WaC

XSL Transformations (XSLT)
Version 1.0

W3C Recommendation 16 November 1999

Thisversion:

http://www.w3.0rg/ TR/1999/REC-xslt-19991116
(availablein XML or HTML)

Latest version:
http://www.w3.org/TR/xdlt

Previous versions:

http://www.w3.0rg/ TR/1999/PR-xslt-19991008

http://www.w3.0rg/1999/08/WD-xst-19990813
http://www.w3.0rg/1999/07/WD-xst-19990709
http://www.w3.0org/ TR/1999/WD-xst-19990421
http://www.w3.0rg/TR/1998/WD-x5l-19981216
http://www.w3.org/TR/1998/WD-xsl-19980818

Editor:

James Clark <jjc@jclark.com>

Copyright © 1999W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and
software licensing rules apply.

Abstract

This specification defines the syntax and semantics of XSLT, which is alanguage for transforming XML documents
into other XML documents.

XSLT isdesigned for use as part of XSL, which is a stylesheet language for XML. In addition to XSLT, XSL
includes an XML vocabulary for specifying formatting. XSL specifies the styling of an XML document by using
XSLT to describe how the document is transformed into another XML document that uses the formatting
vocabulary.

XSLT isalso designed to be used independently of XSL. However, XSLT is not intended as a completely general-
purpose XML transformation language. Rather it is designed primarily for the kinds of transformations that are
needed when XSLT is used as part of XSL.

Status of this document

This document has been reviewed by W3C Members and other interested parties and has been endorsed by the
Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited asa
normative reference from other documents. W3C's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment. This enhances the functionality and interoperability of the
Web.

Thelist of known errorsin this specification is available at http://www.w3.0rg/1999/11/REC-xdlt-19991116-errata.
Comments on this specification may be sent to xdl-editors@ws3.org; archives of the comments are available. Public
discussion of XSL, including XSL Transformations, takes place on the XSL-List mailing list.

The English version of this specification is the only normative version. However, for trandations of this document,
see http://www.w3.0rg/Style/X SL /trand ations.html.

A list of current W3C Recommendations and other technical documents can be found at http://www.w3.0rg/TR.
This specification has been produced as part of the W3C Style activity.

Table of contents

1 Introduction

2 Stylesheet Structure

2.1 XSLT Namespace

2.2 Stylesheet Element

2.3 Literal Result Element as Stylesheet
2.4 Qualified Names

2.5 Forwards-Compatible Processing
2.6 Combining Stylesheets

2.6.1 Stylesheet Inclusion

2.6.2 Stylesheet Import

2.7 Embedding Stylesheets

3 Data Model

3.1 Root Node Children

3.2 Base URI

3.3 Unparsed Entities

3.4 Whitespace Stripping

4 Expressions

5 Template Rules

5.1 Processing Model
5.2 Patterns

5.3 Defining Template Rules

5.4 Applying Template Rules

5.5 Conflict Resolution for Template Rules
5.6 Overriding Template Rules

5.7 Modes

5.8 Built-in Template Rules

6 Named Templates

7 Creating the Result Tree

7.1 Creating Elements and Attributes

7.1.1 Literal Result Elements

7.1.2 Creating Elements with xsl:element
7.1.3 Creating Attributes with xdl:attribute
7.1.4 Named Attribute Sets

7.2 Creating Text

7.3 Creating Processing I nstructions

7.4 Creating Comments

7.5 Copying

7.6 Computing Generated Text

7.6.1 Generating Text with xsl:value-of
7.6.2 Attribute Value Templates

7.7 Numbering

7.7.1 Number to String Conversion Attributes
8 Repetition

9 Conditional Processing

9.1 Conditional Processing with xsl:if

9.2 Conditional Processing with xsl:choose
10 Sorting

11 Variables and Parameters

11.1 Result Tree Fragments

11.2 Values of Variables and Parameters
11.3 Using Values of Variables and Parameters with xsl:copy-of
11.4 Top-level Variables and Parameters
11.5 Variables and Parameters within Templates

11.6 Passing Parameters to Templates
12 Additional Functions

12.1 Multiple Source Documents
12.2 Keys

12.3 Number Formatting

12.4 Miscellaneous Additional Functions
13 Messages

14 Extensions

14.1 Extension Elements

14.2 Extension Functions

15 Fallback

16 Output

16.1 XML Output Method

16.2 HTML Output Method

16.3 Text Output M ethod

16.4 Disabling Output Escaping

17 Conformance

18 Notation

Appendices

A References

A.1 Normative References

A.2 Other References

B Element Syntax Summary

C DTD Fragment for XSLT Stylesheets (Non-Normative)

D Examples (Non-Normative)

D.1 Document Example

D.2 Data Example

E Acknowledgements (Non-Normative)

F Changes from Proposed Recommendation (Non-Normative)
G Features under Consideration for Future Versions of XSLT (Non-Normative)

1 Introduction

This specification defines the syntax and semantics of the XSLT language. A transformation in the XSLT language
is expressed as awell-formed XML document [XML] conforming to the Namespacesin XML Recommendation
[XML Names], which may include both elements that are defined by XSLT and elements that are not defined by
XSLT. XSLT-defined elements are distinguished by belonging to a specific XML namespace (see[2.1 XSLT
Namespace]), which isreferred to in this specification asthe XSLT namespace. Thusthis specification isa
definition of the syntax and semantics of the XSLT namespace.

A transformation expressed in XSLT describes rules for transforming a source tree into aresult tree. The
transformation is achieved by associating patterns with templates. A pattern is matched against elementsin the
source tree. A template is instantiated to create part of the result tree. The result tree is separate from the source tree.
The structure of the result tree can be completely different from the structure of the source tree. In constructing the
result tree, elements from the source tree can be filtered and reordered, and arbitrary structure can be added.

A transformation expressed in XSLT is called a stylesheet. Thisis because, in the case when XSLT is transforming
into the X SL formatting vocabulary, the transformation functions as a stylesheet.

This document does not specify how an XSLT stylesheet is associated with an XML document. It is recommended
that XSL processors support the mechanism described in [XML Stylesheet]. When this or any other mechanism
yields a sequence of more than one XSLT stylesheet to be applied simultaneously to a XML document, then the
effect should be the same as applying a single stylesheet that imports each member of the sequence in order (see
[2.6.2 Stylesheet Import]).

A stylesheet contains a set of template rules. A template rule has two parts: a pattern which is matched against nodes
in the source tree and a template which can be instantiated to form part of the result tree. This allows a stylesheet to
be applicable to awide class of documents that have similar source tree structures.

A template isinstantiated for a particular source element to create part of the result tree. A template can contain
elements that specify literal result element structure. A template can also contain elements from the XSLT
namespace that are instructions for creating result tree fragments. When atemplate is instantiated, each instructionis
executed and replaced by the result tree fragment that it creates. Instructions can select and process descendant
source elements. Processing a descendant element creates a result tree fragment by finding the applicable template
rule and instantiating its template. Note that elements are only processed when they have been selected by the
execution of an instruction. The result tree is constructed by finding the template rule for the root node and
instantiating its template.

In the process of finding the applicable template rule, more than one template rule may have a pattern that matches a
given element. However, only one template rule will be applied. The method for deciding which template rule to
apply isdescribed in [5.5 Conflict Resolution for Template Rules].

A single template by itself has considerable power: it can create structures of arbitrary complexity; it can pull string
values out of arbitrary locations in the source tree; it can generate structures that are repeated according to the
occurrence of elementsin the source tree. For simple transformations where the structure of the result treeis
independent of the structure of the source tree, a stylesheet can often consist of only a single template, which
functions as a template for the complete result tree. Transformations on XML documents that represent data are
often of thiskind (see [D.2 Data Example]). XSLT allows a simplified syntax for such stylesheets (see[2.3 Literal
Result Element as Stylesheet]).

When atemplateis instantiated, it is always instantiated with respect to acurrent node and a current nodelist. The
current node is always a member of the current node list. Many operationsin XSLT are relative to the current node.
Only afew instructions change the current node list or the current node (see [5 Template Rules] and [8
Repetition]); during the instantiation of one of these instructions, the current node list changes to a new list of nodes
and each member of this new list becomes the current node in turn; after the instantiation of the instruction is
complete, the current node and current node list revert to what they were before the instruction was instantiated.
XSLT makes use of the expression language defined by [X Path] for selecting elements for processing, for
conditional processing and for generating text.

XSLT provides two "hooks" for extending the language, one hook for extending the set of instruction elements used
in templates and one hook for extending the set of functions used in XPath expressions. These hooks are both based
on XML namespaces. Thisversion of XSLT does not define a mechanism for implementing the hooks. See [14

Extensions].

NOTE: The XSL WG intends to define such a mechanism in afuture version of this
specification or in a separate specification.
The element syntax summary notation used to describe the syntax of XSLT-defined elementsis described in [18
Notation].

The MIME mediatypest ext / xm and appl i cati on/ xm [RFEC2376] should be used for XSLT stylesheets. It

is possible that a media type will be registered specifically for XSLT stylesheets; if and when it is, that media type
may also be used.

2 Stylesheet Structure

2.1 XSLT Namespace
The XSLT namespace hasthe URI ht t p: / / www. w3. or g/ 1999/ XSL/ Tr ansf or m

NOTE: The 1999 in the URI indicates the year in which the URI was allocated by the
W3C. It does not indicate the version of XSLT being used, which is specified by
attributes (see[2.2 Stylesheet Element] and [2.3 Literal Result Element as

Styleshest]).

XSLT processors must use the XML namespaces mechanism [XML Names] to recognize elements and attributes
from this namespace. Elements from the XSLT namespace are recognized only in the stylesheet not in the source
document. The complete list of XSLT-defined elementsis specified in[B Element Syntax Summary]. Vendors
must not extend the XSLT namespace with additional elements or attributes. Instead, any extension must bein a
separate namespace. Any namespace that is used for additional instruction elements must be identified by means of
the extension element mechanism specified in [14.1 Extension Elements].

This specification uses a prefix of xsl : for referring to elementsin the XSLT namespace. However, XSLT
stylesheets are free to use any prefix, provided that there is a namespace declaration that binds the prefix to the URI
of the XSLT namespace.

An element from the XSLT namespace may have any attribute not from the XSLT namespace, provided that the
expanded-name of the attribute has a non-null namespace URI. The presence of such attributes must not change the
behavior of XSLT elements and functions defined in this document. Thus, an XSLT processor is always free to
ignore such attributes, and must ignore such attributes without giving an error if it does not recognize the namespace
URI. Such attributes can provide, for example, unique identifiers, optimization hints, or documentation.

Itisan error for an element from the XSLT namespace to have attributes with expanded-names that have null
namespace URIs (i.e. attributes with unprefixed names) other than attributes defined for the element in this
document.

NOTE: The conventions used for the names of XSLT elements, attributes and functions
are that names are all lower-case, use hyphens to separate words, and use abbreviations
only if they already appear in the syntax of arelated language such as XML or HTML.

2.2 Stylesheet Element

<xsl : styl esheet

id =id

ext ensi on- el enent - prefi xes = tokens

excl ude-resul t-prefixes = tokens

versi on = nunber>

<l-- Content: (xsl:inport*, top-I/evel-elenents) -->

</ xsl:styl esheet >

<xsl:transform

id=1id

ext ensi on- el ement - prefi xes = tokens

excl ude-resul t-prefixes = tokens

versi on = nunber>

<l-- Content: (xsl:inport*, top-I/evel-elenents) -->

</ xsl:transfornp

A stylesheet is represented by an xsl : st yl esheet elementinan XML document. xsl : t r ansf or misallowed
asasynonym for xsl : st yl esheet .

Anxsl : styl esheet element must haveaver si on attribute, indicating the version of XSLT that the stylesheet
requires. For thisversion of XSLT, the value should be 1. 0. When the valueis not equal to 1. O, forwards-
compatible processing mode is enabled (see [2.5 Forwards-Compatible Processing]).

Thexsl : styl esheet element may contain the following types of elements:

xsl ;i nmport

xsl :include
xsl:strip-space
xsl : preserve- space
xsl : out put

xsl : key

xsl : deci mal - f or mat
xsl : nanespace- al i as
xsl:attribute-set
xsl:variable
xsl : param
xsl:tenpl ate

An element occurring as a child of an xsl : st yl esheet elementiscaled atop-level element.

This example shows the structure of a stylesheet. Ellipses (. . .) indicate where attribute values or content have been
omitted. Although this example shows one of each type of allowed element, stylesheets may contain zero or more of
each of these elements.

<xsl : styl esheet version="1.0"

<xsl

<xsl

<xsl

<xsl

<xsl

<xsl

<xsl

<xsl

<xsl

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
cimport href="..."/>

sinclude href="..."/>

.strip-space elenents="..."/>
preserve-space el enents="..."/>
coutput nethod="..."/>

key nanme="..." match="..." use="..."/>
:decimal -format name="..."/>

nanespace-al i as styl esheet-prefix="..." result-prefix="..."/>

cattri bute-set nane="...">

</ xsl:attribute-set>

<xsl

<xsl

<xsl

cvariable nanme="...">. ..</xsl:variabl e>
: param nane="...">. ..</xsl:paranp
:tenplate match="...">

</ xsl :tenpl at e>

<xsl

:tenplate nane="...">

</ xsl : tenpl at e>

</ xsl

styl esheet >

The order in which the children of the xsl : st yl esheet element occur is not significant except for
xsl ;i mport elementsand for error recovery. Users are free to order the elements as they prefer, and stylesheet
creation tools need not provide control over the order in which the elements occur.

In addition, thexsl : st yl esheet element may contain any element not from the XSLT namespace, provided
that the expanded-name of the element has a hon-null namespace URI. The presence of such top-level elements
must not change the behavior of XSLT elements and functions defined in this document; for example, it would not
be permitted for such atop-level element to specify that xs! : appl y-t enpl at es wasto use different rulesto
resolve conflicts. Thus, an XSLT processor is always free to ignore such top-level elements, and must ignore atop-
level element without giving an error if it does not recognize the namespace URI. Such elements can provide, for
example,

» information used by extension elements or extension functions (see [14 Extensions]),

» information about what to do with the result tree,

« information about how to obtain the source tree,

e metadata about the styleshest,

e structured documentation for the styleshest.

2.3 Literal Result Element as Stylesheet

A simplified syntax is alowed for stylesheets that consist of only a single template for the root node. The stylesheet
may consist of just aliteral result element (see[7.1.1 Literal Result Elements]). Such a stylesheet is equivalent to a
stylesheet with an xsl : st yl esheet element containing atemplate rule containing the literal result element; the
template rule has a match pattern of / . For example
<htm xsl:version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
xm ns="http://ww. w3.org/ TR/ xhtm 1/strict">
<head>
<titl e>Expense Report Summary</title>
</ head>
<body>
<p>Total Anopunt: <xsl:value-of select="expense-report/total"/></p>
</ body>
</htm >
has the same meaning as
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
xm ns="http://ww.w3.org/ TR/ xhtm 1/strict">
<xsl:tenplate match="/">
<htm >
<head>
<titl e>Expense Report Summary</title>
</ head>
<body>
<p>Total Amount: <xsl:val ue-of sel ect="expense-report/total"/></p>
</ body>
</htm >
</ xsl : tenpl at e>
</ xsl : styl esheet >
A literal result element that is the document element of a stylesheet must have an xsl : ver si on attribute, which
indicates the version of XSLT that the stylesheet requires. For this version of XSLT, the value should be 1. 0; the
value must be a Number. Other literal result elements may also have an xsl : ver si on attribute. When the
xsl : ver si on attributeis not equal to 1. 0, forwards-compatible processing mode is enabled (see [2.5 Forwar ds-
Compatible Processing]).
The allowed content of aliteral result element when used as a stylesheet is no different from when it occurs within a
stylesheet. Thus, aliteral result element used as a stylesheet cannot contain top-level elements.
In some situations, the only way that a system can recognize that an XML document needs to be processed by an
XSLT processor asan XSLT stylesheet is by examining the XML document itself. Using the simplified syntax
makes this harder.

NOTE: For example, another XML language (AXL) might also use an ax! : ver si on On
the document element to indicate that an XML document was an AXL document that
required processing by an AXL processor; if adocument had both an axl : ver si on
attribute and an xsl : ver si on attribute, it would be unclear whether the document should
be processed by an XSLT processor or an AXL processor.

Therefore, the simplified syntax should not be used for XSLT stylesheets that may be used in such a situation. This
situation can, for example, arise when an XSLT stylesheet is transmitted as a message with a MIME media type of
text/xm orapplication/xnm toarecipient that will use the MIME mediatype to determine how the
message is processed.

2.4 Qualified Names

The name of aninternal XSLT object, specifically a named template (see[6 Named Templates]), a mode (see [5.7
Modes]), an attribute set (see [7.1.4 Named Attribute Sets]), akey (see[12.2 Keys]), adecimal-format (see[12.3
Number Formatting]), avariable or aparameter (see[11 Variables and Parameter g]) is specified as a QName. If
it has a prefix, then the prefix is expanded into a URI reference using the namespace declarations in effect on the
attribute in which the name occurs. The expanded-name consisting of the local part of the name and the possibly
null URI reference is used as the name of the object. The default namespace is not used for unprefixed names.

2.5 Forwar ds-Compatible Processing

An element enables forwards-compatible mode for itself, its attributes, its descendants and their attributes if either it
isanxsl : styl esheet element whosever si on attributeis not equal to 1. 0, or itisaliteral result element that
hasan xsl : ver si on attribute whose valueis not equal to 1. O, or it isaliteral result element that does not have
anxsl : ver si on attribute and that is the document element of a stylesheet using the simplified syntax (see[2.3
Literal Result Element as Stylesheet]). A literal result element that has an xsl : ver si on attribute whose value
isequal to 1. 0 disables forwards-compatible mode for itself, its attributes, its descendants and their attributes.

If an element is processed in forwards-compatible mode, then:

« ifitisatop-level element and XSLT 1.0 does not alow such elements as top-level elements, then the
element must be ignored along with its content;

e ifitisanelementin atemplate and XSLT 1.0 does not allow such elements to occur in templates, then if
the element is not instantiated, an error must not be signaled, and if the element is instantiated, the XSLT
must perform fallback for the element as specified in [15 Fallback];

e if the element has an attribute that XSLT 1.0 does not alow the element to have or if the element has an
optional attribute with a value that the XSLT 1.0 does not allow the attribute to have, then the attribute
must be ignored.

Thus, any XSLT 1.0 processor must be able to process the following stylesheet without error, although the
stylesheet includes elements from the XSLT namespace that are not defined in this specification:
<xsl :styl esheet version="1.1"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >
<xsl:tenplate match="/">
<xsl : choose>
<xsl :when test="systemproperty(’ xsl:version’) >= 1.1">
<xsl:exciting-new1.1-feature/>
</ xsl : when>
<xsl : ot herwi se>
<ht m >
<head>
<title>XSLT 1.1 required</title>
</ head>
<body>
<p>Sorry, this stylesheet requires XSLT 1.1.</p>
</ body>
</htm >
</ xsl: ot herw se>

</ xsl: choose>
</ xsl : tenpl at e>
</ xsl:styl esheet >
NOTE: If astylesheet depends crucially on atop-level element introduced by aversion
of XSL after 1.0, then the stylesheet can use an xsl : message element with
term nate="yes" (see[13 Messages]) to ensure that XSLT processors implementing
earlier versions of XSL will not silently ignore the top-level element. For example,

<xsl : styl esheet version="1.5"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl :inportant-new 1. 1-decl aration/>

<xsl:tenplate match="/">
<xsl : choose>
<xsl :when test="systemproperty(’ xsl:version') &t; 1.1">
<xsl : message termn nate="yes">
<xsl:text>Sorry, this stylesheet requires XSLT
1.1.</xsl:text>
</ xsl : message>
</ xsl : when>
<xsl : ot herwi se>

</ xsl : ot herw se>
</ xsl : choose>
</ xsl :tenpl at e>

</ xsl:styl esheet >
If an expression occursin an attribute that is processed in forwards-compatible mode, then an XSLT processor must
recover from errorsin the expression as follows:
» if the expression does not match the syntax allowed by the XPath grammar, then an error must not be
signaled unless the expression is actually evaluated;
« if the expression calls afunction with an unprefixed name that is not part of the XSLT library, then an error
must not be signaled unless the function is actually called;
« if the expression calls a function with a number of arguments that XSLT does not allow or with arguments
of typesthat XSLT does not allow, then an error must not be signaled unless the function is actually called.

2.6 Combining Stylesheets

XSLT provides two mechanisms to combine stylesheets:
e aninclusion mechanism that allows stylesheets to be combined without changing the semantics of the
stylesheets being combined, and
* animport mechanism that allows stylesheets to override each other.

2.6.1 Stylesheet Inclusion

<l-- Category: top-level-elenent -->
<xsl ;i ncl ude
href = uri-reference >

An XSLT stylesheet may include another XSLT stylesheet using an xsl : i ncl ude element. Thexsl : i ncl ude
element hasan hr ef attribute whose value is a URI reference identifying the stylesheet to be included. A relative

URI isresolved relative to the base URI of thexsl : i ncl ude element (see[3.2 Base URI]).

Thexsl : i ncl ude element isonly allowed as atop-level element.

Theinclusion works at the XML tree level. The resource located by the hr ef attribute value is parsed as an XML

document, and the children of the xsl : st yl esheet element in this document replace the xsl : i ncl ude

element in the including document. The fact that template rules or definitions are included does not affect the way
they are processed.

The included stylesheet may use the simplified syntax described in [2.3 Literal Result Element as Stylesheet]. The
included stylesheet is treated the same as the equivalent xsl : st yl esheet element.

Itisan error if astylesheet directly or indirectly includes itself.

NOTE: Including a stylesheet multiple times can cause errors because of duplicate
definitions. Such multiple inclusions are less obvious when they are indirect. For
example, if stylesheet B includes stylesheet A, stylesheet C includes stylesheet A, and
stylesheet D includes both stylesheet B and stylesheet C, then A will be included
indirectly by D twice. If all of B, C and D are used as independent stylesheets, then the
error can be avoided by separating everything in B other than the inclusion of Ainto a
separate stylesheet B’ and changing B to contain just inclusions of B’ and A, similarly for
C, and then changing D to include A, B', C'.

2.6.2 Stylesheet Import

<xsl :i nport
href = uri-reference |>
An XSLT stylesheet may import another XSLT stylesheet using an xsl : i nport element. Importing a styleshest
isthesame asincluding it (see[2.6.1 Stylesheet Inclusion]) except that definitions and template rulesin the
importing stylesheet take precedence over template rules and definitions in the imported stylesheet; thisis described
in more detail below. Thexsl : i nport element hasan hr ef attribute whose valueis a URI reference identifying
the stylesheet to be imported. A relative URI isresolved relative to the base URI of the xsl : i npor t element (see
[3.2 Base URI]).
Thexsl : i nport elementisonly alowed as atop-level element. Thexsl : i nport element children must
precede all other element children of an xsl : st yl esheet element, including any xsl : i ncl ude element
children. When xsl : i ncl ude isused to include a stylesheet, any xsl : i nport eementsin the included
document are moved up in the including document to after any existing xsl : i mpor t elementsin the including
document.
For example,
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl:inport href="article.xsl"/>
<xsl:inport href="bigfont.xsl"/>
<xsl:attribute-set name="note-style">
<xsl:attribute nane="font-style">talic</xsl:attribute>
</xsl:attribute-set>
</ xsl: styl esheet >
Thexsl : st yl esheet elements encountered during processing of a stylesheet that contains xsl : i nport
elements are treated as forming an import tree. In the import tree, each xsl : st yl esheet element has one
import child for each xsl : i nport element that it contains. Any xsl : i ncl ude elements are resolved before
constructing the import tree. An xsl : st yl esheet element in theimport treeis defined to have lower import
precedence than another xsl : st yl esheet element in the import treeif it would be visited before that
xsl : styl esheet element in apost-order traversal of theimport tree (i.e. atraversa of theimport tree in which
anxsl : styl esheet elementisvisited after itsimport children). Each definition and template rule has import
precedence determined by the xsl : st yl esheet element that containsit.
For example, suppose
« stylesheet A imports stylesheets B and C in that order;
» stylesheet B imports stylesheet D;
e stylesheet C imports stylesheet E.
Then the order of import precedence (lowest first) isD, B, E, C, A.

NOTE: Sincexsl : i nport elements are required to occur before any definitions or
template rules, an implementation that processes imported stylesheets at the point at
which it encountersthe xsl : i nport element will encounter definitions and template
rulesin increasing order of import precedence.

In general, adefinition or template rule with higher import precedence takes precedence over a definition or
template rule with lower import precedence. This is defined in detail for each kind of definition and for template
rules.

Itisan error if astylesheet directly or indirectly importsitself. Apart from this, the case where a stylesheet with a
particular URI isimported in multiple placesis not treated specially. The import tree will have a separate

xsl : styl esheet for each place that it isimported.

NOTE: If xsl : appl y-i nports isused (see[5.6 Overriding Template Rules]), the
behavior may be different from the behavior if the stylesheet had been imported only at
the place with the highest import precedence.

2.7 Embedding Stylesheets

Normally an XSLT stylesheet is a complete XML document with the xsl : st yl esheet element as the document
element. However, an XSLT stylesheet may also be embedded in another resource. Two forms of embedding are
possible:

e the XSLT stylesheet may be textually embedded in anon-XML resource, or

« thexsl : styl esheet element may occur in an XML document other than as the document element.
To facilitate the second form of embedding, thexsl : st yl esheet element isalowed to have an ID attribute that
specifies a unique identifier.

NOTE: In order for such an attribute to be used with the XPath id function, it must
actually be declared inthe DTD as being an ID.

The following example shows how the xm - st yl esheet processing instruction [XML Stylesheet] can be used to
allow adocument to contain its own stylesheet. The URI reference uses arelative URI with a fragment identifier to
locatethe xsl : st yl esheet element:
<?xm -styl esheet type="text/xm" href="#stylel"?>
<! DOCTYPE doc SYSTEM "doc. dtd">
<doc>
<head>
<xsl :styl esheet id="stylel"
version="1.0"
xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat " >
<xsl:inmport href="doc.xsl"/>
<xsl:tenplate match="id(' foo’)">
<f o: bl ock font-wei ght ="bol d"><xsl : appl y-tenpl at es/ ></f o: bl ock>
</ xsl :tenpl at e>
<xsl:tenpl ate match="xsl:styl esheet">
<l-- ignore -->
</ xsl : tenpl at e>
</ xsl : styl esheet >
</ head>
<body>
<para id="foo0">

</ par a>
</ body>
</ doc>

NOTE: A stylesheet that is embedded in the document to which it isto be applied or that
may be included or imported into an stylesheet that is so embedded typically needs to
contain atemplate rule that specifiesthat xsl : st yl esheet e ements are to be ignored.

3 Data M odel

The data model used by XSLT isthe same as that used by X Path with the additions described in this section. XSLT

operates on source, result and stylesheet documents using the same data model. Any two XML documents that have
the same tree will be treated the same by XSLT.

Processing instructions and comments in the stylesheet are ignored: the stylesheet istreated as if neither processing

instruction nodes nor comment nodes were included in the tree that represents the stylesheet.

3.1 Root Node Children

The normal restrictions on the children of the root node are relaxed for the result tree. The result tree may have any
sequence of nodes as children that would be possible for an element node. In particular, it may have text node
children, and any number of element node children. When written out using the XML output method (see [16
Output]), it is possible that aresult tree will not be awell-formed XML document; however, it will always be a
well-formed external general parsed entity.

When the source tree is created by parsing a well-formed XML document, the root node of the source tree will
automatically satisfy the normal restrictions of having no text node children and exactly one element child. When
the source tree is created in some other way, for example by using the DOM, the usual restrictions are relaxed for
the source tree as for the result tree.

3.2 Base URI

Every node also has an associated URI called its base URI, which is used for resolving attribute val ues that represent
relative URIsinto absolute URIs. If an element or processing instruction occursin an external entity, the base URI

of that element or processing instruction is the URI of the external entity; otherwise, the base URI is the base URI of
the document. The base URI of the document node isthe URI of the document entity. The base URI for a text node,
a comment node, an attribute node or a namespace node is the base URI of the parent of the node.

3.3 Unparsed Entities

The root node has a mapping that gives the URI for each unparsed entity declared in the document’s DTD. The URI
is generated from the system identifier and public identifier specified in the entity declaration. The XSLT processor
may use the public identifier to generate a URI for the entity instead of the URI specified in the system identifier. If
the XSLT processor does not use the public identifier to generate the URI, it must use the system identifier; if the
system identifier isarelative URI, it must be resolved into an absolute URI using the URI of the resource containing
the entity declaration as the base URI [RFC2396].

3.4 Whitespace Stripping

After the tree for a source document or stylesheet document has been constructed, but before it is otherwise
processed by XSLT, some text nodes are stripped. A text node is never stripped unless it contains only whitespace
characters. Stripping the text node removes the text node from the tree. The stripping process takes as input a set of
element names for which whitespace must be preserved. The stripping process is applied to both stylesheets and
source documents, but the set of whitespace-preserving element names is determined differently for stylesheets and
for source documents.
A text nodeis preserved if any of the following apply:
e The element name of the parent of the text node is in the set of whitespace-preserving element names.
e Thetext node contains at least one non-whitespace character. Asin XML, a whitespace character is#x20,
#x9, #xD or #xA.
* Anancestor element of the text node hasan xm : space attribute with avalue of pr eser ve, and no
closer ancestor element has xnl ; space withavaue of def aul t .
Otherwise, the text node is stripped.
Thexm : space attributes are not stripped from the tree.

NOTE: Thisimpliesthat if anxni : space attribute is specified on aliteral result element,
it will beincluded in the result.

For stylesheets, the set of whitespace-preserving element names consists of just xsl : t ext .

<l-- Category: top-level-element -->
<xsl:strip-space
el enents = tokens />
<l-- Category: top-level-elenment -->
<xsl : preserve- space
el enents = tokens />
For source documents, the set of whitespace-preserving element namesis specified by xsl : stri p- space and
xsl : preserve- space top-level elements. These elements each have an el ement s attribute whose value isa
whitespace-separated list of NameTests. Initialy, the set of whitespace-preserving element names contains all
element names. If an element name matchesaNameTest inan xsl : stri p- space element, then it isremoved
from the set of whitespace-preserving element names. If an element name matches aNameTest in an
xsl : preserve- space element, then it is added to the set of whitespace-preserving element names. An element
matches a NameTest if and only if the NameTest would be true for the element as an XPath node test. Conflicts
between matchesto xsl : stri p- space and xsl : preser ve- space elements are resolved the same way as
conflicts between template rules (see [5.5 Conflict Resolution for Template Rules]). Thus, the applicable match
for aparticular element name is determined as follows:

» First, any match with lower import precedence than another match isignored.

* Next, any match with a NameTest that has alower default priority than the default priority of the NameTest

of another match isignored.

It isan error if thisleaves more than one match. An XSLT processor may signal the error; if it does not signal the
error, it must recover by choosing, from amongst the matches that are left, the one that occurs last in the stylesheet.

4 Expressions

XSLT uses the expression language defined by X Path [XPath]. Expressions are used in XSLT for avariety of
purposes including:
» selecting nodes for processing;
» gpecifying conditions for different ways of processing a node;
e generating text to be inserted in the result tree.
An expression must match the X Path production Expr.
Expressions occur as the value of certain attributes on X SLT-defined elements and within curly bracesin attribute

value templ ates.
In XSLT, an outermost expression (i.e. an expression that is not part of another expression) getsits context as

follows:

» the context node comes from the current node

« thecontext position comes from the position of the current node in the current node list; the first positionis
1

» thecontext size comes from the size of the current node list

» thevariable bindings are the bindings in scope on the element which has the attribute in which the
expression occurs (see[11 Variables and Parameter g])

» the set of namespace declarations are those in scope on the element which has the attribute in which the
expression occurs; thisincludes the implicit declaration of the prefix xm required by the the XML
Namespaces Recommendation [XML Names]; the default namespace (as declared by xm ns) is not part of
this set

« thefunction library consists of the core function library together with the additional functions defined in
[12 Additional Functions] and extension functions as described in [14 Extensions]; it isan error for an
expression to include a call to any other function

5 Template Rules
5.1 Processing M odel

A list of source nodesis processed to create aresult tree fragment. The result tree is constructed by processing alist
containing just the root node. A list of source nodesis processed by appending the result tree structure created by
processing each of the members of thelist in order. A node is processed by finding all the template rules with
patterns that match the node, and choosing the best amongst them; the chosen rule’s template is then instantiated
with the node as the current node and with the list of source nodes as the current node list. A template typically
contains instructions that select an additional list of source nodes for processing. The process of matching,
instantiation and selection is continued recursively until no new source nodes are selected for processing.
Implementations are free to process the source document in any way that produces the same result asif it were
processed using this processing model.

5.2 Patterns

Template rulesidentify the nodes to which they apply by using apattern. Aswell as being used in template rules,
patterns are used for numbering (see [7.7 Numbering]) and for declaring keys (see [12.2 Keys]). A pattern specifies
aset of conditions on anode. A node that satisfies the conditions matches the pattern; a node that does not satisfy
the conditions does not match the pattern. The syntax for patternsis a subset of the syntax for expressions. In
particular, location paths that meet certain restrictions can be used as patterns. An expression that is also a pattern
always eval uates to an object of type node-set. A node matches a pattern if the node is a member of the result of
evaluating the pattern as an expression with respect to some possible context; the possible contexts are those whose
context node is the node being matched or one of its ancestors.
Here are some examples of patterns:
e par a matchesany par a element
e * matches any element
« chapt er | appendi x matchesany chapt er element and any appendi x element
e olist/itemmatchesanyitemeementwithanol i st parent
e appendi x/ / par a matchesany par a element with an appendi x ancestor element
* | matchestheroot node
e text() matchesany text node
e processing-instruction() matchesany processing instruction
* node() matchesany node other than an attribute node and the root node
e id("WL1") matchesthe element with unique ID W11
e para[1] matchesany par a element that isthe first par a child element of its parent
e *[position()=1 and sel f:: para] matchesany par a element that isthe first child element of
its parent
 para[last()=1] matchesany par a element that isthe only par a child element of its parent
e itens/itenfposition()>1] matchesanyitemelementthat hasai t ens parent and that is not the
firsti t emchild of its parent
e iten{position() nod 2 = 1] would betruefor any i t emelement that isan odd-numberedi t em
child of its parent.
« div[@l ass="appendi x"]// p matichesany p element with adi v ancestor element that hasa
cl ass attribute with value appendi x
e @l ass matchesany cl ass attribute (not any element that hasacl ass attribute)
e @ matchesany attribute
A pattern must match the grammar for Pattern. A Pattern is a set of location path patterns separated by | . A location
path pattern is alocation path whose steps all useonly thechi | d or at t r i but e axes. Although patterns must not
usethedescendant - or - sel f axis, patterns may usethe/ / operator aswell asthe/ operator. Location path
patterns can also start with anid or key function call with aliteral argument. Predicates in a pattern can use arbitrary
expressions just like predicatesin alocation path.

Patterns

[1] Pattern ;= LocationPathPattern

| Pattern | LocationPathPattern
[2] LocationPathPattern .= 'I' RelativePathPattern?

| IdK eyPattern ((/' | /") RelativePathPattern)?

| //'? RelativePathPattern
[3] IdKeyPattern = id(Literal)’
| 'key’ '(’ Literal ’,’ Literal)’
StepPattern
| RelativePathPeattern '/’ StepPattern
| RelativePathPattern '//” StepPattern
ChildOrAttributeAxisSpecifier NodeTest Predicate*
AbbreviatedAxisSpecifier
| Cchild’ | "attribute’) "’
A pattern is defined to match anode if and only if there is possible context such that when the pattern is evaluated as
an expression with that context, the node is a member of the resulting node-set. When a node is being matched, the
possible contexts have a context node that is the node being matched or any ancestor of that node, and a context
node list containing just the context node.
For example, p matches any p element, because for any p if the expression p is evaluated with the parent of the p
element as context the resulting node-set will contain that p element as one of its members.

[4] RelativePathPattern

[5] StepPattern
[6] ChildOrAttributeAxisSpecifier

NOTE: This matches even ap element that is the document element, since the document
root is the parent of the document element.

Although the semantics of patterns are specified indirectly in terms of expression evaluation, it is easy to understand
the meaning of a pattern directly without thinking in terms of expression evaluation. In a pattern, | indicates
aternatives; a pattern with one or more | separated aternatives matches if any one of the alternative matches. A
pattern that consists of a sequence of StepPatterns separated by / or / / is matched from right to left. The pattern
only matches if the rightmost StepPattern matches and a suitable element matches the rest of the pattern; if the
separator is/ then only the parent is a suitable element; if the separator is/ / , then any ancestor is a suitable
element. A StepPattern that uses the child axis matchesif the NodeTest is true for the node and the node is not an
attribute node. A StepPattern that uses the attribute axis matches if the NodeTest istrue for the node and the node is
an attribute node. When [] is present, then the first PredicateExpr in a StepPattern is evaluated with the node being
matched as the context node and the siblings of the context node that match the NodeTest as the context node list,
unless the node being matched is an attribute node, in which case the context node list is all the attributes that have
the same parent as the attribute being matched and that match the NameTest.
For example
appendi x//ulist/iten]position()=1]
matches anode if and only if al of the following are true:
» theNodeTest i t emistrue for the node and the node is not an attribute; in other words the nodeisani t em
element
e evauating the PredicateExpr posi t i on() =1 with the node as context node and the siblings of the node
that arei t emelements as the context node list yields true
« thenode has a parent that matchesappendi x/ / ul i st ; thiswill betrueif the parentisaul i st element
that has an appendi x ancestor element.

5.3 Defining Template Rules

<l-- Category: top-level-element -->
<xsl:tenpl ate

match = pattern

name = gnane

priority = nunber

node = gnane>

<l-- Content: (xsl:parant, tenplate) -->
</ xsl : tenpl at e>

A templaterule is specified with the xsl : t enpl at e element. The mat ch attribute is a Pattern that identifies the
source node or nodes to which the rule applies. The mat ch attributeis required unlessthexsl : t enpl at e
element has anane attribute (see [6 Named Templates]). It isan error for the value of the mat ch attribute to
contain a VariableReference. The content of the xsl : t enpl at e element isthe template that is instantiated when
the template ruleis applied.
For example, an XML document might contain:
This is an <enph>i nport ant </ enph> poi nt.
The following template rule matches enph elements and producesaf o: i nl i ne- sequence formatting object
with af ont - wei ght property of bol d.
<xsl:tenpl at e mat ch="enph">

<fo:inline-sequence font-weight="bol d">

<xsl : appl y-tenpl at es/ >

</fo:inline-sequence>

</ xsl : tenpl at e>

NOTE: Examplesin this document usethef o: prefix for the namespace
http: // ww. w3. or g/ 1999/ XSL/ For mat , which is the namespace of the formatting
objects defined in [XSL].

Asdescribed next, the xsl : appl y-t enpl at es element recursively processes the children of the source
element.

5.4 Applying Template Rules

<l-- Category: instruction -->
<xsl : appl y-tenpl ates
sel ect = node-set-expression
node = gnane>
<l-- Content: (xsl:sort | xsl:wth-param* -->
</ xsl : appl y-tenpl at es>
This example creates ablock for achapt er element and then processes its immediate children.
<xsl :tenpl ate match="chapter">
<f o: bl ock>
<xsl : appl y-tenpl ates/ >
</ fo: bl ock>
</ xsl :tenpl at e>
Inthe absence of asel ect attribute, thexsl : appl y-t enpl at es instruction processes al of the children of the
current node, including text nodes. However, text nodes that have been stripped as specified in [3.4 Whitespace
Stripping] will not be processed. If stripping of whitespace nodes has not been enabled for an el ement, then all
whitespace in the content of the element will be processed as text, and thus whitespace between child elements will
count in determining the position of a child element as returned by the position function.
A sel ect attribute can be used to process nodes selected by an expression instead of processing al children. The
value of thesel ect attribute is an expression. The expression must evaluate to a node-set. The selected set of
nodesis processed in document order, unless a sorting specification is present (see [10 Sorting]). The following
example processes al of the aut hor children of the aut hor - gr oup:
<xsl :tenpl at e mat ch="aut hor - gr oup" >
<fo:inline-sequence>
<xsl : appl y-tenpl ates sel ect="aut hor"/>
</fo:inline-sequence>
</ xsl : tenpl at e>
The following example processes al of the gi ven- nanesof the aut hor sthat are children of aut hor - gr oup:
<xsl :tenpl ate mat ch="aut hor - group" >
<fo:inline-sequence>
<xsl : appl y-tenpl at es sel ect ="aut hor/ gi ven- nane"/ >
</fo:inline-sequence>
</ xsl :tenpl at e>

This example processes all of theheadi ng descendant elements of the book element.
<xsl :tenpl at e mat ch="book" >
<f o: bl ock>
<xsl : appl y-tenpl ates sel ect=".//headi ng"/>
</ fo: bl ock>
</ xsl :tenpl at e>
It isalso possible to process elements that are not descendants of the current node. This example assumes that a
depart nment element hasgr oup children and enpl oyee descendants. It finds an employee’s department and
then processes the gr oup children of thedepar t ment .
<xsl:tenpl ate mat ch="enpl oyee" >
<f o: bl ock>
Enpl oyee <xsl:apply-tenpl ates sel ect ="nane"/> bel ongs to group
<xsl : appl y-tenpl at es sel ect ="ancestor: : depart nent/group"/ >
</ fo: bl ock>
</ xsl :tenpl at e>
Multiplexsl : appl y-t enpl at es elements can be used within a single template to do simple reordering. The
following example creates two HTML tables. The first table is filled with domestic sales while the second table is
filled with foreign sales.
<xsl :tenpl ate match="product">
<t abl e>
<xsl : appl y-tenpl at es sel ect ="sal es/ donestic"/>
</tabl e>
<t abl e>
<xsl : appl y-tenpl ates sel ect ="sal es/foreign"/>
</ tabl e>
</ xsl : tenpl at e>

NOTE: Itispossiblefor there to be two matching descendants where one is a descendant

of the other. This caseis not treated specially: both descendants will be processed as
usual. For example, given a source document

<doc><di v><di v></ di v></ di v></ doc>

therule

<xsl :tenpl ate match="doc">
<xsl : apply-tenpl ates select=".//div"/>
</ xsl :tenpl at e>

will process both the outer di v and inner di v elements.

NOTE: Typically, xsl| : appl y-t enpl at es iSused to process only nodes that are
descendants of the current node. Such use of xsl : appl y-t enpl at es cannot result in
non-terminating processing loops. However, when xsl : appl y-t enpl at es isused to
process elements that are not descendants of the current node, the possibility arises of
non-terminating loops. For example,

<xsl:tenpl ate nmatch="f 00" >

<xsl : apply-tenpl ates select="."/>
</ xsl : tenpl at e>

Implementations may be able to detect such loops in some cases, but the possibility exists
that a stylesheet may enter a non-terminating loop that an implementation is unable to
detect. This may present adenial of service security risk.

5.5 Conflict Resolution for Template Rules

It is possible for a source node to match more than one template rule. The template rule to be used is determined as
follows:

1. Firgt, al matching template rules that have lower import precedence than the matching template rule or
rules with the highest import precedence are eliminated from consideration.

2. Next, all matching template rules that have lower priority than the matching template rule or rules with the
highest priority are eliminated from consideration. The priority of atemplate rule is specified by the
priority attribute on the template rule. The value of this must be areal number (positive or negative),
matching the production Number with an optional leading minussign (-). The default priority is
computed as follows:

« |f the pattern contains multiple alternatives separated by | , theniit istreated equivalently to a set of
template rules, one for each alternative.
» If the pattern has the form of a QName preceded by a ChildOrAttributeAxisSpecifier or has the
form pr ocessi ng-i nstructi on(Literal) preceded by a ChildOrAttributeAxisSpecifier,
then the priority is 0.
» If the pattern has the form NCName: * preceded by a ChildOrAttributeAxisSpecifier, then the
priority is-0.25.
e Otherwisg, if the pattern consists of just a NodeTest preceded by a ChildOrAttributeAxisSpecifier,
then the priority is -0.5.
* Otherwise, the priority is 0.5.
Thus, the most common kind of pattern (a pattern that tests for a node with a particular type and a particul ar
expanded-name) has priority 0. The next less specific kind of pattern (a pattern that tests for a node with a
particular type and an expanded-name with a particular namespace URI) has priority -0.25. Patterns less
specific than this (patterns that just tests for nodes with particular types) have priority -0.5. Patterns more
specific than the most common kind of pattern have priority 0.5.
It isan error if this|leaves more than one matching template rule. An XSLT processor may signal the error; if it does
not signal the error, it must recover by choosing, from amongst the matching template rules that are left, the one that
occurs last in the stylesheet.

5.6 Overriding Template Rules

<l-- Category: instruction -->
<xsl : apply-inports />
A template rule that is being used to override atemplate rule in an imported stylesheet (see [5.5 Conflict Resolution
for Template Rules]) can usethe xsl : appl y-i nport s element to invoke the overridden template rule.
At any point in the processing of a stylesheet, thereisacurrent template rule. Whenever atemplate rule is chosen
by matching a pattern, the template rule becomes the current template rule for the instantiation of the rule’s template.
When an xsl : f or - each element isinstantiated, the current template rule becomes null for the instantiation of the
content of the xsl : f or - each element.
xsl : appl y-i nport s processes the current node using only template rules that were imported into the stylesheet
element containing the current template rule; the node is processed in the current template rule’s mode. It is an error
if xsl : appl y-i nmpor t s isinstantiated when the current template ruleis null.
For example, suppose the stylesheet doc. xs| contains atemplate rule for exanpl e elements:
<xsl:tenpl at e nat ch="exanpl e">

<pre><xsl:appl y-tenpl at es/ ></ pre>
</ xsl : tenpl at e>
Another stylesheet could import doc. xsl and modify the treatment of exanpl e elements as follows:
<xsl:inport href="doc.xsl"/>

<xsl :tenpl ate mat ch="exanpl e" >
<div style="border: solid red">
<xsl : apply-inmports/>
</ di v>
</ xsl :tenpl at e>
The combined effect would be to transform an exanpl e into an element of the form:

<div style="border: solid red"><pre>...</pre></div>

5.7 Modes

Modes allow an element to be processed multiple times, each time producing a different result.

Both xsl : t enpl at e and xsl : appl y-t enpl at es have an optional node attribute. The value of the node
attribute is a QName, which is expanded as described in [2.4 Qualified Names]. If xsl : t enpl at e does not have
amat ch attribute, it must not have anode attribute. If an xsl : appl y-t enpl at es element hasanode
attribute, then it applies only to those template rules from xsl : t enpl at e elementsthat have anode attribute
with the same value; if anxsl : appl y-t enpl at es element does not have anode attribute, then it applies only
to those template rulesfrom xsl : t enpl at e elements that do not have anode attribute.

5.8 Built-in Template Rules

There is abuilt-in template rule to allow recursive processing to continue in the absence of a successful pattern
match by an explicit template rule in the stylesheet. This template rule applies to both element nodes and the root
node. The following shows the equivalent of the built-in template rule;
<xsl:tenplate match="*|/">

<xsl : appl y-tenpl at es/ >
</ xsl :tenpl at e>
There isaso abuilt-in template rule for each mode, which allows recursive processing to continue in the same mode
in the absence of a successful pattern match by an explicit template rule in the stylesheet. Thistemplate rule applies
to both element nodes and the root node. The following shows the equivalent of the built-in template rule for mode
m
<xsl:tenplate match="*|/" node="ni>

<xsl : appl y-tenpl at es node="n?/>
</ xsl : tenpl at e>
Thereis aso abuilt-in template rule for text and attribute nodes that copies text through:
<xsl:tenplate match="text ()| @">

<xsl:val ue-of select="."/>
</ xsl :tenpl at e>
The built-in template rule for processing instructions and comments is to do nothing.
<xsl :tenpl ate match="processing-instruction()|coment()"/>
The built-in template rule for namespace nodes is also to do nothing. There is no pattern that can match a namespace
node; so, the built-in template rule is the only template rule that is applied for namespace nodes.
The built-in template rules are treated as if they were imported implicitly before the stylesheet and so have lower
import precedence than all other template rules. Thus, the author can override a built-in template rule by including
an explicit template rule.

6 Named Templates

<l-- Category: instruction -->

<xsl:call-tenplate

name = gnane>

<l-- Content: xsl:with-parant -->

</ xsl:call-tenpl at e>

Templates can be invoked by name. An xsl : t enpl at e element with anane attribute specifies anamed
template. The value of the nane attribute is a QName, which is expanded as described in [2.4 Qualified Names]. If
anxsl : t enpl at e element hasanane attribute, it may, but need not, also have amat ch attribute. An

xsl : cal | -t enpl at e element invokes atemplate by name; it has arequired name attribute that identifies the
template to be invoked. Unlikexsl : appl y-t enpl at es, xsl : cal | -t enpl at e does not change the current
node or the current node list.

Themat ch, node and pri ori ty attributeson anxsl : t enpl at e element do not affect whether the templateis
invoked by anxsl : cal | -t enpl at e element. Similarly, the nane attribute on an xsl : t enpl at e element
does not affect whether the template isinvoked by an xsl : appl y-t enpl at es element.

It isan error if astylesheet contains more than one template with the same name and same import precedence.

7 Creating the Result Tree

This section describes instructions that directly create nodes in the result tree.

7.1 Creating Elementsand Attributes

7.1.1 Literal Result Elements

In atemplate, an element in the stylesheet that does not belong to the XSLT namespace and that is not an extension
element (see[14.1 Extension Elements]) isinstantiated to create an element node with the same expanded-name.
The content of the element is atemplate, which is instantiated to give the content of the created element node. The
created element node will have the attribute nodes that were present on the element node in the stylesheet tree, other
than attributes with namesin the XSLT namespace.

The created element node will also have a copy of the namespace nodes that were present on the element node in the
stylesheet tree with the exception of any namespace node whose string-value is the XSLT namespace URI

(ht t p: / / www. w3. or g/ 1999/ XSL/ Tr ansf or m), anamespace URI declared as an extension namespace (see
[14.1 Extension Elements]), or a namespace URI designated as an excluded namespace. A namespace URI is
designated as an excluded namespace by using an excl ude-resul t - pr ef i xes attribute on an

xsl : styl esheet element or anxsl : excl ude-resul t - prefi xes attribute on aliteral result element. The
value of both these attributes is a whitespace-separated list of namespace prefixes. The namespace bound to each of
the prefixes is designated as an excluded namespace. It is an error if there is no namespace bound to the prefix on
the element bearing the excl ude-resul t - prefi xes or xsl : excl ude-resul t - prefi xes attribute. The
default namespace (as declared by xm ns) may be designated as an excluded namespace by including #def aul t
in the list of namespace prefixes. The designation of a namespace as an excluded namespace is effective within the
subtree of the stylesheet rooted at the element bearing the excl ude-resul t - prefi xes or xsl : excl ude-
resul t - prefi xes attribute; a subtree rooted at an xsl : st yl esheet element does not include any
stylesheets imported or included by children of that xsl : st yl esheet element.

NOTE: When a stylesheet uses a namespace declaration only for the purposes of
addressing the source tree, specifying the prefix inthe excl ude-resul t - prefi xes
attribute will avoid superfluous namespace declarations in the result tree.

The value of an attribute of aliteral result element isinterpreted as an attribute value template: it can contain
expressions contained in curly braces ({ }).
A namespace URI in the stylesheet tree that is being used to specify a namespace URI inthe result treeiscalled a
literal namespace URI. This appliesto:

« the namespace URI in the expanded-name of aliteral result el ement in the stylesheet

« the namespace URI in the expanded-name of an attribute specified on aliteral result element in the

stylesheset
» thestring-value of a namespace node on aliteral result element in the stylesheet
<l-- Category: top-level-element -->
<xsl : nanespace-al i as
styl esheet-prefix = prefix | "#default"
result-prefix = prefix | "#default" />

A stylesheet can usethe xsl : nanespace- al i as element to declare that one namespace URI isan alias for
another namespace URI. When aliteral namespace URI has been declared to be an alias for another namespace URI,
then the namespace URI in the result tree will be the namespace URI that the literal namespace URI is an dlias for,
instead of the literal namespace URI itself. Thexsl : nanespace- al i as element declares that the namespace
URI bound to the prefix specified by the st yl esheet - pr ef i x attributeis an dias for the namespace URI bound
to the prefix specified by ther esul t - pr ef i x attribute. Thus, thest yl esheet - pr ef i x attribute specifiesthe
namespace URI that will appear in the stylesheet, and ther esul t - pr ef i x attribute specifies the corresponding
namespace URI that will appear in the result tree. The default namespace (as declared by xm ns) may be specified
by using #def aul t instead of a prefix. If anamespace URI is declared to be an aias for multiple different
namespace URIs, then the declaration with the highest import precedence is used. It is an error if thereis more than
one such declaration. An XSLT processor may signal the error; if it does not signal the error, it must recover by

choosing, from amongst the declarations with the highest import precedence, the one that occurslast in the
styleshest.
When literal result elements are being used to create element, attribute, or namespace nodes that use the XSLT
namespace URI, the stylesheet must use an alias. For example, the stylesheet
<xsl : styl esheet

version="1.0"

xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or nt

xm ns: fo="http://ww. w3. org/ 1999/ XSL/ For mat "

xm ns:axsl ="http://wwmv. w3. org/ 1999/ XSL/ Tr ansf or mAl i as" >

<xsl : nanespace-al i as styl esheet-prefix="axsl" result-prefix="xsl"/>

<xsl:tenplate match="/">
<axsl:styl esheet >
<xsl : appl y-tenpl at es/ >
</ axsl : styl esheet >
</ xsl :tenpl at e>

<xsl:tenpl ate mat ch="bl ock">
<axsl:tenplate match="{.}">
<f 0: bl ock><axsl : appl y-t enpl at es/ ></ f o: bl ock>
</ axsl :tenpl at e>
</ xsl :tenpl at e>

</ xsl : styl esheet >

will generate an XSLT stylesheet from a document of the form:
<el ement s>

<bl ock>p</ bl ock>

<bl ock>h1</ bl ock>

<bl ock>h2</ bl ock>

<bl ock>h3</ bl ock>

<bl ock>h4</ bl ock>

</ el ement s>

NOTE: It may be necessary also to use aliases for namespaces other than the XSLT
namespace URI. For example, literal result elements belonging to a namespace dealing
with digital signatures might cause XSLT stylesheets to be mishandled by general-
purpose security software; using an alias for the namespace would avoid the possibility of
such mishandling.

7.1.2 Creating Elementswith xsl : el enent

<l-- Category: instruction -->

<xsl : el emrent

nane = { gnane }

nanespace = { uri-reference }

use-attribute-sets = gnanes>

<l-- Content: tenplate -->

</ xsl : el emrent >

Thexsl : el ement element allows an element to be created with a computed name. The expanded-name of the
element to be created is specified by arequired nane attribute and an optional nanespace attribute. The content
of thexsl : el enment element isatemplate for the attributes and children of the created element.

The nane attribute isinterpreted as an attribute value template. It is an error if the string that results from
instantiating the attribute value template is not a QName. An XSLT processor may signal the error; if it does not
signal the error, then it must recover by making the the result of instantiating the xsl : el enent element be the
sequence of nodes created by instantiating the content of the xsl : el ement element, excluding any initial attribute

nodes. If the nanmespace attributeis not present then the QName is expanded into an expanded-name using the
namespace declarations in effect for the xsl : el enent element, including any default namespace declaration.

If the namespace attribute is present, then it also isinterpreted as an attribute value template. The string that
results from instantiating the attribute val ue template should be a URI reference. It is not an error if the string is not
asyntactically legal URI reference. If the string is empty, then the expanded-name of the element has a null
namespace URI. Otherwise, the string is used as the namespace URI of the expanded-name of the element to be
created. Thelocal part of the QName specified by the nane attribute is used as the local part of the expanded-name
of the element to be created.

XSLT processors may make use of the prefix of the QName specified in the nane attribute when selecting the
prefix used for outputting the created element as XML ; however, they are not required to do so.

7.1.3 Creating Attributeswith xsl : attri bute

<l-- Category: instruction -->
<xsl:attribute
nane = { gnane }
nanespace = { uri-reference }>
<l-- Content: tenplate -->
</xsl:attribute>
Thexsl : attri but e element can be used to add attributes to result elements whether created by literal result
elementsin the stylesheet or by instructions such asxsl : el enent . The expanded-name of the attribute to be
created is specified by arequired nane attribute and an optional namespace attribute. Instantiating an
xsl ;attri but e element adds an attribute node to the containing result element node. The content of the
xsl :attri but e element isatemplate for the value of the created attribute.
The nane attribute isinterpreted as an attribute value template. It is an error if the string that results from
instantiating the attribute value template is not a QName or is the string xm ns. An XSLT processor may signal the
error; if it does not signal the error, it must recover by not adding the attribute to the result tree. If thenanespace
attribute is not present, then the QName is expanded into an expanded-name using the namespace declarationsin
effect for thexsl : att ri but e element, not including any default namespace declaration.
If thenanespace attribute is present, then it also is interpreted as an attribute value template. The string that
results from instantiating it should be a URI reference. It is not an error if the string is not a syntactically legal URI
reference. If the string is empty, then the expanded-name of the attribute has a null namespace URI. Otherwise, the
string is used as the namespace URI of the expanded-name of the attribute to be created. The local part of the
QName specified by the nane attribute is used as the local part of the expanded-name of the attribute to be created.
XSLT processors may make use of the prefix of the QName specified in the nane attribute when selecting the
prefix used for outputting the created attribute as XML ; however, they are not required to do so and, if the prefix is
xnl ns, they must not do so. Thus, although it is not an error to do:
<xsl:attribute name="xn ns: xsl"
nanespace="what ever " >htt p: // www. w3. or g/ 1999/ XSL/ Tr ansf or nx/ xsl : attri but e>
it will not result in a namespace declaration being output.
Adding an attribute to an element replaces any existing attribute of that element with the same expanded-name.
Thefollowing are al errors:
e Adding an attribute to an element after children have been added to it; implementations may either signal
the error or ignore the attribute.
e Adding an attribute to a node that is not an element; implementations may either signal the error or ignore
the attribute.
» Creating nodes other than text nodes during the instantiation of the content of thexsl : attri bute
element; implementations may either signal the error or ignore the offending nodes.

NOTE: Whenanxsl : attri but e contains atext node with a newline, then the XML
output must contain a character reference. For example,

<xsl :attribute nane="a">x
y</xsl :attribute>

will result in the output

a="x
 y"

(or with any equivalent character reference). The XML output cannot be

a="x

y"

Thisis because XML 1.0 requires newline characters in attribute values to be normalized
Into spaces but requires character references to newline characters not to be normalized.
The attribute values in the data model represent the attribute value after normalization. If
anewline occurring in an attribute value in the tree were output as a newline character
rather than as character reference, then the attribute value in the tree created by reparsing
the XML would contain a space not a newline, which would mean that the tree had not
been output correctly.

7.1.4 Named Attribute Sets

<l-- Category: top-level-elenent -->

<xsl:attribute-set

name = gnane

use-attribute-sets = gnanes>

<I-- Content: xsl:attribute* -->

</xsl:attribute-set>

Thexsl : attri but e- set element defines anamed set of attributes. The nane attribute specifies the name of
the attribute set. The value of the nane attribute isa QName, which is expanded as described in [2.4 Qualified
Names]. The content of thexsl : attri but e- set element consists of zero or morexsl : att ri but e elements
that specify the attributesin the set.

Attribute sets are used by specifyingause-attri but e- set s attributeon xsl : el enent , xsl : copy (see
[7.5 Copying]) or xsl : at t ri but e- set elements. Thevalue of theuse-attri but e- set s attributeisa
whitespace-separated list of names of attribute sets. Each name is specified as a QName, which is expanded as
described in[2.4 Qualified Names]. Specifyingause- at t ri but e- set s attributeis equivalent to adding

xsl :attri but e elementsfor each of the attributes in each of the named attribute sets to the beginning of the
content of the element with theuse- at t ri but e- set s attribute, in the same order in which the names of the
attribute sets are specified intheuse- at t ri but e- set s attribute. Itisan error if use of use-attri but e-
set s atributesonxsl : attri but e- set elements causes an attribute set to directly or indirectly useitself.
Attribute sets can also be used by specifyingan xsl : use-attri but e- set s attribute on aliteral result element.
Thevalue of thexsl : use-attri but e- set s attribute is a whitespace-separated list of names of attribute sets.
Thexsl : use-attri but e- set s attribute has the same effect astheuse- at t ri but e- set s attribute on
xsl : el ement with the additional rule that attributes specified on the literal result element itself are treated as if
they were specified by xsl : at t ri but e elements before any actual xsl : att ri but e elements but after any
xsl :attri but e elementsimplied by thexsl : use-attri but e-set s attribute. Thus, for aliteral result
element, attributes from attribute setsnamed inanxsl : use-at t ri but e- set s attribute will be added firgt, in
the order listed in the attribute; next, attributes specified on the literal result element will be added; finally, any
attributes specified by xsl : at t ri but e elements will be added. Since adding an attribute to an element replaces
any existing attribute of that element with the same name, this means that attributes specified in attribute sets can be
overridden by attributes specified on the literal result element itself.

The template withineach xsl : attri but e elementinanxsl : attri but e- set element isinstantiated each
time the attribute set is used; it is instantiated using the same current node and current node list asis used for
instantiating the element bearing theuse-attri but e- set s or xsl : use-attri but e- set s attribute.
However, it is the position in the stylesheet of thexsl : at t ri but e element rather than of the element bearing the
use-attribute-setsorxsl:use-attribute-sets atribute that determines which variable bindings are
visible (see[11 Variables and Parameter g]); thus, only variables and parameters declared by top-level

xsl :vari abl e and xsl : par amelements are visible.

The following example creates anamed attribute setti t | e- st yl e and usesit in atemplaterule.

<xsl :tenpl at e mat ch="chapt er/ headi ng" >

<f o: bl ock quaddi ng="start" xsl:use-attribute-sets="title-style">
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl : tenpl at e>

<xsl:attribute-set nanme="title-style">

<xsl:attribute nane="font-size">12pt</xsl:attribute>

<xsl:attribute name="font-wei ght">bol d</xsl :attri bute>
</xsl:attribute-set>
Multiple definitions of an attribute set with the same expanded-name are merged. An attribute from a definition that
has higher import precedence takes precedence over an attribute from a definition that has lower import precedence.
It isan error if there are two attribute sets that have the same expanded-name and equal import precedence and that
both contain the same attribute, unless there is a definition of the attribute set with higher import precedence that
also contains the attribute. An XSLT processor may signal the error; if it does not signal the error, it must recover by
choosing from amongst the definitions that specify the attribute that have the highest import precedence the one that
was specified last in the stylesheet. Where the attributes in an attribute set were specified is relevant only in merging
the attributes into the attribute set; it makes no difference when the attribute set is used.

7.2 Creating Text

A template can also contain text nodes. Each text node in a template remaining after whitespace has been stripped as
specified in [3.4 Whitespace Stripping] will create atext node with the same string-value in the result tree.
Adjacent text nodesin the result tree are automatically merged.

Note that text is processed at the tree level. Thus, markup of & t ; in atemplate will be represented in the stylesheet
tree by atext node that includes the character <. Thiswill create atext node in the result tree that containsa <
character, which will be represented by the markup &l t ; (or an equivalent character reference) when the result tree
is externalized as an XML document (unless output escaping is disabled as described in [16.4 Disabling Output

Escaping]).

<l-- Category: instruction -->

<xsl : text

di sabl e- out put - escaping = "yes" | "no">

<l-- Content: #PCDATA -->

</ xsl :text>

Literal data characters may also be wrapped inan xsl : t ext element. This wrapping may change what whitespace
characters are stripped (see [3.4 Whitespace Stripping]) but does not affect how the characters are handled by the
XSLT processor thereafter.

NOTE: Thexm : I ang and xni : space attributes are not treated specially by XSLT. In
particular,

» itistheresponsibility of the stylesheet author explicitly to generate any xni : | ang
or xn : space attributes that are needed in the resullt;

e gpecifyingan xm : 1 ang or xni : space attribute on an element inthe XSLT
namespace will not cause any xni : | ang or xni : space attributes to appear in the
result.

7.3 Creating Processing I nstructions

<l-- Category: instruction -->

<xsl : processi ng-i nstruction

nane = { ncnane }>

<l-- Content: tenplate -->

</ xsl : processi ng-i nstruction>

Thexsl : processi ng-i nstructi on element isinstantiated to create a processing instruction node. The
content of thexsl : processi ng-i nstructi on element isatemplate for the string-val ue of the processing

instruction node. Thexsl : processi ng-i nstructi on element hasarequired nane attribute that specifies
the name of the processing instruction node. The value of the name attribute isinterpreted as an attribute value
template.

For example, this

<xsl : processi ng-instruction nane="xm -styl esheet " >href ="book. css"
type="text/css"</xsl:processing-instruction>

would create the processing instruction

<?xm - styl esheet href="book.css" type="text/css"?>

It isan error if the string that results from instantiating the nane attribute is not both an NCName and a PI Target.
An XSLT processor may signal the error; if it does not signal the error, it must recover by not adding the processing
instruction to the result tree.

NOTE: Thismeansthat xsl : pr ocessi ng-i nst ructi on cannot be used to output an
XML declaration. The xsl : out put element should be used instead (see [16 Output]).

Itisan error if instantiating the content of xsl : processi ng-i nstructi on creates nodes other than text
nodes. An XSLT processor may signal the error; if it does not signal the error, it must recover by ignoring the
offending nodes together with their content.

Itisan error if the result of instantiating the content of the xsl : pr ocessi ng-i nstructi on containsthe string
?>. An XSLT processor may signal the error; if it does not signal the error, it must recover by inserting a space after
any occurrence of ? that is followed by a>.

7.4 Creating Comments

<l-- Category: instruction -->

<xsl : conment >

<l-- Content: tenplate -->

</ xsl : comrent >

Thexsl : comment element isinstantiated to create a comment node in the result tree. The content of the

xsl : conment element is atemplate for the string-value of the comment node.

For example, this

<xsl:conmment >This file is automatically generated. Do not edit!</xsl:coment>
would create the comment

<I--This file is automatically generated. Do not edit!-->

Itisan error if instantiating the content of xsl| : conment creates nodes other than text nodes. An XSLT processor
may signal the error; if it does not signal the error, it must recover by ignoring the offending nodes together with
their content.

Itisan error if the result of instantiating the content of thexsl : corment containsthe string - - or endswith - .
An XSLT processor may signal the error; if it does not signal the error, it must recover by inserting a space after any
occurrence of - that isfollowed by another - or that ends the comment.

7.5 Copying
<l-- Category: instruction -->
<xsl : copy

use-attribute-sets = gnanes>

<l-- Content: tenplate -->

</ xsl : copy>

Thexsl : copy element provides an easy way of copying the current node. Instantiating the xsl : copy element
creates a copy of the current node. The namespace nodes of the current node are automatically copied as well, but
the attributes and children of the node are not automatically copied. The content of the xsl : copy elementisa
template for the attributes and children of the created node; the content is instantiated only for nodes of types that
can have attributes or children (i.e. root nodes and element nodes).

Thexsl : copy element may haveause-attri but e- set s attribute (see[7.1.4 Named Attribute Setg]). This
is used only when copying element nodes.

Theroot node is treated specially because the root node of the result treeis created implicitly. When the current
node istheroot node, xsl : copy will not create aroot node, but will just use the content template.

For example, the identity transformation can be written using xsl : copy asfollows:
<xsl:tenplate match="@ | node()">
<xsl : copy>
<xsl : appl y-tenpl ates select="@ | node()"/>
</ xsl : copy>

</ xsl : tenpl at e>
When the current node is an attribute, then if it would be an error to use xsl : at t ri but e to create an attribute
with the same name as the current node, then it isalso an error to use xsl : copy (see[7.1.3 Creating Attributes
with xsl : attri bute]).
The following example shows how xni : | ang attributes can be easily copied through from source to result. If a
stylesheet defines the following named template:
<xsl :tenpl ate nane="appl y-tenpl at es-copy-| ang" >

<xsl:for-each select="@m :|ang">

<xsl : copy/ >

</ xsl : for-each>

<xsl : appl y-tenpl at es/ >
</ xsl : tenpl at e>
then it can simply do
<xsl:call-tenpl ate name="appl y-tenpl at es- copy-| ang"/>
instead of
<xsl : appl y-tenpl at es/ >
when it wantsto copy thexm : | ang attribute.

7.6 Computing Generated Text

Within atemplate, the xsl : val ue- of element can be used to compute generated text, for example by extracting
text from the source tree or by inserting the value of avariable. Thexsl : val ue- of element doesthiswith an
expression that is specified as the value of thesel ect attribute. Expressions can aso be used inside attribute
values of literal result elements by enclosing the expression in curly braces ({ }).

7.6.1 Generating Text with xsl : val ue- of

<l-- Category: instruction -->
<xsl : val ue- of
sel ect = string-expression
di sabl e-out put -escaping = "yes" | "no" />
Thexsl : val ue- of elementisinstantiated to create atext node in the result tree. Therequired sel ect attribute
is an expression; this expression is evaluated and the resulting object is converted to a string asif by a call to the
string function. The string specifies the string-val ue of the created text node. If the string is empty, no text node will
be created. The created text node will be merged with any adjacent text nodes.
Thexsl : copy- of element can be used to copy a node-set over to the result tree without converting it to a string.
See[11.3 Using Values of Variables and Parameterswith xsl : copy- of].
For example, the following creates an HTML paragraph from aper son element with gi ven- nane and
fam | y- nane attributes. The paragraph will contain the value of the gi ven- nane attribute of the current node
followed by a space and the value of the f ani | y- name attribute of the current node.
<xsl:tenpl ate nmat ch="person">
<p>

<xsl : val ue- of sel ect="@i ven-name"/>

<xsl:text> </xsl:text>

<xsl :val ue-of select="@am | y-nanme"/>

</ p>

</ xsl : tenpl at e>
For another example, the following createsan HTML paragraph from aper son element with gi ven- nane and
fam | y- nanme children elements. The paragraph will contain the string-value of the first gi ven- nane child
element of the current node followed by a space and the string-value of the first f ami | y- nane child element of
the current node.

<xsl :tenpl ate mat ch="person">
<p>
<xsl : val ue- of sel ect="gi ven-nane"/ >
<xsl:text> </xsl:text>
<xsl : val ue- of select="fam |y-name"/>
</ p>
</ xsl :tenpl at e>
The following precedes each pr ocedur e element with a paragraph containing the security level of the procedure.
It assumes that the security level that appliesto a procedure is determined by asecuri ty attribute on the
procedure element or on an ancestor element of the procedure. It also assumes that if more than one such element
hasasecuri ty attribute then the security level is determined by the element that is closest to the procedure.
<xsl :tenpl ate match="procedure">
<f o: bl ock>
<xsl :val ue-of select="ancestor-or-self::*[@ecurity][1]/ @ecurity"/>
</ fo: bl ock>
<xsl : appl y-tenpl ates/ >
</ xsl : tenpl at e>

7.6.2 Attribute Value Templates

In an attribute value that is interpreted as an attribute value template, such as an attribute of aliteral result element,
an expression can be used by surrounding the expression with curly braces ({ }). The attribute value template is
instantiated by replacing the expression together with surrounding curly braces by the result of evaluating the
expression and converting the resulting object to astring asif by acall to the string function. Curly braces are not
recognized in an attribute value in an XSLT stylesheet unless the attribute is specifically stated to be onethat is
interpreted as an attribute value template; in an element syntax summary, the value of such attributesis surrounded
by curly braces.

NOTE: Not all attributes are interpreted as attribute value templates. Attributes whose
value is an expression or pattern, attributes of top-level elements and attributes that refer
to named XSLT objects are not interpreted as attribute value templates. In addition,

xm ns attributes are not interpreted as attribute value templates; it would not be
conformant with the XML Namespaces Recommendation to do this.

The following example createsan i g result element from aphot ogr aph element in the source; the value of the
sr c attribute of thei ng element is computed from the value of thei mage- di r variable and the string-val ue of
thehr ef child of the phot ogr aph element; the value of thewi dt h attribute of thei ng element is computed
from the value of thewi dt h attribute of the si ze child of the phot ogr aph element:

<xsl :vari abl e name="i mage-dir">/i mages</xsl :vari abl e>

<xsl :tenpl ate mat ch="phot ograph" >
<ing src="{%image-dir}/{href}" width="{size/ @idth}"/>
</ xsl :tenpl at e>
With this source
<phot ogr aph>
<hr ef >headquarters. j pg</ href>
<si ze wi dt h="300"/>
</ phot ogr aph>
the result would be
<inmg src="/inages/ headquarters.jpg" w dth="300"/>
When an attribute value template is instantiated, a double left or right curly brace outside an expression will be
replaced by asingle curly brace. It isan error if aright curly brace occursin an attribute value template outside an
expression without being followed by a second right curly brace. A right curly brace inside a Literal in an expression
is not recognized as terminating the expression.
Curly braces are not recognized recursively inside expressions. For example:

isnot allowed. Instead, use ssimply:

7.7 Numbering

<l-- Category: instruction -->
<xsl : nunber

level = "single" | "nultiple" | "any"

count = pattern
from= pattern
val ue = nunber - expressi on
format = { string}
lang = { nntoken }
letter-value = { "al phabetic" | "traditional" }
groupi ng-separator = { char }
groupi ng-si ze = { nunber } />
Thexsl : nunber element is used to insert aformatted number into the result tree. The number to be inserted may
be specified by an expression. Theval ue attribute contains an expression. The expression is evaluated and the
resulting object is converted to a number as if by acall to thenumber function. The number is rounded to an integer
and then converted to a string using the attributes specified in[7.7.1 Number to String Conversion Attributes]; in
this context, the value of each of these attributes isinterpreted as an attribute value template. After conversion, the
resulting string isinserted in the result tree. For example, the following example numbers a sorted list:
<xsl:tenplate match="itens" >

<xsl:for-each select="itent>

<xsl:sort select="."/>

<p>
<xsl : nunber val ue="position()" format="1. "/>
<xsl : val ue- of select="."/>

</ p>

</ xsl : for-each>
</ xsl :tenpl at e>
If noval ue attribute is specified, then the xsl| : nunber element inserts a number based on the position of the
current node in the source tree. The following attributes control how the current node is to be numbered:

* Thel evel attribute specifies what levels of the source tree should be considered; it has the values
singl e,nul tipl eorany. Thedefaultissi ngl e.

e Thecount attributeisapattern that specifies what nodes should be counted at those levels. If count
attribute is not specified, then it defaults to the pattern that matches any node with the same node type as
the current node and, if the current node has an expanded-name, with the same expanded-name as the
current node.

« Thef r omattribute is a pattern that specifies where counting starts.

In addition, the attributes specified in [7.7.1 Number to String Conversion Attributes] are used for number to
string conversion, as in the case when theval ue attribute is specified.
Thexsl : nunber element first constructs alist of positive integers using thel evel , count and f r omattributes:

e Whenl evel ="si ngl e", it goes up to the first node in the ancestor-or-self axis that matches the count
pattern, and constructs alist of length one containing one plus the number of preceding siblings of that
ancestor that match the count pattern. If there is no such ancestor, it constructs an empty list. If thef r om
attribute is specified, then the only ancestors that are searched are those that are descendants of the nearest
ancestor that matches the f r ompattern. Preceding siblings has the same meaning here as with the
pr ecedi ng- si bl i ng axis.

e Whenlevel ="nul tipl e", it constructs alist of al ancestors of the current node in document order
followed by the element itself; it then selects from the list those nodes that match thecount pattern; it
then maps each node in the list to one plus the number of preceding siblings of that node that match the
count pattern. If thef r omattribute is specified, then the only ancestors that are searched are those that
are descendants of the nearest ancestor that matches the f r ompattern. Preceding siblings has the same
meaning here as with the pr ecedi ng- si bl i ng axis.

e Whenl evel ="any", it constructs alist of length one containing the number of nodes that match the
count pattern and belong to the set containing the current node and al nodes at any level of the document
that are before the current node in document order, excluding any namespace and attribute nodes (in other
words the union of the members of the pr ecedi ng and ancest or - or - sel f axes). If thef r om
attribute is specified, then only nodes after the first node before the current node that match thef r om
pattern are considered.

Thelist of numbersisthen converted into a string using the attributes specified in [7.7.1 Number to String
Conversion Attributes]; in this context, the value of each of these attributesis interpreted as an attribute value
template. After conversion, the resulting string is inserted in the result tree.
The following would number the itemsin an ordered list:
<xsl:tenplate match="ol/iteni>

<f o: bl ock>

<xsl : nunber/><xsl :text>. </xsl:text><xsl:apply-tenplates/>

</ fo: bl ock>
<xsl:tenpl ate>
The following two ruleswould number t i t | e elements. Thisisintended for adocument that contains a sequence
of chapters followed by a sequence of appendices, where both chapters and appendices contain sections, which in
turn contain subsections. Chapters are numbered 1, 2, 3; appendices are numbered A, B, C; sectionsin chapters are
numbered 1.1, 1.2, 1.3; sections in appendices are numbered A.1, A.2, A.3.
<xsl:tenplate match="title">

<f o: bl ock>

<xsl : nunber |evel ="multiple"
count ="chapter| secti on| subsecti on"
format="1.1 "/>
<xsl : appl y-tenpl ates/ >

</ fo: bl ock>

</ xsl : tenpl at e>

<xsl:tenpl ate nmatch="appendi x//title" priority="1">
<f o: bl ock>
<xsl : nunber |evel ="nultiple"
count =" appendi x| secti on| subsecti on"
format="A.1"/>
<xsl : appl y-tenpl ates/ >
</ fo: bl ock>
</ xsl :tenpl at e>
The following example numbers notes sequentially within a chapter:
<xsl:tenpl ate match="note">
<f o: bl ock>
<xsl : nunber | evel ="any" frome"chapter"” format="(1) "/>
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl : tenpl at e>
The following example would number H4 elementsin HTML with athree-part label:
<xsl:tenplate nmatch="H4">
<f o: bl ock>
<xsl : nunber | evel ="any" from"Hl" count="H2"/>
<xsl:text>. </xsl:text>
<xsl : nunber | evel ="any" from"H2" count="H3"/>
<xsl:text>. </xsl:text>
<xsl : nunber |evel ="any" fron¥"H3" count="H4"/>
<xsl:text> </xsl:text>
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl :tenpl at e>

7.7.1 Number to String Conversion Attributes

The following attributes are used to control conversion of alist of numbersinto a string. The numbers are integers
greater than 0. The attributes are all optional.
The main attributeisf or mat . The default value for the f or mat attributeis 1. Thef or mat attributeis splitinto a
sequence of tokens where each token is a maximal sequence of alphanumeric characters or amaximal sequence of
non-al phanumeric characters. Alphanumeric means any character that has a Unicode category of Nd, NI, No, Lu, LI,
Lt, Lmor Lo. The aphanumeric tokens (format tokens) specify the format to be used for each number in thelist. If
the first token is a non-alphanumeric token, then the constructed string will start with that token; if the last token is
non-al phanumeric token, then the constructed string will end with that token. Non-al phanumeric tokens that occur
between two format tokens are separator tokens that are used to join numbersin the list. The nth format token will
be used to format the nth number in thelist. If there are more numbers than format tokens, then the last format token
will be used to format remaining numbers. If there are no format tokens, then aformat token of 1 is used to format
al numbers. The format token specifies the string to be used to represent the number 1. Each number after the first
will be separated from the preceding number by the separator token preceding the format token used to format that
number, or, if there are no separator tokens, then by . (aperiod character).
Format tokens are a superset of the allowed values for thet ype attribute for the OL element in HTML 4.0 and are
interpreted as follows:
« Any token where the last character has a decimal digit value of 1 (as specified in the Unicode character
property database), and the Unicode value of preceding charactersis one less than the Unicode val ue of the
last character generates a decimal representation of the number where each number is at least aslong as the

format token. Thus, aformat token 1 generatesthesequencel 2 ... 10 11 12 ..., andaformat
token 01 generatesthe sequence01 02 ... 09 10 11 12 ... 99 100 101.

» A format token A generatesthesequenceA B C ... Z AA AB AC....

e A format token a generatesthesequencea b ¢ ... z aa ab ac....

e Aformattokeni generatesthesequencei ii iii iv v vi vii viii ix x

* Aformattoken| generatesthesequencel I 111 IV V VI VII VIII IXX....

e Any other format token indicates a numbering sequence that starts with that token. If an implementation
does not support a numbering sequence that starts with that token, it must use a format token of 1.
When numbering with an aphabetic sequence, thel ang attribute specifies which language’s a phabet is to be used;
it has the samerange of valuesasxmi : | ang [XML]; if no| ang vaueis specified, the language should be
determined from the system environment. Implementers should document for which languages they support
numbering.

NOTE: Implementers should not make any assumptions about how numbering worksin
particular languages and should properly research the languages that they wish to
support. The numbering conventions of many languages are very different from English.

Thel et t er - val ue attribute disambiguates between numbering sequences that use letters. In many languages
there are two commonly used humbering sequences that use letters. One numbering sequence assigns numeric
values to letters in al phabetic sequence, and the other assigns numeric values to each letter in some other manner
traditional in that language. In English, these would correspond to the numbering sequences specified by the format
tokensa and i . In some languages, the first member of each sequence is the same, and so the format token alone
would be ambiguous. A value of al phabet i ¢ specifies the alphabetic sequence; avalueof t r adi t i onal
specifies the other sequence. If thel et t er - val ue attribute is not specified, then it is implementati on-dependent
how any ambiguity is resolved.

NOTE: Itispossible for two conforming XSLT processors not to convert a number to
exactly the same string. Some XSLT processors may not support some languages.
Furthermore, there may be variations possible in the way conversions are performed for
any particular language that are not specifiable by the attributes on xsl : nunber . Future
versions of XSLT may provide additional attributes to provide control over these
variations. Implementations may also use implementati on-specific namespaced attributes
onxsl : nunber for this.

Thegr oupi ng- separ at or attribute gives the separator used as a grouping (e.g. thousands) separator in decimal
numbering sequences, and the optional gr oupi ng- si ze specifiesthe size (normally 3) of the grouping. For
example, gr oupi ng- separ at or =", " and gr oupi ng- si ze=" 3" would produce numbers of the form
1, 000, 000. If only one of the gr oupi ng- separ at or and gr oupi ng- si ze attributesis specified, thenitis
ignored.
Here are some examples of conversion specifications:

« format="ア " specifies Katakana numbering

« format="イ " specifies Katakana numbering in the "iroha" order

« format="๑ " specifies numbering with Thai digits

o format="&#*#x05D0;" letter-value="traditional" specifies"traditional" Hebrew

numbering
« format="ა" letter-value="traditional" specifies Georgian numbering
o format="8α" letter-value="traditional" specifies"classical" Greek numbering

o format="8а" letter-value="traditional" specifiesOld Slavic numbering

8 Repetition

<l-- Category: instruction -->
<xsl :for-each
sel ect = node-set-expressi on>
<l-- Content: (xsl:sort*, tenplate) -->
</ xsl: for-each>
When the result has a known regular structure, it is useful to be able to specify directly the template for selected
nodes. The xsl : f or - each instruction contains a template, which isinstantiated for each node selected by the
expression specified by the sel ect attribute. Thesel ect attribute isrequired. The expression must evaluate to a
node-set. The template is instantiated with the selected node as the current node, and with alist of all of the selected
nodes as the current node list. The nodes are processed in document order, unless a sorting specification is present
(see[10 Sorting])
For example, given an XML document with this structure
<cust oner s>
<cust oner >
<nane>. .. </ nanme>
<order>...</order>
<order>...</order>
</ cust oner >
<cust oner >
<nane>. .. </ name>
<order>...</order>
<order>...</order>
</ cust oner >
</ cust oner s>
the following would create an HTML document containing a table with arow for each cust oner element
<xsl:tenplate match="/">

<htnd >
<head>
<title>Custonmers</title>
</ head>
<body>
<t abl e>
<t body>
<xsl :for-each sel ect ="cust oners/ custoner">
<tr>
<t h>
<xsl : appl y-tenpl ates sel ect ="nane"/>
</th>
<xsl :for-each sel ect="order">
<t d>
<xsl : appl y-tenpl at es/ >
</td>
</ xsl : for-each>
</[tr>
</ xsl : for-each>
</t body>
</t abl e>
</ body>
</htn >

</ xsl : tenpl at e>

9 Conditional Processing

There are two instructionsin XSLT that support conditional processing in atemplate: xsl : i f and xsl : choose.
Thexsl : i f instruction provides simple if-then conditionality; thexsl : choose instruction supports selection of
one choice when there are several possihilities.

9.1 Conditional Processing with xsi :i

<l-- Category: instruction -->
<xsl:if
test = bool ean- expressi on>
<l-- Content: tenplate -->
</xsl:if>
Thexsl :if element hasat est attribute, which specifies an expression. The content is atemplate. The
expression is evaluated and the resulting object is converted to a boolean as if by acall to the boolean function. If
the result is true, then the content template is instantiated; otherwise, nothing is created. In the following example,
the names in a group of names are formatted as a comma separated list:
<xsl :tenpl ate match="nanel i st/ nanme">

<xsl : appl y-tenpl at es/ >

<xsl:if test="not(position()=last())"> </xsl:if>
</ xsl :tenpl at e>
The following colors every other table row yellow:
<xsl:tenplate match="itent >

<tr>

<xsl:if test="position() nod 2 = 0">
<xsl:attribute nanme="hgcol or">yel | ow</ xsl : attri but e>

</xsl:if>
<xsl : appl y-tenpl ates/ >
</tr>

</ xsl : tenpl at e>

9.2 Conditional Processing with xslI : choose

<l-- Category: instruction -->

<xsl : choose>

<l-- Content: (xsl:when+, xsl:otherw se?) -->
</ xsl: choose>

<xsl : when

test = bool ean- expressi on>
<l-- Content: tenplate -->
</ xsl : when>
<xsl : ot herw se>
<l-- Content: tenplate -->
</ xsl: ot herw se>
Thexsl : choose element selects one among a number of possible alternatives. It consists of a sequence of
xsl : when elements followed by an optional xsl : ot her wi se element. Each xsl : when element hasasingle
attribute, t est , which specifies an expression. The content of thex sl : when and xsl : ot her wi se elementsisa
template. When an xsl : choose element is processed, each of the xsl| : when elementsistested in turn, by
evaluating the expression and converting the resulting object to a boolean as if by acall to the boolean function. The
content of the first, and only the first, xsl : when element whose test istrue isinstantiated. If noxsl : when istrue,
the content of the xs| : ot her wi se element isinstantiated. If no xsl : when element istrue, and no
xsl : ot herw se element is present, nothing is created.
The following example enumerates items in an ordered list using arabic numerals, |etters, or roman numerals
depending on the depth to which the ordered lists are nested.
<xsl:tenplate match="orderedlist/listiten>

<fo:list-itemindent-start="2pi’'>

<fo:list-iteml abel >

<xsl :vari abl e nane="1evel "
sel ect =" count (ancest or
<xsl : choose>
<xsl :when test="$l evel =1' >
<xsl : nunber format="i"/>
</ xsl : when>
<xsl :when test="$l evel =2' >
<xsl :nunber format="a"/>
</ xsl : when>
<xsl : ot herw se>
<xsl : nunber format="1"/>
</ xsl : ot herw se>
</ xsl : choose>
<xsl:text> </xsl:text>
</[fo:list-iteml abel >
<fo:list-itembody>
<xsl : appl y-tenpl ates/ >
</fo:list-item body>
</[fo:list-itenp
</ xsl : tenpl at e>

::orderedlist) nmod 3"/>

10 Sorting

<xsl :sort
sel ect = string-expression
lang = { nntoken }

data-type = { "text" | "nunber" | gnane-but-not-ncnane }
order = { "ascending" | "descending" }
case-order = { "upper-first" | "lower-first" } />

Sorting is specified by adding xsl : sort elementsaschildren of anxsl : appl y-t enpl at es or xsl : f or -
each element. Thefirst xsl : sort child specifiesthe primary sort key, the second xsl : sort child specifiesthe
secondary sort key and so on. When an xsl : appl y-t enpl at es or xsl : f or - each element has one or more
xsl : sort children, then instead of processing the selected nodes in document order, it sorts the nodes according
to the specified sort keys and then processes them in sorted order. When used in xsl : f or - each, xsl : sort
elements must occur first. When atemplate isinstantiated by xsl : appl y-t enpl at es and xsl : f or - each,
the current node list list consists of the complete list of nodes being processed in sorted order.
xsl :sort hasasel ect attribute whose value is an expression. For each node to be processed, the expression is
evaluated with that node as the current node and with the complete list of nodes being processed in unsorted order as
the current node list. The resulting object is converted to astring asif by acall to the string function; this string is
used asthe sort key for that node. The default value of thesel ect attributeis. , which will cause the string-value
of the current node to be used as the sort key.
This string serves as a sort key for the node. The following optional attributeson xsl : sort control how thelist of
sort keys are sorted; the values of all of these attributes are interpreted as attribute value templ ates.
» order specifies whether the strings should be sorted in ascending or descending order; ascendi ng
specifies ascending order; descendi ng specifies descending order; the default isascendi ng
« | ang specifies the language of the sort keys; it has the same range of valuesasxni : | ang [XML]; if no
| ang value is specified, the language should be determined from the system environment
« dat a-t ype specifiesthe data type of the strings; the following values are all owed:
* text specifiesthat the sort keys should be sorted lexicographically in the culturally correct
manner for the language specified by | ang
« nunber specifiesthat the sort keys should be converted to numbers and then sorted according to
the numeric value; the sort key is converted to anumber asif by acall to the number function; the
| ang attributeisignored
« aQName with a prefix is expanded into an expanded-name as described in [2.4 Qualified
Names]; the expanded-name identifies the data-type; the behavior in this case is not specified by
this document
The default valueist ext .

NOTE: The XSL Working Group plans that future versions of XSLT will
leverage XML Schemas to define further values for this attribute.

e case-order hasthevalueupper-first orl ower-first;thisapplieswhendat a-
type="text", and specifies that upper-case letters should sort before |ower-case letters or vice-versa
respectively. For example, if | ang="en",then A a B b are sorted with case- or der =" upper -
first" anda A b Baresortedwithcase- order="1 ower-first". Thedefault valueislanguage
dependent.

NOTE: Itispossible for two conforming XSLT processors not to sort exactly the same.
Some XSLT processors may not support some languages. Furthermore, there may be
variations possible in the sorting of any particular language that are not specified by the
attributes on xsl : sor t , for example, whether Hiragana or Katakanais sorted first in
Japanese. Future versions of XSLT may provide additional attributes to provide control
over these variations. |mplementations may also use implementation-specific
namespaced attributes on xsl : sort for this.

NOTE: It isrecommended that implementers consult [UNICODE TR10] for information
on internationalized sorting.

The sort must be stable: in the sorted list of nodes, any sub list that has sort keysthat all compare equal must be in
document order.
For example, suppose an employee database has the form
<enpl oyees>
<enpl oyee>
<nane>
<gi ven>Janes</ gi ven>
<fam | y>C ark</fam|ly>
</ nane>

</ enpl oyee>
</ enpl oyees>
Then alist of employees sorted by name could be generated using:
<xsl:tenpl ate mat ch="enpl oyees" >

<xsl : appl y-tenpl at es sel ect =" enpl oyee" >
<xsl:sort select="nane/famly"/>
<xsl:sort sel ect="name/given"/>
</ xsl : appl y-tenpl at es>
</ ul >
</ xsl : tenpl at e>

<xsl:tenpl ate mat ch="enpl oyee" >

<xsl : val ue- of sel ect ="namne/ gi ven"/>
<xsl:text> </xsl:text>
<xsl : val ue- of sel ect="nane/fam/ly"/>

</ xsl :tenpl at e>

11 Variables and Parameters

<l-- Category: top-level-element -->

<l-- Category: instruction -->

<xsl :variabl e

name = gnane

sel ect = expression>

<l-- Content: tenplate -->

</ xsl :vari abl e>

<l-- Category: top-level-elenent -->

<xsl : param

name = gname

sel ect = expression>

<l-- Content: tenplate -->

</ xsl : par anp

A variable is a name that may be bound to avalue. The value to which a variable is bound (the value of the variable)
can be an object of any of the types that can be returned by expressions. There are two elements that can be used to
bind variables: xsl : vari abl e and xsl : par am The differenceis that the value specified on the xsl : par am
variableis only a default value for the binding; when the template or stylesheet within which thexsl! : par am
element occursis invoked, parameters may be passed that are used in place of the default values.

Both xsl : vari abl e and xsl : par amhave arequired nane attribute, which specifies the name of the variable.
The value of the namre attribute is a QName, which is expanded as described in [2.4 Qualified Names].

For any use of these variable-binding elements, there is aregion of the stylesheet tree within which the binding is
visible; within this region, any binding of the variable that was visible on the variable-binding element itself is
hidden. Thus, only the innermost binding of avariable is visible. The set of variable bindingsin scope for an
expression consists of those bindings that are visible at the point in the stylesheet where the expression occurs.

11.1 Result Tree Fragments

Variables introduce an additional data-type into the expression language. This additional datatypeis called result
treefragment. A variable may be bound to aresult tree fragment instead of one of the four basic X Path data-types
(string, number, boolean, node-set). A result tree fragment represents a fragment of the result tree. A result tree
fragment is treated equivalently to a node-set that contains just a single root node. However, the operations
permitted on aresult tree fragment are a subset of those permitted on a node-set. An operation is permitted on a
result tree fragment only if that operation would be permitted on a string (the operation on the string may involve
first converting the string to a number or boolean). In particular, it is not permitted tousethe/ ,// ,and []
operators on result tree fragments. When a permitted operation is performed on aresult tree fragment, it is
performed exactly asit would be on the equivalent node-set.

When aresult tree fragment is copied into the result tree (see[11.3 Using Values of Variables and Parameter s
with xsl : copy- of]), then all the nodes that are children of the root node in the equivalent node-set are added in
sequence to the result tree.

Expressions can only return values of type result tree fragment by referencing variables of type result tree fragment
or calling extension functions that return a result tree fragment or getting a system property whose value is aresult
tree fragment.

11.2 Values of Variables and Parameters

A variable-binding element can specify the value of the variable in three alternative ways.

» If thevariable-binding element hasasel ect attribute, then the value of the attribute must be an
expression and the val ue of the variable is the object that results from evaluating the expression. In this
case, the content must be empty.

e | the variable-binding element does not have asel ect attribute and has non-empty content (i.e. the
variable-binding element has one or more child nodes), then the content of the variable-binding element
specifies the value. The content of the variable-binding element is atemplate, which isinstantiated to give
the value of the variable. The value is aresult tree fragment equivalent to a node-set containing just asingle

root node having as children the sequence of nodes produced by instantiating the template. The base URI of
the nodes in the result tree fragment is the base URI of the variable-binding element.
It isan error if amember of the sequence of nodes created by instantiating the template is an attribute node
or a namespace node, since aroot node cannot have an éttribute node or a namespace node as achild. An
XSLT processor may signal the error; if it does not signal the error, it must recover by not adding the
attribute node or namespace node.

» If thevariable-binding element has empty content and does not have asel ect attribute, then the value of
the variable is an empty string. Thus
<xsl :variabl e name="x"/>
isequivaent to
<xsl :variabl e name="x" select=""""/>

NOTE: When avariable is used to select nodes by position, be careful not to do:
<xsl :vari abl e name="n">2</xsl :vari abl e>

<xsl : val ue-of select="iten]{$n]"/>

Thiswill output the value of the first item element, because the variable n will be bound
to aresult tree fragment, not a number. Instead, do either

<xsl :vari abl e name="n" sel ect="2"/>

<xsl : val ue-of select="iten]$n]"/>
or
<xsl :vari abl e nane="n">2</xsl : vari abl e>

<st :val ue-of select="iten]position()=$n]"/>

NOTE: One convenient way to specify the empty node-set as the default value of a
parameter is:

<xsl : param nanme="x" select="/.."/>

11.3 Using Values of Variables and Parameter swith xsi : copy- of

<l-- Category: instruction -->

<xsl : copy- of

sel ect = expression />

Thexsl : copy- of element can be used to insert aresult tree fragment into the result tree, without first converting
ittoastringasxsl : val ue- of does(see[7.6.1 Generating Text with xsl : val ue- of]). The required

sel ect attribute contains an expression. When the result of evaluating the expression is aresult tree fragment, the
complete fragment is copied into the result tree. When the result is a node-set, all the nodes in the set are copied in
document order into the result tree; copying an element node copies the attribute nodes, namespace nodes and
children of the element node as well as the element node itself; aroot node is copied by copying its children. When
theresult is neither a node-set nor aresult tree fragment, the result is converted to a string and then inserted into the
result tree, aswith xsl : val ue- of .

11.4 Top-level Variablesand Parameters

Both xsl : vari abl e and xsl : par amare allowed astop-level elements. A top-level variable-binding element
declares aglobal variable that is visible everywhere. A top-level xsl| : par amelement declares a parameter to the
stylesheet; XSLT does not define the mechanism by which parameters are passed to the stylesheet. It isan error if a
stylesheet contains more than one binding of atop-level variable with the same name and same import precedence.
At the top-level, the expression or template specifying the variable value is evaluated with the same context as that
used to process the root node of the source document: the current node is the root node of the source document and
the current node list isalist containing just the root node of the source document. If the template or expression
specifying the value of a global variable x references aglobal variabley, then the value for y must be computed

before the value of x. It isan error if it isimpossible to do thisfor all global variable definitions; in other words, it is
an error if the definitions are circular.

This example declares aglobal variable par a- f ont - si ze, which it referencesin an attribute value template.
<xsl :vari abl e name="para-font-size">12pt </ xsl: vari abl e>

<xsl:tenpl ate match="para">
<fo:block font-size="{$para-font-size}">
<xsl : appl y-tenpl at es/ >
</ fo: bl ock>
</ xsl :tenpl at e>

11.5 Variablesand Parameter swithin Templates

Aswell as being allowed at the top-level, both xsl : var i abl e and xsl| : par amare also allowed in templates.
xsl :vari abl e isallowed anywhere within atemplate that an instruction is allowed. In this case, the binding is
visible for al following siblings and their descendants. Note that the binding is not visible for thexsl : vari abl e
element itself. xs| : par amisallowed as a child at the beginning of anxsl : t enpl at e element. In this context,
the binding is visible for all following siblings and their descendants. Note that the binding is not visible for the

xsl ; par amelement itself.

A binding shadows another binding if the binding occurs at a point where the other binding is visible, and the
bindings have the same name. It is an error if abinding established by an xsl : vari abl e or xsl : par amelement
within atemplate shadows another binding established by an xsl : var i abl e or xsl : par amelement also within
the template. It isnot an error if abinding established by anxsl : vari abl e or xsl : par amelementina
template shadows another binding established by an xsl : vari abl e or xsl : par amtop-level element. Thus, the
following isan error:

<xsl :tenpl ate nane="fo00">

<xsl : param nane="x" select="1"/>

<xsl :variabl e name="x" select="2"/>

</ xsl : tenpl at e>

However, the following is allowed:

<xsl : param nanme="x" select="1"/>

<xsl :tenpl ate nane="foo">

<xsl :vari abl e name="x" sel ect="2"/>

</ xsl :tenpl at e>

NOTE: The nearest equivalent in Javato an xsl : vari abl e element in atemplateisa
final local variable declaration with an initializer. For example,

<xsl :vari abl e nane="x" sel ect=""value'"/>

has similar semantics to
final Object x = "value";

XSLT does not provide an equivalent to the Java assignment operator
x = "val ue";

because this would make it harder to create an implementation that processes a document
other than in a batch-like way, starting at the beginning and continuing through to the
end.

11.6 Passing Parametersto Templates

<xsl :wit h-param

name = gnane

sel ect = expression>

<l-- Content: tenplate -->
</ xsl:wi th-paranp

Parameters are passed to templates using the xsl : wi t h- par amelement. The required namne attribute specifies
the name of the parameter (the variable the value of whose binding isto be replaced). The value of the name
attribute is a QName, which is expanded as described in [2.4 Qualified Names]. xsl : wi t h- par amis alowed
withinboth xsl : cal | -t enpl at e and xsl : appl y-t enpl at es. The value of the parameter is specified in
the same way asfor xsl : vari abl e and xsl : par am The current node and current node list used for computing
the value specified by xsl : wi t h- par amelement isthe same as that used for the xsl : appl y-t enpl at es or
xsl:cal | -t enpl at e element within which it occurs. It isnot an error to pass a parameter x to atemplate that
does not have an xsl : par amelement for x; the parameter is ssmply ignored.
This example defines a named template for anunber ed- bl ock with an argument to control the format of the
number.
<xsl : tenpl at e name="nunber ed- bl ock" >
<xsl : param nanme="format">1. </xsl: parane
<f o: bl ock>
<xsl : nunber format="{$format}"/>
<xsl : appl y-tenpl at es/ >
</ f o: bl ock>
</ xsl : tenpl at e>

<xsl:tenplate match="ol//ol/li">
<xsl:cal |l -tenpl ate name="nunber ed- bl ock" >
<xsl:w t h-param name="format">a. </xsl:wth-paranpr
</ xsl:call-tenpl at e>
</ xsl : tenpl at e>

12 Additional Functions

This section describes X SLT-specific additions to the core X Path function library. Some of these additional
functions also make use of information specified by top-level elements in the stylesheet; this section also describes
these elements.

12.1 Multiple Sour ce Documents

Function: node-set document(object, node-set?)

The document function alows access to XML documents other than the main source document.

When the document function has exactly one argument and the argument is a node-set, then the result is the union,
for each node in the argument node-set, of the result of calling the document function with the first argument being
the string-value of the node, and the second argument being a node-set with the node as its only member. When the
document function has two arguments and the first argument is a node-set, then the result is the union, for each
node in the argument node-set, of the result of calling the document function with the first argument being the
string-value of the node, and with the second argument being the second argument passed to the document function.
When the first argument to the document function is not a node-set, the first argument is converted to a string as if
by acall to the string function. This string is treated as a URI reference; the resource identified by the URI is
retrieved. The data resulting from the retrieval action is parsed as an XML document and atreeis constructed in
accordance with the data model (see [3 Data M odéel]). If thereis an error retrieving the resource, then the XSLT
processor may signal an error; if it does not signal an error, it must recover by returning an empty node-set. One
possible kind of retrieval error isthat the XSLT processor does not support the URI scheme used by the URI. An
XSLT processor is not required to support any particular URI schemes. The documentation for an XSLT processor
should specify which URI schemes the XSLT processor supports.

If the URI reference does not contain a fragment identifier, then a node-set containing just the root node of the
document is returned. If the URI reference does contain a fragment identifier, the function returns a node-set
containing the nodes in the tree identified by the fragment identifier of the URI reference. The semantics of the
fragment identifier is dependent on the media type of the result of retrieving the URI. If thereisan error in
processing the fragment identifier, the XSLT processor may signal the error; if it does not signal the error, it must
recover by returning an empty node-set. Possible errors include:

» Thefragment identifier identifies something that cannot be represented by an XSLT node-set (such as a
range of characters within atext node).

e TheXSLT processor does not support fragment identifiers for the media-type of the retrieval result. An
XSLT processor is not required to support any particular media types. The documentation for an XSLT
processor should specify for which mediatypesthe XSLT processor supports fragment identifiers.

The data resulting from the retrieval action is parsed as an XML document regardless of the media type of the
retrieval result; if the top-level mediatypeist ext , thenit is parsed in the same way asif the media type were
t ext/ xnl ; otherwise, it is parsed in the same way asif the mediatype were appl i cati on/ xmi .

NOTE: Sincethereisno top-level xm mediatype, data with a mediatype other than
text/xm orapplication/xm may infact be XML.

The URI reference may be relative. The base URI (see [3.2 Base URI]) of the node in the second argument node-set
that isfirst in document order is used as the base URI for resolving the relative URI into an absolute URI. If the
second argument is omitted, then it defaults to the node in the stylesheet that contains the expression that includes
the call to the document function. Note that a zero-length URI reference is a reference to the document relative to
which the URI reference is being resolved; thusdocunent (" ") refersto the root node of the styleshest; the tree
representation of the stylesheet is exactly the same asif the XML document containing the stylesheet was the initial
source document.

Two documents are treated as the same document if they are identified by the same URI. The URI used for the
comparison is the absolute URI into which any relative URI was resolved and does not include any fragment
identifier. One root node is treated as the same node as another root node if the two nodes are from the same
document. Thus, the following expression will always be true:

gener at e-i d(docurent ("foo. xm ")) =gener at e-i d(docunent ("foo. xm "))

The document function givesrise to the possibility that a node-set may contain nodes from more than one
document. With such a node-set, the relative document order of two nodes in the same document is the normal

document order defined by XPath [XPath]. The relative document order of two nodes in different documentsis
determined by an implementation-dependent ordering of the documents containing the two nodes. There are no
constraints on how the implementation orders documents other than that it must do so consistently: an
implementation must always use the same order for the same set of documents.

12.2 Keys

Keys provide away to work with documents that contain an implicit cross-reference structure. The | D, | DREF and
| DREFS attribute typesin XML provide a mechanism to allow XML documents to make their cross-reference
explicit. XSLT supports this through the X Path id function. However, this mechanism has a number of limitations:

e |D attributes must be declared as such inthe DTD. If an ID attribute is declared as an ID attribute only in
the external DTD subset, then it will be recognized as an ID attribute only if the XML processor reads the
external DTD subset. However, XML does not require XML processors to read the external DTD, and they
may well choose not to do so, especially if the document is declared st andal one="yes".

e A document can contain only a single set of unique IDs. There cannot be separate independent sets of
unique IDs.

e ThelD of an element can only be specified in an attribute; it cannot be specified by the content of the
element, or by a child element.

e AnlID isconstrained to be an XML name. For example, it cannot contain spaces.

e Aneéelement can have at most one ID.

e At most one element can have aparticular ID.

Because of these limitations XML documents sometimes contain a cross-reference structure that is not explicitly
declared by ID/IDREF/IDREFS attributes.
A key isatriple containing:

1. thenode which hasthe key

2. the name of the key (an expanded-name)

3. thevalue of the key (a string)

A stylesheet declares a set of keys for each document using the xsl : key element. When this set of keys contains a
member with node x, name y and value z, we say that node x has a key with name y and value z.
Thus, akey isakind of generalized ID, which is not subject to the same limitations asan XML ID:

« Keysaredeclared in the stylesheet using xsl : key elements.

* A key hasaname as well asavalue; each key name may be thought of as distinguishing a separate,
independent space of identifiers.

« Thevalue of anamed key for an element may be specified in any convenient place; for example, in an
attribute, in a child element or in content. An XPath expression is used to specify where to find the value
for a particular named key.

e Thevalue of akey can be an arbitrary string; it is not constrained to be a name.

e There can be multiple keysin a document with the same node, same key name, but different key values.

e There can be multiple keysin a document with the same key name, same key value, but different nodes.

<l-- Category: top-level-elenment -->

<xsl : key

name = gnane

match = pattern

use = expression [>

Thexsl : key element is used to declare keys. The nane attribute specifies the name of the key. The value of the
narme attribute is a QName, which is expanded as described in [2.4 Qualified Names]. The mat ch attributeisa
Pattern; an xsl : key element givesinformation about the keys of any node that matches the pattern specified in the
match attribute. The use attribute is an expression specifying the values of the key; the expression is evaluated once
for each node that matches the pattern. If the result is a node-set, then for each node in the node-set, the node that
matches the pattern has a key of the specified name whose value is the string-val ue of the node in the node-set;
otherwise, the result is converted to a string, and the node that matches the pattern has a key of the specified name
with value equal to that string. Thus, anode x has a key with namey and value zif and only if thereisan xsl : key
element such that:

» x matchesthe pattern specified in the mat ch attribute of thexsl : key element;

« thevalue of the nane attribute of the xsl : key element isequal toy; and

« when the expression specified in the use attribute of the xsl : key element is evaluated with x as the
current node and with a node list containing just x as the current node list resulting in an object u, then
either zis equal to the result of converting uto astring asif by a call to the string function, or u is a node-
set and zis equal to the string-value of one or more of the nodesin u.

Note also that there may be more than one xsl ; key element that matches a given node; al of the matching

xsl : key elements are used, even if they do not have the same import precedence.

Itisan error for the value of either the use attribute or the mat ch attribute to contain a VariableReference.
Function: node-set key(string, object)

The key function does for keys what the id function does for IDs. The first argument specifies the name of the key.
The value of the argument must be a QName, which is expanded as described in [2.4 Qualified Names]. When the
second argument to the key function is of type node-set, then the result is the union of the result of applying the key
function to the string val ue of each of the nodes in the argument node-set. When the second argument to key is of
any other type, the argument is converted to a string asif by a call to the string function; it returns a node-set
containing the nodes in the same document as the context node that have a value for the named key equal to this
string.

For example, given adeclaration

<xsl : key name="i dkey" match="div" use="@d"/>

anexpressionkey("i dkey", @ ef) will return the same node-set asi d(@ ef) , assuming that the only 1D
attribute declared in the XML source document is:

<! ATTLI ST div id | D #l WPLI ED>

and that ther ef attribute of the current node contains no whitespace.

Suppose a document describing afunction library usesapr ot ot ype element to define functions

<prot ot ype name="key" return-type="node-set">

<arg type="string"/>

<arg type="object"/>

</ pr ot ot ype>

and af unct i on element to refer to function names

<functi on>key</function>

Then the stylesheet could generate hyperlinks between the references and definitions as follows:

<xsl : key name="func" mat ch="prototype" use="@ane"/>

<xsl:tenpl ate match="functi on">

<xsl : appl y-tenpl at es/ >
</ a>
</ b>
</ xsl :tenpl at e>

<xsl:tenpl ate mat ch="prototype">

<p>

Function:

</ a></ p>

</ xsl :tenpl at e>

The key can be used to retrieve akey from a document other than the document containing the context node. For
example, suppose a document contains bibliographic referencesin the form <bi br ef >XSLT</ bi br ef >, and
there is a separate XML document bi b. xnl containing a bibliographic database with entriesin the form:
<entry name="XSLT">...</entry>

Then the stylesheet could use the following to transform the bi br ef elements:
<xsl : key name="bi b" nmatch="entry" use="@ane"/>

<xsl:tenpl ate nmatch="hi bref">
<xsl :vari abl e name="nane" select="."/>
<xsl :for-each sel ect="docunent (' bi b.xm ")">

<xsl : appl y-tenpl at es sel ect ="key(' bi b’ , $nane)"/ >
</ xsl : for-each>
</ xsl :tenpl at e>

12.3 Number Formatting

Function: string for mat-number (number, string, string?)

The format-number function convertsits first argument to a string using the format pattern string specified by the
second argument and the decimal-format named by the third argument, or the default decimal-format, if thereisno
third argument. The format pattern string isin the syntax specified by the JDK 1.1 Decimal Format class. The format
pattern string isin alocalized notation: the decimal-format determines what characters have a special meaning in the
pattern (with the exception of the quote character, which is not localized). The format pattern must not contain the
currency sign (#x00A4); support for this feature was added after the initial release of JDK 1.1. The decimal-format
name must be a QName, which is expanded as described in [2.4 Qualified Names]. It isan error if the stylesheet
does not contain a declaration of the decimal-format with the specified expanded-name.

NOTE: Implementations are not required to use the JDK 1.1 implementation, nor are
implementations required to be implemented in Java.

NOTE: Stylesheets can use other facilitiesin XPath to control rounding.

<l-- Category: top-level-elenent -->
<xsl : deci mal - f or mat
name = gnamne
deci nal - separator = char
groupi ng- separator = char
infinity = string
m nus-si gn = char
NaN = string
percent = char
per-nille = char
zero-digit = char
digit = char
pattern-separator = char />
Thexsl : deci nal - f or mat element declares a decimal-format, which controls the interpretation of a format
pattern used by the for mat-number function. If thereisanane attribute, then the element declares a named
decimal-format; otherwise, it declares the default decimal-format. The value of the nane attribute is a QName,
which is expanded as described in [2.4 Qualified Names). It isan error to declare either the default decimal-format
or adecimal-format with a given name more than once (even with different import precedence), unlessit is declared
every time with the same value for all attributes (taking into account any default values).
The other attributes on xsl : deci nmal - f or mat correspond to the methods on the JDK 1.1
Decimal FormatSymbols class. For each get /set method pair there is an attribute defined for the xsl : deci mal -
f or mat element.
The following attributes both control the interpretation of charactersin the format pattern and specify characters that
may appear in the result of formatting the number:
e deci nal - separ at or specifiesthe character used for the decimal sign; the default value is the period
character (.)
e groupi ng- separ at or specifiesthe character used as a grouping (e.g. thousands) separator; the default
value isthe comma character (,)
« percent specifiesthe character used as a percent sign; the default value is the percent character (%9
e per-n || e specifiesthe character used as a per mille sign; the default value is the Unicode per-mille
character (#x2030)
« zero-digit specifiesthe character used as the digit zero; the default value is the digit zero (0)
The following attributes control the interpretation of charactersin the format pattern:
o digit specifiesthe character used for adigit in the format pattern; the default value isthe number sign
character (#)

e pattern-separator specifiesthe character used to separate positive and negative sub patternsin a
pattern; the default value is the semi-colon character (;)
The following attributes specify characters or strings that may appear in the result of formatting the number:
e infinity specifiesthe string used to represent infinity; the default valueisthestring I nfinity
« NaN specifies the string used to represent the NaN value; the default value is the string NaN
e m nus- si gn specifies the character used as the default minus sign; the default value is the hyphen-minus
character (- , #x2D)

12.4 Miscellaneous Additional Functions

Function: node-set current()
The current function returns a node-set that has the current node as its only member. For an outermost expression
(an expression not occurring within another expression), the current node is always the same as the context node.
Thus,
<xsl :val ue-of select="current()"/>
means the same as
<xsl :val ue-of select="."/>
However, within square brackets the current node is usualy different from the context node. For example,
<xsl : apply-tenpl ates sel ect="//gl ossary/iten] @anme=current()/ @ef]"/>
will processall i t emelementsthat haveagl ossary parent element and that have anane attribute with value
equal to the value of the current node'sr ef attribute. Thisis different from
<xsl : apply-tenpl ates select="//glossary/iten] @ane=./@ef]"/>
which means the same as
<xsl :apply-tenpl ates select="//glossary/iten] @ame=@ef]"/>
and so would process all i t emelementsthat have agl ossar y parent element and that have anane attribute and
ar ef attribute with the same value.
Itisan error to use the current function in a pattern.
Function: string unpar sed-entity-uri(string)
The unpar sed-entity-uri returns the URI of the unparsed entity with the specified name in the same document as
the context node (see [3.3 Unpar sed Entities]). It returns the empty string if there is no such entity.
Function: string gener ate-id(node-set?)
The generate-id function returns a string that uniquely identifies the node in the argument node-set that isfirst in
document order. The unique identifier must consist of ASCII aphanumeric characters and must start with an
alphabetic character. Thus, the string is syntactically an XML name. An implementation is free to generate an
identifier in any convenient way provided that it always generates the same identifier for the same node and that
different identifiers are always generated from different nodes. An implementation is under no obligation to generate
the same identifiers each time a document is transformed. There is no guarantee that a generated unique identifier
will be distinct from any unique I Ds specified in the source document. If the argument node-set is empty, the empty
string is returned. If the argument is omitted, it defaults to the context node.
Function: object system-property(string)
The argument must evaluate to a string that is a QName. The QName is expanded into a name using the namespace
declarations in scope for the expression. The system-property function returns an object representing the value of
the system property identified by the name. If thereis no such system property, the empty string should be returned.
I mplementations must provide the following system properties, which are al inthe XSLT namespace:

e xsl:version,anumber giving the version of XSLT implemented by the processor; for XSLT

processors implementing the version of XSLT specified by this document, thisis the number 1.0
e xsl:vendor, astring identifying the vendor of the XSLT processor
e xsl:vendor-url,astring containing a URL identifying the vendor of the XSLT processor; typically
thisis the host page (home page) of the vendor's Web site.

13 M essages

<l-- Category: instruction -->
<xsl : message
termnate = "yes" | "no">

<l-- Content: tenplate -->

</ xsl : message>

Thexsl : message instruction sends a message in away that is dependent on the XSLT processor. The content of
thexsl : message instruction isatemplate. Thexsl : message isinstantiated by instantiating the content to
create an XML fragment. This XML fragment is the content of the message.

NOTE: An XSLT processor might implement xs! : message by popping up an aert box
or by writing to alog file.

If thet er mi nat e attribute has the value yes, then the XSLT processor should terminate processing after sending
the message. The default valueisno.
One convenient way to do localization is to put the localized information (message text, etc.) in an XML document,
which becomes an additional input file to the stylesheet. For example, suppose messages for alanguage L are stored
inan XML filer esour ces/ L. xm intheform:
<nessages>
<nmessage name="probl ent >A probl em was det ect ed. </ nessage>
<nessage name="error">An error was detected. </ nessage>
</ messages>
Then a stylesheet could use the following approach to localize messages:
<xsl : param nanme="1ang" sel ect="en"/>
<xsl :variabl e name="nessages"
sel ect ="docunent (concat (' resources/’, $l ang,

.xm "))/ messages"/ >

<xsl:tenpl ate name="1ocal i zed- nessage" >
<xsl : par am nanme="nane"/ >
<xsl : message>
<xsl : val ue- of sel ect =" $nessages/ message[@ane=$nane] "/ >
</ xsl : message>
</ xsl :tenpl at e>

<xsl :tenpl at e name="probl em'>
<xsl:call-tenpl ate nane="I| ocal i zed- nessage"/ >
<xsl :w t h- par am nanme="nane" >pr obl enx/ xsl : wi t h- par an»
</xsl:call-tenpl ate>
</ xsl :tenpl at e>

14 Extensions

XSLT allows two kinds of extension, extension elements and extension functions.

Thisversion of XSLT does not provide a mechanism for defining implementations of extensions. Therefore, an
XSLT stylesheet that must be portable between XSLT implementations cannot rely on particular extensions being
available. XSLT provides mechanisms that allow an XSLT stylesheet to determine whether the XSLT processor by
which it is being processed has implementations of particular extensions available, and to specify what should
happen if those extensions are not available. If an XSLT stylesheet is careful to make use of these mechanisms, it is
possible for it to take advantage of extensions and still work with any XSLT implementation.

14.1 Extension Elements

The element extension mechanism allows namespaces to be designated as extension namespaces. When a
namespace is designated as an extension namespace and an element with a name from that namespace occursin a
template, then the element is treated as an instruction rather than as aliteral result element. The namespace
determines the semantics of the instruction.

NOTE: Since an element that isachild of anxsl : styl esheet element isnot occurring
in a template, non-XSLT top-level elements are not extension elements as defined here,
and nothing in this section applies to them.

A namespace is designated as an extension namespace by using an ext ensi on- el enent - pr ef i xes attribute
onanxsl : styl esheet element or anxsl : ext ensi on- el enent - pr ef i xes attribute on aliteral result
element or extension element. The value of both these attributes is a whitespace-separated list of namespace
prefixes. The namespace bound to each of the prefixesis designated as an extension namespace. It is an error if there
is no namespace bound to the prefix on the element bearing the ext ensi on- el enent - pref i xes or

xsl : ext ensi on- el enent - pr ef i xes attribute. The default namespace (as declared by xm ns) may be
designated as an extension namespace by including #def aul t in thelist of namespace prefixes. The designation of
ahamespace as an extension namespace is effective within the subtree of the stylesheet rooted at the element
bearing the ext ensi on- el ement - pref i xes or xsl : ext ensi on- el enent - pr ef i xes attribute; a
subtree rooted at an xsl : st yl esheet element does not include any stylesheetsimported or included by children
of that xsl : styl esheet element.

If the XSLT processor does not have an implementation of a particular extension element available, then the
element-available function must return false for the name of the element. When such an extension element is
instantiated, then the XSLT processor must perform fallback for the element as specified in[15 Fallback]. An
XSLT processor must not signal an error merely because a template contains an extension element for which no
implementation is available.

If the XSLT processor has an implementation of a particular extension element available, then the element-
available function must return true for the name of the element.

14.2 Extension Functions

If a FunctionName in a FunctionCall expression is not an NCName (i.e. if it contains a colon), then it istreated as a
call to an extension function. The FunctionName is expanded to a name using the namespace declarations from the
evaluation context.

If the XSLT processor does not have an implementation of an extension function of a particular name available, then
the function-available function must return false for that name. If such an extension function occursin an
expression and the extension function is actually called, the XSLT processor must signal an error. An XSLT
processor must not signal an error merely because an expression contains an extension function for which no
implementation is available.

If the XSLT processor has an implementation of an extension function of a particular name available, then the
function-available function must return true for that name. If such an extension is called, then the XSLT processor
must call the implementation passing it the function call arguments; the result returned by the implementation is
returned as the result of the function call.

15 Fallback

<l-- Category: instruction -->

<xsl :fal |l back>

<l-- Content: tenplate -->

</ xsl: fall back>

Normally, instantiating an xsl : f al | back element does nothing. However, when an XSLT processor performs
fallback for an instruction element, if the instruction element has one or more xsl : f al | back children, then the
content of each of the xsl : f al | back children must be instantiated in sequence; otherwise, an error must be
signaled. The content of an xsl : f al | back element isatemplate.

The following functions can be used with the xsl : choose and xsl : i f instructions to explicitly control how a
stylesheet should behave if particular elements or functions are not available.

Function: boolean element-available(string)

The argument must evaluate to a string that is a QName. The QName is expanded into an expanded-name using the
namespace declarations in scope for the expression. The element-available function returns true if and only if the
expanded-name is the name of an instruction. If the expanded-name has a namespace URI equal to the XSLT
namespace URI, then it refers to an element defined by XSLT. Otherwise, it refers to an extension element. If the
expanded-name has a null namespace URI, the element-available function will return false.

Function: boolean function-available(string)

The argument must evaluate to a string that is a QName. The QName is expanded into an expanded-name using the
namespace declarations in scope for the expression. The function-available function returns true if and only if the
expanded-name is the name of afunction in the function library. If the expanded-name has a non-null namespace
URI, then it refers to an extension function; otherwise, it refers to a function defined by XPath or XSLT.

16 Output

<l-- Category: top-level-element -->
<xsl : out put
method = "xm" | "htm" | "text" | gname-but-not-ncnane

versi on = nntoken

encodi ng = string

om t-xm -declaration = "yes" |
standal one = "yes" | "no"
doctype-public = string

doct ype-system = string

cdat a- secti on-el enents = gnanes
i ndent = "yes" | "no"

nmedi a-type = string />

An XSLT processor may output the result tree as a sequence of bytes, although it is not required to be able to do so
(see[17 Conformance]). The xsl : out put element allows stylesheet authors to specify how they wish the result
tree to be output. If an XSLT processor outputs the result tree, it should do so as specified by the xs! : out put
element; however, it is not required to do so.

Thexsl : out put elementisonly allowed as atop-level element.

The et hod attribute on xsl : out put identifies the overall method that should be used for outputting the result
tree. The value must be a QName. If the QName does not have a prefix, then it identifies a method specified in this
document and must be one of xm , ht m or t ext . If the QName has a prefix, then the QName is expanded into an
expanded-name as described in [2.4 Qualified Names]; the expanded-name identifies the output method; the
behavior in this case is not specified by this document.

The default for the et hod attribute is chosen as follows. If

« theroot node of the result tree has an element child,

« the expanded-name of the first element child of the root node (i.e. the document element) of the result tree
has local part ht m (in any combination of upper and lower case) and a null namespace URI, and

* any text nodes preceding the first element child of the root node of the result tree contain only whitespace
characters,

then the default output method is ht m ; otherwise, the default output method isxm . The default output method
should be used if there are no xsl : out put elementsor if none of thexsl : out put elements specifies avalue
for the met hod attribute.

The other attributes on xsl : out put provide parameters for the output method. The following attributes are
allowed:

e ver si on specifies the version of the output method

* i ndent specifies whether the XSLT processor may add additional whitespace when outputting the result
tree; the value must beyes or no

e encodi ng specifiesthe preferred character encoding that the XSLT processor should use to encode
sequences of characters as sequences of bytes; the value of the attribute should be treated case-
insensitively; the value must contain only charactersin the range #x21 to #x7E (i.e. printable ASCI|
characters); the value should either be achar set registered with the Internet Assigned Numbers
Authority [IANA], [REC2278] or start with X-

« nedi a- t ype specifies the mediatype (MIME content type) of the data that results from outputting the
result tree; the char set parameter should not be specified explicitly; instead, when the top-level media
typeist ext ,achar set parameter should be added according to the character encoding actually used by
the output method

« doct ype- syst emspecifies the system identifier to be used in the document type declaration

e doctype-publ i c specifiesthe public identifier to be used in the document type declaration

e onmt-xm -decl arati on specifies whether the XSLT processor should output an XML declaration;
the value must beyes or no

« st andal one specifies whether the XSLT processor should output a standal one document declaration; the
value must beyes or no

no

« cdata-section-el enent s specifiesalist of the names of elements whose text node children should
be output using CDATA sections

The detailed semantics of each attribute will be described separately for each output method for whichiit is
applicable. If the semantics of an attribute are not described for an output method, then it is not applicable to that
output method.
A stylesheet may contain multiple xsl : out put elements and may include or import stylesheets that also contain
xsl : out put elements. All thexsl : out put elements occurring in a stylesheet are merged into a single effective
xsl : out put element. For thecdat a- secti on- el ement s attribute, the effective value is the union of the
specified values. For other attributes, the effective value is the specified value with the highest import precedence. It
isan error if there is more than one such value for an attribute. An XSLT processor may signal the error; if it does
not signal the error, if should recover by using the value that occurs last in the stylesheet. The values of attributes are
defaulted after the xsl : out put elements have been merged; different output methods may have different default
values for an attribute.

16.1 XML Output Method

Thexm output method outputs the result tree as a well-formed XML external general parsed entity. If the root node
of the result tree has a single element node child and no text node children, then the entity should also be a well-
formed XML document entity. When the entity is referenced within atrivial XML document wrapper like this
<! DOCTYPE doc [
<IENTITY e SYSTEM "entity-URI">
1>
<doc>&e; </ doc>
where ent i t y- URI isaURI for the entity, then the wrapper document as a whole should be a well-formed XML
document conforming to the XML Namespaces Recommendation [XML Names]. In addition, the output should be
such that if a new tree was constructed by parsing the wrapper as an XML document as specified in [3 Data M odel],
and then removing the document element, making its children instead be children of the root node, then the new tree
would be the same as the result tree, with the following possible exceptions:

e Theorder of attributes in the two trees may be different.

e The new tree may contain namespace nodes that were not present in the result tree.

NOTE: An XSLT processor may need to add namespace declarationsin
the course of outputting the result tree as XML.

If the XSLT processor generated a document type declaration because of the doct ype- syst emattribute, then the
above requirements apply to the entity with the generated document type declaration removed.

Thever si on attribute specifies the version of XML to be used for outputting the result tree. If the XSLT
processor does not support this version of XML, it should use a version of XML that it does support. The version
output in the XML declaration (if an XML declaration is output) should correspond to the version of XML that the
processor used for outputting the result tree. The value of thever si on attribute should match the VersionNum
production of the XML Recommendation [XML]. The default valueis 1. O.

Theencodi ng attribute specifies the preferred encoding to use for outputting the result tree. XSLT processors are
reguired to respect values of UTF- 8 and UTF- 16. For other values, if the XSLT processor does not support the
specified encoding it may signal an error; if it does not signal an error it should use UTF- 8 or UTF- 16 instead. The
XSLT processor must not use an encoding whose name does not match the EncName production of the XML
Recommendation [XML]. If no encodi ng attribute is specified, then the XSLT processor should use either UTF-
8 or UTF- 16. It is possible that the result tree will contain a character that cannot be represented in the encoding
that the XSLT processor is using for output. In this case, if the character occursin a context where XML recognizes
character references (i.e. in the value of an attribute node or text node), then the character should be output as a
character reference; otherwise (for example if the character occurs in the name of an element) the XSLT processor
should signal an error.

If thei ndent attribute has the value yes, then the xml output method may output whitespace in addition to the
whitespace in the result tree (possibly based on whitespace stripped from either the source document or the
stylesheet) in order to indent the result nicely; if thei ndent attribute has the value no, it should not output any
additional whitespace. The default valueisno. Thexm output method should use an algorithm to output additional
whitespace that ensures that the result if whitespace were to be stripped from the output using the process described

in [3.4 Whitespace Stripping] with the set of whitespace-preserving elements consisting of just xsl : t ext would
be the same when additional whitespace is output as when additional whitespace is not output.

NOTE: Itisusually not safeto usei ndent ="yes" with document types that include
element types with mixed content.

Thecdat a- secti on- el ement s attribute contains a whitespace-separated list of QNames. Each QNameis
expanded into an expanded-name using the namespace declarations in effect on the xs| : out put element in which
the QName occurs; if there is a default namespace, it is used for QNames that do not have a prefix. The expansion is
performed before the merging of multiple xsl : out put elementsinto asingle effectivexsl : out put element. If
the expanded-name of the parent of atext node isa member of the list, then the text node should be output as a
CDATA section. For example,

<xsl : out put cdat a-secti on-el enent s="exanpl e"/ >

would cause aliteral result element written in the stylesheet as

<exanpl e>&l t ; f oo></ exanpl e>

or as

<exanpl e><! [CDATA| <f 00>] | ></ exanpl e>

to be output as

<exanpl e><! [CDATA| <f 00>] | ></ exanpl e>

If the text node contains the sequence of characters] | >, then the currently open CDATA section should be closed
followingthe]] and anew CDATA section opened before the >. For example, aliteral result element written in the
stylesheet as

<exanpl e>]] > ; </ exanpl e>

would be output as

<exanpl e><! [CDATA[]]]1]1 ><! [CDATA[>]] ></ exanpl e>

If the text node contains a character that is not representable in the character encoding being used to output the result
tree, then the currently open CDATA section should be closed before the character, the character should be output
using a character reference or entity reference, and anew CDATA section should be opened for any further
charactersin the text node.

CDATA sections should not be used except for text nodes that the cdat a- sect i on- el enent s attribute
explicitly specifies should be output using CDATA sections.

Thexm output method should output an XML declaration unlessthe oni t - xnl - decl ar at i on attribute has
thevalueyes. The XML declaration should include both version information and an encoding declaration. If the

st andal one attribute is specified, it should include a standal one document declaration with the same value as the
value asthe value of the st andal one attribute. Otherwise, it should not include a standal one document
declaration; this ensures that it is both a XML declaration (allowed at the beginning of a document entity) and a text
declaration (allowed at the beginning of an external general parsed entity).

If thedoct ype- syst emattribute is specified, the xm output method should output a document type declaration
immediately before the first element. The name following <! DOCT YPE should be the name of the first element. If
doct ype- publ i c attribute is also specified, then the xm output method should output PUBLI Cfollowed by the
public identifier and then the system identifier; otherwise, it should output SYSTEMfollowed by the system
identifier. Theinternal subset should be empty. Thedoct ype- publ i ¢ attribute should be ignored unless the
doct ype- syst emattribute is specified.

Thenedi a-t ype attribute is applicable for thexm output method. The default value for the nedi a- t ype
atributeist ext / xm .

16.2 HTML Output Method

Theht M output method outputs the result tree asHTML; for example,
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni' >

<xsl : out put nethod="htm"/>

<xsl:tenplate match="/">
<htn >

<xsl : appl y-tenpl at es/ >
</htm >
</ xsl :tenpl at e>

</ xsl:styl esheet >

Thever si on attribute indicates the version of the HTML. The default valueis4. 0, which specifiesthat the result
should be output as HTML conforming to the HTML 4.0 Recommendation [HTML].

Theht m output method should not output an element differently from the xm output method unless the
expanded-name of the element has a null namespace URI; an element whose expanded-name has a non-nulll
namespace URI should be output as XML. If the expanded-name of the element has a null namespace URI, but the
local part of the expanded-name is not recognized as the name of an HTML element, the element should output in
the same way as a non-empty, inline element such asspan.

Theht m output method should not output an end-tag for empty elements. For HTML 4.0, the empty elements are
ar ea, base, basef ont,br,col ,frame, hr,i ng,i nput,i sindex,|ink, meta and param For
example, an element written as<br / > or
</ br > in the stylesheet should be output as
.

Theht M output method should recognize the names of HTML elements regardless of case. For example, elements
named br , BRor Br should all be recognized asthe HTML br element and output without an end-tag.

Theht M output method should not perform escaping for the content of thescri pt and st yl e elements. For
example, aliteral result element written in the stylesheet as

<script>f (a &t; b) foo()</script>

or

<script><![CDATA[if (a < b) foo()]]></script>

should be output as

<script>f (a < b) foo()</script>

Theht m output method should not escape < characters occurring in attribute values.

If thei ndent attribute hasthe valueyes, thentheht m output method may add or remove whitespace as it
outputs the resullt tree, so long as it does not change how an HTML user agent would render the output. The default
vaueisyes.

Theht m output method should escape non-ASCII charactersin URI attribute values using the method
recommended in Section B.2.1 of the HTML 4.0 Recommendation.

Theht M output method may output a character using a character entity reference, if oneis defined for it in the
version of HTML that the output method is using.

Theht m output method should terminate processing instructions with > rather than ?>.

Theht m output method should output boolean attributes (that is attributes with only a single allowed value that is
equal to the name of the attribute) in minimized form. For example, a start-tag written in the stylesheet as

<COPTI ON sel ect ed="sel ect ed" >

should be output as

<COPTI ON sel ect ed>

Theht m output method should not escape a & character occurring in an attribute value immediately followed by a
{ character (see Section B.7.1 of the HTML 4.0 Recommendation). For example, a start-tag written in the stylesheet
as

<BODY bgcol or =" &np; {{randonr bg}};’ >

should be output as

<BODY bgcol or =" & randonr bg};’ >

Theencodi ng attribute specifies the preferred encoding to be used. If there is a HEAD element, then the ht i
output method should add a META element immediately after the start-tag of the HEAD element specifying the
character encoding actually used. For example,

<HEAD>

<META http-equi v="Content-Type" content="text/html; charset=EUC JP">

It is possible that the result tree will contain a character that cannot be represented in the encoding that the XSLT
processor is using for output. In this case, if the character occurs in a context where HTML recognizes character
references, then the character should be output as a character entity reference or decimal numeric character

reference; otherwise (for example, inascri pt or st yl e element or in acomment), the XSLT processor should
signal an error.

If thedoct ype- publ i c or doct ype- syst emattributes are specified, then theht m output method should
output a document type declaration immediately before the first element. The name following <! DOCTYPE should
be HTM. or ht i . If thedoct ype- publ i ¢ attribute is specified, then the output method should output PUBLI C
followed by the specified public identifier; if the doct ype- syst emattributeis also specified, it should also
output the specified system identifier following the public identifier. If the doct ype- syst emattribute is specified
but thedoct ype- publ i c attribute is not specified, then the output method should output SYSTEMfollowed by
the specified system identifier.

Thenedi a-t ype attributeis applicable for theht m output method. The default valueist ext / ht i .

16.3 Text Output M ethod

Thet ext output method outputs the result tree by outputting the string-value of every text node in the result treein
document order without any escaping.

Thenedi a-t ype attributeis applicable for thet ext output method. The default value for the nedi a- t ype
atributeist ext / pl ai n.

Theencodi ng attribute identifies the encoding that thet ext output method should use to convert sequences of
characters to sequences of bytes. The default is system-dependent. If the result tree contains a character that cannot
be represented in the encoding that the XSLT processor is using for output, the XSLT processor should signal an
error.

16.4 Disabling Output Escaping

Normally, the xml output method escapes & and < (and possibly other characters) when outputting text nodes. This
ensures that the output is well-formed XML. However, it is sometimes convenient to be able to produce output that
isamost, but not quite well-formed XML ; for example, the output may include ill-formed sections which are
intended to be transformed into well-formed XML by a subsequent non-XML aware process. For thisreason, XSLT
provides a mechanism for disabling output escaping. Anxsl : val ue- of or xsl : t ext element may havea

di sabl e- out put - escapi ng attribute; the allowed values areyes or no; the defaultisno; if thevalueisyes,
then atext node generated by instantiating the xsl : val ue- of or xsl : t ext element should be output without
any escaping. For example,

<xsl :text disabl e-output-escapi ng="yes">& t; </ xsl:text>

should generate the single character <.

Itisan error for output escaping to be disabled for atext node that is used for something other than atext node in the
result tree. Thus, it isan error to disable output escaping for an xsl : val ue- of or xsl : t ext element that is
used to generate the string-value of a comment, processing instruction or attribute node; it is also an error to convert
aresult tree fragment to a number or astring if the result tree fragment contains atext node for which escaping was
disabled. In both cases, an XSLT processor may signal the error; if it does not signal the error, it must recover by
ignoring the di sabl e- out put - escapi ng attribute.

Thedi sabl e- out put - escapi ng attribute may be used with the ht m output method as well as with the xim
output method. Thet ext output method ignoresthedi sabl e- out put - escapi ng attribute, since it does not
perform any output escaping.

An XSLT processor will only be able to disable output escaping if it controls how the result tree is output. This may
not always be the case. For example, the result tree may be used as the source tree for another XSLT transformation
instead of being output. An XSLT processor is not required to support disabling output escaping. If an

xsl :val ue- of orxsl:text specifiesthat output escaping should be disabled and the XSLT processor does not
support this, the XSLT processor may signal an error; if it does not signal an error, it must recover by not disabling
output escaping.

If output escaping is disabled for a character that is not representable in the encoding that the XSLT processor is
using for output, then the XSLT processor may signal an error; if it does not signal an error, it must recover by not
disabling output escaping.

Since disabling output escaping may not work with all XSLT processors and can result in XML that is not well-
formed, it should be used only when there is no alternative.

17 Conformance

A conforming XSLT processor must be able to use a stylesheet to transform a source tree into aresult tree as
specified in this document. A conforming XSLT processor need not be able to output the result in XML or in any
other form.

NOTE: Vendors of XSLT processors are strongly encouraged to provide away to verify
that their processor is behaving conformingly by allowing the result tree to be output as
XML or by providing access to the result tree through a standard API such as the DOM
or SAX.

A conforming XSLT processor must signal any errors except for those that this document specifically allows an
XSLT processor not to signal. A conforming XSLT processor may but need not recover from any errors that it
signals.

A conforming XSLT processor may impose limits on the processing resources consumed by the processing of a
styleshest.

18 Notation

The specification of each XSLT-defined element type is preceded by a summary of its syntax in the form of a model
for elements of that element type. The meaning of syntax summary notation is as follows:

An attribute isrequired if and only if its nameisin bold.

The string that occursin the place of an attribute val ue specifies the allowed values of the attribute. If thisis
surrounded by curly braces, then the attribute value is treated as an attribute value template, and the string
occurring within curly braces specifies the allowed values of the result of instantiating the attribute value
template. Alternative allowed values are separated by | . A quoted string indicates a value equal to that
specific string. An unquoted, italicized name specifies a particular type of value.

If the element is allowed not to be empty, then the element contains a comment specifying the allowed
content. The allowed content is specified in a similar way to an element type declaration in XML; template
means that any mixture of text nodes, literal result elements, extension elements, and XSLT elements from
thei nstructi on category is allowed; top-level-elements means that any mixture of XSLT elements
fromthet op- | evel - el emrent category is allowed.

The element is prefaced by commentsindicating if it belongsto thei nst ruct i on category or t op-

| evel - el ement category or both. The category of an element just affects whether it is allowed in the
content of elements that allow a template or top-level-elements.

A References

A.1 Normative References
XML

World Wide Web Consortium. Extensible Markup Language (XML) 1.0. W3C
Recommendation. See http://www.w3.0rg/TR/1998/REC-xml-19980210

XML Names

World Wide Web Consortium. Namespaces in XML. W3C Recommendation. See
http://www.w3.0rg/ TR/REC-xml-names

XPath

World Wide Web Consortium. XML Path Language. W3C Recommendation. See
http://www.w3.org/TR/xpath

A.2 Other References
CSs2

World Wide Web Consortium. Cascading Style Sheets, level 2 (CS2). W3C
Recommendation. See http://www.w3.0rg/TR/1998/REC-CSS2-19980512

DSSSL

International Organization for Standardization, International Electrotechnical Commission.
|SO/IEC 10179:1996. Document Style Semantics and Specification Language (DSSSL).
International Standard.

HTML

World Wide Web Consortium. HTML 4.0 specification. W3C Recommendation. See
http://www.w3.0rg/TR/REC-html40

IANA

Internet Assigned Numbers Authority. Character Sets. See ftp://ftp.isi.edu/in-
notes/ianal/assignments/character-sets.

RFC2278

N. Freed, J. Postel. IANA Charset Registration Procedures. IETF RFC 2278. See
http://www.ietf.org/rfc/rfc2278.txt.

RFC2376

E. Whitehead, M. Murata. XML Media Types. IETF RFC 2376. See
http://www.ietf.org/rfc/rfc2376.txt.

RFC2396

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic
Syntax. IETF RFC 2396. See http://www.ietf.org/rfc/rfc2396.txt.

UNICODE TR10

Unicode Consortium. Unicode Technical Report #10. Unicode Collation Algorithm. Unicode
Technical Report. See http://www.unicode.org/unicode/reports/tr10/index.html.

XHTML

World Wide Web Consortium. XHTML 1.0: The Extensible Hyper Text Markup Language.
W3C Proposed Recommendation. See http://www.w3.org/ TR/xhtml1

XPointer

World Wide Web Consortium. XML Pointer Language (XPointer). W3C Working Draft. See
http://www.w3.0org/ TR/Xptr

XML Stylesheet

World Wide Web Consortium. Associating stylesheets with XML documents. W3C
Recommendation. See http://www.w3.org/TR/xml-stylesheet

XSL

World Wide Web Consortium. Extensible Stylesheet Language (XS.). W3C Working Draft.
See http://www.w3.org/ TR/WD-xsl

B Element Syntax Summary

<l-- Category: instruction -->
<xsl :apply-inmports />
<l-- Category: instruction -->

<xsl : appl y-tenpl at es
sel ect = node-set-expressi on
node = gnane>

<l-- Content: (xsl:sort | xsl:with-param* -->
</ xsl : appl y-t enpl at es>
<l-- Category: instruction -->

<xsl:attribute

nane = { gnane }

nanespace = { uri-reference }>

<l-- Content: tenplate -->
</xsl:attribute>

<l-- Category: top-level-elenment -->
<xsl:attribute-set

name = gnane

use-attribute-sets = gnanes>

<l-- Content: xsl:attribute* -->
</ xsl:attribute-set>
<l-- Category: instruction -->

<xsl:call-tenplate
name = gnane>

<l-- Content: xsl:with-parant -->

</ xsl:call-tenpl at e>

<l-- Category: instruction -->

<xsl : choose>

<l-- Content: (xsl:when+, xsl:otherw se?) -->
</ xsl: choose>

<l-- Category: instruction -->

<xsl : conment >

<l-- Content: tenplate -->

</ xsl : comrent >

<l-- Category: instruction -->
<xsl : copy

use-attribute-sets = gnanes>
<l-- Content: tenplate -->

</ xsl : copy>

<l-- Category: instruction -->
<xsl : copy- of

sel ect = expression />

<l-- Category: top-level-elenent -->
<xsl : deci nal - f or mat

name = gname

deci nal - separator = char
groupi ng- separator = char
infinity = string

nm nus-sign = char

NaN = string

percent = char

per-mlle = char

zero-digit = char

digit = char

pattern-separator = char />

<l-- Category: instruction -->
<xsl : el enent

nane = { gnane }

nanespace = { uri-reference }
use-attribute-sets = gnanes>
<l-- Content: tenplate -->

</ xsl : el emrent >

<l-- Category: instruction -->
<xsl:fall back>

<l-- Content: tenplate -->

</ xsl: fall back>

<l-- Category: instruction -->
<xsl : for-each

sel ect = node-set-expressi on>

<l-- Content: (xsl:sort*, tenplate) -->
</ xsl : for-each>

<l-- Category: instruction -->

<xsl:if

test = bool ean- expressi on>

<l-- Content: tenplate -->

</xsl:if>

<xsl :i nport

href = uri-reference />

<l-- Category: top-level-element -->
<xsl :incl ude

href = uri-reference |>

<l-- Category: top-level-elenent -->
<xsl : key

name = gname

match = pattern

use = expression [>

<l-- Category: instruction -->
<xsl : message
termnate = "yes" | "no">

<l-- Content: tenplate -->
</ xsl : message>

<l-- Category: top-level-elenent -->
<xsl : nanespace-al i as

styl esheet-prefix = prefix | "#default"
result-prefix = prefix | "#default" />
<l-- Category: instruction -->
<xsl : nunber

level = "single" | "nultiple" | "any"

count = pattern

from= pattern

val ue = nunber - expressi on

format = { string }

lang = { nntoken }

|letter-value = { "al phabetic" | "traditional" }
groupi ng-separator = { char }

groupi ng-si ze = { nunber } />

<xsl : ot herw se>

<l-- Content: tenplate -->

</ xsl: ot herw se>

<l-- Category: top-level-element -->
<xsl : out put

method = "xm" | "html" | "text" | gname-but-not-ncnane

version = nnt oken

encodi ng = string

omit-xnl -declaration = "yes" | "no"
standal one = "yes" | "no"
doctype-public = string
doctype-system = string

cdat a- secti on-el enents = gnanes

i ndent = "yes" | "no"

medi a-type = string />

<l-- Category: top-level-elenment -->
<xsl : param

name = gnane

sel ect = expression>

<l-- Content: tenplate -->

</ xsl : par an>

<l-- Category: top-level-element -->
<xsl : preserve- space

el ements = tokens />

<l-- Category: instruction -->

<xsl : processi ng-i nstruction

nane = { ncnane }>

<l-- Content: tenplate -->

</ xsl: processi ng-instructi on>
<xsl:sort

sel ect = string-expression

lang = { nntoken }

data-type = { "text" | "nunber" | gnane-but-not-ncnane }
order = { "ascending" | "descending" }

case-order = { "upper-first" | "lower-first" } />

<l-- Category: top-level-elenment -->

<xsl:strip-space

el ements = tokens />

<xsl : styl esheet

id=1id

ext ensi on- el enent - prefi xes = tokens
excl ude-resul t-prefixes = tokens
versi on = nunber>

<l-- Content: (xsl:inport*, top-/evel-elenents) -->
</ xsl : styl esheet >
<l-- Category: top-level-elenment -->

<xsl:tenpl ate

match = pattern

name = gnane

priority = nunber

node = gnane>

<l-- Content: (xsl:parant, tenplate) -->
</ xsl :tenpl at e>

<l-- Category: instruction -->
<xsl:text
di sabl e- out put -escaping = "yes" | "no">

<l-- Content: #PCDATA -->

</ xsl :text>

<xsl:transform

id=1id

ext ensi on- el enent - prefi xes = tokens
excl ude-resul t-prefixes = tokens
versi on = nunber>

<l-- Content: (xsl:inport*, top-I/evel-elenents) -->
</ xsl :transforne

<l-- Category: instruction -->

<xsl : val ue- of

sel ect = string-expression

di sabl e-out put -escaping = "yes" | "no" />
<l-- Category: top-level-elenent -->
<l-- Category: instruction -->

<xsl:variable

name = gnamne

sel ect = expression>

<l-- Content: tenplate -->
</ xsl :vari abl e>

<xsl : when

test = bool ean- expressi on>
<l-- Content: tenplate -->
</ xsl : when>

<xsl :w t h- param

name = gname

sel ect = expression>

<l-- Content: tenplate -->
</ xsl:wi th-paranp

C DTD Fragment for XSLT Stylesheets (Non-Nor mative)

NOTE: ThisDTD Fragment is not normative because XML 1.0 DTDs do not support
XML Namespaces and thus cannot correctly describe the allowed structure of an XSLT
stylesheet.

The following entity can be used to construct aDTD for XSLT stylesheets that create instances of a particular result
DTD. Before referencing the entity, the stylesheet DTD must definear esul t - el enent s parameter entity listing
the allowed result element types. For example:
<IENTITY %result-elements "
| fo:inline-sequence
| fo:block

">
Such result elements should be declared to have xsl : use-at tri but e- set s and xsl : ext ensi on-
el enent - pr ef i xes attributes. The following entity declaresther esul t - el ement - at t s parameter for this
purpose. The content that XSLT allows for result elementsisthe same asit allows for the XSLT elements that are
declared in the following entity with a content model of % enpl at e; . The DTD may use a more restrictive
content model than % enpl at e; to reflect the constraints of the result DTD.
The DTD may definethenon- xsl -t op- | evel parameter entity to allow additional top-level elements from
namespaces other than the XSLT namespace.
Theuse of thexsl : prefix inthisDTD does not imply that XSLT stylesheets are required to use this prefix. Any of
the elements declared in this DTD may have attributes whose name starts with xm ns: or isequa toxnl ns in
addition to the attributes declared in this DTD.
<IENTITY % char-instructions "

xsl ; appl y-tenpl at es

xsl:call-tenplate

xsl : apply-inmports

xsl: for-each

xsl : val ue- of

xsl : copy- of

xsl : nunber
xsl:if
xsl : t ext
xsl : copy

xsl :vari abl e

xsl : message

xsl: fall back
s

|
|
|
|
|
|
|
| xsl:choose
|
|
|
|
|
|

<IENTITY % instructions "
%har-instructions;
| xsl:processing-instruction
| xsl:comrent
| xsl:elenment
| xsl:attribute
">
<IENTITY % char-tenplate "
(#PCDATA

%har-instructions;)*
"

<IENTITY %tenplate "
(#PCDATA

% nstructions;
% esult-el emrents;)*
"

<l-- Used for the type of an attribute value that is a URI reference.-->
<IENTITY % URI " CDATA">

<l-- Used for the type of an attribute value that is a pattern.-->
<IENTITY % pattern "CDATA">

<l-- Used for the type of an attribute value that is an
attri bute value tenplate.-->
<IENTITY % avt " CDATA">

<l-- Used for the type of an attribute value that is a QNane; the prefix
gets expanded by the XSLT processor. -->
<IENTITY % gnanme " NMIOKEN'>

<l-- Like gnane but a whitespace-separated |ist of QNanes. -->
<IENTITY % gnanes "NMIOKENS" >

<l-- Used for the type of an attribute value that is an expression.-->
<IENTITY % expr "CDATA">

<l-- Used for the type of an attribute value that consists
of a single character.-->
<IENTITY % char " CDATA">

<l-- Used for the type of an attribute value that is a priority. -->
<IENTITY %priority "NMIOKEN'>

<IENTITY % space-att "xm :space (default|preserve) #l MPLIED'>

<l-- This may be overridden to custoni ze the set of elenents all owed
at the top-level. -->
<IENTITY % non-xsl -top-level "">

<IENTITY %top-level "
(xsl:inport*,
(xsl:include
| xsl:strip-space
| xsl:preserve-space
| xsl: out put
| xsl:key
| xsl:decimal-format
| xsl:attribute-set
| xsl:variable
| xsl:param
| xsl:tenplate
| xsl:nanespace-alias
%mon- xsl -top-1 evel ;) *)
">

<IENTITY %top-level-atts
ext ensi on- el enent - prefi xes CDATA #| MPLI ED
excl ude-resul t-prefi xes CDATA #| MPLI ED

id | D # MPLI ED
versi on NMIOKEN #REQUI RED

xm ns: xsl CDATA #FI XED "http://wwv. w3. or g/ 1999/ XSL/ Tr ansf or nf

U%space-att;
>

<I-- This entity is defined for use in the ATTLI ST decl arati on

for result elenents. -->

<IENTITY %result-elenment-atts ’
xsl : ext ensi on- el enent - prefi xes CDATA #| MPLI ED
xsl : excl ude-resul t-prefixes CDATA #l MPLI ED
xsl :use-attribute-sets %nanes; #| MPLI ED
xsl :versi on NMIOKEN #| MPLI ED

>

<l ELEMENT xsl :styl esheet % op-|evel ;>
<I ATTLI ST xsl:styl esheet % op-|evel -atts; >

<! ELEMENT xsl : transform % op-1| evel ; >
<I ATTLI ST xsl:transform % op-1evel -atts; >

<! ELEMENT xsl :inport EMPTY>
<I ATTLI ST xsl:inport href %R ; #REQU RED>

<! ELEMENT xsl :i ncl ude EMPTY>
<I ATTLI ST xsl:include href %R ; #REQU RED>

<! ELEMENT xsl : strip-space EMPTY>

<I ATTLI ST xsl :strip-space el enents CDATA #REQUI RED>

<! ELEMENT xsl : preserve-space EMPTY>

<I ATTLI ST xsl: preserve-space el ements CDATA #REQUI RED>

<! ELEMENT xsl : out put EMPTY>
<! ATTLI ST xsl : out put
nmet hod %gnane; #l MPLI ED
versi on NMIOKEN #| MPLI ED
encodi ng CDATA #l MPLI ED
om t-xm -declaration (yes|no) #l MPLI ED
st andal one (yes|no) #l MPLI ED
doct ype- publ i ¢ CDATA #I MPLI ED
doct ype-syst em CDATA #| MPLI ED
cdat a- secti on-el enents %gnanes; #| MPLI ED
i ndent (yes| no) #l MPLIED
nmedi a-t ype CDATA #| MPLI ED

<
<

ELEMENT xsl : key EMPTY>
ATTLI ST xsl : key

nanme %gnane; #REQUI RED
mat ch %pattern; #REQU RED
use %expr; #REQUI RED

>

<! ELEMENT xsl : deci mal - f or rat EMPTY>
<! ATTLI ST xsl : deci nal - f or nat

name %gnane; #l MPLI ED

deci nal - separat or %har;

groupi ng- separator %har; ","

infinity CDATA "Infinity"

m nus-sign %har; "-"

NaN CDATA " NaN'

percent %har; "%

per-nmille %har; "‰"

zero-digit %har; "O"

digit %har; "#"

pattern-separator %har; ";"
>

<! ELEMENT xsl : nanmespace-al i as EMPTY>
<I ATTLI ST xsl : nanespace-al i as
styl esheet - prefi x CDATA #REQUI RED
result-prefix CDATA #REQUI RED
>

<! ELEMENT xsl : tenpl ate
(#PCDATA
% nstructions;
% esul t - el enent s;
| xsl:param*
>

<I ATTLI ST xsl :tenpl ate
mat ch %pattern; # MPLI ED
name %gnane; #l MPLI ED
priority %riority; #l MPLIED
node %gnane; #l MPLI ED
Y%space-att;

>

<! ELEMENT xsl : val ue- of EMPTY>
<! ATTLI ST xsl : val ue- of

sel ect %expr; #REQUI RED

di sabl e- out put - escapi ng (yes| no)
>

no

<! ELEMENT xsl : copy- of EMPTY>
<I ATTLI ST xsl: copy-of select %expr; #REQU RED>

<! ELEMENT xsl : nunber EMPTY>

<! ATTLI ST xsl : nunber
| evel (single|mltiple|lany) "single
count Ypattern; #l MPLI ED
from Y%attern; #l MPLI ED
val ue %expr; #l MPLI ED
format %avt; ' 1
| ang %avt; #l MPLIED
| etter-val ue %avt; #l MPLIED
groupi ng- separ at or %avt; #l MPLI ED
groupi ng-si ze %avt; #l MPLI ED

>

<! ELEMENT xsl : apply-tenpl ates (xsl:sort|xsl:wth-param*>

<I ATTLI ST xsl : appl y-tenpl at es
sel ect %expr; "node()"
node %gnane; #l MPLI ED

>

<! ELEMENT xsl : appl y-i nports EMPTY>

<l-- xsl:sort cannot occur after any other elenents or
any non-whitespace character -->

<! ELEMENT xsl : f or - each
(#PCDATA
% nstructi ons;
% esul t - el enent s;

| xsl:sort)*
>

<I ATTLI ST xsl : for-each
sel ect %expr; #REQU RED
U%space-att;

<! ELEMENT xsl :sort EMPTY>

<I ATTLI ST xsl : sort
sel ect %expr; "."
| ang %avt; #l MPLIED
data-type %avt; "text"
order %avt; "ascending"
case-order %avt; #l MPLIED

<I ELEMENT xsl:if % enpl ate; >
<V ATTLI ST xsl:if
test %expr; #REQUI RED
U%space-att;

<! ELEMENT xsl : choose (xsl|:when+, xsl:otherw se?)>
<I ATTLI ST xsl : choose Y%space-att; >

<! ELEMENT xsl : when % enpl ate; >
<I ATTLI ST xsl : when
test %expr; #REQUI RED
UYspace-att;

<! ELEMENT xsl : ot herwi se % enpl ate; >
<I ATTLI ST xsl:otherw se %space-att;>

<!l ELEMENT xsl:attribute-set (xsl:attribute)*>
<! ATTLI ST xsl:attri bute-set

name %nane; #REQUI RED

use-attribute-sets %nanes; #l MPLIED
>

<! ELEMENT xsl:call-tenplate (xsl:wth-param*>
<I ATTLI ST xsl:call-tenpl ate

name %gnane; #REQUI RED
>

<! ELEMENT xsl : wi t h- param % enpl at e; >
<I ATTLI ST xsl : wi t h- param

nanme %gnane; #REQUI RED

sel ect %expr; #l MPLI ED
>

<! ELEMENT xsl :vari able % enpl ate; >
<I ATTLI ST xsl:variable

name %nane; #REQUI RED

sel ect %expr; #l MPLI ED
>

<! ELEMENT xsl : param % enpl at e; >
<I ATTLI ST xsl : param

name %nane; #REQUI RED

sel ect %expr; #l MPLIED
>

<! ELEMENT xsl : text (#PCDATA) >
<I ATTLI ST xsl : text

di sabl e- out put - escapi ng (yes| no)
>

no

<! ELEMENT xsl : processi ng-instructi on %har-tenpl ate; >
<I ATTLI ST xsl: processi ng-instruction

nane %avt; #REQUI RED

U%space-att;
>

<! ELEMENT xsl : el enent % enpl ate; >

<! ATTLI ST xsl : el ement
nane %avt; #REQUI RED
nanespace %avt,; #l MPLI ED
use-attribute-sets %gnanes; #l MPLIED
Y%space-att;

>

<!l ELEMENT xsl:attribute %har-tenpl ate; >
<I ATTLI ST xsl:attribute

name %avt; #REQUI RED

nanespace %avt,; #l MPLI ED

U%space-att;
>

<! ELEMENT xsl : comment %har-tenpl ate; >
<I ATTLI ST xsl:comment %pace-att; >

<! ELEMENT xsl : copy % enpl ate; >
<I ATTLI ST xsl : copy

Y%space-att;

use-attribute-sets %nanes; #l MPLI ED
>

<I ELEMENT xsl : message % enpl ate; >

<I ATTLI ST xsl : nessage
Y%space-att;
term nate (yes|no)
>

no

<! ELEMENT xsl : fall back % enpl ate; >
<I ATTLI ST xsl:fall back %space-att;>

D Examples (Non-Normative)

D.1 Document Example

This exampleis a stylesheet for transforming documents that conformto asimple DTD into XHTML [XHTML].

TheDTD is:

<!l ELEMENT doc (title, chapter*)>

<! ELEMENT chapter (title, (paraJnote)*, section*)>

<! ELEMENT section (title, (paralnote)*)>

< ELEMENT title (#PCDATA| enmph)*>

<! ELEMENT para (#PCDATA| enph) *>

<! ELEMENT not e (#PCDATA| enph) *>

<! ELEMENT enph (#PCDATA| enph) *>

The stylesheet is:

<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni
xm ns="http://ww.w3. org/ TR/ xhtm 1/strict">

<xsl :strip-space el enents="doc chapter section"/>
<xsl : out put

nmet hod="xm "

i ndent ="yes"

encodi ng="i so- 8859- 1"
/>

<xsl :tenpl ate match="doc">
<htn >
<head>
<title>
<xsl :val ue-of select="title"/>
</title>
</ head>
<body>
<xsl : appl y-tenpl at es/ >
</ body>
</htm >
</ xsl :tenpl at e>

<xsl:tenplate match="doc/title">
<hl>
<xsl : appl y-tenpl at es/ >
</ hl>
</ xsl :tenpl at e>

<xsl:tenplate match="chapter/title">
<h2>
<xsl : appl y-tenpl at es/ >
</ h2>
</ xsl : tenpl at e>

<xsl:tenplate match="section/title">
<h3>
<xsl : appl y-tenpl ates/ >
</ h3>
</ xsl : tenpl at e>

<xsl :tenpl ate match="para">
<p>
<xsl : appl y-tenpl at es/ >
</ p>
</ xsl : tenpl at e>

<xsl:tenpl ate match="note">
<p class="note">
NOTE:
<xsl : appl y-tenpl at es/ >
</ p>
</ xsl:tenpl at e>

<xsl :tenpl ate match="enph">
<enp
<xsl : appl y-tenpl at es/ >
</ enp
</ xsl :tenpl at e>

</ xsl : styl esheet >
With the following input document
<! DOCTYPE doc SYSTEM "doc. dt d">

<doc>

<title>Docunent Title</title>
<chapt er >

<title>Chapter Title</title>
<section>

<title>Section Title</title>

<para>This is a test.</para>

<note>This is a note.</note>

</ section>

<section>

<title>Another Section Title</title>
<para>This i s <enmph>anot her </ enph> test. </ para>
<not e>This is another note.</note>

</ section>

</ chapt er>

</ doc>

it would produce the following result

<?xm version="1.0" encodi ng="i so-8859-1"7?>
<htm xm ns="http://ww. w3.org/ TR xhtm 1/strict">
<head>

<title>Docunent Title</title>

</ head>

<body>

<h1>Docunent Titl e</hl>

<h2>Chapter Titl e</h2>

<h3>Section Title</h3>

<p>This is a test.</p>

<p class="note">

NOTE: This is a note.</p>
<h3>Anot her Section Title</h3>

<p>This i s <enpanother</ent test.</p>

<p class="note">

NOTE: This is another note.</p>

</ body>

</htm >

D.2 Data Example

Thisisan example of transforming some data represented in XML using three different XSLT stylesheetsto
produce three different representations of the data, HTML, SVG and VRML.

Theinput datais:

<sal es>

<di vision id="North">
<revenue>10</revenue>
<gr owt h>9</ gr owt h>
<bonus>7</ bonus>

</ di vi si on>

<di vi si on i d="Sout h" >
<r evenue>4</revenue>
<gr owt h>3</ gr owt h>
<bonus>4</ bonus>

</ di vi si on>

<di vi sion id="West">
<r evenue>6</r evenue>
<gr owt h>- 1. 5</ gr owt h>
<bonus>2</ bonus>

</ di vi si on>

</ sal es>
The following stylesheet, which uses the simplified syntax described in [2.3 Literal Result Element as Stylesheet],
transforms the datainto HTML
<htm xsl:version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni

| ang="en" >
<head>
<title>Sales Results By Division</title>
</ head>
<body>
<t abl e border="1">
<tr>

<t h>Di vi si on</t h>
<t h>Revenue</t h>
<t h>G owt h</t h>
<t h>Bonus</t h>
</[tr>
<xsl :for-each sel ect ="sal es/ di vi si on">
<l-- order the result by revenue -->
<xsl :sort sel ect="revenue"
dat a-t ype="nunber"
order ="descendi ng"/ >

<tr>
<t d>
<enp<xsl : val ue-of select="@d"/></enr
</td>
<td>
<xsl : val ue- of sel ect="revenue"/>
</td>
<t d>

<l-- highlight negative growth in red -->
<xsl:if test="gromh & t; 0">

<xsl:attribute name="styl e">
<xsl : text >col or: red</ xsl : t ext>
</xsl:attribute>

</ xsl:if>
<xsl :val ue-of select="growth"/>

</td>

<t d>
<xsl : val ue- of sel ect ="bonus"/>

</td>

</[tr>
</ xsl : for-each>
</t abl e>
</ body>
</htm >

The HTML output is:
<htm | ang="en">
<head>
<meta http-equiv="Content-Type" content="text/htm ; charset=i so-8859-1">
<title>Sales Results By Division</title>
</ head>
<body>
<t abl e border="1">
<tr>
<t h>Di vi si on</ t h><t h>Revenue</t h><t h>G owt h</t h><t h>Bonus</t h>
</[tr>
<tr>
<t d><enpNort h</ enp</t d><t d>10</t d><t d>9</ t d><t d>7</t d>
</[tr>
<tr>
<t d><enpWest </ enp</td><t d>6</td><td style="col or:red">-1.5</td><td>2</td>
</tr>
<tr>
<t d><enPSout h</ enp</ t d><t d>4</t d><t d>3</t d><t d>4</t d>
</[tr>
</ tabl e>
</ body>
</htm >
The following stylesheet transforms the datainto SV G:
<xsl : styl esheet version="1.0"

xm ns: xsl ="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{

xm ns="http://wwmw. w3. or g/ G aphi cs/ SVE SVG 19990812. dt d" >

<xsl :out put nethod="xm " indent="yes" nedia-type="inmage/svg"/>
<xsl:tenplate match="/">

<svg width = "3in" height="3in">
<g style = "stroke: #000000">
<!-- draw the axes -->
<line x1="0" x2="150" yl1="150" y2="150"/>
<line x1="0" x2="0" y1="0" y2="150"/>
<text x="0" y="10">Revenue</text>
<text x="150" y="165">Di vi sion</text>
<xsl :for-each sel ect ="sal es/di vi si on">
<l-- define sone useful variables -->

<l-- the bar’'s x position -->

<xsl :vari abl e nane="pos"
sel ect =" (position()*40)-30"/>

<l-- the bar’s height -->
<xsl :vari abl e nanme="hei ght"
sel ect ="revenue*10"/ >

<l-- the rectangle -->
<rect x="{$pos}" y="{150-$hei ght}"
wi dt h="20" hei ght ="{$hei ght}"/>

<l-- the text |abel -->
<text x="{$pos}" y="165">

<xsl :val ue-of select="@d"/>
</text>

<!-- the bar value -->
<text x="{$pos}" y="{145-3%height}">
<xsl :val ue- of sel ect="revenue"/>
</text>
</ xsl :for-each>
</ g>
</ svg>

</ xsl : tenpl at e>
</ xsl : styl esheet >
The SVG output is;
<svg w dt h="3in" height="3in"
xm ns="http://ww.w3. org/ G aphi cs/ SVGE svg- 19990412. dt d" >
<g style="stroke: #000000">
<line x1="0" x2="150" y1="150" y2="150"/>
<line x1="0" x2="0" y1="0" y2="150"/>
<text x="0" y="10">Revenue</text>
<text x="150" y="165">Di vi sion</text>
<rect x="10" y="50" wi dt h="20" hei ght="100"/>
<text x="10" y="165">North</text>
<text x="10" y="45">10</text>
<rect x="50" y="110" wi dth="20" hei ght="40"/>
<text x="50" y="165">Sout h</text>
<text x="50" y="105">4</text>
<rect x="90" y="90" w dth="20" hei ght="60"/>
<text x="90" y="165">West</text>
<text x="90" y="85">6</text>
</ g>
</ svg>
The following stylesheet transforms the datainto VRML:
<xsl : styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni' >

<l-- generate text output as minme type nodel/vrm , using default charset
<xsl :out put nethod="text" encodi ng="UTF-8" nedi a-type="nodel /vrm "/>

<xsl:tenplate match="/">#VRML V2.0 utf8
externproto definition of a single bar elenent

EXTERNPROTO bar |
field SFInt32 x

-->

field SFInt32 y
field SFInt32 z
field SFString nane

|
"http://ww. vrm . org/WrkingG oups/ dbwor k/ bar Proto. wr| "

inline containing the graph axes

Inline {
url "http://ww.vrnm . org/Wrki ngG oups/ dbwor k/ bar Axes. wr | "
}

<xsl :for-each sel ect ="sal es/ di vi si on">
bar {
x <xsl :val ue-of sel ect="revenue"/>
y <xsl:val ue-of select="growth"/>
z <xsl :val ue-of sel ect="bonus"/>
name "<xsl:val ue-of select="@d"/>"

}

</ xsl : for-each>
</ xsl : tenpl at e>

</ xsl:styl esheet >
The VRML output is:
#VRML V2.0 utf8

externproto definition of a single bar el enent
EXTERNPROTO bar [

field SFInt32 x

field SFINnt32 y

field SFInt32 z

field SFString nane

]
"http://ww. vrm . org/ Wrki ngG oups/ dbwor k/ bar Proto. wrl"

inline containing the graph axes

Inline {
url "http://ww.vrm . org/Wrki ngG oups/ dbwor k/ bar Axes. wr | "
}

bar {
x 10
y 9
z 7
narme " North"

}
bar {

FNGVRN N

ane " Sout h"

~ 3 N X

bar {
X 6

y -1.5
z 2
nane "West"

E Acknowledgements (Non-Normative)

The following have contributed to authoring this draft:

e Daniel Lipkin, Saba

* Jonathan Marsh, Microsoft

* Henry Thompson, University of Edinburgh

e Norman Walsh, Arbortext

o SteveZilles, Adobe
This specification was devel oped and approved for publication by the W3C XSL Working Group (WG). WG
approval of this specification does not necessarily imply that all WG members voted for its approval. The current
members of the XSL WG are:
Sharon Adler, IBM (Co-Chair); Anders Berglund, IBM; Perin Blanchard, Novell; Scott Boag, Lotus; Larry Cable,
Sun; Jeff Caruso, Bitstream; James Clark; Peter Danielsen, Bell Labs; Don Day, IBM; Stephen Deach, Adobe;
Dwayne Dicks, SoftQuad; Andrew Greene, Bitstream; Paul Grosso, Arbortext; Eduardo Gutentag, Sun; Juliane
Harbarth, Software AG; Mickey Kimchi, Enigma; Chris Lilley, W3C; Chris Maden, Exemplary Technologies;
Jonathan Marsh, Microsoft; Alex Milowski, Lexica; Steve Muench, Oracle; Scott Parnell, Xerox; Vincent Quint,
W3C; Dan Rapp, Novell; Gregg Reynolds, Datal ogics; Jonathan Robie, Software AG; Mark Scardina, Oracle;
Henry Thompson, University of Edinburgh; Philip Wadler, Bell Labs, Norman Walsh, Arbortext; Sanjiva
Weerawarana, IBM; Steve Zilles, Adobe (Co-Chair)

F Changes from Proposed Recommendation (Non-
Normative)

The following are the changes since the Proposed Recommendation:

e« Thexsl : ver si on attributeisrequired on aliteral result element used as a stylesheet (see[2.3 Literal
Result Element as Stylesheset]).

e Thedat a-t ype attributeon xsl : sort can use a prefixed name to specify a data-type not defined by
XSLT (see[10 Sorting]).

G Featuresunder Consderation for Future Versions of
XSLT (Non-Normative)

The following features are under consideration for versions of XSLT after XSLT 1.0:

e aconditiona expression;

« support for XML Schema datatypes and archetypes,

» support for something like style rulesin the original XSL submission;

e an attribute to control the default namespace for names occurring in XSLT attributes;

« support for entity references;

« support for DTDsin the data model;

« support for notationsin the data model;

e away to get back from an element to the elements that reference it (e.g. by IDREF attributes);

e aneasier way to get an ID or key in another document;

« support for regular expressions for matching against any or all of text nodes, attribute values, attribute
names, element type names,

e case-insensitive comparisons;

e normalization of strings before comparison, for example for compatibility characters;

» afunctionstring resol ve(node-set) function that treats the value of the argument as arelative
URI and turnsit into an absolute URI using the base URI of the node;

e multiple result documents;

« defaulltingthesel ect attributeon xsl : val ue- of to the current node;

e anattributeonxsl : attri but e to control how the attribute value is normalized,;

» additional attributes on xsl : sort to provide further control over sorting, such asrelative order of scripts;

e away to put the text of aresource identified by a URI into the result tree;

e dlowunionsin steps(e.g. f oo/ (bar | baz));

o adlow for result tree fragments all operations that are allowed for node-sets;

* away to group together consecutive nodes having duplicate subelements or attributes;

» featuresto make handling of the HTML st yI e attribute more convenient.

	XSL Transformations (XSLT), Version 1.0
	W3C Recommendation, November 16, 1999
	Abstract
	Status of this document
	Table of contents
	1 Introduction
	2 Stylesheet Structure
	2.1 XSLT Namespace
	2.2 Stylesheet Element
	2.3 Literal Result Element as Stylesheet
	2.4 Qualified Names
	2.5 Forwards-Compatible Processing
	2.6 Combining Stylesheets
	2.6.1 Stylesheet Inclusion
	2.6.2 Stylesheet Import

	2.7 Embedding Stylesheets

	3 Data Model
	3.1 Root Node Children
	3.2 Base URI
	3.3 Unparsed Entities
	3.4 Whitespace Stripping

	4 Expressions
	5 Template Rules
	5.1 Processing Model
	5.2 Patterns
	5.3 Defining Template Rules
	5.4 Applying Template Rules
	5.5 Conflict Resolution for Template Rules
	5.6 Overriding Template Rules
	5.7 Modes
	5.8 Built-in Template Rules

	6 Named Templates
	7 Creating the Result Tree
	7.1 Creating Elements and Attributes
	7.1.1 Literal Result Elements
	7.1.2 Creating Elements with
	7.1.3 Creating Attributes with
	7.1.4 Named Attribute Sets

	7.2 Creating Text
	7.3 Creating Processing Instructions
	7.4 Creating Comments
	7.5 Copying
	7.6 Computing Generated Text
	7.6.1 Generating Text with
	7.6.2 Attribute Value Templates

	7.7 Numbering
	7.7.1 Number to String Conversion Attributes

	8 Repetition
	9 Conditional Processing
	9.1 Conditional Processing with
	9.2 Conditional Processing with

	10 Sorting
	11 Variables and Parameters
	11.1 Result Tree Fragments
	11.2 Values of Variables and Parameters
	11.3 Using Values of Variables and Parameters with
	11.4 Top-level Variables and Parameters
	11.5 Variables and Parameters within Templates
	11.6 Passing Parameters to Templates

	12 Additional Functions
	12.1 Multiple Source Documents
	12.2 Keys
	12.3 Number Formatting
	12.4 Miscellaneous Additional Functions

	13 Messages
	14 Extensions
	14.1 Extension Elements
	14.2 Extension Functions

	15 Fallback
	16 Output
	16.1 XML Output Method
	16.2 HTML Output Method
	16.3 Text Output Method
	16.4 Disabling Output Escaping

	17 Conformance
	18 Notation
	A References
	A.1 Normative References
	A.2 Other References

	B Element Syntax Summary
	C DTD Fragment for XSLT Stylesheets (Non-Normative)
	D Examples (Non-Normative)
	D.1 Document Example
	D.2 Data Example

	E Acknowledgements (Non-Normative)
	F Changes from Proposed Recommendation (Non-Normative)
	G Features under Consideration for Future Versions of XSLT (Non- Normative)

	
	World Wide Web Consortium Title Page

