified relationships among the data such as with 
graphical models that impose constraints in the form of conditional inde-
pendencies among variables. Computational efficiency is also a major chal-
lenge in Bayesian analysis, especially for massive data. Methods for efficient 
large-scale Monte Carlo simulation or approximate inference algorithms 
(such as variational Bayesian methods) become important for the success 
of the Bayesian approach.

Supervised Learning

Predictive modeling is referred to as supervised learning in the machine-
learning literature. One has a response or output variable Y, and the goal 
is to build a function f(X) of the inputs X for predicting Y. The response 
“supervises” the learning procedure, in that it determines when the method 
is doing well or not. Basic prediction problems involving simple outputs 
include classification (Y is a discrete categorical variable) and regression (Y 
is a real-valued variable).

Statistical approaches to predictive modeling can be generally divided 
into two families of models: generative models and discriminative models. 
In a generative model, the joint probability of X and Y is modeled; that 
is, P(X|Y). The predictive distribution P(Y|X) is then obtained via Bayes’s 
theorem. In a discriminative model, the conditional probability P(Y|X) is 
directly modeled without assuming any specific probability model for X. An 
example of a generative model for classification is linear discriminant analy-
sis. Here one assumes in each class the conditional distribution is Gaussian 
(with common covariance matrix used for all classes); hence, the joint dis-
tribution is the product of a Gaussian density with a class probability. Its 
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discriminative model counterpart is linear logistic regression, which is also 
widely used in practice. Logistic regression proposes a model for P(Y|X) 
and is not concerned with estimating the distribution of X. It turns out that 
they both result in the same parametric representation for P(Y|X), but the 
two approaches lead to different estimates for the parameters.

In the traditional statistical literature, the standard parameter estima-
tion method for developing either a generative or discriminative model is 
maximum likelihood estimation (MLE), which leads to an optimization 
problem. One can also employ optimization in predictive modeling in a 
broader sense by defining a meaningful criterion to optimize. For example, 
one may consider a geometric concept such as a margin and use it to define 
an optimization criterion for classification that measures how well classes 
are separated by the underlying classifier. This leads to purely optimiza-
tion-based machine learning methods (such as the support vector machine 
method for recognizing patterns) that are not based on statistical models of 
how the data were generated (although one can also develop a model-based 
perspective for such methods).

Another issue in modern data analysis is the prevalence of high-dimen-
sional data, where a large number of variables are observed that are difficult 
to handle using traditional methods such as MLE. In order to deal with the 
large dimensionality, modern statistical methods focus on regularization 
approaches that impose constraints on the model parameters so that they 
can still be reliably estimated even when the number of parameters is large. 
Examples of such methods include ridge regression and the Lasso method 
for least-squares fitting. In both cases one adds a penalty term that takes the 
form of a constraint on the norm of the coefficient vector (L2 norm in the 
case of ridge regression, and L1 norm in the case of Lasso). In the Bayes-
ian statistical setting, constraints in the parameter space can be regarded 
naturally as priors, and the associated optimization methods correspond to 
maximum a posteriori estimation.

In many complex predictive modeling applications, nonlinear predic-
tion methods can achieve better performance than linear methods. There-
fore, an important research topic in massive data analysis is to investigate 
nonlinear prediction models that can perform efficiently in high dimensions. 
Classical examples of nonlinear methods include nearest neighbor classifica-
tion and decision trees. Some recent developments include kernel methods, 
random forests, and boosting.

Some practical applications require one to predict output Y with a 
rather complex structure. For example, in machine translation, input X is 
observed as a sentence in a certain language, and a corresponding sentence 
(translation) Y needs to be generated in another language. These kinds 
of problems are referred to as structured prediction problems, an active 
research topic in machine learning. Many of these complex problems can 
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benefit from massive data, even without increasing the complexity of the 
underlying models. Nevertheless, additional computational challenges arise. 
Efficient leverage of massive data is an important research topic currently 
in structured prediction, and this is likely to continue for the near future.

Another active research topic is online prediction, which can be re-
garded both as modeling for sequential prediction and as optimization over 
massive data. Online algorithms have a key advantage in handling massive 
data, in that they do not require all data to be stored in memory. Instead, 
each time they are invoked, they look at single observations (or small 
batches of observations). One popular approach is stochastic gradient de-
scent. Because of this advantage, these algorithms have received increasing 
attention in the machine learning and optimization communities. Moreover, 
from a modeling perspective, sequential prediction is a natural setting for 
many real-world applications where data arrive sequentially over time.

Computational Simulation

Agent-based models and system dynamic models are core modeling 
techniques for assessing and reasoning about complex socio-technical sys-
tems where massive data are inherent. These models require the fusion of 
massive data, and the assessment of said data, to set initial conditions. In 
addition, these models produce massive data, potentially comparable in 
size and complexity to real-world data. Two examples, used in epidemiol-
ogy and biological warfare, are BioWar (Carley et al., 2006) and Episims 
(Eubank et al., 2004). Both simulate entire cities, and thus are both users 
and producers of massive data. BioWar, for example, generates data on 
who interacts with whom and when, who has what disease, who is showing 
which symptom(s) and where, and what they are doing at a given time; it 
updates this picture across a city for all agents in 4-hour time blocks. For 
these models, core challenges are identifying reduced-form solutions that 
are consistent with the full model, storing and processing data generated, 
fusing massive amounts of data from diverse sources, and ensuring that 
results are due to actual behavior and not tail constraints on long chains 
of data.

Network Modeling

In data analysis, increasingly researchers are using relational or net-
work models to assess complex systems. Models of social interaction, 
communication, and technology infrastructure (e.g., power grids) are in-
creasingly represented and assessed as time-varying probabilistic networks. 
It is increasingly common for such models to have millions of nodes. A 
core challenge includes generation of massive but realistic network data 
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that match real data not just in size and density, but also in the distribu-
tion of core metrics, linkage to other networks, and attributes of nodes. 
A second core challenge centers on statistically assessing confidence in 
network metrics given different types and categories of network errors. 
Row-column dependencies in networks violate the assumptions of simple 
parametric models and have driven the development of nonparametric ap-
proaches. However, such approaches are often computationally intensive, 
and research on scalability is needed. Another core challenge is then how 
to estimate confidence without requiring the generation of samples from a 
full joint distribution on the network.

MODEL TUNING AND EVALUATION

Models are, by their nature, imperfect. They may omit important fea-
tures of the data in either the structural or noise components, make unwar-
ranted assumptions such as linearity, or be otherwise mis-specified. On the 
other hand, models that are over-specified, in terms of being richer than the 
data can support, may fit the training data exceptionally well but general-
ize poorly to new data. Thus, an important aspect of predictive modeling 
is performance evaluation. With modern methods, this often occurs in two 
stages: model tuning, and then the evaluation of the chosen model. Tuning 
is discussed first, followed by model evaluation.

The models that are fit to particular data are often indexed by a tuning 
parameter. Some relevant examples are the following:

•	 The shrinkage parameter in a Lasso or elastic-net logistic regression;
•	 The number of terms (trees) in a boosted regression model;
•	 The “cost” parameter in a support vector machine classifier, or the 

scale parameter of the radial kernel used;
•	 The number of variables included in a forward stepwise regression; 

and
•	 The number of clusters in a prototype model (e.g., mixture model).

The process of deciding what model type to work with remains more 
art than science. In the massive data context, computational consider-
ations frequently drive the choice. For example, in sequence modeling, 
a conditional random field may lead to more accurate predictions, but a 
simple hidden Markov model may be all that is feasible. Similarly, a mul-
tilevel Bayesian model may provide an elegant inferential framework, but 
computational constraints may lead an analyst to a simpler linear model. 
For many applications, a model-complexity ladder exists that provides the 
analyst with a range of choices. For example, in the high-dimensional classi-
fication context, the bottom rung contains simple linear classifiers and naive 
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Bayes. The next rung features traditional tools, such as logistic regression 
and discriminant analysis. The top rungs might feature boosting approaches 
and hierarchical nonparametric Bayesian methods. Similarly in pharmaco-
epidemiology, simple (and widely used) methods include disproportional-
ity analyses based on two-by-two tables. Case-control and case-crossover 
analyses provide a somewhat more complex alternative. High-dimensional 
propensity scoring methods and multivariate self-controlled case series are 
further up the ladder. Ultimately the appropriate rung on the ladder must 
depend on the signal-to-noise ratio. Presumably there is little point in fitting 
a highly complex model to data with a low signal-to-noise ratio, although 
little practical guidance currently exists to inform the analyst in this regard.

Ideally the family of models has been set up so that a tuning parameter 
orders the models in complexity. All the examples given above are of this 
kind. Complexity is generally understood here as the “effective dimension” 
of the model. The complexity is increased in an attempt to remove any 
systematic bias in the model. However, higher complexity also means that 
the model will fit the training data more closely, and there is a risk of over-
fitting. The idea is to fit a sequence or path of models—one for each value 
of the tuning parameter—and evaluate the performance of each against 
a set of held-back “validation” data. Then one picks the position on the 
path with the best validation performance. Because the family is ordered 
according to complexity, this process determines the right complexity for 
the problem at hand.

A substantial body of knowledge now exists about complexity trade-
offs in modeling. As mentioned previously, more complex models can over-
fit data and provide poor predictions. These trade-offs, however, are poorly 
understood in the context of massive data, especially with non-stationary 
massive data streams. It is also important to note that statistical model 
complexity and computational complexity are distinct. Given a model with 
fixed statistical complexity and for a fixed out-of-sample accuracy target, 
additional data allow one to estimate a model with more computational 
efficiency. This is because in the worst case a computational algorithm can 
trivially subsample the data to reduce data size without hurting computa-
tion, but some algorithms can utilize the increased data size more efficiently 
than simple subsampling. This observation has been discussed in some 
recent machine-learning papers. However, in nonparametric settings, one 
may use models whose complexity grows with increasing data. It will be 
important to study how to grow model complexity (or shift models in the 
non-stationary setting) in a computationally efficient manner.

There are other good reasons for dividing the model-building process 
into the two stages of fitting a hierarchical path of models, followed by per-
formance evaluation to find the best model in the path. One of these reasons 
is that typically the model fitting uses a “convenient” loss function that can 
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be optimized with numerical algorithms—for example, a loss function that 
is convex and/or differentiable. This can be relaxed during the second stage, 
which can use whatever figure of merit has most meaning for the specific 
application, and it need not be smooth at all. Examples are misclassification 
cost or the “F1” measure, or some tailor-made cost function involving real 
prices and other factors.

In most cases this tuning is performing some kind of trade-off between 
bias and variance; essentially, deciding between under- and over-fitting of 
the training data. Thus, once the best model has been chosen, its predictive 
performance should be evaluated on a different held-back test data set, 
because the selection step can introduce bias. Ideally, then, the following 
three separate data sets will be identified for the overall task:

•	 Training data. These data are used to fit each of the models indexed 
by the tuning parameter. Typically one fits models by minimizing a 
smooth measure of training risk, perhaps penalized by a regulariza-
tion term.

•	 Validation data. These data are used to evaluate the performance 
of each of the models fit in the previous step; that is, to evaluate 
the prediction performance. One then chooses a final model from 
this list (which can be a single model or a weighted combination 
of several).

•	 Test data. A final data set is often reserved to evaluate the chosen 
model, because the previous step can be viewed as “fitting” the 
validation data. 

Model validation refers to using the validation data to evaluate a list 
of models. A plot of model prediction error versus tuning parameter values 
can be revealing. To see this, assume that as the tuning parameter increases, 
the model complexity increases. Then two general scenarios tend to occur 
in practice:

•	 The prediction error initially decreases, bottoms out, and then 
starts to increase. The decrease occurs because the early models 
are too restrictive or biased. Eventually the increase is because the 
models are fitting the noise in the training data, which adds un-
wanted variance that increases the prediction error when the model 
is applied to new data.

•	 The error decreases and slowly levels out, never really increas-
ing. This often occurs in a data-rich scenario (many observations 
compared to variables). Here, the tuning allows one to fit a model 
that is sufficiently large to capture the structure in the data, while 
avoiding overly massive models that might strain resources.
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For scenarios that are not data rich, or if there are many more variables 
than observations, one often resorts to K-fold cross-validation (Hastie et al., 
2009). For this model-tuning task, the training data are randomly divided 
into K equal-sized chunks (K = 10 is a popular choice). One then trains on 
all but the kth chunk and evaluates the prediction error on the kth chunk. 
This is done K times, and the prediction-error curves are averaged. 

One could also use cross-validation for the final task of evaluating 
the test error for the chosen model. This calls for two nested layers of 
cross-validation.

With limited-size data sets, cross-validation is a valuable tool. Does 
it lose relevance with massive data sources? Is the bias/variance trade-
off even relevant anymore? Can one over-train? Or is one largely testing 
whether one has trained enough? If the data are massive because the 
number of variables is large in comparison to the number of observations, 
then validation remains essential (see the discussion of false discovery in 
the opening part of the section below on “Challenges”). If both the number 
of variables and the number of observations are large (and growing), then 
one can still overfit, and here too regularization and validation continue to 
be important steps. If there are more than enough samples, then one can 
afford to set aside a subset of the data for validation. As mentioned be-
fore, variance is typically not an issue here—one is determining the model 
complexity needed to accomplish the task at hand. This can also mean 
determining the size of the training set needed. If models have to repeat-
edly be fit as the structure of the data changes, it is important to know 
how many training data are needed. It is much easier to build models with 
smaller numbers of observations.

Care must be taken to avoid sample bias during the validation step, for 
the following reasons:

•	 The sampling procedure may itself be biased (non-random),
•	 Dynamics change in time-aware applications, and
•	 Data-gathering may involve adversarial actions.

An example of the last of these items is spam filtering, where the 
spammer constantly tries to figure out the algorithms that filter out spam. 
In situations like these, one may fit models to one population and end up 
testing them and making predictions on another. 

With massive data it is often essential to sample, in order to produce 
a manageable data set on which algorithms can run. A common, simple 
example is where there is a rare positive class (such as “clicked on an ad”) 
and a massive negative class. Here, it is reasonable to sample the positive 
and negative examples at different rates. Any logistic regression or similar 
model can be fit on the stratified sample and then post-facto corrected for 
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the imbalance. This can be done on a larger scale, balancing for a variety 
of other factors. While it makes the modeling trickier, it allows one to work 
with more modest-sized data sets. Stratified sampling of this kind is likely to 
play an important role in massive data applications. One has to take great 
care to correct the imbalance after fitting, and account for it in the valida-
tion. See Chapter 8 for further discussion of sampling issues.

With massive data streams, it appears there may be room for novel ap-
proaches to the validation process. With online algorithms, one can validate 
before updating—i.e., evaluate the performance of the current model on a 
new data point, then update the model. If the complexity of the model is 
governed by the number of learning steps, this would make for an interest-
ing adaptive learning algorithm. There is a large literature on this topic; 
indeed, online learning and early stopping were both important features in 
neural networks. (See, for example, Ripley, 1996, and Bishop, 1995.) 

Once a model has been selected, one often wants to assess its statistical 
properties. Some of the issues of interest are standard errors of parameters 
and predictions, false discovery rates, predictive performance, and relevance 
of the chosen model, to name a few.

Standard error bars are often neglected in modern large-scale applica-
tions, but predictions are always more useful with standard errors. If the 
data are massive, these can be negligibly small, and can be ignored. But if 
they are not small, they raise a flag and usually imply that one has made a 
prediction in a data-poor region. 

Standard error estimates usually accompany parameter and prediction 
estimates for traditional linear models. However, as statistical models have 
grown in complexity, estimation of secondary measures such as standard 
errors has not kept pace with prediction performance. It is also more dif-
ficult to get a handle on standard errors for complex models.

The bootstrap is a very general method for estimating standard errors, 
independent of the model complexity. It can be used to estimate standard er-
rors of estimated parameters or predictions at future evaluation points. The 
committee’s description focuses on the latter. With the bootstrap method, 
the (entire) modeling procedure is applied to many randomly sampled 
subsets of the data, and a prediction is produced from each such model. 
One then computes the standard deviation of the predictions derived from 
each sample. The original bootstrap takes samples of size N (the original 
size) with replacement from the training data, which may be infeasible in 
the setting of massive data. A recent proposal, known as the “bag of little 
bootstraps,” has shown how to achieve the effect of the bootstrap while 
working with relatively small subsamples of the data (Kleiner et al., 2012).

The bootstrap is also the basis for model averaging in random forests, 
and in this context is somewhat similar to certain Bayesian averaging 
procedures.
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Massive data streams open the door to some interesting new modeling 
paradigms that need to be researched to determine their potential effective-
ness and usefulness. With parallel systems one could randomize the data 
stream and produce multiple models and, hence, predictions. These could 
be combined to form average predictions, prediction intervals, standard 
errors, and so on. This is a new area that has not been studied much in the 
literature.

CHALLENGES

Building effective models for the analysis of massive data requires 
different considerations than building models for the kinds of small data 
sets that have been more common in traditional statistics. Each of the 
topics outlined above face new challenges when the data become massive, 
although having access to much more data also opens the door to alterna-
tive approaches. For example, are missing data less of an issue, because 
we have so much data that we can afford to lose some measurements or 
observations? Can we simply discard observations with missing entries? 
While the answers are probably “no” to both these questions, it may well 
be that better strategies can be developed to deal with missing data when 
the source is less limited.

Likewise, does dirty (mislabeled or incorrect) data hurt as much if we 
have a large amount of it? Can the “dirt” get absorbed into the noise model 
and get washed out in any analysis? Again, the answer is probably “no” in 
general, but it may well be that procedures that were deemed statistically 
inefficient for small data might be reasonable with massive data. The com-
mittee notes that, in general, while sampling error decreases with increasing 
sample size, bias does not—big data does not help overcome bad bias. 

Because massive amounts of observational data are exposed to many 
sources of contamination, sometimes through malicious intervention, can 
models be built that self-protect against these various sources? “Robust” 
regression models protect against outliers in the response, but this is just 
one source of contamination. Can the scope of these models be enlarged to 
cover more and different sources of contamination?

The literature currently frames model selection around a bias/variance 
trade-off. Is this still relevant for massive data—that is, is variance still an 
issue? In some cases, such as when there are many variables p per observa-
tion N (p > N; “wide” data), it will be. But in cases for which N > p (“tall” 
data), the issue is less clear. If the models considered involve combinations 
of the p variables (interactions), then the numbers of such combinations 
grow rapidly, and many of them will be impacted by variance. In general, 
how will model selection change to reflect these issues? One suggestion is 
to find a least complex model that explains the data in a sufficient manner. 
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Is cross-validation relevant for massive data? Cross-validation has to 
live with correlations between estimates from different subsets of the data, 
because of overlap. This has an impact on, for example, standard error 
estimates for predictions (Markatou et al., 2005). Is one better off using 
independent subsets of the data to fit the model sequences, or some hybrid 
approach?

The bootstrap is a general tool for evaluating the statistical properties 
of a fitted model. Is the bootstrap relevant and feasible (e.g., will is scale) 
for massive data? The “bag of little bootstraps” exploits parallelism to al-
low the bootstrap to be applied on the scale of terabytes, but what about 
larger scales? Are there better and more efficient ways to achieve the effect 
of the bootstrap? 

In many wide-data contexts, false discoveries—spurious effects and 
correlations—are abundant and a serious problem. Consider the following 
two cases:

•	 Gene-expression measurements are collected on 20,000 genes on 
200 subjects classified according to some phenotype.

•	 Measurements of 1 million single-nucleotide polymorphisms are 
made on a few thousand case-control subjects. 

Univariate tests at the p = 0.01 level would deliver 200 false discoveries 
in the first case, 10,000 in the second. As a result, traditional p values are 
less useful. Methods to control the false discovery rate (FDR) have been 
developed that take account of the abundant correlations between the many 
variables, but these are largely confined to univariate screening methods. 
There is a lot of room for development here in the context of massive data 
sets. 

Finally, with massive data sets (large N [and possibly p]), it may be easy 
to find many “statistically significant” results and effects. Whether these 
findings have substantive relevance, however, becomes an important ques-
tion, and statistically significant correlations and effects must be evaluated 
with subject-matter knowledge and experience.

Following are some highlighted challenges related to model building 
with massive data.

The Trade-Off Between Model Accuracy and Computational Efficiency

As was discussed in Chapter 6, computational complexity is an impor-
tant consideration in massive data analysis. Although complex models may 
be more accurate, significantly more computational resources are needed to 
carry out the necessary calculations. Therefore determining the appropriate 
trade-off can be a challenging problem.
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Even without more sophisticated models, if existing models can be 
adapted to handle massive data, then the mere availability of large amount 
of data can help to dramatically increase the performance. The challenge 
here is to devise computationally efficient algorithms for (even simple) mod-
els that can benefit from large data sets. An example is Google’s translation 
and speech recognition systems, which while largely using models that have 
existed for many years, have significantly improved performance owing to 
the availability of large amounts of data gathered from the Internet and 
other sources. For example, translations of many phrases that cannot be 
found in small data sets can be easily found in new larger-scale and continu-
ously updated repositories that contain a huge amount of text together with 
corresponding translations (e.g., news articles on the Web). It is thus not 
surprising that relatively simple translation models that map phrases in the 
source language to translated phrases in the target language can benefit sig-
nificantly from more data. This example shows that a major challenge and 
opportunity in massive data analysis is to develop relatively simple models 
that can benefit from large amounts of data in a computationally efficient 
manner. Such models can be more effective than more complex models if 
the latter cannot be easily adapted to handle massive data sets.

Feature Discovery

Although simple regularized linear models such as the Lasso have been 
extensively studied in recent years, massive data analysis presents additional 
challenges both computationally and statistically. One may try to address 
the computational challenges in linear models with online algorithms. 
Nevertheless, as pointed out in the previous subsection, the availability 
of massive data means that there is a significant opportunity to build ever 
more complex models that can benefit from massive data, as long as this 
can be done efficiently.

One approach is to discover important nonlinear features from a mas-
sive data set and use linear models with the discovered features. This 
approach addresses the need for adding nonlinearity by separating the 
nonlinear feature discovery problem from the linear-model parameter esti-
mation problem. The problem of efficient linear-model estimation has been 
extensively investigated in the literature, and it is still an important research 
topic. Therefore, developing the capability to discover nonlinear features is 
an important challenge that allows a data analyst to benefit from massive 
data under the simpler linear model framework. 

The area of “deep learning” (Bengio, 2009) within machine learning fo-
cuses on features composed of multiple levels of nonlinear operations, such 
as in neural nets with many hidden layers or in complicated propositional 
formulae re-using many sub-formulae. Searching the parameter space of 
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deep architectures is a difficult task, but learning algorithms such as those 
for deep belief networks have recently been proposed to tackle this problem 
with notable success, beating the state-of-the-art in certain areas. 

A current important application area where feature discovery plays a 
central role concerns prediction of health-care events. For example, a recent 
data mining competition focuses on using insurance claims data to predict 
hospitalization2: Given extensive historical medical data on millions of 
patients (drugs, conditions, etc.), identify the subset of patients that will be 
hospitalized in the next year. Novel approaches are required to construct 
effective features from longitudinal data.

Ranking and Validation

A major goal in massive data analysis is to sieve through huge amounts 
of information and discover the most valuable information. This can be 
posed as statistical ranking problem, where the goal is to rank a set of items 
so that what is ranked on top contains the most important (or relevant) 
items. In general the more relevant the items that are placed on top, the 
higher the quality of the ranking algorithm. For example, FDR may be re-
garded as a ranking metric because it measures false negatives in top-ranked 
selections, and this is related to the concept of precision in the information 
retrieval literature.

One challenge is to design statistically sensible metrics to measure rank-
ing quality and study statistical inference algorithms to optimize it (Duchi 
et al., 2012). The current search algorithms all use home-grown criteria of 
this kind.

Exploration in Evaluation

Some problems in massive data analysis require validation during ex-
ploration. An example is Internet advertising, where the goal is to serve ads 
and optimize revenue. In order to optimize the immediate reward, compa-
nies try to serve ads according to the current model. However, the models 
are under constant development, and parameters of the models are continu-
ally tested. Tang et al. (2010) report on some progress made in this area at 
Google. There is a big statistical challenge here in that, rather than evaluat-
ing one model at a time, one needs to be able to test an ever-changing set 
of models simultaneously, after which the effects of the parameters in the 
different models have to be teased apart. Just how to balance these opera-
tions is somewhat uncharted territory.

2  Heritage Provider Network Health Prize website, available at http://www.heritagehealth 
prize.com.
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Meta Modeling

With massive data there is an additional challenge of meta-modeling, 
the bringing together of multiple models each designed for different pur-
poses into an operational whole. Currently the trend is to fuse the results 
from diverse models that utilize different parts of common data. Three 
difficulties that arise include the following: 

•	 Ensuring that the common data are from the same spatial-temporal 
region, 

•	 Building a meta-model of the way in which the diverse models 
operate, and 

•	 Providing insight into the model that is relevant given the scale of 
the data being examined. 

Meta modeling is related to the issue of data diversity. In many massive 
data applications, data contain heterogeneous data types such as audio, 
video, images, and text. Much of the model-building literature and the 
current model-building arsenal focus on homogeneous data types, such as 
numerical data or text. It remains a challenge to develop models that can 
satisfactorily handle multiple data types.

It is also known that combining many different models that focus on 
different aspects of the problem can be beneficial. One example is the 2009 
Netflix competition that aimed to improve the prediction of individual 
movie preference (in order for Netflix to make appropriate movie recom-
mendations to each user). A $1 million prize was awarded to the winning 
system, which was a combination of many different models. Another ex-
ample is IBM’s Jeopardy playing system, “Watson,” which beat two human 
champions in a widely publicized television show. A key component of that 
system is an engine that combines many specialized algorithms (or models) 
where each can answer some specific types of questions more effectively 
than others. It is thus critical to develop an effective “executive” algorithm 
that can evaluate which of the proposed answers is more reliable and make 
choices, so that the overall system can provide a more accurate final answer 
than any individual component.

Tail Behavior Analysis

In traditional statistics, an event that has only, say, 0.1 percent prob-
ability of occurring may be safely regarded as a “rare event,” and it can 
be ignored. (Although such events are considered in the robust statistics 
literature, they are studied there for a different reason with more specialized 
assumptions.) However, in the realm of massive data, these so-called “rare 
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events” can occur sufficiently frequently that they deserve special attention. 
This means that in general the analysis of tail behavior becomes a key chal-
lenge in models of massive data.

One example of tail behavior analysis is outlier (or anomaly) detection. 
Another related issue is false discovery, discussed earlier.

Best Use of Model Output

As noted earlier, certain models (e.g., agent-based simulations) also gen-
erate massive data. Little theory exists to guide analyses of their output, and 
no standards exist for the data-to-model-to-data-to-metadata workflow. 
Basic research on infrastructure support for the generation, archiving, and 
searching of data-to-model-to-data is thus needed.

Large-Scale Optimization

It is clear that optimization plays an important role in model building. 
This is because traditional statistical models can lead to estimators (such 
as MLE) that solve an optimization problem; moreover, appropriately 
formulated optimization formulations (such as k-means) can in some ways 
be regarded as models themselves. Complex models involve more complex 
optimization formulations. It is thus important to investigate optimization 
formulations and methods that can handle massive data. 

A particularly important direction is online optimization algorithms. 
In many massive data applications the underlying data-generation mecha-
nism evolves over time. This is especially true with massive data streams. 
Although there are some existing dynamic modeling tools to handle non-
stationary data, they concern themselves mostly with modest-sized data 
streams. Online model-building algorithms are often vital in such situa-
tions. Online methods try to address the time and space complexity simul-
taneously. The latter is achieved by not requiring all data to be in memory 
simultaneously, which alleviates data-storage requirement. However, it still 
requires the current state (represented by a set of parameters) of the under-
lying statistical model to be stored and updated. In particular, the online 
concept does not directly address the issue of how to efficiently store large 
statistical models. Therefore, it will be helpful to study space requirements 
in streaming applications by studying models that can be efficiently main-
tained/updated in the online setting with space constraints. A number of 
sketching and streaming algorithms deal with efficient storage and update 
of relatively simple statistics. What can be done for more complex statisti-
cal models? For example, when not all features can be stored in memory, 
linear classifiers remain problematic today. Although some streaming ideas 
seem applicable, the quality (both in practice and in theory) requires further 
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investiga tion. Distributed optimization may be necessary for ultra-large-
scale applications (Boyd et al., 2011).

Can online algorithms be adapted for model fitting to do model selec-
tion as well? That is, as new data are obtained and the fit is updated, can 
the tuning parameters also be guided and changed? How should this be 
done? See Auer et al. (2002) for some (theoretical) developments on this 
problem, and, for a broader overview, see Cesa-Bianchi and Lugosi (2006).

Models and System Architecture

In truly massive data analysis, a single machine will generally not be 
able to process all of the data. It is therefore necessary to consider efficient 
computational algorithms that can effectively utilize multiple processors. 
This computational consideration can play a significant role in deciding 
what models to use. For example, in a distributed computing environment 
with many computers that are loosely connected, the communication cost 
between different machines is high. In this scenario, some Bayesian models 
with parameters estimated using Monte Carlo simulation can relatively 
easily take advantage of the multiple machines by performing independent 
simulations on different machines. However, efficiently adapting an online 
learning algorithm to take advantage of distributed computational envi-
ronment is more difficult. A key challenge is to investigate models and the 
associated computational methods that can easily take advantage of the 
computational power in multi-processor computing environments. Graph-
ics processing units (GPUs) also show considerable promise for certain 
kinds of computations such as large-scale optimization.

Causal Modeling

Harnessing massive data to support causal inference represents a cen-
tral scientific challenge. Key application areas include climate change, 
health-care comparative effectiveness and safety, education, and behavioral 
economics. Massive data open up exciting new possibilities but present 
daunting challenges. For example, given electronic health-care records for 
100 million people, can we ascertain which drugs cause which side effects? 
The literature on causal modeling has expanded greatly in recent years. but 
causal modeling in massive data has attracted little attention.
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8

Sampling and Massive Data

Sampling is the process of collecting some data when collecting it all 
or analyzing it all is unreasonable. Before addressing why sampling still 
matters when massive amounts of data are available and what the new 
challenges are when the amount of data is massive, an overview of statisti-
cal sampling is provided below.

COMMON TECHNIQUES OF STATISTICAL SAMPLING

Random Sampling

In simple random sampling, everything of interest that could be sam-
pled is equally likely to be included in the sample. If people are to be sam-
pled, then everyone in the population of interest has the same chance to be 
in the sample. For that reason, a simple random sample gives an unbiased 
representation of the population.

Simple random sampling is usually straightforward to implement, but 
other kinds of sampling can give better estimates. Stratified random sam-
pling partitions the population into groups called strata and then randomly 
samples within each group. If strata are less diverse than the population 
as a whole, then combining group-level estimates, such as group means, is 
better than estimating from the population without partitioning. The im-
provement due to partitioning is larger if the more heterogeneous groups 
are more heavily sampled. Often the groups and group sizes are chosen 
to optimize some criterion—such as constraining the mean squared error 
of an estimate—based on past data, theory about the processes generat-
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ing the data, or intuition. Of course, a sampling strategy that is optimal 
for estimating one kind of parameter may be inefficient or even unusable 
for another, so there is often an informal compromise between optimal 
stratification and pure random sampling so that useful information can 
be obtained about a wider set of parameters. This kind of compromise is 
especially important when data are expensive to collect and may be re-used 
for unforeseen purposes.

There are many variants of random sampling beyond stratification. For 
example, random sampling may be applied in stages. For example, cluster 
or hierarchical sampling first randomly samples city blocks, apartment 
buildings, households, or other “clusters,” and then randomly samples 
individuals within each sampled cluster. Panels that monitor changes in 
attitudes or health track a random sample of respondents over time, remov-
ing respondents from the panel when they have served for a fixed length of 
time, and replacing them with a new random sample of respondents. Only 
a fraction of the respondents enter or leave the panel at the same time, so 
the panel is always a mix of different “waves” of respondents. Nielsen runs 
a panel of households for television viewing, Comscore has a panel for Web 
browsing, and the U.S. government has many panels, such as the National 
Longitudinal Studies run by the Bureau of Labor Statistics. Other examples 
of staged sampling can be found in environmental science and ecology. For 
example, points or small regions are randomly sampled, and then data are 
taken along random directions from a landmark, such as the center of the 
sampled region. Of course, random sampling methods can be combined, so 
panels can be selected with stratification, for example. 

Sampling may also be adaptive or sequential, so that the sampling rule 
changes according to a function of the observations taken so far. The goal 
is to over-sample regions with “interesting” data or more-variable data to 
ensure that the estimates in those regions are reliable. For example, the 
number of observations taken in a region may not be fixed in advance but 
instead depend on the data already observed in the region or its neighbors. 
In sequential sampling, the population to be sampled (called the sampling 
frame) may change over time, as happens when sampling a data stream. 

Randomly sampling a data stream may mean producing a set of obser-
vations such that, at any time, all observations that have occurred so far 
are equally likely to appear in the sample. Vitter (1985) called this reservoir 
sampling, although his algorithm was earlier known as the Fisher-Yates 
shuffling algorithm (Fisher and Yates, 1938). The basic idea behind reser-
voir sampling is that the probability that the next item seen is sampled de-
pends on the number of items seen so far, but not otherwise on their values. 

Random sampling of data streams has two major disadvantages: the 
number of unique values grows, which requires more and more storage, and 
the newly observed values, which are often the most interesting, are given 
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no more weight than the old values. Gibbons and Mattias (1998) consider 
fixed-buffer-length sampling schemes that replace an element in a buffer 
(the current fixed-length sample) with a value that is not in the sample with 
a probability that depends on the buffer counts so far. The basic idea is 
that a newly observed value that recurs, and so is “hot,” will eventually be 
included in the sample. Variants of this scheme use exponentially weighted 
moving averages of the buffer probabilities and include a buffer element 
for “other,” which tracks the probability that the buffer does not include 
a recent item.

In choice-based and case-based sampling, whether for fixed populations 
or data streams, the probability of selection depends on an outcome like 
disease status. Case-based sampling is necessary when an outcome is so rare 
that simple random sampling would likely produce too few positive cases 
and an overwhelming number of negative cases. It is used in applications 
as diverse as medicine, ecology, and agriculture. For example, Suter et al. 
(2007) matched grassland plots with the poisonous grassland weed Senecio 
jacobaea and neighboring plots without S. jacobaea to determine environ-
mental conditions conducive to the growth of S. jacobaea.

Event-based sampling, in which data are collected only when a signal 
exceeds a threshold or when an alarm sounds, is yet another kind of adap-
tive sampling. It is commonly used for analyses from engineering and Earth 
and planetary sciences for which storing all the data would be too costly or 
impractical. The threshold used depends on scientific knowledge about the 
size of interesting events. For example, the data rate on detectors in high-
energy physics is so extreme that thresholds in hardware only allow 1 in 10 
million events to pass to the next stage of the data system. The surviving 
data are then hierarchically sampled and filtered for further processing.

Size-biased sampling is similar: the probability of selection depends, 
either intentionally or not, on a measure of size, such as the duration of 
hospital stay or revenues of a corporation, that is related to the outcome. 
Size bias that is intentional can be removed during estimation and model 
fitting by weighting the data; unintentional size bias requires more special-
ized statistical analyses to remove (e.g., Vardi, 1982).

Specialized sampling techniques have evolved in ecology and evolution-
ary and environmental biology, and some of these are applied in large-scale 
applications. For example, estimation of wildlife population sizes has long 
used capture-recapture. The key idea is to capture animals, tag them, and 
then recapture the same population. The fraction of previously unseen 
animals in the recapture provides information about the population size. 
Capture-recapture designs can be quite elaborate and are now widely used 
in epidemiology. 

There is also a growing literature on random sampling for simple net-
works and graphs; for example, Handcock and Gile (2010). The network is 
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represented as a binary matrix where element (i, j) is 1 if that pair of nodes 
is sampled, and 0 if not. Random sampling then chooses one such binary 
matrix randomly. For example, a node i may be chosen by simple random 
sampling and then all the nodes j that interact with i are included in the 
sample. Such sampling preserves some relationships, but it destroys many 
others. Sampling on networks is still in its infancy, and there are obvious 
opportunities for stratification, clustering, and adaptation (such as link 
tracing), with different consequences for estimation.

There are many more principled ways to sample data randomly. In 
theory, random sampling is easy, but in practice it is fraught with unfore-
seen complications, often due to a poor match between the sampling design 
and the structure and noise of the data. 

Sampling according to known probabilities, whether equal or not, or 
whether all-at-once or sequentially, is called random sampling. Stratified 
sampling, case-based sampling, adaptive sampling, and length-biased sam-
pling are all examples of random sampling. They all share the premise that 
the probability model that defines the sampling plan can be “unwound” to 
estimate a parameter of interest for the population at large, even if some 
observations, by design, were more likely to be sampled than others. Un-
equal weights give intentional sampling bias, but the bias can be removed 
by using the sampling weights in estimation or by estimating with regres-
sion or other models, and the bias allows attention to be focused on parts 
of the population that may be more difficult to measure. Finally, whether 
simple or not, random sampling leads to valid estimates of the reliability 
of the estimate itself (its uncertainty). 

It is important to note that the analysis goals drive the sampling. 
Consider for example a repository of Web usage data. Sampling of search 
queries—probably by country, language, day of week, and so on—may 
make sense if the goal is to measure the quality of search results. On the 
other hand, if the goal is to measure user happiness, then one should sample 
across users, and perhaps queries within users. Or, it might be appropriate 
to sample user sessions, which are defined by nearly uninterrupted periods 
of activity for a user. At the other extreme, the sampling unit might be low-
level timing events within queries. The decision about how to sample should 
follow the decision about what to sample.

Non-Random Sampling

Unfortunately, random sampling is not always practical. Members of 
stigmatized populations, like intravenous drug users, may hide the fact that 
they are part of that population, so the sampling frame is unknown. Some 
populations, like that of people with particular expertise or perspectives, 
may be difficult to identify. Snowball sampling, proposed by Goodman 
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(1961), starts with a set of seeds that are known to belong to the hidden 
group. The seeds are asked to identify additional members of the group, 
then the newly identified members are asked to identify other group mem-
bers, and so on. This process produces a sample without knowing the sam-
pling frame. Goodman showed that if the initial seeds are random, then it 
is possible under some conditions to estimate relationships between people 
from snowball samples. Of course, there is a danger that the population is 
not well mixed, so only a non-representative sample can be reached from 
the initial seed. In contrast, random sampling is unbiased in the sense that 
two people in the same stratum, for example, have the same chance of being 
in the sample, even if their characteristics beyond those used for stratifica-
tion are very different. 

Heckathorn (1997, 2002) improved snowball sampling by adding more 
structure to sample recruitment. Each recruit at each stage is given a set 
number of coupons, a constraint that controls the rate of recruitment in 
sub-groups (as in stratification), reduces the risk of sampling only a domi-
nant subgroup, and makes it easier to track who recruited whom and how 
large a social circle each recruit has. This respondent-driven sampling 
(RDS) has largely replaced snowball sampling. RDS is not random sampling 
because the initial seeds are not random, but some have suggested that the 
mixing that occurs when there are many rounds of recruitment or when the 
recruits added at later stages are restricted to those that have been given ex-
actly one coupon induces a pseudo-random sample. However, difficulty in 
recruiting initial seeds may still lead to bias, and there is controversy about 
the reliability of estimates based on RDS even after correcting for the size 
of the networks of the initial seeds (e.g., Goel and Salganik, 2010). Finally, 
note that both RDS and snowball sampling often focus on estimation for 
an outcome in a population that is reached through a social graph rather 
than estimation of properties of the graph itself.

Sparse Signal Recovery

There are alternatives to sampling when collecting all the data is im-
practical, especially in applications in the physical sciences and engineering. 
In sparse signal recovery, a data vector x is multiplied by a matrix M, and 
only the resulting y = Mx is retained. If x has only a few large components, 
then the matrix M can have considerably fewer rows than columns, so the 
vector y of observations is much smaller than the original data set without 
any loss of information. This kind of data reduction and signal recovery is 
known as compressed sensing, and it arises in many applications, including 
analog-to-digital conversion, medical imaging, and hyperspectral imaging, 
with a variety of different features that depend on the application (Candès 
and Tao, 2005; Donoho, 2006).
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In signal and image processing, sparse recovery is done physically. For 
example, analog-to-digital converters sample analog signals, quantize the 
samples, and then produce a bit-stream. Hyperspectral cameras use optical 
devices to acquire samples that are then digitized and processed off-line. 
Streaming algorithms employ software-based measurement schemes.

Group testing is a special case of sparse signal recovery. Here the ob-
servations are taken on groups or pools of respondents, and only the com-
bined response for the group is observed. Dorfman (1943), for example, 
combined blood samples from groups of army recruits to detect if any of 
them had syphilis. Because syphilis was uncommon, most groups would be 
negative, and no further testing was needed. 

Sampling for Testing Rather Than Estimation

The discussion so far has focused on sampling for estimation, but it 
is also common to sample in order to test whether a set of factors and 
their interactions affect an outcome of interest. The factors under test are 
called treatments, and the possible values of a treatment are called levels. 
For example, two treatments might be “image used in ad campaign” and 
“webpage where the ad is shown.” The levels of the first treatment might 
be the various images shown to the user, including the null value of “no 
ad,” which is called the control. Often only a few levels of each treatment 
are tested. The decision about which test units get which combination of 
levels of the treatments is known as experiment design. Designed experi-
ments go back at least as far as the 1700s, but Fisher’s book The Design 
of Experiments (1935) was the first to lay out principles for statistical 
experimentation.

The basic premise of experiment design is that it is much more ef-
ficient and informative to apply several treatments to the same unit under 
test, thus testing the effect of several treatments simultaneously, than it is 
to apply only one experimental factor to each test unit. That is, instead of 
testing whether the different levels of treatment A give different results on 
average, and then testing whether the different levels of treatment B give 
different results on average, both A and B are tested simultaneously by as-
signing every test unit a level of A and a level of B. 

There are many kinds of experiment designs, just as there are many 
sampling designs. Perhaps the most common are fractional factorials that 
allocate test units to combinations of levels of treatment factors when 
the number of treatment levels plus the number of treatment interactions 
of interest exceed the number of units available for testing. In that case, 
various criteria are optimized to choose which combinations of treatment 
levels to test and how many units to test at each combination. Classical 
combinatorial theory is often used to find the assignment of treatments 
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to experimental units that minimize the expected squared error loss (e.g., 
Sloane and Hardin, 1993). 

Test units are often a simple random sample from the population of 
interest, and they are often randomly assigned levels of the factors to be 
tested. However, test units can be blocked (stratified) to control for con-
founding factors that are not under test, such as age. For example, test 
units might be stratified by country when testing the effects of different ad 
images and websites. Then comparisons are made within blocks and com-
bined over blocks. Sequential testing and adaptive testing (e.g., multi-armed 
bandits) are also common in some areas, such as in medicine. These designs 
change the fraction of test units assigned to each combination of treatment 
factors over time, eliminating treatment levels as soon as they are unlikely 
to ever show a statistically significant effect. These ideas also extend to on-
line experiments, where tests of different treatments are started and stopped 
at different times. That is, treatments A, B, and C may be tested on day 1 
and treatments A, B, and D tested on day 2. If standard design principles 
are followed, then the effects of the different treatments and their interac-
tions can be teased apart (Tang et al., 2010).

Random sampling can be used not only to assign units to factors but 
also to evaluate which, if any, of the treatment factors and their interactions 
are statistically significant. As a simple example, suppose there is only one 
factor with two levels A and B, m units are assigned to A and n to B, and 
the goal is to decide if the mean outcome under A is different from the mean 
outcome under B after observing the difference Dobs of sample means. If the 
factor has no effect, so that there is no difference in A and B, then the A 
and B labels are meaningless. That is, Dobs should look like the difference 
computed for any random re-labeling of the units as m As and n Bs. The 
statistical test thus compares Dobs to the difference of sample means for 
random divisions of the observed data into A and B groups. If Dobs is larger 
or smaller than all but a small fraction of the mean differences obtained 
by random re-labeling, then there is statistical evidence that A and B have 
different effects on the mean outcome. On the other hand, if Dobs is not 
in the tail of the re-labeled differences, then one cannot be sure that the 
difference between A and B is meaningful. Such tests are called randomiza-
tion or permutation tests. Tests that re-label a set of m+n test units drawn 
with replacement from the original data are called bootstrapped tests; these 
behave similarly. Randomization and bootstrapped tests are nearly optimal 
in finite samples under weak conditions, even if the space of possible re-
labelings is only sampled. In other words, valid tests can be constructed by 
approximating the sampling distribution of the test statistic with random 
re-sampling of the data.

Finally, it is not always possible to assign units to treatments randomly. 
Assigning students to a group that uses drugs to measure the effect of drug 
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use on grades would be unethical. Or people may be assigned randomly to 
a treatment group but then fail to use the treatment. For example, a non-
random subset of advertisers may be offered a new tool that should make it 
easier to optimize online ad campaigns, and a non-random subset of those 
may choose to use it. Or the treatment group may be identified after the 
fact by mining a database. Even though the treatment group is not random, 
valid tests can often be based on a random set of controls or comparison 
group, perhaps stratifying or matching so that controls and “treated” were 
similar before treatment. Testing without randomization or with imperfect 
randomization falls under the rubric of observational studies.

CHALLENGES WHEN SAMPLING FROM MASSIVE DATA

Impressive amounts of data can now be collected and processed. But 
some tasks, like data visualization, still require sampling to tame the scale 
of the data, and some applications require sampling and testing methods 
that are beyond the state of the art. Following are a few examples of the 
latter. 

Data from Participatory Sensing, or “Citizen Science”

There are billions of cell phones in the world. In participatory sensing, 
volunteers with cell phones collect location-tagged data either actively (tak-
ing images of overflowing trash cans, for example) or passively (reporting 
levels of background noise, pollutants, or health measurements like pulse 
rates). In principle, simple random sampling can be used to recruit partici-
pants and to choose which active devices to collect data from at any time 
and location, but, in practice, sampling has to be more complex and is 
not well-understood. Crowdsourcing, such as the use of micro-task mar-
kets like Amazon’s Mechanical Turk, raise similar sampling questions (see 
Chapter 9). Challenges, which result from the non-stationary nature of the 
problem, include the following:

•	 Sample recruitment is ongoing. The goal is to recruit (i.e., sample 
mobile devices or raters for micro-task markets) in areas with 
fast-changing signals (hot spots) or high noise or that are currently 
underrepresented to improve the quality of sample estimates. Those 
areas and tasks have to be identified on the fly using information 
from the current participants. Recruiting based on information 
from other participants introduces dependence, which makes both 
sampling implementation and estimation more difficult. There are 
analogies with respondent-driven sampling, but the time scales are 
much compressed.
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•	 Some incoming samples are best omitted. This is, in a sense, the 
inverse of the sample recruitment challenge just mentioned: how 
to decide when to exclude a participant or device from the study, 
perhaps because it produces only redundant, noisy, spotty, or per-
verse data. 

•	 Participants will enter and leave the sensing program at different 
times. This hints of panel sampling with informative drop-out, but 
with much less structure. Note that the problem is non-stationary 
when the goals change over time or the user groups that are inter-
ested in a fixed goal change over time.

•	 Data need not be taken from all available devices all the time. 
Randomly sampling available devices is one option, but that could 
be unwieldy if it requires augmenting information from one device 
with information from others. Here, the problems are intensified by 
the heterogeneous nature of the data sources. Some devices may be 
much more reliable than others. Moreover, some devices may give 
data in much different formats than others.

•	 Sampling for statistical efficiency and scheduling for device and 
network efficiency have an interplay. How should sampling pro-
ceed to minimize communication (e.g., battery) costs? There may 
be analogies with adaptive testing or experiment design.

•	 Data obtained from participatory sensing and crowdsourcing is 
likely to be biased. The mix of participants probably does not 
at all resemble a simple random sample. Those who are easiest 
to recruit may have strong opinions about what the data should 
show, and so provide biased information. Samples may need to be 
routinely re-weighted, again on the fly, with the weights depending 
on the purpose of the analysis. New ways to describe departures 
from random sampling may need to be developed. Past work on 
observational studies may be relevant here.

For recent references on sampling and sampling bias in crowdsourcing 
or citizen science, see, for example, Dekel and Shamir (2009), Raykar et al. 
(2010), and Wauthier and Jordan (2011).

Data from Social Networks and Graphs

Statistically principled sampling on massive graphs, whether static or 
dynamic, is still in its infancy. Sampling—no matter how fine its resolution—
on graphs can never preserve all graph structure because sampling never 
preserves everything. But having some insight into some properties of a 
graph and its communities, and being able to characterize how reliable 
that insight is, may be better than having none at all. If so, then a set of 
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design principles for sampling from graphs for different kinds of analyses 
is needed.

Variants of respondent-driven sampling have been applied to graphs by 
randomly sampling a seed set of nodes and then randomly sampling some 
of the nodes they are connected to, with the selection depending on a win-
dow of time for dynamic graphs. Sometimes new random seeds are added 
throughout the sampling. Other methods are based on random walks on 
graphs, starting from random nodes, perhaps adding new seeds at random 
stages. With either approach, there are many open questions about tailoring 
sampling methods to the analysis task. Just as with smaller problems, there 
is likely to be no one right way to sample, but rather a set of principles 
that guide sampling design. However, these principles are not yet in place.

Entirely new ways to sample networks may be needed to obtain dense-
enough subgraphs to give robust estimates of graph relationships. Tra-
ditional network statistics are highly sensitive to missing data or broken 
relations (e.g., Borgatti et al., 2006). For example, a rank order of nodes 
can be radically different if as little as 10 percent of the links are missing. 
New ways to sample that preserve node rankings are needed, as is theoreti-
cal understanding of the biases inherent in a strategy for network sampling. 
In particular, sampling designs that account for the network topology are 
needed. There has been some initial work (e.g., Guatam et al., 2008), but 
this topic is still in its infancy.

Finally, the difficulties in sampling networks are compounded when 
the data are obtained by crowdsourcing or massive online gaming. They 
are further intensified when individuals belong to multiple social networks, 
maintained at different sites. Answering a question as seemingly simple 
as how many contacts does an individual have is fraught with technical 
difficulty. 

Experiment design for social networks is even less explored. Here 
the unit under test is not a node but a connected set of nodes. Choosing 
equivalent sets of connected nodes that can be randomly assigned to the 
different levels of the treatments has only recently received attention (e.g., 
Backstrom and Kleinberg, 2011.) There is also a need for methods that al-
low principled observational studies on graphs. Aral et al. (2009) provide 
an early example that uses propensity scoring to find appropriate random 
controls when the treatment cannot be properly randomized.

Data from the Physical Sciences

The emergence of very large mosaic cameras in astronomy has created 
large surveys of sky images that contain 500 million objects today and soon 
will have billions. Most astronomers today use a target list from a large, 
existing imaging survey to select their favorite objects for follow-up obser-



Copyright © National Academy of Sciences. All rights reserved.

Frontiers in Massive Data Analysis 

130 FRONTIERS IN MASSIVE DATA ANALYSIS

vations. Because these follow-ups are quite expensive in terms of telescope 
time, various (mostly ad hoc) sampling strategies are applied when, for 
example, selecting galaxies for spectroscopic observations. Although it is 
relatively straightforward to create a sampling scheme for a single criterion, 
it is rare that a sample created for one purpose will not be later reused in 
another context. The interplay between often conflicting sampling criteria 
is poorly understood, and it is not based on a solid statistical foundation.

As a concrete example, both Pan-STARRS and the Large Synoptic 
Survey Telescope will provide deep multicolor photometry in co-added 
(averaged) images for several billion galaxies over a large fraction of the 
sky. This data set will provide an excellent basis for several analyses of 
large-scale structure and of dark energy. However, unlike the Sloan Digital 
Sky Survey (SDSS), these surveys will not have a spectroscopic counterpart 
of comparable depth. The best way to study structure, then, is to split the 
galaxy sample into radial shells using photometric redshifts—i.e., using the 
multicolor images as a low-resolution spectrograph. The most accurate such 
techniques today require a substantial “training set” with spectroscopic 
redshifts and a well-defined sample selection. No such sample exists today, 
nor is it clear how to create one. It is clear that its creation will require 
major resources (approximately 50,000-100,000 deep redshifts) on 8- to 
10-m class telescopes.

Given the cost of such an endeavor, extreme efficiency is needed. Spe-
cial care must be taken in the selection of this training set, because galaxies 
occupy a large volume of color space, with large density contrasts. Either 
one restricts galaxy selection to a small, special part of the galaxy sample 
(such as luminous red galaxies from the SDSS), or one will be faced with 
substantial systematic biases. A random subsample will lack objects in the 
rare parts of color space, while an even selection of color space will under-
sample the most typical parts of color space. The optimum is obviously in 
between. A carefully designed stratified sample, combined with state-of-the-
art photometric redshift estimation, will enable many high-precision cosmo-
logical projects of fundamental importance. This has not been attempted at 
such scale, and a fundamentally new approach is required.

Time-domain surveys are just starting, with projected detection car-
dinalities in the trillions. Determining an optimal spatial and temporal 
sampling of the sky (the “cadence”) is very important when one operates 
a $500 million facility. Yet, the principles behind today’s sampling strate-
gies are based on ad hoc, heuristic criteria, and developing more optimal 
algorithms, based on state-of-the-art statistical techniques, could have a 
huge potential impact.

As scientists query large databases, many of the questions they ask are 
about computing a statistical aggregate and its uncertainty. Running an 
SQL statement or a MapReduce task provides the “perfect” answer, the 
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one that is based on including all the data. However, as data set sizes in-
crease, even linear data scans (the best case, because sometimes algorithms 
have a higher complexity) become prohibitively expensive. As each data 
point has its own errors, and statistical errors are often small compared 
to the known and unknown systematic uncertainties, using the whole data 
set to decrease statistical errors makes no sense. Applying an appropriate 
sampling scheme (even incrementally) to estimate the quantities required 
would substantially speed up the response, without a loss of statistical ac-
curacy. Of course, scientific data sets often have skewed distributions; not 
everything is Gaussian or Poisson. In those cases, one needs to be careful 
how the sampling is performed.
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Human Interaction with Data

INTRODUCTION

Until recently, data analysis was the purview of a small number of 
experts in a limited number of fields. In recent years, however, more and 
more organizations across an expanding range of domains are recogniz-
ing the importance of data analysis in meeting their objectives. Making 
analysis more useful to a wider range of people for a more diverse range of 
purposes is one of the key challenges to be addressed in the development 
of data-driven systems.

In many, perhaps most, scenarios today and in the near-term future, 
people are the ultimate consumers of the insights from data analysis. That 
is, the analysis of data is used to drive and/or improve human decision-
making and knowledge. As such, methods for visualization and exploration 
of complex and vast data constitute a crucial component of an analytics 
infrastructure. The field of human-computer interactions has made great 
progress in the display and manipulation of complex information, but the 
increasing scale, breadth, and diversity of information provide continued 
challenges in the area.

People are not, however, merely consumers of data and data analysis. 
In many analytics usage scenarios, people are also the source (and often the 
subject) of the data being analyzed. Continuing improvements in network 
connectivity and the ubiquity of sophisticated communications and com-
puting devices has made data collection easier, particularly as more activi-
ties are done online. Moreover, increasing network connectivity has been 
leveraged by a number of platforms that can allow people to participate 
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directly in the data analysis process. Crowdsourcing is the term used to 
describe the harnessing of the efforts of individual people and groups to ac-
complish a larger task. Crowdsourcing systems have taken on many forms, 
driven largely by advances in network connectivity, the development of 
service-oriented platforms and application programming interfaces (APIs) 
for accomplishing distributed work, and the emergence of user-generated 
content sites (sometimes referred to as “Web 2.0”) that include socially ori-
ented and other mechanisms for filtering, vetting, and organizing content.

This chapter discusses several aspects of crowdsourcing that could con-
tribute to extracting information from massive data. Crowdsourced data 
acquisition is the process of obtaining data from groups either explicitly—
for example, by people deliberately contributing content to a website—or 
implicitly, as a side effect of computer-based or other networked activity. 
This has already been shown to be a powerful mechanism for tasks as 
varied as monitoring road traffic, identifying and locating distributed phe-
nomena, and discovering emerging trends and events.

For the purposes of this report, a perhaps more interesting development 
in crowdsourcing is the involvement of people to aid directly in the analysis 
process. It is well known that computers and people excel at very different 
types of tasks. While algorithm developers continue to make progress in 
enabling computers to address tasks of greater complexity, there remain 
many types of analysis that can be more effectively done by people, even 
when compared to the most sophisticated computers and algorithms. Such 
analyses include deep language understanding and certain kinds of pattern 
recognition and outlier detection. Thus, there has been significant recent 
work and recognition of further opportunities in hybrid computer/human 
data analysis.

These trends are leading to the increased understanding of the role of 
people in all phases of the data processing lifecycle—from data collection 
through analysis to result consumption, and ultimately to decision mak-
ing. The human dimension carries with it a new set of concerns, design 
constraints, and opportunities that must be addressed in the development 
of systems for massive data analysis. In addition, massive data calls for 
new approaches to data visualization, which is often used in exploratory 
data analysis. This chapter thus focuses on the various aspects of human 
interaction with data, with an emphasis on three areas: data visualization 
and exploration, crowdsourced data acquisition, and hybrid computer/hu-
man data analysis.
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STATE OF THE ART

Data Visualization and Exploration1

Information visualization technologies and visual analytics processes 
have matured rapidly in the past two decades and continued to gain com-
mercial adoption, while the research enterprise has expanded. Successful 
commercial tools include some that stand alone, such as Spotfire, Tableau, 
Palantir, Centrifuge, i2, and Hive Group, as well as some that are embed-
ded in other systems, such as IBM ILOG, SAS JMP, Microsoft Proclarity, 
Google Gapminder, and SAP Xcelsius. In addition, open-source toolkits 
such as R, Prefuse, ProtoVis, Piccolo, NodeXL, and Xmdv support pro-
grammers. Academic conferences and journals in this area are active, and 
an increasing number of graduate courses are available. 

At the same time, news media and web-based blogs have focused in-
tense public attention on interactive infographics that deal with key public 
events such as elections, financial developments, social media impacts, and 
health care/wellness. Information visualizations provide for rapid user in-
teraction with data through rich control panels with selectors to filter data, 
with results displayed in multiple coordinated windows. Larger displays 
(10 megapixels) or display arrays (100-1,000 megapixels) enable users to 
operate dozens of windows at a time from a single control panel. Large 
displays present users with millions of markers simultaneously, allowing 
them to manipulate these views by dynamic query sliders within 100 ms. 
Rapid exploration of data sets with 10 million or more records supports 
hypothesis formation and testing, enabling users to gain insights about 
important relationships or significant outliers.

An important distinction is often made between the more established 
field of scientific visualization and the emerging field of information visu-
alization. Scientific visualizations typically deal with two-dimensional and 
three-dimensional data about physical systems in which questions deal with 
position—for example, the location of highest turbulence in the airflow 
over aircraft wings, the location and path of intense hurricanes, or the site 
of blockages in arteries. In contrast, information visualizations typically 
deal with time series, hierarchies, networks, or multi-variate or textual data, 
in which questions revolve around finding relationships, clusters, gaps, 
outliers, and anomalies. 

Information visualization problems might be typified by the following 
examples:

1  The committee thanks Ben Shneiderman of the University of Maryland and Patrick 
Hanrahan of Stanford University for very helpful inputs to this section.
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•	 Find the strongest correlations in daily stock market performance 
over 5 years for 10,000 stocks (analyze a set of time series);

•	 Identify duplicate directories in petabyte-scale hard drives (search 
through hierarchies); 

•	 Find the most-central nodes in a social network of 500 million us-
ers (network analysis); and

•	 Discover related variables from 100-dimensional data sets with a 
billion rows (multivariate analysis). 

Increasingly, text-analytics projects are searching Web-scale data sets 
for trending phrases (e.g., Google’s culturomics.org), unusual combinations, 
or anomalous corpora that avoid certain phrases.

There are hundreds of interesting visualization techniques, including 
simple bar charts, line charts, treemaps, graphs, geographic maps, and 
textual representations such as tag clouds. Information visualization tools, 
however, often rely on rich interactions between multiple simultaneous visu-
alizations. For example, a user might select a set of markers in one window, 
and the tool highlights related markers in all windows, so that relationships 
can be seen. Such a capability might allow a user to select bars on a timeline 
indicating earthquakes and, from that, automatically highlight markers on 
a map and show each earthquake in a scattergram organized by intensity 
versus number of fatalities, color coded by whether the quake was under 
water or under land areas. Similarly, the movement of any dynamic query 
slider immediately filters out the related markers in all views. For example, 
a user could filter out the quakes whose epicenter was deeper than 3 miles 
to study the impact of deep quakes only. 

The general approach to seeking information is to overview first, zoom 
and filter, and then find details on demand. This simple notion conveys the 
basic idea of an exploratory process that has been widely applied. More 
recently, however, attention in the visual analytics community has shifted 
to process models for exploration. Such models range from simple 4-step 
approaches that gather information, re-represent it, develop insights, and 
present results, to elaborate 16-step models and domain-specific approaches 
for medical histories, financial transactions, or gene expression data.2 The 
process models help guide users through steps that include data cleaning 
(remove errors, duplicates, missing data, etc.), filtering (select appropriate 
subsets), aggregation (clustering, grouping, hierarchical organization), and 
recording insights (marking, annotation, grouping).3 

The steps in such process models have perceptual, cognitive, and do-
main-specific aspects that lead researchers to consider visual analytics as a 

2  See Thomas and Cook (2005) for an overview.
3  See, e.g., Perer and Shneiderman (2006).
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sense-making process, which requires validation by empirical assessments. 
While some aspects of interface design and usage can be tested in con-
trolled empirical user studies and expert reviews, information visualization 
researchers have creatively found new evaluation methods. Often, case 
studies of usage by actual researchers working with their own data over 
periods of weeks or months have been used to validate the utility of infor-
mation visualization tools and visual analytics processes (Shneiderman and 
Plaisant, 2006).

Crowdsourced Data Acquisition

The idea of coordinating groups of people to perform computational 
tasks has a long history. Small groups of people were used to catalog scien-
tific observations as early as the 1700s, and groups of hundreds of people 
were organized to compute and compile tables of mathematical functions 
in the early part of the 20th century (Grier, 2005). Recently, as the Internet 
has enabled large-scale organization and interaction of people, there has 
been a resurgence of interest in crowd-based data gathering and computa-
tion. The term “crowdsourcing” is used to describe a number of different 
approaches, which can be grouped into two general classes: those that 
leverage human activity, and those that leverage human intelligence. In the 
former case, data are produced and gathered, and work is performed as a 
by-product of individuals’ behavior on the Web or in other networked en-
vironments. In the latter case, groups of people are organized and explicitly 
tasked with performing a job, solving a problem, or contributing content 
or other work product.

The first category of crowdsourcing consists of techniques for garnering 
useful information generated as a by-product of human activity. Such in-
formation is sometimes referred to as “data exhaust.” For example, search 
companies can continuously improve their spell checking and recommenda-
tion systems using data generated as users enter misspelled search terms and 
then click on a differently spelled (correct) result. Many Web companies 
engage in similar types of activity mining, for example, to choose which 
content or advertising to display to specific users based on search history, 
access history, demographics, etc. Many other online activities, such as rec-
ommending a restaurant, “re-tweeting” an article, and so on, also provide 
valuable information. The implicit knowledge that is gleaned from user 
behaviors can be used to create a new predictive model or to augment and 
improve an existing one.

In these examples, users’ online activity is used to predict their intent 
or discern their interests. Online activity can also be used to understand 
events and trends in the real world. For example, there has been significant 
interest lately in continuously monitoring online forums and social media to 
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detect emerging news stories. As another example, Google researchers have 
demonstrated the ability to accurately detect flu outbreaks in particular geo-
graphic regions by noting patterns in search requests about flu symptoms 
and remedies.4 Importantly, they demonstrated that such methods sped up 
the detection of outbreaks by weeks compared to the traditional reporting 
methods currently used by the Centers for Disease Control and Prevention 
and others.

Another form of crowdsourced data acquisition is known as participa-
tory sensing (Estrin, 2010). The convergence of sensing, communication, 
and computational power on mobile devices such as cellular phones creates 
an unprecedented opportunity for crowdsourcing data. Smartphones are 
increasingly integrating sensor suites (with data from the Global Positioning 
System, accelerometers, magnetometers, light sensors, cameras, and so on), 
and they are capable of processing the geolocalized data and of transmitting 
them. As such, participatory sensing has become a paradigm for gathering 
data at global scales, which can reveal patterns of humans in the built en-
vironment. Early successes have been in the area of traffic monitoring and 
congestion prediction,5 but it is possible to build many applications that 
integrate physical monitoring with maps. Examples of other applications 
include monitoring of environmental factors such as air quality, sound pol-
lution, ground shaking (i.e., earthquake detection), and water quality and 
motion. Urban planning can be aided by the monitoring of vehicular as 
well as pedestrian traffic. Privacy concerns must be taken into account and 
handled carefully in some of these cases. 

In all the cases described above, data are collected as a by-product of 
peoples’ online or on-network behavior. Another class of crowdsourcing 
approaches more actively designs online activity with the express purpose 
of enticing people to provide useful data and processing. “Games with a 
purpose” are online games that entice users to perform useful work while 
playing online games (see, e.g., von Ahn and Dabbish, 2008). An early 
example was the ESP Game, developed at Carnegie Mellon University, in 
which players listed terms that describe images, simultaneously earning 
points in the game and labeling the images to aid in future image search 
queries. 

A related approach, called re-captcha,6 leverages human activity to aug-
ment optical character recognition (OCR). In re-captcha, users attempting 
to access an online resource are presented with two sets of characters to 
transcribe. One set of characters is known to the algorithm and is presented 

4  E.g., Explore Flu Trends Around the World, available at http://www.google.org/flutrends.
5  E.g., Mobile Millennium, University of California, Berkeley, Snapshot of Mobile Millen-

nium Traffic in San Francisco and the Bay Area, available at http://traffic.berkeley.edu/.
6  The ReCAPTCHA website is available at http://www.google.com/recaptcha.
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in a format that is difficult for machines to identify. The other set of char-
acters presented to the user is a portion of text that an OCR algorithm was 
unable to recognize. The idea is that by correctly entering the first set of 
characters, a user verifies that he or she is not a machine, and by entering 
the second set of characters, the user then effectively performs an OCR task 
that an OCR algorithm was unable to perform.

HYBRID HUMAN/COMPUTER DATA ANALYSIS

In the crowdsourcing techniques described in the previous section, hu-
man input was obtained primarily as part of the data-collection process. 
More recently, a number of systems have been developed that more explic-
itly involve people in computational tasks. Although the fields of artificial 
intelligence and machine learning have made great progress in recent years 
in solving many problems that were long considered to require human in-
telligence—for example, natural language processing, language translation, 
chess playing, winning the television game show Jeopardy, and various pre-
diction and planning tasks—there are still many tasks where human percep-
tion, and peoples’ ability to disambiguate, understand context, and make 
subjective judgments, exceed the capabilities of even the most sophisticated 
computing systems. For such problems, substantial benefit can be obtained 
by leveraging human intelligence.

While Quinn and Bederson (2011) distinguish human computation 
from crowdsourcing, defining the former as replacing computers with hu-
mans and the latter as “replacing traditional human workers with members 
of the public,” many in both the research community and the general public 
do not make such a distinction. Thus, crowdsourcing is often used to refer 
to either type of human involvement, and that convention is followed here.

Some types of crowdsourced systems that can be used to involve people 
in the process of analyzing data are the following:

•	 User-generated content sites. Wikipedia is a prominent example 
of a user-generated content site where people create, modify, and 
update pages of information about a huge range of topics. More 
specialized sites exist for reviews and recommendations of mov-
ies, restaurants, products, and so on. In addition to creating basic 
content, in many of these systems users are also able to edit and 
curate the data, resulting in collections of data that can be useful 
in many analytics tasks.

•	 Task platforms. Much of the interest around crowdsourcing has 
been focused on an emerging set of systems known as microtask 
platforms. A microtask platform creates a marketplace in which 
requesters offer tasks and workers accept and perform the tasks. 
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Microtasks usually do not require any special training and typically 
take no longer than 1 minute to complete, although they can take 
longer. Typical microtasks include labeling images, cleaning and 
verifying data, locating missing information, and performing sub-
jective or context-based comparisons. One of the leading platforms 
at present is Amazon Mechanical Turk (AMT). In AMT, workers 
from anywhere in the world can participate, and there are thought 
to be hundreds of thousands of people who perform jobs on the 
system. 

   Other task-oriented platforms have been developed or proposed 
to do more sophisticated work. For example, specialized platforms 
have been developed to crowdsource creative work such as design-
ing logos (e.g., 99designs) or writing code (e.g., TopCoder). In 
addition, some groups have developed programming languages to 
encode more sophisticated multistep tasks, such as Turkit (Little 
et al., 2010), or market-based mechanisms for organizing larger 
tasks (Shahaf and Horvitz, 2010). These types of platforms can be 
used to get human participation on a range of analytics tasks, from 
simple disambiguation to more sophisticated iterative processing.

•	 Crowdsourced query processing. Recently, a number of research ef-
forts have investigated the integration of crowdsourcing with query 
processing as performed by relational database systems. Traditional 
database systems are limited in their ability to tolerate inconsistent 
or missing information, which has restricted the domains in which 
they can be applied largely to those with structured, fairly clean 
information. Crowdsourcing based on application programming 
interfaces (APIs) provides an opportunity to engage humans to 
help with those tasks that are not sufficiently handled by database 
systems today. CrowdDB (Franklin et al., 2011) and Qurk (Marcus 
et al., 2011) are examples of such experimental systems.

•	 Question-answering systems. Question-answering systems are an-
other type of system for enlisting human intelligence. Many dif-
ferent kinds of human-powered or human-assisted sites have been 
developed. These include general knowledge sites where humans 
help answer questions (e.g., Cha Cha), general expertise-based 
sites, where people with expertise in particular topics answer ques-
tions on those topics (e.g., Quora), and specialized sites focused on 
a particular topic (e.g., StackOverflow for computer-programming-
related questions).

•	 Massive multi-player online games. Another type of crowdsourcing 
site uses gamification to encourage people to contribute to solving 
a problem. Such games can be useful for simulating complex social 
systems, predicting events (e.g., prediction markets), or for solving 
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specific types of problems. One successful example of the latter 
type of system is the FoldIt site,7 where people compete to most 
accurately predict the way that certain proteins will fold. FoldIt 
has been competitive with, and in some cases even beaten, the best 
algorithms for protein folding, even though many of the people 
participating are not experts.

•	 Specialized platforms. Some crowdsourcing systems have been de-
veloped and deployed to solve specialized types of problems. One 
example is Ushahidi,8 which provides geographic-based informa-
tion and visualizations for crisis response and other applications. 
Another such system is Galaxy Zoo,9 which enables people to 
help identify interesting objects in astronomical images. Galaxy 
Zoo learns the skill sets of its participants over time and uses this 
knowledge to route particular images to the people who are most 
likely to accurately detect the phenomena in those images. 

•	 Collaborative analysis. This class of systems consists of the crowd-
sourcing platforms that are perhaps the most directly related to data 
analytics at present. Such systems enable groups of people to share 
and discuss data and visualizations in order to detect and under-
stand trends and anomalies. Such systems typically include a social 
component in which participants can directly engage each other. 
Examples of such systems include ManyEyes, Swivel, and Sense.us.

As can be seen from the above list, there is currently a tremendous 
amount of interest in and innovation around crowdsourcing in many forms. 
In some cases (e.g., crowdsourced query processing and collaborative analy-
sis) crowd resources are being directly used to help make sense of data. In 
other cases, there is simply the potential for doing so. The next section out-
lines opportunities and challenges for developing hybrid human/computer 
analytics systems, as well as the two other areas of human interaction with 
data discussed above.

OPPORTUNITIES, CHALLENGES, AND DIRECTIONS

Data Visualization and Exploration

Many of the current challenges in visualization and exploration stem 
from scalability issues. As the volume of data to be analyzed continues to 
increase, it becomes increasingly difficult to provide useful visual represen-

7  The FoldIt website is available at http://fold.it. 
8  The Ushahidi website is available at http://ushahidi.com.
9  The Galaxy Zoo website is available at http://www.galaxyzoo.org.
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tations and interactive performance for massive data sets. These concerns 
are not unrelated: interactive analysis is qualitatively different from off-line 
approaches, particularly when exploration is required.

Aggregation strategies and visual representations are gaining impor-
tance as research topics (Shneiderman, 2008; Elmqvist and Fekete, 2010). 
This is especially true for network visualization, in which billion-node com-
munications or citation graphs are common and petabyte-per-day growth 
is a reality (Elmqvist et al., 2008; Archambault et al., 2011).

In terms of performance, one would expect that the significant continu-
ing changes in hardware architectures provide an opportunity to address 
the scalability issue. One appealing research direction is to support mas-
sive information visualization by way of specialized hardware. Graphics 
processing units (GPUs) have become low-cost and pervasive for showing 
three-dimensional graphics, while other emerging technologies such as data 
parallel computation platforms and cloud computing infrastructures must 
also be exploited. 

A second area that requires attention is the integration of visualization 
with statistical methods and other analytic techniques in order to support 
discovery and analysis. Here, the best strategy appears to lie in combining 
statistical methods with information visualization (Perer and Shneiderman, 
2009). Users can view initial displays of data to gain provisional insights 
about the distributions, identify errors or missing data, select interesting 
outliers or clusters, and explore high and low values. At every point they 
can apply statistical treatments to produce new intermediate data sets, 
record their insights, select groups for later analysis, or forward promising 
partial results to colleagues. Often users will need to combine data from 
several sources and apply domain knowledge to interpret the meaning of 
a statistical result and visual display. Although the products of an analysis 
may be compelling displays, the key outcome is insight about the data. 

An additional requirement that arises from the interactive nature of 
many data analysis processes is the need for the analytics system to provide 
human-understandable feedback to explain analytics results and the steps 
taken to obtain them. For example, sometimes automated systems produce 
models that are difficult to understand. Currently, the understandability of 
the analytical processes is the biggest impediment to using such techniques 
in decision-making. No CEO is going to make a risky decision using a 
model they do not understand. Consumers also have problems when au-
tomated systems present data they do not understand. Embedding data in 
a semantic substrate and allowing people to ask high-level questions using 
interactive tools is an effective way to improve confidence in and utility of 
an analytics system.

A final area of opportunity is support for group-based analytics. Com-
plex decisions are often made by groups rather than individuals. As data 
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become more complex, support for groups and shared expertise becomes 
even more important. Visual analytics researchers emphasize the social 
processes around information visualization, in which teams of 10 to 5,000 
analysts may be working on a single problem, such as pharmaceutical drug 
discovery, oil/gas exploration, manufacturing process control, or intel-
ligence analysis. These teams must coordinate their efforts over weeks or 
months, generate many intermediate data sets, and combine their insights 
to support important decisions for corporations or government agencies.

Crowdsourced Data Acquisition and Hybrid 
Human/Computer Data Analysis

The other two ways that people can participate in the analytics process 
are by helping to acquire data and by adding human intelligence where 
existing algorithms and systems technology cannot provide an adequate an-
swer. These two topics are combined because they share many open issues. 

One of the main research problems for crowdsourcing is the need to 
understand, evaluate, and improve the quality of answers obtained from 
people. Answers from the crowd can be subject to statistical bias, malicious 
or simply greedy intent (particularly when work is done for pay), or simply 
incorrect answers due to a lack of expertise. Such problems are exacerbated 
in some crowdsourcing systems where workers are more or less anonymous 
and, hence, not fully accountable, and in environments where monetary 
incentives are used, which can lead to contributors providing large numbers 
of random or simply incorrect answers. While many traditional statistical 
tests and error adjustment techniques can be brought to bear on the prob-
lem, the environment of crowdsourced work provides new challenges that 
must be addressed.

Another important area requiring significant work is the design of incen-
tive mechanisms to improve the quality, cost, and timeliness of crowdsourced 
contributions. Incentive structures currently used include money, status, al-
truism, and other rewards. Also, because many crowdsourcing platforms are 
truly global markets, there are concerns about minimum wages, quality of 
work offered, and potential exploitation of workers that must be addressed.

Participatory sensing provides another set of research challenges. Large-
scale sensing deployments can create massive streams of real-time data. 
These data can be error-prone and context sensitive. Privacy issues must 
also be taken into account if the sensing is being done based on monitoring 
individuals’ activities. Finally, the sheer volume of data collected can stress 
even the most advanced computing platforms, particularly if data are to be 
maintained over long time periods.

An interesting and important problem is that of determining what 
types of problems are amenable to human solution as opposed to computer 
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solution. This question is related to the question of “AI Completeness” as 
described by (Shahaf and Amir, 2007). It also leads to what is likely the 
most important area of future work regarding crowdsourcing and analytics, 
namely, the design and development of hybrid human/computer systems 
that solve problems that are too hard for computers or people to solve 
alone. Designing such systems requires a deep understanding of the relative 
strengths and weaknesses of human and machine computation.

Given the scale of massive data, it makes sense to try to use com-
puters wherever possible, because people are inherently slower for large 
number-crunching tasks and their abilities are less scalable. Thus statisti-
cal methods and machine-learning algorithms should be used when they 
can produce  answers with sufficient confidence within time and budget 
constraints.  People can be brought to bear to handle cases that need addi-
tional clarification or insight. Furthermore, human input can be used to 
train, validate, and improve models. In the longer term, the expectation 
is that machines and algorithms will continue to improve in terms of the 
scale and complexity of the tasks they can accomplish. However, it is likely 
also that this improvement will lead to an increase in the scope, complex-
ity, and diversity of the analysis questions to be answered. Thus, while the 
roles and responsibilities of the algorithmic and human components will 
shift over time, the need to design and develop effective hybrid systems 
will remain.
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The Seven Computational Giants 
of Massive Data Analysis

One of the major challenges in massive data analysis is that of specify-
ing an overall system architecture. Massive data analysis systems should 
make effective use of existing (distributed and parallel) hardware platforms; 
accommodate a wide range of data formats, models, loss functions, and 
methods; provide an expressive but simple language in which humans can 
specify their data analysis goals; hide inessential aspects of data analysis 
from human users while providing useful visualizations of essential as-
pects of the analysis; provide seamless interfaces to other computational 
platforms, including scientific measurement platforms and databases; and 
provide many of capabilities familiar from large-scale databases, such as 
checkpointing and provenance tracking. These systems should permit ap-
propriate blends of autonomy and human oversight.

Clearly we are far from possessing the ability to design and build such 
systems. In taking steps toward formulating design principles for massive 
data analysis systems, the committee notes that a major missing ingredient 
appears to be agreement on a notion of “middleware,” which would con-
nect high-level analysis goals to implementations at the level of hardware 
and software platforms. The general goal of such middleware is to provide 
a notion of “reuse,” whereby a relatively small set of computational mod-
ules can be optimized and exploited in a wide variety of algorithms and 
analyses.

The field of high-performance computing has faced a similar set of 
challenges. In that field, a useful step forward was provided by the Berke-
ley “dwarfs” paper (Asanovic et al., 2006), which specified a set of com-
mon problem classes that could help in the design of software for novel 
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supercomputing architectures. In that paper, a “dwarf” represents a com-
putational task that is commonly used and built from a consistent set of 
fundamental computations and data movements. 

This chapter represents a first attempt to define an analogous set of 
computational tasks for massive data analysis, essentially aiming to provide 
a taxonomy of tasks that have proved to be useful in data analysis and 
grouping them roughly according to mathematical structure and computa-
tional strategy. Given the vast scope of the problem of data analysis, and 
the lack of existing general-purpose computational systems for massive 
data analysis from which to generalize, the committee does not expect this 
taxonomy to survive a detailed critique. Indeed, the presentation here is 
not intended to be taken as definitive; rather, the committee wishes it will 
serve to open a discussion. 

Because the subject is massive data, the term “giants” will be used 
rather than “dwarfs.” The committee proposes the following seven giants 
of statistical data analysis:

1. Basic statistics,
2. Generalized N-body problem,
3. Graph-theoretic computations,
4.  Linear algebraic computations,
5.  Optimization,
6.  Integration, and
7.  Alignment problems.

For each of these computational classes, there are computational con-
straints that arise within any particular problem domain that help to deter-
mine the specialized algorithmic strategy to be employed. Such collections 
of constraints are referred to here as “settings.” Important settings for 
which algorithms are needed include the following:

A. The “default setting” of a single processor with the entire data set 
fitting in random access memory (RAM);

B. The streaming setting, in which data arrive in quick succession and 
only a subset can be stored;

C. The disk-based setting, in which the data are too large to store in 
RAM but fit on one machine’s disk;

D. The distributed setting, in which the data are distributed over mul-
tiple machines’ RAMs or disks; and

E. The multi-threaded setting, in which the data lie on one machine 
having multiple processors which share RAM.

Most work to date focuses on setting A.
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The relative importance of each of these settings is dictated by the state 
of computer technology and its economics. For example, the relative laten-
cies of the entire hardware stack (e.g., of network communication, disk 
accesses, RAM accesses, cache accesses, etc.) shifts over time, ultimately 
affecting the best choice of algorithm for a problem. What constitutes a 
“fast” or “good” algorithmic solution for a certain giant in a particular 
setting is determined by the resources (e.g., time, memory, disk space, and 
so on) with which one is typically concerned. Different algorithms may be 
designed to achieve efficiency in terms of different resources.

The giants are sometimes associated with, or even defined by, certain 
conceptual data representations, such as matrices, graphs, sequences, and so 
on. This is discussed further in Chapter 6. Sitting one conceptual level be-
low such representations are data structures such as arrays, priority queues, 
hash tables, etc., which are designed to make certain basic operations on 
the representations efficient. These are discussed as needed in connection 
with the algorithmic strategies discussed in the remainder of this chapter.

Another way of characterizing the major problems of massive data 
analysis is to look at the major inferential challenges that must be ad-
dressed. These are discussed in earlier chapters, and coincidentally there 
are also seven of these “inferential giants”:

•	 Assessment of sampling biases,
•	 Inference about tails,
•	 Resampling inference,
•	 Change point detection,
•	 Reproducibility of analyses,
•	 Causal inference for observational data, and
•	 Efficient inference for temporal streams.

The committee has not attempted to map these statistical problems 
against the algorithmic “giants” discussed next. The algorithmic groupings 
below are natural when contemplating how to accomplish various analyses 
within certain computational settings. But the list of inferential giants is a 
helpful reminder of the ultimate goal of knowledge discovery.

BASIC STATISTICS

Types of Data Analyses and Computations

This class includes basic statistical tasks. Examples include computing 
the mean, variance, and other moments; estimating the number of distinct 
elements in a data set; counting the number of elements and finding fre-
quently occurring ones; and calculating order statistics such as the median. 
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These tasks typically require O(N) calculations for N data points. Some 
other calculations that arguably fall into this class include sorting and basic 
forms of clustering. 

Such simple statistical computations are widely used in and of them-
selves, but they also appear inside myriad more complex analyses. For 
example, multidimensional counts are important in count-based methods 
such as association rules and in probabilistic inference in graphical models 
with discrete variables.

Challenges and Examples of Notable Approaches

The problems in this class become more difficult in sublinear models of 
computation, such as in the streaming model. For many important tasks, 
identifying the best algorithm is still a subject of ongoing research. For 
example, an optimal space-efficient approximation algorithm for estimat-
ing the number of distinct elements (a problem studied since Flajolet and 
Martin, 1985) has been discovered only very recently (Kane et al., 2010). 
Many other problems remain open, notably those involving high-dimen-
sional data. Various data structures can be employed for discrete counts; 
for an example, see Anderson and Moore (1998). Various “sketching” and 
“compressed sensing” approaches based on random projections and other 
forms of subsampling have been developed. These can provide probabilis-
tic accuracy guarantees in exchange for speedup. Examples include sparse 
(Charikar et al., 2002; Cormode and Muthukrishnan, 2004; Gilbert and 
Indyk, 2010), dense (Candès et al., 2006; Donoho, 2006), and nonlinear 
(Agarwal et al., 2005) approaches.

GENERALIZED N-BODY PROBLEMS

Types of Data Analyses and Computations

“Generalized N-body problems” (Gray and Moore, 2001) include 
virtually any problem involving distances, kernels, or other similarities 
between (all or many) pairs (or higher-order n-tuples) of points. Such 
problems are typically of computational complexity O(N2) or O(N3) if 
approached naively. Range searches of various flavors, including spheri-
cal and rectangular range searches, are basic multidimensional queries of 
general use. Nearest-neighbor search problems of various flavors, includ-
ing all-nearest-neighbors (nearest-neighbor for many query points) and the 
nearest-neighbor classification problem (which can be performed without a 
full search), appear in nearest-neighbor classification as well as in modern 
methods such as nonlinear dimension reduction methods, which are also 
known as manifold learning methods. Kernel summations appear in both 
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kernel estimators—such as kernel density estimation, kernel regression 
methods, radial basis function neural networks, and mean-shift tracking—
and modern kernelized methods such as support vector machines and ker-
nel principal components analysis (PCA). The kernel summation decision 
problem (computing the greater of two kernel summations) occurs in kernel 
discriminant analysis as well as in support vector machines. Other instances 
of this type of computation include k-means, mixtures of Gaussians cluster-
ing, hierarchical clustering, spatial statistics of various kinds, spatial joins, 
the Hausdorff set distance, and many others.

Challenges and Examples of Notable Approaches

A main challenge for such problems lies in dealing with high-dimen-
sional data, because the bounds used in typical algorithmic approaches 
become less effective. For example, designing nearest-neighbor algorithms 
that do not suffer from the curse of dimensionality is an important topic 
worthy of further study. Although some progress in this direction has 
been made (e.g., Freeman, 2011), more research is needed. Various non-
Euclidean metrics—such as edit distances used in computational biology, 
earth-mover distances used in computer vision, and others—appear to pose 
even greater difficulties. For exact computations, some approaches that can 
be highly effective include multidimensional data structures such as kd-trees 
and cover-trees (Beygelzimer et al., 2006). Such algorithms can achieve 
O(N log N) run times for all-pairs problems, which would naively require 
O(N2) operations (Ram et al., 2009a). Kernel summations can be accu-
rately approximated using sophisticated hierarchical series approximation 
methods within trees (Lee and Gray, 2006). To achieve greater efficiency in 
higher dimensionalities, but at the cost of approximation guarantees hold-
ing only with high probability, random projections (sampling the dimen-
sions) can be employed (Andoni and Indyk, 2008). Related sketching ideas 
such as in Church et al. (2006) can be used for distance computations. Sam-
pling ideas can also be powerfully employed within tree-based algorithms 
for increased accuracies at the cost of greater preprocessing time (Ram et 
al., 2009b; Lee and Gray, 2009).

GRAPH-THEORETIC COMPUTATIONS

Types of Data Analyses and Computations

This class includes problems that involve traversing a graph. In some 
cases the graph is the data, and in other cases the statistical model takes 
the form of a graph, as in the case of graphical models. Common statisti-
cal computations that are employed on (data) graphs include betweenness, 
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centrality, and commute distances; these are used to identify nodes or 
communities of interest. Despite the simple definition of such statistics, 
major computational challenges arise in large-scale, sparse graphs. When 
the statistical model takes the form of a graph, graph-search algorithms 
continue to remain important, but there is also a need to compute marginal 
probabilities and conditional probabilities over graphs, operations generally 
referred to as “inference” in the graphical models literature.

In models with all discrete variables, graphical model inference requires 
deeply nested (many-variable) summations. In models with all Gaussian 
variables, inference becomes a linear algebra problem (thus becoming a 
member of the next giant instead). Many graph computations can in fact 
be posed as linear algebra problems. Other sorts of graph-theoretic com-
putations occur in manifold learning methods. For example, the Isomap 
method requires an all-pairs-shortest-paths computation. Another example 
is single-linkage hierarchical clustering, which is equivalent to computing a 
minimum spanning tree. Note that both of these are examples of Euclidean 
graph problems, which actually become distance-based, or N-body-type 
problems (the previous giant).

Challenges and Examples of Notable Approaches

The challenge regime of graph theoretic problems is that of graphs 
with high interconnectivity in general. For example, in graphical model 
inference problems, the challenging regime consists of graphs with large 
maximal clique size. Fundamental graph computations, such as shortest-
path calculations, can pose significant challenges for graphs that do not fit 
in RAM (e.g., due to the latency of remote memory access). Notable recent 
approaches include sampling (Sarkar et al., 2008) and disk-based (Ajwani 
et al., 2006; Sarkar and Moore, 2010) ideas. 

Comprehensive parallel/distributed approaches to computing graph 
primitives can be built from work in sparse linear algebra (Gilbert et al., 
2007; Kang et al., 2009), or they can use graph concepts more directly 
(Madduri et al., 2007). Powerful links between graph partitioning and 
linear algebraic reconditioning have been employed (Spielman and Teng, 
2004; Andersen et al., 2006; Leskovec et al., 2009). Notable approaches 
for graphical model inferences include transformation of the problem from 
one of summation to one of optimization via variational methods (Jordan 
et al., 1999; Wainwright and Jordan, 2003), sampling approaches (Dillon 
and Lebanon, 2010), and parallel/distributed approaches (Gonzalez et al., 
2009).
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LINEAR ALGEBRAIC COMPUTATIONS

Types of Data Analyses and Computations

This class includes all the standard problems of computational linear 
algebra, including linear systems, eigenvalue problems, and inverses. A 
large number of linear models, including linear regression, PCA, and their 
many variants, result in linear algebraic computations. Many of these are 
well-solved by generic linear algebra approaches. There are at least two 
important differentiators, however. One is the fact that, in statistical prob-
lems, the optimization in learning—this is what the eigendecomposition of 
PCA is doing, optimizing a linear convex training error—need not neces-
sarily be performed to high accuracy. This is because one wants to optimize 
generalization error and not training error, and thus optimizing the train-
ing error to high accuracy may be overfitting. Another difference is that 
multivariate statistics arguably has its own matrix form, that of a kernel 
(or Gram) matrix. This is significant because much of computational linear 
algebra involves techniques specialized to take advantage of certain matrix 
structures. In kernel methods such as Gaussian process regression (kriging) 
or kernel PCA, the kernel matrix can be so large as to prohibit even storing 
the matrix explicitly, motivating matrix-free algorithms if possible.

Challenges and Examples of Notable Approaches

Matrices that do not exhibit quickly decaying spectra—a feature that 
indicates strong structure that can be exploited computationally—and near-
singular matrices represent two common challenges for linear algebraic 
problems. Many problems (such as PCA and linear regression) appear to 
be harder once the L2 norm is replaced by other Lp norms, notably the L1 
norm. Probabilistic relaxations of the problem can be employed, sampling 
from the rows and/or columns of the matrix (Frieze et al., 1998; Drineas et 
al., 2004). As in generalized N-body problems, the use of sampling within 
tree data structures can provide increased accuracies (Holmes et al., 2009). 
For kernel matrix computations as performed in Gaussian process regres-
sion, some effective approaches include greedy subsection selection (Smola 
and Bartlett, 2001; Ouimet and Bengio, 2005; Bo and Sminchisescu, 2008), 
conjugate gradient-type methods requiring only the ability to multiply the 
kernel matrix by a vector (changing the core of the computation to a gen-
eralized N-body problem; Gray, 2004), and random sampling to compute 
the kernel (Rahimi and Recht, 2008).
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OPTIMIZATIONS

Types of Data Analyses and Computations

Within massive data, all the standard subclasses of optimization 
problems appear, from unconstrained to constrained, both convex and 
non-convex. Linear algebraic computations are arguably a special case 
of optimization problems, and they are certainly the main subroutine of 
(second-order) optimization algorithms. Non-trivial optimizations have 
appeared in statistical methods from early on, and they appear increasingly 
frequently as methods have become more sophisticated. For example, linear 
programming (LP), quadratic programming (QP), and second-order cone 
programming appear in various forms of support vector machines as well 
as more recent classifiers, and semidefinite programming appears in recent 
manifold learning methods such as maximum variance unfolding. It is only 
a matter of time before other standard types of optimization problems, such 
as geometric programming (which has not yet been adopted within statisti-
cal fields), are applied in statistical methods. As touched on above for linear 
algebra computations, optimization in statistical problems is often focused 
on empirical loss functions, which are proxies for expectations. This is use-
fully formalized by the field of stochastic approximation.

Challenges and Examples of Notable Approaches

Optimization problems (mathematical programs) with a very large 
number of variables and/or constraints represent a primary difficulty in 
optimization. The global solution of non-convex problems remains an open 
problem. Problems with integer constraints come up against a fundamental 
hardness in computer science, that of combinatorial problems. In gen-
eral, exploiting the particular mathematical forms of certain optimization 
problems can lead to more effective optimizers, as in the case of support 
vector machine-like quadratic programs (Platt, 1998). Some mathematical 
forms have special properties, for example, submodularity (Chechetka and 
Guestrin, 2007), which can provably be exploited for greater efficiencies. 
Distributed optimization, both centralized and asynchronous (Tsitsiklis et 
al., 1986; Nedic and Ozdaglar, 2009; Boyd et al., 2011; Duchi et al., 2010), 
is of increasing interest, and creating effective algorithms remains a chal-
lenge. A powerful technique of stochastic programming, called stochastic 
approximation or online learning, can be regarded as a random sampling 
approach to gradient descent, and this has been effective for many meth-
ods, including linear classifiers (Zhang, 2004; Shalev-Shwartz et al., 2007; 
Bottou and Bousquet, 2008; Nemirovski et al., 2009; Ouyang and Gray, 
2010). The parallelization of online approaches remains relatively open.
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INTEGRATION

Types of Data Analyses and Computations

Integration of functions is a key class of computations within massive 
data analysis. Integrations are needed for fully Bayesian inference using 
any model, and they also arise in non-Bayesian statistical settings, most 
notably random effects models. The integrals that appear in statistics are 
often expectations, and thus they have a special form.

Challenges and Examples of Notable Approaches

The frontier of capability in integration surrounds high-dimensional 
integrals, as low-dimensional integrals are generally well-treated by quadra-
ture methods. The kinds of integrals arising in Bayesian statistical models 
are typically of high dimension for modern problems. The default approach 
for high-dimensional integration is Markov Chain Monte Carlo (MCMC; 
Andrie et al., 2003). In the case of certain sequential models, the approach 
becomes that of sequential Monte Carlo, which is also known as particle 
filtering (Doucet et al., 2001). 

Effective alternatives to MCMC include approximate Bayesian compu-
tation (ABC) methods, which operate on summary data (such as population 
means or variances) to achieve accelerations in some cases (Marjoram et 
al., 2003), and population Monte Carlo, a form of adaptive importance 
sampling (Capp et al., 2004). Alternative approaches based on low-dis-
crepancy sets improve over Monte Carlo integration in some cases (Paskov 
and Traub, 1995). Variational methods provide a general way to convert 
integration problems into optimization problems (Wainwright and Jordan, 
2003). 

Because of the inherent difficulty of high-dimensional integration, 
a common strategy is to change the inference formulation away from a 
full Bayesian one—for example, in maximum a posteriori inference and 
 empirical Bayesian inference, part of the integration problem is skirted via 
the use of optimization-based point estimation.

ALIGNMENT PROBLEMS

Types of Data Analyses and Computations

The class of alignment problems consists of various types of problems 
involving matchings between two or more data objects or data sets, such 
as the multiple sequence alignments commonly used in computational bi-
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ology, the matching of catalogs from different instruments in astronomy, 
the matching of objects between images, and the correspondence between 
synonymous words in text analysis. Such non-trivial problems are often 
critical in the data fusion that must often be carried out before further data 
analyses can be performed.

Challenges and Examples of Notable Approaches

Such problems are often combinatorial in nature, and thus various 
forms of problem-specific constraints are generally exploited to make the 
computations efficient. The sequential structure of genomics problems natu-
rally lead to dynamic programming solutions, but for larger scales, greedy 
hierarchical solutions (Higgins and Sharpe, 1988) and hidden Markov 
models (Grasso and Lee, 2004) are often used. For the catalog cross-match 
problem, which has the structure of a generalized N-body problem, spatial 
locality can be exploited using parallel in-database spatial indexing methods 
(Gray et al., 2006; Nieto-Santisteban et al., 2006). The problem of finding 
correspondences between features of objects, such as faces between images, 
can in principle be treated with a matching algorithm (Bertsekas, 1988), but 
it must also account for various invariances (Zokai and Wolberg, 2005). 
The synonymy problem in text can be handled by approaches such as linear 
dimension-reduction models, taking the form of a linear algebraic problem 
(Landauer et al., 1998).

DISCUSSION

Two of the most pervasive strategies for achieving computational ef-
ficiency are sampling and parallel/distributed computing. Sampling is dis-
cussed further in Chapter 8, where the focus is on the statistical aspects 
rather than the computational and algorithmic aspects touched on here. 
Current and emerging technologies for parallel and distributed computing 
are discussed in Chapter 3, where the focus is on architectural issues rather 
than the algorithmic aspects touched on here.

Looking across all of the seven giants for common themes, the follow-
ing are evident:

•	 State-of-the-art algorithms exist that can provide accelerations of 
major practical importance, by significantly changing the runtime 
order, for example, from O(N2) to O(N log N).

•	 The “non-default” settings—streaming, disk-based, distributed, 
multi-threaded—are quite important, yet mostly under-explored in 
terms of research effort.
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•	 High dimensionality in the number of variables is a persistent 
challenge to obtaining computational efficiency, and this demands 
ongoing research effort.

•	 Most of the best fast algorithms described in this chapter have 
only been demonstrated in research implementations. More work 
is required to create robust and reliable software before these al-
gorithms can be used widely in practice.

The combination of the seven giants and the five settings A through E, 
identified early in this chapter, imply a table of research frontiers. As noted 
early in this chapter, most work to date focuses on setting A, the “default 
setting” of a single processor with the entire data set fitting in random ac-
cess memory, so much work remains in order to more completely explore 
this space of algorithms and settings.
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Conclusions

This report aims to increase the level of awareness of the intellectual 
and technical issues surrounding the analysis of massive data. This is not 
the first report written on massive data, and it will not be the last, but 
given the major attention currently being paid to massive data in science, 
technology, and government, the committee believes that it is a particularly 
appropriate time to be considering these issues.

This final section begins by summarizing some of the key conclusions 
from the report. It then provides a few additional concluding remarks. The 
study that led to this report reached the following conclusions:

•	 Recent years have seen rapid growth in parallel and distributed 
computing systems, developed in large part to serve as the back-
bone of the modern Internet-based information ecosystem. These 
systems have fueled search engines, electronic commerce, social 
networks, and online entertainment, and they provide the platform 
on which massive data analysis issues have come to the fore. Part of 
the challenge going forward is the problem of scaling these systems 
and algorithms to ever-larger collections of data. It is important to 
acknowledge, however, that the goals of massive data analysis go 
beyond the computational and representational issues that have 
been the province of classical search engines and database process-
ing to tackling the challenges of statistical inference, where the goal 
is to turn data into knowledge and to support effective decision-
making. Assertions of knowledge require control over errors, and 
a major part of the challenge of massive data analysis is that of de-
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veloping statistically well-founded procedures that provide control 
over errors in the setting of massive data, recognizing that these 
procedures are themselves computational procedures that consume 
resources.

•	 There are many sources of potential error in massive data analysis, 
many of which are due to the interest in “long tails” that often 
accompany the collection of massive data. Events in the “long 
tail” may be vanishingly rare even in a massive data set. For ex-
ample, in consumer-facing information technology, where the goal 
is increasingly that of providing fine-grained, personalized services, 
there may be little data available for many individuals even in very 
large data sets. In science, the goal is often that of finding unusual 
or rare phenomena, and evidence for such phenomena may be 
weak, particularly when one considers the increase in error rates 
associated with searching over large classes of hypotheses. Other 
sources of error that are prevalent in massive data include the 
high-dimensional nature of many data sets, issues of heterogeneity, 
biases arising from uncontrolled sampling patterns, and unknown 
provenance of items in a database. In general, data analysis is based 
on assumptions, and the assumptions underlying many classical 
data analysis methods are likely to be broken in massive data sets.

•	 Massive data analysis is not the province of any one field, but is 
rather a thoroughly interdisciplinary enterprise. Solutions to mas-
sive data problems will require an intimate blending of ideas from 
computer science and statistics, with essential contributions also 
needed from applied and pure mathematics, from optimization 
theory, and from various engineering areas, notably signal process-
ing and information theory. Domain scientists and users of technol-
ogy also need to be engaged throughout the process of designing 
systems for massive data analysis. There are also many issues 
surrounding massive data (most notably privacy issues) that will 
require input from legal scholars, economists, and other social sci-
entists, although these aspects have not been covered in the current 
report. In general, by bringing interdisciplinary perspectives to bear 
on massive data analysis, it will be possible to discuss trade-offs 
that arise when one jointly considers the computational, statisti-
cal, scientific, and human-centric constraints that frame a problem. 
When considering parts of the problem in isolation, one may end 
up trying to solve a problem that is more general than is required, 
and there may be no feasible solution to that broader problem; a 
suitable cross-disciplinary outlook can point researchers toward an 
essential refocusing. For example, absent appropriate insight, one 
might be led to analyzing worst-case algorithmic behavior, which 
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can be very difficult or misleading, whereas a look at the totality 
of a problem could reveal that average-case algorithmic behav-
ior is quite appropriate from a statistical perspective. Similarly, 
knowledge of typical query generation might allow one to confine 
an analysis to a relatively simple subset of all possible queries that 
would have to be considered in a more general case. And the dif-
ficulty of parallel programming in the most general settings may be 
sidestepped by focusing on useful classes of statistical algorithms 
that can be implemented with a simplified set of parallel program-
ming motifs; moreover, these motifs may suggest natural patterns 
of storage and access of data on distributed hardware platforms.

•	 Although there are many sources of data that are currently fuel-
ing the rapid growth in data volume, a few forms of data create 
particularly interesting challenges. First, much current data involve 
human language and speech, and increasingly the goal with such 
data is to extract aspects of the semantic meaning underlying the 
data. Examples include sentiment analysis, topic models of docu-
ments, relational modeling, and the full-blown semantic analyses 
required by question-answering systems. Second, video and image 
data are increasingly prevalent, creating a range of challenges in 
large-scale compression, image processing, computational vision, 
and semantic analysis. Third, data are increasingly labeled with 
geo-spatial and temporal tags, creating challenges in maintaining 
coherence across spatial scales and time. Fourth, many data sets 
involve networks and graphs, with inferential questions hinging 
on semantically rich notions such as “centrality” and “influence.” 
The deeper analyses required by data sources such as these involve 
difficult and unsolved problems in artificial intelligence and the 
mathematical sciences that go beyond near-term issues of scaling 
existing algorithms. The committee notes, however, that massive 
data itself can provide new leverage on such problems, with ma-
chine translation of natural language a frequently cited example.

•	 Massive data analysis creates new challenges at the interface be-
tween humans and computers. As just alluded to, many data sets 
require semantic understanding that is currently beyond the reach 
of algorithmic approaches and for which human input is needed. 
This input may be obtained from the data analyst, whose judgment 
is needed throughout the data analysis process, from the framing 
of hypotheses to the management of trade-offs (e.g., errors versus 
time) to the selection of questions to pursue further. It may also 
be obtained from crowdsourcing, a potentially powerful source of 
inputs that must be used with care, given the many kinds of errors 
and biases that can arise. In either case, there are many challenges 
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that need to be faced in the design of effective visualizations and 
interfaces and, more generally, in linking human judgment with 
data analysis algorithms. 

•	 Many data sources operate in real time, producing data streams 
that can overwhelm data analysis pipelines. Moreover, there is 
often a desire to make decisions rapidly, perhaps also in real time. 
These temporal issues provide a particularly clear example of the 
need for further dialog between statistical and computational re-
searchers. Statistical research has rarely considered constraints due 
to real-time decision-making in the development of data analysis 
algorithms, and computational research has rarely considered the 
computational complexity of algorithms for managing statistical 
risk.

•	 There is a major need for the development of “middleware”—
software components that link high-level data analysis specifica-
tions with low-level distributed systems architectures. Chapter 10 
attempts to provide an initial set of suggestions in this regard. As 
discussed there, much of the work on these software components 
can borrow from tools already developed in scientific computing 
instances, but the focus will need to change, with algorithmic solu-
tions constrained by statistical needs. There is also a major need for 
software targeted to end users, such that relatively naive users can 
carry out massive data analysis without a full understanding of the 
underlying systems issues and statistical issues. However, this is not 
to suggest that the end goal of massive data analysis software is to 
develop turnkey solutions. The exercise of effective human judg-
ment will always be required in data analysis, and this judgment 
needs to be based on an understanding of statistics and computa-
tion. The development of massive data analysis systems needs to 
proceed in parallel with a major effort to educate students and the 
workforce in statistical thinking and computational thinking.

The remainder of this chapter provides a few closing remarks on mas-
sive data analysis, focusing on issues that have not been highlighted earlier 
in the report.

The committee is agnostic as to whether a new name, such as “data 
science,” needs to be invoked in discussing research and development in 
massive data analysis. To the extent that such names invoke an interdisci-
plinary perspective, the committee feels that they are useful. 

In particular, the committee recognizes that industry currently has 
major needs in the hiring of computer scientists with an appreciation of 
statistical ideas and statisticians with an appreciation of computational 
ideas. The use of terms such as “data science” indicates this interdisciplin-
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ary hiring profile. Moreover, the existing needs of industry suggest that 
academia should begin to develop programs that train bachelors- and 
masters-level students in massive data analysis (in addition to programs 
at the Ph.D. level). Several such efforts are already under way, and many 
more are likely to emerge in the next few years. It is perhaps premature to 
suggest curricula for such programs, particularly given that much of the 
foundational research in massive data analysis remains to be done. Even 
if such programs minimally solve the difficult problem of finding room in 
already-full curricula in computer science and statistics, so that comple-
mentary ideas from the other field are taught, they will have made very 
significant progress. 

A broader problem is that training in massive data analysis will require 
experience with massive data and with computational infrastructure that 
permits the real problems associated with massive data to be revealed. The 
availability of benchmarks, repositories (of data and software), and com-
putational infrastructure will be a necessity in training the next generation 
of “data scientists.” The same point, of course, can be made for academic 
research: significant new ideas will only emerge if academics are exposed 
to real-world massive data problems.

The committee emphasizes that massive data analysis is not one prob-
lem or one methodology. Data are often heterogeneous, and the best attack 
on a problem may involve finding sub-problems, where “best” may be mo-
tivated by computational, inferential, or interpretational reasons. The dis-
covery of such sub-problems might itself be an inferential problem. On the 
other hand, data often provide partial views of a problem, and the solution 
may involve fusing multiple data sources. These perspectives of segmenta-
tion versus fusion will often not be in conflict, but substantial thought and 
domain knowledge may be required to reveal the appropriate combination.

One might hope that general, standardized procedures might emerge 
that can be used as a default for any massive data set, in much the way 
that the Fast Fourier Transform is a default procedure in classical signal 
processing. The committee is pessimistic that such procedures exist in gen-
eral. To take a somewhat fanciful example that makes the point, consider 
a proposal that all textual data sets should be subject to spelling correction 
as a preprocessing step. Now suppose that an educational researcher wishes 
to investigate whether certain changes in the curricula in elementary schools 
in some state lead to improvements in spelling. Short of designing a stan-
dardized test that may be difficult and costly to implement, the researcher 
might be able to use a data set such as the ensemble of queries to a search 
engine before and after the curriculum change was implemented. For such a 
researcher, it is exactly the pattern of misspellings that is the focus of infer-
ence, and a preprocessor that corrects spelling mistakes is an undesirable 
step that selectively removes the data of interest.
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Nevertheless, some useful general procedures and pipelines will surely 
emerge; indeed, one of the goals of this report is to suggest approaches 
for designing such procedures. But the committee emphasizes the need for 
flexibility and for tools that are sensitive to the overall goals of an analysis. 
Massive data analysis cannot, in general, be reduced to turnkey procedures 
that consumers can use without thought. Rather, as with any engineering 
discipline, the design of a system for massive data analysis will require 
engineering skill and judgment. Moreover, deployment of such a system 
will require modeling decisions, skill with approximations, attention to 
diagnostics, and robustness. As much as the committee expects to see the 
emergence of new software and hardware platforms geared to massive data 
analysis, it also expects to see the emergence of a new class of engineers 
whose skill is the management of such platforms in the context of the solu-
tion of real-world problems.

Finally, it is noted that this report does not attempt to define “massive 
data.” This is, in part, because any definition is likely to be so context-
dependent as to be of little general value. But the major reason for sidestep-
ping an attempt at a definition is that the committee views the underlying 
intellectual issue to be that of finding general laws that are applicable at 
a variety of scales, or ideally, that are scale-free. Data sets will continue 
to grow in size over the coming decades, and computers will grow more 
powerful, but there should exist underlying principles that link measures 
of inferential accuracy with intrinsic characteristics of the data-generating 
process and with computational resources such as time, space, and energy. 
Perhaps these principles can be uncovered once and for all, such that each 
successive generation of researchers does not need to reconsider the massive 
data problem afresh.
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Acronyms

ABC approximate Bayesian computation
AMT Amazon Mechanical Turk
API application programming interface

CCD charge-coupled device
CPU central processing unit
CQL Contextual Query Language

DAG directed-acyclic-graph
DBMS database management system
DNA deoxyribonucleic acid
DSMS data stream management system

FDR false discovery rate
FFTW Fastest Fourier Transform in the West
FPGA field programmable gate array
FTRL follow the regularized leader

GB gigabyte
GFS Google’s File System
GPU graphics processing unit

HDFS Hadoop distributed file system

I/O input/output
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LAPACK Linear Algebra PACKage library
LP linear programming

MCMC Markov Chain Monte Carlo
MLE maximum likelihood estimation

NP non-deterministic polynomial time

OCR optical character recognition

PB petabyte
PCA principal components analysis

QFS Quick File System
QP quadratic programming

RAM random access memory
RDS respondent-driven sampling

S3 Simple Storage Service
SQL Structured Query Language

TB terabyte
TCAM ternary content addressable memory
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