
http://www.w3.org/TR/xmlschema11-2/ 1 5/5/2009 6:46 PM

W3C XML Schema Definition Language (XSD) 1.1 Part
2: Datatypes

W3C Candidate Recommendation 30 April 2009

This version:
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/

Latest version:
http://www.w3.org/TR/xmlschema11-2/

Previous versions:
http://www.w3.org/TR/2009/WD-xmlschema11-2-20090130/
http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620/
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060217/
http://www.w3.org/TR/2006/WD-xmlschema11-2-20060116/
http://www.w3.org/TR/2005/WD-xmlschema11-2-20050224/
http://www.w3.org/TR/2004/WD-xmlschema11-2-20040716/

Editors (Version 1.1):
David Peterson, invited expert (SGMLWorks!) <davep@iit.edu>
Shudi (Sandy) Gao 高殊镝, IBM <sandygao@ca.ibm.com>
Ashok Malhotra, Oracle Corporation <ashokmalhotra@alum.mit.edu>
C. M. Sperberg-McQueen, Black Mesa Technologies LLC
<cmsmcq@blackmesatech.com>
Henry S. Thompson, University of Edinburgh <ht@inf.ed.ac.uk>

Editors (Version 1.0):
Paul V. Biron, Kaiser Permanente, for Health Level Seven <paul@sparrow-hawk.org>
Ashok Malhotra, Oracle Corporation <ashokmalhotra@alum.mit.edu>

This document is also available in these non-normative formats: XML, XHTML with changes
since version 1.0 marked, XHTML with changes since previous Working Draft marked,
Independent copy of the schema for schema documents, Independent copy of the DTD for
schema documents, and List of translations.

Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and
document use rules apply.

Abstract

XML Schema: Datatypes is part 2 of the specification of the XML Schema language. It defines
facilities for defining datatypes to be used in XML Schemas as well as other XML
specifications. The datatype language, which is itself represented in XML, provides a superset
of the capabilities found in XML document type definitions (DTDs) for specifying datatypes on

http://www.w3.org/TR/xmlschema11-2/ 2 5/5/2009 6:46 PM

elements and attributes.

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This W3C Candidate Recommendation specifies W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes. It is here made available for review by W3C members and the
public. This version of this document was created on 30 April 2009.

For those primarily interested in the changes since version 1.0, the Changes since version 1.0
(§I) appendix, which summarizes both changes already made and also those in prospect, with
links to the relevant sections of this draft, is the recommended starting point. An
accompanying version of this document displays in color all changes to normative text since
version 1.0; another shows changes since the previous Working Draft.

The major changes since version 1.0 include:

Support for XML 1.1 has been added. It is now implementation defined whether
datatypes dependent on definitions in [XML] and [Namespaces in XML] use the
definitions as found in version 1.1 or version 1.0 of those specifications.

A new primitive decimal type has been defined, which retains information about the
precision of the value. This type is aligned with the floating-point decimal types which
are included in [IEEE 754-2008].

In order to align this specification with those being prepared by the XSL and XML Query
Working Groups, a new datatype named anyAtomicType which serves as the base type
definition for all primitive atomic datatypes has been introduced.

The conceptual model of the date- and time-related types has been defined more
formally.

A more formal treatment of the fundamental facets of the primitive datatypes has been
adopted.

More formal definitions of the lexical space of most types have been provided, with
detailed descriptions of the mappings from lexical representation to value and from
value to ·canonical representation·.

The validation rule Datatype Valid (§4.1.4) has been recast in more declarative form. A
paraphrase of the constraint in procedural terms, which corrects some errors in the
previous versions of this document, has been added as a note.

The rules governing partial implementations of infinite datatypes have been clarified.

Various changes have been made in order to align the relevant parts of this specification
more closely with other relevant specifications, including especially the corresponding
sections of [XSD 1.1 Part 1: Structures].

Changes since the previous public Working Draft include the following:

http://www.w3.org/TR/xmlschema11-2/ 3 5/5/2009 6:46 PM

To reduce confusion and avert a widespread misunderstanding, the normative
references to various W3C specifications now state explicitly that while the reference
describes the particular edition of a specification current at the time this specification is
published, conforming implementations of this specification are not required to ignore
later editions of the other specification but instead MAY support later editions, thus
allowing users of this specification to benefit from corrections to other specifications on
which this one depends.

Schema Component Constraint enumeration facet value required for NOTATION
(§3.3.20), which restricts the use of NOTATION to validate ·literals· without first
enumerating a set of values, has been clarified.

The use of the namespace whose URI is http://www.w3.org/2001/XMLSchema-datatypes
continues to be defined. An earlier draft of this specification had introduced text
deprecating that use; that text has been deleted. This change resolves issue 6522
Please un-deprecate the the namespace
http://www.w3.org/2001/XMLSchema-datatypes, raised by John Cowan.

The discussion of whitespace handling in whiteSpace (§4.3.6) makes clearer that when
the value is collapse, ·literals· consisting solely of whitespace characters are reduced to
the empty string; the earlier formulation has been misunderstood by some
implementors.

The value space of anyURI is now explicitly identified; this resolves issue 3264
xs:anyURI definition, raised by the W3C XML Query and XSL working groups.

References to IEEE 754-1985 have been updated to refer to 754-2000 (resolves issue
6664).

The description of the value space of precisionDecimal has been revised for better
clarity; this resolves issue 3248.

In the discussions of the built-in list datatypes, the display of facets which have a value
for the datatype in question has been corrected; this resolves issue 6734 NMTOKENS
IDREFS and ENTITIES should all have a "whiteSpace" facet. The wording used to
introduce facets with values has also been revised to try to reduce confusion.

The historical list of leap seconds given in earlier versions of this document has been
removed (see issue 6554).

The publication form of this document now includes a detailed prose description of the
type hierarchy diagram in section Built-in Datatypes and Their Definitions (§3). We thank
the W3C Web Accessibility Initiative's Protocols and Formats Working Group for their
comments and assistance in this connection.

Several other editorial corrections and improvements have been made.

Comments on this document should be made in W3C's public installation of Bugzilla,
specifying "XML Schema" as the product. Instructions can be found at
http://www.w3.org/XML/2006/01/public-bugzilla. If access to Bugzilla is not feasible, please
send your comments to the W3C XML Schema comments mailing list,
www-xml-schema-comments@w3.org (archive) and note explicitly that you have not made a
Bugzilla entry for the comment. Each Bugzilla entry and email message should contain only
one comment.

http://www.w3.org/TR/xmlschema11-2/ 4 5/5/2009 6:46 PM

The Candidate Recommendation review period for this document extends until 3 August
2009; comments received after that date will be considered if time allows, but no guarantees
can be offered.

Although feedback based on any aspect of this specification is welcome, there are certain
aspects of the design presented herein for which the Working Group is particularly interested
in feedback. These are designated 'priority feedback' aspects of the design, and identified as
such in editorial notes at appropriate points in this draft. Any feature mentioned in a priority
feedback note is a "feature at risk": the feature may be retained as is or dropped, depending
on the feedback received from readers, schema authors, schema users, and implementors.

Publication as a Candidate Recommendation does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to cite this document as other than work in
progress.

The W3C XML Schema Working Group intends to request advancement of this specification
and publication as a Proposed Recommendation (possibly with editorial changes, and
possibly removing features identified as being at risk) as soon after 3 August 2009 as the
following conditions are met.

A test suite is available which tests each required and optional feature of XSD 1.1.

Each feature of the specification has been implemented successfully by at least two
independent implementations.

The Working Group has responded formally to all issues raised against this document
during the Candidate Recommendation period.

At the time this Candidate Recommendation was published, no interoperability or
implementation report had yet been prepared.

This document has been produced by the W3C XML Schema Working Group as part of the
W3C XML Activity. The goals of the XML Schema language version 1.1 are discussed in the
Requirements for XML Schema 1.1 document. The authors of this document are the
members of the XML Schema Working Group. Different parts of this specification have
different editors.

This document was produced by a group operating under the 5 February 2004 W3C Patent
Policy. W3C maintains a public list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for disclosing a patent. An
individual who has actual knowledge of a patent which the individual believes contains
Essential Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

The English version of this specification is the only normative version. Information about
translations of this document is available at
http://www.w3.org/2003/03/Translations/byTechnology?technology=xmlschema.

Table of Contents

1 Introduction
 1.1 Introduction to Version 1.1

http://www.w3.org/TR/xmlschema11-2/ 5 5/5/2009 6:46 PM

 1.2 Purpose
 1.3 Dependencies on Other Specifications
 1.4 Requirements
 1.5 Scope
 1.6 Terminology
 1.7 Constraints and Contributions
2 Datatype System
 2.1 Datatype
 2.2 Value space
 2.3 The Lexical Space and Lexical Mapping
 2.4 Datatype Distinctions
3 Built-in Datatypes and Their Definitions
 3.1 Namespace considerations
 3.2 Special Built-in Datatypes

anySimpleType · anyAtomicType
 3.3 Primitive Datatypes

string · boolean · decimal · precisionDecimal · float · double · duration · dateTime ·
time · date · gYearMonth · gYear · gMonthDay · gDay · gMonth · hexBinary ·
base64Binary · anyURI · QName · NOTATION

 3.4 Other Built-in Datatypes
normalizedString · token · language · NMTOKEN · NMTOKENS · Name · NCName ·
ID · IDREF · IDREFS · ENTITY · ENTITIES · integer · nonPositiveInteger ·
negativeInteger · long · int · short · byte · nonNegativeInteger · unsignedLong ·
unsignedInt · unsignedShort · unsignedByte · positiveInteger · yearMonthDuration ·
dayTimeDuration · dateTimeStamp

4 Datatype components
 4.1 Simple Type Definition
 4.2 Fundamental Facets
 4.3 Constraining Facets
5 Conformance
 5.1 Host Languages
 5.2 Independent implementations
 5.3 Conformance of data
 5.4 Partial Implementation of Infinite Datatypes

Appendices

A Schema for Schema Documents (Datatypes) (normative)
B DTD for Datatype Definitions (non-normative)
C Illustrative XML representations for the built-in simple type definitions
 C.1 Illustrative XML representations for the built-in primitive type definitions
 C.2 Illustrative XML representations for the built-in ordinary type definitions
D Built-up Value Spaces
 D.1 Numerical Values
 D.2 Date/time Values
E Function Definitions
 E.1 Generic Number-related Functions
 E.2 Duration-related Definitions
 E.3 Date/time-related Definitions
 E.4 Lexical and Canonical Mappings for Other Datatypes
F Datatypes and Facets
 F.1 Fundamental Facets

http://www.w3.org/TR/xmlschema11-2/ 6 5/5/2009 6:46 PM

G Regular Expressions
 G.1 Character Classes
H Implementation-defined and implementation-dependent features (normative)
 H.1 Implementation-defined features
 H.2 Implementation-dependent features
I Changes since version 1.0
 I.1 Datatypes and Facets
 I.2 Numerical Datatypes
 I.3 Date/time Datatypes
 I.4 Other changes
J Glossary (non-normative)
K References
 K.1 Normative
 K.2 Non-normative
L Acknowledgements (non-normative)

1 Introduction

1.1 Introduction to Version 1.1

The Working Group has two main goals for this version of W3C XML Schema:

Significant improvements in simplicity of design and clarity of exposition without loss of
backward or forward compatibility;

Provision of support for versioning of XML languages defined using the XML Schema
specification, including the XML transfer syntax for schemas itself.

These goals are slightly in tension with one another -- the following summarizes the Working
Group's strategic guidelines for changes between versions 1.0 and 1.1:

Add support for versioning (acknowledging that this may be slightly disruptive to the
XML transfer syntax at the margins)

1.

Allow bug fixes (unless in specific cases we decide that the fix is too disruptive for a
point release)

2.

Allow editorial changes3.

Allow design cleanup to change behavior in edge cases4.

Allow relatively non-disruptive changes to type hierarchy (to better support current and
forthcoming international standards and W3C recommendations)

5.

Allow design cleanup to change component structure (changes to functionality restricted
to edge cases)

6.

Do not allow any significant changes in functionality7.

Do not allow any changes to XML transfer syntax except those required by version
control hooks and bug fixes

8.

The overall aim as regards compatibility is that

http://www.w3.org/TR/xmlschema11-2/ 7 5/5/2009 6:46 PM

All schema documents conformant to version 1.0 of this specification should also
conform to version 1.1, and should have the same validation behavior across 1.0 and
1.1 implementations (except possibly in edge cases and in the details of the resulting
PSVI);

The vast majority of schema documents conformant to version 1.1 of this specification
should also conform to version 1.0, leaving aside any incompatibilities arising from
support for versioning, and when they are conformant to version 1.0 (or are made
conformant by the removal of versioning information), should have the same validation
behavior across 1.0 and 1.1 implementations (again except possibly in edge cases and
in the details of the resulting PSVI);

1.2 Purpose

The [XML] specification defines limited facilities for applying datatypes to document content in
that documents may contain or refer to DTDs that assign types to elements and attributes.
However, document authors, including authors of traditional documents and those
transporting data in XML, often require a higher degree of type checking to ensure robustness
in document understanding and data interchange.

The table below offers two typical examples of XML instances in which datatypes are implicit:
the instance on the left represents a billing invoice, the instance on the right a memo or
perhaps an email message in XML.

Data oriented Document oriented

<invoice>
 <orderDate>1999-01-21</orderDate>
 <shipDate>1999-01-25</shipDate>
 <billingAddress>
 <name>Ashok Malhotra</name>
 <street>123 Microsoft Ave.</street>
 <city>Hawthorne</city>
 <state>NY</state>
 <zip>10532-0000</zip>
 </billingAddress>
 <voice>555-1234</voice>
 <fax>555-4321</fax>
</invoice>

<memo importance='high'
 date='1999-03-23'>
 <from>Paul V. Biron</from>
 <to>Ashok Malhotra</to>
 <subject>Latest draft</subject>
 <body>
 We need to discuss the latest
 draft <emph>immediately</emph>.
 Either email me at <email>
 mailto:paul.v.biron@kp.org</email>
 or call <phone>555-9876</phone>
 </body>
</memo>

The invoice contains several dates and telephone numbers, the postal abbreviation for a state
(which comes from an enumerated list of sanctioned values), and a ZIP code (which takes a
definable regular form). The memo contains many of the same types of information: a date,
telephone number, email address and an "importance" value (from an enumerated list, such
as "low", "medium" or "high"). Applications which process invoices and memos need to raise
exceptions if something that was supposed to be a date or telephone number does not
conform to the rules for valid dates or telephone numbers.

In both cases, validity constraints exist on the content of the instances that are not expressible
in XML DTDs. The limited datatyping facilities in XML have prevented validating XML
processors from supplying the rigorous type checking required in these situations. The result
has been that individual applications writers have had to implement type checking in an ad
hoc manner. This specification addresses the need of both document authors and
applications writers for a robust, extensible datatype system for XML which could be
incorporated into XML processors. As discussed below, these datatypes could be used in

http://www.w3.org/TR/xmlschema11-2/ 8 5/5/2009 6:46 PM

other XML-related standards as well.

1.3 Dependencies on Other Specifications

Other specifications on which this one depends are listed in References (§K).

This specification defines some datatypes which depend on definitions in [XML] and
[Namespaces in XML]; those definitions, and therefore the datatypes based on them, vary
between version 1.0 ([XML 1.0], [Namespaces in XML 1.0]) and version 1.1 ([XML],
[Namespaces in XML]) of those specifications. In any given use of this specification, the
choice of the 1.0 or the 1.1 definition of those datatypes is ·implementation-defined·.

Conforming implementations of this specification may provide either the 1.1-based datatypes
or the 1.0-based datatypes, or both. If both are supported, the choice of which datatypes to
use in a particular assessment episode SHOULD be under user control.

Note: When this specification is used to check the datatype validity of XML input,
implementations MAY provide the heuristic of using the 1.1 datatypes if the input is
labeled as XML 1.1, and using the 1.0 datatypes if the input is labeled 1.0, but this
heuristic SHOULD be subject to override by users, to support cases where users wish to
accept XML 1.1 input but validate it using the 1.0 datatypes, or accept XML 1.0 input and
validate it using the 1.1 datatypes.

This specification makes use of the EBNF notation used in the [XML] specification. Note that
some constructs of the EBNF notation used here resemble the regular-expression syntax
defined in this specification (Regular Expressions (§G)), but that they are not identical: there
are differences. For a fuller description of the EBNF notation, see Section 6. Notation of the
[XML] specification.

1.4 Requirements

The [XML Schema Requirements] document spells out concrete requirements to be fulfilled
by this specification, which state that the XML Schema Language must:

provide for primitive data typing, including byte, date, integer, sequence, SQL and Java
primitive datatypes, etc.;

1.

define a type system that is adequate for import/export from database systems (e.g.,
relational, object, OLAP);

2.

distinguish requirements relating to lexical data representation vs. those governing an
underlying information set;

3.

allow creation of user-defined datatypes, such as datatypes that are derived from
existing datatypes and which may constrain certain of its properties (e.g., range,
precision, length, format).

4.

1.5 Scope

This specification defines datatypes that can be used in an XML Schema. These datatypes
can be specified for element content that would be specified as #PCDATA and attribute
values of various types in a DTD. It is the intention of this specification that it be usable
outside of the context of XML Schemas for a wide range of other XML-related activities such

http://www.w3.org/TR/xmlschema11-2/ 9 5/5/2009 6:46 PM

as [XSL] and [RDF Schema].

1.6 Terminology

The terminology used to describe XML Schema Datatypes is defined in the body of this
specification. The terms defined in the following list are used in building those definitions and
in describing the actions of a datatype processor:

[Definition:] for compatibility

A feature of this specification included solely to ensure that schemas which use this
feature remain compatible with [XML].

[Definition:] match

(Of strings or names:) Two strings or names being compared must be identical.
Characters with multiple possible representations in ISO/IEC 10646 (e.g. characters with
both precomposed and base+diacritic forms) match only if they have the same
representation in both strings. No case folding is performed.

(Of strings and rules in the grammar:) A string matches a grammatical production if and
only if it belongs to the language generated by that production.

[Definition:] MAY

Schemas, schema documents, and processors are permitted to but need not behave as
described.

[Definition:] SHOULD

It is recommended that schemas, schema documents, and processors behave as
described, but there can be valid reasons for them not to; it is important that the full
implications be understood and carefully weighed before adopting behavior at variance
with the recommendation.

[Definition:] MUST

(Of schemas and schema documents:) Schemas and documents are required to behave
as described; otherwise they are in ·error·.

(Of processors:) Processors are required to behave as described.

[Definition:] MUST NOT

Schemas, schema documents and processors are forbidden to behave as described;
schemas and documents which nevertheless do so are in ·error·.

[Definition:] error

A failure of a schema or schema document to conform to the rules of this specification.

Except as otherwise specified, processors MUST distinguish error-free (conforming)
schemas and schema documents from those with errors; if a schema used in
type-validation or a schema document used in constructing a schema is in error,

http://www.w3.org/TR/xmlschema11-2/ 10 5/5/2009 6:46 PM

processors MUST report the fact; if more than one is in error, it is
·implementation-dependent· whether more than one is reported as being in error. If
more than one of the constraints given in this specification is violated, it is
·implementation-dependent· how many of the violations, and which, are reported.

Note: Failure of an XML element or attribute to be datatype-valid against a
particular datatype in a particular schema is not in itself a failure to conform to this
specification and thus, for purposes of this specification, not an error.

1.7 Constraints and Contributions

This specification provides three different kinds of normative statements about schema
components, their representations in XML and their contribution to the schema-validation of
information items:

[Definition:] Constraint on Schemas

Constraints on the schema components themselves, i.e. conditions components ·must·
satisfy to be components at all. Largely to be found in Datatype components (§4).

[Definition:] Schema Representation Constraint

Constraints on the representation of schema components in XML. Some but not all of
these are expressed in Schema for Schema Documents (Datatypes) (normative) (§A)
and DTD for Datatype Definitions (non-normative) (§B).

[Definition:] Validation Rule

Constraints expressed by schema components which information items ·must· satisfy to
be schema-valid. Largely to be found in Datatype components (§4).

2 Datatype System

This section describes the conceptual framework behind the datatype system defined in this
specification. The framework has been influenced by the [ISO 11404] standard on
language-independent datatypes as well as the datatypes for [SQL] and for programming
languages such as Java.

The datatypes discussed in this specification are for the most part well known abstract
concepts such as integer and date. It is not the place of this specification to thoroughly define
these abstract concepts; many other publications provide excellent definitions. However, this
specification will attempt to describe the abstract concepts well enough that they can be
readily recognized and distinguished from other abstractions with which they may be
confused.

Note: Only those operations and relations needed for schema processing are defined in
this specification. Applications using these datatypes are generally expected to
implement appropriate additional functions and/or relations to make the datatype
generally useful. For example, the description herein of the float datatype does not
define addition or multiplication, much less all of the operations defined for that datatype
in [IEEE 754-2008] on which it is based. For some datatypes (e.g. language or anyURI)
defined in part by reference to other specifications which impose constraints not part of
the datatypes as defined here, applications may also wish to check that values conform

http://www.w3.org/TR/xmlschema11-2/ 11 5/5/2009 6:46 PM

to the requirements given in the current version of the relevant external specification.

2.1 Datatype

[Definition:] In this specification, a datatype has three properties:

A ·value space·, which is a set of values.

A ·lexical space·, which is a set of ·literals· used to denote the values.

A small collection of functions, relations, and procedures associated with the datatype.
Included are equality and (for some datatypes) order relations on the ·value space·, and
a ·lexical mapping·, which is a mapping from the ·lexical space· into the ·value space·.

Note: This specification only defines the operations and relations needed for schema
processing. The choice of terminology for describing/naming the datatypes is selected to
guide users and implementers in how to expand the datatype to be generally useful—i.e.,
how to recognize the "real world" datatypes and their variants for which the datatypes
defined herein are meant to be used for data interchange.

Along with the ·lexical mapping· it is often useful to have an inverse which provides a standard
·lexical representation· for each value. Such a ·canonical mapping· is not required for schema
processing, but is described herein for the benefit of users of this specification, and other
specifications which might find it useful to reference these descriptions normatively. For some
datatypes, notably QName and NOTATION, the mapping from lexical representations to
values is context-dependent; for these types, no ·canonical mapping· is defined.

Note: Where ·canonical mappings· are defined in this specification, they are defined for
·primitive· datatypes. When a datatype is derived using facets which directly constrain the
·value space·, then for each value eliminated from the ·value space·, the corresponding
lexical representations are dropped from the lexical space. The ·canonical mapping· for
such a datatype is a subset of the ·canonical mapping· for its ·primitive· type and provides
a ·canonical representation· for each value remaining in the ·value space·.

The ·pattern· facet, on the other hand, and any other (·implementation-defined·) ·lexical·
facets, restrict the ·lexical space· directly. When more than one lexical representation is
provided for a given value, such facets may remove the ·canonical representation· while
permitting a different lexical representation; in this case, the value remains in the ·value
space· but has no ·canonical representation·. This specification provides no recourse in
such situations. Applications are free to deal with it as they see fit.

Note: This specification sometimes uses the shorter form "type" where one might strictly
speaking expect the longer form "datatype" (e.g. in the phrases "union type", "list type",
"base type", "item type", etc. No systematic distinction is intended between the forms of
these phrase with "type" and those with "datatype"; the two forms are used
interchangeably.

The distinction between "datatype" and "simple type definition", by contrast, carries more
information: the datatype is characterized by its ·value space·, ·lexical space·, ·lexical
mapping·, etc., as just described, independently of the specific facets or other definitional
mechanisms used in the simple type definition to describe that particular ·value space· or
·lexical space·. Different simple type definitions with different selections of facets can

http://www.w3.org/TR/xmlschema11-2/ 12 5/5/2009 6:46 PM

describe the same datatype.

2.2 Value space
 2.2.1 Identity
 2.2.2 Equality
 2.2.3 Order

[Definition:] The value space of a datatype is the set of values for that datatype. Associated
with each value space are selected operations and relations necessary to permit proper
schema processing. Each value in the value space of a ·primitive· or ·ordinary· datatype is
denoted by one or more character strings in its ·lexical space·, according to ·the lexical
mapping·; ·special· datatypes, by contrast, may include "ineffable" values not mapped to by
any lexical representation. (If the mapping is restricted during a derivation in such a way that a
value has no denotation, that value is dropped from the value space.)

The value spaces of datatypes are abstractions, and are defined in Built-in Datatypes and
Their Definitions (§3) to the extent needed to clarify them for readers. For example, in
defining the numerical datatypes, we assume some general numerical concepts such as
number and integer are known. In many cases we provide references to other documents
providing more complete definitions.

Note: The value spaces and the values therein are abstractions. This specification does
not prescribe any particular internal representations that must be used when
implementing these datatypes. In some cases, there are references to other
specifications which do prescribe specific internal representations; these specific internal
representations must be used to comply with those other specifications, but need not be
used to comply with this specification.

In addition, other applications are expected to define additional appropriate operations
and/or relations on these value spaces (e.g., addition and multiplication on the various
numerical datatypes' value spaces), and are permitted where appropriate to even
redefine the operations and relations defined within this specification, provided that for
schema processing the relations and operations used are those defined herein.

The ·value space· of a datatype can be defined in one of the following ways:

defined elsewhere axiomatically from fundamental notions (intensional definition) [see
·primitive·]

enumerated outright from values of an already defined datatype (extensional definition)
[see ·enumeration·]

defined by restricting the ·value space· of an already defined datatype to a particular
subset with a given set of properties [see derived]

defined as a combination of values from one or more already defined ·value space·(s)
by a specific construction procedure [see ·list· and ·union·]

The relations of identity and equality are required for each value space. An order relation is
specified for some value spaces, but not all. A very few datatypes have other relations or
operations prescribed for the purposes of this specification.

2.2.1 Identity

http://www.w3.org/TR/xmlschema11-2/ 13 5/5/2009 6:46 PM

The identity relation is always defined. Every value space inherently has an identity relation.
Two things are identical if and only if they are actually the same thing: i.e., if there is no way
whatever to tell them apart.

Note: This does not preclude implementing datatypes by using more than one internal
representation for a given value, provided no mechanism inherent in the datatype
implementation (i.e., other than bit-string-preserving "casting" of the datum to a different
datatype) will distinguish between the two representations.

In the identity relation defined herein, values from different ·primitive· datatypes' ·value
spaces· are made artificially distinct if they might otherwise be considered identical. For
example, there is a number two in the decimal datatype and a number two in the float
datatype. In the identity relation defined herein, these two values are considered distinct.
Other applications making use of these datatypes may choose to consider values such as
these identical, but for the view of ·primitive· datatypes' ·value spaces· used herein, they are
distinct.

WARNING: Care must be taken when identifying values across distinct primitive datatypes.
The ·literals· '0.1' and '0.10000000009' map to the same value in float (neither 0.1 nor
0.10000000009 is in the value space, and each literal is mapped to the nearest value, namely
0.100000001490116119384765625), but map to distinct values in decimal.

Note: Datatypes ·constructed· by ·facet-based restriction· do not create new values; they
define subsets of some ·primitive· datatype's ·value space·. A consequence of this fact is
that the ·literals· '+2', treated as a decimal, '+2', treated as an integer, and '+2', treated as
a byte, all denote the same value. They are not only equal but identical.

Given a list A and a list B, A and B are the same list if they are the same sequence of atomic
values. The necessary and sufficient conditions for this identity are that A and B have the
same length and that the items of A are pairwise identical to the items of B.

Note: It is a consequence of the rule just given for list identity that there is only one
empty list. An empty list declared as having ·item type· decimal and an empty list
declared as having ·item type· string are not only equal but identical.

2.2.2 Equality

Each ·primitive· datatype has prescribed an equality relation for its value space. The equality
relation for most datatypes is the identity relation. In the few cases where it is not, equality
has been carefully defined so that for most operations of interest to the datatype, if two values
are equal and one is substituted for the other as an argument to any of the operations, the
results will always also be equal.

On the other hand, equality need not cover the entire value space of the datatype (though it
usually does). In particular, NaN is not equal to itself in the precisionDecimal, float, and
double datatypes.

This equality relation is used when making ·facet-based restrictions· by enumeration, when
checking identity constraints (in the context of [XSD 1.1 Part 1: Structures]), when checking
value constraints, and in conjunction with order when making ·facet-based restrictions·
involving order, with the following exception: When processing XPath expressions as part of
XML schema-validity assessment or otherwise testing membership in the ·value space· of a

http://www.w3.org/TR/xmlschema11-2/ 14 5/5/2009 6:46 PM

datatype whose derivation involves ·assertions·, equality (like all other relations) within those
expressions is interpreted using the rules of XPath ([XPath 2.0]). All comparisons for
"sameness" prescribed by this specification test for equality, not for identity.

Note: In the prior version of this specification (1.0), equality was always identity. This has
been changed to permit the datatypes defined herein to more closely match the "real
world" datatypes for which they are intended to be used as transmission formats.

For example, the float datatype has an equality which is not the identity (−0 = +0 , but
they are not identical—although they were identical in the 1.0 version of this
specification), and whose domain excludes one value, NaN, so that NaN ≠ NaN .

For another example, the dateTime datatype previously lost any time-zone offset
information in the ·lexical representation· as the value was converted to ·UTC·; now the
time zone offset is retained and two values representing the same "moment in time" but
with different remembered time zone offsets are now equal but not identical.

In the equality relation defined herein, values from different primitive data spaces are made
artificially unequal even if they might otherwise be considered equal. For example, there is a
number two in the decimal datatype and a number two in the float datatype. In the equality
relation defined herein, these two values are considered unequal. Other applications making
use of these datatypes may choose to consider values such as these equal; nonetheless, in
the equality relation defined herein, they are unequal.

Two lists A and B are equal if and only if they have the same length and their items are
pairwise equal. A list of length one containing a value V1 and an atomic value V2 are equal if
and only if V1 is equal to V2.

For the purposes of this specification, there is one equality relation for all values of all
datatypes (the union of the various datatype's individual equalities, if one consider relations to
be sets of ordered pairs). The equality relation is denoted by '=' and its negation by '≠', each
used as a binary infix predicate: x = y and x ≠ y . On the other hand, identity relationships
are always described in words.

2.2.3 Order

For some datatypes, an order relation is prescribed for use in checking upper and lower
bounds of the ·value space·. This order may be a partial order, which means that there may
be values in the ·value space· which are neither equal, less-than, nor greater-than. Such
value pairs are incomparable. In many cases, no order is prescribed; each pair of values is
either equal or ·incomparable·. [Definition:] Two values that are neither equal, less-than, nor
greater-than are incomparable. Two values that are not ·incomparable· are comparable.

The order relation is used in conjunction with equality when making ·facet-based restrictions·
involving order. This is the only use of this order relation for schema processing. Of course,
when processing XPath expressions as part of XML schema-validity assessment or otherwise
testing membership in the ·value space· of a datatype whose derivation involves ·assertions·,
order (like all other relations) within those expressions is interpreted using the rules of XPath
([XPath 2.0]).

In this specification, this less-than order relation is denoted by '<' (and its inverse by '>'), the
weak order by '≤' (and its inverse by '≥'), and the resulting ·incomparable· relation by '<>', each
used as a binary infix predicate: x < y , x ≤ y , x > y , x ≥ y , and x <> y .

http://www.w3.org/TR/xmlschema11-2/ 15 5/5/2009 6:46 PM

Note: The weak order "less-than-or-equal" means "less-than" or "equal" and one can tell
which. For example, the duration P1M (one month) is not less-than-or-equal P31D
(thirty-one days) because P1M is not less than P31D, nor is P1M equal to P31D.
Instead, P1M is ·incomparable· with P31D.) The formal definition of order for duration
(duration (§3.3.7)) ensures that this is true.

For purposes of this specification, the value spaces of primitive datatypes are disjoint, even in
cases where the abstractions they represent might be thought of as having values in
common. In the order relations defined in this specification, values from different value
spaces are ·incomparable·. For example, the numbers two and three are values in both the
decimal datatype and the float datatype. In the order relation defined here, the two in the
decimal datatype is not less than the three in the float datatype; the two values are
incomparable. Other applications making use of these datatypes may choose to consider
values such as these comparable.

Note: Comparison of values from different ·primitive· datatypes can sometimes be an
error and sometimes not, depending on context.

When made for purposes of checking an enumeration constraint, such a comparison is
not in itself an error, but since no two values from different ·primitive· ·value spaces· are
equal, any comparison of ·incomparable· values will invariably be false.

Specifying an upper or lower bound which is of the wrong primitive datatype (and
therefore ·incomparable· with the values of the datatype it is supposed to restrict) is, by
contrast, always an error. It is a consequence of the rules for ·facet-based restriction· that
in conforming simple type definitions, the values of upper and lower bounds, and
enumerated values, MUST be drawn from the value space of the ·base type·, which
necessarily means from the same ·primitive· datatype.

Comparison of ·incomparable· values in the context of an XPath expression (e.g. in an
assertion or in the rules for conditional type assignment) can raise a dynamic error in the
evaluation of the XPath expression; see [XQuery 1.0 and XPath 2.0 Functions and
Operators] for details.

2.3 The Lexical Space and Lexical Mapping

[Definition:] The lexical mapping for a datatype is a prescribed relation which maps from the
·lexical space· of the datatype into its ·value space·.

[Definition:] The lexical space of a datatype is the prescribed set of strings which ·the lexical
mapping· for that datatype maps to values of that datatype.

[Definition:] The members of the ·lexical space· are lexical representations of the values to
which they are mapped.

Note: For the ·special· datatypes, the ·lexical mappings· defined here map from the
·lexical space· into, but not onto, the ·value space·. The ·value spaces· of the ·special·
datatypes include "ineffable" values for which the ·lexical mappings· defined in this
specification provide no lexical representation.

For the ·primitive· and ·ordinary· atomic datatypes, the ·lexical mapping· is a (total)
function on the entire ·lexical space· onto (not merely into) the ·value space·: every
member of the ·lexical space· maps into the ·value space·, and every value is mapped to

http://www.w3.org/TR/xmlschema11-2/ 16 5/5/2009 6:46 PM

by some member of the ·lexical space·.

For ·union· datatypes, the ·lexical mapping· is not necessarily a function, since the same
·literal· may map to different values in different member types. For ·list· datatypes, the
·lexical mapping· is a function if and only if the ·lexical mapping· of the list's ·item type· is
a function.

[Definition:] A sequence of zero or more characters in the Universal Character Set (UCS)
which may or may not prove upon inspection to be a member of the ·lexical space· of a given
datatype and thus a ·lexical representation· of a given value in that datatype's ·value space·, is
referred to as a literal. The term is used indifferently both for character sequences which are
members of a particular ·lexical space· and for those which are not.

Note: One should be aware that in the context of XML schema-validity assessment, there
are ·pre-lexical· transformations of the input character string (controlled by the
whiteSpace facet and any implementation-defined ·pre-lexical· facets) which result in the
intended ·literal·. Other systems utilizing this specification may or may not implement
these transformations. If they do not, then input character strings that would have been
transformed into correct lexical representations, when taken "raw", may not be correct
·lexical representations·.

Should a derivation be made using a derivation mechanism that removes ·lexical
representations· from the·lexical space· to the extent that one or more values cease to have
any ·lexical representation·, then those values are dropped from the ·value space·.

Note: This could happen by means of a pattern or other ·lexical· facet.

Conversely, should a derivation remove values then their ·lexical representations· are dropped
from the ·lexical space· unless there is a facet value whose impact is defined to cause the
otherwise-dropped ·lexical representation· to be mapped to another value instead.

Note: There are currently no facets with such an impact. There may be in the future.

For example, '100' and '1.0E2' are two different ·lexical representations· from the float
datatype which both denote the same value. The datatype system defined in this
specification provides mechanisms for schema designers to control the ·value space· and the
corresponding set of acceptable ·lexical representations· of those values for a datatype.

2.3.1 Canonical Mapping

While the datatypes defined in this specification often have a single ·lexical representation· for
each value (i.e., each value in the datatype's ·value space· is denoted by a single
·representation· in its ·lexical space·), this is not always the case. The example in the
previous section shows two ·lexical representations· from the float datatype which denote the
same value.

[Definition:] The canonical mapping is a prescribed subset of the inverse of a ·lexical
mapping· which is one-to-one and whose domain (where possible) is the entire range of the
·lexical mapping· (the ·value space·). Thus a ·canonical mapping· selects one ·lexical
representation· for each value in the ·value space·.

[Definition:] The canonical representation of a value in the ·value space· of a datatype is

http://www.w3.org/TR/xmlschema11-2/ 17 5/5/2009 6:46 PM

the ·lexical representation· associated with that value by the datatype's ·canonical mapping·.

·Canonical mappings· are not available for datatypes whose ·lexical mappings· are context
dependent (i.e., mappings for which the value of a ·lexical representation· depends on the
context in which it occurs, or for which a character string may or may not be a valid ·lexical
representation· similarly depending on its context)

Note: ·Canonical representations· are provided where feasible for the use of other
applications; they are not required for schema processing itself. A conforming schema
processor implementation is not required to implement ·canonical mappings·.

2.4 Datatype Distinctions
 2.4.1 Atomic vs. List vs. Union Datatypes
 2.4.1.1 Atomic Datatypes
 2.4.1.2 List Datatypes
 2.4.1.3 Union datatypes
 2.4.2 Special vs. Primitive vs. Ordinary Datatypes
 2.4.2.1 Facet-based Restriction
 2.4.2.2 Construction by List
 2.4.2.3 Construction by Union
 2.4.3 Definition, Derivation, Restriction, and Construction
 2.4.4 Built-in vs. User-Defined Datatypes

It is useful to categorize the datatypes defined in this specification along various dimensions,
defining terms which can be used to characterize datatypes and the Simple Type Definitions
which define them.

2.4.1 Atomic vs. List vs. Union Datatypes

First, we distinguish ·atomic·, ·list·, and ·union· datatypes.

[Definition:] An atomic value is an elementary value, not constructed from simpler values by
any user-accessible means defined by this specification.

[Definition:] Atomic datatypes are those whose ·value spaces· contain only ·atomic
values·. Atomic datatypes are anyAtomicType and all datatypes ·derived· from it.

[Definition:] List datatypes are those having values each of which consists of a
finite-length (possibly empty) sequence of ·atomic values·. The values in a list are drawn
from some ·atomic· datatype (or from a ·union· of ·atomic· datatypes), which is the ·item
type· of the list.

Note: It is a consequence of constraints normatively specified elsewhere in this
document that the ·item type· of a list MAY be any ·atomic· datatype, or any ·union·
datatype whose ·transitive membership· consists solely of ·atomic· datatypes (so a
·list· of a ·union· of ·atomic· datatypes is possible, but not a ·list· of a ·union· of
·lists·). The ·item type· of a list MUST NOT itself be a list datatype.

[Definition:] Union datatypes are (a) those whose ·value spaces·, ·lexical spaces·, and
·lexical mappings· are the union of the ·value spaces·, ·lexical spaces·, and ·lexical
mappings· of one or more other datatypes, which are the ·member types· of the union,
or (b) those derived by ·facet-based restriction· of another union datatype.

http://www.w3.org/TR/xmlschema11-2/ 18 5/5/2009 6:46 PM

Note: It is a consequence of constraints normatively specified elsewhere in this
document that any ·primitive· or ·ordinary· datatype MAY occur among the ·member
types· of a ·union·. (In particular, ·union· datatypes may themselves be members of
·unions·, as may ·lists·.) The only prohibition is that no ·special· datatype may be a
member of a ·union·.

For example, a single token which ·matches· Nmtoken from [XML] is in the value space of the
·atomic· datatype NMTOKEN, while a sequence of such tokens is in the value space of the
·list· datatype NMTOKENS.

2.4.1.1 Atomic Datatypes

An ·atomic· datatype has a ·value space· consisting of a set of "atomic" or elementary values.

Note: Atomic values are sometimes regarded, and described, as "not decomposable",
but in fact the values in several datatypes defined here are described with internal
structure, which is appealed to in checking whether particular values satisfy various
constraints (e.g. upper and lower bounds on a datatype). Other specifications which use
the datatypes defined here may define operations which attribute internal structure to
values and expose or act upon that structure.

The ·lexical space· of an ·atomic· datatype is a set of ·literals· whose internal structure is
specific to the datatype in question.

There is one ·special· ·atomic· datatype (anyAtomicType), and a number of ·primitive· ·atomic·
datatypes which have anyAtomicType as their ·base type·. All other ·atomic· datatypes are
derived either from one of the ·primitive· ·atomic· datatypes or from another ·ordinary· ·atomic·
datatype. No ·user-defined· datatype MAY have anyAtomicType as its ·base type·.

2.4.1.2 List Datatypes

·List· datatypes are always ·constructed· from some other type; they are never ·primitive·. The
·value space· of a ·list· datatype is the set of finite-length sequences of zero or more ·atomic·
values where each ·atomic· value is drawn from the ·value space· of the lists's ·item type· and
has a ·lexical representation· containing no whitespace. The ·lexical space· of a ·list· datatype
is a set of ·literals· each of which is a space-separated sequence of ·literals· of the ·item type·.

[Definition:] The ·atomic· or ·union· datatype that participates in the definition of a ·list·
datatype is the item type of that ·list· datatype. If the ·item type· is a ·union·, each of its ·basic
members· MUST be ·atomic·.

Example
<simpleType name='sizes'>
 <list itemType='decimal'/>
</simpleType>

<cerealSizes xsi:type='sizes'> 8 10.5 12 </cerealSizes>

A ·list· datatype can be ·constructed· from an ordinary or ·primitive· ·atomic· datatype whose
·lexical space· allows whitespace (such as string or anyURI) or a ·union· datatype any of

http://www.w3.org/TR/xmlschema11-2/ 19 5/5/2009 6:46 PM

whose {member type definitions}'s ·lexical space· allows space. Since ·list· items are
separated at whitespace before the ·lexical representations· of the items are mapped to
values, no whitespace will ever occur in the ·lexical representation· of a ·list· item, even when
the item type would in principle allow it. For the same reason, when every possible ·lexical
representation· of a given value in the ·value space· of the ·item type· includes whitespace,
that value can never occur as an item in any value of the ·list· datatype.

Example
<simpleType name='listOfString'>
 <list itemType='string'/>
</simpleType>

<someElement xsi:type='listOfString'>
this is not list item 1
this is not list item 2
this is not list item 3
</someElement>

In the above example, the value of the someElement element is not a ·list· of ·length· 3;
rather, it is a ·list· of ·length· 18.

When a datatype is derived by ·restricting· a ·list· datatype, the following ·constraining facets·
apply:

·length·

·maxLength·

·minLength·

·enumeration·

·pattern·

·whiteSpace·

·assertions·

For each of ·length·, ·maxLength· and ·minLength·, the length is measured in number of list
items. The value of ·whiteSpace· is fixed to the value collapse.

For ·list· datatypes the ·lexical space· is composed of space-separated ·literals· of the ·item
type·. Any ·pattern· specified when a new datatype is derived from a ·list· datatype applies to
the members of the ·list· datatype's ·lexical space·, not to the members of the ·lexical space·
of the ·item type·. Similarly, enumerated values are compared to the entire ·list·, not to
individual list items, and assertions apply to the entire ·list· too. Lists are identical if and only if
they have the same length and their items are pairwise identical; they are equal if and only if
they have the same length and their items are pairwise equal. And a list of length one whose
item is an atomic value V1 is equal to an atomic value V2 if and only if V1 is equal to V2.

Example

http://www.w3.org/TR/xmlschema11-2/ 20 5/5/2009 6:46 PM

<xs:simpleType name='myList'>
 <xs:list itemType='xs:integer'/>
</xs:simpleType>
<xs:simpleType name='myRestrictedList'>
 <xs:restriction base='myList'>
 <xs:pattern value='123 (\d+\s)*456'/>
 </xs:restriction>
</xs:simpleType>
<someElement xsi:type='myRestrictedList'>123 456</someElement>
<someElement xsi:type='myRestrictedList'>123 987 456</someElement>
<someElement xsi:type='myRestrictedList'>123 987 567 456</someElement>

The ·canonical mapping· of a ·list· datatype maps each value onto the space-separated
concatenation of the ·canonical representations· of all the items in the value (in order), using
the ·canonical mapping· of the ·item type·.

2.4.1.3 Union datatypes

Union types may be defined in either of two ways. When a union type is ·constructed· by
·union·, its ·value space·, ·lexical space·, and ·lexical mapping· are the "ordered unions" of the
·value spaces·, ·lexical spaces·, and ·lexical mappings· of its ·member types·.

It will be observed that the ·lexical mapping· of a union, so defined, is not necessarily a
function: a given ·literal· may map to one value or to several values of different ·primitive·
datatypes, and it may be indeterminate which value is to be preferred in a particular context.
When the datatypes defined here are used in the context of [XSD 1.1 Part 1: Structures], the
xsi:type attribute defined by that specification in section xsi:type can be used to indicate
which value a ·literal· which is the content of an element should map to. In other contexts,
other rules (such as type coercion rules) may be employed to determine which value is to be
used.

When a union type is defined by ·restricting· another ·union·, its ·value space·, ·lexical space·,
and ·lexical mapping· are subsets of the ·value spaces·, ·lexical spaces·, and ·lexical
mappings· of its ·base type·.

·Union· datatypes are always ·constructed· from other datatypes; they are never ·primitive·.
Currently, there are no ·built-in· ·union· datatypes.

Example

A prototypical example of a ·union· type is the maxOccurs attribute on the element element
in XML Schema itself: it is a union of nonNegativeInteger and an enumeration with the
single member, the string "unbounded", as shown below.

 <attributeGroup name="occurs">
 <attribute name="minOccurs" type="nonNegativeInteger"
 use="optional" default="1"/>
 <attribute name="maxOccurs"use="optional" default="1">
 <simpleType>
 <union>
 <simpleType>
 <restriction base='nonNegativeInteger'/>
 </simpleType>
 <simpleType>

http://www.w3.org/TR/xmlschema11-2/ 21 5/5/2009 6:46 PM

 <restriction base='string'>
 <enumeration value='unbounded'/>
 </restriction>
 </simpleType>
 </union>
 </simpleType>
 </attribute>
 </attributeGroup>

Any number (zero or more) of ordinary or ·primitive· ·datatypes· can participate in a ·union·
type.

[Definition:] The datatypes that participate in the definition of a ·union· datatype are known as
the member types of that ·union· datatype.

[Definition:] The transitive membership of a ·union· is the set of its own ·member types·,
and the ·member types· of its members, and so on. More formally, if U is a ·union·, then (a) its
·member types· are in the transitive membership of U, and (b) for any datatypes T1 and T2, if
T1 is in the transitive membership of U and T2 is one of the ·member types· of T1, then T2 is
also in the transitive membership of U.

The ·transitive membership· of a ·union· MUST NOT contain the ·union· itself, nor any datatype
derived or ·constructed· from the ·union·.

[Definition:] Those members of the ·transitive membership· of a ·union· datatype U which are
themselves not ·union· datatypes are the basic members of U.

[Definition:] If a datatype M is in the ·transitive membership· of a ·union· datatype U, but not
one of U's ·member types·, then a sequence of one or more ·union· datatypes necessarily
exists, such that the first is one of the ·member types· of U, each is one of the ·member types·
of its predecessor in the sequence, and M is one of the ·member types· of the last in the
sequence. The ·union· datatypes in this sequence are said to intervene between M and U.
When U and M are given by the context, the datatypes in the sequence are referred to as the
intervening unions. When M is one of the ·member types· of U, the set of intervening
unions is the empty set.

[Definition:] In a valid instance of any ·union·, the first of its members in order which accepts
the instance as valid is the active member type. [Definition:] If the ·active member type· is
itself a ·union·, one of its members will be its ·active member type·, and so on, until finally a
·basic (non-union) member· is reached. That ·basic member· is the active basic member of
the union.

The order in which the ·member types· are specified in the definition (that is, in the case of
datatypes defined in a schema document, the order of the <simpleType> children of the
<union> element, or the order of the QNames in the memberTypes attribute) is significant.
During validation, an element or attribute's value is validated against the ·member types· in
the order in which they appear in the definition until a match is found. As noted above, the
evaluation order can be overridden with the use of xsi:type.

http://www.w3.org/TR/xmlschema11-2/ 22 5/5/2009 6:46 PM

Example

For example, given the definition below, the first instance of the <size> element validates
correctly as an integer (§3.4.13), the second and third as string (§3.3.1).

 <xsd:element name='size'>
 <xsd:simpleType>
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base='integer'/>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base='string'/>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
 </xsd:element>

 <size>1</size>
 <size>large</size>
 <size xsi:type='xsd:string'>1</size>

The ·canonical mapping· of a ·union· datatype maps each value onto the ·canonical
representation· of that value obtained using the ·canonical mapping· of the first ·member type·
in whose value space it lies.

When a datatype is derived by ·restricting· a ·union· datatype, the following ·constraining
facets· apply:

·enumeration·

·pattern·

·assertions·

2.4.2 Special vs. Primitive vs. Ordinary Datatypes

Next, we distinguish ·special·, ·primitive·, and ·ordinary· (or ·constructed·) datatypes. Each
datatype defined by or in accordance with this specification falls into exactly one of these
categories.

[Definition:] The special datatypes are anySimpleType and anyAtomicType. They are
special by virtue of their position in the type hierarchy.

[Definition:] Primitive datatypes are those datatypes that are not ·special· and are not
defined in terms of other datatypes; they exist ab initio. All ·primitive· datatypes have
anyAtomicType as their ·base type·, but their ·value· and ·lexical spaces· must be given
in prose; they cannot be described as ·restrictions· of anyAtomicType by the application
of particular ·constraining facets·.

Note: As normatively specified elsewhere, conforming processors MUST support all
the primitive datatypes defined in this specification; it is ·implementation-defined·
whether other primitive datatypes are supported.

[Definition:] Ordinary datatypes are all datatypes other than the ·special· and ·primitive·

http://www.w3.org/TR/xmlschema11-2/ 23 5/5/2009 6:46 PM

datatypes. ·Ordinary· datatypes can be understood fully in terms of their Simple Type
Definition and the properties of the datatypes from which they are ·constructed·.

For example, in this specification, float is a ·primitive· datatype based on a well-defined
mathematical concept and not defined in terms of other datatypes, while integer is
·constructed· from the more general datatype decimal.

2.4.2.1 Facet-based Restriction

[Definition:] A datatype is defined by facet-based restriction of another datatype (its ·base
type·), when values for zero or more ·constraining facets· are specified that serve to constrain
its ·value space· and/or its ·lexical space· to a subset of those of the ·base type·. The ·base
type· of a ·facet-based restriction· MUST be a ·primitive· or ·ordinary· datatype.

2.4.2.2 Construction by List

A ·list· datatype can be ·constructed· from another datatype (its ·item type·) by creating a
·value space· that consists of finite-length sequences of zero or more values of its ·item type·.
Datatypes so ·constructed· have anySimpleType as their ·base type·. Note that since the
·value space· and ·lexical space· of any ·list· datatype are necessarily subsets of the ·value
space· and ·lexical space· of anySimpleType, any datatype ·constructed· as a ·list· is a
·restriction· of its base type.

2.4.2.3 Construction by Union

One datatype can be ·constructed· from one or more datatypes by unioning their ·lexical
mappings· and, consequently, their ·value spaces· and ·lexical spaces·. Datatypes so
·constructed· also have anySimpleType as their ·base type·. Note that since the ·value space·
and ·lexical space· of any ·union· datatype are necessarily subsets of the ·value space· and
·lexical space· of anySimpleType, any datatype ·constructed· as a ·union· is a ·restriction· of
its base type.

2.4.3 Definition, Derivation, Restriction, and Construction

Definition, derivation, restriction, and construction are conceptually distinct, although in
practice they are frequently performed by the same mechanisms.

By 'definition' is meant the explicit identification of the relevant properties of a datatype, in
particular its ·value space·, ·lexical space·, and ·lexical mapping·.

The properties of the ·special· and the standard ·primitive· datatypes are defined by this
specification. A Simple Type Definition is present for each of these datatypes in every valid
schema; it serves as a representation of the datatype, but by itself it does not capture all the
relevant information and does not suffice (without knowledge of this specification) to define
the datatype.

Note: The properties of any ·implementation-defined· ·primitive· datatypes are given not
here but in the documentation for the implementation in question.

http://www.w3.org/TR/xmlschema11-2/ 24 5/5/2009 6:46 PM

For all other datatypes, a Simple Type Definition does suffice. The properties of an ·ordinary·
datatype can be inferred from the datatype's Simple Type Definition and the properties of the
·base type·, ·item type· if any, and ·member types· if any. All ·ordinary· datatypes can be
defined in this way.

By 'derivation' is meant the relation of a datatype to its ·base type·, or to the ·base type· of its
·base type·, and so on.

[Definition:] Every datatype other than anySimpleType is associated with another datatype, its
base type. Base types can be ·special·, ·primitive·, or ·ordinary·.

[Definition:] A datatype T is immediately derived from another datatype X if and only if X is
the ·base type· of T.

Note: The above does not preclude the Simple Type Definition for anySimpleType from
having a value for its {base type definition}. (It does, and its value is anyType.)

More generally,
[Definition:] A datatype R is derived from another datatype B if and only if one of the
following is true:

B is the ·base type· of R.

There is some datatype X such that X is the ·base type· of R, and X is derived from B.

A datatype MUST NOT be derived from itself. That is, the base type relation must be acyclic.

It is a consequence of the above that every datatype other than anySimpleType is derived
from anySimpleType.

Since each datatype has exactly one ·base type·, and every datatype other than
anySimpleType is derived directly or indirectly from anySimpleType, it follows that the ·base
type· relation arranges all simple types into a tree structure, which is conventionally referred to
as the derivation hierarchy.

By 'restriction' is meant the definition of a datatype whose ·value space· and ·lexical space·
are subsets of those of its ·base type·.

Formally, [Definition:] A datatype R is a restriction of another datatype B when

the ·value space· of R is a subset of the ·value space· of B, and

the ·lexical space· of R is a subset of the ·lexical space· of B.

Note that all three forms of datatype ·construction· produce ·restrictions· of the ·base type·:
·facet-based restriction· does so by means of ·constraining facets·, while ·construction· by ·list·
or ·union· does so because those ·constructions· take anySimpleType as the ·base type·. It
follows that all datatypes are ·restrictions· of anySimpleType. This specification provides no
means by which a datatype may be defined so as to have a larger ·lexical space· or ·value
space· than its ·base type·.

By 'construction' is meant the creation of a datatype by defining it in terms of another.

[Definition:] All ·ordinary· datatypes are defined in terms of, or constructed from, other

http://www.w3.org/TR/xmlschema11-2/ 25 5/5/2009 6:46 PM

datatypes, either by ·restricting· the ·value space· or ·lexical space· of a ·base type· using zero
or more ·constraining facets· or by specifying the new datatype as a ·list· of items of some
·item type·, or by defining it as a ·union· of some specified sequence of ·member types·.
These three forms of ·construction· are often called "·facet-based restriction·", "·construction·
by ·list·", and "·construction· by ·union·", respectively. Datatypes so constructed may be
understood fully (for purposes of a type system) in terms of (a) the properties of the
datatype(s) from which they are constructed, and (b) their Simple Type Definition. This
distinguishes ·ordinary· datatypes from the ·special· and ·primitive· datatypes, which can be
understood only in the light of documentation (namely, their descriptions elsewhere in this
specification, or, for ·implementation-defined· ·primitives·, in the appropriate
implementation-specific documentation). All ·ordinary· datatypes are ·constructed·, and all
·constructed· datatypes are ·ordinary·.

2.4.4 Built-in vs. User-Defined Datatypes

[Definition:] Built-in datatypes are those which are defined in this specification; they
can be ·special·, ·primitive·, or ·ordinary· datatypes .

[Definition:] User-defined datatypes are those datatypes that are defined by individual
schema designers.

The ·built-in· datatypes are intended to be available automatically whenever this specification
is implemented or used, whether by itself or embedded in a host language. In the language
defined by [XSD 1.1 Part 1: Structures], the ·built-in· datatypes are automatically included in
every valid schema. Other host languages SHOULD specify that all of the datatypes decribed
here as built-ins are automatically available; they MAY specify that additional datatypes are
also made available automatically.

Note: ·Implementation-defined· datatypes, whether ·primitive· or ·ordinary·, may
sometimes be included automatically in any schemas processed by that implementation;
nevertheless, they are not built in to every schema, and are thus not included in the term
'built-in', as that term is used in this specification.

The mechanism for making ·user-defined· datatypes available for use is not defined in this
specification; if ·user-defined· datatypes are to be available, some such mechanism MUST be
specified by the host language.

[Definition:] A datatype which is not available for use is said to be unknown.

Note: From the schema author's perspective, a reference to a datatype which proves to
be ·unknown· might reflect any of the following causes, or others:
1 An error has been made in giving the name of the datatype.
2 The datatype is a ·user-defined· datatype which has not been made available using the

means defined by the host language (e.g. because the appropriate schema document
has not been consulted).

3 The datatype is an ·implementation-defined· ·primitive· datatype not supported by the
implementation being used.

4 The datatype is an ·implementation-defined· ·ordinary· datatype which is made
automatically available by some implementations, but not by the implementation being
used.

5 The datatype is a ·user-defined· ·ordinary· datatype whose base type is ·unknown·
From the point of view of the implementation, these cases are likely to be

http://www.w3.org/TR/xmlschema11-2/ 26 5/5/2009 6:46 PM

indistinguishable.

Note: In the terminology of [XSD 1.1 Part 1: Structures], the datatypes here called
·unknown· are referred to as absent.

Conceptually there is no difference between the ·ordinary· ·built-in· datatypes included in this
specification and the ·user-defined· datatypes which will be created by individual schema
designers. The ·built-in· ·constructed· datatypes are those which are believed to be so
common that if they were not defined in this specification many schema designers would end
up reinventing them. Furthermore, including these ·constructed· datatypes in this
specification serves to demonstrate the mechanics and utility of the datatype generation
facilities of this specification.

3 Built-in Datatypes and Their Definitions

http://www.w3.org/TR/xmlschema11-2/ 27 5/5/2009 6:46 PM

http://www.w3.org/TR/xmlschema11-2/ 28 5/5/2009 6:46 PM

Diagram showing the derivation relations in the built-in type hierarchy. (A long
description of the diagram is available separately.)

Each built-in datatype defined in this specification can be uniquely addressed via a URI
Reference constructed as follows:

the base URI is the URI of the XML Schema namespace1.

the fragment identifier is the name of the datatype2.

For example, to address the int datatype, the URI is:

http://www.w3.org/2001/XMLSchema#int

Additionally, each facet definition element can be uniquely addressed via a URI constructed
as follows:

the base URI is the URI of the XML Schema namespace1.

the fragment identifier is the name of the facet2.

For example, to address the maxInclusive facet, the URI is:

http://www.w3.org/2001/XMLSchema#maxInclusive

Additionally, each facet usage in a built-in Simple Type Definition can be uniquely addressed
via a URI constructed as follows:

the base URI is the URI of the XML Schema namespace1.

the fragment identifier is the name of the Simple Type Definition, followed by a period
('.') followed by the name of the facet

2.

For example, to address the usage of the maxInclusive facet in the definition of int, the URI is:

http://www.w3.org/2001/XMLSchema#int.maxInclusive

3.1 Namespace considerations

The ·built-in· datatypes defined by this specification are designed to be used with the XML
Schema definition language as well as other XML specifications. To facilitate usage within the
XML Schema definition language, the ·built-in· datatypes in this specification have the
namespace name:

http://www.w3.org/2001/XMLSchema

To facilitate usage in specifications other than the XML Schema definition language, such as
those that do not want to know anything about aspects of the XML Schema definition
language other than the datatypes, each ·built-in· datatype is also defined in the namespace
whose URI is:

http://www.w3.org/2001/XMLSchema-datatypes

http://www.w3.org/TR/xmlschema11-2/ 29 5/5/2009 6:46 PM

Each ·user-defined· datatype may also be associated with a target namespace. If it is
constructed from a schema document, then its namespace is typically the target namespace
of that schema document. (See XML Representation of Schemas in [XSD 1.1 Part 1:
Structures].)

3.2 Special Built-in Datatypes
 3.2.1 anySimpleType
 3.2.1.1 Value space
 3.2.1.2 Lexical mapping
 3.2.1.3 Facets
 3.2.2 anyAtomicType
 3.2.2.1 Value space
 3.2.2.2 Lexical mapping
 3.2.2.3 Facets

The two datatypes at the root of the hierarchy of simple types are anySimpleType and
anyAtomicType.

3.2.1 anySimpleType

[Definition:] The definition of anySimpleType is a special ·restriction· of anyType. Its ·lexical
space· is the set of all sequences of Unicode characters, and its ·value space· includes all
·atomic values· and all finite-length lists of zero or more ·atomic values·.

For further details of anySimpleType and its representation as a Simple Type Definition, see
Built-in Simple Type Definitions (§4.1.6).

3.2.1.1 Value space

The ·value space· of anySimpleType is the set of all ·atomic values· and of all finite-length
lists of zero or more ·atomic values·.

Note: It is a consequence of this definition, together with the definition of the ·lexical
mapping· in the next section, that some values of this datatype have no ·lexical
representation· using the ·lexical mappings· defined by this specification. That is, the
"potential" ·value space· and the "effable" or "nameable" ·value space· diverge for this
datatype. As far as this specification is concerned, there is no operational difference
between the potential and effable ·value spaces· and the distinction is of mostly formal
interest. Since some host languages for the type system defined here may allow means
of construction values other than mapping from a ·lexical representation·, the difference
may have practical importance in some contexts. In those contexts, the term ·value
space· should unless otherwise qualified be taken to mean the potential ·value space·.

3.2.1.2 Lexical mapping

The ·lexical space· of anySimpleType is the set of all finite-length sequences of zero or more
characters (as defined in [XML]) that ·match· the Char production from [XML]. This is
equivalent to the union of the ·lexical spaces· of all ·primitive· and all possible ·ordinary·
datatypes.

http://www.w3.org/TR/xmlschema11-2/ 30 5/5/2009 6:46 PM

It is ·implementation-defined· whether an implementation of this specification supports the
Char production from [XML], or that from [XML 1.0], or both. See Dependencies on Other
Specifications (§1.3).

The ·lexical mapping· of anySimpleType is the union of the ·lexical mappings· of all ·primitive·
datatypes and all list datatypes. It will be noted that this mapping is not a function: a given
·literal· may map to one value or to several values of different ·primitive· datatypes, and it may
be indeterminate which value is to be preferred in a particular context. When the datatypes
defined here are used in the context of [XSD 1.1 Part 1: Structures], the xsi:type attribute
defined by that specification in section xsi:type can be used to indicate which value a ·literal·
which is the content of an element should map to. In other contexts, other rules (such as type
coercion rules) may be employed to determine which value is to be used.

3.2.1.3 Facets

When a new datatype is defined by ·facet-based restriction·, anySimpleType MUST NOT be
used as the ·base type·. So no ·constraining facets· are directly applicable to anySimpleType.

3.2.2 anyAtomicType

[Definition:] anyAtomicType is a special ·restriction· of anySimpleType. The ·value· and
·lexical spaces· of anyAtomicType are the unions of the ·value· and ·lexical spaces· of all the
·primitive· datatypes, and anyAtomicType is their ·base type·.

For further details of anyAtomicType and its representation as a Simple Type Definition, see
Built-in Simple Type Definitions (§4.1.6).

3.2.2.1 Value space

The ·value space· of anyAtomicType is the union of the ·value spaces· of all the ·primitive·
datatypes defined here or supplied as ·implementation-defined· ·primitives·.

3.2.2.2 Lexical mapping

The ·lexical space· of anyAtomicType is the set of all finite-length sequences of zero or more
characters (as defined in [XML]) that ·match· the Char production from [XML]. This is
equivalent to the union of the ·lexical spaces· of all ·primitive· datatypes.

It is ·implementation-defined· whether an implementation of this specification supports the
Char production from [XML], or that from [XML 1.0], or both. See Dependencies on Other
Specifications (§1.3).

The ·lexical mapping· of anyAtomicType is the union of the ·lexical mappings· of all ·primitive·
datatypes. It will be noted that this mapping is not a function: a given ·literal· may map to one
value or to several values of different ·primitive· datatypes, and it may be indeterminate which
value is to be preferred in a particular context. When the datatypes defined here are used in
the context of [XSD 1.1 Part 1: Structures], the xsi:type attribute defined by that specification
in section xsi:type can be used to indicate which value a ·literal· which is the content of an
element should map to. In other contexts, other rules (such as type coercion rules) may be

http://www.w3.org/TR/xmlschema11-2/ 31 5/5/2009 6:46 PM

employed to determine which value is to be used.

3.2.2.3 Facets

When a new datatype is defined by ·facet-based restriction·, anyAtomicType MUST NOT be
used as the ·base type·. So no ·constraining facets· are directly applicable to anyAtomicType.

3.3 Primitive Datatypes
 3.3.1 string
 3.3.1.1 Value Space
 3.3.1.2 Lexical Mapping
 3.3.1.3 Facets
 3.3.1.4 Derived datatypes
 3.3.2 boolean
 3.3.2.1 Value Space
 3.3.2.2 Lexical Mapping
 3.3.2.3 Facets
 3.3.3 decimal
 3.3.3.1 Lexical Mapping
 3.3.3.2 Facets
 3.3.3.3 Datatypes based on decimal
 3.3.4 precisionDecimal
 3.3.4.1 Value Space
 3.3.4.2 Lexical Mapping
 3.3.4.3 Facets
 3.3.5 float
 3.3.5.1 Value Space
 3.3.5.2 Lexical Mapping
 3.3.5.3 Facets
 3.3.6 double
 3.3.6.1 Value Space
 3.3.6.2 Lexical Mapping
 3.3.6.3 Facets
 3.3.7 duration
 3.3.7.1 Value Space
 3.3.7.2 Lexical Mapping
 3.3.7.3 Facets
 3.3.7.4 Related Datatypes
 3.3.8 dateTime
 3.3.8.1 Value Space
 3.3.8.2 Lexical Mapping
 3.3.8.3 Facets
 3.3.8.4 Related Datatypes
 3.3.9 time
 3.3.9.1 Value Space
 3.3.9.2 Lexical Mappings
 3.3.9.3 Facets
 3.3.10 date
 3.3.10.1 Value Space
 3.3.10.2 Lexical Mapping
 3.3.10.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 32 5/5/2009 6:46 PM

 3.3.11 gYearMonth
 3.3.11.1 Value Space
 3.3.11.2 Lexical Mapping
 3.3.11.3 Facets
 3.3.12 gYear
 3.3.12.1 Value Space
 3.3.12.2 Lexical Mapping
 3.3.12.3 Facets
 3.3.13 gMonthDay
 3.3.13.1 Value Space
 3.3.13.2 Lexical Mapping
 3.3.13.3 Facets
 3.3.14 gDay
 3.3.14.1 Value Space
 3.3.14.2 Lexical Mapping
 3.3.14.3 Facets
 3.3.15 gMonth
 3.3.15.1 Value Space
 3.3.15.2 Lexical Mapping
 3.3.15.3 Facets
 3.3.16 hexBinary
 3.3.16.1 Value Space
 3.3.16.2 Lexical Mapping
 3.3.16.3 Facets
 3.3.17 base64Binary
 3.3.17.1 Value Space
 3.3.17.2 Lexical Mapping
 3.3.17.3 Facets
 3.3.18 anyURI
 3.3.18.1 Value Space
 3.3.18.2 Lexical Mapping
 3.3.18.3 Facets
 3.3.19 QName
 3.3.19.1 Facets
 3.3.20 NOTATION
 3.3.20.1 Facets

The ·primitive· datatypes defined by this specification are described below. For each
datatype, the ·value space· is described; the ·lexical space· is defined using an extended
Backus Naur Format grammar (and in most cases also a regular expression using the regular
expression language of Regular Expressions (§G)); ·constraining facets· which apply to the
datatype are listed; and any datatypes ·constructed· from this datatype are specified.

Conforming processors MUST support the ·primitive· datatypes defined in this specification; it
is ·implementation-defined· whether they support others. ·Primitive· datatypes may be added
by revisions to this specification.

3.3.1 string

[Definition:] The string datatype represents character strings in XML.

Note: Many human languages have writing systems that require child elements for

http://www.w3.org/TR/xmlschema11-2/ 33 5/5/2009 6:46 PM

control of aspects such as bidirectional formatting or ruby annotation (see [Ruby] and
Section 8.2.4 Overriding the bidirectional algorithm: the BDO element of [HTML 4.01]).
Thus, string, as a simple type that can contain only characters but not child elements, is
often not suitable for representing text. In such situations, a complex type that allows
mixed content should be considered. For more information, see Section 5.5 Any Element,
Any Attribute of [XML Schema Language: Part 0 Primer].

3.3.1.1 Value Space

The ·value space· of string is the set of finite-length sequences of zero or more characters (as
defined in [XML]) that ·match· the Char production from [XML]. A character is an atomic unit
of communication; it is not further specified except to note that every character has a
corresponding Universal Character Set (UCS) code point, which is an integer.

It is ·implementation-defined· whether an implementation of this specification supports the
Char production from [XML], or that from [XML 1.0], or both. See Dependencies on Other
Specifications (§1.3).

Equality for string is identity. No order is prescribed.

Note: As noted in ordered, the fact that this specification does not specify an order
relation for ·string· does not preclude other applications from treating strings as being
ordered.

3.3.1.2 Lexical Mapping

The ·lexical space· of string is the set of finite-length sequences of zero or more characters
(as defined in [XML]) that ·match· the Char production from [XML].

Lexical Space

stringRep ::= Char*
/* (as defined in [XML]) */

It is ·implementation-defined· whether an implementation of this specification supports the
Char production from [XML], or that from [XML 1.0], or both. See Dependencies on Other
Specifications (§1.3).

The ·lexical mapping· for string is ·stringLexicalMap·, and the ·canonical mapping· is
·stringCanonicalMap·; each is a subset of the identity function.

3.3.1.3 Facets

string has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

whiteSpace = preserve

http://www.w3.org/TR/xmlschema11-2/ 34 5/5/2009 6:46 PM

Datatypes derived by restriction from string MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

string has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.1.4 Derived datatypes

The following ·built-in· datatype is ·derived· from string

normalizedString

3.3.2 boolean

[Definition:] boolean represents the values of two-valued logic.

3.3.2.1 Value Space

boolean has the ·value space· of two-valued logic: {true, false}.

3.3.2.2 Lexical Mapping

boolean's lexical space is a set of four ·literals·:

Lexical Space

booleanRep ::= 'true' | 'false' | '1' | '0'

The ·lexical mapping· for boolean is ·booleanLexicalMap·; the ·canonical mapping· is
·booleanCanonicalMap·.

3.3.2.3 Facets

boolean and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

http://www.w3.org/TR/xmlschema11-2/ 35 5/5/2009 6:46 PM

whiteSpace = collapse (fixed)

Datatypes derived by restriction from boolean MAY also specify values for the following
·constraining facets·:

pattern
assertions

boolean has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = finite
numeric = false

3.3.3 decimal

[Definition:] decimal represents a subset of the real numbers, which can be represented by
decimal numerals. The ·value space· of decimal is the set of numbers that can be obtained
by dividing an integer by a non-negative power of ten, i.e., expressible as i / 10n where i and
n are integers and n ≥ 0. Precision is not reflected in this value space; the number 2.0 is not
distinct from the number 2.00. (The datatype precisionDecimal may be used for values in
which precision is significant.) The order relation on decimal is the order relation on real
numbers, restricted to this subset.

3.3.3.1 Lexical Mapping

decimal has a lexical representation consisting of a non-empty finite-length sequence of
decimal digits (#x30–#x39) separated by a period as a decimal indicator. An optional leading
sign is allowed. If the sign is omitted, "+" is assumed. Leading and trailing zeroes are
optional. If the fractional part is zero, the period and following zero(es) can be omitted. For
example: '-1.23', '12678967.543233', '+100000.00', '210'.

The decimal Lexical Representation

decimalLexicalRep ::= decimalPtNumeral | noDecimalPtNumeral

The lexical space of decimal is the set of lexical representations which match the grammar
given above, or (equivalently) the regular expression

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)

The mapping from lexical representations to values is the usual one for decimal numerals; it is
given formally in ·decimalLexicalMap·.

The definition of the ·canonical representation· has the effect of prohibiting certain options
from the Lexical Mapping (§3.3.3.1). Specifically, for integers, the decimal point and fractional
part are prohibited. For other values, the preceding optional "+" sign is prohibited. The
decimal point is required. In all cases, leading and trailing zeroes are prohibited subject to the

http://www.w3.org/TR/xmlschema11-2/ 36 5/5/2009 6:46 PM

following: there must be at least one digit to the right and to the left of the decimal point which
may be a zero.

The mapping from values to ·canonical representations· is given formally in
·decimalCanonicalMap·.

3.3.3.2 Facets

decimal and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from decimal MAY also specify values for the following
·constraining facets·:

totalDigits
fractionDigits
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

decimal has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.3.3.3 Datatypes based on decimal

The following ·built-in· datatype is ·derived· from decimal

integer

3.3.4 precisionDecimal

[Definition:] The precisionDecimal datatype represents the numeric value and (arithmetic)
precision of decimal numbers which retain precision; it also includes values for positive and
negative infinity and for "not a number", and it differentiates between "positive zero" and
"negative zero". This datatype is introduced to provide a variant of decimal that closely
corresponds to the floating-point decimal datatypes described by [IEEE 754-2008]. Precision
of values is retained and values are included for two zeroes, two infinities, and not-a-number.

Note: Users wishing to implement useful operations for this datatype (beyond the
equality and order specified herein) are urged to consult [IEEE 754-2008].

http://www.w3.org/TR/xmlschema11-2/ 37 5/5/2009 6:46 PM

Informally, the precision of a value is denoted by the number of decimal digits after the
decimal point in its ·lexical representations·. The numbers 2 and 2.00, although numerically
equal, have different precision (0 and 2 respectively). The precision of a value is derived from
the ·lexical representation· using rules described in Lexical Mapping (§3.3.4.2). Values retain
their precision, but that precision plays no part in any operations defined in this specification
other than identity: specifically, it does not affect equality or ordering comparisons. Precision
may play a role in arithmetic operations, but that is outside the scope of this specification.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4),
which applies to this datatype.

Editorial Note: Priority Feedback Request

The precisionDecimal datatype is a ‘feature at risk’. It may be retained or dropped at the
end of the Candidate Recommendation period. The determination of whether to retain it
or remove it will depend both on the existence of two independent implementations in the
context of this specification and on the degree of uptake of [IEEE 754-2008] in the
industry. Possible outcomes include retention of precisionDecimal, dropping
precisionDecimal, rearrangement of the type hierarchy in this area, and merger with the
existing decimal datatype.

3.3.4.1 Value Space

Properties of precisionDecimal Values

·numericalValue·
a decimal number, positiveInfinity, negativeInfinity or notANumber

·arithmeticPrecision·
an integer or absent; absent if and only if ·numericalValue· is a ·special value·.

·sign·
positive, negative, or absent; must be positive if ·numericalValue· is positive or
positiveInfinity, must be negative if ·numericalValue· is negative or negativeInfinity,
must be absent if and only if ·numericalValue· is notANumber

Note: The ·sign· property is redundant except when ·numericalValue· is zero; in other
cases, the ·sign· value is fully determined by the ·numericalValue· value.

Note: As explained below, 'NaN' is the lexical representation of the precisionDecimal value
whose ·numericalValue· property has the ·special value· notANumber. Accordingly, in
English text we use 'NaN' to refer to that value. Similarly we use 'INF' and '−INF' to refer
to the two values whose ·numericalValue· properties have the ·special values·
positiveInfinity and negativeInfinity. These three precisionDecimal values are also
informally called "not-a-number", "positive infinity", and "negative infinity". The latter two
together are called "the infinities".

Equality and order for precisionDecimal are defined as follows:

http://www.w3.org/TR/xmlschema11-2/ 38 5/5/2009 6:46 PM

Two numerical precisionDecimal values are ordered (or equal) as their ·numericalValue·
values are ordered (or equal). (This means that two zeroes with different ·sign·s are
equal; negative zeroes are not ordered less than positive zeroes.)

INF is equal only to itself, and is greater than −INF and all numerical precisionDecimal
values.

−INF is equal only to itself, and is less than INF and all numerical precisionDecimal
values.

NaN is incomparable with all values, including itself.

Note: Any value ·incomparable· with the value used for the four bounding facets
(·minInclusive·, ·maxInclusive·, ·minExclusive·, and ·maxExclusive·) will be excluded from
the resulting restricted ·value space·. In particular, when NaN is used as a facet value for
a bounding facet, since no float values are ·comparable· with it, the result is a ·value
space· that is empty. If any other value is used for a bounding facet, NaN will be
excluded from the resulting restricted ·value space·; to add NaN back in requires union
with the NaN-only space (which may be derived using a pattern).

Note: As specified elsewhere, enumerations test values for equality with one of the
enumerated values. Because NaN ≠ NaN, including NaN in an enumeration does not
have the effect of accepting NaNs as instances of the enumerated type; a union with a
NaN-only datatype (which may be derived using the pattern "NaN") can be used instead.

3.3.4.2 Lexical Mapping

precisionDecimal's lexical space is the set of all decimal numerals with or without a decimal
point, numerals in scientific (exponential) notation, and the character strings 'INF', '+INF',
'-INF', and 'NaN'.

Lexical Space

pDecimalRep ::= noDecimalPtNumeral | decimalPtNumeral |
scientificNotationNumeral | numericalSpecialRep

The pDecimalRep production is equivalent (after whitespace is removed) to the following
regular expression:

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)?
|(\+|-)?INF|NaN

The ·lexical mapping· for precisionDecimal is ·precisionDecimalLexicalMap·. The ·canonical
mapping· is ·precisionDecimalCanonicalMap·.

For example, each of the ·lexical representations· shown below is followed by its
corresponding value triple (·numericalValue·, ·arithmeticPrecision·, and ·sign·) and ·canonical
representation·:

'3' (3 , 0 , positive) '3'

http://www.w3.org/TR/xmlschema11-2/ 39 5/5/2009 6:46 PM

'3.00' (3 , 2 , positive) '3.00'

'03.00' (3 , 2 , positive) '3.00'

'300' (300 , 0 , positive) '300'

'3.00e2' (300 , 0 , positive) '300'

'3.0e2' (300 , −1 , positive) '3.0E2'

'30e1' (300 , −1 , positive) '3.0E2'

'.30e3' (300 , −1 , positive) '3.0E2'

Note that the last three examples not only show different ·lexical representations· for the same
value, but are of particular interest because values with negative precision can only have
·lexical representations· in scientific notation.

3.3.4.3 Facets

precisionDecimal and all datatypes derived from it by restriction have the following
·constraining facets· with fixed values; these facets MUST NOT be changed from the values
shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from precisionDecimal MAY also specify values for the
following ·constraining facets·:

totalDigits
maxScale
minScale
pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

precisionDecimal has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = true

3.3.5 float

[Definition:] The float datatype is patterned after the IEEE single-precision 32-bit floating
point datatype [IEEE 754-2008]. Its value space is a subset of the rational numbers. Floating
point numbers are often used to approximate arbitrary real numbers.

http://www.w3.org/TR/xmlschema11-2/ 40 5/5/2009 6:46 PM

3.3.5.1 Value Space

The ·value space· of float contains the non-zero numbers m × 2e , where m is an integer
whose absolute value is less than 224, and e is an integer between −149 and 104, inclusive.
In addition to these values, the ·value space· of float also contains the following ·special
values·: positiveZero, negativeZero, positiveInfinity, negativeInfinity, and notANumber.

Note: As explained below, the ·lexical representation· of the float value notANumber is
'NaN'. Accordingly, in English text we generally use 'NaN' to refer to that value. Similarly,
we use 'INF' and '−INF' to refer to the two values positiveInfinity and negativeInfinity,
and '0' and '−0' to refer to positiveZero and negativeZero.

Equality and order for float are defined as follows:

Equality is identity, except that 0 = −0 (although they are not identical) and
NaN ≠ NaN (although NaN is of course identical to itself).

0 and −0 are thus equivalent for purposes of enumerations and identity constraints, as
well as for minimum and maximum values.

For the basic values, the order relation on float is the order relation for rational
numbers. INF is greater than all other non-NaN values; −INF is less than all other
non-NaN values. NaN is ·incomparable· with any value in the ·value space· including
itself. 0 and −0 are greater than all the negative numbers and less than all the positive
numbers.

Note: Any value ·incomparable· with the value used for the four bounding facets
(·minInclusive·, ·maxInclusive·, ·minExclusive·, and ·maxExclusive·) will be excluded from
the resulting restricted ·value space·. In particular, when NaN is used as a facet value for
a bounding facet, since no float values are ·comparable· with it, the result is a ·value
space· that is empty. If any other value is used for a bounding facet, NaN will be
excluded from the resulting restricted ·value space·; to add NaN back in requires union
with the NaN-only space (which may be derived using a pattern).

Note: The Schema 1.0 version of this datatype did not differentiate between 0 and −0
and NaN was equal to itself. The changes were made to make the datatype more closely
mirror [IEEE 754-2008].

Note: As specified elsewhere, enumerations test values for equality with one of the
enumerated values. Because NaN ≠ NaN, including NaN in an enumeration does not
have the effect of accepting NaNs as instances of the enumerated type; a union with a
NaN-only datatype (which may be derived using the pattern "NaN") can be used instead.

3.3.5.2 Lexical Mapping

The ·lexical space· of float is the set of all decimal numerals with or without a decimal point,
numerals in scientific (exponential) notation, and the ·literals· 'INF', '+INF', '-INF', and 'NaN'

Lexical Space

http://www.w3.org/TR/xmlschema11-2/ 41 5/5/2009 6:46 PM

floatRep ::= noDecimalPtNumeral | decimalPtNumeral | scientificNotationNumeral |
numericalSpecialRep

The floatRep production is equivalent to this regular expression (after whitespace is removed
from the regular expression):

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)?
|(\+|-)?INF|NaN

The float datatype is designed to implement for schema processing the single-precision
floating-point datatype of [IEEE 754-2008]. That specification does not specify specific
·lexical representations·, but does prescribe requirements on any ·lexical mapping· used. Any
·lexical mapping· that maps the ·lexical space· just described onto the ·value space·, is a
function, satisfies the requirements of [IEEE 754-2008], and correctly handles the mapping of
the literals 'INF', 'NaN', etc., to the ·special values·, satisfies the conformance requirements of
this specification.

Since IEEE allows some variation in rounding of values, processors conforming to this
specification may exhibit some variation in their ·lexical mappings·.

The ·lexical mapping· ·floatLexicalMap· is provided as an example of a simple algorithm that
yields a conformant mapping, and that provides the most accurate rounding possible—and is
thus useful for insuring inter-implementation reproducibility and inter-implementation
round-tripping. The simple rounding algorithm used in ·floatLexicalMap· may be more
efficiently implemented using the algorithms of [Clinger, WD (1990)].

Note: The Schema 1.0 version of this datatype did not permit rounding algorithms whose
results differed from [Clinger, WD (1990)].

The ·canonical mapping· ·floatCanonicalMap· is provided as an example of a mapping that
does not produce unnecessarily long ·canonical representations·. Other algorithms which do
not yield identical results for mapping from float values to character strings are permitted by
[IEEE 754-2008].

3.3.5.3 Facets

float and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from float MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

http://www.w3.org/TR/xmlschema11-2/ 42 5/5/2009 6:46 PM

float has the following values for its ·fundamental facets·:

ordered = partial
bounded = true
cardinality = finite
numeric = true

3.3.6 double

[Definition:] The double datatype is patterned after the IEEE double-precision 64-bit floating
point datatype [IEEE 754-2008]. Each floating point datatype has a value space that is a
subset of the rational numbers. Floating point numbers are often used to approximate
arbitrary real numbers.

Note: The only significant differences between float and double are the three defining
constants 53 (vs 24), −1074 (vs −149), and 971 (vs 104).

3.3.6.1 Value Space

The ·value space· of double contains the non-zero numbers m × 2e , where m is an integer
whose absolute value is less than 253, and e is an integer between −1074 and 971, inclusive.
In addition to these values, the ·value space· of double also contains the following ·special
values·: positiveZero, negativeZero, positiveInfinity, negativeInfinity, and notANumber.

Note: As explained below, the ·lexical representation· of the double value notANumber
is 'NaN'. Accordingly, in English text we generally use 'NaN' to refer to that value.
Similarly, we use 'INF' and '−INF' to refer to the two values positiveInfinity and
negativeInfinity, and '0' and '−0' to refer to positiveZero and negativeZero.

Equality and order for double are defined as follows:

Equality is identity, except that 0 = −0 (although they are not identical) and
NaN ≠ NaN (although NaN is of course identical to itself).

0 and −0 are thus equivalent for purposes of enumerations, identity constraints, and
minimum and maximum values.

For the basic values, the order relation on double is the order relation for rational
numbers. INF is greater than all other non-NaN values; −INF is less than all other
non-NaN values. NaN is ·incomparable· with any value in the ·value space· including
itself. 0 and −0 are greater than all the negative numbers and less than all the positive
numbers.

Note: Any value ·incomparable· with the value used for the four bounding facets
(·minInclusive·, ·maxInclusive·, ·minExclusive·, and ·maxExclusive·) will be excluded from
the resulting restricted ·value space·. In particular, when NaN is used as a facet value for
a bounding facet, since no double values are ·comparable· with it, the result is a ·value
space· that is empty. If any other value is used for a bounding facet, NaN will be
excluded from the resulting restricted ·value space·; to add NaN back in requires union
with the NaN-only space (which may be derived with a pattern).

http://www.w3.org/TR/xmlschema11-2/ 43 5/5/2009 6:46 PM

Note: The Schema 1.0 version of this datatype did not differentiate between 0 and −0
and NaN was equal to itself. The changes were made to make the datatype more closely
mirror [IEEE 754-2008].

Note: As specified elsewhere, enumerations test values for equality with one of the
enumerated values. Because NaN ≠ NaN, including NaN in an enumeration does not
have the effect of accepting NaNs as instances of the enumerated type; a union with a
NaN-only datatype (which may be derived using the pattern "NaN") can be used instead.

3.3.6.2 Lexical Mapping

The ·lexical space· of double is the set of all decimal numerals with or without a decimal point,
numerals in scientific (exponential) notation, and the ·literals· 'INF', '+INF', '-INF', and 'NaN'

Lexical Space

doubleRep ::= noDecimalPtNumeral | decimalPtNumeral | scientificNotationNumeral |
numericalSpecialRep

The doubleRep production is equivalent to this regular expression (after whitespace is
eliminated from the expression):

(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)? |(\+|-)?INF|NaN

The double datatype is designed to implement for schema processing the double-precision
floating-point datatype of [IEEE 754-2008]. That specification does not specify specific
·lexical representations·, but does prescribe requirements on any ·lexical mapping· used. Any
·lexical mapping· that maps the ·lexical space· just described onto the ·value space·, is a
function, satisfies the requirements of [IEEE 754-2008], and correctly handles the mapping of
the literals 'INF', 'NaN', etc., to the ·special values·, satisfies the conformance requirements of
this specification.

Since IEEE allows some variation in rounding of values, processors conforming to this
specification may exhibit some variation in their ·lexical mappings·.

The ·lexical mapping· ·doubleLexicalMap· is provided as an example of a simple algorithm
that yields a conformant mapping, and that provides the most accurate rounding
possible—and is thus useful for insuring inter-implementation reproducibility and
inter-implementation round-tripping. The simple rounding algorithm used in
·doubleLexicalMap· may be more efficiently implemented using the algorithms of [Clinger, WD
(1990)].

Note: The Schema 1.0 version of this datatype did not permit rounding algorithms whose
results differed from [Clinger, WD (1990)].

The ·canonical mapping· ·doubleCanonicalMap· is provided as an example of a mapping that
does not produce unnecessarily long ·canonical representations·. Other algorithms which do
not yield identical results for mapping from float values to character strings are permitted by
[IEEE 754-2008].

3.3.6.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 44 5/5/2009 6:46 PM

double and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from double MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

double has the following values for its ·fundamental facets·:

ordered = partial
bounded = true
cardinality = finite
numeric = true

3.3.7 duration

[Definition:] duration is a datatype that represents durations of time. The concept of duration
being captured is drawn from those of [ISO 8601], specifically durations without fixed
endpoints. For example, "15 days" (whose most common lexical representation in duration is
"'P15D'") is a duration value; "15 days beginning 12 July 1995" and "15 days ending 12 July
1995" are not duration values. duration can provide addition and subtraction operations
between duration values and between duration/dateTime value pairs, and can be the result of
subtracting dateTime values. However, only addition to dateTime is required for XML
Schema processing and is defined in the function ·dateTimePlusDuration·.

3.3.7.1 Value Space

Duration values can be modelled as two-property tuples. Each value consists of an integer
number of months and a decimal number of seconds. The ·seconds· value MUST NOT be
negative if the ·months· value is positive and MUST NOT be positive if the ·months· is negative.

Properties of duration Values

·months·
integer

·seconds·
a decimal value; MUST NOT be negative if ·months· is positive, and MUST NOT be positive if
·months· is negative.

duration is partially ordered. Equality of duration is defined in terms of equality of dateTime;

http://www.w3.org/TR/xmlschema11-2/ 45 5/5/2009 6:46 PM

order for duration is defined in terms of the order of dateTime. Specifically, the equality or
order of two duration values is determined by adding each duration in the pair to each of the
following four dateTime values:

1696-09-01T00:00:00Z

1697-02-01T00:00:00Z

1903-03-01T00:00:00Z

1903-07-01T00:00:00Z

If all four resulting dateTime value pairs are ordered the same way (less than, equal, or
greater than), then the original pair of duration values is ordered the same way; otherwise the
original pair is ·incomparable·.

Note: These four values are chosen so as to maximize the possible differences in results
that could occur, such as the difference when adding P1M and P30D:
1697-02-01T00:00:00Z + P1M < 1697-02-01T00:00:00Z + P30D , but
1903-03-01T00:00:00Z + P1M > 1903-03-01T00:00:00Z + P30D , so that
P1M <> P30D . If two duration values are ordered the same way when added to each of
these four dateTime values, they will retain the same order when added to any other
dateTime values. Therefore, two duration values are incomparable if and only if they can
ever result in different orders when added to any dateTime value.

Under the definition just given, two duration values are equal if and only if they are identical.

Note: Two totally ordered datatypes (yearMonthDuration and dayTimeDuration) are
derived from duration in Other Built-in Datatypes (§3.4).

Note: There are many ways to implement duration, some of which do not base the
implementation on the two-component model. This specification does not prescribe any
particular implementation, as long as the visible results are isomorphic to those described
herein.

Note: See the conformance notes in Partial Implementation of Infinite Datatypes (§5.4),
which apply to this datatype.

3.3.7.2 Lexical Mapping

The ·lexical representations· of duration are more or less based on the pattern:
PnYnMnDTnHnMnS

More precisely, the ·lexical space· of duration is the set of character strings that satisfy
durationLexicalRep as defined by the following productions:

Lexical Representation Fragments

duYearFrag ::= unsignedNoDecimalPtNumeral 'Y'

duMonthFrag ::= unsignedNoDecimalPtNumeral 'M'

http://www.w3.org/TR/xmlschema11-2/ 46 5/5/2009 6:46 PM

duDayFrag ::= unsignedNoDecimalPtNumeral 'D'

duHourFrag ::= unsignedNoDecimalPtNumeral 'H'

duMinuteFrag ::= unsignedNoDecimalPtNumeral 'M'

duSecondFrag ::= (unsignedNoDecimalPtNumeral | unsignedDecimalPtNumeral) 'S'

duYearMonthFrag ::= (duYearFrag duMonthFrag?) | duMonthFrag

duTimeFrag ::= 'T' ((duHourFrag duMinuteFrag? duSecondFrag?) |
(duMinuteFrag duSecondFrag?) | duSecondFrag)

duDayTimeFrag ::= (duDayFrag duTimeFrag?) | duTimeFrag

Lexical Representation

durationLexicalRep ::= '-'? 'P' ((duYearMonthFrag duDayTimeFrag?) | duDayTimeFrag)

Thus, a durationLexicalRep consists of one or more of a duYearFrag, duMonthFrag,
duDayFrag, duHourFrag, duMinuteFrag, and/or duSecondFrag, in order, with letters 'P' and 'T'
(and perhaps a '-') where appropriate.

The language accepted by the durationLexicalRep production is the set of strings which
satisfy all of the following three regular expressions:

The expression
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\.[0-9]+)?S)?)?

matches only strings in which the fields occur in the proper order.

The expression '.*[YMDHS].*' matches only strings in which at least one field occurs.

The expression '.*[^T]' matches only strings in which 'T' is not the final character, so
that if 'T' appears, something follows it. The first rule ensures that what follows 'T' will be
an hour, minute, or second field.

The intersection of these three regular expressions is equivalent to the following (after
removal of the white space inserted here for legibility):

-?P(([0-9]+Y)([0-9]+M)?([0-9]+D)?(T(([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?|([0-9]+
 |([0-9]+M)([0-9]+D)?(T(([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?|([0-9]+M)?([0-9]+
 |([0-9]+D)?(T(([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?|([0-9]+M)?([0-9]+(\.[0-9]+
 |T(([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?
 |([0-9]+M)?([0-9]+(\.[0-9]+)?S)?
 |([0-9]+(\.[0-9]+)?S)))

The ·lexical mapping· for duration is ·durationMap·.

·The canonical mapping· for duration is ·durationCanonicalMap·.

3.3.7.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 47 5/5/2009 6:46 PM

duration and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from duration MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

duration has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.7.4 Related Datatypes

The following ·built-in· datatypes are ·derived· from duration

yearMonthDuration
dayTimeDuration

3.3.8 dateTime

dateTime represents instants of time, optionally marked with a particular time zone offset.
Values representing the same instant but having different time zone offsets are equal but not
identical.

3.3.8.1 Value Space

dateTime uses the date/timeSevenPropertyModel, with no properties except ·timezoneOffset·
permitted to be absent. The ·timezoneOffset· property remains ·optional·.

Note: In version 1.0 of this specification, the ·year· property was not permitted to have
the value zero. The year before the year 1 in the proleptic Gregorian calendar,
traditionally referred to as 1 BC or as 1 BCE, was represented by a ·year· value of −1, 2
BCE by −2, and so forth. Of course, many, perhaps most, references to 1 BCE (or 1 BC)
actually refer not to a year in the proleptic Gregorian calendar but to a year in the Julian
or "old style" calendar; the two correspond approximately but not exactly to each other.

In this version of this specification, two changes are made in order to agree with existing
usage. First, ·year· is permitted to have the value zero. Second, the interpretation of
·year· values is changed accordingly: a ·year· value of zero represents 1 BCE, −1

http://www.w3.org/TR/xmlschema11-2/ 48 5/5/2009 6:46 PM

represents 2 BCE, etc. This representation simplifies interval arithmetic and leap-year
calculation for dates before the common era (which may be why astronomers and others
interested in such calculations with the proleptic Gregorian calendar have adopted it), and
is consistent with the current edition of [ISO 8601].

Note that 1 BCE, 5 BCE, and so on (years 0000, -0004, etc. in the lexical representation
defined here) are leap years in the proleptic Gregorian calendar used for the date/time
datatypes defined here. Version 1.0 of this specification was unclear about the treatment
of leap years before the common era. If existing schemas or data specify dates of 29
February for any years before the common era, then some values giving a date of 29
February which were valid under a plausible interpretation of XSD 1.0 will be invalid under
this specification, and some which were invalid will be valid. With that possible exception,
schemas and data valid under the old interpretation remain valid under the new.

Constraint: Day-of-month Values

The ·day· value MUST be no more than 30 if ·month· is one of 4, 6, 9, or 11; no more than 28
if ·month· is 2 and ·year· is not divisible 4, or is divisible by 100 but not by 400; and no more
than 29 if ·month· is 2 and ·year· is divisible by 400, or by 4 but not by 100.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4)
which applies to the ·year· and ·second· values of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1). dateTime values
are ordered by their ·timeOnTimeline· value.

Note: Since the order of a dateTime value having a ·timezoneOffset· relative to another
value whose ·timezoneOffset· is absent is determined by imputing time zone offsets of
both +14:00 and −14:00 to the value with no time zone offset, many such combinations
will be ·incomparable· because the two imputed time zone offsets yield different orders.

Although dateTime and other types related to dates and times have only a partial order, it
is possible for datatypes derived from dateTime to have total orders, if they are restricted
(e.g. using the pattern facet) to the subset of values with, or the subset of values without,
time zone offsets. Similar restrictions on other date- and time-related types will similarly
produce totally ordered subtypes. Note, however, that such restrictions do not affect the
value shown, for a given Simple Type Definition, in the ordered facet.

Note: Order and equality are essentially the same for dateTime in this version of this
specification as they were in version 1.0. However, since values now distinguish time
zone offsets, equal values with different ·timezoneOffset·s are not identical, and values
with extreme ·timezoneOffset·s may no longer be equal to any value with a smaller
·timezoneOffset·.

3.3.8.2 Lexical Mapping

The lexical representations for dateTime are as follows:

Lexical Space

dateTimeLexicalRep ::=

http://www.w3.org/TR/xmlschema11-2/ 49 5/5/2009 6:46 PM

yearFrag '-' monthFrag '-' dayFrag 'T' ((hourFrag ':' minuteFrag ':' secondFrag) |
endOfDayFrag) timezoneFrag? Constraint: Day-of-month Representations

Constraint: Day-of-month Representations

Within a dateTimeLexicalRep, a dayFrag MUST NOT begin with the digit '3' or be '29' unless
the value to which it would map would satisfy the value constraint on ·day· values
("Constraint: Day-of-month Values") given above.

In such representations:

yearFrag is a numeral consisting of at least four decimal digits, optionally preceded by a
minus sign; leading '0' digits are prohibited except to bring the digit count up to four. It
represents the ·year· value.

Subsequent '-', 'T', and ':', separate the various numerals.

monthFrag, dayFrag, hourFrag, and minuteFrag are numerals consisting of exactly two
decimal digits. They represent the ·month·, ·day·, ·hour·, and ·minute· values
respectively.

secondFrag is a numeral consisting of exactly two decimal digits, or two decimal digits,
a decimal point, and one or more trailing digits. It represents the ·second· value.

Alternatively, endOfDayFrag combines the hourFrag, minuteFrag, minuteFrag, and their
separators to represent midnight of the day, which is the first moment of the next day.

timezoneFrag, if present, specifies an offset between UTC and local time. Time zone
offsets are a count of minutes (expressed in timezoneFrag as a count of hours and
minutes) that are added or subtracted from UTC time to get the "local" time. 'Z' is an
alternative representation of the time zone offset '00:00', which is, of course, zero
minutes from UTC.

For example, 2002-10-10T12:00:00−05:00 (noon on 10 October 2002, Central Daylight
Savings Time as well as Eastern Standard Time in the U.S.) is equal to
2002-10-10T17:00:00Z, five hours later than 2002-10-10T12:00:00Z.

Note: For the most part, this specification adopts the distinction between 'timezone'
and 'timezone offset' laid out in [Timezones]. Version 1.0 of this specification did not
make this distinction, but used the term 'timezone' for the time zone offset
information associated with date- and time-related datatypes. Some traces of the
earlier usage remain visible in this and other specifications. The names
timezoneFrag and explicitTimezone are such traces ; others will be found in the
names of functions defined in [XQuery 1.0 and XPath 2.0 Functions and
Operators], or in references in this specification to "timezoned" and "untimezoned"
values.

The dateTimeLexicalRep production is equivalent to this regular expression once whitespace
is removed.

-?([1-9][0-9]{3,}|0[0-9]{3})
-(0[1-9]|1[0-2])
-(0[1-9]|[12][0-9]|3[01])
T(([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?|(24:00:00(\.0+)?))

http://www.w3.org/TR/xmlschema11-2/ 50 5/5/2009 6:46 PM

(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

Note that neither the dateTimeLexicalRep production nor this regular expression alone
enforce the constraint on dateTimeLexicalRep given above.

The ·lexical mapping· for dateTime is ·dateTimeLexicalMap·. The ·canonical mapping· is
·dateTimeCanonicalMap·.

3.3.8.3 Facets

dateTime and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

dateTime has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from dateTime MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

dateTime has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.8.4 Related Datatypes

The following ·built-in· datatype is ·derived· from dateTime

dateTimeStamp

3.3.9 time

time represents instants of time that recur at the same point in each calendar day, or that
occur in some arbitrary calendar day.

3.3.9.1 Value Space

http://www.w3.org/TR/xmlschema11-2/ 51 5/5/2009 6:46 PM

time uses the date/timeSevenPropertyModel, with ·year·, ·month·, and ·day· required to be
absent. ·timezoneOffset· remains ·optional·.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4)
which applies to the ·second· value of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1). time values
(points in time in an "arbitrary" day) are ordered taking into account their ·timezoneOffset·.

A calendar (or "local time") day with a larger positive time zone offset begins earlier than the
same calendar day with a smaller (or negative) time zone offset. Since the time zone offsets
allowed spread over 28 hours, it is possible for the period denoted by a given calendar day
with one time zone offset to be completely disjoint from the period denoted by the same
calendar day with a different offset — the earlier day ends before the later one starts. The
moments in time represented by a single calendar day are spread over a 52-hour interval,
from the beginning of the day in the +14:00 time zone offset to the end of that day in the
−14:00 time zone offset.

Note: The relative order of two time values, one of which has a ·timezoneOffset· of
absent is determined by imputing time zone offsets of both +14:00 and −14:00 to the
value without an offset. Many such combinations will be ·incomparable· because the two
imputed time zone offsets yield different orders. However, for a given untimezoned
value, there will always be timezoned values at one or both ends of the 52-hour interval
that are ·comparable· (because the interval of ·incomparability· is only 24 hours wide).

Date values with different time zone offsets that were identical in the 1.0 version of this
specification, such as 2000-12-12+13:00 and 2000-12-11−11:00, are in this version of
this specification equal (because they begin at the same moment on the time line) but are
not identical (because they have and retain different time zone offsets).

3.3.9.2 Lexical Mappings

The lexical representations for time are "projections" of those of dateTime, as follows:

Lexical Space

timeLexicalRep ::= ((hourFrag ':' minuteFrag ':' secondFrag) | endOfDayFrag)
timezoneFrag?

The timeLexicalRep production is equivalent to this regular expression, once whitespace is
removed:

(([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?|(24:00:00(\.0+)?))(Z|(\+

Note that neither the timeLexicalRep production nor this regular expression alone enforce the
constraint on timeLexicalRep given above.

The ·lexical mapping· for time is ·timeLexicalMap·; the ·canonical mapping· is
·timeCanonicalMap·.

Note: The ·lexical mapping· maps '00:00:00' and '24:00:00' to the same value, namely

http://www.w3.org/TR/xmlschema11-2/ 52 5/5/2009 6:46 PM

midnight (·hour· = 0 , ·minute· = 0 , ·second· = 0).

3.3.9.3 Facets

time and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

time has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from time MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

time has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.10 date

[Definition:] date represents top-open intervals of exactly one day in length on the timelines
of dateTime, beginning on the beginning moment of each day, up to but not including the
beginning moment of the next day). For nontimezoned values, the top-open intervals
disjointly cover the nontimezoned timeline, one per day. For timezoned values, the intervals
begin at every minute and therefore overlap.

3.3.10.1 Value Space

date uses the date/timeSevenPropertyModel, with ·hour·, ·minute·, and ·second· required to
be absent. ·timezoneOffset· remains ·optional·.

Constraint: Day-of-month Values

The ·day· value MUST be no more than 30 if ·month· is one of 4, 6, 9, or 11, no more than 28
if ·month· is 2 and ·year· is not divisble 4, or is divisible by 100 but not by 400, and no more
than 29 if ·month· is 2 and ·year· is divisible by 400, or by 4 but not by 100.

http://www.w3.org/TR/xmlschema11-2/ 53 5/5/2009 6:46 PM

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4)
which applies to the ·year· value of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

Note: In version 1.0 of this specification, date values did not retain a time zone offset
explicitly, but for offsets not too far from zero their time zone offset could be recovered
based on their value's first moment on the timeline. The date/timeSevenPropertyModel
retains all time zone offsets.

Examples that show the difference from version 1.0 (see Lexical Mapping (§3.3.10.2) for
the notations):

A day is a calendar (or "local time") day offset from ·UTC· by the appropriate
interval; this is now true for all ·day· values, including those with time zone offsets
outside the range +12:00 through -11:59 inclusive:

2000-12-12+13:00 < 2000-12-12+11:00 (just as 2000-12-12+12:00 has always
been less than 2000-12-12+11:00, but in version 1.0 2000-12-12+13:00 >
2000-12-12+11:00 , since 2000-12-12+13:00's "recoverable time zone offset" was
−11:00)

Similarly:

2000-12-12+13:00 = 2000-12-13−11:00 (whereas under 1.0, as just stated,
2000-12-12+13:00 = 2000-12-12−11:00)

3.3.10.2 Lexical Mapping

The lexical representations for date are "projections" of those of dateTime, as follows:

Lexical Space

dateLexicalRep ::= yearFrag '-' monthFrag '-' dayFrag timezoneFrag? Constraint:
Day-of-month Representations

Constraint: Day-of-month Representations

Within a dateLexicalRep, a dayFrag MUST NOT begin with the digit '3' or be '29' unless the
value to which it would map would satisfy the value constraint on ·day· values ("Constraint:
Day-of-month Values") given above.

The dateLexicalRep production is equivalent to this regular expression:
-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9

Note that neither the dateLexicalRep production nor this regular expression alone enforce the
constraint on dateLexicalRep given above.

The ·lexical mapping· for date is ·dateLexicalMap·. The ·canonical mapping· is
·dateCanonicalMap·.

http://www.w3.org/TR/xmlschema11-2/ 54 5/5/2009 6:46 PM

3.3.10.3 Facets

date and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

date has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from date MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

date has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.11 gYearMonth

gYearMonth represents specific whole Gregorian months in specific Gregorian years.

Note: Because month/year combinations in one calendar only rarely correspond to
month/year combinations in other calendars, values of this type are not, in general,
convertible to simple values corresponding to month/year combinations in other
calendars. This type should therefore be used with caution in contexts where conversion
to other calendars is desired.

3.3.11.1 Value Space

gYearMonth uses the date/timeSevenPropertyModel, with ·day·, ·hour·, ·minute·, and ·second·
required to be absent. ·timezoneOffset· remains ·optional·.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4)
which applies to the ·year· value of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

http://www.w3.org/TR/xmlschema11-2/ 55 5/5/2009 6:46 PM

3.3.11.2 Lexical Mapping

The lexical representations for gYearMonth are "projections" of those of dateTime, as follows:

Lexical Space

gYearMonthLexicalRep ::= yearFrag '-' monthFrag timezoneFrag?

The gYearMonthLexicalRep is equivalent to this regular expression:
-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gYearMonth is ·gYearMonthLexicalMap·. The ·canonical mapping· is
·gYearMonthCanonicalMap·.

3.3.11.3 Facets

gYearMonth and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

gYearMonth has the following ·constraining facets· with the values shown; these facets MAY
be specified in the derivation of new types, if the value given is at least as restrictive as the
one shown:

explicitTimezone = optional

Datatypes derived by restriction from gYearMonth MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

gYearMonth has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.12 gYear

gYear represents Gregorian calendar years.

Note: Because years in one calendar only rarely correspond to years in other calendars,

http://www.w3.org/TR/xmlschema11-2/ 56 5/5/2009 6:46 PM

values of this type are not, in general, convertible to simple values corresponding to years
in other calendars. This type should therefore be used with caution in contexts where
conversion to other calendars is desired.

3.3.12.1 Value Space

gYear uses the date/timeSevenPropertyModel, with ·month·, ·day·, ·hour·, ·minute·, and
·second· required to be absent. ·timezoneOffset· remains ·optional·.

Note: See the conformance note in Partial Implementation of Infinite Datatypes (§5.4)
which applies to the ·year· value of this datatype.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

3.3.12.2 Lexical Mapping

The lexical representations for gYear are "projections" of those of dateTime, as follows:

Lexical Space

gYearLexicalRep ::= yearFrag timezoneFrag?

The gYearLexicalRep is equivalent to this regular expression:
-?([1-9][0-9]{3,}|0[0-9]{3})(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gYear is ·gYearLexicalMap·. The ·canonical mapping· is
·gYearCanonicalMap·.

3.3.12.3 Facets

gYear and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

gYear has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from gYear MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive

http://www.w3.org/TR/xmlschema11-2/ 57 5/5/2009 6:46 PM

minExclusive
assertions

gYear has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.13 gMonthDay

gMonthDay represents whole calendar days that recur at the same point in each calendar
year, or that occur in some arbitrary calendar year. (Obviously, days beyond 28 cannot occur
in all Februaries; 29 is nonetheless permitted.)

This datatype can be used, for example, to record birthdays; an instance of the datatype could
be used to say that someone's birthday occurs on the 14th of September every year.

Note: Because day/month combinations in one calendar only rarely correspond to
day/month combinations in other calendars, values of this type do not, in general, have
any straightforward or intuitive representation in terms of most other calendars. This type
should therefore be used with caution in contexts where conversion to other calendars is
desired.

3.3.13.1 Value Space

gMonthDay uses the date/timeSevenPropertyModel, with ·year·, ·hour·, ·minute·, and ·second·
required to be absent. ·timezoneOffset· remains ·optional·.

Constraint: Day-of-month Values

The ·day· value MUST be no more than 30 if ·month· is one of 4, 6, 9, or 11, and no more
than 29 if ·month· is 2.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

Note: In version 1.0 of this specification, gMonthDay values did not retain a time zone
offset explicitly, but for time zone offsets not too far from ·UTC· their time zone offset
could be recovered based on their value's first moment on the timeline. The
date/timeSevenPropertyModel retains all time zone offsets.

An example that shows the difference from version 1.0 (see Lexical Mapping (§3.3.13.2)
for the notations):

A day is a calendar (or "local time") day offset from ·UTC· by the appropriate
interval; this is now true for all ·day· values, including those with time zone offsets
outside the range +12:00 through -11:59 inclusive:

--12-12+13:00 < --12-12+11:00 (just as --12-12+12:00 has always been less than
--12-12+11:00, but in version 1.0 --12-12+13:00 > --12-12+11:00 , since
--12-12+13:00's "recoverable time zone offset" was −11:00)

http://www.w3.org/TR/xmlschema11-2/ 58 5/5/2009 6:46 PM

3.3.13.2 Lexical Mapping

The lexical representations for gMonthDay are "projections" of those of dateTime, as follows:

Lexical Space

gMonthDayLexicalRep ::= '--' monthFrag '-' dayFrag timezoneFrag? Constraint:
Day-of-month Representations

Constraint: Day-of-month Representations

Within a gMonthDayLexicalRep, a dayFrag MUST NOT begin with the digit '3' or be '29' unless
the value to which it would map would satisfy the value constraint on ·day· values
("Constraint: Day-of-month Values") given above.

The gMonthDayLexicalRep is equivalent to this regular expression:
--(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

Note that neither the gMonthDayLexicalRep production nor this regular expression alone
enforce the constraint on gMonthDayLexicalRep given above.

The ·lexical mapping· for gMonthDay is ·gMonthDayLexicalMap·. The ·canonical mapping· is
·gMonthDayCanonicalMap·.

3.3.13.3 Facets

gMonthDay and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

gMonthDay has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from gMonthDay MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

gMonthDay has the following values for its ·fundamental facets·:

http://www.w3.org/TR/xmlschema11-2/ 59 5/5/2009 6:46 PM

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.14 gDay

[Definition:] gDay represents whole days within an arbitrary month—days that recur at the
same point in each (Gregorian) month. This datatype is used to represent a specific day of
the month. To indicate, for example, that an employee gets a paycheck on the 15th of each
month. (Obviously, days beyond 28 cannot occur in all months; they are nonetheless
permitted, up to 31.)

Note: Because days in one calendar only rarely correspond to days in other calendars,
gDay values do not, in general, have any straightforward or intuitive representation in
terms of most non-Gregorian calendars. gDay should therefore be used with caution in
contexts where conversion to other calendars is desired.

3.3.14.1 Value Space

gDay uses the date/timeSevenPropertyModel, with ·year·, ·month·, ·hour·, ·minute·, and
·second· required to be absent. ·timezoneOffset· remains ·optional· and ·day· must be
between 1 and 31 inclusive.

Equality and order are as prescribed in The Seven-property Model (§D.2.1). Since gDay
values (days) are ordered by their first moments, it is possible for apparent anomalies to
appear in the order when ·timezoneOffset· values differ by at least 24 hours. (It is possible for
·timezoneOffset· values to differ by up to 28 hours.)

Examples that may appear anomalous (see Lexical Mapping (§3.3.14.2) for the notations):

---15 < ---16 , but ---15−13:00 > ---16+13:00

---15−11:00 = ---16+13:00

---15−13:00 <> ---16 , because ---15−13:00 > ---16+14:00 and ---15−13:00 < 16−14:00

Note: Time zone offsets do not cause wrap-around at the end of the month: the last day
of a given month with a time zone offset of −13:00 may start after the first day of the next
month with offset +13:00, as measured on the global timeline, but nonetheless
---01+13:00 < ---31−13:00 .

3.3.14.2 Lexical Mapping

The lexical representations for gDay are "projections" of those of dateTime, as follows:

Lexical Space

gDayLexicalRep ::= '---' dayFrag timezoneFrag?

http://www.w3.org/TR/xmlschema11-2/ 60 5/5/2009 6:46 PM

The gDayLexicalRep is equivalent to this regular expression:
---(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gDay is ·gDayLexicalMap·. The ·canonical mapping· is
·gDayCanonicalMap·.

3.3.14.3 Facets

gDay and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

gDay has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from gDay MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

gDay has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

3.3.15 gMonth

gMonth represents whole (Gregorian) months within an arbitrary year—months that recur at
the same point in each year. It might be used, for example, to say what month annual
Thanksgiving celebrations fall in different countries (--11 in the United States, --10 in Canada,
and possibly other months in other countries).

Note: Because months in one calendar only rarely correspond to months in other
calendars, values of this type do not, in general, have any straightforward or intuitive
representation in terms of most other calendars. This type should therefore be used with
caution in contexts where conversion to other calendars is desired.

3.3.15.1 Value Space

http://www.w3.org/TR/xmlschema11-2/ 61 5/5/2009 6:46 PM

gMonth uses the date/timeSevenPropertyModel, with ·year·, ·day·, ·hour·, ·minute·, and
·second· required to be absent. ·timezoneOffset· remains ·optional·.

Equality and order are as prescribed in The Seven-property Model (§D.2.1).

3.3.15.2 Lexical Mapping

The lexical representations for gMonth are "projections" of those of dateTime, as follows:

Lexical Space

gMonthLexicalRep ::= '--' monthFrag timezoneFrag?

The gMonthLexicalRep is equivalent to this regular expression:
--(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?

The ·lexical mapping· for gMonth is ·gMonthLexicalMap·. The ·canonical mapping· is
·gMonthCanonicalMap·.

3.3.15.3 Facets

gMonth and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

gMonth has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

explicitTimezone = optional

Datatypes derived by restriction from gMonth MAY also specify values for the following
·constraining facets·:

pattern
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

gMonth has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

http://www.w3.org/TR/xmlschema11-2/ 62 5/5/2009 6:46 PM

3.3.16 hexBinary

[Definition:] hexBinary represents arbitrary hex-encoded binary data.

3.3.16.1 Value Space

The ·value space· of hexBinary is the set of finite-length sequences of zero or more binary
octets. The length of a value is the number of octets.

3.3.16.2 Lexical Mapping

hexBinary's ·lexical space· consists of strings of hex (hexadecimal) digits, two consecutive
digits representing each octet in the corresponding value (treating the octet as the binary
representation of a number between 0 and 255). For example, '0FB7' is a ·lexical
representation· of the two-octet value 00001111 10110111.

More formally, the ·lexical space· of hexBinary is the set of literals matching the hexBinary
production.

Lexical space of hexBinary

hexDigit ::= [0-9a-fA-F]

hexOctet ::= hexDigit hexDigit

hexBinary ::= hexOctet*

The set recognized by hexBinary is the same as that recognized by the regular expression
'([0-9a-fA-F]{2})*'.

The ·lexical mapping· of hexBinary is ·hexBinaryMap·.

The ·canonical mapping· of hexBinary is given formally in ·hexBinaryCanonical·.

3.3.16.3 Facets

hexBinary and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from hexBinary MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
pattern

http://www.w3.org/TR/xmlschema11-2/ 63 5/5/2009 6:46 PM

enumeration
assertions

hexBinary has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.17 base64Binary

[Definition:] base64Binary represents arbitrary Base64-encoded binary data. For
base64Binary data the entire binary stream is encoded using the Base64 Encoding defined
in [RFC 3548], which is derived from the encoding described in [RFC 2045].

3.3.17.1 Value Space

The ·value space· of base64Binary is the set of finite-length sequences of zero or more binary
octets. The length of a value is the number of octets.

3.3.17.2 Lexical Mapping

The ·lexical representations· of base64Binary values are limited to the 65 characters of the
Base64 Alphabet defined in [RFC 3548], i.e., a-z, A-Z, 0-9, the plus sign (+), the forward slash
(/) and the equal sign (=), together with the space character (#x20). No other characters are
allowed.

For compatibility with older mail gateways, [RFC 2045] suggests that Base64 data should
have lines limited to at most 76 characters in length. This line-length limitation is not required
by [RFC 3548] and is not mandated in the ·lexical representations· of base64Binary data. It
MUST NOT be enforced by XML Schema processors.

The ·lexical space· of base64Binary is the set of literals which ·match· the
base64Binaryproduction.

Lexical space of base64Binary

Base64Binary ::= (B64quad* B64final)?

B64quad ::= (B64 B64 B64 B64)
/* B64quad represents three octets of binary data. */

B64final ::= B64finalquad | Padded16 | Padded8

B64finalquad ::= (B64 B64 B64 B64char)
/* B64finalquad represents three octets of binary data without trailing space. */

Padded16 ::= B64 B64 B16 '='

http://www.w3.org/TR/xmlschema11-2/ 64 5/5/2009 6:46 PM

/* Padded16 represents a two-octet at the end of the data. */

Padded8 ::= B64 B04 '=' #x20? '='
/* Padded8 represents a single octet at the end of the data. */

B64 ::= B64char #x20?

B64char ::= [A-Za-z0-9+/]

B16 ::= B16char #x20?

B16char ::= [AEIMQUYcgkosw048]
/* Base64 characters whose bit-string value ends in '00' */

B04 ::= B04char #x20?

B04char ::= [AQgw]
/* Base64 characters whose bit-string value ends in '0000' */

The Base64Binary production is equivalent to the following regular expression.
((([A-Za-z0-9+/] ?){4})*(([A-Za-z0-9+/] ?){3}[A-Za-z0-9+/]|([A-Za-z0-9+/]
?){2}[AEIMQUYcgkosw048] ?=|[A-Za-z0-9+/] ?[AQgw] ?= ?=))?

Note that each '?' except the last is preceded by a single space character.

Note that this grammar requires the number of non-whitespace characters in the ·lexical
representation· to be a multiple of four, and for equals signs to appear only at the end of the
·lexical representation·; literals which do not meet these constraints are not legal ·lexical
representations· of base64Binary.

The ·lexical mapping· for base64Binary is as given in [RFC 2045] and [RFC 3548].

Note: The above definition of the ·lexical space· is more restrictive than that given in
[RFC 2045] as regards whitespace — and less restrictive than [RFC 3548]. This is not an
issue in practice. Any string compatible with either RFC can occur in an element or
attribute validated by this type, because the ·whiteSpace· facet of this type is fixed to
collapse, which means that all leading and trailing whitespace will be stripped, and all
internal whitespace collapsed to single space characters, before the above grammar is
enforced. The possibility of ignoring whitespace in Base64 data is foreseen in clause 2.3
of [RFC 3548], but for the reasons given there this specification does not allow
implementations to ignore non-whitespace characters which are not in the Base64
Alphabet.

The canonical ·lexical representation· of a base64Binary data value is the Base64 encoding of
the value which matches the Canonical-base64Binary production in the following grammar:

http://www.w3.org/TR/xmlschema11-2/ 65 5/5/2009 6:46 PM

Canonical representation of base64Binary

Canonical-base64Binary ::= CanonicalQuad* CanonicalPadded?

CanonicalQuad ::= B64char B64char B64char B64char

CanonicalPadded ::= B64char B64char B16char '=' | B64char B04char '=='

That is, the ·canonical representation· of a base64Binary value is the ·lexical representation·
which maps to that value and contains no whitespace. The ·canonical mapping· for
base64Binary is thus the encoding algorithm for Base64 data given in [RFC 2045] and [RFC
3548], with the proviso that no characters except those in the Base64 Alphabet are to be
written out.

Note: For some values the ·canonical representation· defined above does not conform to
[RFC 2045], which requires breaking with linefeeds at appropriate intervals. It does
conform with [RFC 3548].

The length of a base64Binary value may be calculated from the ·lexical representation· by
removing whitespace and padding characters and performing the calculation shown in the
pseudo-code below:

lex2 := killwhitespace(lexform) -- remove whitespace characters
lex3 := strip_equals(lex2) -- strip padding characters at end
length := floor (length(lex3) * 3 / 4) -- calculate length

Note on encoding: [RFC 2045] and [RFC 3548] explicitly reference US-utf-8 encoding.
However, decoding of base64Binary data in an XML entity is to be performed on the Unicode
characters obtained after character encoding processing as specified by [XML].

3.3.17.3 Facets

base64Binary and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from base64Binary MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

base64Binary has the following values for its ·fundamental facets·:

ordered = false
bounded = false

http://www.w3.org/TR/xmlschema11-2/ 66 5/5/2009 6:46 PM

cardinality = countably infinite
numeric = false

3.3.18 anyURI

[Definition:] anyURI represents an Internationalized Resource Identifier Reference (IRI). An
anyURI value can be absolute or relative, and may have an optional fragment identifier (i.e., it
may be an IRI Reference). This type should be used when the value fulfills the role of an IRI,
as defined in [RFC 3987] or its successor(s) in the IETF Standards Track.

Note: IRIs may be used to locate resources or simply to identify them. In the case where
they are used to locate resources using a URI, applications should use the mapping from
anyURI values to URIs given by the reference escaping procedure defined in [LEIRI] and
in Section 3.1 Mapping of IRIs to URIs of [RFC 3987] or its successor(s) in the IETF
Standards Track. This means that a wide range of internationalized resource identifiers
can be specified when an anyURI is called for, and still be understood as URIs per [RFC
3986] and its successor(s).

3.3.18.1 Value Space

The value space of anyURI is the set of finite-length sequences of zero or more characters
(as defined in [XML]) that ·match· the Char production from [XML].

3.3.18.2 Lexical Mapping

The ·lexical space· of anyURI is the set of finite-length sequences of zero or more characters
(as defined in [XML]) that ·match· the Char production from [XML].

Note: For an anyURI value to be usable in practice as an IRI, the result of applying to it
the algorithm defined in Section 3.1 of [RFC 3987] should be a string which is a legal URI
according to [RFC 3986]. (This is true at the time this document is published; if in the
future [RFC 3987] and [RFC 3986] are replaced by other specifications in the IETF
Standards Track, the relevant constraints will be those imposed by those successor
specifications.)

Each URI scheme imposes specialized syntax rules for URIs in that scheme, including
restrictions on the syntax of allowed fragment identifiers. Because it is impractical for
processors to check that a value is a context-appropriate URI reference, neither the
syntactic constraints defined by the definitions of individual schemes nor the generic
syntactic constraints defined by [RFC 3987] and [RFC 3986] and their successors are
part of this datatype as defined here. Applications which depend on anyURI values being
legal according to the rules of the relevant specifications should make arrangements to
check values against the appropriate definitions of IRI, URI, and specific schemes.

Note: Spaces are, in principle, allowed in the ·lexical space· of anyURI, however, their
use is highly discouraged (unless they are encoded by '%20').

The ·lexical mapping· for anyURI is the identity mapping.

Note: The definitions of URI in the current IETF specifications define certain URIs as
equivalent to each other. Those equivalences are not part of this datatype as defined

http://www.w3.org/TR/xmlschema11-2/ 67 5/5/2009 6:46 PM

here: if two "equivalent" URIs or IRIs are different character sequences, they map to
different values in this datatype.

3.3.18.3 Facets

anyURI and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from anyURI MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

anyURI has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.19 QName

[Definition:] QName represents XML qualified names. The ·value space· of QName is the
set of tuples {namespace name, local part}, where namespace name is an anyURI and local
part is an NCName. The ·lexical space· of QName is the set of strings that ·match· the
QName production of [Namespaces in XML].

It is ·implementation-defined· whether an implementation of this specification supports the
QName production from [Namespaces in XML], or that from [Namespaces in XML 1.0], or
both. See Dependencies on Other Specifications (§1.3).

The mapping from lexical space to value space for a particular QName ·literal· depends on
the namespace bindings in scope where the literal occurs.

When QNames appear in an XML context, the bindings to be used in the ·lexical mapping·
are those in the [in-scope namespaces] property of the relevant element. When this datatype
is used in a non-XML host language, the host language MUST specify what namespace
bindings are to be used.

The host language, whether XML-based or otherwise, MAY specify whether unqualified names
are bound to the default namespace (if any) or not; the host language may also place this
under user control. If the host language does not specify otherwise, unqualified names are
bound to the default namespace.

Note: The default treatment of unqualified names parallels that specified in [Namespaces

http://www.w3.org/TR/xmlschema11-2/ 68 5/5/2009 6:46 PM

in XML] for element names (as opposed to that specified for attribute names).

Note: The mapping between ·literals· in the ·lexical space· and values in the ·value
space· of QName depends on the set of namespace declarations in scope for the context
in which QName is used.

Because the lexical representations available for any value of type QName vary with
context, no ·canonical representation· is defined for QName in this specification.

3.3.19.1 Facets

QName and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from QName MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

QName has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.3.20 NOTATION

[Definition:] NOTATION represents the NOTATION attribute type from [XML]. The ·value
space· of NOTATION is the set of QNames of notations declared in the current schema. The
·lexical space· of NOTATION is the set of all names of notations declared in the current
schema (in the form of QNames).

Note: Because its ·value space· depends on the notion of a "current schema", as
instantiated for example by [XSD 1.1 Part 1: Structures], the NOTATION datatype is
unsuitable for use in other contexts which lack the notion of a current schema.

The lexical mapping rules for NOTATION are as given for QName in QName (§3.3.19).

Schema Component Constraint: enumeration facet value required for NOTATION

It is (with one exception) an ·error· for NOTATION to be used directly to validate a literal as
described in Datatype Valid (§4.1.4): only datatypes derived from NOTATION by specifying
a value for ·enumeration· can be used to validate literals.

http://www.w3.org/TR/xmlschema11-2/ 69 5/5/2009 6:46 PM

The exception is that in the derivation of a new type the ·literals· used to enumerate the
allowed values MAY be (and in the context of [XSD 1.1 Part 1: Structures] will be) validated
directly against NOTATION; this amounts to verifying that the value is a QName and that
the QName is the name of a NOTATION declared in the current schema.

For compatibility (see Terminology (§1.6)) NOTATION should be used only on attributes and
should only be used in schemas with no target namespace.

Note: Because the lexical representations available for any given value of NOTATION
vary with context, this specification defines no ·canonical representation· for NOTATION
values.

3.3.20.1 Facets

NOTATION and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

whiteSpace = collapse (fixed)

Datatypes derived by restriction from NOTATION MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

NOTATION has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

The use of ·length·, ·minLength· and ·maxLength· on NOTATION or datatypes derived from
NOTATION is deprecated. Future versions of this specification may remove these facets for
this datatype.

3.4 Other Built-in Datatypes
 3.4.1 normalizedString
 3.4.1.1 Facets
 3.4.1.2 Derived datatypes
 3.4.2 token
 3.4.2.1 Facets
 3.4.2.2 Derived datatypes
 3.4.3 language
 3.4.3.1 Facets
 3.4.4 NMTOKEN
 3.4.4.1 Facets
 3.4.4.2 Related datatypes

http://www.w3.org/TR/xmlschema11-2/ 70 5/5/2009 6:46 PM

 3.4.5 NMTOKENS
 3.4.5.1 Facets
 3.4.6 Name
 3.4.6.1 Facets
 3.4.6.2 Derived datatypes
 3.4.7 NCName
 3.4.7.1 Facets
 3.4.7.2 Derived datatypes
 3.4.8 ID
 3.4.8.1 Facets
 3.4.9 IDREF
 3.4.9.1 Facets
 3.4.9.2 Related datatypes
 3.4.10 IDREFS
 3.4.10.1 Facets
 3.4.11 ENTITY
 3.4.11.1 Facets
 3.4.11.2 Related datatypes
 3.4.12 ENTITIES
 3.4.12.1 Facets
 3.4.13 integer
 3.4.13.1 Lexical representation
 3.4.13.2 Canonical representation
 3.4.13.3 Facets
 3.4.13.4 Derived datatypes
 3.4.14 nonPositiveInteger
 3.4.14.1 Lexical representation
 3.4.14.2 Canonical representation
 3.4.14.3 Facets
 3.4.14.4 Derived datatypes
 3.4.15 negativeInteger
 3.4.15.1 Lexical representation
 3.4.15.2 Canonical representation
 3.4.15.3 Facets
 3.4.16 long
 3.4.16.1 Lexical Representation
 3.4.16.2 Canonical Representation
 3.4.16.3 Facets
 3.4.16.4 Derived datatypes
 3.4.17 int
 3.4.17.1 Lexical Representation
 3.4.17.2 Canonical representation
 3.4.17.3 Facets
 3.4.17.4 Derived datatypes
 3.4.18 short
 3.4.18.1 Lexical representation
 3.4.18.2 Canonical representation
 3.4.18.3 Facets
 3.4.18.4 Derived datatypes
 3.4.19 byte
 3.4.19.1 Lexical representation
 3.4.19.2 Canonical representation
 3.4.19.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 71 5/5/2009 6:46 PM

 3.4.20 nonNegativeInteger
 3.4.20.1 Lexical representation
 3.4.20.2 Canonical representation
 3.4.20.3 Facets
 3.4.20.4 Derived datatypes
 3.4.21 unsignedLong
 3.4.21.1 Lexical representation
 3.4.21.2 Canonical representation
 3.4.21.3 Facets
 3.4.21.4 Derived datatypes
 3.4.22 unsignedInt
 3.4.22.1 Lexical representation
 3.4.22.2 Canonical representation
 3.4.22.3 Facets
 3.4.22.4 Derived datatypes
 3.4.23 unsignedShort
 3.4.23.1 Lexical representation
 3.4.23.2 Canonical representation
 3.4.23.3 Facets
 3.4.23.4 Derived datatypes
 3.4.24 unsignedByte
 3.4.24.1 Lexical representation
 3.4.24.2 Canonical representation
 3.4.24.3 Facets
 3.4.25 positiveInteger
 3.4.25.1 Lexical representation
 3.4.25.2 Canonical representation
 3.4.25.3 Facets
 3.4.26 yearMonthDuration
 3.4.26.1 The Lexical Mapping
 3.4.26.2 Facets
 3.4.27 dayTimeDuration
 3.4.27.1 The Lexical Space
 3.4.27.2 Facets
 3.4.28 dateTimeStamp
 3.4.28.1 The Lexical Space
 3.4.28.2 Facets

This section gives conceptual definitions for all ·built-in· ·ordinary· datatypes defined by this
specification. The XML representation used to define ·ordinary· datatypes (whether ·built-in· or
·user-defined·) is given in XML Representation of Simple Type Definition Schema
Components (§4.1.2) and the complete definitions of the ·built-in· ·ordinary· datatypes are
provided in the appendix Schema for Schema Documents (Datatypes) (normative) (§A).

3.4.1 normalizedString

[Definition:] normalizedString represents white space normalized strings. The ·value
space· of normalizedString is the set of strings that do not contain the carriage return (#xD),
line feed (#xA) nor tab (#x9) characters. The ·lexical space· of normalizedString is the set of
strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters.
The ·base type· of normalizedString is string.

http://www.w3.org/TR/xmlschema11-2/ 72 5/5/2009 6:46 PM

3.4.1.1 Facets

normalizedString has the following ·constraining facets· with the values shown; these facets
MAY be specified in the derivation of new types, if the value given is at least as restrictive as
the one shown:

whiteSpace = replace

Datatypes derived by restriction from normalizedString MAY also specify values for the
following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

normalizedString has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.1.2 Derived datatypes

The following ·built-in· datatype is ·derived· from normalizedString

token

3.4.2 token

[Definition:] token represents tokenized strings. The ·value space· of token is the set of
strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters,
that have no leading or trailing spaces (#x20) and that have no internal sequences of two or
more spaces. The ·lexical space· of token is the set of strings that do not contain the carriage
return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces
(#x20) and that have no internal sequences of two or more spaces. The ·base type· of token
is normalizedString.

3.4.2.1 Facets

token has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

whiteSpace = collapse

Datatypes derived by restriction from token MAY also specify values for the following

http://www.w3.org/TR/xmlschema11-2/ 73 5/5/2009 6:46 PM

·constraining facets·:

length
minLength
maxLength
pattern
enumeration
assertions

token has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.2.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from token

language
NMTOKEN
Name

3.4.3 language

[Definition:] language represents formal natural language identifiers, as defined by [BCP 47]
(currently represented by [RFC 4646] and [RFC 4647]) or its successor(s). The ·value space·
and ·lexical space· of language are the set of all strings that conform to the pattern

[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*

This is the set of strings accepted by the grammar given in [RFC 3066], which is now
obsolete; the current specification of language codes is more restrictive. The ·base type· of
language is token.

Note: The regular expression above provides the only normative constraint on the lexical
and value spaces of this type. The additional constraints imposed on language identifiers
by [BCP 47] and its successor(s), and in particular their requirement that language codes
be registered with IANA or ISO if not given in ISO 639, are not part of this datatype as
defined here.

Note: [BCP 47] specifies that language codes "are to be treated as case insensitive;
there exist conventions for capitalization of some of the subtags, but these MUST NOT
be taken to carry meaning." Since the language datatype is derived from string, it inherits
from string a one-to-one mapping from lexical representations to values. The literals 'MN'
and 'mn' (for Mongolian) therefore correspond to distinct values and have distinct
canonical forms. Users of this specification should be aware of this fact, the consequence
of which is that the case-insensitive treatment of language values prescribed by [BCP 47]
does not follow from the definition of this datatype given here; applications which require
case-insensitivity should make appropriate adjustments.

http://www.w3.org/TR/xmlschema11-2/ 74 5/5/2009 6:46 PM

Note: The empty string is not a member of the ·value space· of language. Some
constructs which normally take language codes as their values, however, also allow the
empty string. The attribute xml:lang defined by [XML] is one example; there, the empty
string overrides a value which would otherwise be inherited, but without specifying a new
value.

One way to define the desired set of possible values is illustrated by the schema
document for the XML namespace at http://www.w3.org/2001/xml.xsd, which defines the
attribute xml:lang as having a type which is a union of language and an anonymous type
whose only value is the empty string:

 <xs:attribute name="lang">
 <xs:annotation>
 <xs:documentation>
 See RFC 3066 at http://www.ietf.org/rfc/rfc3066.txt
 and the IANA registry at
 http://www.iana.org/assignments/lang-tag-apps.htm for
 further information.

 The union allows for the 'un-declaration' of xml:lang with
 the empty string.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:union memberTypes="xs:language">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value=""/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>

3.4.3.1 Facets

language has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*
whiteSpace = collapse

Datatypes derived by restriction from language MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
enumeration
assertions

language has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

http://www.w3.org/TR/xmlschema11-2/ 75 5/5/2009 6:46 PM

3.4.4 NMTOKEN

[Definition:] NMTOKEN represents the NMTOKEN attribute type from [XML]. The ·value
space· of NMTOKEN is the set of tokens that ·match· the Nmtoken production in [XML]. The
·lexical space· of NMTOKEN is the set of strings that ·match· the Nmtoken production in
[XML]. The ·base type· of NMTOKEN is token.

It is ·implementation-defined· whether an implementation of this specification supports the
NMTOKEN production from [XML], or that from [XML 1.0], or both. See Dependencies on
Other Specifications (§1.3).

For compatibility (see Terminology (§1.6) NMTOKEN should be used only on attributes.

3.4.4.1 Facets

NMTOKEN has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = \c+
whiteSpace = collapse

Datatypes derived by restriction from NMTOKEN MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
enumeration
assertions

NMTOKEN has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.4.2 Related datatypes

The following ·built-in· datatype is ·constructed· from NMTOKEN

NMTOKENS

3.4.5 NMTOKENS

[Definition:] NMTOKENS represents the NMTOKENS attribute type from [XML]. The ·value
space· of NMTOKENS is the set of finite, non-zero-length sequences of ·NMTOKEN·s. The
·lexical space· of NMTOKENS is the set of space-separated lists of tokens, of which each
token is in the ·lexical space· of NMTOKEN. The ·item type· of NMTOKENS is NMTOKEN.

http://www.w3.org/TR/xmlschema11-2/ 76 5/5/2009 6:46 PM

For compatibility (see Terminology (§1.6)) NMTOKENS should be used only on attributes.

3.4.5.1 Facets

NMTOKENS has the following ·constraining facets· with the values shown; these facets MAY
be specified in the derivation of new types, if the value given is at least as restrictive as the
one shown:

minLength = 1
whiteSpace = collapse

Datatypes derived by restriction from NMTOKENS MAY also specify values for the following
·constraining facets·:

length
maxLength
enumeration
pattern
assertions

NMTOKENS has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.6 Name

[Definition:] Name represents XML Names. The ·value space· of Name is the set of all
strings which ·match· the Name production of [XML]. The ·lexical space· of Name is the set of
all strings which ·match· the Name production of [XML]. The ·base type· of Name is token.

It is ·implementation-defined· whether an implementation of this specification supports the
Name production from [XML], or that from [XML 1.0], or both. See Dependencies on Other
Specifications (§1.3).

3.4.6.1 Facets

Name has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = \i\c*
whiteSpace = collapse

Datatypes derived by restriction from Name MAY also specify values for the following
·constraining facets·:

length
minLength

http://www.w3.org/TR/xmlschema11-2/ 77 5/5/2009 6:46 PM

maxLength
enumeration
assertions

Name has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.6.2 Derived datatypes

The following ·built-in· datatype is ·derived· from Name

NCName

3.4.7 NCName

[Definition:] NCName represents XML "non-colonized" Names. The ·value space· of
NCName is the set of all strings which ·match· the NCName production of [Namespaces in
XML]. The ·lexical space· of NCName is the set of all strings which ·match· the NCName
production of [Namespaces in XML]. The ·base type· of NCName is Name.

It is ·implementation-defined· whether an implementation of this specification supports the
NCName production from [Namespaces in XML], or that from [Namespaces in XML 1.0], or
both. See Dependencies on Other Specifications (§1.3).

3.4.7.1 Facets

NCName has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from NCName MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
enumeration
assertions

NCName has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite

http://www.w3.org/TR/xmlschema11-2/ 78 5/5/2009 6:46 PM

numeric = false

3.4.7.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from NCName

ID
IDREF
ENTITY

3.4.8 ID

[Definition:] ID represents the ID attribute type from [XML]. The ·value space· of ID is the set
of all strings that ·match· the NCName production in [Namespaces in XML]. The ·lexical
space· of ID is the set of all strings that ·match· the NCName production in [Namespaces in
XML]. The ·base type· of ID is NCName.

Note: It is ·implementation-defined· whether an implementation of this specification
supports the NCName production from [Namespaces in XML], or that from [Namespaces
in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

For compatibility (see Terminology (§1.6)), ID should be used only on attributes.

Note: Uniqueness of items validated as ID is not part of this datatype as defined here.
When this specification is used in conjunction with [XSD 1.1 Part 1: Structures],
uniqueness is enforced at a different level, not as part of datatype validity; see Validation
Rule: Validation Root Valid (ID/IDREF) in [XSD 1.1 Part 1: Structures].

3.4.8.1 Facets

ID has the following ·constraining facets· with the values shown; these facets MAY be specified
in the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from ID MAY also specify values for the following ·constraining
facets·:

length
minLength
maxLength
enumeration
assertions

ID has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

http://www.w3.org/TR/xmlschema11-2/ 79 5/5/2009 6:46 PM

3.4.9 IDREF

[Definition:] IDREF represents the IDREF attribute type from [XML]. The ·value space· of
IDREF is the set of all strings that ·match· the NCName production in [Namespaces in XML].
The ·lexical space· of IDREF is the set of strings that ·match· the NCName production in
[Namespaces in XML]. The ·base type· of IDREF is NCName.

Note: It is ·implementation-defined· whether an implementation of this specification
supports the NCName production from [Namespaces in XML], or that from [Namespaces
in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

For compatibility (see Terminology (§1.6)) this datatype should be used only on attributes.

Note: Existence of referents for items validated as IDREF is not part of this datatype as
defined here. When this specification is used in conjunction with [XSD 1.1 Part 1:
Structures], referential integrity is enforced at a different level, not as part of datatype
validity; see Validation Rule: Validation Root Valid (ID/IDREF) in [XSD 1.1 Part 1:
Structures].

3.4.9.1 Facets

IDREF has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from IDREF MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
enumeration
assertions

IDREF has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.9.2 Related datatypes

The following ·built-in· datatype is ·constructed· from IDREF

IDREFS

3.4.10 IDREFS

http://www.w3.org/TR/xmlschema11-2/ 80 5/5/2009 6:46 PM

[Definition:] IDREFS represents the IDREFS attribute type from [XML]. The ·value space· of
IDREFS is the set of finite, non-zero-length sequences of IDREFs. The ·lexical space· of
IDREFS is the set of space-separated lists of tokens, of which each token is in the ·lexical
space· of IDREF. The ·item type· of IDREFS is IDREF.

For compatibility (see Terminology (§1.6)) IDREFS should be used only on attributes.

Note: Existence of referents for items validated as IDREFS is not part of this datatype as
defined here. When this specification is used in conjunction with [XSD 1.1 Part 1:
Structures], referential integrity is enforced at a different level, not as part of datatype
validity; see Validation Rule: Validation Root Valid (ID/IDREF) in [XSD 1.1 Part 1:
Structures].

3.4.10.1 Facets

IDREFS has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

minLength = 1
whiteSpace = collapse

Datatypes derived by restriction from IDREFS MAY also specify values for the following
·constraining facets·:

length
maxLength
enumeration
pattern
assertions

IDREFS has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.11 ENTITY

[Definition:] ENTITY represents the ENTITY attribute type from [XML]. The ·value space· of
ENTITY is the set of all strings that ·match· the NCName production in [Namespaces in XML]
and have been declared as an unparsed entity in a document type definition. The ·lexical
space· of ENTITY is the set of all strings that ·match· the NCName production in
[Namespaces in XML]. The ·base type· of ENTITY is NCName.

Note: It is ·implementation-defined· whether an implementation of this specification
supports the NCName production from [Namespaces in XML], or that from [Namespaces
in XML 1.0], or both. See Dependencies on Other Specifications (§1.3).

Note: The ·value space· of ENTITY is scoped to a specific instance document.

http://www.w3.org/TR/xmlschema11-2/ 81 5/5/2009 6:46 PM

For compatibility (see Terminology (§1.6)) ENTITY should be used only on attributes.

3.4.11.1 Facets

ENTITY has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = \i\c* ∩ [\i-[:]][\c-[:]]*
whiteSpace = collapse

Datatypes derived by restriction from ENTITY MAY also specify values for the following
·constraining facets·:

length
minLength
maxLength
enumeration
assertions

ENTITY has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.11.2 Related datatypes

The following ·built-in· datatype is ·constructed· from ENTITY

ENTITIES

3.4.12 ENTITIES

[Definition:] ENTITIES represents the ENTITIES attribute type from [XML]. The ·value space·
of ENTITIES is the set of finite, non-zero-length sequences of ·ENTITY· valuess that have
been declared as unparsed entities in a document type definition. The ·lexical space· of
ENTITIES is the set of space-separated lists of tokens, of which each token is in the ·lexical
space· of ENTITY. The ·item type· of ENTITIES is ENTITY.

Note: The ·value space· of ENTITIES is scoped to a specific instance document.

For compatibility (see Terminology (§1.6)) ENTITIES should be used only on attributes.

3.4.12.1 Facets

ENTITIES has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

http://www.w3.org/TR/xmlschema11-2/ 82 5/5/2009 6:46 PM

minLength = 1
whiteSpace = collapse

Datatypes derived by restriction from ENTITIES MAY also specify values for the following
·constraining facets·:

length
maxLength
enumeration
pattern
assertions

ENTITIES has the following values for its ·fundamental facets·:

ordered = false
bounded = false
cardinality = countably infinite
numeric = false

3.4.13 integer

[Definition:] integer is derived from decimal by fixing the value of ·fractionDigits· to be 0 and
disallowing the trailing decimal point. This results in the standard mathematical concept of the
integer numbers. The ·value space· of integer is the infinite set {...,-2,-1,0,1,2,...}. The ·base
type· of integer is decimal.

3.4.13.1 Lexical representation

integer has a lexical representation consisting of a finite-length sequence of one or more
decimal digits (#x30-#x39) with an optional leading sign. If the sign is omitted, "+" is
assumed. For example: -1, 0, 12678967543233, +100000.

3.4.13.2 Canonical representation

The ·canonical representation· for integer is defined by prohibiting certain options from the
Lexical representation (§3.4.13.1). Specifically, the preceding optional "+" sign is prohibited
and leading zeroes are prohibited.

3.4.13.3 Facets

integer and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

integer has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

http://www.w3.org/TR/xmlschema11-2/ 83 5/5/2009 6:46 PM

pattern = [\-+]?[0-9]+

Datatypes derived by restriction from integer MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

integer has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.13.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from integer

nonPositiveInteger
long
nonNegativeInteger

3.4.14 nonPositiveInteger

[Definition:] nonPositiveInteger is derived from integer by setting the value of
·maxInclusive· to be 0. This results in the standard mathematical concept of the non-positive
integers. The ·value space· of nonPositiveInteger is the infinite set {...,-2,-1,0}. The ·base
type· of nonPositiveInteger is integer.

3.4.14.1 Lexical representation

nonPositiveInteger has a lexical representation consisting of an optional preceding sign
followed by a non-empty finite-length sequence of decimal digits (#x30-#x39). The sign may
be "+" or may be omitted only for lexical forms denoting zero; in all other lexical forms, the
negative sign ('-') must be present. For example: -1, 0, -12678967543233, -100000.

3.4.14.2 Canonical representation

The ·canonical representation· for nonPositiveInteger is defined by prohibiting certain options
from the Lexical representation (§3.4.14.1). In the canonical form for zero, the sign must be
omitted. Leading zeroes are prohibited.

3.4.14.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 84 5/5/2009 6:46 PM

nonPositiveInteger and all datatypes derived from it by restriction have the following
·constraining facets· with fixed values; these facets MUST NOT be changed from the values
shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

nonPositiveInteger has the following ·constraining facets· with the values shown; these facets
MAY be specified in the derivation of new types, if the value given is at least as restrictive as
the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 0

Datatypes derived by restriction from nonPositiveInteger MAY also specify values for the
following ·constraining facets·:

totalDigits
enumeration
maxExclusive
minInclusive
minExclusive
assertions

nonPositiveInteger has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.14.4 Derived datatypes

The following ·built-in· datatype is ·derived· from nonPositiveInteger

negativeInteger

3.4.15 negativeInteger

[Definition:] negativeInteger is derived from nonPositiveInteger by setting the value of
·maxInclusive· to be -1. This results in the standard mathematical concept of the negative
integers. The ·value space· of negativeInteger is the infinite set {...,-2,-1}. The ·base type· of
negativeInteger is nonPositiveInteger.

3.4.15.1 Lexical representation

negativeInteger has a lexical representation consisting of a negative sign ('-') followed by a
non-empty finite-length sequence of decimal digits (#x30-#x39). For example: -1,
-12678967543233, -100000.

http://www.w3.org/TR/xmlschema11-2/ 85 5/5/2009 6:46 PM

3.4.15.2 Canonical representation

The ·canonical representation· for negativeInteger is defined by prohibiting certain options
from the Lexical representation (§3.4.15.1). Specifically, leading zeroes are prohibited.

3.4.15.3 Facets

negativeInteger and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

negativeInteger has the following ·constraining facets· with the values shown; these facets
MAY be specified in the derivation of new types, if the value given is at least as restrictive as
the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = -1

Datatypes derived by restriction from negativeInteger MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minInclusive
minExclusive
assertions

negativeInteger has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.16 long

[Definition:] long is derived from integer by setting the value of ·maxInclusive· to be
9223372036854775807 and ·minInclusive· to be -9223372036854775808. The ·base type· of
long is integer.

3.4.16.1 Lexical Representation

long has a lexical representation consisting of an optional sign followed by a non-empty
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed.
For example: -1, 0, 12678967543233, +100000.

3.4.16.2 Canonical Representation

http://www.w3.org/TR/xmlschema11-2/ 86 5/5/2009 6:46 PM

The ·canonical representation· for long is defined by prohibiting certain options from the
Lexical Representation (§3.4.16.1). Specifically, the the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.4.16.3 Facets

long and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

long has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = [\-+]?[0-9]+
maxInclusive = 9223372036854775807
minInclusive = -9223372036854775808

Datatypes derived by restriction from long MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

long has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.16.4 Derived datatypes

The following ·built-in· datatype is ·derived· from long

int

3.4.17 int

[Definition:] int is derived from long by setting the value of ·maxInclusive· to be 2147483647
and ·minInclusive· to be -2147483648. The ·base type· of int is long.

3.4.17.1 Lexical Representation

int has a lexical representation consisting of an optional sign followed by a non-empty

http://www.w3.org/TR/xmlschema11-2/ 87 5/5/2009 6:46 PM

finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed.
For example: -1, 0, 126789675, +100000.

3.4.17.2 Canonical representation

The ·canonical representation· for int is defined by prohibiting certain options from the Lexical
Representation (§3.4.17.1). Specifically, the the optional "+" sign is prohibited and leading
zeroes are prohibited.

3.4.17.3 Facets

int and all datatypes derived from it by restriction have the following ·constraining facets· with
fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

int has the following ·constraining facets· with the values shown; these facets MAY be specified
in the derivation of new types, if the value given is at least as restrictive as the one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 2147483647
minInclusive = -2147483648

Datatypes derived by restriction from int MAY also specify values for the following ·constraining
facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

int has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.17.4 Derived datatypes

The following ·built-in· datatype is ·derived· from int

short

3.4.18 short

[Definition:] short is derived from int by setting the value of ·maxInclusive· to be 32767 and
·minInclusive· to be -32768. The ·base type· of short is int.

http://www.w3.org/TR/xmlschema11-2/ 88 5/5/2009 6:46 PM

3.4.18.1 Lexical representation

short has a lexical representation consisting of an optional sign followed by a non-empty
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed.
For example: -1, 0, 12678, +10000.

3.4.18.2 Canonical representation

The ·canonical representation· for short is defined by prohibiting certain options from the
Lexical representation (§3.4.18.1). Specifically, the the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.4.18.3 Facets

short and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

short has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = [\-+]?[0-9]+
maxInclusive = 32767
minInclusive = -32768

Datatypes derived by restriction from short MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

short has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.18.4 Derived datatypes

The following ·built-in· datatype is ·derived· from short

byte

http://www.w3.org/TR/xmlschema11-2/ 89 5/5/2009 6:46 PM

3.4.19 byte

[Definition:] byte is derived from short by setting the value of ·maxInclusive· to be 127 and
·minInclusive· to be -128. The ·base type· of byte is short.

3.4.19.1 Lexical representation

byte has a lexical representation consisting of an optional sign followed by a non-empty
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed.
For example: -1, 0, 126, +100.

3.4.19.2 Canonical representation

The ·canonical representation· for byte is defined by prohibiting certain options from the
Lexical representation (§3.4.19.1). Specifically, the the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.4.19.3 Facets

byte and all datatypes derived from it by restriction have the following ·constraining facets·
with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

byte has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = [\-+]?[0-9]+
maxInclusive = 127
minInclusive = -128

Datatypes derived by restriction from byte MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

byte has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.20 nonNegativeInteger

http://www.w3.org/TR/xmlschema11-2/ 90 5/5/2009 6:46 PM

[Definition:] nonNegativeInteger is derived from integer by setting the value of
·minInclusive· to be 0. This results in the standard mathematical concept of the non-negative
integers. The ·value space· of nonNegativeInteger is the infinite set {0,1,2,...}. The ·base
type· of nonNegativeInteger is integer.

3.4.20.1 Lexical representation

nonNegativeInteger has a lexical representation consisting of an optional sign followed by a
non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the
positive sign ('+') is assumed. If the sign is present, it must be "+" except for lexical forms
denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example:
1, 0, 12678967543233, +100000.

3.4.20.2 Canonical representation

The ·canonical representation· for nonNegativeInteger is defined by prohibiting certain options
from the Lexical representation (§3.4.20.1). Specifically, the the optional "+" sign is prohibited
and leading zeroes are prohibited.

3.4.20.3 Facets

nonNegativeInteger and all datatypes derived from it by restriction have the following
·constraining facets· with fixed values; these facets MUST NOT be changed from the values
shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

nonNegativeInteger has the following ·constraining facets· with the values shown; these facets
MAY be specified in the derivation of new types, if the value given is at least as restrictive as
the one shown:

pattern = [\-+]?[0-9]+
minInclusive = 0

Datatypes derived by restriction from nonNegativeInteger MAY also specify values for the
following ·constraining facets·:

totalDigits
enumeration
maxInclusive
maxExclusive
minExclusive
assertions

nonNegativeInteger has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite

http://www.w3.org/TR/xmlschema11-2/ 91 5/5/2009 6:46 PM

numeric = true

3.4.20.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from nonNegativeInteger

unsignedLong
positiveInteger

3.4.21 unsignedLong

[Definition:] unsignedLong is derived from nonNegativeInteger by setting the value of
·maxInclusive· to be 18446744073709551615. The ·base type· of unsignedLong is
nonNegativeInteger.

3.4.21.1 Lexical representation

unsignedLong has a lexical representation consisting of an optional sign followed by a
non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the
positive sign ('+') is assumed. If the sign is present, it must be '+' except for lexical forms
denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example:
0, 12678967543233, 100000.

3.4.21.2 Canonical representation

The ·canonical representation· for unsignedLong is defined by prohibiting certain options from
the Lexical representation (§3.4.21.1). Specifically, leading zeroes are prohibited.

3.4.21.3 Facets

unsignedLong and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

unsignedLong has the following ·constraining facets· with the values shown; these facets MAY
be specified in the derivation of new types, if the value given is at least as restrictive as the
one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 18446744073709551615
minInclusive = 0

Datatypes derived by restriction from unsignedLong MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration

http://www.w3.org/TR/xmlschema11-2/ 92 5/5/2009 6:46 PM

maxExclusive
minExclusive
assertions

unsignedLong has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.21.4 Derived datatypes

The following ·built-in· datatype is ·derived· from unsignedLong

unsignedInt

3.4.22 unsignedInt

[Definition:] unsignedInt is derived from unsignedLong by setting the value of ·maxInclusive·
to be 4294967295. The ·base type· of unsignedInt is unsignedLong.

3.4.22.1 Lexical representation

unsignedInt has a lexical representation consisting of an optional sign followed by a
non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the
positive sign ('+') is assumed. If the sign is present, it must be '+' except for lexical forms
denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example:
0, 1267896754, 100000.

3.4.22.2 Canonical representation

The ·canonical representation· for unsignedInt is defined by prohibiting certain options from
the Lexical representation (§3.4.22.1). Specifically, leading zeroes are prohibited.

3.4.22.3 Facets

unsignedInt and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

unsignedInt has the following ·constraining facets· with the values shown; these facets MAY be
specified in the derivation of new types, if the value given is at least as restrictive as the one
shown:

pattern = [\-+]?[0-9]+
maxInclusive = 4294967295

http://www.w3.org/TR/xmlschema11-2/ 93 5/5/2009 6:46 PM

minInclusive = 0

Datatypes derived by restriction from unsignedInt MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

unsignedInt has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.22.4 Derived datatypes

The following ·built-in· datatype is ·derived· from unsignedInt

unsignedShort

3.4.23 unsignedShort

[Definition:] unsignedShort is derived from unsignedInt by setting the value of
·maxInclusive· to be 65535. The ·base type· of unsignedShort is unsignedInt.

3.4.23.1 Lexical representation

unsignedShort has a lexical representation consisting of an optional sign followed by a
non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the
positive sign ('+') is assumed. If the sign is present, it must be '+' except for lexical forms
denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example:
0, 12678, 10000.

3.4.23.2 Canonical representation

The ·canonical representation· for unsignedShort is defined by prohibiting certain options from
the Lexical representation (§3.4.23.1). Specifically, the leading zeroes are prohibited.

3.4.23.3 Facets

unsignedShort and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

http://www.w3.org/TR/xmlschema11-2/ 94 5/5/2009 6:46 PM

unsignedShort has the following ·constraining facets· with the values shown; these facets MAY
be specified in the derivation of new types, if the value given is at least as restrictive as the
one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 65535
minInclusive = 0

Datatypes derived by restriction from unsignedShort MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

unsignedShort has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.23.4 Derived datatypes

The following ·built-in· datatype is ·derived· from unsignedShort

unsignedByte

3.4.24 unsignedByte

[Definition:] unsignedByte is derived from unsignedShort by setting the value of
·maxInclusive· to be 255. The ·base type· of unsignedByte is unsignedShort.

3.4.24.1 Lexical representation

unsignedByte has a lexical representation consisting of an optional sign followed by a
non-empty finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the
positive sign ('+') is assumed. If the sign is present, it must be '+' except for lexical forms
denoting zero, which may be preceded by a positive ('+') or a negative ('-') sign. For example:
0, 126, 100.

3.4.24.2 Canonical representation

The ·canonical representation· for unsignedByte is defined by prohibiting certain options from
the Lexical representation (§3.4.24.1). Specifically, leading zeroes are prohibited.

3.4.24.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 95 5/5/2009 6:46 PM

unsignedByte and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

unsignedByte has the following ·constraining facets· with the values shown; these facets MAY
be specified in the derivation of new types, if the value given is at least as restrictive as the
one shown:

pattern = [\-+]?[0-9]+
maxInclusive = 255
minInclusive = 0

Datatypes derived by restriction from unsignedByte MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxExclusive
minExclusive
assertions

unsignedByte has the following values for its ·fundamental facets·:

ordered = total
bounded = true
cardinality = finite
numeric = true

3.4.25 positiveInteger

[Definition:] positiveInteger is derived from nonNegativeInteger by setting the value of
·minInclusive· to be 1. This results in the standard mathematical concept of the positive
integer numbers. The ·value space· of positiveInteger is the infinite set {1,2,...}. The ·base
type· of positiveInteger is nonNegativeInteger.

3.4.25.1 Lexical representation

positiveInteger has a lexical representation consisting of an optional positive sign ('+') followed
by a non-empty finite-length sequence of decimal digits (#x30-#x39). For example: 1,
12678967543233, +100000.

3.4.25.2 Canonical representation

The ·canonical representation· for positiveInteger is defined by prohibiting certain options from
the Lexical representation (§3.4.25.1). Specifically, the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.4.25.3 Facets

http://www.w3.org/TR/xmlschema11-2/ 96 5/5/2009 6:46 PM

positiveInteger and all datatypes derived from it by restriction have the following ·constraining
facets· with fixed values; these facets MUST NOT be changed from the values shown:

fractionDigits = 0 (fixed)
whiteSpace = collapse (fixed)

positiveInteger has the following ·constraining facets· with the values shown; these facets MAY
be specified in the derivation of new types, if the value given is at least as restrictive as the
one shown:

pattern = [\-+]?[0-9]+
minInclusive = 1

Datatypes derived by restriction from positiveInteger MAY also specify values for the following
·constraining facets·:

totalDigits
enumeration
maxInclusive
maxExclusive
minExclusive
assertions

positiveInteger has the following values for its ·fundamental facets·:

ordered = total
bounded = false
cardinality = countably infinite
numeric = true

3.4.26 yearMonthDuration

[Definition:] yearMonthDuration is a datatype derived from duration by restricting its ·lexical
representations· to instances of yearMonthDurationLexicalRep. The ·value space· of
yearMonthDuration is therefore that of duration restricted to those whose ·seconds· property
is 0. This results in a duration datatype which is totally ordered.

Note: The always-zero ·seconds· is formally retained in order that yearMonthDuration's
(abstract) value space truly be a subset of that of duration An obvious implementation
optimization is to ignore the zero and implement yearMonthDuration values simply as
integer values.

3.4.26.1 The yearMonthDuration Lexical Mapping

The lexical space is reduced from that of duration by disallowing duDayFrag and duTimeFrag
fragments in the ·lexical representations·.

The yearMonthDuration Lexical Representation

yearMonthDurationLexicalRep ::= '-'? 'P' duYearMonthFrag

http://www.w3.org/TR/xmlschema11-2/ 97 5/5/2009 6:46 PM

The lexical space of yearMonthDuration consists of strings which match the regular
expression '-?P((([0-9]+Y)([0-9]+M)?)|([0-9]+M))' or the expression
'-?P[0-9]+(Y([0-9]+M)?|M)', but the formal definition of yearMonthDuration uses a simpler
regular expression in its ·pattern· facet: '[^DT]*'. This pattern matches only strings of
characters which contain no 'D' and no 'T', thus restricting the ·lexical space· of duration to
strings with no day, hour, minute, or seconds fields.

The ·canonical mapping· is that of duration restricted in its range to the ·lexical space· (which
reduces its domain to omit any values not in the yearMonthDuration value space).

Note: The yearMonthDuration value whose ·months· and ·seconds· are both zero has no
·canonical representation· in this datatype since its ·canonical representation· in duration
('PT0S') is not in the ·lexical space· of yearMonthDuration.

3.4.26.2 Facets

yearMonthDuration and all datatypes derived from it by restriction have the following
·constraining facets· with fixed values; these facets MUST NOT be changed from the values
shown:

whiteSpace = collapse (fixed)

yearMonthDuration has the following ·constraining facets· with the values shown; these facets
MAY be specified in the derivation of new types, if the value given is at least as restrictive as
the one shown:

pattern = [^DT]*

Datatypes derived by restriction from yearMonthDuration MAY also specify values for the
following ·constraining facets·:

enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

yearMonthDuration has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

Note: The ordered facet has the value partial even though the datatype is in fact totally
ordered, because (as explained in ordered (§4.2.1)), the value of that facet is unchanged
by derivation.

3.4.27 dayTimeDuration

[Definition:] dayTimeDuration is a datatype derived from duration by restricting its ·lexical

http://www.w3.org/TR/xmlschema11-2/ 98 5/5/2009 6:46 PM

representations· to instances of dayTimeDurationLexicalRep. The ·value space· of
dayTimeDuration is therefore that of duration restricted to those whose ·months· property is
0. This results in a duration datatype which is totally ordered.

3.4.27.1 The dayTimeDuration Lexical Space

The lexical space is reduced from that of duration by disallowing duYearFrag and
duMonthFrag fragments in the ·lexical representations·.

The dayTimeDuration Lexical Representation

dayTimeDurationLexicalRep ::= '-'? 'P' duDayTimeFrag

The lexical space of dayTimeDuration consists of strings in the ·lexical space· of duration
which match the regular expression '[^YM]*[DT].*'; this pattern eliminates all durations with
year or month fields, leaving only those with day, hour, minutes, and/or seconds fields.

The ·canonical mapping· is that of duration restricted in its range to the ·lexical space· (which
reduces its domain to omit any values not in the dayTimeDuration value space).

3.4.27.2 Facets

dayTimeDuration and all datatypes derived from it by restriction have the following
·constraining facets· with fixed values; these facets MUST NOT be changed from the values
shown:

whiteSpace = collapse (fixed)

dayTimeDuration has the following ·constraining facets· with the values shown; these facets
MAY be specified in the derivation of new types, if the value given is at least as restrictive as
the one shown:

pattern = [^YM]*(T.*)?

Datatypes derived by restriction from dayTimeDuration MAY also specify values for the
following ·constraining facets·:

enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

dayTimeDuration has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite

http://www.w3.org/TR/xmlschema11-2/ 99 5/5/2009 6:46 PM

numeric = false

Note: The ordered facet has the value partial even though the datatype is in fact totally
ordered, because (as explained in ordered (§4.2.1)), the value of that facet is unchanged
by derivation.

3.4.28 dateTimeStamp

[Definition:] The dateTimeStamp datatype is derived from dateTime by giving the value
required to its explicitTimezone facet. The result is that all values of dateTimeStamp are
required to have explicit time zone offsets and the datatype is totally ordered.

3.4.28.1 The dateTimeStamp Lexical Space

As a consequence of requiring an explicit time zone offset, the lexical space of
dateTimeStamp is reduced from that of dateTime by requiring a timezoneFrag fragment in the
·lexical representations·.

The dateTimeStamp Lexical Representation

dateTimeStampLexicalRep ::=
yearFrag '-' monthFrag '-' dayFrag 'T' ((hourFrag ':' minuteFrag ':' secondFrag) |
endOfDayFrag) timezoneFrag Constraint: Day-of-month Representations

Note: For details of the Day-of-month Representations (§3.3.8.2) constraint, see
dateTime, from which the constraint is inherited.

In other words, the lexical space of dateTimeStamp consists of strings which are in the ·lexical
space· of dateTime and which also match the regular expression
'.*(Z|(\+|-)[0-9][0-9]:[0-9][0-9])'.

The ·lexical mapping· is that of dateTime restricted to the dateTimeStamp lexical space.

The ·canonical mapping· is that of dateTime restricted to the dateTimeStamp value space.

3.4.28.2 Facets

dateTimeStamp and all datatypes derived from it by restriction have the following
·constraining facets· with fixed values; these facets MUST NOT be changed from the values
shown:

whiteSpace = collapse (fixed)
explicitTimezone = required (fixed)

Datatypes derived by restriction from dateTimeStamp MAY also specify values for the following
·constraining facets·:

pattern

http://www.w3.org/TR/xmlschema11-2/ 100 5/5/2009 6:46 PM

enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive
assertions

dateTimeStamp has the following values for its ·fundamental facets·:

ordered = partial
bounded = false
cardinality = countably infinite
numeric = false

Note: The ordered facet has the value partial even though the datatype is in fact totally
ordered, because (as explained in ordered (§4.2.1)), the value of that facet is unchanged
by derivation.

4 Datatype components

The preceding sections of this specification have described datatypes in a way largely
independent of their use in the particular context of schema-aware processing as defined in
[XSD 1.1 Part 1: Structures].

This section presents the mechanisms necessary to integrate datatypes into the context of
[XSD 1.1 Part 1: Structures], mostly in terms of the schema component abstraction
introduced there. The account of datatypes given in this specification is also intended to be
useful in other contexts. Any specification or other formal system intending to use datatypes
as defined above, particularly if definition of new datatypes via facet-based restriction is
envisaged, will need to provide analogous mechanisms for some, but not necessarily all, of
what follows below. For example, the {target namespace} and {final} properties are required
because of particular aspects of [XSD 1.1 Part 1: Structures] which are not in principle
necessary for the use of datatypes as defined here.

The following sections provide full details on the properties and significance of each kind of
schema component involved in datatype definitions. For each property, the kinds of values it
is allowed to have is specified. Any property not identified as optional is required to be
present; optional properties which are not present have absent as their value. Any property
identified as a having a set, subset or ·list· value may have an empty value unless this is
explicitly ruled out: this is not the same as absent. Any property value identified as a superset
or a subset of some set may be equal to that set, unless a proper superset or subset is
explicitly called for.

For more information on the notion of schema components, see Schema Component Details
of [XSD 1.1 Part 1: Structures].

[Definition:] A component may be referred to as the owner of its properties, and of the values
of those properties.

4.1 Simple Type Definition
 4.1.1 The Simple Type Definition Schema Component
 4.1.2 XML Representation of Simple Type Definition Schema Components

http://www.w3.org/TR/xmlschema11-2/ 101 5/5/2009 6:46 PM

 4.1.3 Constraints on XML Representation of Simple Type Definition
 4.1.4 Simple Type Definition Validation Rules
 4.1.5 Constraints on Simple Type Definition Schema Components
 4.1.6 Built-in Simple Type Definitions

Simple Type Definitions provide for:

In the case of ·primitive· datatypes, identifying a datatype with its definition in this
specification.

In the case of ·constructed· datatypes, defining the datatype in terms of other datatypes.

Attaching a QName to the datatype.

4.1.1 The Simple Type Definition Schema Component

The Simple Type Definition schema component has the following properties:

Schema Component: Simple Type Definition
{annotations}

A sequence of Annotation components.
{name}

An xs:NCName value. Optional.
{target namespace}

An xs:anyURI value. Optional.
{final}

A subset of {restriction, extension, list, union}
{context}

Required if {name} is absent, otherwise MUST be absent
Either an Attribute Declaration, an Element Declaration, a Complex Type
Definition or a Simple Type Definition.

{base type definition}

A Type Definition component. Required.
With one exception, the {base type definition} of any Simple Type Definition is a
Simple Type Definition. The exception is ·anySimpleType·, which has anyType, a
Complex Type Definition, as its {base type definition}.

{facets}

A set of Constraining Facet components.
{fundamental facets}

A set of Fundamental Facet components.
{variety}

One of {atomic, list, union}. Required for all Simple Type Definitions except
·anySimpleType·, in which it is absent.

{primitive type definition}

A Simple Type Definition component. With one exception, required if {variety} is
atomic, otherwise MUST be absent. The exception is ·anyAtomicType·, whose
{primitive type definition} is absent.
If not absent, MUST be a ·primitive· built-in definition.

{item type definition}

A Simple Type Definition component. Required if {variety} is list, otherwise MUST
be absent.

{member type definitions}

A sequence of Simple Type Definition components.

http://www.w3.org/TR/xmlschema11-2/ 102 5/5/2009 6:46 PM

MUST be present (but MAY be empty) if {variety} is union, otherwise MUST be
absent.

Simple type definitions are identified by their {name} and {target namespace}. Except for
anonymous Simple Type Definitions (those with no {name}), Simple Type Definitions MUST be
uniquely identified within a schema. Within a valid schema, each Simple Type Definition
uniquely determines one datatype. The ·value space·, ·lexical space·, ·lexical mapping·, etc.,
of a Simple Type Definition are the ·value space·, ·lexical space·, etc., of the datatype
uniquely determined (or "defined") by that Simple Type Definition.

If {variety} is ·atomic· then the ·value space· of the datatype defined will be a subset of the
·value space· of {base type definition} (which is a subset of the ·value space· of {primitive type
definition}). If {variety} is ·list· then the ·value space· of the datatype defined will be the set of
(possibly empty) finite-length sequences of values from the ·value space· of {item type
definition}. If {variety} is ·union· then the ·value space· of the datatype defined will be a subset
(possibly an improper subset) of the union of the ·value spaces· of each Simple Type
Definition in {member type definitions}.

If {variety} is ·atomic· then the {variety} of {base type definition} must be ·atomic·, unless the
{base type definition} is anySimpleType. If {variety} is ·list· then the {variety} of {item type
definition} must be either ·atomic· or ·union·, and if {item type definition} is ·union· then all its
·basic members· MUST be ·atomic·. If {variety} is ·union· then {member type definitions} must
be a list of Simple Type Definitions.

The {facets} property determines the ·value space· and ·lexical space· of the datatype being
defined by imposing constraints which must be satisfied by values and ·lexical
representations·.

The {fundamental facets} property provides some basic information about the datatype being
defined: its cardinality, whether an ordering is defined for it by this specification, whether it has
upper and lower bounds, and whether it is numeric.

If {final} is the empty set then the type can be used in deriving other types; the explicit values
restriction, list and union prevent further derivations of Simple Type Definitions by
·facet-based restriction·, ·list· and ·union· respectively; the explicit value extension prevents
any derivation of Complex Type Definitions by extension.

The {context} property is only relevant for anonymous type definitions, for which its value is
the component in which this type definition appears as the value of a property, e.g. {item type
definition} or {base type definition}.

4.1.2 XML Representation of Simple Type Definition Schema Components

The XML representation for a Simple Type Definition schema component is a <simpleType>
element information item. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: simpleType Element Information Item et al.
<simpleType
 final = (#all | List of (list | union | restriction | extension))
 id = ID

http://www.w3.org/TR/xmlschema11-2/ 103 5/5/2009 6:46 PM

Property

{name}

{target
namespace}

{base type
definition}

{final}

{context}

 name = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (restriction | list | union))
</simpleType>

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (simpleType?, (minExclusive | minInclusive |
maxExclusive | maxInclusive | totalDigits | fractionDigits | maxScale | minScale
| length | minLength | maxLength | enumeration | whiteSpace | pattern |
assertion | explicitTimezone | {any with namespace: ##other})*))
</restriction>

<list
 id = ID
 itemType = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType?)
</list>

<union
 id = ID
 memberTypes = List of QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType*)
</union>

Simple Type Definition Schema Component
Representation

The actual value of the name [attribute], if present on the <simpleType>
element, otherwise absent

The actual value of the targetNamespace [attribute] of the parent schema
element information item, if present, otherwise absent.

The appropriate case among the following:
1 If the <restriction> alternative is chosen, then the type definition

resolved to by the actual value of the base [attribute] of <restriction>, if
present, otherwise the type definition corresponding to the
<simpleType> among the [children] of <restriction>.

2 If the <list> or <union> alternative is chosen, then ·anySimpleType·.

A subset of {restriction, extension, list, union}, determined as
follows. [Definition:] Let FS be the actual value of the final [attribute], if
present, otherwise the actual value of the finalDefault [attribute] of the
ancestor schema element, if present, otherwise the empty string. Then
the property value is the appropriate case among the following:
1 If ·FS· is the empty string, then the empty set;
2 If ·FS· is '#all', then {restriction, extension, list, union};
3 otherwise Consider ·FS· as a space-separated list, and include

restriction if 'restriction' is in that list, and similarly for extension,
list and union.

The appropriate case among the following:
1 If the name [attribute] is present, then absent
2 otherwise the appropriate case among the following:

2.1 If the parent element information item is <attribute>, then the

http://www.w3.org/TR/xmlschema11-2/ 104 5/5/2009 6:46 PM

{variety}

{facets}

{fundamental
facets}

{annotations}

Property

{primitive

corresponding Attribute Declaration
2.2 If the parent element information item is <element>, then the

corresponding Element Declaration
2.3 If the parent element information item is <list> or <union>, then

the Simple Type Definition corresponding to the grandparent
<simpleType> element information item

2.4 otherwise (the parent element information item is <restriction>),
the appropriate case among the following:
2.4.1 If the grandparent element information item is <simpleType>,

then the Simple Type Definition corresponding to the
grandparent

2.4.2 otherwise (the grandparent element information item is
<simpleContent>), the Simple Type Definition which is the
{content type} of the Complex Type Definition corresponding to
the great-grandparent <complexType> element information item.

If the <list> alternative is chosen, then list, otherwise if the <union>
alternative is chosen, then union, otherwise (the <restriction>
alternative is chosen) the {variety} of the {base type definition}.

The appropriate case among the following:
1 If the <restriction> alternative is chosen, then a set of Constraining

Facet components constituting a restriction of the {facets} of the {base
type definition} with respect to a set of Constraining Facet
components corresponding to the appropriate element information
items among the [children] of <restriction> (i.e. those which specify
facets, if any), as defined in Schema Component Constraint: Simple
Type Restriction (Facets) .

2 If the <list> alternative is chosen, then a set with one member, a
whiteSpace facet with {value} = collapse and {fixed} = true.

3 otherwise the empty set

Based on {variety}, {facets}, {base type definition} and {member type
definitions}, a set of Fundamental Facet components, one each as
specified in The ordered Schema Component (§4.2.1.1), The bounded
Schema Component (§4.2.2.1), The cardinality Schema Component
(§4.2.3.1) and The numeric Schema Component (§4.2.4.1).

The annotation mapping of the set of elements containing the
<simpleType>, and the <restriction>, the <list>, or the <union> [child],
whichever is present, as defined in section XML Representation of
Annotation Schema Components of [XSD 1.1 Part 1: Structures].

[Definition:] The ancestors of a type definition are its {base type definition} and the
·ancestors· of its {base type definition}. (The ancestors of a Simple Type Definition T
in the type hierarchy are themselves type definitions; they are distinct from the XML
elements which may be ancestors, in the XML document hierarchy, of the
<simpleType> element which declares T.)

If the {variety} is atomic, the following additional property mapping also applies:

Atomic Simple Type Definition Schema Component
Representation

From among the ·ancestors· of this Simple Type Definition, that Simple

http://www.w3.org/TR/xmlschema11-2/ 105 5/5/2009 6:46 PM

type
definition}

Property

{item type
definition}

Type Definition which corresponds to a ·primitive· datatype.

Example

An electronic commerce schema might define a datatype called 'SKU' (the barcode
number that appears on products) from the ·built-in· datatype string by supplying a
value for the ·pattern· facet.

<simpleType name='SKU'>
 <restriction base='string'>
 <pattern value='\d{3}-[A-Z]{2}'/>
 </restriction>
</simpleType>

In this case, 'SKU' is the name of the new ·user-defined· datatype, string is its ·base
type· and ·pattern· is the facet.

If the {variety} is list, the following additional property mappings also apply:

List Simple Type Definition Schema Component
Representation

The appropriate case among the following:
1 If the {base type definition} is ·anySimpleType·, then the Simple Type

Definition (a) resolved to by the actual value of the itemType [attribute]
of <list>, or (b) corresponding to the <simpleType> among the
[children] of <list>, whichever is present.

Note: In this case, a <list> element will invariably be present; it will
invariably have either an itemType [attribute] or a <simpleType>
[child], but not both.

2 otherwise (that is, the {base type definition} is not ·anySimpleType·),
the {item type definition} of the {base type definition}.

Note: In this case, a <restriction> element will invariably be present.

Example

A system might want to store lists of floating point values.

<simpleType name='listOfFloat'>
 <list itemType='float'/>
</simpleType>

In this case, listOfFloat is the name of the new ·user-defined· datatype, float is its
·item type· and ·list· is the derivation method.

If the {variety} is union, the following additional property mappings also apply:

Union Simple Type Definition Schema Component

http://www.w3.org/TR/xmlschema11-2/ 106 5/5/2009 6:46 PM

Property

{member
type
definitions}

Representation

The appropriate case among the following:
1 If the {base type definition} is ·anySimpleType·, then the sequence of

(a) the Simple Type Definitions (a) resolved to by the items in the
actual value of the memberTypes [attribute] of <union>, if any, and (b)
those corresponding to the <simpleType>s among the [children] of
<union>, if any, in order.

Note: In this case, a <union> element will invariably be present; it
will invariably have either a memberTypes [attribute] or one or more
<simpleType> [children], or both.

2 otherwise (that is, the {base type definition} is not ·anySimpleType·),
the {member type definitions} of the {base type definition}.

Note: In this case, a <restriction> element will invariably be present.

Example

As an example, taken from a typical display oriented text markup language, one
might want to express font sizes as an integer between 8 and 72, or with one of the
tokens "small", "medium" or "large". The ·union· Simple Type Definition below would
accomplish that.

<xsd:attribute name="size">
 <xsd:simpleType>
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="8"/>
 <xsd:maxInclusive value="72"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
</xsd:attribute>

<p>
A header
</p>
<p>
this is a test
</p>

A datatype can be ·constructed· from a ·primitive· datatype or an ·ordinary· datatype by one of
three means: by ·facet-based restriction·, by ·list· or by ·union·.

4.1.3 Constraints on XML Representation of Simple Type Definition

http://www.w3.org/TR/xmlschema11-2/ 107 5/5/2009 6:46 PM

Schema Representation Constraint: itemType attribute or simpleType child

Either the itemType [attribute] or the <simpleType> [child] of the <list> element must be
present, but not both.

Schema Representation Constraint: base attribute or simpleType child

Either the base [attribute] or the simpleType [child] of the <restriction> element must be
present, but not both.

Schema Representation Constraint: memberTypes attribute or simpleType children

Either the memberTypes [attribute] of the <union> element must be non-empty or there must
be at least one simpleType [child].

4.1.4 Simple Type Definition Validation Rules

Validation Rule: Facet Valid

A value in a ·value space· is facet-valid with respect to a ·constraining facet· component if
and only if:

1 the value is facet-valid with respect to the particular ·constraining facet· as specified
below.

Validation Rule: Datatype Valid

A ·literal· is datatype-valid with respect to a Simple Type Definition if and only if it is a
member of the ·lexical space· of the corresponding datatype.

Note: Since every value in the ·value space· is denoted by some ·literal·, and every
·literal· in the ·lexical space· maps to some value, the requirement that the ·literal· be in
the ·lexical space· entails the requirement that the value it maps to should fulfill all of the
constraints imposed by the {facets} of the datatype. If the datatype is a ·list·, the Datatype
Valid constraint also entails that each whitespace-delimited token in the list be
datatype-valid against the ·item type· of the list. If the datatype is a ·union·, the Datatype
Valid constraint entails that the ·literal· be datatype-valid against at least one of the
·member types·.

That is, the constraints on Simple Type Definitions and on datatype derivation defined in
this specification have as a consequence that a ·literal· L is datatype-valid with respect to
a Simple Type Definition T if and only if either T corresponds to a ·special· datatype or all
of the following are true:
1 If there is a pattern in {facets}, then L is pattern valid (§4.3.4.4) with respect to the

pattern. If there are other ·lexical· facets in {facets}, then L is facet-valid with respect to
them.

2 The appropriate case among the following is true:
2.1 If the {variety} of T is ·atomic·, then L is in the ·lexical space· of the {primitive type

definition} of T, as defined in the appropriate documentation. Let V be the member of
the ·value space· of the {primitive type definition} of T mapped to by L, as defined in
the appropriate documentation.

Note: For ·built-in· ·primitives·, the "appropriate documentation" is the relevant

http://www.w3.org/TR/xmlschema11-2/ 108 5/5/2009 6:46 PM

section of this specification. For ·implementation-defined· ·primitives·, it is the
normative specification of the ·primitive·, which will typically be included in, or
referred to from, the implementation's documentation.

2.2 If the {variety} of T is ·list·, then each space-delimited substring of L is Datatype
Valid with respect to the {item type definition} of T. Let V be the sequence consisting
of the values identified by Datatype Valid for each of those substrings, in order.

2.3 If the {variety} of T is ·union·, then L is Datatype Valid with respect to at least one
member of the {member type definitions} of T. Let B be the ·active basic member· of
T for L. Let V be the value identified by Datatype Valid for L with respect to B.

3 V, as determined by the appropriate sub-clause of clause 2 above, is Facet Valid
(§4.1.4) with respect to each member of the {facets} of T which is a ·value-based· (and
not a ·pre-lexical· or ·lexical·) facet.

Note that whiteSpace facets and other ·pre-lexical· facets do not take part in checking
Datatype Valid. In cases where this specification is used in conjunction with
schema-validation of XML documents, such facets are used to normalize infoset values
before the normalized results are checked for datatype validity. In the case of unions the
·pre-lexical· facets to use are those associated with B in clause 2.3 above. When more
than one ·pre-lexical· facet applies, the whiteSpace facet is applied first; the order in
which ·implementation-defined· facets are applied is ·implementation-defined·.

4.1.5 Constraints on Simple Type Definition Schema Components

Schema Component Constraint: Applicable Facets

The ·constraining facets· which are allowed to be members of {facets} depend on the
{variety} and {primitive type definition} of the type, as follows:

If {variety} is absent, then no facets are applicable. (This is true for anySimpleType.)

If {variety} is list, then the applicable facets are assertions, length, minLength, maxLength,
pattern, enumeration, and whiteSpace.

If {variety} is union, then the applicable facets are pattern, enumeration, and assertions.

If {variety} is atomic, and {primitive type definition} is absent then no facets are applicable.
(This is true for anyAtomicType.)

In all other cases ({variety} is atomic and {primitive type definition} is not absent), then the
applicable facets are shown in the table below.

{primitive type
definition} applicable {facets}

string length, minLength, maxLength, pattern, enumeration, whiteSpace,
assertions

boolean pattern, whiteSpace, assertions

float pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions

double pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions

http://www.w3.org/TR/xmlschema11-2/ 109 5/5/2009 6:46 PM

decimal totalDigits, fractionDigits, pattern, whiteSpace, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive, assertions

precisionDecimal totalDigits, maxScale, minScale, pattern, whiteSpace, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive, assertions

duration pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions

dateTime pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

time pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

date pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

gYearMonth pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

gYear pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

gMonthDay pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

gDay pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

gMonth pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive, assertions, explicitTimezone

hexBinary length, minLength, maxLength, pattern, enumeration, whiteSpace,
assertions

base64Binary length, minLength, maxLength, pattern, enumeration, whiteSpace,
assertions

anyURI length, minLength, maxLength, pattern, enumeration, whiteSpace,
assertions

QName length, minLength, maxLength, pattern, enumeration, whiteSpace,
assertions

NOTATION length, minLength, maxLength, pattern, enumeration, whiteSpace,
assertions

Note: For any ·implementation-defined· primitive types, it is ·implementation-defined·
which constraining facets are applicable to them.

Similarly, for any ·implementation-defined· constraining facets, it is
·implementation-defined· which ·primitives· they apply to.

4.1.6 Built-in Simple Type Definitions

The Simple Type Definition of anySimpleType is present in every schema. It has the following
properties:

Simple type definition of anySimpleType

http://www.w3.org/TR/xmlschema11-2/ 110 5/5/2009 6:46 PM

Property

{name}

{target
namespace}
{final}

{context}

{base type
definition}
{facets}

{fundamental
facets}
{variety}

{primitive type
definition}
{item type
definition}
{member type
definitions}
{annotations}

Property

{name}

{target
namespace}
{final}

{context}

{base type
definition}
{facets}

{fundamental

Value

'anySimpleType'

'http://www.w3.org/2001/XMLSchema'

The empty set

absent

anyType

The empty set

The empty set

absent

absent

absent

absent

The empty sequence

The definition of anySimpleType is the root of the Simple Type Definition hierarchy; as such it
mediates between the other simple type definitions, which all eventually trace back to it via
their {base type definition} properties, and the definition of anyType, which is its {base type
definition}.

The Simple Type Definition of anyAtomicType is present in every schema. It has the
following properties:

Simple type definition of anyAtomicType

Value

'anyAtomicType'

'http://www.w3.org/2001/XMLSchema'

The empty set

absent

anySimpleType

The empty set

The empty set

http://www.w3.org/TR/xmlschema11-2/ 111 5/5/2009 6:46 PM

facets}

{variety}
{primitive type
definition}
{item type
definition}
{member type
definitions}
{annotations}

Property

{name}

{target
namespace}
{base type
definition}
{final}

{variety}

{primitive type
definition}
{facets}

{fundamental
facets}
{context}

{item type
definition}
{member type
definitions}
{annotations}

atomic

absent

absent

absent

The empty sequence

Simple type definitions for all the built-in primitive datatypes, namely string, boolean, float,
double, decimal, precisionDecimal, dateTime, duration, time, date, gMonth, gMonthDay,
gDay, gYear, gYearMonth, hexBinary, base64Binary, anyURI are present by definition in
every schema. All have a very similar structure, with only the {name}, the {primitive type
definition} (which is self-referential), the {fundamental facets}, and in one case the {facets}
varying from one to the next:

Simple Type Definition corresponding to the built-in primitive datatypes

Value

[as appropriate]

'http://www.w3.org/2001/XMLSchema'

anyAtomicType Definition

The empty set

atomic

[this Simple Type Definition itself]

{a whiteSpace facet with {value} = collapse and {fixed} = true in all
cases except string, which has {value} = preserve and {fixed} =
false}

[as appropriate]

absent

absent

absent

The empty sequence

·Implementation-defined· ·primitives· MUST have a Simple Type Definition with the values
shown above, with the following exceptions.

http://www.w3.org/TR/xmlschema11-2/ 112 5/5/2009 6:46 PM

Property

{name}

{target
namespace}
{base type
definition}

{final}

{variety}

{primitive type
definition}

{facets}

{fundamental
facets}

{context}

{item type
definition}

{member type
definitions}
{annotations}

The {facets} property MUST contain a whiteSpace facet, the value of which is
·implementation-defined·. It MAY contain other facets, whether defined in this
specification or ·implementation-defined·.

1.

The value of {fundamental facets} is ·implementation-defined·.2.

The value of {annotations} MAY be empty, but need not be.3.

Note: It is a consequence of the rule just given that each ·implementation-defined·
·primitive· will have an expanded name by which it can be referred to.

Note: ·Implementation-defined· datatypes will normally have a value other than
'http://www.w3.org/2001/XMLSchema' for the {target namespace} property. That
namespace is controlled by the W3C and datatypes will be added to it only by W3C or its
designees.

Similarly, Simple Type Definitions for all the built-in ·ordinary· datatypes are present by
definition in every schema, with properties as specified in Other Built-in Datatypes (§3.4) and
as represented in XML in Illustrative XML representations for the built-in ordinary type
definitions (§C.2).

Simple Type Definition corresponding to the built-in ordinary datatypes

Value

[as appropriate]

'http://www.w3.org/2001/XMLSchema'

[as specified in the appropriate sub-section of Other Built-in
Datatypes (§3.4)]

The empty set

[atomic or list, as specified in the appropriate sub-section of Other
Built-in Datatypes (§3.4)]

[if {variety} is atomic, then the {primitive type definition} of the {base
type definition}, otherwise absent]

[as specified in the appropriate sub-section of Other Built-in
Datatypes (§3.4)]

[as specified in the appropriate sub-section of Other Built-in
Datatypes (§3.4)]

absent

if {variety} is atomic, then absent, otherwise as specified in the
appropriate sub-section of Other Built-in Datatypes (§3.4)]

absent

As shown in the XML representations of the ordinary built-in
datatypes in Illustrative XML representations for the built-in ordinary

http://www.w3.org/TR/xmlschema11-2/ 113 5/5/2009 6:46 PM

type definitions (§C.2)

4.2 Fundamental Facets
 4.2.1 ordered
 4.2.1.1 The ordered Schema Component
 4.2.2 bounded
 4.2.2.1 The bounded Schema Component
 4.2.3 cardinality
 4.2.3.1 The cardinality Schema Component
 4.2.4 numeric
 4.2.4.1 The numeric Schema Component

[Definition:] Each fundamental facet is a schema component that provides a limited piece
of information about some aspect of each datatype. All ·fundamental facet· components are
defined in this section. For example, cardinality is a ·fundamental facet·. Most ·fundamental
facets· are given a value fixed with each primitive datatype's definition, and this value is not
changed by subsequent ·derivations· (even when it would perhaps be reasonable to expect an
application to give a more accurate value based on the constraining facets used to define the
·derivation·). The cardinality and bounded facets are exceptions to this rule; their values may
change as a result of certain ·derivations·.

Note: Schema components are identified by kind. "Fundamental" is not a kind of
component. Each kind of ·fundamental facet· ("ordered", "bounded", etc.) is a separate
kind of schema component.

A ·fundamental facet· can occur only in the {fundamental facets} of a Simple Type Definition,
and this is the only place where ·fundamental facet· components occur. Each kind of
·fundamental facet· component occurs (once) in each Simple Type Definition's {fundamental
facets} set.

Note: The value of any ·fundamental facet· component can always be calculated from
other properties of its ·owner·. Fundamental facets are not required for schema
processing, but some applications use them.

4.2.1 ordered

For some datatypes, this document specifies an order relation for their value spaces (see
Order (§2.2.3)); the ordered facet reflects this. It takes the values total, partial, and false,
with the meanings described below. For the ·primitive· datatypes, the value of the ordered
facet is specified in Fundamental Facets (§F.1). For ·ordinary· datatypes, the value is
inherited without change from the ·base type·. For a ·list·, the value is always false; for a
·union·, the value is computed as described below.

A false value means no order is prescribed; a total value assures that the prescribed order is
a total order; a partial value means that the prescribed order is a partial order, but not (for the
primitive type in question) a total order.

Note: The value false in the ordered facet does not mean no partial or total ordering
exists for the value space, only that none is specified by this document for use in
checking upper and lower bounds. Mathematically, any set of values possesses least one

http://www.w3.org/TR/xmlschema11-2/ 114 5/5/2009 6:46 PM

trivial partial ordering, in which every value pair that is not equal is incomparable.

Note: When new datatypes are derived from datatypes with partial orders, the constraints
imposed can sometimes result in a value space for which the ordering is total, or trivial.
The value of the ordered facet is not, however, changed to reflect this. The value partial
should therefore be interpreted with appropriate caution.

[Definition:] A ·value space·, and hence a datatype, is said to be ordered if some members
of the ·value space· are drawn from a ·primitive· datatype for which the table in Fundamental
Facets (§F.1) specifies the value total or partial for the ordered facet.

Note: Some of the "real-world" datatypes which are the basis for those defined herein are
ordered in some applications, even though no order is prescribed for schema-processing
purposes. For example, boolean is sometimes ordered, and string and ·list· datatypes
·constructed· from ordered ·atomic· datatypes are sometimes given "lexical" orderings.
They are not ordered for schema-processing purposes.

4.2.1.1 The ordered Schema Component

Schema Component: ordered, a kind of Fundamental Facet
{value}

One of {false, partial, total}. Required.

{value} depends on the ·owner's· {variety}, {facets}, and {member type definitions}. The
appropriate case among the following MUST be true:
1 If the ·owner's· {variety} is atomic, then the appropriate case among the following MUST be

true:
1.1 If the ·owner· is ·primitive·, then {value} is as specified in the table in Fundamental

Facets (§F.1).
1.2 otherwise {value} is the ·owner's· {base type definition}'s ordered {value}.

2 If the ·owner's· {variety} is list, then {value} is false.
3 otherwise the ·owner's· {variety} is union; the appropriate case among the following MUST

be true:
3.1 If every ·basic member· of the ·owner· has {variety} atomic and has the same {primitive

type definition}, then {value} is the same as the ordered component's {value} in that
primitive type definition's {fundamental facets}.

3.2 If each member of the ·owner's· {member type definitions} has an ordered component
in its {fundamental facets} whose {value} is false, then {value} is false.

3.3 otherwise {value} is partial.

4.2.2 bounded

Some ordered datatypes have the property that there is one value greater than or equal to
every other value, and another that is less than or equal to every other value. (In the case of
·ordinary· datatypes, these two values are not necessarily in the value space of the derived
datatype, but they must be in the value space of the primitive datatype from which they have
been derived.) The bounded facet value is boolean and is generally true for such bounded
datatypes. However, it will remain false when the mechanism for imposing such a bound is
difficult to detect, as, for example, when the boundedness occurs because of derivation using

http://www.w3.org/TR/xmlschema11-2/ 115 5/5/2009 6:46 PM

a pattern component.

4.2.2.1 The bounded Schema Component

Schema Component: bounded, a kind of Fundamental Facet
{value}

An xs:boolean value. Required.

{value} depends on the ·owner's· {variety}, {facets} and {member type definitions}.

When the ·owner· is ·primitive·, {value} is as specified in the table in Fundamental Facets
(§F.1). Otherwise, when the ·owner's· {variety} is atomic, if one of minInclusive or
minExclusive and one of maxInclusive or maxExclusive are members of the ·owner's· {facets}
set, then {value} is true; otherwise {value} is false.

When the ·owner's· {variety} is list, {value} is false.

When the ·owner's· {variety} is union, if {value} is true for every member of the ·owner's·
{member type definitions} set and all of the ·owner's· ·basic members· have the same
{primitive type definition}, then {value} is true; otherwise {value} is false.

4.2.3 cardinality

Every value space has a specific number of members. This number can be characterized as
finite or infinite. (Currently there are no datatypes with infinite value spaces larger than
countable.) The cardinality facet value is either finite or countably infinite and is generally
finite for datatypes with finite value spaces. However, it will remain countably infinite when
the mechanism for causing finiteness is difficult to detect, as, for example, when finiteness
occurs because of a derivation using a pattern component.

4.2.3.1 The cardinality Schema Component

Schema Component: cardinality, a kind of Fundamental Facet
{value}

One of {finite, countably infinite}. Required.

{value} depends on the ·owner's· {variety}, {facets}, and {member type definitions}.

When the ·owner· is ·primitive·, {value} is as specified in the table in Fundamental Facets
(§F.1). Otherwise, when the ·owner's· {variety} is atomic, {value} is countably infinite unless
any of the following conditions are true, in which case {value} is finite:

the ·owner's· {base type definition}'s cardinality {value} is finite,1.

at least one of length, maxLength, or totalDigits is a member of the ·owner's· {facets}
set,

2.

http://www.w3.org/TR/xmlschema11-2/ 116 5/5/2009 6:46 PM

all of the following are true:

one of minInclusive or minExclusive is a member of the ·owner's· {facets} seta.

one of maxInclusive or maxExclusive is a member of the ·owner's· {facets} setb.

either of the following are true:

fractionDigits is a member of the ·owner's· {facets} seti.

{primitive type definition} is one of date, gYearMonth, gYear, gMonthDay,
gDay or gMonth

ii.

c.

3.

When the ·owner's· {variety} is list, if length or both minLength and maxLength are members
of the ·owner's· {facets} set and the ·owner's· {item type definition}'s cardinality {value} is finite
then {value} is finite; otherwise {value} is countably infinite.

When the ·owner's· {variety} is union, if cardinality's {value} is finite for every member of the
·owner's· {member type definitions} set then {value} is finite, otherwise {value} is countably
infinite.

4.2.4 numeric

Some value spaces are made up of things that are conceptually numeric, others are not. The
numeric facet value indicates which are considered numeric.

4.2.4.1 The numeric Schema Component

Schema Component: numeric, a kind of Fundamental Facet
{value}

An xs:boolean value. Required.

{value} depends on the ·owner's· {variety}, {facets}, {base type definition} and {member type
definitions}.

When the ·owner· is ·primitive·, {value} is as specified in the table in Fundamental Facets
(§F.1). Otherwise, when the ·owner's· {variety} is atomic, {value} is inherited from the
·owner's· {base type definition}'s numeric{value}.

When the ·owner's· {variety} is list, {value} is false.

When the ·owner's· {variety} is union, if numeric's {value} is true for every member of the
·owner's· {member type definitions} set then {value} is true, otherwise {value} is false.

4.3 Constraining Facets
 4.3.1 length
 4.3.1.1 The length Schema Component
 4.3.1.2 XML Representation of length Schema Components
 4.3.1.3 length Validation Rules
 4.3.1.4 Constraints on length Schema Components

http://www.w3.org/TR/xmlschema11-2/ 117 5/5/2009 6:46 PM

 4.3.2 minLength
 4.3.2.1 The minLength Schema Component
 4.3.2.2 XML Representation of minLength Schema Component
 4.3.2.3 minLength Validation Rules
 4.3.2.4 Constraints on minLength Schema Components
 4.3.3 maxLength
 4.3.3.1 The maxLength Schema Component
 4.3.3.2 XML Representation of maxLength Schema Components
 4.3.3.3 maxLength Validation Rules
 4.3.3.4 Constraints on maxLength Schema Components
 4.3.4 pattern
 4.3.4.1 The pattern Schema Component
 4.3.4.2 XML Representation of pattern Schema Components
 4.3.4.3 Constraints on XML Representation of pattern
 4.3.4.4 pattern Validation Rules
 4.3.4.5 Constraints on pattern Schema Components
 4.3.5 enumeration
 4.3.5.1 The enumeration Schema Component
 4.3.5.2 XML Representation of enumeration Schema Components
 4.3.5.3 Constraints on XML Representation of enumeration
 4.3.5.4 enumeration Validation Rules
 4.3.5.5 Constraints on enumeration Schema Components
 4.3.6 whiteSpace
 4.3.6.1 The whiteSpace Schema Component
 4.3.6.2 XML Representation of whiteSpace Schema Components
 4.3.6.3 whiteSpace Validation Rules
 4.3.6.4 Constraints on whiteSpace Schema Components
 4.3.7 maxInclusive
 4.3.7.1 The maxInclusive Schema Component
 4.3.7.2 XML Representation of maxInclusive Schema Components
 4.3.7.3 maxInclusive Validation Rules
 4.3.7.4 Constraints on maxInclusive Schema Components
 4.3.8 maxExclusive
 4.3.8.1 The maxExclusive Schema Component
 4.3.8.2 XML Representation of maxExclusive Schema Components
 4.3.8.3 maxExclusive Validation Rules
 4.3.8.4 Constraints on maxExclusive Schema Components
 4.3.9 minExclusive
 4.3.9.1 The minExclusive Schema Component
 4.3.9.2 XML Representation of minExclusive Schema Components
 4.3.9.3 minExclusive Validation Rules
 4.3.9.4 Constraints on minExclusive Schema Components
 4.3.10 minInclusive
 4.3.10.1 The minInclusive Schema Component
 4.3.10.2 XML Representation of minInclusive Schema Components
 4.3.10.3 minInclusive Validation Rules
 4.3.10.4 Constraints on minInclusive Schema Components
 4.3.11 totalDigits
 4.3.11.1 The totalDigits Schema Component
 4.3.11.2 XML Representation of totalDigits Schema Components
 4.3.11.3 totalDigits Validation Rules
 4.3.11.4 Constraints on totalDigits Schema Components
 4.3.12 fractionDigits

http://www.w3.org/TR/xmlschema11-2/ 118 5/5/2009 6:46 PM

 4.3.12.1 The fractionDigits Schema Component
 4.3.12.2 XML Representation of fractionDigits Schema Components
 4.3.12.3 fractionDigits Validation Rules
 4.3.12.4 Constraints on fractionDigits Schema Components
 4.3.13 maxScale
 4.3.13.1 The maxScale Schema Component
 4.3.13.2 XML Representation of maxScale Schema Components
 4.3.13.3 maxScale Validation Rules
 4.3.13.4 Constraints on maxScale Schema Components
 4.3.14 minScale
 4.3.14.1 The minScale Schema Component
 4.3.14.2 XML Representation of minScale Schema Components
 4.3.14.3 minScale Validation Rules
 4.3.14.4 Constraints on minScale Schema Components
 4.3.15 Assertions
 4.3.15.1 The assertions Schema Component
 4.3.15.2 XML Representation of assertions Schema Components
 4.3.15.3 Assertions Validation Rules
 4.3.15.4 Constraints on assertions Schema Components
 4.3.16 explicitTimezone
 4.3.16.1 The explicitTimezone Schema Component
 4.3.16.2 XML Representation of explicitTimezone Schema Components
 4.3.16.3 explicitTimezone Validation Rules
 4.3.16.4 Constraints on explicitTimezone Schema Components

[Definition:] Constraining facets are schema components whose values may be set or
changed during ·derivation· (subject to facet-specific controls) to control various aspects of the
derived datatype. All ·constraining facet· components defined by this specification are defined
in this section. For example, whiteSpace is a ·constraining facet·. ·Constraining Facets· are
given a value as part of the ·derivation· when an ·ordinary· datatype is defined by ·restricting·
a ·primitive· or ·ordinary· datatype; a few ·constraining facets· have default values that are
also provided for ·primitive· datatypes.

Note: Schema components are identified by kind. "Constraining" is not a kind of
component. Each kind of ·constraining facet· ("whiteSpace", "length", etc.) is a separate
kind of schema component.

This specification distinguishes three kinds of constraining facets:

[Definition:] A constraining facet which is used to normalize an initial ·literal· before
checking to see whether the resulting character sequence is a member of a datatype's
·lexical space· is a pre-lexical facet.

This specification defines just one ·pre-lexical· facet: whiteSpace.

[Definition:] A constraining facet which directly restricts the ·lexical space· of a datatype
is a lexical facet.

This specification defines just one ·lexical· facet: pattern.

Note: As specified normatively elsewhere, ·lexical· facets can have an indirect
effect on the ·value space·: if every lexical representation of a value is removed
from the ·lexical space·, the value itself is removed from the ·value space·.

http://www.w3.org/TR/xmlschema11-2/ 119 5/5/2009 6:46 PM

[Definition:] A constraining facet which directly restricts the ·value space· of a datatype
is a value-based facet.

Most of the constraining facets defined by this specification are ·value-based· facets.

Note: As specified normatively elsewhere, ·value-based· facets can have an
indirect effect on the ·lexical space·: if a value is removed from the ·value space·, its
lexical representations are removed from the ·lexical space·.

Conforming processors MUST support all the facets defined in this section. It is
·implementation-defined· whether a processor supports other constraining facets.
[Definition:] An ·constraining facet· which is not supported by the processor in use is
unknown.

Note: A reference to an ·unknown· facet might be a reference to an
·implementation-defined· facet supported by some other processor, or might be the result
of a typographic error, or might have some other explanation.

The descriptions of individual facets given below include both constraints on Simple Type
Definition components and rules for checking the datatype validity of a given literal against a
given datatype. The validation rules typically depend upon having a full knowledge of the
datatype; full knowledge of the datatype, in turn, depends on having a fully instantiated Simple
Type Definition. A full instantiation of the Simple Type Definition, and the checking of the
component constraints, require knowledge of the ·base type·. It follows that if a datatype's
·base type· is ·unknown·, the Simple Type Definition defining the datatype will be incompletely
instantiated, and the datatype itself will be ·unknown·. Similarly, any datatype defined using an
·unknown· ·constraining facet· will be ·unknown·. It is not possible to perform datatype
validation as defined here using ·unknown· datatypes.

Note: The preceding paragraph does not forbid implementations from attempting to
make use of such partial information as they have about ·unknown· datatypes. But the
exploitation of such partial knowledge is not datatype validity checking as defined here
and is to be distinguished from it in the implementation's documentation and interface.

4.3.1 length

[Definition:] length is the number of units of length, where units of length varies depending
on the type that is being derived from. The value of length ·must· be a nonNegativeInteger.

For string and datatypes derived from string, length is measured in units of characters as
defined in [XML]. For anyURI, length is measured in units of characters (as for string). For
hexBinary and base64Binary and datatypes derived from them, length is measured in octets
(8 bits) of binary data. For datatypes ·constructed· by ·list·, length is measured in number of
list items.

Note: For string and datatypes derived from string, length will not always coincide with
"string length" as perceived by some users or with the number of storage units in some
digital representation. Therefore, care should be taken when specifying a value for
length and in attempting to infer storage requirements from a given value for length.

·length· provides for:

http://www.w3.org/TR/xmlschema11-2/ 120 5/5/2009 6:46 PM

Constraining a ·value space· to values with a specific number of units of length, where
units of length varies depending on {base type definition}.

Example

The following is the definition of a ·user-defined· datatype to represent product codes which
must be exactly 8 characters in length. By fixing the value of the length facet we ensure
that types derived from productCode can change or set the values of other facets, such as
pattern, but cannot change the length.

<simpleType name='productCode'>
 <restriction base='string'>
 <length value='8' fixed='true'/>
 </restriction>
</simpleType>

4.3.1.1 The length Schema Component

Schema Component: length, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for length other than {value}.

Note: The {fixed} property is defined for parallelism with other facets and for compatiblity
with version 1.0 of this specification. But it is a consequence of length valid restriction
(§4.3.1.4) that the value of the length facet cannot be changed, regardless of whether
{fixed} is true or false.

4.3.1.2 XML Representation of length Schema Components

The XML representation for a length schema component is a <length> element information
item. The correspondences between the properties of the information item and properties of
the component are as follows:

XML Representation Summary: length Element Information Item
<length
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</length>

http://www.w3.org/TR/xmlschema11-2/ 121 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

length Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <length> element, as defined in section
XML Representation of Annotation Schema Components of [XSD 1.1
Part 1: Structures].

4.3.1.3 length Validation Rules

Validation Rule: Length Valid

A value in a ·value space· is facet-valid with respect to ·length· if and only if:

1 if the {variety} is ·atomic· then
1.1 if {primitive type definition} is string or anyURI, then the length of the value, as

measured in characters ·must· be equal to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value,

as measured in octets of the binary data, ·must· be equal to {value};
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.

2 if the {variety} is ·list·, then the length of the value, as measured in list items, ·must· be
equal to {value}

The use of ·length· on QName, NOTATION, and datatypes derived from them is deprecated.
Future versions of this specification may remove this facet for these datatypes.

4.3.1.4 Constraints on length Schema Components

Schema Component Constraint: length and minLength or maxLength

If length is a member of {facets} then
1 It is an error for minLength to be a member of {facets} unless

1.1 the {value} of minLength <= the {value} of length and
1.2 there is some type definition from which this one is derived by one or more

·restriction· steps in which minLength has the same {value} and length is not specified.
2 It is an error for maxLength to be a member of {facets} unless

2.1 the {value} of length <= the {value} of maxLength and
2.2 there is some type definition from which this one is derived by one or more restriction

steps in which maxLength has the same {value} and length is not specified.

Schema Component Constraint: length valid restriction

It is an ·error· if length is among the members of {facets} of {base type definition} and
{value} is not equal to the {value} of the parent length.

4.3.2 minLength

[Definition:] minLength is the minimum number of units of length, where units of length

http://www.w3.org/TR/xmlschema11-2/ 122 5/5/2009 6:46 PM

varies depending on the type that is being derived from. The value of minLength ·must· be a
nonNegativeInteger.

For string and datatypes derived from string, minLength is measured in units of characters
as defined in [XML]. For hexBinary and base64Binary and datatypes derived from them,
minLength is measured in octets (8 bits) of binary data. For datatypes ·constructed· by ·list·,
minLength is measured in number of list items.

Note: For string and datatypes derived from string, minLength will not always coincide
with "string length" as perceived by some users or with the number of storage units in
some digital representation. Therefore, care should be taken when specifying a value for
minLength and in attempting to infer storage requirements from a given value for
minLength.

·minLength· provides for:

Constraining a ·value space· to values with at least a specific number of units of length,
where units of length varies depending on {base type definition}.

Example

The following is the definition of a ·user-defined· datatype which requires strings to have at
least one character (i.e., the empty string is not in the ·value space· of this datatype).

<simpleType name='non-empty-string'>
 <restriction base='string'>
 <minLength value='1'/>
 </restriction>
</simpleType>

4.3.2.1 The minLength Schema Component

Schema Component: minLength, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for minLength other than {value}.

4.3.2.2 XML Representation of minLength Schema Component

The XML representation for a minLength schema component is a <minLength> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

http://www.w3.org/TR/xmlschema11-2/ 123 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

XML Representation Summary: minLength Element Information Item
<minLength
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minLength>

minLength Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minLength> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.2.3 minLength Validation Rules

Validation Rule: minLength Valid

A value in a ·value space· is facet-valid with respect to ·minLength·, determined as follows:

1 if the {variety} is ·atomic· then
1.1 if {primitive type definition} is string or anyURI, then the length of the value, as

measured in characters ·must· be greater than or equal to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value,

as measured in octets of the binary data, ·must· be greater than or equal to {value};
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.

2 if the {variety} is ·list·, then the length of the value, as measured in list items, ·must· be
greater than or equal to {value}

The use of ·minLength· on QName, NOTATION, and datatypes derived from them is
deprecated. Future versions of this specification may remove this facet for these datatypes.

4.3.2.4 Constraints on minLength Schema Components

Schema Component Constraint: minLength <= maxLength

If both minLength and maxLength are members of {facets}, then the {value} of minLength
 ·must· be less than or equal to the {value} of maxLength.

Schema Component Constraint: minLength valid restriction

It is an ·error· if minLength is among the members of {facets} of {base type definition} and
{value} is less than the {value} of the parent minLength.

4.3.3 maxLength

http://www.w3.org/TR/xmlschema11-2/ 124 5/5/2009 6:46 PM

[Definition:] maxLength is the maximum number of units of length, where units of length
varies depending on the type that is being derived from. The value of maxLength ·must· be a
nonNegativeInteger.

For string and datatypes derived from string, maxLength is measured in units of characters
as defined in [XML]. For hexBinary and base64Binary and datatypes derived from them,
maxLength is measured in octets (8 bits) of binary data. For datatypes ·constructed· by ·list·,
maxLength is measured in number of list items.

Note: For string and datatypes derived from string, maxLength will not always coincide
with "string length" as perceived by some users or with the number of storage units in
some digital representation. Therefore, care should be taken when specifying a value for
maxLength and in attempting to infer storage requirements from a given value for
maxLength.

·maxLength· provides for:

Constraining a ·value space· to values with at most a specific number of units of length,
where units of length varies depending on {base type definition}.

Example

The following is the definition of a ·user-defined· datatype which might be used to accept
form input with an upper limit to the number of characters that are acceptable.

<simpleType name='form-input'>
 <restriction base='string'>
 <maxLength value='50'/>
 </restriction>
</simpleType>

4.3.3.1 The maxLength Schema Component

Schema Component: maxLength, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for maxLength other than {value}.

4.3.3.2 XML Representation of maxLength Schema Components

The XML representation for a maxLength schema component is a <maxLength> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

http://www.w3.org/TR/xmlschema11-2/ 125 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

XML Representation Summary: maxLength Element Information Item
<maxLength
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxLength>

maxLength Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxLength> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.3.3 maxLength Validation Rules

Validation Rule: maxLength Valid

A value in a ·value space· is facet-valid with respect to ·maxLength·, determined as follows:

1 if the {variety} is ·atomic· then
1.1 if {primitive type definition} is string or anyURI, then the length of the value, as

measured in characters ·must· be less than or equal to {value};
1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value,

as measured in octets of the binary data, ·must· be less than or equal to {value};
1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.

2 if the {variety} is ·list·, then the length of the value, as measured in list items, ·must· be
less than or equal to {value}

The use of ·maxLength· on QName, NOTATION, and datatypes derived from them is
deprecated. Future versions of this specification may remove this facet for these datatypes.

4.3.3.4 Constraints on maxLength Schema Components

Schema Component Constraint: maxLength valid restriction

It is an ·error· if maxLength is among the members of {facets} of {base type definition} and
{value} is greater than the {value} of the parent maxLength.

4.3.4 pattern

[Definition:] pattern is a constraint on the ·value space· of a datatype which is achieved by
constraining the ·lexical space· to ·literals· which match each member of a set of patterns.
The value of pattern MUST be a set of ·regular expressions·.

·pattern· provides for:

http://www.w3.org/TR/xmlschema11-2/ 126 5/5/2009 6:46 PM

Property

{value}

Constraining a ·value space· to values that are denoted by ·literals· which match each of
a set of ·regular expressions·.

Example

The following is the definition of a ·user-defined· datatype which is a better representation of
postal codes in the United States, by limiting strings to those which are matched by a
specific ·regular expression·.

<simpleType name='better-us-zipcode'>
 <restriction base='string'>
 <pattern value='[0-9]{5}(-[0-9]{4})?'/>
 </restriction>
</simpleType>

4.3.4.1 The pattern Schema Component

Schema Component: pattern, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

A non-empty set of ·regular expressions·.

4.3.4.2 XML Representation of pattern Schema Components

The XML representation for a pattern schema component is one or more <pattern> element
information items. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: pattern Element Information Item
<pattern
 id = ID
 value = string
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</pattern>

pattern Schema Component
Representation

[Definition:] Let R be a regular expression given by the appropriate
case among the following:
1 If there is only one <pattern> among the [children] of a <restriction>,

then the actual value of its value [attribute]
2 otherwise the concatenation of the actual values of all the <pattern>

[children]'s value [attributes], in order, separated by '|', so forming a
single regular expression with multiple ·branches·.

The value is then given by the appropriate case among the following:

http://www.w3.org/TR/xmlschema11-2/ 127 5/5/2009 6:46 PM

{annotations}

1 If the {base type definition} of the ·owner· has a pattern facet among
its {facets}, then the union of that pattern facet's {value} and {·R·}

2 otherwise just {·R·}

The annotation mapping of the set containing all of the <pattern>
elements among the [children] of the <restriction> element information
item, as defined in section XML Representation of Annotation Schema
Components of [XSD 1.1 Part 1: Structures].

Note: The {value} property will only have more than one member when ·facet-based
restriction· involves a pattern facet at more than one step in a type derivation. During
validation, lexical forms will be checked against every member of the resulting {value},
effectively creating a conjunction of patterns.

In summary, ·pattern· facets specified on the same step in a type derivation are ORed
together, while ·pattern· facets specified on different steps of a type derivation are ANDed
together.

Thus, to impose two ·pattern· constraints simultaneously, schema authors may either
write a single ·pattern· which expresses the intersection of the two ·pattern·s they wish to
impose, or define each ·pattern· on a separate type derivation step.

4.3.4.3 Constraints on XML Representation of pattern

Schema Representation Constraint: Pattern value

The actual value of the value [attribute] must be a ·regular expression· as defined in
Regular Expressions (§G).

4.3.4.4 pattern Validation Rules

Validation Rule: pattern valid

A ·literal· in a ·lexical space· is pattern-valid (or: facet-valid with respect to ·pattern·) if and
only if for each ·regular expression· in its {value}, the ·literal· is among the set of character
sequences denoted by the ·regular expression·.

Note: As noted in Datatype (§2.1), certain uses of the ·pattern· facet may eliminate from
the lexical space the canonical forms of some values in the value space; this can be
inconvenient for applications which write out the canonical form of a value and rely on
being able to read it in again as a legal lexical form. This specification provides no
recourse in such situations; applications are free to deal with it as they see fit. Caution is
advised.

4.3.4.5 Constraints on pattern Schema Components

Schema Component Constraint: Valid restriction of pattern

It is an ·error· if there is any member of the {value} of the pattern facet on the {base type
definition} which is not also a member of the {value}.

http://www.w3.org/TR/xmlschema11-2/ 128 5/5/2009 6:46 PM

Note: For components constructed from XML representations in schema documents,
the satisfaction of this constraint is a consequence of the XML mapping rules: any
pattern imposed by a simple type definition S will always also be imposed by any type
derived from S by ·facet-based restriction·. This constraint ensures that components
constructed by other means (so-called "born-binary" components) similarly preserve
pattern facets across ·facet-based restriction·.

4.3.5 enumeration

[Definition:] enumeration constrains the ·value space· to a specified set of values.

enumeration does not impose an order relation on the ·value space· it creates; the value of
the ·ordered· property of the derived datatype remains that of the datatype from which it is
derived.

·enumeration· provides for:

Constraining a ·value space· to a specified set of values.

Example

The following example is a Simple Type Definition for a ·user-defined· datatype which limits
the values of dates to the three US holidays enumerated. This Simple Type Definition would
appear in a schema authored by an "end-user" and shows how to define a datatype by
enumerating the values in its ·value space·. The enumerated values must be type-valid
·literals· for the ·base type·.

<simpleType name='holidays'>
 <annotation>
 <documentation>some US holidays</documentation>
 </annotation>
 <restriction base='gMonthDay'>
 <enumeration value='--01-01'>
 <annotation>
 <documentation>New Year's day</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--07-04'>
 <annotation>
 <documentation>4th of July</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--12-25'>
 <annotation>
 <documentation>Christmas</documentation>
 </annotation>
 </enumeration>
 </restriction>
</simpleType>

4.3.5.1 The enumeration Schema Component

Schema Component: enumeration, a kind of Constraining Facet

http://www.w3.org/TR/xmlschema11-2/ 129 5/5/2009 6:46 PM

Property

{value}

{annotations}

{annotations}

A sequence of Annotation components.
{value}

A set of values from the ·value space· of the {base type definition}.

4.3.5.2 XML Representation of enumeration Schema Components

The XML representation for an enumeration schema component is one or more
<enumeration> element information items. The correspondences between the properties of
the information item and properties of the component are as follows:

XML Representation Summary: enumeration Element Information Item
<enumeration
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</enumeration>

enumeration Schema Component
Representation

The appropriate case among the following:
1 If there is only one <enumeration> among the [children] of a

<restriction>, then a set with one member, the actual value of its
value [attribute], interpreted as an instance of the {base type
definition}.

2 otherwise a set of the actual values of all the <enumeration>
[children]'s value [attributes], interpreted as instances of the {base
type definition}.

Note: The value [attribute] is declared as having type
·anySimpleType·, but the {value} property of the enumeration facet
MUST be a member of the {base type definition}. So in mapping
from the XML representation to the enumeration component, the
actual value is identified by using the ·lexical mapping· of the {base
type definition}.

A (possibly empty) sequence of Annotation components, one for each
<annotation> among the [children] of the <enumeration>s among the
[children] of a <restriction>, in order.

4.3.5.3 Constraints on XML Representation of enumeration

Schema Representation Constraint: Enumeration value

The normalized value of the value [attribute] must be Datatype Valid (§4.1.4) with respect to
the {base type definition} of the Simple Type Definition corresponding to the nearest
<simpleType> ancestor element.

http://www.w3.org/TR/xmlschema11-2/ 130 5/5/2009 6:46 PM

4.3.5.4 enumeration Validation Rules

Validation Rule: enumeration valid

A value in a ·value space· is facet-valid with respect to ·enumeration· if and only if the value
is equal to one of the values specified in {value}.

Note: As specified normatively elsewhere, for purposes of checking enumerations, no
distinction is made between an atomic value V and a list of length one containing V as its
only item.

In this question, the behavior of this specification is thus the same as the behavior
specified by [XQuery 1.0 and XPath 2.0 Functions and Operators] and related
specifications.

4.3.5.5 Constraints on enumeration Schema Components

Schema Component Constraint: enumeration valid restriction

It is an ·error· if any member of {value} is not in the ·value space· of {base type definition}.

4.3.6 whiteSpace

[Definition:] whiteSpace constrains the ·value space· of types derived from string such that
the various behaviors specified in Attribute Value Normalization in [XML] are realized. The
value of whiteSpace must be one of {preserve, replace, collapse}.

preserve

No normalization is done, the value is not changed (this is the behavior required by
[XML] for element content)

replace

All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return) are replaced with
#x20 (space)

collapse

After the processing implied by replace, contiguous sequences of #x20's are collapsed
to a single #x20, and any #x20 at the start or end of the string is then removed.

Note: The notation #xA used here (and elsewhere in this specification) represents the
Universal Character Set (UCS) code point hexadecimal A (line feed), which is denoted by
U+000A. This notation is to be distinguished from
, which is the XML character
reference to that same UCS code point.

whiteSpace is applicable to all ·atomic· and ·list· datatypes. For all ·atomic· datatypes other
than string (and types derived by ·facet-based restriction· from it) the value of whiteSpace is
collapse and cannot be changed by a schema author; for string the value of whiteSpace is
preserve; for any type derived by ·facet-based restriction· from string the value of whiteSpace
can be any of the three legal values. For all datatypes ·constructed· by ·list· the value of

http://www.w3.org/TR/xmlschema11-2/ 131 5/5/2009 6:46 PM

whiteSpace is collapse and cannot be changed by a schema author. For all datatypes
·constructed· by ·union· whiteSpace does not apply directly; however, the normalization
behavior of ·union· types is controlled by the value of whiteSpace on that one of the ·basic
members· against which the ·union· is successfully validated.

Note: For more information on whiteSpace, see the discussion on white space
normalization in Schema Component Details in [XSD 1.1 Part 1: Structures].

·whiteSpace· provides for:

Constraining a ·value space· according to the white space normalization rules.

Example

The following example is the Simple Type Definition for the ·built-in· token datatype.

<simpleType name='token'>
 <restriction base='normalizedString'>
 <whiteSpace value='collapse'/>
 </restriction>
</simpleType>

Note: The values "replace" and "collapse" may appear to provide a convenient way to
"unwrap" text (i.e. undo the effects of pretty-printing and word-wrapping). In some cases,
especially highly constrained data consisting of lists of artificial tokens such as part
numbers or other identifiers, this appearance is correct. For natural-language data,
however, the whitespace processing prescribed for these values is not only unreliable but
will systematically remove the information needed to perform unwrapping correctly. For
Asian scripts, for example, a correct unwrapping process will replace line boundaries not
with blanks but with zero-width separators or nothing. In consequence, it is normally
unwise to use these values for natural-language data, or for any data other than lists of
highly constrained tokens.

4.3.6.1 The whiteSpace Schema Component

Schema Component: whiteSpace, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

One of {preserve, replace, collapse}. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for whiteSpace other than {value}.

4.3.6.2 XML Representation of whiteSpace Schema Components

The XML representation for a whiteSpace schema component is a <whiteSpace> element

http://www.w3.org/TR/xmlschema11-2/ 132 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: whiteSpace Element Information Item
<whiteSpace
 fixed = boolean : false
 id = ID
 value = (collapse | preserve | replace)
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</whiteSpace>

whiteSpace Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <whiteSpace> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.6.3 whiteSpace Validation Rules

Note: There are no ·Validation Rule·s associated ·whiteSpace·. For more information,
see the discussion on white space normalization in Schema Component Details in [XSD
1.1 Part 1: Structures].

4.3.6.4 Constraints on whiteSpace Schema Components

Schema Component Constraint: whiteSpace valid restriction

It is an ·error· if whiteSpace is among the members of {facets} of {base type definition} and
any of the following conditions is true:

1 {value} is replace or preserve and the {value} of the parent whiteSpace is collapse
2 {value} is preserve and the {value} of the parent whiteSpace is replace

4.3.7 maxInclusive

[Definition:] maxInclusive is the inclusive upper bound of the ·value space· for a datatype
with the ·ordered· property. The value of maxInclusive ·must· be equal to some value in the
·value space· of the ·base type·.

·maxInclusive· provides for:

Constraining a ·value space· to values with a specific inclusive upper bound.

Example

http://www.w3.org/TR/xmlschema11-2/ 133 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

The following is the definition of a ·user-defined· datatype which limits values to integers
less than or equal to 100, using ·maxInclusive·.

<simpleType name='one-hundred-or-less'>
 <restriction base='integer'>
 <maxInclusive value='100'/>
 </restriction>
</simpleType>

4.3.7.1 The maxInclusive Schema Component

Schema Component: maxInclusive, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for maxInclusive other than {value}.

4.3.7.2 XML Representation of maxInclusive Schema Components

The XML representation for a maxInclusive schema component is a <maxInclusive> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: maxInclusive Element Information Item
<maxInclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxInclusive>

{value} ·must· be equal to some value in the ·value space· of {base type definition}.

maxInclusive Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxInclusive> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

http://www.w3.org/TR/xmlschema11-2/ 134 5/5/2009 6:46 PM

4.3.7.3 maxInclusive Validation Rules

Validation Rule: maxInclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·maxInclusive· if and only
if the value is less than or equal to {value}, according to the datatype's order relation.

4.3.7.4 Constraints on maxInclusive Schema Components

Schema Component Constraint: minInclusive <= maxInclusive

It is an ·error· for the value specified for ·minInclusive· to be greater than the value specified
for ·maxInclusive· for the same datatype.

Schema Component Constraint: maxInclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 maxInclusive is among the members of {facets} of {base type definition} and {value} is
greater than the {value} of that maxInclusive.

2 maxExclusive is among the members of {facets} of {base type definition} and {value} is
greater than or equal to the {value} of that maxExclusive.

3 minInclusive is among the members of {facets} of {base type definition} and {value} is
less than the {value} of that minInclusive.

4 minExclusive is among the members of {facets} of {base type definition} and {value} is
less than or equal to the {value} of that minExclusive.

4.3.8 maxExclusive

[Definition:] maxExclusive is the exclusive upper bound of the ·value space· for a datatype
with the ·ordered· property. The value of maxExclusive ·must· be equal to some value in the
·value space· of the ·base type· or be equal to {value} in {base type definition}.

·maxExclusive· provides for:

Constraining a ·value space· to values with a specific exclusive upper bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers
less than or equal to 100, using ·maxExclusive·.

<simpleType name='less-than-one-hundred-and-one'>
 <restriction base='integer'>
 <maxExclusive value='101'/>
 </restriction>
</simpleType>

Note that the ·value space· of this datatype is identical to the previous one (named
'one-hundred-or-less').

http://www.w3.org/TR/xmlschema11-2/ 135 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

4.3.8.1 The maxExclusive Schema Component

Schema Component: maxExclusive, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for maxExclusive other than {value}.

4.3.8.2 XML Representation of maxExclusive Schema Components

The XML representation for a maxExclusive schema component is a <maxExclusive>
element information item. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: maxExclusive Element Information Item
<maxExclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxExclusive>

{value} ·must· be equal to some value in the ·value space· of {base type definition}.

maxExclusive Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxExclusive> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.8.3 maxExclusive Validation Rules

Validation Rule: maxExclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·maxExclusive· if and only
if the value is less than {value}, according to the datatype's order relation.

4.3.8.4 Constraints on maxExclusive Schema Components

http://www.w3.org/TR/xmlschema11-2/ 136 5/5/2009 6:46 PM

Schema Component Constraint: maxInclusive and maxExclusive

It is an ·error· for both ·maxInclusive· and ·maxExclusive· to be specified in the same
derivation step of a Simple Type Definition.

Schema Component Constraint: minExclusive <= maxExclusive

It is an ·error· for the value specified for ·minExclusive· to be greater than the value
specified for ·maxExclusive· for the same datatype.

Schema Component Constraint: maxExclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 maxExclusive is among the members of {facets} of {base type definition} and {value} is
greater than the {value} of that maxExclusive.

2 maxInclusive is among the members of {facets} of {base type definition} and {value} is
greater than the {value} of that maxInclusive.

3 minInclusive is among the members of {facets} of {base type definition} and {value} is
less than or equal to the {value} of that minInclusive.

4 minExclusive is among the members of {facets} of {base type definition} and {value} is
less than or equal to the {value} of that minExclusive.

4.3.9 minExclusive

[Definition:] minExclusive is the exclusive lower bound of the ·value space· for a datatype
with the ·ordered· property. The value of minExclusive ·must· be equal to some value in the
·value space· of the ·base type· or be equal to {value} in {base type definition}.

·minExclusive· provides for:

Constraining a ·value space· to values with a specific exclusive lower bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers
greater than or equal to 100, using ·minExclusive·.

<simpleType name='more-than-ninety-nine'>
 <restriction base='integer'>
 <minExclusive value='99'/>
 </restriction>
</simpleType>

Note that the ·value space· of this datatype is identical to the following one (named
'one-hundred-or-more').

4.3.9.1 The minExclusive Schema Component

http://www.w3.org/TR/xmlschema11-2/ 137 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

Schema Component: minExclusive, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for minExclusive other than {value}.

4.3.9.2 XML Representation of minExclusive Schema Components

The XML representation for a minExclusive schema component is a <minExclusive> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: minExclusive Element Information Item
<minExclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minExclusive>

{value} ·must· be equal to some value in the ·value space· of {base type definition}.

minExclusive Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minExclusive> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.9.3 minExclusive Validation Rules

Validation Rule: minExclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·minExclusive· if and only
if the value is greater than {value}, according to the datatype's order relation.

4.3.9.4 Constraints on minExclusive Schema Components

Schema Component Constraint: minInclusive and minExclusive

http://www.w3.org/TR/xmlschema11-2/ 138 5/5/2009 6:46 PM

It is an ·error· for both ·minInclusive· and ·minExclusive· to be specified in the same
derivation step of a Simple Type Definition.

Schema Component Constraint: minExclusive < maxInclusive

It is an ·error· for the value specified for ·minExclusive· to be greater than or equal to the
value specified for ·maxInclusive· for the same datatype.

Schema Component Constraint: minExclusive valid restriction

It is an ·error· if any of the following conditions is true:

1 minExclusive is among the members of {facets} of {base type definition} and {value} is
less than the {value} of that minExclusive.

2 minInclusive is among the members of {facets} of {base type definition} and {value} is
less than the {value} of that minInclusive.

3 maxInclusive is among the members of {facets} of {base type definition} and {value} is
greater than or equal to the {value} of that maxInclusive.

4 maxExclusive is among the members of {facets} of {base type definition} and {value} is
greater than or equal to the {value} of that maxExclusive.

4.3.10 minInclusive

[Definition:] minInclusive is the inclusive lower bound of the ·value space· for a datatype
with the ·ordered· property. The value of minInclusive ·must· be equal to some value in the
·value space· of the ·base type·.

·minInclusive· provides for:

Constraining a ·value space· to values with a specific inclusive lower bound.

Example

The following is the definition of a ·user-defined· datatype which limits values to integers
greater than or equal to 100, using ·minInclusive·.

<simpleType name='one-hundred-or-more'>
 <restriction base='integer'>
 <minInclusive value='100'/>
 </restriction>
</simpleType>

4.3.10.1 The minInclusive Schema Component

Schema Component: minInclusive, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

Required.
A value from the ·value space· of the {base type definition}.

http://www.w3.org/TR/xmlschema11-2/ 139 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for minInclusive other than {value}.

4.3.10.2 XML Representation of minInclusive Schema Components

The XML representation for a minInclusive schema component is a <minInclusive> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: minInclusive Element Information Item
<minInclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minInclusive>

{value} ·must· be equal to some value in the ·value space· of {base type definition}.

minInclusive Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minInclusive> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.10.3 minInclusive Validation Rules

Validation Rule: minInclusive Valid

A value in an ·ordered· ·value space· is facet-valid with respect to ·minInclusive· if and only
if the value is greater than or equal to {value}, according to the datatype's order relation.

4.3.10.4 Constraints on minInclusive Schema Components

Schema Component Constraint: minInclusive < maxExclusive

It is an ·error· for the value specified for ·minInclusive· to be greater than or equal to the
value specified for ·maxExclusive· for the same datatype.

Schema Component Constraint: minInclusive valid restriction

It is an ·error· if any of the following conditions is true:

http://www.w3.org/TR/xmlschema11-2/ 140 5/5/2009 6:46 PM

1 minInclusive is among the members of {facets} of {base type definition} and {value} is
less than the {value} of that minInclusive.

2 maxInclusive is among the members of {facets} of {base type definition} and {value} is
greater the {value} of that maxInclusive.

3 minExclusive is among the members of {facets} of {base type definition} and {value} is
less than or equal to the {value} of that minExclusive.

4 maxExclusive is among the members of {facets} of {base type definition} and {value} is
greater than or equal to the {value} of that maxExclusive.

4.3.11 totalDigits

[Definition:] totalDigits restricts the magnitude and arithmetic precision of values in the
·value spaces· of precisionDecimal and decimal and datatypes derived from them. The effect
must be described separately for the two primitive types.

For decimal, if the {value} of totalDigits is t, the effect is to require that values be equal to
i / 10n, for some integers i and n, with | i | < 10t and 0 ≤ n ≤ t. This has as a consequence
that the values are expressible using at most t digits in decimal notation.

For precisionDecimal, values with ·numericalValue· of nV and ·arithmeticPrecision· of aP, if
the {value} of totalDigits is t, the effect is to require that (aP + 1 + log10(| nV |) ·div· 1) ≤ t, for
values other than zero, NaN, and the infinities. This means in effect that values are
expressible in scientific notation using at most t digits for the coefficient.

The {value} of totalDigits MUST be a positiveInteger.

The term 'totalDigits' is chosen to reflect the fact that it restricts the ·value space· to those
values that can be represented lexically using at most totalDigits digits in decimal notation, or
at most totalDigits digits for the coefficient, in scientific notation. Note that it does not restrict
the ·lexical space· directly; a lexical representation that adds non-significant leading or trailing
zero digits is still permitted. It also has no effect on the values NaN, INF, and -INF.

4.3.11.1 The totalDigits Schema Component

Schema Component: totalDigits, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:positiveInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} MUST not
specify a value for totalDigits other than {value}.

4.3.11.2 XML Representation of totalDigits Schema Components

The XML representation for a totalDigits schema component is a <totalDigits> element

http://www.w3.org/TR/xmlschema11-2/ 141 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: totalDigits Element Information Item
<totalDigits
 fixed = boolean : false
 id = ID
 value = positiveInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</totalDigits>

totalDigits Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <totalDigits> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.11.3 totalDigits Validation Rules

Validation Rule: totalDigits Valid

A value v is facet-valid with respect to a totalDigits facet with a {value} of t if and only if one
of the following is true:

1 v is a precisionDecimal value with ·numericalValue· of positiveInfinity, negativeInfinity,
notANumber, or zero.

2 v is a precisionDecimal value with ·numericalValue· of nV and ·arithmeticPrecision· of aP,
and v is not NaN, INF, -INF, or zero, and (aP + 1 + log10(| nV |) ·div· 1) ≤ t.

3 v is a decimal value equal to i / 10n, for some integers i and n, with | i | < 10t and
0 ≤ n ≤ t.

4.3.11.4 Constraints on totalDigits Schema Components

Schema Component Constraint: totalDigits valid restriction

It is an ·error· if the ·owner·'s {base type definition} has a totalDigits facet among its {facets}
and {value} is greater than the {value} of that totalDigits facet.

4.3.12 fractionDigits

[Definition:] fractionDigits places an upper limit on the arithmetic precision of decimal
values: if the {value} of fractionDigits = f, then the value space is restricted to values equal to
i / 10n for some integers i and n and 0 ≤ n ≤ f. The value of fractionDigits ·must· be a
nonNegativeInteger

http://www.w3.org/TR/xmlschema11-2/ 142 5/5/2009 6:46 PM

The term fractionDigits is chosen to reflect the fact that it restricts the ·value space· to those
values that can be represented lexically in decimal notation using at most fractionDigits to the
right of the decimal point. Note that it does not restrict the ·lexical space· directly; a lexical
representation that adds non-significant leading or trailing zero digits is still permitted.

Example

The following is the definition of a ·user-defined· datatype which could be used to represent
the magnitude of a person's body temperature on the Celsius scale. This definition would
appear in a schema authored by an "end-user" and shows how to define a datatype by
specifying facet values which constrain the range of the ·base type·.

<simpleType name='celsiusBodyTemp'>
 <restriction base='decimal'>
 <fractionDigits value='1'/>
 <minInclusive value='32'/>
 <maxInclusive value='41.7'/>
 </restriction>
</simpleType>

4.3.12.1 The fractionDigits Schema Component

Schema Component: fractionDigits, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:nonNegativeInteger value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} MUST not
specify a value for fractionDigits other than {value}.

4.3.12.2 XML Representation of fractionDigits Schema Components

The XML representation for a fractionDigits schema component is a <fractionDigits> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: fractionDigits Element Information Item
<fractionDigits
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</fractionDigits>

fractionDigits Schema Component

http://www.w3.org/TR/xmlschema11-2/ 143 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <fractionDigits> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.12.3 fractionDigits Validation Rules

Validation Rule: fractionDigits Valid

A value is facet-valid with respect to ·fractionDigits· if and only if that value is equal to
i / 10n for integer i and n, with 0 ≤ n ≤ {value}.

4.3.12.4 Constraints on fractionDigits Schema Components

Schema Component Constraint: fractionDigits less than or equal to totalDigits

It is an ·error· for the {value} of fractionDigits to be greater than that of totalDigits.

Schema Component Constraint: fractionDigits valid restriction

It is an ·error· if ·fractionDigits· is among the members of {facets} of {base type definition}
and {value} is greater than the {value} of that ·fractionDigits·.

4.3.13 maxScale

[Definition:] maxScale places an upper limit on the ·arithmeticPrecision· of precisionDecimal
values: if the {value} of maxScale = m, then only values with ·arithmeticPrecision· ≤ m are
retained in the ·value space·. As a consequence, every value in the value space will have
·numericalValue· equal to i / 10n for some integers i and n, with n ≤ m. The {value} of
maxScale must be an integer. If it is negative, the numeric values of the datatype are
restricted to multiples of 10 (or 100, or …).

The term 'maxScale' is chosen to reflect the fact that it restricts the ·value space· to those
values that can be represented lexically in scientific notation using an integer coefficient and a
scale (or negative exponent) no greater than maxScale. (It has nothing to do with the use of
the term 'scale' to denote the radix or base of a notation.) Note that maxScale does not
restrict the ·lexical space· directly; a lexical representation that adds non-significant leading or
trailing zero digits, or that uses a lower exponent with a non-integer coefficient is still
permitted.

http://www.w3.org/TR/xmlschema11-2/ 144 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

Example

The following is the definition of a user-defined datatype which could be used to represent a
floating-point decimal datatype which allows seven decimal digits for the coefficient and
exponents between −95 and 96. Note that the scale is −1 times the exponent.

<simpleType name='decimal32'>
 <restriction base='precisionDecimal'>
 <totalDigits value='7'/>
 <maxScale value='95'/>
 <minScale value='-96'/>
 </restriction>
</simpleType>

4.3.13.1 The maxScale Schema Component

Schema Component: maxScale, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:integer value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} MUST not
specify a value for maxScale other than {value}.

4.3.13.2 XML Representation of maxScale Schema Components

The XML representation for a maxScale schema component is a <maxScale> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: maxScale Element Information Item
<maxScale
 fixed = boolean : false
 id = ID
 value = integer
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxScale>

maxScale Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <maxScale> element, as defined in
section XML Representation of Annotation Schema Components of

http://www.w3.org/TR/xmlschema11-2/ 145 5/5/2009 6:46 PM

[XSD 1.1 Part 1: Structures].

4.3.13.3 maxScale Validation Rules

Validation Rule: maxScale Valid

A precisionDecimal value v is facet-valid with respect to maxScale if and only if one of the
following is true:

1 v has ·arithmeticPrecision· less than or equal to the {value} of maxScale.
2 The ·arithmeticPrecision· of v is absent.

4.3.13.4 Constraints on maxScale Schema Components

Schema Component Constraint: maxScale valid restriction

It is an ·error· if maxScale is among the members of {facets} of {base type definition} and
{value} is greater than the {value} of that maxScale.

4.3.14 minScale

[Definition:] minScale places a lower limit on the ·arithmeticPrecision· of precisionDecimal
values. If the {value} of minScale is m, then the value space is restricted to values with
·arithmeticPrecision· ≥ m. As a consequence, every value in the value space will have
·numericalValue· equal to i / 10n for some integers i and n, with n ≥ m.

The term minScale is chosen to reflect the fact that it restricts the ·value space· to those
values that can be represented lexically in exponential form using an integer coefficient and a
scale (negative exponent) at least as large as minScale. Note that it does not restrict the
·lexical space· directly; a lexical representation that adds additional leading zero digits, or that
uses a larger exponent (and a correspondingly smaller coefficient) is still permitted.

Example

The following is the definition of a user-defined datatype which could be used to represent
amounts in a decimal currency; it corresponds to a SQL column definition of DECIMAL(8,2).
The effect is to allow values between -999,999.99 and 999,999.99, with a fixed interval of
0.01 between values.

<simpleType name='price'>
 <restriction base='precisionDecimal'>
 <totalDigits value='8'/>
 <minScale value='2'/>
 <maxScale value='2'/>
 </restriction>
</simpleType>

4.3.14.1 The minScale Schema Component

http://www.w3.org/TR/xmlschema11-2/ 146 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

Schema Component: minScale, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

An xs:integer value. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then types for which the current type is the {base type definition} MUST not
specify a value for minScale other than {value}.

4.3.14.2 XML Representation of minScale Schema Components

The XML representation for a minScale schema component is a <minScale> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: minScale Element Information Item
<minScale
 fixed = boolean : false
 id = ID
 value = integer
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minScale>

minScale Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <minScale> element, as defined in
section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.14.3 minScale Validation Rules

Validation Rule: minScale Valid

A precisionDecimal value v is facet-valid with respect to minScale if and only if one of the
following is true:

1 v has ·arithmeticPrecision· greater than or equal to the {value} of minScale.
2 The ·arithmeticPrecision· of v is absent.

4.3.14.4 Constraints on minScale Schema Components

http://www.w3.org/TR/xmlschema11-2/ 147 5/5/2009 6:46 PM

Schema Component Constraint: minScale less than or equal to maxScale

It is an ·error· for minScale to be greater than maxScale.

Note that it is not an error for minScale to be greater than totalDigits.

Schema Component Constraint: minScale valid restriction

It is an ·error· if minScale is among the members of {facets} of {base type definition} and
{value} is less than the {value} of that minScale.

4.3.15 Assertions

[Definition:] Assertions constrain the ·value space· by requiring the values to satisfy
specified XPath ([XPath 2.0]) expressions. The value of the assertions facet is a sequence of
Assertion components as defined in [XSD 1.1 Part 1: Structures].

The following is the definition of a ·user-defined· datatype which allows all integers but 0 by
using an assertion to disallow the value 0.

<simpleType name='nonZeroInteger'>
 <restriction base='integer'>
 <assertion test='$value ne 0'/>
 </restriction>
</simpleType>

The following example defines the datatype "triple", whose ·value space· is the set of
integers evenly divisible by three.

<simpleType name='triple'>
 <restriction base='integer'>
 <assertion test='$value mod 3 eq 0'/>
 </restriction>
</simpleType>

The same datatype can be defined without the use of assertions, but the pattern necessary
to represent the set of triples is long and error-prone:

<simpleType name='triple'>
 <restriction base='integer'>
 <pattern value=
 "([0369]|[147][0369]*[258]|(([258]|[147][0369]*[147])([0369]|[258][0369]*[147])
 </restriction>
</simpleType>

The assertion used in the first version of "triple" is likely to be clearer for many readers of the
schema document.

4.3.15.1 The assertions Schema Component

Schema Component: assertions, a kind of Constraining Facet

http://www.w3.org/TR/xmlschema11-2/ 148 5/5/2009 6:46 PM

Property

{value}

{annotations}

{annotations}

A sequence of Annotation components.
{value}

A sequence of Assertion components.

4.3.15.2 XML Representation of assertions Schema Components

The XML representation for an assertions schema component is one or more <assertion>
element information items. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: assertion Element Information Item
<assertion
 id = ID
 test = an XPath expression
 xpathDefaultNamespace = (anyURI | (##defaultNamespace | ##targetNamespace |
##local))
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</assertion>

assertions Schema Component
Representation

A sequence whose members are Assertions drawn from the following
sources, in order:
1 If the {base type definition} of the ·owner· has an assertions facet

among its {facets}, then the Assertions which appear in the {value} of
that assertions facet.

2 Assertions corresponding to the <assertion> element information
items among the [children] of <restriction>, if any, in document order.
For details of the construction of the Assertion components, see
section 3.13.2 of [XSD 1.1 Part 1: Structures].

The empty sequence.

Note: Annotations specified within an <assertion> element are
captured by the individual Assertion component to which it maps.

4.3.15.3 Assertions Validation Rules

The following rule refers to "the nearest built-in" datatype and to the "XDM representation" of
a value under a datatype. [Definition:] For any datatype T, the nearest built-in datatype to T
is the first ·built-in· datatype encountered in following the chain of links connecting each
datatype to its ·base type·. If T is a ·built-in· datatype, then the nearest built-in datatype of T is
T itself; otherwise, it is the nearest built-in datatype of T's ·base type·.

[Definition:] For any value V and any datatype T, the XDM representation of V under T is
defined recursively as follows. Call the XDM representation X. Then
1 If T = ·xs:anySimpleType· or ·xs:anyAtomicType· then X is V, and the dynamic type of X is

http://www.w3.org/TR/xmlschema11-2/ 149 5/5/2009 6:46 PM

xs:untypedAtomic.
2 If T . {variety} = atomic, then let T2 be the ·nearest built-in datatype· to T. If V is a member

of the ·value space· of T2, then X is V and the dynamic type of X is T2. Otherwise (i.e. if V
is not a member of the ·value space· of T2), X is the ·XDM representation· of V under T2 .
{base type definition}.

3 If T . {variety} = list, then X is a sequence of atomic values, each atomic value being the
·XDM representation· of the corresponding item in the list V under T . {item type definition}.

4 If T . {variety} = union, then X is the ·XDM representation· of V under the ·active basic
member· of V when validated against T. If there is no ·active basic member·, then V has no
·XDM representation· under T.

Note: If the {item type definition} of a ·list· is a ·union·, or the ·active basic member· is a
·list·, then several steps may be necessary before the ·atomic· datatype which serves as
the dynamic type of X is found.

Because the {item type definition} of a ·list· is required to be an ·atomic· or ·union·
datatype, and the ·active basic member· of a ·union· which accepts the value V is by
definition not a ·union·, the recursive rule given above is guaranteed to terminate in a
sequence of one or more ·atomic· values, each belonging to an ·atomic· datatype.

Validation Rule: Assertions Valid

A value V is facet-valid with respect to an assertions facet belonging to a simple type T if
and only if the {test} property of each Assertion in its {value} evaluates to true under the
conditions laid out below, without raising any dynamic error or type error.

Evaluation of {test} is performed as defined in [XPath 2.0], with the following conditions:

1 The XPath expression {test} is evaluated, following the rules given in XPath Evaluation of
[XSD 1.1 Part 1: Structures], with the following modifications.
1.1 The in-scope variables in the static context is a set with a single member. The

expanded QName of that member has no namespace URI and has 'value' as the local
name. The (static) type of the member is anyAtomicType*.

Note: The XDM type label anyAtomicType* simply says that for static typing purposes
the variable $value will have a value consisting of a sequence of zero or more
atomic values.

1.2 There is no context item for the evaluation of the XPath expression.

Note: In the terminology of [XPath 2.0], the context item is "undefined".

Note: As a consequence the expression '.', or any implicit or explicit reference to the
context item, will raise a dynamic error, which will cause the assertion to be treated
as false. If an error is detected statically, then the assertion violates the schema
component constraint XPath Valid and causes an error to be flagged in the
schema.

The variable "$value" can be used to refer to the value being checked.

1.3 There is likewise no value for the context size and the context position in the dynamic
context used for evaluation of the assertion.

1.4 The variable values in the dynamic context is a set with a single member. The

http://www.w3.org/TR/xmlschema11-2/ 150 5/5/2009 6:46 PM

expanded QName of that member has no namespace URI and 'value' as the local name.
The value of the member is the ·XDM representation· of V under T.

1.5 If V has no ·XDM representation· under T, then the XPath expression cannot usefully
be evaluated, and V is not facet-valid against the assertions facet of T.

2 The evaluation result is converted to either true or false as if by a call to the XPath
fn:boolean function.

4.3.15.4 Constraints on assertions Schema Components

Schema Component Constraint: Valid restriction of assertions

The {value} of the assertions facet on the {base type definition} MUST be a prefix of the
{value}.

Note: For components constructed from XML representations in schema documents,
the satisfaction of this constraint is a consequence of the XML mapping rules: any
assertion imposed by a simple type definition S will always also be imposed by any
type derived from S by ·facet-based restriction·. This constraint ensures that
components constructed by other means (so-called "born-binary" components)
similarly preserve assertions facets across ·facet-based restriction·.

4.3.16 explicitTimezone

[Definition:] explicitTimezone is a three-valued facet which can can be used to require or
prohibit the time zone offset in date/time datatypes.

Example

The following ·user-defined· datatype accepts only date values without a time zone offset,
using the explicitTimezone facet.

<simpleType name='bare-date'>
 <restriction base='date'>
 <explicitTimezone value='prohibited'/>
 </restriction>
</simpleType>

The same effect could also be achieved using the pattern facet, as shown below, but it is
somewhat less clear what is going on in this derivation, and it is better practice to use the
more straightforward explicitTimezone for this purpose.

<simpleType name='bare-date'>
 <restriction base='date'>
 <pattern value='[^:Z]*'/>
 </restriction>
</simpleType>

4.3.16.1 The explicitTimezone Schema Component

http://www.w3.org/TR/xmlschema11-2/ 151 5/5/2009 6:46 PM

Property

{value}

{fixed}

{annotations}

Schema Component: explicitTimezone, a kind of Constraining Facet
{annotations}

A sequence of Annotation components.
{value}

One of {required, prohibited, optional}. Required.
{fixed}

An xs:boolean value. Required.

If {fixed} is true, then datatypes for which the current type is the {base type definition} cannot
specify a value for explicitTimezone other than {value}.

Note: It is a consequence of timezone valid restriction (§4.3.16.4) that the value of the
explicitTimezone facet cannot be changed unless that value is optional, regardless of
whether {fixed} is true or false. Accordingly, {fixed} is relevant only when {value} is
optional.

4.3.16.2 XML Representation of explicitTimezone Schema Components

The XML representation for an explicitTimezone schema component is an <explicitTimezone>
element information item. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: explicitTimezone Element Information Item
<explicitTimezone
 fixed = boolean : false
 id = ID
 value = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</explicitTimezone>

explicitTimezone Schema Component
Representation

The actual value of the value [attribute]

The actual value of the fixed [attribute], if present, otherwise false

The annotation mapping of the <explicitTimezone> element, as defined
in section XML Representation of Annotation Schema Components of
[XSD 1.1 Part 1: Structures].

4.3.16.3 explicitTimezone Validation Rules

Validation Rule: explicitOffset Valid

A dateTime value V is facet-valid with respect to ·explicitTimezone· if and only if one of the
following is true
1 The {value} of the facet is required and V has a (non-absent) value for the

·timezoneOffset· property.

http://www.w3.org/TR/xmlschema11-2/ 152 5/5/2009 6:46 PM

2 The {value} of the facet is prohibited and the value for the ·timezoneOffset· property in V
is absent.

3 The {value} of the facet is optional.

4.3.16.4 Constraints on explicitTimezone Schema Components

Schema Component Constraint: timezone valid restriction

If the explicitTimezone facet on the {base type definition} has a {value} other than optional,
then the {value} of the facet on the ·restriction· MUST be equal to the {value} on the {base
type definition}; otherwise it is an ·error·.

Note: The effect of this rule is to allow datatypes with a explicitTimezone value of
optional to be restricted by specifying a value of required or prohibited, and to forbid
any other derivations using this facet.

5 Conformance

XSD 1.1: Datatypes is intended to be usable in a variety of contexts.

In the usual case, it will embedded in a host language such as [XSD 1.1 Part 1: Structures],
which refers to this specification normatively to define some part of the host language. In
some cases, XSD 1.1: Datatypes may be implemented independently of any host language.

Certain aspects of the behavior of conforming processors are described in this specification
as ·implementation-defined· or ·implementation-dependent·.

[Definition:] Something which MAY vary among conforming implementations, but which
MUST be specified by the implementor for each particular implementation, is
implementation-defined.

[Definition:] Something which MAY vary among conforming implementations, is not
specified by this or any W3C specification, and is not required to be specified by the
implementor for any particular implementation, is implementation-dependent.

Anything described in this specification as ·implementation-defined· or
·implementation-dependent· MAY be further constrained by the specifications of a host
language in which the datatypes and other material specified here are used. A list of
implementation-defined and implementation-dependent features can be found in
Implementation-defined and implementation-dependent features (normative) (§H)

5.1 Host Languages

When XSD 1.1: Datatypes is embedded in a host language, the definition of conformance is
specified by the host language, not by this specification. That is, when this specification is
implemented in the context of an implementation of a host language, the question of
conformance to this specification (separate from the host language) does not arise.

This specification imposes certain constraints on the embedding of XSD 1.1: Datatypes by a
host language; these are indicated in the normative text by the use of the verbs 'MUST', etc.,
with the phrase "host language" as the subject of the verb.

http://www.w3.org/TR/xmlschema11-2/ 153 5/5/2009 6:46 PM

Note: For convenience, the most important of these constraints are noted here:

Host languages SHOULD specify that all of the datatypes decribed here as built-ins
are automatically available.

Host languages MAY specify that additional datatypes are also made available
automatically.

If user-defined datatypes are to be supported in the host language, then the host
language MUST specify how user-defined datatypes are defined and made available
for use.

In addition, host languages MUST require conforming implementations of the host language to
obey all of the constraints and rules specified here.

5.2 Independent implementations

[Definition:] Implementations claiming minimal conformance to this specification
independent of any host language MUST do all of the following:
1 Support all the ·built-in· datatypes defined in this specification.
2 Completely and correctly implement all of the ·constraints on schemas· defined in this

specification.
3 Completely and correctly implement all of the ·Validation Rules· defined in this specification,

when checking the datatype validity of literals against datatypes.

Implementations claiming schema-document-aware conformance to this specification,
independent of any host language MUST be minimally conforming. In addition, they must do all
of the following:
1 Accept simple type definitions in the form specified in Datatype components (§4).
2 Completely and correctly implement all of rules governing the XML representation of simple

type definitions specified in Datatype components (§4).
3 Map the XML representations of simple type definitions to simple type definition

components as specified in the mapping rules given in Datatype components (§4).

Note: The term schema-document aware is used here for parallelism with the
corresponding term in [XSD 1.1 Part 1: Structures]. The reference to schema documents
may be taken as referring to the fact that schema-document-aware implementations
accept the XML representation of simple type definitions found in XSD schema
documents. It does not mean that the simple type definitions must themselves be
free-standing XML documents, nor that they typically will be.

5.3 Conformance of data

Abstract representations of simple type definitions conform to this specification if and only if
they obey all of the ·constraints on schemas· defined in this specification.

XML representations of simple type definitions conform to this specification if they obey all of
the applicable rules defined in this specification.

Note: Because the conformance of the resulting simple type definition component
depends not only on the XML representation of a given simple type definition, but on the
properties of its ·base type·, the conformance of an XML representation of a simple type

http://www.w3.org/TR/xmlschema11-2/ 154 5/5/2009 6:46 PM

definition does not guarantee that, in the context of other schema components, it will map
to a conforming component.

5.4 Partial Implementation of Infinite Datatypes

Some ·primitive· datatypes defined in this specification have infinite ·value spaces·; no finite
implementation can completely handle all their possible values. For some such datatypes,
minimum implementation limits are specified below. For other infinite types such as string,
hexBinary, and base64Binary, no minimum implementation limits are specified.

When this specification is used in the context of other languages (as it is, for example, by
[XSD 1.1 Part 1: Structures]), the host language may specify other minimum implementation
limits.

When presented with a literal or value exceeding the capacity of its partial implementation of a
datatype, a minimally conforming implementation of this specification will sometimes be
unable to determine with certainty whether the value is datatype-valid or not. Sometimes it will
be unable to represent the value correctly through its interface to any downsteam application.

When either of these is so, a conforming processor MUST indicate to the user and/or
downstream application that it cannot process the input data with assured correctness (much
as it would indicate if it ran out of memory). When the datatype validity of a value or literal is
uncertain because it exceeds the capacity of a partial implementation, the literal or value MUST
NOT be treated as invalid, and the unsupported value MUST NOT be quietly changed to a
supported value.

This specification does not constrain the method used to indicate that a literal or value in the
input data has exceeded the capacity of the implementation, or the form such indications
take.

·Minimally conforming· processors which set an application- or ·implementation-defined· limit
on the size of the values supported MUST clearly document that limit.

These are the partial-implementation ·minimal conformance· requirements:

All ·minimally conforming· processors MUST support decimal values whose absolute
value can be expressed as i / 10k, where i and k are nonnegative integers such that i <
1016 and k ≤ 16 (i.e., those expressible with sixteen total digits).

All ·minimally conforming· processors MUST support nonnegative ·year· values less than
10000 (i.e., those expressible with four digits) in all datatypes which use the
seven-property model defined in The Seven-property Model (§D.2.1) and have a
non-·absent· value for ·year· (i.e. dateTime, dateTimeStamp, date, gYearMonth, and
gYear). .

All ·minimally conforming· processors MUST support ·second· values to milliseconds (i.e.
those expressible with three fraction digits) in all datatypes which use the seven-property
model defined in The Seven-property Model (§D.2.1) and have a non-·absent· value for
·second· (i.e. dateTime, dateTimeStamp, and time). .

All ·minimally conforming· processors MUST support fractional-second duration values to
milliseconds (i.e. those expressible with three fraction digits).

http://www.w3.org/TR/xmlschema11-2/ 155 5/5/2009 6:46 PM

All ·minimally conforming· processors MUST support duration values with ·months· values
in the range -119999 to 119999 months (9999 years and 11 months) and ·seconds·
values in the range -31622400 to 31622400 seconds (one leap-year).

All ·minimally conforming· processors MUST support all precisionDecimal values in the
·value space· of the otherwise unconstrained derived datatype for which totalDigits is set
to sixteen, maxScale to 369, and minScale to −398.

Note: The conformance limits given in the text correspond to those of the
decimal64 type defined in [IEEE 754-2008], which can be stored in a 64-bit field.
The XML Schema Working Group recommends that implementors support limits
corresponding to those of the decimal128 type. This entails supporting the values in
the value space of the otherwise unconstrained datatype for which totalDigits is set
to 34, maxScale to 6176, and minScale to −6111.

A Schema for Schema Documents (Datatypes) (normative)

The XML representation of the datatypes-relevant part of the schema for schema documents
is presented here as a normative part of the specification.

Like any other XML document, schema documents may carry XML and document type
declarations. An XML declaration and a document type declaration are provided here for
convenience. Since this schema document describes the XML Schema language, the
targetNamespace attribute on the schema element refers to the XML Schema namespace itself.

Schema documents conforming to this specification may be in XML 1.0 or XML 1.1.
Conforming implementations may accept input in XML 1.0 or XML 1.1 or both. See
Dependencies on Other Specifications (§1.3).

Schema for Schema Documents (Datatypes)

<?xml version='1.0'?>
<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "XMLSchema.dtd" [

<!--
 Make sure that processors that do not read the external
 subset will know about the various IDs we declare
 -->
 <!ATTLIST xs:simpleType id ID #IMPLIED>
 <!ATTLIST xs:maxExclusive id ID #IMPLIED>
 <!ATTLIST xs:minExclusive id ID #IMPLIED>
 <!ATTLIST xs:maxInclusive id ID #IMPLIED>
 <!ATTLIST xs:minInclusive id ID #IMPLIED>
 <!ATTLIST xs:totalDigits id ID #IMPLIED>
 <!ATTLIST xs:fractionDigits id ID #IMPLIED>
 <!ATTLIST xs:maxScale id ID #IMPLIED>
 <!ATTLIST xs:minScale id ID #IMPLIED>
 <!ATTLIST xs:length id ID #IMPLIED>
 <!ATTLIST xs:minLength id ID #IMPLIED>
 <!ATTLIST xs:maxLength id ID #IMPLIED>
 <!ATTLIST xs:enumeration id ID #IMPLIED>
 <!ATTLIST xs:pattern id ID #IMPLIED>
 <!ATTLIST xs:assertion id ID #IMPLIED>
 <!ATTLIST xs:explicitTimezone id ID #IMPLIED>
 <!ATTLIST xs:appinfo id ID #IMPLIED>
 <!ATTLIST xs:documentation id ID #IMPLIED>
 <!ATTLIST xs:list id ID #IMPLIED>
 <!ATTLIST xs:union id ID #IMPLIED>

http://www.w3.org/TR/xmlschema11-2/ 156 5/5/2009 6:46 PM

]>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 version="datatypes.xsd (cr-20090430)">
 <xs:annotation>
 <xs:documentation source="../datatypes/datatypes.html">
 The schema corresponding to this document is normative,
 with respect to the syntactic constraints it expresses in the
 XML Schema language. The documentation (within <documentation>
 elements) below, is not normative, but rather highlights important
 aspects of the W3C Recommendation of which this is a part.
 </xs:documentation>
 </xs:annotation>

 <xs:simpleType name="derivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="substitution"/>
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:group name="simpleDerivation">
 <xs:choice>
 <xs:element ref="xs:restriction"/>
 <xs:element ref="xs:list"/>
 <xs:element ref="xs:union"/>
 </xs:choice>
 </xs:group>
 <xs:simpleType name="simpleDerivationSet">
 <xs:annotation>
 <xs:documentation>
 #all or (possibly empty) subset of {restriction, extension, union, list}
 </xs:documentation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="extension"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:complexType name="simpleType" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">

http://www.w3.org/TR/xmlschema11-2/ 157 5/5/2009 6:46 PM

 <xs:group ref="xs:simpleDerivation"/>
 <xs:attribute name="final" type="xs:simpleDerivationSet"/>
 <xs:attribute name="name" type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Can be restricted to required or forbidden
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required">
 <xs:annotation>
 <xs:documentation>
 Required at the top level
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" use="prohibited">
 <xs:annotation>
 <xs:documentation>
 Forbidden when nested
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="final" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="simpleType" type="xs:topLevelSimpleType" id="simpleType">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-simpleType"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="facet" abstract="true">
 <xs:annotation>
 <xs:documentation>
 An abstract element, representing facets in general.
 The facets defined by this spec are substitutable for
 this element, and implementation-defined facets should
 also name this as a substitution-group head.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:group name="simpleRestrictionModel">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/>
 <xs:choice minOccurs="0"

http://www.w3.org/TR/xmlschema11-2/ 158 5/5/2009 6:46 PM

 maxOccurs="unbounded">
 <xs:element ref="xs:facet"/>
 <xs:any processContents="lax"
 namespace="##other"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <xs:element name="restriction" id="restriction">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-restriction">
 base attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleRestrictionModel"/>
 <xs:attribute name="base" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="list" id="list">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-list">
 itemType attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="itemType" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="union" id="union">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-union">
 memberTypes attribute must be non-empty or there must be
 at least one simpleType child
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="memberTypes" use="optional">
 <xs:simpleType>
 <xs:list itemType="xs:QName"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="facet">

http://www.w3.org/TR/xmlschema11-2/ 159 5/5/2009 6:46 PM

 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="value" use="required"/>
 <xs:attribute name="fixed" type="xs:boolean" default="false"
 use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="noFixedFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="fixed" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="minExclusive" type="xs:facet"
 id="minExclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minInclusive" type="xs:facet"
 id="minInclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minInclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxExclusive" type="xs:facet"
 id="maxExclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxInclusive" type="xs:facet"
 id="maxInclusive"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxInclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="numFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value"
 type="xs:nonNegativeInteger" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="intFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>

http://www.w3.org/TR/xmlschema11-2/ 160 5/5/2009 6:46 PM

 </xs:sequence>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="totalDigits" id="totalDigits"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-totalDigits"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:numFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:positiveInteger" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="fractionDigits" type="xs:numFacet"
 id="fractionDigits"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-fractionDigits"/>
 </xs:annotation>
 </xs:element>

 <xs:element name="maxScale" type="xs:intFacet"
 id="maxScale"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxScale"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minScale" type="xs:intFacet"
 id="minScale"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minScale"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="length" type="xs:numFacet" id="length"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-length"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minLength" type="xs:numFacet"
 id="minLength"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-minLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxLength" type="xs:numFacet"
 id="maxLength"
 substitutionGroup="xs:facet">
 <xs:annotation>

http://www.w3.org/TR/xmlschema11-2/ 161 5/5/2009 6:46 PM

 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-maxLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="enumeration" type="xs:noFixedFacet"
 id="enumeration"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-enumeration"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="whiteSpace" id="whiteSpace"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-whiteSpace"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="collapse"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="pattern" id="pattern"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-pattern"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:noFixedFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:string"
 use="required"/>
 <xs:anyAttribute namespace="##other"
 processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="assertion" type="xs:assertion"
 id="assertion" substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema11-2/#element-assertion"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="explicitTimezone" id="explicitTimezone"
 substitutionGroup="xs:facet">
 <xs:annotation>
 <xs:documentation

http://www.w3.org/TR/xmlschema11-2/ 162 5/5/2009 6:46 PM

 source="http://www.w3.org/TR/xmlschema11-2/#element-explicitTimezone"/
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="optional"/>
 <xs:enumeration value="required"/>
 <xs:enumeration value="prohibited"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

B DTD for Datatype Definitions (non-normative)

The DTD for the datatypes-specific aspects of schema documents is given below. Note there
is no implication here that schema MUST be the root element of a document.

DTD for datatype definitions

<!--
 DTD for XML Schemas: Part 2: Datatypes

 Id: datatypes.dtd,v 1.1.2.4 2005/01/31 18:40:42 cmsmcq Exp
 Note this DTD is NOT normative, or even definitive.
 -->

<!--
 This DTD cannot be used on its own, it is intended
 only for incorporation in XMLSchema.dtd, q.v.
 -->

<!-- Define all the element names, with optional prefix -->
<!ENTITY % simpleType "%p;simpleType">
<!ENTITY % restriction "%p;restriction">
<!ENTITY % list "%p;list">
<!ENTITY % union "%p;union">
<!ENTITY % maxExclusive "%p;maxExclusive">
<!ENTITY % minExclusive "%p;minExclusive">
<!ENTITY % maxInclusive "%p;maxInclusive">
<!ENTITY % minInclusive "%p;minInclusive">
<!ENTITY % totalDigits "%p;totalDigits">
<!ENTITY % fractionDigits "%p;fractionDigits">

<!ENTITY % maxScale "%p;maxScale">
<!ENTITY % minScale "%p;minScale">
<!ENTITY % length "%p;length">
<!ENTITY % minLength "%p;minLength">
<!ENTITY % maxLength "%p;maxLength">
<!ENTITY % enumeration "%p;enumeration">
<!ENTITY % whiteSpace "%p;whiteSpace">
<!ENTITY % pattern "%p;pattern">

http://www.w3.org/TR/xmlschema11-2/ 163 5/5/2009 6:46 PM

<!ENTITY % assertion "%p;assertion">

<!ENTITY % explicitTimezone "%p;explicitTimezone">

<!--
 Customization entities for the ATTLIST of each element
 type. Define one of these if your schema takes advantage
 of the anyAttribute='##other' in the schema for schemas
 -->

<!ENTITY % simpleTypeAttrs "">
<!ENTITY % restrictionAttrs "">
<!ENTITY % listAttrs "">
<!ENTITY % unionAttrs "">
<!ENTITY % maxExclusiveAttrs "">
<!ENTITY % minExclusiveAttrs "">
<!ENTITY % maxInclusiveAttrs "">
<!ENTITY % minInclusiveAttrs "">
<!ENTITY % totalDigitsAttrs "">
<!ENTITY % fractionDigitsAttrs "">
<!ENTITY % lengthAttrs "">
<!ENTITY % minLengthAttrs "">
<!ENTITY % maxLengthAttrs "">

<!ENTITY % maxScaleAttrs "">
<!ENTITY % minScaleAttrs "">

<!ENTITY % enumerationAttrs "">
<!ENTITY % whiteSpaceAttrs "">
<!ENTITY % patternAttrs "">
<!ENTITY % assertionAttrs "">
<!ENTITY % explicitTimezoneAttrs "">

<!-- Define some entities for informative use as attribute
 types -->
<!ENTITY % URIref "CDATA">
<!ENTITY % XPathExpr "CDATA">
<!ENTITY % QName "NMTOKEN">
<!ENTITY % QNames "NMTOKENS">
<!ENTITY % NCName "NMTOKEN">
<!ENTITY % nonNegativeInteger "NMTOKEN">
<!ENTITY % boolean "(true|false)">
<!ENTITY % simpleDerivationSet "CDATA">
<!--
 #all or space-separated list drawn from derivationChoice
 -->

<!--
 Note that the use of 'facet' below is less restrictive
 than is really intended: There should in fact be no
 more than one of each of minInclusive, minExclusive,
 maxInclusive, maxExclusive, totalDigits, fractionDigits,
 length, maxLength, minLength within datatype,
 and the min- and max- variants of Inclusive and Exclusive
 are mutually exclusive. On the other hand, pattern and
 enumeration and assertion may repeat.
 -->
<!ENTITY % minBound "(%minInclusive; | %minExclusive;)">
<!ENTITY % maxBound "(%maxInclusive; | %maxExclusive;)">
<!ENTITY % bounds "%minBound; | %maxBound;">
<!ENTITY % numeric "%totalDigits; | %fractionDigits; |
%minScale; | %maxScale;">
<!ENTITY % ordered "%bounds; | %numeric;">
<!ENTITY % unordered
 "%pattern; | %enumeration; | %whiteSpace; | %length; |
 %maxLength; | %minLength; | %assertion;
 | %explicitTimezone;">

http://www.w3.org/TR/xmlschema11-2/ 164 5/5/2009 6:46 PM

<!ENTITY % implementation-defined-facets "">
<!ENTITY % facet "%ordered; | %unordered; %implementation-defined-facets;">
<!ENTITY % facetAttr
 "value CDATA #REQUIRED
 id ID #IMPLIED">
<!ENTITY % fixedAttr "fixed %boolean; #IMPLIED">
<!ENTITY % facetModel "(%annotation;)?">
<!ELEMENT %simpleType;
 ((%annotation;)?, (%restriction; | %list; | %union;))>
<!ATTLIST %simpleType;
 name %NCName; #IMPLIED
 final %simpleDerivationSet; #IMPLIED
 id ID #IMPLIED
 %simpleTypeAttrs;>
<!-- name is required at top level -->
<!ELEMENT %restriction; ((%annotation;)?,
 (%restriction1; |
 ((%simpleType;)?,(%facet;)*)),
 (%attrDecls;))>
<!ATTLIST %restriction;
 base %QName; #IMPLIED
 id ID #IMPLIED
 %restrictionAttrs;>
<!--
 base and simpleType child are mutually exclusive,
 one is required.

 restriction is shared between simpleType and
 simpleContent and complexContent (in XMLSchema.xsd).
 restriction1 is for the latter cases, when this
 is restricting a complex type, as is attrDecls.
 -->
<!ELEMENT %list; ((%annotation;)?,(%simpleType;)?)>
<!ATTLIST %list;
 itemType %QName; #IMPLIED
 id ID #IMPLIED
 %listAttrs;>
<!--
 itemType and simpleType child are mutually exclusive,
 one is required
 -->
<!ELEMENT %union; ((%annotation;)?,(%simpleType;)*)>
<!ATTLIST %union;
 id ID #IMPLIED
 memberTypes %QNames; #IMPLIED
 %unionAttrs;>
<!--
 At least one item in memberTypes or one simpleType
 child is required
 -->

<!ELEMENT %maxExclusive; %facetModel;>
<!ATTLIST %maxExclusive;
 %facetAttr;
 %fixedAttr;
 %maxExclusiveAttrs;>
<!ELEMENT %minExclusive; %facetModel;>
<!ATTLIST %minExclusive;
 %facetAttr;
 %fixedAttr;
 %minExclusiveAttrs;>

<!ELEMENT %maxInclusive; %facetModel;>
<!ATTLIST %maxInclusive;
 %facetAttr;
 %fixedAttr;
 %maxInclusiveAttrs;>
<!ELEMENT %minInclusive; %facetModel;>
<!ATTLIST %minInclusive;

http://www.w3.org/TR/xmlschema11-2/ 165 5/5/2009 6:46 PM

 %facetAttr;
 %fixedAttr;
 %minInclusiveAttrs;>

<!ELEMENT %totalDigits; %facetModel;>
<!ATTLIST %totalDigits;
 %facetAttr;
 %fixedAttr;
 %totalDigitsAttrs;>
<!ELEMENT %fractionDigits; %facetModel;>
<!ATTLIST %fractionDigits;
 %facetAttr;
 %fixedAttr;
 %fractionDigitsAttrs;>
<!ELEMENT %maxScale; %facetModel;>
<!ATTLIST %maxScale;
 %facetAttr;
 %fixedAttr;
 %maxScaleAttrs;>
<!ELEMENT %minScale; %facetModel;>
<!ATTLIST %minScale;
 %facetAttr;
 %fixedAttr;
 %minScaleAttrs;>

<!ELEMENT %length; %facetModel;>
<!ATTLIST %length;
 %facetAttr;
 %fixedAttr;
 %lengthAttrs;>
<!ELEMENT %minLength; %facetModel;>
<!ATTLIST %minLength;
 %facetAttr;
 %fixedAttr;
 %minLengthAttrs;>
<!ELEMENT %maxLength; %facetModel;>
<!ATTLIST %maxLength;
 %facetAttr;
 %fixedAttr;
 %maxLengthAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %enumeration; %facetModel;>
<!ATTLIST %enumeration;
 %facetAttr;
 %enumerationAttrs;>

<!ELEMENT %whiteSpace; %facetModel;>
<!ATTLIST %whiteSpace;
 %facetAttr;
 %fixedAttr;
 %whiteSpaceAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %pattern; %facetModel;>
<!ATTLIST %pattern;
 %facetAttr;
 %patternAttrs;>

<!ELEMENT %assertion; %facetModel;>
<!ATTLIST %assertion;
 %facetAttr;
 %assertionAttrs;>

<!ELEMENT %explicitTimezone; %facetModel;>
<!ATTLIST %explicitTimezone;
 %facetAttr;
 %explicitTimezoneAttrs;>

http://www.w3.org/TR/xmlschema11-2/ 166 5/5/2009 6:46 PM

C Illustrative XML representations for the built-in simple type
definitions

C.1 Illustrative XML representations for the built-in primitive type definitions

The following, although in the form of a schema document, does not conform to the rules for
schema documents defined in this specification. It contains explicit XML representations of
the primitive datatypes which need not be declared in a schema document, since they are
automatically included in every schema, and indeed must not be declared in a schema
document, since it is forbidden to try to derive types with anyAtomicType as the base type
definition. It is included here as a form of documentation.

The (not a) schema document for primitive built-in type definitions

<?xml version='1.0'?>
<!DOCTYPE xs:schema SYSTEM "../namespace/XMLSchema.dtd" [

<!--
 keep this schema XML1.0 DTD valid
 -->
 <!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

 <!ELEMENT hfp:hasFacet EMPTY>
 <!ATTLIST hfp:hasFacet
 name NMTOKEN #REQUIRED>

 <!ELEMENT hfp:hasProperty EMPTY>
 <!ATTLIST hfp:hasProperty
 name NMTOKEN #REQUIRED
 value CDATA #REQUIRED>
]>
<xs:schema
 xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema">

 <xs:annotation>
 <xs:documentation>
 This document contains XML elements which look like
 definitions for the primitive datatypes. These definitions are for
 information only; the real built-in definitions are magic.
 </xs:documentation>
 <xs:documentation>
 For each built-in datatype in this schema (both primitive and
 derived) can be uniquely addressed via a URI constructed
 as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype

 For example, to address the int datatype, the URI is:

 http://www.w3.org/2001/XMLSchema#int

 Additionally, each facet definition element can be uniquely
 addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the facet

 For example, to address the maxInclusive facet, the URI is:

http://www.w3.org/TR/xmlschema11-2/ 167 5/5/2009 6:46 PM

 http://www.w3.org/2001/XMLSchema#maxInclusive

 Additionally, each facet usage in a built-in datatype definition
 can be uniquely addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype, followed
 by a period (".") followed by the name of the facet

 For example, to address the usage of the maxInclusive facet in
 the definition of int, the URI is:

 http://www.w3.org/2001/XMLSchema#int.maxInclusive

 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="string" id="string">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#string"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace value="preserve" id="string.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="boolean" id="boolean">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#boolean"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="boolean.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="float" id="float">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>

http://www.w3.org/TR/xmlschema11-2/ 168 5/5/2009 6:46 PM

 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#float"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="float.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="double" id="double">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#double"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="double.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="decimal" id="decimal">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="totalDigits"/>
 <hfp:hasFacet name="fractionDigits"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="total"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#decimal"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="decimal.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="precisionDecimal" id="precisionDecimal">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="totalDigits"/>
 <hfp:hasFacet name="maxScale"/>
 <hfp:hasFacet name="minScale"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>

http://www.w3.org/TR/xmlschema11-2/ 169 5/5/2009 6:46 PM

 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#precisionDeci
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="precisionDecimal.whiteSpac
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="duration" id="duration">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#duration"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="duration.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dateTime" id="dateTime">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dateTime"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="dateTime.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="dateTime.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="time" id="time">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>

http://www.w3.org/TR/xmlschema11-2/ 170 5/5/2009 6:46 PM

 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#time"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="time.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="time.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="date" id="date">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#date"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="date.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="date.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gYearMonth" id="gYearMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gYearMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gYearMonth.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gYearMonth.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gYear" id="gYear">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>

http://www.w3.org/TR/xmlschema11-2/ 171 5/5/2009 6:46 PM

 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gYear"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gYear.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gYear.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gMonthDay" id="gMonthDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gMonthDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gMonthDay.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gMonthDay.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gDay" id="gDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gDay.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gDay.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gMonth" id="gMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>

http://www.w3.org/TR/xmlschema11-2/ 172 5/5/2009 6:46 PM

 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasFacet name="explicitTimezone"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="gMonth.whiteSpace"/>
 <xs:explicitTimezone value="optional" id="gMonth.explicitTimezone"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="hexBinary" id="hexBinary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#hexBinary"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="hexBinary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="base64Binary" id="base64Binary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#base64Binary"
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="base64Binary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="anyURI" id="anyURI">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>

http://www.w3.org/TR/xmlschema11-2/ 173 5/5/2009 6:46 PM

 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#anyURI"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="anyURI.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="QName" id="QName">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#QName"/>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="QName.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NOTATION" id="NOTATION">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NOTATION"/>
 <xs:documentation>
 NOTATION cannot be used directly in a schema; rather a type
 must be derived from it by specifying at least one enumeration
 facet whose value is the name of a NOTATION declared in the
 schema.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anyAtomicType">
 <xs:whiteSpace fixed="true" value="collapse" id="NOTATION.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

C.2 Illustrative XML representations for the built-in ordinary type definitions

The following, although in the form of a schema document, contains XML representations of
components already present in all schemas by definition. It is included here as a form of
documentation.

http://www.w3.org/TR/xmlschema11-2/ 174 5/5/2009 6:46 PM

Note: These datatypes do not need to be declared in a schema document, since they are
automatically included in every schema.

Issue (B-1933):

It is an open question whether this and similar XML documents should be
accepted or rejected by software conforming to this specification. The XML
Schema Working Group expects to resolve this question in connection with its
work on issues relating to schema composition.

In the meantime, some existing schema processors will accept declarations
for them; other existing processors will reject such declarations as duplicates.

Illustrative schema document for derived built-in type definitions

<?xml version='1.0'?>
<!DOCTYPE xs:schema SYSTEM "../namespace/XMLSchema.dtd" [

<!--
 keep this schema XML1.0 DTD valid
 -->
 <!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

 <!ELEMENT hfp:hasFacet EMPTY>
 <!ATTLIST hfp:hasFacet
 name NMTOKEN #REQUIRED>

 <!ELEMENT hfp:hasProperty EMPTY>
 <!ATTLIST hfp:hasProperty
 name NMTOKEN #REQUIRED
 value CDATA #REQUIRED>

]>
<xs:schema
 xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:documentation>
 This document contains XML representations for the
 ordinary non-primitive built-in datatypes
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="normalizedString" id="normalizedString">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#normalizedStr
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="replace" id="normalizedString.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="token" id="token">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#token"/>
 </xs:annotation>
 <xs:restriction base="xs:normalizedString">
 <xs:whiteSpace value="collapse" id="token.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="language" id="language">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#language"/>

http://www.w3.org/TR/xmlschema11-2/ 175 5/5/2009 6:46 PM

 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*" id="language.pattern"
 <xs:annotation>
 <xs:documentation source="http://www.ietf.org/rfc/bcp/bcp47.txt">
 pattern specifies the content of section 2.12 of XML 1.0e2
 and RFC 3066 (Revised version of RFC 1766). N.B. RFC 3066 is now
 obsolete; the grammar of RFC4646 is more restrictive. So strict
 conformance to the rules for language codes requires extra checking
 beyond validation against this type.
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="IDREFS" id="IDREFS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#IDREFS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:IDREF"/>
 </xs:simpleType>
 <xs:minLength value="1" id="IDREFS.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ENTITIES" id="ENTITIES">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ENTITIES"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:ENTITY"/>
 </xs:simpleType>
 <xs:minLength value="1" id="ENTITIES.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NMTOKEN" id="NMTOKEN">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NMTOKEN"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\c+" id="NMTOKEN.pattern">

http://www.w3.org/TR/xmlschema11-2/ 176 5/5/2009 6:46 PM

 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Nmtoken">
 pattern matches production 7 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NMTOKENS" id="NMTOKENS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="assertions"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NMTOKENS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:NMTOKEN"/>
 </xs:simpleType>
 <xs:minLength value="1" id="NMTOKENS.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Name" id="Name">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#Name"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\i\c*" id="Name.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Name">
 pattern matches production 5 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NCName" id="NCName">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NCName"/>
 </xs:annotation>
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][\c-[:]]*" id="NCName.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml-names/#NT-NCName
 pattern matches production 4 from the Namespaces in XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ID" id="ID">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ID"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="IDREF" id="IDREF">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#IDREF"/>

http://www.w3.org/TR/xmlschema11-2/ 177 5/5/2009 6:46 PM

 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="ENTITY" id="ENTITY">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ENTITY"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="integer" id="integer">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#integer"/>
 </xs:annotation>
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits fixed="true" value="0" id="integer.fractionDigits"/>
 <xs:pattern value="[\-+]?[0-9]+" id="integer.pattern"/>

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonPositiveInteger" id="nonPositiveInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#nonPositiveIn
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="0" id="nonPositiveInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="negativeInteger" id="negativeInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#negativeInteg
 </xs:annotation>
 <xs:restriction base="xs:nonPositiveInteger">
 <xs:maxInclusive value="-1" id="negativeInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="long" id="long">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#long"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-9223372036854775808" id="long.minInclusive"/>
 <xs:maxInclusive value="9223372036854775807" id="long.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="int" id="int">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#int"/>
 </xs:annotation>
 <xs:restriction base="xs:long">
 <xs:minInclusive value="-2147483648" id="int.minInclusive"/>
 <xs:maxInclusive value="2147483647" id="int.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="short" id="short">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#short"/>
 </xs:annotation>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-32768" id="short.minInclusive"/>
 <xs:maxInclusive value="32767" id="short.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="byte" id="byte">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#byte"/>

http://www.w3.org/TR/xmlschema11-2/ 178 5/5/2009 6:46 PM

 </xs:annotation>
 <xs:restriction base="xs:short">
 <xs:minInclusive value="-128" id="byte.minInclusive"/>
 <xs:maxInclusive value="127" id="byte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonNegativeInteger" id="nonNegativeInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#nonNegativeIn
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" id="nonNegativeInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedLong" id="unsignedLong">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedLong"
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:maxInclusive value="18446744073709551615" id="unsignedLong.maxInclusive
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedInt" id="unsignedInt">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedInt"/
 </xs:annotation>
 <xs:restriction base="xs:unsignedLong">
 <xs:maxInclusive value="4294967295" id="unsignedInt.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedShort" id="unsignedShort">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedShort
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt">
 <xs:maxInclusive value="65535" id="unsignedShort.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedByte" id="unsignedByte">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedByte"
 </xs:annotation>
 <xs:restriction base="xs:unsignedShort">
 <xs:maxInclusive value="255" id="unsignedByte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="positiveInteger" id="positiveInteger">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#positiveInteg
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="1" id="positiveInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="yearMonthDuration">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#yearMonthDura
 This type includes just those durations expressed in years and months.
 Since the pattern given excludes days, hours, minutes, and seconds,
 the values of this type have a seconds property of zero. They are
 totally ordered.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:duration">

http://www.w3.org/TR/xmlschema11-2/ 179 5/5/2009 6:46 PM

 <xs:pattern id="yearMonthDuration.pattern" value="[^DT]*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dayTimeDuration">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dayTimeDurati
 This type includes just those durations expressed in days, hours, minutes
 The pattern given excludes years and months, so the values of this type
 have a months property of zero. They are totally ordered.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:duration">
 <xs:pattern id="dayTimeDuration.pattern" value="[^YM]*(T.*)?"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dateTimeStamp" id="dateTimeStamp">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp
 This datatype includes just those dateTime values Whose explicitTimezone
 is present. They are totally ordered.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:dateTime">
 <xs:explicitTimezone fixed="true"
 id="dateTimeStamp.explicitTimezone" value="required"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

D Built-up Value Spaces

Some datatypes, such as integer, describe well-known mathematically abstract systems.
Others, such as the date/time datatypes, describe "real-life", "applied" systems. Certain of
the systems described by datatypes, both abstract and applied, have values in their value
spaces most easily described as things having several properties, which in turn have values
which are in some sense "primitive" or are from the value spaces of simpler datatypes.

In this document, the arguments to functions are assumed to be "call by value" unless
explicitly noted to the contrary, meaning that if the argument is modified during the processing
of the algorithm, that modification is not reflected in the "outside world". On the other hand,
the arguments to procedures are assumed to be "call by location", meaning that modifications
are so reflected, since that is the only way the processing of the algorithm can have any
effect.

Properties always have values. [Definition:] An optional property is permitted but not
required to have the distinguished value absent.

[Definition:] Throughout this specification, the value absent is used as a distinguished value
to indicate that a given instance of a property "has no value" or "is absent". This should not
be interpreted as constraining implementations, as for instance between using a null value for
such properties or not representing them at all.

Those values that are more primitive, and are used (among other things) herein to construct
object value spaces but which we do not explicitly define are described here:

A number (without precision) is an ordinary mathematical number; 1, 1.0, and
1.000000000000 are the same number. The decimal numbers and integers generally

http://www.w3.org/TR/xmlschema11-2/ 180 5/5/2009 6:46 PM

used in the algorithms of appendix Function Definitions (§E) are such ordinary numbers,
not carrying precision.

[Definition:] A special value is an object whose only relevant properties for purposes of
this specification are that it is distinct from, and unequal to, any other values (special or
otherwise). A few special values in different value spaces (e.g. positiveInfinity,
negativeInfinity, and notANumber in float and double) share names. Thus, special
values can be distinguished from each other in the general case by considering both the
name and the primitive datatype of the value; in some cases, of course, the name alone
suffices to identify the value uniquely.

Note: In the case of float and double, the ·special values· are members of the
datatype's ·value space·. In the case of precisionDecimal, the term ·special value·
denotes not members of the precisionDecimal ·value space· but some possible
values of the ·numericalValue· property they possess: positiveInfinity,
negativeInfinity, and notANumber. (Less formally, the term may sometimes also
be used for the precisionDecimal values whose ·numericalValue· property has such
a ·special value·. These precisionDecimal values do not quite fit the definition of
·special value·, since they do have relevant properties other than distinctness from
other values.)

D.1 Numerical Values

The following standard operators are defined here in case the reader is unsure of their
definition:

[Definition:] If m and n are numbers, then m div n is the greatest integer less than or
equal to m / n .

[Definition:] If m and n are numbers, then m mod n is m − n × (m ·div· n) .

Note: n ·div· 1 is a convenient and short way of expressing "the greatest integer less
than or equal to n".

D.1.1 Exact Lexical Mappings

Numerals and Fragments Thereof

digit ::= [0-9]

unsignedNoDecimalPtNumeral ::= digit+

noDecimalPtNumeral ::= ('+' | '-')? unsignedNoDecimalPtNumeral

fracFrag ::= digit+

unsignedDecimalPtNumeral ::=
(unsignedNoDecimalPtNumeral '.' fracFrag?) | ('.' fracFrag)

unsignedFullDecimalPtNumeral ::= unsignedNoDecimalPtNumeral '.' fracFrag

http://www.w3.org/TR/xmlschema11-2/ 181 5/5/2009 6:46 PM

decimalPtNumeral ::= ('+' | '-')? unsignedDecimalPtNumeral

unsignedScientificNotationNumeral ::=
(unsignedNoDecimalPtNumeral | unsignedDecimalPtNumeral) ('e' | 'E')
noDecimalPtNumeral

scientificNotationNumeral ::= ('+' | '-')? unsignedScientificNotationNumeral

Generic Numeral-to-Number Lexical Mappings

·unsignedNoDecimalMap· (N) → integer
Maps an unsignedNoDecimalPtNumeral to its numerical value.

·noDecimalMap· (N) → integer
Maps an noDecimalPtNumeral to its numerical value.

·unsignedDecimalPtMap· (D) → decimal number
Maps an unsignedDecimalPtNumeral to its numerical value.

·decimalPtMap· (N) → decimal number
Maps a decimalPtNumeral to its numerical value.

·scientificMap· (N) → decimal number
Maps a scientificNotationNumeral to its numerical value.

Generic Number to Numeral Canonical Mappings

·unsignedNoDecimalPtCanonicalMap· (i) → unsignedNoDecimalPtNumeral
Maps a nonnegative integer to a unsignedNoDecimalPtNumeral, its ·canonical
representation·.

·noDecimalPtCanonicalMap· (i) → noDecimalPtNumeral
Maps an integer to a noDecimalPtNumeral, its ·canonical representation·.

·unsignedDecimalPtCanonicalMap· (n) → unsignedDecimalPtNumeral
Maps a nonnegative decimal number to a unsignedDecimalPtNumeral, its ·canonical
representation·.

·decimalPtCanonicalMap· (n) → decimalPtNumeral
Maps a decimal number to a decimalPtNumeral, its ·canonical representation·.

·unsignedScientificCanonicalMap· (n) → unsignedScientificNotationNumeral

http://www.w3.org/TR/xmlschema11-2/ 182 5/5/2009 6:46 PM

Maps a nonnegative decimal number to a unsignedScientificNotationNumeral, its
·canonical representation·.

·scientificCanonicalMap· (n) → scientificNotationNumeral
Maps a decimal number to a scientificNotationNumeral, its ·canonical representation·.

Some numerical datatypes include some or all of three non-numerical ·special values·:
positiveInfinity, negativeInfinity, and notANumber. Their lexical spaces include
non-numeral lexical representations for these non-numeric values:

Special Non-numerical Lexical Representations Used With Numerical Datatypes

minimalNumericalSpecialRep ::= 'INF' | '-INF' | 'NaN'

numericalSpecialRep ::= '+INF' | minimalNumericalSpecialRep

Lexical Mapping for Non-numerical ·Special Values· Used With Numerical
Datatypes

·specialRepValue· (S) → a ·special value·
Maps the ·lexical representations· of ·special values· used with some numerical datatypes
to those ·special values·.

Canonical Mapping for Non-numerical ·Special Values· Used with Numerical
Datatypes

·specialRepCanonicalMap· (c) → numericalSpecialRep
Maps the ·special values· used with some numerical datatypes to their ·canonical
representations·.

D.2 Date/time Values
 D.2.1 The Seven-property Model
 D.2.2 Lexical Mappings

There are several different primitive but related datatypes defined in the specification which
pertain to various combinations of dates and times, and parts thereof. They all use related
value-space models, which are described in detail in this section. It is not difficult for a casual
reader of the descriptions of the individual datatypes elsewhere in this specification to
misunderstand some of the details of just what the datatypes are intended to represent, so
more detail is presented here in this section.

All of the value spaces for dates and times described here represent moments or periods of
time in Universal Coordinated Time (UTC). [Definition:] Universal Coordinated Time (UTC)
is an adaptation of TAI which closely approximates UT1 by adding ·leap-seconds· to selected
·UTC· days.

[Definition:] A leap-second is an additional second added to the last day of December, June,

http://www.w3.org/TR/xmlschema11-2/ 183 5/5/2009 6:46 PM

October, or March, when such an adjustment is deemed necessary by the International Earth
Rotation and Reference Systems Service in order to keep ·UTC· within 0.9 seconds of
observed astronomical time. When leap seconds are introduced, the last minute in the day
has more than sixty seconds. In theory leap seconds can also be removed from a day, but
this has not yet occurred. (See [International Earth Rotation Service (IERS)], [ITU-R
TF.460-6].) Leap seconds are not supported by the types defined here.

Because the dateTime type and other date- and time-related types defined in this
specification do not support leap seconds, there are portions of the ·UTC· timeline which
cannot be represented by values of these types. Users whose applications require that leap
seconds be represented and that date/time arithmetic take historically occurring leap seconds
into account will wish to make appropriate adjustments at the application level, or to use other
types.

D.2.1 The Seven-property Model

There are two distinct ways to model moments in time: either by tracking their year, month,
day, hour, minute and second (with fractional seconds as needed), or by tracking their time
(measured generally in seconds or days) from some starting moment. Each has its
advantages. The two are isomorphic. For definiteness, we choose to model the first using
five integer and one decimal number properties. We superimpose the second by providing
one decimal number-valued function which gives the corresponding count of seconds from
zero (the "time on the time line").

There is also a seventh integer property which specifies the time zone offset as the number of
minutes of offset from UTC. Values for the six primary properties are always stored in their
"local" values (the values shown in the lexical representations), rather than converted to
·UTC·.

Properties of Date/time Seven-property Models

·year·
an integer

·month·
an integer between 1 and 12 inclusive

·day·
an integer between 1 and 31 inclusive, possibly restricted further depending on ·month·
and ·year·

·hour·
an integer between 0 and 23 inclusive

·minute·
an integer between 0 and 59 inclusive

·second·

http://www.w3.org/TR/xmlschema11-2/ 184 5/5/2009 6:46 PM

a decimal number greater than or equal to 0 and less than 60.

·timezoneOffset·
an ·optional· integer between −840 and 840 inclusive

Non-negative values of the properties map to the years, months, days of month, etc. of the
Gregorian calendar in the obvious way. Values less than 1582 in the ·year· property represent
years in the "proleptic Gregorian calendar". A value of zero in the ·year· property represents
the year 1 BCE; a value of −1 represents the year 2 BCE, −2 is 3 BCE, etc.

Note: In version 1.0 of this specification, the ·year· property was not permitted to have
the value zero. The year before the year 1 in the proleptic Gregorian calendar,
traditionally referred to as 1 BC or as 1 BCE, was represented by a ·year· value of −1, 2
BCE by −2, and so forth. Of course, many, perhaps most, references to 1 BCE (or 1 BC)
actually refer not to a year in the proleptic Gregorian calendar but to a year in the Julian
or "old style" calendar; the two correspond approximately but not exactly to each other.

In this version of this specification, two changes are made in order to agree with existing
usage. First, ·year· is permitted to have the value zero. Second, the interpretation of
·year· values is changed accordingly: a ·year· value of zero represents 1 BCE, −1
represents 2 BCE, etc. This representation simplifies interval arithmetic and leap-year
calculation for dates before the common era (which may be why astronomers and others
interested in such calculations with the proleptic Gregorian calendar have adopted it), and
is consistent with the current edition of [ISO 8601].

Note that 1 BCE, 5 BCE, and so on (years 0000, -0004, etc. in the lexical representation
defined here) are leap years in the proleptic Gregorian calendar used for the date/time
datatypes defined here. Version 1.0 of this specification was unclear about the treatment
of leap years before the common era. If existing schemas or data specify dates of 29
February for any years before the common era, then some values giving a date of 29
February which were valid under a plausible interpretation of XSD 1.0 will be invalid under
this specification, and some which were invalid will be valid. With that possible exception,
schemas and data valid under the old interpretation remain valid under the new.

The model just described is called herein the "seven-property" model for date/time datatypes.
It is used "as is" for dateTime; all other date/time datatypes except duration use the same
model except that some of the six primary properties are required to have the value absent,
instead of being required to have a numerical value. (An ·optional· property, like
·timezoneOffset·, is always permitted to have the value absent.)

·timezoneOffset· values are limited to 14 hours, which is 840 (= 60 × 14) minutes.

Note: Leap-seconds are not permitted

Readers interested in when leap-seconds have been introduced should consult [USNO
Historical List], which includes a list of times when the difference between TAI and ·UTC· has
changed. Because the simple types defined here do not support leap seconds, they cannot
be used to represent the final second, in ·UTC·, of any of the days containing one. If it is
important, at the application level, to track the occurrence of leap seconds, then users will
need to make special arrangements for special handling of them and of time intervals
crossing them.

http://www.w3.org/TR/xmlschema11-2/ 185 5/5/2009 6:46 PM

While calculating, property values from the dateTime 1972-12-31T00:00:00 are used to fill in
for those that are absent, except that if ·day· is absent but ·month· is not, the largest
permitted day for that month is used.

Time on Timeline for Date/time Seven-property Model Datatypes

·timeOnTimeline· (dt) → decimal number
Maps a date/timeSevenPropertyModel value to the decimal number representing its
position on the "time line".

Values from any one date/time datatype using the seven-component model (all except
duration) are ordered the same as their ·timeOnTimeline· values, except that if one value's
·timezoneOffset· is absent and the other's is not, and using maximum and minimum
·timezoneOffset· values for the one whose ·timezoneOffset· is actually absent changes the
resulting (strict) inequality, the original two values are incomparable.

D.2.2 Lexical Mappings

[Definition:] Each lexical representation is made up of certain date/time fragments, each of
which corresponds to a particular property of the datatype value. They are defined by the
following productions.

Date/time Lexical Representation Fragments

yearFrag ::= '-'? (([1-9] digit digit digit+)) | ('0' digit digit digit))

monthFrag ::= ('0' [1-9]) | ('1' [0-2])

dayFrag ::= ('0' [1-9]) | ([12] digit) | ('3' [01])

hourFrag ::= ([01] digit) | ('2' [0-3])

minuteFrag ::= [0-5] digit

secondFrag ::= ([0-5] digit) ('.' digit+)?

endOfDayFrag ::= '24:00:00' ('.' '0'+)?

timezoneFrag ::= 'Z' | ('+' | '-') (('0' digit | '1' [0-3]) ':' minuteFrag | '14:00')

Each fragment other than timezoneFrag defines a subset of the ·lexical space· of decimal; the
corresponding ·lexical mapping· is the decimal ·lexical mapping· restricted to that subset.
These fragment ·lexical mappings· are combined separately for each date/time datatype
(other than duration) to make up ·the complete lexical mapping· for that datatype. The
·yearFragValue· mapping is used to obtain the value of the ·year· property, the
·monthFragValue· mapping is used to obtain the value of the ·month· property, etc. Each
datatype which specifies some properties to be mandatorily absent also does not permit the
corresponding lexical fragments in its lexical representations.

http://www.w3.org/TR/xmlschema11-2/ 186 5/5/2009 6:46 PM

Partial Date/time Lexical Mappings

·yearFragValue· (YR) → integer
Maps a yearFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto
an integer, presumably the ·year· property of a date/timeSevenPropertyModel value.

·monthFragValue· (MO) → integer
Maps a monthFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto an integer, presumably the ·month· property of a date/timeSevenPropertyModel
value.

·dayFragValue· (DA) → integer
Maps a dayFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto
an integer, presumably the ·day· property of a date/timeSevenPropertyModel value.

·hourFragValue· (HR) → integer
Maps a hourFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto
an integer, presumably the ·hour· property of a date/timeSevenPropertyModel value.

·minuteFragValue· (MI) → integer
Maps a minuteFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto an integer, presumably the ·minute· property of a date/timeSevenPropertyModel
value.

·secondFragValue· (SE) → decimal number
Maps a secondFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto a decimal number, presumably the ·second· property of a
date/timeSevenPropertyModel value.

·timezoneFragValue· (TZ) → integer
Maps a timezoneFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto an integer, presumably the ·timezoneOffset· property of a
date/timeSevenPropertyModel value.

(The redundancy between 'Z', '+00:00', and '-00:00', and the possibility of trailing fractional '0'
digits for secondFrag, are the only redundancies preventing these mappings from being
one-to-one.)

The following fragment ·canonical mappings· for each value-object property are combined as
appropriate to make the ·canonical mapping· for each date/time datatype (other than
duration):

Partial Date/time Canonical Mappings

http://www.w3.org/TR/xmlschema11-2/ 187 5/5/2009 6:46 PM

·yearCanonicalFragmentMap· (y) → yearFrag
Maps an integer, presumably the ·year· property of a date/timeSevenPropertyModel
value, onto a yearFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

·monthCanonicalFragmentMap· (m) → monthFrag
Maps an integer, presumably the ·month· property of a date/timeSevenPropertyModel
value, onto a monthFrag, part of a date/timeSevenPropertyModel's ·lexical
representation·.

·dayCanonicalFragmentMap· (d) → dayFrag
Maps an integer, presumably the ·day· property of a date/timeSevenPropertyModel value,
onto a dayFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

·hourCanonicalFragmentMap· (h) → hourFrag
Maps an integer, presumably the ·hour· property of a date/timeSevenPropertyModel
value, onto a hourFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

·minuteCanonicalFragmentMap· (m) → minuteFrag
Maps an integer, presumably the ·minute· property of a date/timeSevenPropertyModel
value, onto a minuteFrag, part of a date/timeSevenPropertyModel's ·lexical
representation·.

·secondCanonicalFragmentMap· (s) → secondFrag
Maps a decimal number, presumably the ·second· property of a
date/timeSevenPropertyModel value, onto a secondFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

·timezoneCanonicalFragmentMap· (t) → timezoneFrag
Maps an integer, presumably the ·timezoneOffset· property of a
date/timeSevenPropertyModel value, onto a timezoneFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

E Function Definitions

The more important functions and procedures defined here are summarized in the text When
there is a text summary, the name of the function in each is a "hot-link" to the same name in
the other. All other links to these functions link to the complete definition in this section.

E.1 Generic Number-related Functions

The following functions are used with various numeric and date/time datatypes.

Auxiliary Functions for Operating on Numeral Fragments

·digitValue· (d) → integer
Maps each digit to its numerical value.

http://www.w3.org/TR/xmlschema11-2/ 188 5/5/2009 6:46 PM

Arguments:
d : matches digit

Result:
a nonnegative integer less than ten

Algorithm:
Return

0 when d = '0' ,

1 when d = '1' ,

2 when d = '2' ,

etc.

·digitSequenceValue· (S) → integer
Maps a sequence of digits to the position-weighted sum of the terms numerical values.

Arguments:
S : a finite sequence of ·literals·, each term matching digit.

Result:
a nonnegative integer

Algorithm:
Return the sum of ·digitValue·(Si) × 10length(S)−i where i runs over the domain of S.

·fractionDigitSequenceValue· (S) → integer
Maps a sequence of digits to the position-weighted sum of the terms numerical values,
weighted appropriately for fractional digits.

Arguments:
S : a finite sequence of ·literals·, each term matching digit.

Result:
a nonnegative integer

Algorithm:
Return the sum of ·digitValue·(Si) − 10−i where i runs over the domain of S.

·fractionFragValue· (N) → decimal number
Maps a fracFrag to the appropriate fractional decimal number.

Arguments:
N : matches fracFrag

Result:
a nonnegative decimal number

Algorithm:
N is necessarily the left-to-right concatenation of a finite sequence S of ·literals·, each
term matching digit.
Return ·fractionDigitSequenceValue·(S).

Generic Numeral-to-Number Lexical Mappings

·unsignedNoDecimalMap· (N) → integer

http://www.w3.org/TR/xmlschema11-2/ 189 5/5/2009 6:46 PM

Maps an unsignedNoDecimalPtNumeral to its numerical value.
Arguments:

N : matches unsignedNoDecimalPtNumeral
Result:

a nonnegative integer
Algorithm:

N is the left-to-right concatenation of a finite sequence S of ·literals·, each term matching
digit.
Return ·digitSequenceValue·(S).

·noDecimalMap· (N) → integer
Maps an noDecimalPtNumeral to its numerical value.

Arguments:
N : matches noDecimalPtNumeral

Result:
an integer

Algorithm:
N necessarily consists of an optional sign('+' or '-') and then a ·literal· U that matches
unsignedNoDecimalPtNumeral.
Return

−1 × ·unsignedNoDecimalMap·(U) when '-' is present, and

·unsignedNoDecimalMap·(U) otherwise.

·unsignedDecimalPtMap· (D) → decimal number
Maps an unsignedDecimalPtNumeral to its numerical value.

Arguments:
D : matches unsignedDecimalPtNumeral

Result:
a nonnegative decimal number

Algorithm:
D necessarily consists of an optional ·literal· N matching unsignedNoDecimalPtNumeral,
a decimal point, and then an optional ·literal· F matching fracFrag.
Return

·unsignedNoDecimalMap·(N) when F is not present,

·fractionFragValue·(F) when N is not present, and

·unsignedNoDecimalMap·(N) + ·fractionFragValue·(F) otherwise.

·decimalPtMap· (N) → decimal number
Maps a decimalPtNumeral to its numerical value.

Arguments:
N : matches decimalPtNumeral

Result:
a decimal number

http://www.w3.org/TR/xmlschema11-2/ 190 5/5/2009 6:46 PM

Algorithm:
N necessarily consists of an optional sign('+' or '-') and then an instance U of
unsignedDecimalPtNumeral.
Return

−·unsignedDecimalPtMap·(U) when '-' is present, and

·unsignedDecimalPtMap·(U) otherwise.

·scientificMap· (N) → decimal number
Maps a scientificNotationNumeral to its numerical value.

Arguments:
N : matches scientificNotationNumeral

Result:
a decimal number

Algorithm:
N necessarily consists of an instance C of either noDecimalPtNumeral or
decimalPtNumeral, either an 'e' or an 'E', and then an instance E of noDecimalPtNumeral.
Return

·decimalPtMap·(C) − 10 ^ ·unsignedDecimalPtMap·(E) when a '.' is present in N,
and

·noDecimalMap·(C) − 10 ^ ·unsignedDecimalPtMap·(E) otherwise.

Auxiliary Functions for Producing Numeral Fragments

·digit· (i) → digit
Maps each integer between 0 and 9 to the corresponding digit.

Arguments:
i : between 0 and 9 inclusive

Result:
matches digit

Algorithm:
Return

'0' when i = 0 ,

'1' when i = 1 ,

'2' when i = 2 ,

etc.

·digitRemainderSeq· (i) → sequence of integers
Maps each nonnegative integer to a sequence of integers used by ·digitSeq· to ultimately
create an unsignedNoDecimalPtNumeral.

Arguments:
i : a nonnegative integer

http://www.w3.org/TR/xmlschema11-2/ 191 5/5/2009 6:46 PM

Result:
sequence of nonnegative integers

Algorithm:
Return that sequence s for which

s0 = i and

sj+1 = sj ·div· 10 .

·digitSeq· (i) → sequence of integers
Maps each nonnegative integer to a sequence of integers used by
·unsignedNoDecimalPtCanonicalMap· to create an unsignedNoDecimalPtNumeral.

Arguments:
i : a nonnegative integer

Result:
sequence of integers where each term is between 0 and 9 inclusive

Algorithm:
Return that sequence s for which sj =·digitRemainderSeq·(i)j ·mod· 10 .

·lastSignificantDigit· (s) → integer
Maps a sequence of nonnegative integers to the index of the first zero term.

Arguments:
s : a sequence of nonnegative integers

Result:
a nonnegative integer

Algorithm:
Return the smallest nonnegative integer j such that s(i)j+1 is 0.

·FractionDigitRemainderSeq· (f) → sequence of decimal numbers
Maps each nonnegative decimal number less than 1 to a sequence of decimal numbers
used by ·fractionDigitSeq· to ultimately create an unsignedNoDecimalPtNumeral.

Arguments:
f : nonnegative and less than 1

Result:
a sequence of nonnegative decimal numbers

Algorithm:
Return that sequence s for which

s0 = f − 10 , and

sj+1 = (sj ·mod· 1) − 10 .

·fractionDigitSeq· (f) → sequence of integers
Maps each nonnegative decimal number less than 1 to a sequence of integers used by
·fractionDigitsCanonicalFragmentMap· to ultimately create an
unsignedNoDecimalPtNumeral.

Arguments:

http://www.w3.org/TR/xmlschema11-2/ 192 5/5/2009 6:46 PM

f : nonnegative and less than 1
Result:

a sequence of integer;s where each term is between 0 and 9 inclusive
Algorithm:

Return that sequence s for which sj = ·FractionDigitRemainderSeq·(f)j ·div· 1 .

·fractionDigitsCanonicalFragmentMap· (f) → fracFrag
Maps each nonnegative decimal number less than 1 to a ·literal· used by
·unsignedDecimalPtCanonicalMap· to create an unsignedDecimalPtNumeral.

Arguments:
f : nonnegative and less than 1

Result:
matches fracFrag

Algorithm:
Return ·digit·(·fractionDigitSeq·(f)0) & . . . &
·digit·(·fractionDigitSeq·(f)·lastSignificantDigit·(·FractionDigitRemainderSeq·(f))) .

Generic Number to Numeral Canonical Mappings

·unsignedNoDecimalPtCanonicalMap· (i) → unsignedNoDecimalPtNumeral
Maps a nonnegative integer to a unsignedNoDecimalPtNumeral, its ·canonical
representation·.

Arguments:
i : a nonnegative integer

Result:
matches unsignedNoDecimalPtNumeral

Algorithm:
Return ·digit·(·digitSeq·(i)·lastSignificantDigit·(·digitRemainderSeq·(i))) & . . . &
·digit·(·digitSeq·(i)0) . (Note that the concatenation is in reverse order.)

·noDecimalPtCanonicalMap· (i) → noDecimalPtNumeral
Maps an integer to a noDecimalPtNumeral, its ·canonical representation·.

Arguments:
i : an integer

Result:
matches noDecimalPtNumeral

Algorithm:
Return

'-' & ·unsignedNoDecimalPtCanonicalMap·(−i) when i is negative,

·unsignedNoDecimalPtCanonicalMap·(i) otherwise.

·unsignedDecimalPtCanonicalMap· (n) → unsignedDecimalPtNumeral
Maps a nonnegative decimal number to a unsignedDecimalPtNumeral, its ·canonical
representation·.

Arguments:

http://www.w3.org/TR/xmlschema11-2/ 193 5/5/2009 6:46 PM

n : a nonnegative decimal number
Result:

matches unsignedDecimalPtNumeral
Algorithm:

Return ·unsignedNoDecimalPtCanonicalMap·(n·div·1) & '.' &
·fractionDigitsCanonicalFragmentMap·(n·mod·1) .

·decimalPtCanonicalMap· (n) → decimalPtNumeral
Maps a decimal number to a decimalPtNumeral, its ·canonical representation·.

Arguments:
n : a decimal number

Result:
matches decimalPtNumeral

Algorithm:
Return

'-' & ·unsignedDecimalPtCanonicalMap·(−i) when i is negative,

·unsignedDecimalPtCanonicalMap·(i) otherwise.

·unsignedScientificCanonicalMap· (n) → unsignedScientificNotationNumeral
Maps a nonnegative decimal number to a unsignedScientificNotationNumeral, its
·canonical representation·.

Arguments:
n : a nonnegative decimal number

Result:
matches unsignedScientificNotationNumeral

Algorithm:
Return ·unsignedDecimalPtCanonicalMap·(n / 10log(n) ·div· 1) & 'E' &
·noDecimalPtCanonicalMap·(log(n) ·div· 1)

·scientificCanonicalMap· (n) → scientificNotationNumeral
Maps a decimal number to a scientificNotationNumeral, its ·canonical representation·.

Arguments:
n : a decimal number

Result:
matches scientificNotationNumeral

Algorithm:
Return

'-' & ·unsignedScientificCanonicalMap·(−n) when n is negative,

·unsignedScientificCanonicalMap·(i) otherwise.

For example:

123.4567 ·mod· 1 = 0.4567 and 123.4567 ·div· 1 = 123 .

http://www.w3.org/TR/xmlschema11-2/ 194 5/5/2009 6:46 PM

·digitRemainderSeq·(123) is 123 , 12 , 1 , 0 , 0 ,

·digitSeq·(123) is 3 , 2 , 1 , 0 , 0 ,

·lastSignificantDigit·(·digitRemainderSeq·(123)) = 2 (Sequences count from 0.)

·unsignedNoDecimalPtCanonicalMap·(123) = '123'

·FractionDigitRemainderSeq·(0.4567) is 4.567 , 5.67 , 6.7 , 7 , 0 , 0 ,

·fractionDigitSeq·(0.4567) is 4 , 5 , 6 , 7 , 0 , 0 ,

·lastSignificantDigit·(·FractionDigitRemainderSeq·(0.4567)) = 3

·fractionDigitsCanonicalFragmentMap·(0.4567) = '4567'

·unsignedDecimalPtCanonicalMap·(123.4567) = '123.4567'

Lexical Mapping for Non-numerical ·Special Values· Used With Numerical
Datatypes

·specialRepValue· (S) → a ·special value·
Maps the ·lexical representations· of ·special values· used with some numerical datatypes
to those ·special values·.

Arguments:
S : matches numericalSpecialRep

Result:
one of positiveInfinity, negativeInfinity, or notANumber.

Algorithm:
Return

positiveInfinity when S is 'INF' or '+INF',

negativeInfinity when S is '-INF', and

notANumber when S is 'NaN'

Canonical Mapping for Non-numerical ·Special Values· Used with Numerical
Datatypes

·specialRepCanonicalMap· (c) → numericalSpecialRep
Maps the ·special values· used with some numerical datatypes to their ·canonical
representations·.

Arguments:
c : one of positiveInfinity, negativeInfinity, and notANumber

Result:
matches numericalSpecialRep

Algorithm:
Return

http://www.w3.org/TR/xmlschema11-2/ 195 5/5/2009 6:46 PM

'INF' when c is positiveInfinity

'-INF' when c is negativeInfinity

'NaN' when c is notANumber

Auxiliary Functions for Reading Instances of pDecimalRep

·decimalPtPrecision· (LEX) → integer
Maps a decimalPtNumeral onto an integer; used in calculating the ·arithmeticPrecision· of
a precisionDecimal value.

Arguments:
LEX : matches decimalPtNumeral

Result:
an integer

Algorithm:
LEX necessarily contains a decimal point ('.') and may optionally contain a following
fracFrag F consisting of some number n of digits.
Return

n when F is present, and

0 otherwise.

·scientificPrecision· (LEX) → integer
Maps a scientificNotationNumeral onto an integer; used in calculating the
·arithmeticPrecision· of a precisionDecimal value.

Arguments:
LEX : matches scientificNotationNumeral

Result:
an integer

Algorithm:
LEX necessarily contains a noDecimalPtNumeral or decimalPtNumeral C preceding an
exponent indicator ('E' or 'e', and a following noDecimalPtNumeral E.
Return

−1 × ·noDecimalMap·(E) when C is a noDecimalPtNumeral, and

·decimalPtPrecision·(C) − ·noDecimalMap·(E) otherwise.

Lexical Mapping

·precisionDecimalLexicalMap· (LEX) → precisionDecimal
Maps a pDecimalRep onto a complete precisionDecimal value.

Arguments:
LEX : matches pDecimalRep

Result:
a precisionDecimal value

http://www.w3.org/TR/xmlschema11-2/ 196 5/5/2009 6:46 PM

Algorithm:
Let pD be a complete precisionDecimal value.

Set pD's ·numericalValue· to

·noDecimalMap·(LEX) when LEX is an instance of noDecimalPtNumeral,

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral,

·scientificMap·(LEX) when LEX is an instance of scientificNotationNumeral
and

·specialRepValue·(LEX) otherwise.

1.

Set pD's ·arithmeticPrecision· to

0 when LEX is a noDecimalPtNumeral,

·decimalPtPrecision·(LEX) when LEX is a decimalPtNumeral,

·scientificPrecision·(LEX) when LEX is a scientificNotationNumeral, and

absent otherwise

2.

Set pD's ·sign· to

absent when LEX is 'NaN'

negative when the first character of LEX is '-', and

positive otherwise.

3.

Return pD.4.

Lexical Mapping

·decimalLexicalMap· (LEX) → decimal
Maps a decimalLexicalRep onto a decimal value.

Arguments:
LEX : matches decimalLexicalRep

Result:
a decimal value

Algorithm:
Let d be a decimal value.

Set d to

·noDecimalMap·(LEX) when LEX is an instance of noDecimalPtNumeral,
and

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral,

1.

http://www.w3.org/TR/xmlschema11-2/ 197 5/5/2009 6:46 PM

Return d.2.

Canonical Mapping

·decimalCanonicalMap· (d) → decimalLexicalRep
Maps a decimal to its ·canonical representation·, a decimalLexicalRep.

Arguments:
d : a decimal value

Result:
a ·literal· matching decimalLexicalRep

Algorithm:

If d is an integer, then return ·noDecimalPtCanonicalMap·(d).1.

Otherwise, return ·decimalPtCanonicalMap·(d).2.

Auxiliary Functions for Binary Floating-point Lexical/Canonical Mappings

·floatingPointRound· (nV, cWidth, eMin, eMax) → decimal number or ·special value·
Rounds a non-zero decimal number to the nearest floating-point value.

Arguments:
nV : an initially non-zero decimal number (may be set to zero during calculations)
cWidth : a positive integer
eMin : an integer
eMax : an integer greater than eMin

Result:
a decimal number or ·special value· (INF or −INF)

Algorithm:
Let

s be an integer intially 1,

c be a nonnegative integer, and

e be an integer.

Set s to −1 when nV < 0 .1.

So select e that 2cWidth × 2(e−1) ≤ |nV| < 2cWidth × 2e .2.

So select c that (c − 1) × 2e ≤ |nV | <c × 2e .3.

when eMax < e (overflow) return:

positiveInfinity when s is positive, and

negativeInfinity otherwise.

4.

http://www.w3.org/TR/xmlschema11-2/ 198 5/5/2009 6:46 PM

otherwise:

When e < eMin (underflow):

Set e = eMin

So select c that (c − 1) × 2e ≤ |nV | <c × 2e .

a.

Set nV to

c × 2e when |nV | > c × 2e − 2(e−1) ;

(c − 1) × 2e when |nV | < c × 2e − 2(e−1) ;

c × 2e or (c − 1) × 2e according to whether c is even or c − 1 is
even, otherwise (i.e., |nV | = c × 2e − 2(e−1) , the midpoint
between the two values).

b.

Return

s × nV when nV < 2cWidth × 2eMax,

positiveInfinity when s is positive, and

negativeInfinity otherwise.

c.

Note: Implementers will find the algorithms of [Clinger, WD (1990)] more efficient in
memory than the simple abstract algorithm employed above.

·round· (n, k) → decimal number
Maps a decimal number to that value rounded by some power of 10.

Arguments:
n : a decimal number
k : a nonnegative integer

Result:
a decimal number

Algorithm:
Return ((n / 10k + 0.5) ·div·1) × 10k .

·floatApprox· (c, e, j) → decimal number
Maps a decimal number (c × 10e) to successive approximations.

Arguments:
c : a nonnegative integer
e : an integer
j : a nonnegative integer

Result:
a decimal number

Algorithm:

http://www.w3.org/TR/xmlschema11-2/ 199 5/5/2009 6:46 PM

Return ·round·(c, j) × 10e

Lexical Mapping

·floatLexicalMap· (LEX) → float
Maps a floatRep onto a float value.

Arguments:
LEX : matches floatRep

Result:
a float value

Algorithm:
Let nV be a decimal number or ·special value· (INF or −INF).

Return ·specialRepValue·(LEX) when LEX is an instance of numericalSpecialRep;

otherwise (LEX is a numeral):

Set nV to

·noDecimalMap·(LEX) when LEX is an instance of
noDecimalPtNumeral,

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral,
and

·scientificMap·(LEX) otherwise (LEX is an instance of
scientificNotationNumeral).

1.

Set nV to ·floatingPointRound·(nV, 24, −149, 104) when nV is not zero.
(·floatingPointRound· may nonetheless return zero, or INF or −INF.)

2.

Return:

When nV is zero:

negativeZero when the first character of LEX is '-', and

positiveZero otherwise.

nV otherwise.

3.

Note: This specification permits the substitution of any other rounding algorithm
which conforms to the requirements of [IEEE 754-2008].

Lexical Mapping

·doubleLexicalMap· (LEX) → double
Maps a doubleRep onto a double value.

Arguments:
LEX : matches doubleRep

http://www.w3.org/TR/xmlschema11-2/ 200 5/5/2009 6:46 PM

Result:
a double value

Algorithm:
Let nV be a decimal number or ·special value· (INF or −INF).

Return ·specialRepValue·(LEX) when LEX is an instance of numericalSpecialRep;

otherwise (LEX is a numeral):

Set nV to

·noDecimalMap·(LEX) when LEX is an instance of
noDecimalPtNumeral,

·decimalPtMap·(LEX) when LEX is an instance of decimalPtNumeral,
and

·scientificMap·(LEX) otherwise (LEX is an instance of
scientificNotationNumeral).

1.

Set nV to ·floatingPointRound·(nV, 53, −1074, 971) when nV is not zero.
(·floatingPointRound· may nonetheless return zero, or INF or −INF.)

2.

Return:

When nV is zero:

negativeZero when the first character of LEX is '-', and

positiveZero otherwise.

nV otherwise.

3.

Note: This specification permits the substitution of any other rounding algorithm
which conforms to the requirements of [IEEE 754-2008].

Canonical Mapping

·floatCanonicalMap· (f) → floatRep
Maps a float to its ·canonical representation·, a floatRep.

Arguments:
f : a float value

Result:
a ·literal· matching floatRep

Algorithm:
Let

l be a nonnegative integer

s be an integer intially 1,

c be a positive integer, and

http://www.w3.org/TR/xmlschema11-2/ 201 5/5/2009 6:46 PM

e be an integer.

Return ·specialRepCanonicalMap·(f) when f is one of positiveInfinity,
negativeInfinity, or notANumber;

return '0.0E0' when f is positiveZero;

return '-0.0E0' when f is negativeZero;

otherwise (f is numeric and non-zero):

Set s to −1 when f < 0 .1.

Let c be the smallest integer for which there exists an integer e for which
|f | = c × 10e .

2.

Let e be log10(|f | / c) (so that |f | = c × 10e).3.

Let l be the largest nonnegative integer for which c × 10e =
·floatingPointRound·(·floatApprox·(c, e, l), 24, −149, 104)

4.

Return ·scientificCanonicalMap·(s × ·floatApprox·(c, e, l)) .5.

Canonical Mapping

·doubleCanonicalMap· (f) → doubleRep
Maps a double to its ·canonical representation·, a doubleRep.

Arguments:
f : a double value

Result:
a ·literal· matching doubleRep

Algorithm:
Let

l be a nonnegative integer

s be an integer intially 1,

c be a positive integer, and

e be an integer.

Return ·specialRepCanonicalMap·(f) when f is one of positiveInfinity,
negativeInfinity, or notANumber;

return '0.0E0' when f is positiveZero;

return '-0.0E0' when f is negativeZero;

http://www.w3.org/TR/xmlschema11-2/ 202 5/5/2009 6:46 PM

otherwise (f is numeric and non-zero):

Set s to −1 when f < 0 .1.

Let c be the smallest integer for which there exists an integer e for which
|f | = c × 10e .

2.

Let e be log10(|f | / c) (so that |f | = c × 10e).3.

Let l be the largest nonnegative integer for which c × 10e =
·floatingPointRound·(·floatApprox·(c, e, l), 53, −1074, 971)

4.

Return ·scientificCanonicalMap·(s × ·floatApprox·(c, e, l)) .5.

Canonical Mapping

·precisionDecimalCanonicalMap· (pD) → pDecimalRep
Maps a precisionDecimal to its ·canonical representation·, a pDecimalRep.

Arguments:
pD : a precisionDecimal value

Result:
a ·literal· matching pDecimalRep

Algorithm:

Let nV be the ·numericalValue· of pD.

Let aP be the ·arithmeticPrecision· of pD.

1.

If pD is one of NaN, INF, or -INF, then return ·specialRepCanonicalMap·(nV).2.

Otherwise, if nV is an integer and aP is zero and 1E-6 ≤ nV ≤ 1E6, then return
·noDecimalPtCanonicalMap·(nV).

3.

Otherwise, if aP is greater than zero and 1E-6 ≤ nV ≤ 1E6, then let s be
·decimalPtCanonicalMap·(nV). Let f be the number of fractional digits in s; f will
invariably be less than or equal to aP. Return the concatenation of s with aP − f
occurrences of the digit '0'.

4.

Otherwise, it will be the case that nV is less than 1E−6 or greater than 1E6, or that
aP is less than zero. Let

s be ·scientificCanonicalMap·(nV).

m be the part of s which precedes the "E".

n be the part of s which follows the "E".

p be the integer denoted by n.

f be the number of fractional digits in m; note that f will invariably be less than
or equal to aP + p.

5.

http://www.w3.org/TR/xmlschema11-2/ 203 5/5/2009 6:46 PM

t be a string consisting of aP + p − f occurrences of the digit '0', preceded by a
decimal point if and only if m contains no decimal point and aP + p − f is
greater than zero.

Return the concatenation m & t & 'E' & n.

E.2 Duration-related Definitions

The following functions are primarily used with the duration datatype and its derivatives.

Auxiliary duration-related Functions Operating on Representation Fragments

·duYearFragmentMap· (Y) → integer
Maps a duYearFrag to an integer, intended as part of the value of the ·months· property
of a duration value.

Arguments:
Y : matches duYearFrag

Result:
a nonnegative integer

Algorithm:
Y is necessarily the letter 'Y' followed by a numeral N:
Return ·noDecimalMap·(N).

·duMonthFragmentMap· (M) → integer
Maps a duMonthFrag to an integer, intended as part of the value of the ·months· property
of a duration value.

Arguments:
M : matches duYearFrag

Result:
a nonnegative integer

Algorithm:
M is necessarily the letter 'M' followed by a numeral N:
Return ·noDecimalMap·(N).

·duDayFragmentMap· (D) → integer
Maps a duDayFrag to an integer, intended as part of the value of the ·seconds· property
of a duration value.

Arguments:
D : matches duDayFrag

Result:
a nonnegative integer

Algorithm:
D is necessarily the letter 'D' followed by a numeral N:
Return ·noDecimalMap·(N).

·duHourFragmentMap· (H) → integer
Maps a duHourFrag to an integer, intended as part of the value of the ·seconds· property

http://www.w3.org/TR/xmlschema11-2/ 204 5/5/2009 6:46 PM

of a duration value.
Arguments:

H : matches duHourFrag
Result:

a nonnegative integer
Algorithm:

D is necessarily the letter 'D' followed by a numeral N:
Return ·noDecimalMap·(N).

·duMinuteFragmentMap· (M) → integer
Maps a duMinuteFrag to an integer, intended as part of the value of the ·seconds·
property of a duration value.

Arguments:
M : matches duMinuteFrag

Result:
a nonnegative integer

Algorithm:
M is necessarily the letter 'M' followed by a numeral N:
Return ·noDecimalMap·(N).

·duSecondFragmentMap· (S) → decimal number
Maps a duSecondFrag to a decimal number, intended as part of the value of the
·seconds· property of a duration value.

Arguments:
S : matches duSecondFrag

Result:
a nonnegative decimal number

Algorithm:
S is necessarily 'S' followed by a numeral N:
Return

·decimalPtMap·(N) when '.' occurs in N, and

·noDecimalMap·(N) otherwise.

·duYearMonthFragmentMap· (YM) → integer
Maps a duYearMonthFrag into an integer, intended as part of the ·months· property of a
duration value.

Arguments:
YM : matches duYearMonthFrag

Result:
a nonnegative integer

Algorithm:
YM necessarily consists of an instance Y of duYearFrag and/or an instance M of
duMonthFrag:
Let

y be ·duYearFragmentMap·(Y) (or 0 if Y is not present) and

http://www.w3.org/TR/xmlschema11-2/ 205 5/5/2009 6:46 PM

m be ·duMonthFragmentMap·(M) (or 0 if M is not present).

Return 12 × y + m .

·duTimeFragmentMap· (T) → decimal number
Maps a duTimeFrag into a decimal number, intended as part of the ·seconds· property of
a duration value.

Arguments:
T : matches duTimeFrag

Result:
a nonnegative decimal number

Algorithm:
T necessarily consists of an instance H of duHourFrag, and/or an instance M of
duMinuteFrag, and/or an instance S of duSecondFrag.
Let

h be ·duDayFragmentMap·(H) (or 0 if H is not present),

m be ·duMinuteFragmentMap·(M) (or 0 if M is not present), and

s be ·duSecondFragmentMap·(S) (or 0 if S is not present).

Return 3600 × h + 60 × m + s .

·duDayTimeFragmentMap· (DT) → decimal number
Maps a duDayTimeFrag into a decimal number, which is the potential value of the
·seconds· property of a duration value.

Arguments:
DT : matches duDayTimeFrag

Result:
a nonnegative decimal number

Algorithm:
DT necesarily consists of an instance D of duDayFrag and/or an instance T of
duTimeFrag.
Let

d be ·duDayFragmentMap·(D) (or 0 if D is not present) and

t be ·duTimeFragmentMap·(T) (or 0 if T is not present).

Return 86400 × d + t .

The duration Lexical Mapping

·durationMap· (DUR) → duration
Separates the durationLexicalRep into the month part and the seconds part, then maps
them into the ·months· and ·seconds· of the duration value.

Arguments:
DUR : matches durationLexicalRep

Result:
a complete duration value

http://www.w3.org/TR/xmlschema11-2/ 206 5/5/2009 6:46 PM

Algorithm:
DUR consists of possibly a leading '-', followed by 'P' and then an instance Y of
duYearMonthFrag and/or an instance D of duDayTimeFrag:
Return a duration whose

·months· value is

0 if Y is not present,

−·duYearMonthFragmentMap·(Y) if both '-' and Y are present, and

·duYearMonthFragmentMap·(Y) otherwise.

and whose

·seconds· value is

0 if D is not present,

−·duDayTimeFragmentMap·(D) if both '-' and D are present, and

·duDayTimeFragmentMap·(D) otherwise.

The yearMonthDuration Lexical Mapping

·yearMonthDurationMap· (YM) → yearMonthDuration
Maps the lexical representation into the ·months· of a yearMonthDuration value. (A
yearMonthDuration's ·seconds· is always zero.) ·yearMonthDurationMap· is a restriction
of ·durationMap·.

Arguments:
YM : matches yearMonthDurationLexicalRep

Result:
a complete yearMonthDuration value

Algorithm:
YM necessarily consists of an optional leading '-', followed by 'P' and then an instance Y
of duYearMonthFrag:
Return a yearMonthDuration whose

·months· value is

−·duYearMonthFragmentMap·(Y) if '-' is present in YM and

·duYearMonthFragmentMap·(Y) otherwise, and

·seconds· value is (necessarily) 0.

The dayTimeDuration Lexical Mapping

·dayTimeDurationMap· (DT) → dayTimeDuration
Maps the lexical representation into the ·seconds· of a dayTimeDuration value. (A

http://www.w3.org/TR/xmlschema11-2/ 207 5/5/2009 6:46 PM

dayTimeDuration's ·months· is always zero.) ·dayTimeDurationMap· is a restriction of
·durationMap·.

Arguments:
DT : a dayTimeDuration value

Result:
a complete dayTimeDuration value

Algorithm:
DT necessarily consists of possibly a leading '-', followed by 'P' and then an instance D of
duDayTimeFrag:
Return a dayTimeDuration whose

·months· value is (necessarily) 0, and

·seconds· value is

−·duDayTimeFragmentMap·(D) if '-' is present in DT and

·duDayTimeFragmentMap·(D) otherwise.

Auxiliary duration-related Functions Producing Representation Fragments

·duYearMonthCanonicalFragmentMap· (ym) → duYearMonthFrag
Maps a nonnegative integer, presumably the absolute value of the ·months· of a duration
value, to a duYearMonthFrag, a fragment of a duration ·lexical representation·.

Arguments:
ym : a nonnegative integer

Result:
a ·literal· matching duYearMonthFrag

Algorithm:
Let

y be ym ·div· 12 , and

m be ym ·mod· 12 ,

Return

·unsignedNoDecimalPtCanonicalMap·(y) & 'Y' &
·unsignedNoDecimalPtCanonicalMap·(m) & 'M' when neither y nor m is zero,

·unsignedNoDecimalPtCanonicalMap·(y) & 'Y' when y is not zero but m is, and

 ·unsignedNoDecimalPtCanonicalMap·(m) & 'M' when y is zero.

·duDayCanonicalFragmentMap· (d) → duDayFrag
Maps a nonnegative integer, presumably the day normalized value from the ·seconds· of
a duration value, to a duDayFrag, a fragment of a duration ·lexical representation·.

Arguments:
d : a nonnegative integer

Result:

http://www.w3.org/TR/xmlschema11-2/ 208 5/5/2009 6:46 PM

a ·literal· matching duDayFrag
Algorithm:

Return

·unsignedNoDecimalPtCanonicalMap·(d) & 'D' when d is not zero, and

the empty string ('') when d is zero.

·duHourCanonicalFragmentMap· (h) → duHourFrag
Maps a nonnegative integer, presumably the hour normalized value from the ·seconds· of
a duration value, to a duHourFrag, a fragment of a duration ·lexical representation·.

Arguments:
h : a nonnegative integer

Result:
a ·literal· matching duHourFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(h) & 'H' when h is not zero, and

the empty string ('') when h is zero.

·duMinuteCanonicalFragmentMap· (m) → duMinuteFrag
Maps a nonnegative integer, presumably the minute normalized value from the ·seconds·
of a duration value, to a duMinuteFrag, a fragment of a duration ·lexical representation·.

Arguments:
m : a nonnegative integer

Result:
a ·literal· matching duMinuteFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(m) & 'M' when m is not zero, and

the empty string ('') when m is zero.

·duSecondCanonicalFragmentMap· (s) → duSecondFrag
Maps a nonnegative decimal number, presumably the second normalized value from the
·seconds· of a duration value, to a duSecondFrag, a fragment of a duration ·lexical
representation·.

Arguments:
s : a nonnegative decimal number

Result:
matches duSecondFrag

Algorithm:
Return

·unsignedNoDecimalPtCanonicalMap·(s) & 'S' when s is a non-zero integer,

http://www.w3.org/TR/xmlschema11-2/ 209 5/5/2009 6:46 PM

·unsignedDecimalPtCanonicalMap·(s) & 'S' when s is not an integer, and

the empty string ('') when s is zero.

·duTimeCanonicalFragmentMap· (h, m, s) → duTimeFrag
Maps three nonnegative numbers, presumably the hour, minute, and second normalized
values from a duration's ·seconds·, to a duTimeFrag, a fragment of a duration ·lexical
representation·.

Arguments:
h : a nonnegative integer
m : a nonnegative integer
s : a nonnegative decimal number

Result:
a ·literal· matching duTimeFrag

Algorithm:
Return

'T' & ·duHourCanonicalFragmentMap·(h) & ·duMinuteCanonicalFragmentMap·(m) &
·duSecondCanonicalFragmentMap·(s) when h, m, and s are not all zero, and

the empty string ('') when all arguments are zero.

·duDayTimeCanonicalFragmentMap· (ss) → duDayTimeFrag
Maps a nonnegative decimal number, presumably the absolute value of the ·seconds· of
a duration value, to a duDayTimeFrag, a fragment of a duration ·lexical representation·.

Arguments:
ss : a nonnegative decimal number

Result:
matches duDayTimeFrag

Algorithm:
Let

d is ss ·div· 86400 ,

h is (ss ·mod· 86400) ·div· 3600 ,

m is (ss ·mod· 3600) ·div· 60 , and

s is ss ·mod· 60 ,

Return

·duDayCanonicalFragmentMap·(d) & ·duTimeCanonicalFragmentMap·(h, m, s)
when ss is not zero and

'T0S' when ss is zero.

The duration Canonical Mapping

·durationCanonicalMap· (v) → durationLexicalRep

http://www.w3.org/TR/xmlschema11-2/ 210 5/5/2009 6:46 PM

Maps a duration's property values to durationLexicalRep fragments and combines the
fragments into a complete durationLexicalRep.

Arguments:
v : a complete duration value

Result:
matches durationLexicalRep

Algorithm:
Let

m be v's ·months·,

s be v's ·seconds·, and

sgn be '-' if m or s is negative and the empty string ('') otherwise.

Return

sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| m |) &
·duDayTimeCanonicalFragmentMap·(| s |) when neither m nor s is zero,

sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| m |) when m is not zero but s
is, and

sgn & 'P' & ·duDayTimeCanonicalFragmentMap·(| s |) when m is zero.

The yearMonthDuration Canonical Mapping

·yearMonthDurationCanonicalMap· (ym) → yearMonthDurationLexicalRep
Maps a yearMonthDuration's ·months· value to a yearMonthDurationLexicalRep. (The
·seconds· value is necessarily zero and is ignored.) ·yearMonthDurationCanonicalMap· is
a restriction of ·durationCanonicalMap·.

Arguments:
ym : a complete yearMonthDuration value

Result:
matches yearMonthDurationLexicalRep

Algorithm:
Let

m be ym's ·months· and

sgn be '-' if m is negative and the empty string ('') otherwise.

Return sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| m |) .

The dayTimeDuration Canonical Mapping

·dayTimeDurationCanonicalMap· (dt) → dayTimeDurationLexicalRep
Maps a dayTimeDuration's ·seconds· value to a dayTimeDurationLexicalRep. (The
·months· value is necessarily zero and is ignored.) ·dayTimeDurationCanonicalMap· is a
restriction of ·durationCanonicalMap·.

Arguments:

http://www.w3.org/TR/xmlschema11-2/ 211 5/5/2009 6:46 PM

dt : a complete dayTimeDuration value
Result:

matches dayTimeDurationLexicalRep
Algorithm:

Let
s be dt's ·months· and

sgn be '-' if s is negative and the empty string ('') otherwise.

Return sgn & 'P' & ·duYearMonthCanonicalFragmentMap·(| s |) .

E.3 Date/time-related Definitions
 E.3.1 Normalization of property values
 E.3.2 Auxiliary Functions
 E.3.3 Adding durations to dateTimes
 E.3.4 Time on timeline
 E.3.5 Lexical mappings
 E.3.6 Canonical Mappings

E.3.1 Normalization of property values

When adding and subtracting numbers from date/time properties, the immediate results may
not conform to the limits specified. Accordingly, the following procedures are used to
"normalize" potential property values to corresponding values that do conform to the
appropriate limits. Normalization is required when dealing with time zone offset changes (as
when converting to ·UTC· from "local" values) and when adding duration values to or
subtracting them from dateTime values.

Date/time Datatype Normalizing Procedures

·normalizeMonth· (yr, mo)
If month (mo) is out of range, adjust month and year (yr) accordingly; otherwise, make
no change.

Arguments:
yr : an integer
mo : an integer

Algorithm:

Add (mo − 1) ·div· 12 to yr.1.

Set mo to (mo − 1) ·mod· 12 + 1 .2.

·normalizeDay· (yr, mo, da)
If month (mo) is out of range, or day (da) is out of range for the appropriate month, then
adjust values accordingly, otherwise make no change.

Arguments:
yr : an integer
mo : an integer

http://www.w3.org/TR/xmlschema11-2/ 212 5/5/2009 6:46 PM

da : an integer
Algorithm:

·normalizeMonth·(yr, mo)1.

Repeat until da is positive and not greater than ·daysInMonth·(yr, mo):

If da exceeds the upper limit from the table then:

Subtract that limit from da.i.

Add 1 to mo.ii.

·normalizeMonth·(yr, mo)iii.

a.

If da is not positive then:

Subtract 1 from mo.i.

·normalizeMonth·(yr, mo)ii.

Add the new upper limit from the table to da.iii.

b.

2.

·normalizeMinute· (yr, mo, da, hr, mi)
Normalizes minute, hour, month, and year values to values that obey the appropriate
constraints.

Arguments:
yr : an integer
mo : an integer
da : an integer
hr : an integer
mi : an integer

Algorithm:

Add mi ·div· 60 to hr.1.

Set mi to mi ·mod· 60 .2.

Add hr ·div· 24 to da.3.

Set hr to hr ·mod· 24 .4.

·normalizeDay·(yr, mo, da).5.

·normalizeSecond· (yr, mo, da, hr, mi, se)
Normalizes second, minute, hour, month, and year values to values that obey the
appropriate constraints. (This algorithm ignores leap seconds.)

Arguments:
yr : an integer
mo : an integer

http://www.w3.org/TR/xmlschema11-2/ 213 5/5/2009 6:46 PM

da : an integer
hr : an integer
mi : an integer
se : a decimal number

Algorithm:

Add se ·div· 60 to mi.1.

Set se to se ·mod· 60 .2.

·normalizeMinute·(yr, mo, da, hr, mi).3.

E.3.2 Auxiliary Functions

Date/time Auxiliary Functions

·daysInMonth· (y, m) → integer
Returns the number of the last day of the month for any combination of year and month.

Arguments:
y : an ·optional· integer
m : an integer between 1 and 12

Result:
between 28 and 31 inclusive

Algorithm:
Return:

28 when m is 2 and y is not evenly divisible by 4, or is evenly divisible by 100 but
not by 400, or is absent,

29 when m is 2 and y is evenly divisible by 400, or is evenly divisible by 4 but not
by 100,

30 when m is 4, 6, 9, or 11,

31 otherwise (m is 1, 3, 5, 7, 8, 10, or 12)

·newDateTime· (Yr, Mo, Da, Hr, Mi, Se, Tz) → an instance of the
date/timeSevenPropertyModel

Returns an instance of the date/timeSevenPropertyModel with property values as
specified in the arguments. If an argument is omitted, the corresponding property is set to
absent.

Arguments:
Yr : an ·optional· integer
Mo : an ·optional· integer between 1 and 12 inclusive
Da : an ·optional· integer between 1 and 31 inclusive
Hr : an ·optional· integer between 0 and 24 inclusive

http://www.w3.org/TR/xmlschema11-2/ 214 5/5/2009 6:46 PM

Mi : an ·optional· integer between 0 and 59 inclusive
Se : an ·optional· decimal number greater than or equal to 0 and less than 60
Tz : an ·optional· integer between −840 and 840 inclusive.

Result:
Algorithm:

Let
dt be an instance of the date/timeSevenPropertyModel

yr be Yr when Yr is not absent, otherwise 1

mo be Mowhen Mo is not absent, otherwise 1

da be Dawhen Da is not absent, otherwise 1

hr be Hrwhen Hr is not absent, otherwise 0

mi be Miwhen Mi is not absent, otherwise 0

se be Sewhen Se is not absent, otherwise 0

·normalizeSecond·(yr, mo, da, hr, mi, se)1.

Set the ·year· property of dt to absent when Yr is absent, otherwise yr.2.

Set the ·month· property of dt to absent when Mo is absent, otherwise mo.3.

Set the ·day· property of dt to absent when Da is absent, otherwise da.4.

Set the ·hour· property of dt to absent when Hr is absent, otherwise hr.5.

Set the ·minute· property of dt to absent when Mi is absent, otherwise mi.6.

Set the ·second· property of dt to absent when Se is absent, otherwise se.7.

Set the ·timezoneOffset· property of dt to Tz8.

Return dt.9.

E.3.3 Adding durations to dateTimes

Given a dateTime S and a duration D, function ·dateTimePlusDuration· specifies how to
compute a dateTime E, where E is the end of the time period with start S and duration D i.e. E
= S + D. Such computations are used, for example, to determine whether a dateTime is
within a specific time period. This algorithm can also be applied, when applications need the
operation, to the addition of durations to the datatypes date, gYearMonth, gYear, gDay and
gMonth, each of which can be viewed as denoting a set of dateTimes. In such cases, the
addition is made to the first or starting dateTime in the set. Note that the extension of this
algorithm to types other than dateTime is not needed for schema-validity assessment.

Essentially, this calculation adds the ·months· and ·seconds· properties of the duration value

http://www.w3.org/TR/xmlschema11-2/ 215 5/5/2009 6:46 PM

separately to the dateTime value. The ·months· value is added to the starting dateTime value
first. If the day is out of range for the new month value, it is pinned to be within range. Thus
April 31 turns into April 30. Then the ·seconds· value is added. This latter addition can cause
the year, month, day, hour, and minute to change.

Leap seconds are ignored by the computation. All calculations use 60 seconds per minute.

Thus the addition of either PT1M or PT60S to any dateTime will always produce the same
result. This is a special definition of addition which is designed to match common practice,
and—most importantly—be stable over time.

A definition that attempted to take leap-seconds into account would need to be constantly
updated, and could not predict the results of future implementation's additions. The decision
to introduce a leap second in ·UTC· is the responsibility of the [International Earth Rotation
Service (IERS)]. They make periodic announcements as to when leap seconds are to be
added, but this is not known more than a year in advance. For more information on leap
seconds, see [U.S. Naval Observatory Time Service Department].

Adding duration to dateTime

·dateTimePlusDuration· (du, dt) → dateTime
Adds a duration to a dateTime value, producing another dateTime value.

Arguments:
du : a duration value
dt : a dateTime value

Result:
a dateTime value

Algorithm:
Let

yr be dt's ·year·,

mo be dt's ·month·,

da be dt's ·day·,

hr be dt's ·hour·,

mi be dt's ·minute·, and

se be dt's ·second·.

tz be dt's ·timezoneOffset·.

Add du's ·months· to mo.1.

·normalizeMonth·(yr, mo). (I.e., carry any over- or underflow, adjust month.)2.

Set da to min(da, ·daysInMonth·(yr, mo)). (I.e., pin the value if necessary.)3.

Add du's ·seconds· to se.4.

http://www.w3.org/TR/xmlschema11-2/ 216 5/5/2009 6:46 PM

·normalizeSecond·(yr, mo, da, hr, mi, se). (I.e., carry over- or underflow of
seconds up to minutes, hours, etc.)

5.

Return ·newDateTime·(yr, mo, da, hr, mi, se, tz)6.

This algorithm may be applied to date/time types other than dateTime, by

For each absent property, supply the minimum legal value for that property (1 for years,
months, days, 0 for hours, minutes, seconds).

1.

Call the function.2.

For each property absent in the initial value, set the corresponding property in the result
value to absent.

3.

Examples:

dateTime duration result

2000-01-12T12:13:14Z P1Y3M5DT7H10M3.3S 2001-04-17T19:23:17.3Z

2000-01 -P3M 1999-10

2000-01-12 PT33H 2000-01-13

Note that the addition defined by ·dateTimePlusDuration· differs from addition on integers or
real numbers in not being commutative. The order of addition of durations to instants is
significant. For example, there are cases where:

((dateTime + duration1) + duration2) != ((dateTime + duration2) +
duration1)

Example:

(2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-04-30

(2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

E.3.4 Time on timeline

Time on Timeline for Date/time Seven-property Model Datatypes

·timeOnTimeline· (dt) → decimal number
Maps a date/timeSevenPropertyModel value to the decimal number representing its
position on the "time line".

Arguments:
dt : a date/timeSevenPropertyModel value

Result:
a decimal number

Algorithm:

http://www.w3.org/TR/xmlschema11-2/ 217 5/5/2009 6:46 PM

Let
yr be 1971 when dt's ·year· is absent, and dt's ·year· − 1 otherwise,

mo be 12 or dt's ·month· , similarly,

da be ·daysInMonth·(yr+1, mo) − 1 or (dt's ·day·) − 1 , similarly,

hr be 0 or dt's ·hour· , similarly, and

mi be 0 or dt's ·minute· , similarly.

http://www.w3.org/TR/xmlschema11-2/ 218 5/5/2009 6:46 PM

Subtract ·timezoneOffset· from mi when ·timezoneOffset· is not absent.1.

(·year·)

Set ToTl to 31536000 × yr .a.

2.

(Leap-year Days, ·month·, and ·day·)

Add 86400 × (yr ·div· 400 − yr ·div· 100 + yr ·div· 4) to ToTl.a.

Add 86400 × Summ < mo ·daysInMonth·(yr + 1, m) to ToTlb.

Add 86400 × da to ToTl.c.

3.

(·hour·, ·minute·, and ·second·)

Add 3600 × hr + 60 × mi + se to ToTl.a.

4.

Return ToTl.5.

E.3.5 Lexical mappings

Partial Date/time Lexical Mappings

·yearFragValue· (YR) → integer
Maps a yearFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto
an integer, presumably the ·year· property of a date/timeSevenPropertyModel value.

Arguments:
YR : matches yearFrag

Result:
an integer

Algorithm:
Return ·noDecimalMap·(YR)

·monthFragValue· (MO) → integer
Maps a monthFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto an integer, presumably the ·month· property of a date/timeSevenPropertyModel
value.

Arguments:
MO : matches monthFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(MO)

·dayFragValue· (DA) → integer
Maps a dayFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto

http://www.w3.org/TR/xmlschema11-2/ 219 5/5/2009 6:46 PM

an integer, presumably the ·day· property of a date/timeSevenPropertyModel value.
Arguments:

DA : matches dayFrag
Result:

an integer
Algorithm:

Return ·unsignedNoDecimalMap·(DA)

·hourFragValue· (HR) → integer
Maps a hourFrag, part of a date/timeSevenPropertyModel's ·lexical representation·, onto
an integer, presumably the ·hour· property of a date/timeSevenPropertyModel value.

Arguments:
HR : matches hourFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(HR)

·minuteFragValue· (MI) → integer
Maps a minuteFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto an integer, presumably the ·minute· property of a date/timeSevenPropertyModel
value.

Arguments:
MI : matches minuteFrag

Result:
an integer

Algorithm:
Return ·unsignedNoDecimalMap·(MI)

·secondFragValue· (SE) → decimal number
Maps a secondFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto a decimal number, presumably the ·second· property of a
date/timeSevenPropertyModel value.

Arguments:
SE : matches secondFrag

Result:
a decimal number

Algorithm:
Return

·unsignedNoDecimalMap·(SE) when no decimal point occurs in SE, and

·unsignedDecimalPtMap·(SE) otherwise.

·timezoneFragValue· (TZ) → integer
Maps a timezoneFrag, part of a date/timeSevenPropertyModel's ·lexical representation·,
onto an integer, presumably the ·timezoneOffset· property of a

http://www.w3.org/TR/xmlschema11-2/ 220 5/5/2009 6:46 PM

date/timeSevenPropertyModel value.
Arguments:

TZ : matches timezoneFrag
Result:

an integer
Algorithm:

TZ necessarily consists of either just 'Z', or a sign ('+' or '-') followed by an instance H of
hourFrag, a colon, and an instance M of minuteFrag
Return

0 when TZ is 'Z',

−(·unsignedDecimalPtMap·(H) × 60 + ·unsignedDecimalPtMap·(M)) when the sign
is '-', and

·unsignedDecimalPtMap·(H) × 60 + ·unsignedDecimalPtMap·(M) otherwise.

Lexical Mapping

·dateTimeLexicalMap· (LEX) → dateTime
Maps a dateTimeLexicalRep to a dateTime value.

Arguments:
LEX : matches dateTimeLexicalRep

Result:
a complete dateTime value

Algorithm:
LEX necessarily includes an instance Y of yearFrag, an instance MO of monthFrag, and
an instance D of dayFrag hyphen-separated, an instance H of hourFrag, an instance MI
of minuteFrag, and an instance S of secondFrag, colon-separated and optionally followed
by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

Return ·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(MO),
·dayFragValue·(D), ·hourFragValue·(H), ·minuteFragValue·(MI),
·secondFragValue·(S), tz)

1.

Lexical Mapping

·timeLexicalMap· (LEX) → time
Maps a timeLexicalRep to a time value.

Arguments:
LEX : matches timeLexicalRep

Result:
a complete time value

Algorithm:
LEX necessarily includes an instance H of hourFrag, an instance M of minuteFrag, and
an instance S of secondFrag, colon-separated and optionally followed by an instance T of
timezoneFrag.

http://www.w3.org/TR/xmlschema11-2/ 221 5/5/2009 6:46 PM

Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent

Return ·newDateTime·(absent, absent, absent, ·hourFragValue·(H),
·minuteFragValue·(M), ·secondFragValue·(S), tz).

1.

Lexical Mapping

·dateLexicalMap· (LEX) → date
Maps a dateLexicalRep to a date value.

Arguments:
LEX : matches dateLexicalRep

Result:
a complete date value

Algorithm:
LEX necessarily includes an instance Y of yearFrag, an instance M of monthFrag, and an
instance D of dayFrag, hyphen-separated and optionally followed by an instance T of
timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent

Return ·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(M),
·dayFragValue·(D), absent, absent, absent, tz).

1.

Lexical Mapping

·gYearMonthLexicalMap· (LEX) → gYearMonth
Maps a gYearMonthLexicalRep to a gYearMonth value.

Arguments:
LEX : matches gYearMonthLexicalRep

Result:
a complete gYearMonth value

Algorithm:
LEX necessarily includes an instance Y of yearFrag and an instance M of monthFrag,
hyphen-separated and optionally followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

Return ·newDateTime·(·yearFragValue·(Y), ·monthFragValue·(M), absent, absent,
absent, absent, tz)

1.

Lexical Mapping

·gYearLexicalMap· (LEX) → gYear
Maps a gYearLexicalRep to a gYear value.

Arguments:
LEX : matches gYearLexicalRep

Result:
a complete gYear value

http://www.w3.org/TR/xmlschema11-2/ 222 5/5/2009 6:46 PM

Algorithm:
LEX necessarily includes an instance Y of dayFrag, optionally followed by an instance T
of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

Return ·newDateTime·(·dayFragValue·(Y), absent, absent, absent, absent,
absent, tz).

1.

Lexical Mapping

·gMonthDayLexicalMap· (LEX) → gMonthDay
Maps a gMonthDayLexicalRep to a gMonthDay value.

Arguments:
LEX : matches gMonthDayLexicalRep

Result:
a complete gMonthDay value

Algorithm:
LEX necessarily includes an instance M of monthFrag and an instance D of dayFrag,
hyphen-separated and optionally followed by an instance T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

Return ·newDateTime·(gMD, absent, ·monthFragValue·(Y), ·dayFragValue·(M),
absent, absent, absent, tz)

1.

Lexical Mapping

·gDayLexicalMap· (LEX) → gDay
Maps a gDayLexicalRep to a gDay value.

Arguments:
LEX : matches gDayLexicalRep

Result:
a complete gDay value

Algorithm:
LEX necessarily includes an instance D of dayFrag, optionally followed by an instance T
of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

Return ·newDateTime·(gD, absent, absent, ·dayFragValue·(D), absent, absent,
absent, tz).

1.

Lexical Mapping

·gMonthLexicalMap· (LEX) → gMonth
Maps a gMonthLexicalRep to a gMonth value.

Arguments:
LEX : matches gMonthLexicalRep

http://www.w3.org/TR/xmlschema11-2/ 223 5/5/2009 6:46 PM

Result:
a complete gMonth value

Algorithm:
LEX necessarily includes an instance M of monthFrag, optionally followed by an instance
T of timezoneFrag.
Let tz be ·timezoneFragValue·(T) when T is present, otherwise absent.

Return ·newDateTime·(gM, absent, ·monthFragValue·(M), absent, absent,
absent, absent, tz)

1.

E.3.6 Canonical Mappings

Auxiliary Functions for Date/time Canonical Mappings

·unsTwoDigitCanonicalFragmentMap· (i) → unsignedNoDecimalPtNumeral
Maps a nonnegative integer less than 100 onto an unsigned always-two-digit numeral.

Arguments:
i : a nonnegative integer less than 100

Result:
matches unsignedNoDecimalPtNumeral

Algorithm:
Return ·digit·(i ·div· 10) & ·digit·(i ·mod· 10)

·fourDigitCanonicalFragmentMap· (i) → noDecimalPtNumeral
Maps an integer between -10000 and 10000 onto an always-four-digit numeral.

Arguments:
i : an integer whose absolute value is less than 10000

Result:
matches noDecimalPtNumeral

Algorithm:
Return

'-' & ·unsTwoDigitCanonicalFragmentMap·(−i ·div· 100) &
·unsTwoDigitCanonicalFragmentMap·(−i ·mod· 100) when i is negative,

·unsTwoDigitCanonicalFragmentMap·(i ·div· 100) &
·unsTwoDigitCanonicalFragmentMap·(i ·mod· 100) otherwise.

Partial Date/time Canonical Mappings

·yearCanonicalFragmentMap· (y) → yearFrag
Maps an integer, presumably the ·year· property of a date/timeSevenPropertyModel
value, onto a yearFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
y : an integer

Result:

http://www.w3.org/TR/xmlschema11-2/ 224 5/5/2009 6:46 PM

matches yearFrag
Algorithm:

Return

·noDecimalPtCanonicalMap·(y) when |y| > 9999 .

·fourDigitCanonicalFragmentMap·(y) otherwise.

·monthCanonicalFragmentMap· (m) → monthFrag
Maps an integer, presumably the ·month· property of a date/timeSevenPropertyModel
value, onto a monthFrag, part of a date/timeSevenPropertyModel's ·lexical
representation·.

Arguments:
m : an integer between 1 and 12 inclusive

Result:
matches monthFrag

Algorithm:
Return ·unsTwoDigitCanonicalFragmentMap·(m)

·dayCanonicalFragmentMap· (d) → dayFrag
Maps an integer, presumably the ·day· property of a date/timeSevenPropertyModel value,
onto a dayFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

Arguments:

d : an integer between 1 and 31 inclusive (may be limited further depending on
associated ·year· and ·month·)

Result:
matches dayFrag

Algorithm:
Return ·unsTwoDigitCanonicalFragmentMap·(d)

·hourCanonicalFragmentMap· (h) → hourFrag
Maps an integer, presumably the ·hour· property of a date/timeSevenPropertyModel
value, onto a hourFrag, part of a date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
h : an integer between 0 and 23 inclusive.

Result:
matches hourFrag

Algorithm:
Return ·unsTwoDigitCanonicalFragmentMap·(h)

·minuteCanonicalFragmentMap· (m) → minuteFrag
Maps an integer, presumably the ·minute· property of a date/timeSevenPropertyModel
value, onto a minuteFrag, part of a date/timeSevenPropertyModel's ·lexical
representation·.

Arguments:
m : an integer between 0 and 59 inclusive.

Result:

http://www.w3.org/TR/xmlschema11-2/ 225 5/5/2009 6:46 PM

matches minuteFrag
Algorithm:

Return ·unsTwoDigitCanonicalFragmentMap·(m)

·secondCanonicalFragmentMap· (s) → secondFrag
Maps a decimal number, presumably the ·second· property of a
date/timeSevenPropertyModel value, onto a secondFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
s : a nonnegative decimal number less than 70

Result:
matches secondFrag

Algorithm:
Return

·unsTwoDigitCanonicalFragmentMap·(s) when s is an integer, and

·unsTwoDigitCanonicalFragmentMap·(s·div·1) & '.' &
·fractionDigitsCanonicalFragmentMap·(s·mod·1) otherwise.

·timezoneCanonicalFragmentMap· (t) → timezoneFrag
Maps an integer, presumably the ·timezoneOffset· property of a
date/timeSevenPropertyModel value, onto a timezoneFrag, part of a
date/timeSevenPropertyModel's ·lexical representation·.

Arguments:
t : an integer between −840 and 840 inclusive

Result:
matches timezoneFrag

Algorithm:
Return

'Z' when t is zero,

'-' & ·unsTwoDigitCanonicalFragmentMap·(−t ·div· 60) & ':' &
·unsTwoDigitCanonicalFragmentMap·(−t ·mod· 60) when t is negative, and

'+' & ·unsTwoDigitCanonicalFragmentMap·(t ·div· 60) & ':' &
·unsTwoDigitCanonicalFragmentMap·(t ·mod· 60) otherwise.

Canonical Mapping

·dateTimeCanonicalMap· (dt) → dateLexicalRep
Maps a dateTime value to a dateTimeLexicalRep.

Arguments:
dt : a complete dateTime value

Result:
matches dateLexicalRep

Algorithm:

http://www.w3.org/TR/xmlschema11-2/ 226 5/5/2009 6:46 PM

Let DT be ·yearCanonicalFragmentMap·(dt's ·year·) & '-' &
·monthCanonicalFragmentMap·(dt's ·month·) & '-' &
·dayCanonicalFragmentMap·(dt's ·day·) & 'T' &
·hourCanonicalFragmentMap·(dt's ·hour·) & ':' &
·minuteCanonicalFragmentMap·(dt's ·minute·) & ':' &
·secondCanonicalFragmentMap·(dt's ·second·) .

http://www.w3.org/TR/xmlschema11-2/ 227 5/5/2009 6:46 PM

Return

DT when dt's ·timezoneOffset· is absent, and

DT & ·timezoneCanonicalFragmentMap·(dt's ·timezoneOffset·) otherwise.

Canonical Mapping

·timeCanonicalMap· (ti) → timeLexicalRep
Maps a time value to a timeLexicalRep.

Arguments:
ti : a complete time value

Result:
matches timeLexicalRep

Algorithm:
Let T be ·hourCanonicalFragmentMap·(ti's ·hour·) & ':' &

·minuteCanonicalFragmentMap·(ti's ·minute·) & ':' &
·secondCanonicalFragmentMap·(ti's ·second·) .

Return

T when ti's ·timezoneOffset· is absent, and

T & ·timezoneCanonicalFragmentMap·(ti's ·timezoneOffset·) otherwise.

Canonical Mapping

·dateCanonicalMap· (da) → dateLexicalRep
Maps a date value to a dateLexicalRep.

Arguments:
da : a complete date value

Result:
matches dateLexicalRep

Algorithm:
Let D be ·yearCanonicalFragmentMap·(da's ·year·) & '-' &

·monthCanonicalFragmentMap·(da's ·month·) & '-' &
·dayCanonicalFragmentMap·(da's ·day·) .

Return

D when da's ·timezoneOffset· is absent, and

D & ·timezoneCanonicalFragmentMap·(da's ·timezoneOffset·) otherwise.

Canonical Mapping

·gYearMonthCanonicalMap· (ym) → gYearMonthLexicalRep
Maps a gYearMonth value to a gYearMonthLexicalRep.

Arguments:

http://www.w3.org/TR/xmlschema11-2/ 228 5/5/2009 6:46 PM

ym : a complete gYearMonth value
Result:

matches gYearMonthLexicalRep
Algorithm:

Let YM be ·yearCanonicalFragmentMap·(ym's ·year·) & '-' &
·monthCanonicalFragmentMap·(ym's ·month·) .

Return

YM when ym's ·timezoneOffset· is absent, and

YM & ·timezoneCanonicalFragmentMap·(ym's ·timezoneOffset·) otherwise.

Canonical Mapping

·gYearCanonicalMap· (gY) → gYearLexicalRep
Maps a gYear value to a gYearLexicalRep.

Arguments:
gY : a complete gYear value

Result:
matches gYearLexicalRep

Algorithm:
Return

·yearCanonicalFragmentMap·(gY's ·year·) when gY's ·timezoneOffset· is absent,
and

·yearCanonicalFragmentMap·(gY's ·year·) &
·timezoneCanonicalFragmentMap·(gY's ·timezoneOffset·) otherwise.

Canonical Mapping

·gMonthDayCanonicalMap· (md) → gMonthDayLexicalRep
Maps a gMonthDay value to a gMonthDayLexicalRep.

Arguments:
md : a complete gMonthDay value

Result:
matches gMonthDayLexicalRep

Algorithm:
Let MD be '--' & ·monthCanonicalFragmentMap·(md's ·month·) & '-' &

·dayCanonicalFragmentMap·(md's ·day·) .
Return

MD when md's ·timezoneOffset· is absent, and

MD & ·timezoneCanonicalFragmentMap·(md's ·timezoneOffset·) otherwise.

http://www.w3.org/TR/xmlschema11-2/ 229 5/5/2009 6:46 PM

Canonical Mapping

·gDayCanonicalMap· (gD) → gDayLexicalRep
Maps a gDay value to a gDayLexicalRep.

Arguments:
gD : a complete gDay value

Result:
matches gDayLexicalRep

Algorithm:
Return

'---' & ·dayCanonicalFragmentMap·(gD's ·day·) when gD's ·timezoneOffset· is
absent, and

'---' & ·dayCanonicalFragmentMap·(gD's ·day·) &
·timezoneCanonicalFragmentMap·(gD's ·timezoneOffset·) otherwise.

Canonical Mapping

·gMonthCanonicalMap· (gM) → gMonthLexicalRep
Maps a gMonth value to a gMonthLexicalRep.

Arguments:
gM : a complete gMonth value

Result:
matches gMonthLexicalRep

Algorithm:
Return

'--' & ·monthCanonicalFragmentMap·(gM's ·day·) when gM's ·timezoneOffset· is
absent, and

'--' & ·monthCanonicalFragmentMap·(gM's ·day·) &
·timezoneCanonicalFragmentMap·(gM's ·timezoneOffset·) otherwise.

E.4 Lexical and Canonical Mappings for Other Datatypes

The following functions are used with various datatypes neither numeric nor date/time related.

Lexical Mapping

·stringLexicalMap· (LEX) → string
Maps a ·literal· matching the stringRep production to a string value.

Arguments:
LEX : a ·literal· matching stringRep

Result:
A string value

Algorithm:

http://www.w3.org/TR/xmlschema11-2/ 230 5/5/2009 6:46 PM

Return LEX. (The function is the identity function on the domain.)

Lexical Mapping

·booleanLexicalMap· (LEX) → boolean
Maps a ·literal· matching the booleanRep production to a boolean value.

Arguments:
LEX : a ·literal· matching booleanRep

Result:
A boolean value

Algorithm:
Return

true when LEX is 'true' or '1' , and

false otherwise (LEX is 'false' or '0').

Canonical Mapping

·stringCanonicalMap· (s) → stringRep
Maps a string value to a stringRep.

Arguments:
s : a string value

Result:
matches stringRep

Algorithm:
Return s. (The function is the identity function on the domain.)

Canonical Mapping

·booleanCanonicalMap· (b) → booleanRep
Maps a boolean value to a booleanRep.

Arguments:
b : a boolean value

Result:
matches booleanRep

Algorithm:
Return

'true' when b is true, and

'false' otherwise (b is false).

E.4.1 Lexical and canonical mappings for hexBinary

The ·lexical mapping· for hexBinary maps each pair of hexadecimal digits to an octet, in the
conventional way:

http://www.w3.org/TR/xmlschema11-2/ 231 5/5/2009 6:46 PM

Lexical Mapping for hexBinary

·hexBinaryMap· (LEX) → hexBinary
Maps a ·literal· matching the hexBinary production to a sequence of octets in the form of
a hexBinary value.

Arguments:
LEX : a ·literal· matching hexBinary

Result:
A sequence of binary octets in the form of a hexBinary value

Algorithm:
LEX necessarily includes a sequence of zero or more substrings matching the hexOctet
production.
Let o be the sequence of octets formed by applying ·hexOctetMap· to each hexOctet in

LEX, in order, and concatenating the results.
Return o.

The auxiliary functions ·hexOctetMap· and ·hexDigitMap· are used by ·hexBinaryMap·.

Mappings for hexadecimal digits

·hexOctetMap· (LEX) → octet
Maps a ·literal· matching the hexOctet production to a single octet.

Arguments:
LEX : a ·literal· matching hexOctet

Result:
A single binary octet

Algorithm:
LEX necessarily includes exactly two hexadecimal digits.
Let d0 be the first hexadecimal digit in LEX. Let d1 be the second hexadecimal digit in

LEX.
Return the octet whose four high-order bits are ·hexDigitMap·(d0) and whose four
low-order bits are ·hexDigitMap·(d1).

·hexDigitMap· (d) → a bit-sequence of length four
Maps a hexadecimal digit (a character matching the hexDigit production) to a sequence
of four binary digits.

Arguments:
d : a hexadecimal digit

Result:
a sequence of four binary digits

Algorithm:
Return

0000 when d = '0',

0001 when d = '1',

0010 when d = '2',

http://www.w3.org/TR/xmlschema11-2/ 232 5/5/2009 6:46 PM

0011 when d = '3',

...

1110 when d = 'E' or 'e',

1111 when d = 'F' or 'f'.

The ·canonical mapping· for hexBinary uses only the uppercase forms of A-F.

Canonical Mapping for hexBinary

·hexBinaryCanonical· (o) → hexBinary
Maps a hexBinary value to a literal matching the hexBinary production.

Arguments:
o : a hexBinary value

Result:
matches hexBinary

Algorithm:
Let h be the sequence of literals formed by applying ·hexOctetCanonical· to each octet

in o, in order, and concatenating the results.
Return h.

Auxiliary procedures for canonical mapping of hexBinary

·hexOctetCanonical· (o) → hexOctet
Maps a binary octet to a literal matching the hexOctet production.

Arguments:
o : a binary octet

Result:
matches hexOctet

Algorithm:
Let lo be the four low-order bits of o, and hi be the four high-order bits.
Return ·hexDigitCanonical·(hi) & ·hexDigitCanonical·(lo).

·hexDigitCanonical· (b) → hexDigit
Maps a four-bit sequence to a hexadecimal digit (a literal matching the hexDigit
production).

Arguments:
b : a sequence of four binary digits

Result:
matches hexDigit

Algorithm:
Return

'0' when d = 0000,

'1' when d = 0001,

http://www.w3.org/TR/xmlschema11-2/ 233 5/5/2009 6:46 PM

'2' when d = 0010,

'3' when d = 0011,

...

'E' when d = 1110,

'F' when d = 1111.

F Datatypes and Facets

F.1 Fundamental Facets

The following table shows the values of the fundamental facets for each ·built-in· datatype.

 Datatype ordered bounded cardinality numeric

http://www.w3.org/TR/xmlschema11-2/ 234 5/5/2009 6:46 PM

token false false countably infinite false
language false false countably infinite false
IDREFS false false countably infinite false
ENTITIES false false countably infinite false
NMTOKEN false false countably infinite false
NMTOKENS false false countably infinite false
Name false false countably infinite false
NCName false false countably infinite false
ID false false countably infinite false
IDREF false false countably infinite false
ENTITY false false countably infinite false
integer total false countably infinite true
nonPositiveInteger total false countably infinite true
negativeInteger total false countably infinite true
long total true finite true
int total true finite true
short total true finite true
byte total true finite true
nonNegativeInteger total false countably infinite true
unsignedLong total true finite true
unsignedInt total true finite true
unsignedShort total true finite true
unsignedByte total true finite true
positiveInteger total false countably infinite true
yearMonthDuration partial false countably infinite false
dayTimeDuration partial false countably infinite false
dateTimeStamp partial false countably infinite false

G Regular Expressions

A ·regular expression· R is a sequence of characters that denote a set of strings L(R).
When used to constrain a ·lexical space·, a regular expression R asserts that only strings in
L(R) are valid ·literals· for values of that type.

Note: Unlike some popular regular expression languages (including those defined by Perl
and standard Unix utilities), the regular expression language defined here implicitly
anchors all regular expressions at the head and tail, as the most common use of regular
expressions in ·pattern· is to match entire ·literals·. For example, a datatype derived from
string such that all values must begin with the character A (#x41) and end with the
character Z (#x5a) would be defined as follows:

<simpleType name='myString'>
 <restriction base='string'>
 <pattern value='A.*Z'/>

http://www.w3.org/TR/xmlschema11-2/ 235 5/5/2009 6:46 PM

 </restriction>
</simpleType>

In regular expression languages that are not implicitly anchored at the head and tail, it is
customary to write the equivalent regular expression as:

 ^A.*Z$

where "^" anchors the pattern at the head and "$" anchors at the tail.

In those rare cases where an unanchored match is desired, including .* at the beginning
and ending of the regular expression will achieve the desired results. For example, a
datatype derived from string such that all values must contain at least 3 consecutive A
(#x41) characters somewhere within the value could be defined as follows:

<simpleType name='myString'>
 <restriction base='string'>
 <pattern value='.*AAA.*'/>
 </restriction>
</simpleType>

[Definition:] A regular expression is composed from zero or more ·branch·es, separated by
| characters.

Regular Expression

[65] regExp ::= branch ('|' branch)*

For all ·branch·es S, and for all ·regular
expression·s T, valid ·regular expression·s

R are:

Denoting the set of strings L(R)
containing:

(empty string) the set containing just the empty string
S all strings in L(S)

S|T all strings in L(S) and all strings in L(T)

[Definition:] A branch consists of zero or more ·piece·s, concatenated together.

Branch

[66] branch ::= piece*

For all ·piece·s S, and for all ·branch·es T,
valid ·branch·es R are:

Denoting the set of strings L(R)
containing:

S all strings in L(S)
ST all strings st with s in L(S) and t in L(T)

[Definition:] A piece is an ·atom·, possibly followed by a ·quantifier·.

http://www.w3.org/TR/xmlschema11-2/ 236 5/5/2009 6:46 PM

Piece

[67] piece ::= atom quantifier?

For all ·atom·s S and non-negative
integers n, m such that n <= m, valid

·piece·s R are:

Denoting the set of strings L(R)
containing:

S all strings in L(S)
S? the empty string, and all strings in L(S).

S*
All strings in L(S?) and all strings st with s in

L(S*) and t in L(S). (all concatenations of
zero or more strings from L(S))

S+
All strings st with s in L(S) and t in L(S*). (all
concatenations of one or more strings from

L(S))

S{n,m}
All strings st with s in L(S) and t in

L(S{n-1,m-1}). (All sequences of at least n,
and at most m, strings from L(S))

S{n} All strings in L(S{n,n}). (All sequences of
exactly n strings from L(S))

S{n,} All strings in L(S{n}S*) (All sequences of at
least n, strings from L(S))

S{0,m}
All strings st with s in L(S?) and t in

L(S{0,m-1}). (All sequences of at most m,
strings from L(S))

S{0,0} The set containing only the empty string

Note: The regular expression language in the Perl Programming Language [Perl] does
not include a quantifier of the form S{,m}, since it is logically equivalent to S{0,m}. We
have, therefore, left this logical possibility out of the regular expression language defined
by this specification.

[Definition:] A quantifier is one of ?, *, +, {n,m} or {n,}, which have the meanings defined in
the table above.

Quantifier

[68] quantifier ::= [?*+] | ('{' quantity '}')

[69] quantity ::= quantRange | quantMin | QuantExact

[70] quantRange ::= QuantExact ',' QuantExact

[71] quantMin ::= QuantExact ','

[72] QuantExact ::= [0-9]+

[Definition:] An atom is either a ·normal character·, a ·character class·, or a parenthesized

http://www.w3.org/TR/xmlschema11-2/ 237 5/5/2009 6:46 PM

·regular expression·.

Atom

[73] atom ::= NormalChar | charClass | ('(' regExp ')')

For all ·normal character·s c, ·character
class·es C, and ·regular expression·s S,

valid ·atom·s R are:

Denoting the set of strings L(R)
containing:

c the single string consisting only of c
C all strings in L(C)

(S) all strings in L(S)

[Definition:] A metacharacter is either ., \, ?, *, +, {, } (,), |, [, or]. These characters have
special meanings in ·regular expression·s, but can be escaped to form ·atom·s that denote the
sets of strings containing only themselves, i.e., an escaped ·metacharacter· behaves like a
·normal character·.

[Definition:] A normal character is any XML character that is not a metacharacter. In
·regular expression·s, a normal character is an atom that denotes the singleton set of strings
containing only itself.

Normal Character

[74] NormalChar ::= [^.\?*+{}()|#x5B#x5D] /* n.b. #x5B = [, #x5D =] */

G.1 Character Classes

[Definition:] A character class is an ·atom· R that identifies a set of characters C(R). The
set of strings L(R) denoted by a character class R contains one single-character string "c" for
each character c in C(R).

Character Class

[75] charClass ::= charClassEsc | charClassExpr | WildcardEsc

A character class is either a ·character class escape· or a ·character class expression· or a
·wildcard character·.

Note: The rules for which characters must be escaped and which can represent
themselves are different when inside a ·character class expression·; some ·normal
characters· must be escaped and some ·metacharacters· need not be.

[Definition:] A character class expression (charClassExpr) is a ·character group·
surrounded by [and] characters. For all character groups G, [G] is a valid character class

http://www.w3.org/TR/xmlschema11-2/ 238 5/5/2009 6:46 PM

expression, identifying the set of characters C([G]) = C(G).

Character Class Expression

[76] charClassExpr ::= '[' charGroup ']'

[Definition:] A character group (charGroup) starts with either a ·positive character group· or
a ·negative character group·, and is optionally followed by a subtraction operator '-' and a
further ·character class expression·. [Definition:] A ·character group· that contains a
subtraction operator is referred to as a character class subtraction.

Character Group

[77] charGroup ::= '(' posCharGroup | negCharGroup ')' ('-' charClassExpr)?

If the first character in a charGroup is '^', this is taken as indicating that the charGroup starts
with a negCharGroup. A posCharGroup can itself start with '^' but only when it appears within
a negCharGroup, that is, when the '^' is preceded by another '^'.

Note: For example, the string "[^X]" is ambiguous according the grammar rules,
denoting either a character class consisting of a negative character group with "X" as a
member, or a positive character class with "X" and "^" as members. The normative prose
rule just given requires that the first interpretation be taken.

The string "[^]" is unambiguous: the grammar recognizes it as a positive character group
containing the character "^". But the grammatical derivation of the string violates the rule
just given, so the string "[^]" MUST NOT be accepted as a regular expression.

A '-' character is recognized as a subtraction operator (and hence, as terminating the
posCharGroup or negCharGroup) if it is immediately followed by a '[' character.

For any ·positive character group· or ·negative character group· G, and any ·character class
expression· C, G-C is a valid ·character group·, identifying the set of all characters in C(G)
that are not in C(C).

[Definition:] A positive character group consists of one or more ·character group parts·,
concatenated together. The set of characters identified by a positive character group is the
union of all of the sets identified by its constituent ·character group parts·.

Positive Character Group

[78] posCharGroup ::= (charGroupPart)+

For all ·character ranges· R, all ·character
class escapes· E, and all ·positive
character groups· P, valid ·positive

Identifying the set of characters C(G)
containing:

http://www.w3.org/TR/xmlschema11-2/ 239 5/5/2009 6:46 PM

charater groups· G are:
R all characters in C(R).
E all characters in C(E).

RP all characters in C(R) and all characters in
C(P).

EP all characters in C(E) and all characters in
C(P).

[Definition:] A negative character group (negCharGroup) consists of a ^ character followed
by a ·positive character group·. The set of characters identified by a negative character group
C(^P) is the set of all characters that are not in C(P).

Negative Character Group

[79] negCharGroup ::= '^' posCharGroup

[Definition:] A character group part (charGroupPart) is any of: a single unescaped character
(SingleCharNoEsc), a single escaped character (SingleCharEsc), a character class escape
(charClassEsc), or a character range (charRange).

Character Group Part

[80] charGroupPart ::= singleChar | charRange | charClassExpr

[81] singleChar ::= SingleCharEsc | SingleCharNoEsc

If a charGroupPart starts with a singleChar and this is immediately followed by a hyphen, and
if the hyphen is part of the character group (that is, it is not being treated as a subtraction
operator because it is followed by '['), then the hyphen MUST be followed by another
singleChar, and the sequence (singleChar, hyphen, singleChar) is treated as a charRange. It
is an error if either of the two singleChars in a charRange is a SingleCharNoEsc comprising
an unescaped hyphen.

Note: The rule just given resolves what would otherwise be the ambiguous interpretion of
some strings, e.g. "[a-k-z]"; it also constrains regular expressions in ways not expressed
in the grammar. For example, the rule (not the grammar) excludes the string "[--z]" from
the regular expression language defined here.

[Definition:] A character range R identifies a set of characters C(R) with UCS code points in
a specified range.

Character Range

[82] charRange ::= singleChar '-' singleChar

A ·character range· in the form s-eidentifies the set that characters with UCS code points

http://www.w3.org/TR/xmlschema11-2/ 240 5/5/2009 6:46 PM

greater than or equal to the code point of s, but not greater than the code point of e.

Single Unescaped Character

[83] SingleCharNoEsc ::= [^\#x5B#x5D] /* N.B. #x5B = '[', #x5D = ']' */

A single unescaped character (SingleCharNoEsc) is any character except '[' or ']'. There are
special rules, described earlier, that constraint the use of the characters '-' and '^' in order to
disambiguate the syntax.

A single unescaped character identifies the singleton set of characters containing that
character alone.

A single escaped character (SingleCharEsc), when used within a character group, identifies
the singleton set of characters containing the character denoted by the escape (see Character
Class Escapes (§G.1.1)).

G.1.1 Character Class Escapes

[Definition:] A character class escape is a short sequence of characters that identifies
predefined character class. The valid character class escapes are the ·single character
escape·s, the ·multi-character escape·s, and the ·category escape·s (including the ·block
escape·s).

Character Class Escape

[84] charClassEsc ::= (SingleCharEsc | MultiCharEsc | catEsc | complEsc)

[Definition:] A single character escape identifies a set containing a only one character --
usually because that character is difficult or impossible to write directly into a ·regular
expression·.

Single Character Escape

[85] SingleCharEsc ::= '\'
[nrt\|.?*+(){}#x2D#x5B#x5D#x5E]

/* N.B. #x2D = '-', #x5B =
'[', #x5D = ']', #x5E = '^' */

The valid ·single character escape·s are: Identifying the set of characters C(R)
containing:

\n the newline character (#xA)
\r the return character (#xD)
\t the tab character (#x9)
\\ \
\| |

http://www.w3.org/TR/xmlschema11-2/ 241 5/5/2009 6:46 PM

The valid ·single character escape·s are: Identifying the set of characters C(R)
containing:

\. .
\- -
\^ ^
\? ?
* *
\+ +
\{ {
\} }
\((
\))
\[[
\]]

[Definition:] [Unicode Database] specifies a number of possible values for the "General
Category" property and provides mappings from code points to specific character properties.
The set containing all characters that have property X, can be identified with a category
escape \p{X}. The complement of this set is specified with the category escape \P{X}.
([\P{X}] = [^\p{X}]).

Category Escape

[86] catEsc ::= '\p{' charProp '}'

[87] complEsc ::= '\P{' charProp '}'

[88] charProp ::= IsCategory | IsBlock

[Unicode Database] is subject to future revision. For example, the mapping from code points
to character properties might be updated. All ·minimally conforming· processors ·must·
support the character properties defined in the version of [Unicode Database] cited in the
normative references (Normative (§K.1)). However, implementors are encouraged to support
the character properties defined in any later versions. When the implementation supports
multiple versions of the Unicode database, and they differ in salient respects (e.g. different
properties are assigned to the same character in different versions of the database), then it is
·implementation-defined· which set of property definitions is used for any given assessment
episode.

Note: In order to benefit from continuing work on the Unicode database, a conforming
implementation might by default use the latest supported version of the character
properties. In order to maximize consistency with other implementations of this
specification, however, an implementation might choose to provide user options to
specify the use of the version of the database cited in the normative references. The
PropertyAliases.txt and PropertyValueAliases.txt files of the Unicode database may
be helpful to implementors in this connection.

For convenience, the following table lists the values of the "General Category" property in the

http://www.w3.org/TR/xmlschema11-2/ 242 5/5/2009 6:46 PM

version of [Unicode Database] cited in the normative references (Normative (§K.1)).

Category Property Meaning

Letters

L All Letters
Lu uppercase
Ll lowercase
Lt titlecase

Lm modifier
Lo other

Marks

M All Marks
Mn nonspacing
Mc spacing combining
Me enclosing

Numbers

N All Numbers
Nd decimal digit
Nl letter
No other

Punctuation

P All Punctuation
Pc connector
Pd dash
Ps open
Pe close
Pi initial quote (may behave like Ps or Pe depending on usage)
Pf final quote (may behave like Ps or Pe depending on usage)
Po other

Separators

Z All Separators
Zs space
Zl line
Zp paragraph

Symbols

S All Symbols
Sm math
Sc currency
Sk modifier
So other

http://www.w3.org/TR/xmlschema11-2/ 243 5/5/2009 6:46 PM

Other

C All Others
Cc control
Cf format
Co private use
Cn not assigned

Categories

[89] IsCategory ::= Letters | Marks | Numbers | Punctuation | Separators |
Symbols | Others

[90] Letters ::= 'L' [ultmo]?
[91] Marks ::= 'M' [nce]?
[92] Numbers ::= 'N' [dlo]?
[93] Punctuation ::= 'P' [cdseifo]?
[94] Separators ::= 'Z' [slp]?
[95] Symbols ::= 'S' [mcko]?
[96] Others ::= 'C' [cfon]?

Note: The properties mentioned above exclude the Cs property. The Cs property identifies
"surrogate" characters, which do not occur at the level of the "character abstraction" that
XML instance documents operate on.

[Definition:] [Unicode Database] groups code points into a number of blocks such as Basic
Latin (i.e., ASCII), Latin-1 Supplement, Hangul Jamo, CJK Compatibility, etc. The set
containing all characters that have block name X (with all white space stripped out), can be
identified with a block escape \p{IsX}. The complement of this set is specified with the
block escape \P{IsX}. ([\P{IsX}] = [^\p{IsX}]).

Block Escape

[97] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+ /* N.B. #x2D = '-' */

For convenience, the following table lists the recognized block names given in the version of
[Unicode Database] cited in the normative references (Normative (§K.1)); the normative
authority for any given version of [Unicode Database] is the Unicode database itself; see the
"Blocks.txt" file.

Start
Code

End
Code Block Name Start

Code
End

Code

#x0000 #x007F BasicLatin #x0080 #x00FF Latin-1

#x0100 #x017F LatinExtended-A #x0180 #x024F LatinE

#x0250 #x02AF IPAExtensions #x02B0 #x02FF Spacin

http://www.w3.org/TR/xmlschema11-2/ 244 5/5/2009 6:46 PM

#x0300 #x036F CombiningDiacriticalMarks #x0370 #x03FF Greek

#x0400 #x04FF Cyrillic #x0500 #x052F Cyrillic

#x0530 #x058F Armenian #x0590 #x05FF Hebrew

#x0600 #x06FF Arabic #x0700 #x074F Syriac

#x0750 #x077F ArabicSupplement #x0780 #x07BF Thaan

#x07C0 #x07FF NKo

#x0900 #x097F Devanagari #x0980 #x09FF Benga

#x0A00 #x0A7F Gurmukhi #x0A80 #x0AFF Gujara

#x0B00 #x0B7F Oriya #x0B80 #x0BFF Tamil

#x0C00 #x0C7F Telugu #x0C80 #x0CFF Kanna

#x0D00 #x0D7F Malayalam #x0D80 #x0DFF Sinhal

#x0E00 #x0E7F Thai #x0E80 #x0EFF Lao

#x0F00 #x0FFF Tibetan #x1000 #x109F Myanm

#x10A0 #x10FF Georgian #x1100 #x11FF Hangu

#x1200 #x137F Ethiopic #x1380 #x139F Ethiop

#x13A0 #x13FF Cherokee #x1400 #x167F Unified

#x1680 #x169F Ogham #x16A0 #x16FF Runic

#x1700 #x171F Tagalog #x1720 #x173F Hanun

#x1740 #x175F Buhid #x1760 #x177F Tagba

#x1780 #x17FF Khmer #x1800 #x18AF Mongo

#x1900 #x194F Limbu #x1950 #x197F TaiLe

#x1980 #x19DF NewTaiLue #x19E0 #x19FF Khmer

#x1A00 #x1A1F Buginese #x1B00 #x1B7F Baline

#x1B80 #x1BBF Sundanese #x1C00 #x1C4F Lepch

#x1C50 #x1C7F OlChiki #x1D00 #x1D7F Phone

#x1D80 #x1DBF PhoneticExtensionsSupplement #x1DC0 #x1DFF Combi

#x1E00 #x1EFF LatinExtendedAdditional #x1F00 #x1FFF Greek

#x2000 #x206F GeneralPunctuation #x2070 #x209F Supers

#x20A0 #x20CF CurrencySymbols #x20D0 #x20FF Combi

http://www.w3.org/TR/xmlschema11-2/ 245 5/5/2009 6:46 PM

#x2100 #x214F LetterlikeSymbols #x2150 #x218F Numbe

#x2190 #x21FF Arrows #x2200 #x22FF Mathe

#x2300 #x23FF MiscellaneousTechnical #x2400 #x243F Contro

#x2440 #x245F OpticalCharacterRecognition #x2460 #x24FF Enclos

#x2500 #x257F BoxDrawing #x2580 #x259F BlockE

#x25A0 #x25FF GeometricShapes #x2600 #x26FF Miscel

#x2700 #x27BF Dingbats #x27C0 #x27EF Miscel

#x27F0 #x27FF SupplementalArrows-A #x2800 #x28FF Braille

#x2900 #x297F SupplementalArrows-B #x2980 #x29FF Miscel

#x2A00 #x2AFF SupplementalMathematicalOperators #x2B00 #x2BFF Miscel

#x2C00 #x2C5F Glagolitic #x2C60 #x2C7F LatinE

#x2C80 #x2CFF Coptic

#x2D00 #x2D2F GeorgianSupplement #x2D30 #x2D7F Tifinag

#x2D80 #x2DDF EthiopicExtended #x2DE0 #x2DFF Cyrillic

#x2E00 #x2E7F SupplementalPunctuation

#x2E80 #x2EFF CJKRadicalsSupplement #x2F00 #x2FDF Kangx

#x2FF0 #x2FFF IdeographicDescriptionCharacters #x3000 #x303F CJKSy

#x3040 #x309F Hiragana #x30A0 #x30FF Kataka

#x3100 #x312F Bopomofo #x3130 #x318F Hangu

#x3190 #x319F Kanbun #x31A0 #x31BF Bopom

#x31C0 #x31EF CJKStrokes #x31F0 #x31FF Kataka

#x3200 #x32FF EnclosedCJKLettersandMonths #x3300 #x33FF CJKCo

#x3400 #x4DBF CJKUnifiedIdeographsExtensionA #x4DC0 #x4DFF YijingH

#x4E00 #x9FFF CJKUnifiedIdeographs #xA000 #xA48F YiSylla

#xA490 #xA4CF YiRadicals #xA500 #xA63F Vai

#xA640 #xA69F CyrillicExtended-B #xA700 #xA71F Modifie

#xA720 #xA7FF LatinExtended-D #xA800 #xA82F SylotiN

#xA840 #xA87F Phags-pa #xA880 #xA8DF Sauras

#xA900 #xA92F KayahLi #xA930 #xA95F Rejang

http://www.w3.org/TR/xmlschema11-2/ 246 5/5/2009 6:46 PM

#xAA00 #xAA5F Cham #xAC00 #xD7AF Hangu

[See note following this table.] [See n

[See note following this table.] #xE000 #xF8FF Private

#xF900 #xFAFF CJKCompatibilityIdeographs #xFB00 #xFB4F Alphab

#xFB50 #xFDFF ArabicPresentationForms-A #xFE00 #xFE0F Variati

#xFE10 #xFE1F VerticalForms #xFE20 #xFE2F Combi

#xFE30 #xFE4F CJKCompatibilityForms #xFE50 #xFE6F SmallF

#xFE70 #xFEFF ArabicPresentationForms-B

#xFF00 #xFFEF HalfwidthandFullwidthForms #xFFF0 #xFFFF Specia

#x10000 #x1007F LinearBSyllabary #x10080 #x100FF Linear

#x10100 #x1013F AegeanNumbers #x10140 #x1018F Ancien

#x10190 #x101CF AncientSymbols #x101D0 #x101FF Phaist

#x10280 #x1029F Lycian #x102A0 #x102DF Carian

#x10300 #x1032F OldItalic #x10330 #x1034F Gothic

#x10380 #x1039F Ugaritic #x103A0 #x103DF OldPe

#x10400 #x1044F Deseret #x10450 #x1047F Shavia

#x10480 #x104AF Osmanya #x10800 #x1083F Cyprio

#x10900 #x1091F Phoenician #x10920 #x1093F Lydian

#x10A00 #x10A5F Kharoshthi #x12000 #x123FF Cuneif

#x12400 #x1247F CuneiformNumbersandPunctuation #x1D000 #x1D0FF Byzan

#x1D100 #x1D1FF MusicalSymbols #x1D200 #x1D24F Ancien

#x1D300 #x1D35F TaiXuanJingSymbols #x1D360 #x1D37F Count

 #x1D400 #x1D7FF Mathe

#x1F000 #x1F02F MahjongTiles #x1F030 #x1F09F Domin

#x20000 #x2A6DF CJKUnifiedIdeographsExtensionB #x2F800 #x2FA1F CJKCo

#xE0000 #xE007F Tags #xE0100 #xE01EF Variati

#xF0000 #xFFFFF SupplementaryPrivateUseArea-A #x100000 #x10FFFF Supple

Note: The blocks mentioned above exclude the HighSurrogates, LowSurrogates and
HighPrivateUseSurrogates blocks. These blocks identify "surrogate" characters, which do

http://www.w3.org/TR/xmlschema11-2/ 247 5/5/2009 6:46 PM

not occur at the level of the "character abstraction" that XML instance documents operate
on.

[Unicode Database] has been revised since XSD 1.0 was published, and is subject to future
revision. In particular, the grouping of code points into blocks has changed, and may change
again. All ·minimally conforming· processors MUST support the blocks defined in the version of
[Unicode Database] cited in the normative references (Normative (§K.1)). However,
implementors are encouraged to support the blocks defined in earlier and/or later versions of
the Unicode Standard. When the implementation supports multiple versions of the Unicode
database, and they differ in salient respects (e.g. different characters are assigned to a given
block in different versions of the database), then it is ·implementation-defined· which set of
block definitions is used for any given assessment episode.

In particular, the version of [Unicode Database] referenced in XSD 1.0 (namely, Unicode 3.1)
contained the following blocks which have been renamed in the version cited in this
specification. Since these block names may appear in regular expressions within XSD 1.0
schemas, implementors are encouraged to support the superseded block names in XSD 1.1
processors for compatibility, either by default or at user option:

#x0370 - #x03FF: Greek

#x20D0 - #x20FF: CombiningMarksforSymbols

#xE000 - #xF8FF: PrivateUse

#xF0000 - #xFFFFD: PrivateUse

#x100000 - #x10FFFD: PrivateUse

For example, the ·block escape· for identifying the ASCII characters is \p{IsBasicLatin}.

[Definition:] A multi-character escape provides a simple way to identify any of a commonly
used set of characters: [Definition:] The wildcard character is a metacharacter which
matches almost any single character:

Multi-Character Escape

[98] MultiCharEsc ::= '\' [sSiIcCdDwW]

[99] WildcardEsc ::= '.'

Character sequence Equivalent ·character class·

. [^\n\r]

\s [#x20\t\n\r]

\S [^\s]

\i
the set of initial name characters,

those ·matched· by NameStartChar
in [XML] or by Letter | '_' | ':' in [XML

http://www.w3.org/TR/xmlschema11-2/ 248 5/5/2009 6:46 PM

Character sequence Equivalent ·character class·

1.0]

\I [^\i]

\c the set of name characters, those
·matched· by NameChar

\C [^\c]

\d \p{Nd}

\D [^\d]

\w

[#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}]
(all characters except the set of
"punctuation", "separator" and

"other" characters)

\W [^\w]

Note: The ·regular expression· language defined here does not attempt to provide a
general solution to "regular expressions" over UCS character sequences. In particular, it
does not easily provide for matching sequences of base characters and combining
marks. The language is targeted at support of "Level 1" features as defined in [Unicode
Regular Expression Guidelines]. It is hoped that future versions of this specification will
provide support for "Level 2" features.

H Implementation-defined and implementation-dependent features
(normative)

H.1 Implementation-defined features

The following features in this specification are ·implementation-defined·. Any software which
claims to conform to this specification (or to the specification of any host language which
embeds XSD 1.1: Datatypes) MUST describe how these choices have been exercised, in
documentation which accompanies any conformance claim.

For the datatypes which depend on [XML] or [Namespaces in XML], it is
·implementation-defined· whether a conforming processor takes the relevant definitions
from [XML] and [Namespaces in XML], or from [XML 1.0] and [Namespaces in XML
1.0]. Implementations MAY support either the form of these datatypes based on version
1.0 of those specifications, or the form based on version 1.1, or both.

1.

For the datatypes with infinite ·value spaces·, it is ·implementation-defined· whether
conforming processors set a limit on the size of the values supported. If such limits are
set, they MUST be documented, and the limits MUST be equal to, or exceed, the minimal
limits specified in Partial Implementation of Infinite Datatypes (§5.4). .

2.

It is ·implementation-defined· whether ·primitive· datatypes other than those defined in
this specification are supported.

3.

http://www.w3.org/TR/xmlschema11-2/ 249 5/5/2009 6:46 PM

For each ·implementation-defined· datatype, a Simple Type Definition MUST be specified
which conforms to the rules given in Built-in Simple Type Definitions (§4.1.6).

In addition, the following information MUST be provided:

The nature of the datatype's ·lexical space·, ·value space·, and ·lexical mapping·.a.

The nature of the equality relation; in particular, how to determine whether two
values which are not identical are equal.

Note: There is no requirement that equality be distinct from identity, but it MAY
be.

b.

The values of the ·fundamental facets·.c.

Which of the ·constraining facets· defined in this specification are applicable to the
datatype (and MAY thus be used in ·facet-based restriction· from it), and what they
mean when applied to it.

d.

If ·implementation-defined· ·constraining facets· are supported, which of those
·constraining facets· are applicable to the datatype, and what they mean when
applied to it.

e.

What URI reference (more precisely, what anyURI value) is to be used to refer to
the datatype, analogous to those provided for the datatypes defined here in
section Built-in Datatypes and Their Definitions (§3).

Note: It is convenient if the URI for a datatype and the expanded name of its
simple type definition are related by a simple mapping, like the URIs given for
the ·built-in· datatypes in Built-in Datatypes and Their Definitions (§3).
However, this is not a requirement.

f.

For each ·constraining facet· given a value for the new ·primitive·, what URI
reference (more precisely, what anyURI value) is to be used to refer to the usage
of that facet on the datatype, analogous to those provided, for the ·built-in·
datatypes, in section Built-in Datatypes and Their Definitions (§3).

Note: As specified normatively elsewhere, the set of facets given values will
at the very least include the whiteSpace facet.

g.

The ·value space· of the ·primitive· datatype MUST be disjoint from those of the other
·primitive· datatypes.

The ·lexical mapping· defined for an ·implementation-defined· primitive MUST be a total
function from the ·lexical space· onto the ·value space·. That is, (1) each ·literal· in the
·lexical space· MUST map to exactly one value, and (2) each value MUST be the image of
at least one member of the ·lexical space·, and MAY be the image of more than one.

For consistency with the ·constraining facets· defined here, implementors who define
new ·primitive· datatypes SHOULD allow the ·pattern· and ·enumeration· facets to apply.

The implementor SHOULD specify a ·canonical mapping· for the datatype if practicable.

It is ·implementation-defined· whether ·constraining facets· other than those defined in4.

http://www.w3.org/TR/xmlschema11-2/ 250 5/5/2009 6:46 PM

this specification are supported.

For each ·implementation-defined· facet, the following information MUST be provided:

What properties the facet has, viewed as a schema component.

Note: For most ·implementation-defined· facets, the structural pattern used
for most ·constraining facets· defined in this specification is expected to be
satisfactory, but other structures MAY be specified.

a.

Whether the facet is a ·pre-lexical·, ·lexical·, or ·value-based· facet.b.

Whether restriction of the facet takes the form of replacing a less restrictive facet
value with a more restrictive value (as in the ·minInclusive· and most other
·constraining facets· defined in this specification) or of adding new values to a set
of facet values (as for the ·pattern· facet). In the former case, the information
provided MUST also specify how to determine which of two given values is more
restrictive (and thus can be used to restrict the other).

When an ·implementation-defined· facet is used in ·facet-based restriction·, the
new value MUST be at least as restrictive as the existing value, if any.

Note: The effect of the preceding paragraph is to ensure that a type derived
by ·facet-based restriction· using an ·implementation-defined· facet does not
allow, or appear to allow, values not present in the ·base type·.

c.

What ·primitive· datatypes the new ·constraining facet· applies to, and what it
means when applied to them.

For a ·pre-lexical· facet, how to compute the result of applying the facet value to
any given ·literal·.

For a ·lexical· facet, how to tell whether any given ·literal· is facet-valid with respect
to it.

For a ·value-based· facet, how to tell whether any given value in the relevant
·primitive· datatypes is facet-valid with respect to it.

Note: The host language MAY choose to specify that ·implementation-defined·
·constraining facets· are applicable to ·built-in· ·primitive· datatypes; this
information is necessary to make the ·implementation-defined· facet usable in
such host languages.

d.

What URI reference (more precisely, what anyURI value) is to be used to refer to
the facet, analogous to those provided for the datatypes defined here in section
Built-in Datatypes and Their Definitions (§3).

e.

What element is to be used in XSD schema documents to apply the facet in the
course of ·facet-based restriction·. A schema document MUST be provided with an
element declaration for each ·implementation-defined· facet; the element
declarations SHOULD specify xs:facet as their substitution-group head.

Note: The elements' expanded names are used by the condition-inclusion
mechanism of [XSD 1.1 Part 1: Structures] to allow schema authors to test

f.

http://www.w3.org/TR/xmlschema11-2/ 251 5/5/2009 6:46 PM

whether a particular facet is supported and adjust the schema document's
contents accordingly.

·Implementation-defined· ·pre-lexical· facets MUST NOT, when applied to ·literals· which
have been whitespace-normalized by the whiteSpace facet, produce ·literals· which are
no longer whitespace-normalized.

Note: It follows from the above that each ·implementation-defined· ·primitive· datatype
and each ·implementation-defined· constraining facet has an expanded name. These
expanded names are used by the condition-inclusion mechanism of [XSD 1.1 Part 1:
Structures] to allow schema authors to test whether a particular datatype or facet is
supported and adjust the schema document's contents accordingly.

H.2 Implementation-dependent features

The following features in this specification are ·implementation-dependent·. Software which
claims to conform to this specification (or to the specification of any host language which
embeds XSD 1.1: Datatypes) MAY describe how these choices have been exercised, in
documentation which accompanies any conformance claim.

When multiple errors are encountered in type definitions or elsewhere, it is
·implementation-dependent· how many of the errors are reported (as long as at least
one error is reported), and which, what form the report of errors takes, and how much
detail is included.

1.

I Changes since version 1.0

I.1 Datatypes and Facets

In order to align this specification with those being prepared by the XSL and XML Query
Working Groups, a new datatype named anyAtomicType has been introduced; it serves as
the base type definition for all ·primitive· ·atomic· datatypes has been introduced.

The treatment of datatypes has been made more precise and explicit; most of these changes
affect the section on Datatype System (§2). Definitions have been revised thoroughly and
technical terms are used more consistently.

The (numeric) equality of values is now distinguished from the identity of the values
themselves; this allows float and double to treat positive and negative zero as distinct values,
but nevertheless to treat them as equal for purposes of bounds checking. This allows a better
alignment with the expectations of users working with IEEE floating-point binary numbers.

The {value} of the bounded component for list datatypes is now always false, reflecting the
fact that no ordering is prescribed for ·list· datatypes, and so they cannot be bounded using
the facets defined by this specification.

Units of length have been specified for all datatypes that are permitted the length constraining
facet.

The use of the namespace http://www.w3.org/2001/XMLSchema-datatypes has been
deprecated. The definition of a namespace separate from the main namespace defined by
this specification proved not to be necessary or helpful in facilitating the use, by other

http://www.w3.org/TR/xmlschema11-2/ 252 5/5/2009 6:46 PM

specifications, of the datatypes defined here, and its use raises a number of difficult unsolved
practical questions.

An assertions facet has been added, to allow schema authors to associated assertions with
simple type definitions, analogous to those allowed by [XSD 1.1 Part 1: Structures] for
complex type definitions.

Conforming implementations MAY now support ·primitive· datatypes and facets in addition to
those defined here.

I.2 Numerical Datatypes

The precisionDecimal datatype has been added. It is intended to support the floating-point
decimal datatypes defined in [IEEE 754-2008]. The precisionDecimal datatype differs from
decimal in that values carry not only a numeric value but also an (arithmetic) precision.

As noted above, positive and negative zero, float and double are now treated as distinct but
arithmetically equal values.

The description of the lexical spaces of unsignedLong, unsignedInt, unsignedShort, and
unsignedByte has been revised to agree with the schema for schemas by allowing for the
possibility of a leading sign.

The float and double datatypes now follow IEEE 754 implementation practice more closely; in
particular, negative and positive zero are now distinct values, although arithmetically equal.
Conversely, NaN is identical but not arithmetically equal to itself.

The minimum requirements for implementation support of the precisionDecimal datatype
have been clarified.

The character sequence '+INF' has been added to the lexical spaces of float and double.

I.3 Date/time Datatypes

The treatment of dateTime and related datatypes has been changed to provide a more explicit
account of the value space in terms of seven numeric properties. The most important
substantive change is that values now explicitly retain information about the time zone offset
indicated in the lexical form; this allows better alignment with the treatment of such values in
[XQuery 1.0 and XPath 2.0 Functions and Operators].

At the suggestion of the W3C OWL Working Group , a explicitTimezone facet has been added
to allow date/time datatypes to be restricted by requiring or forbidding an explicit time zone
offset from UTC, instead of making it optional. The dateTimeStamp datatype has been
defined using this facet.

The treatment of the date/time datatype includes a carefully revised definition of order that
ensures that for repeating datatypes (time, gDay, etc.), timezoned values will be compared as
though they are on the same "calendar day" ("local" property values) so that in any given
timezone, the days start at the local midnight and end just before local midnight. Days do not
run from 00:00:00Z to 24:00:00Z in timezones other than Z.

The lexical representation '0000' for years is recognized and maps to the year 1 BCE; '-0001'
maps to 2 BCE, etc. This is a change from version 1.0 of this specification, in order to align

http://www.w3.org/TR/xmlschema11-2/ 253 5/5/2009 6:46 PM

with established practice (the so-called "astronomical year numbering") and [ISO 8601].

Algorithms for arithmetic involving dateTime and duration values have been provided, and
corrections made to the ·timeOnTimeline· function.

The treatment of leap seconds is no longer ·implementation-defined·: the date/time types
described here do not include leap-second values.

At the suggestion of the W3C Internationalization Core Working Group, most references to
"time zone" have been replaced with references to "time zone offset"; this resolves issue 4642
Terminology: zone offset versus time zone.

A number of syntactic and semantic errors in some of the regular expressions given to
describe the lexical spaces of the ·primitive· datatypes (most notably the date/time datatypes)
have been corrected.

I.4 Other changes

Support has been added for [XML] version 1.1 and [Namespaces in XML] version 1.1. The
datatypes which depend on [XML] and [Namespaces in XML] may now be used with the
definitions provided by the 1.1 versions of those specifications, as well as with the definitions
in the 1.0 versions. It is ·implementation-defined· whether software conforming to this
specification supports the definitions given in version 1.0, or in version 1.1, of [XML] and
[Namespaces in XML].

The reference to the Unicode Database [Unicode Database] has been updated from version
4.1.0 to version 5.1.0, at the suggestion of the W3C Internationalization Core Working Group

References to various other specifications have also been updated.

The account of the value space of duration has been changed to specify that values consist
only of two numbers (the number of months and the number of seconds) rather than six
(years, months, days, hours, minutes, seconds). This allows clearly equivalent durations like
P2Y and P24M to have the same value.

Two new totally ordered restrictions of duration have been defined: yearMonthDuration,
defined in yearMonthDuration (§3.4.26), and dayTimeDuration, defined in dayTimeDuration
(§3.4.27). This allows better alignment with the treatment of durations in [XQuery 1.0 and
XPath 2.0 Functions and Operators].

The XML representations of the ·primitive· and ·ordinary· built-in datatypes have been moved
out of the schema document for schema documents in Schema for Schema Documents
(Datatypes) (normative) (§A) and into a different appendix (Illustrative XML representations
for the built-in simple type definitions (§C)).

Numerous minor corrections have been made in response to comments on earlier working
drafts.

The treatment of topics handled both in this specification and in [XSD 1.1 Part 1: Structures]
has been revised to align the two specifications more closely.

Several references to other specifications have been updated to refer to current versions of
those specifications, including [XML], [Namespaces in XML], [RFC 3986], [RFC 3987], and
[RFC 3548].

http://www.w3.org/TR/xmlschema11-2/ 254 5/5/2009 6:46 PM

Requirements for the datatype-validity of values of type language have been clarified.

Explicit definitions have been provided for the lexical and ·canonical mappings· of most of the
primitive datatypes.

Some errors in the definition of regular-expression metacharacters have been corrected.

The descriptions of the pattern and enumeration facets have been revised to make clearer
how values from different derivation steps are combined.

A warning against using the whitespace facet for tokenizing natural-language data has been
added on the request of the W3C Internationalization Working Group.

In order to correct an error in version 1 of this specification and of [XSD 1.1 Part 1:
Structures], ·unions· are no longer forbidden to be members of other ·unions·. Descriptions of
·union· types have also been changed to reflect the fact that ·unions· can be derived by
restricting other ·unions·. The concepts of ·transitive membership· (the members of all
members, recursively) and ·basic member· (those datatypes in the transitive membership
which are not ·unions·) have been introduced and are used.

The requirements of conformance have been clarified in various ways. A distinction is now
made between ·implementation-defined· and ·implementation-dependent· features, and a list
of such features is provided in Implementation-defined and implementation-dependent
features (normative) (§H). Requirements imposed on host languages which use or
incorporate the datatypes defined by this specification are defined.

The definitions of MUST, MUST NOT, and ·error· have been changed to specify that processors
MUST detect and report errors in schemas and schema documents (although the quality and
level of detail in the error report is not constrained).

The lexical mapping of the QName datatype, in particular its dependence on the namespace
bindings in scope at the place where the ·literal· appears, has been clarified.

The characterization of ·lexical mappings· has been revised to say more clearly when they are
functions and when they are not, and when (in the ·special· datatypes) there are values in the
·value space· not mapped to by any members of the ·lexical space·.

The nature of equality and identity of lists has been clarified.

Enumerations, identity constraints, and value constraints now use equality-based
comparisons, not identity-based comparisons, in cases where there is a difference between
identity and equality.

The mutual relations of lists and unions have been clarified, in particular the restrictions on
what kinds of datatypes MAY appear as the ·item type· of a list or among the ·member types·
of a union.

Unions with no member types (and thus with empty ·value space· and ·lexical space·) are now
explicitly allowed.

Cycles in the definitions of ·unions· and in the derivation of simple types are now explicitly
forbidden.

A number of minor errors and obscurities have been fixed.

http://www.w3.org/TR/xmlschema11-2/ 255 5/5/2009 6:46 PM

J Glossary (non-normative)

The listing below is for the benefit of readers of a printed version of this document: it collects
together all the definitions which appear in the document above.

absent
Throughout this specification, the value absent is used as a distinguished value to
indicate that a given instance of a property "has no value" or "is absent".

active basic member
If the ·active member type· is itself a ·union·, one of its members will be its ·active
member type·, and so on, until finally a ·basic (non-union) member· is reached. That
·basic member· is the active basic member of the union.

active member type
In a valid instance of any ·union·, the first of its members in order which accepts the
instance as valid is the active member type.

ancestor
The ancestors of a type definition are its {base type definition} and the ·ancestors· of its
{base type definition}.

atomic
Atomic datatypes are those whose ·value spaces· contain only ·atomic values·. Atomic
datatypes are anyAtomicType and all datatypes ·derived· from it.

atomic value
An atomic value is an elementary value, not constructed from simpler values by any
user-accessible means defined by this specification.

base type
Every datatype other than anySimpleType is associated with another datatype, its base
type. Base types can be ·special·, ·primitive·, or ·ordinary·.

basic member
Those members of the ·transitive membership· of a ·union· datatype U which are
themselves not ·union· datatypes are the basic members of U.

built-in
Built-in datatypes are those which are defined in this specification; they can be
·special·, ·primitive·, or ·ordinary· datatypes .

canonical mapping
The canonical mapping is a prescribed subset of the inverse of a ·lexical mapping·
which is one-to-one and whose domain (where possible) is the entire range of the
·lexical mapping· (the ·value space·).

canonical representation
The canonical representation of a value in the ·value space· of a datatype is the
·lexical representation· associated with that value by the datatype's ·canonical mapping·

character class subtraction
A ·character group· that contains a subtraction operator is referred to as a character
class subtraction.

character group part
A character group part (charGroupPart) is any of: a single unescaped character
(SingleCharNoEsc), a single escaped character (SingleCharEsc), a character class
escape (charClassEsc), or a character range (charRange).

constraining facet
Constraining facets are schema components whose values may be set or changed
during ·derivation· (subject to facet-specific controls) to control various aspects of the
derived datatype.

http://www.w3.org/TR/xmlschema11-2/ 256 5/5/2009 6:46 PM

Constraint on Schemas
Constraint on Schemas

constructed
All ·ordinary· datatypes are defined in terms of, or constructed from, other datatypes,
either by ·restricting· the ·value space· or ·lexical space· of a ·base type· using zero or
more ·constraining facets· or by specifying the new datatype as a ·list· of items of some
·item type·, or by defining it as a ·union· of some specified sequence of ·member types·.

datatype
In this specification, a datatype has three properties:

A ·value space·, which is a set of values.

A ·lexical space·, which is a set of ·literals· used to denote the values.

A small collection of functions, relations, and procedures associated with the
datatype. Included are equality and (for some datatypes) order relations on the
·value space·, and a ·lexical mapping·, which is a mapping from the ·lexical space·
into the ·value space·.

derived
A datatype T is immediately derived from another datatype X if and only if X is the
·base type· of T.

derived
A datatype R is derived from another datatype B if and only if one of the following is
true:

B is the ·base type· of R.

There is some datatype X such that X is the ·base type· of R, and X is derived
from B.

div
If m and n are numbers, then m div n is the greatest integer less than or equal to
m / n .

error
error

facet-based restriction
A datatype is defined by facet-based restriction of another datatype (its ·base type·),
when values for zero or more ·constraining facets· are specified that serve to constrain
its ·value space· and/or its ·lexical space· to a subset of those of the ·base type·.

for compatibility
for compatibility

fundamental facet
Each fundamental facet is a schema component that provides a limited piece of
information about some aspect of each datatype.

implementation-defined
Something which MAY vary among conforming implementations, but which MUST be
specified by the implementor for each particular implementation, is
implementation-defined.

implementation-dependent
Something which MAY vary among conforming implementations, is not specified by this
or any W3C specification, and is not required to be specified by the implementor for any

http://www.w3.org/TR/xmlschema11-2/ 257 5/5/2009 6:46 PM

particular implementation, is implementation-dependent.
incomparable

Two values that are neither equal, less-than, nor greater-than are incomparable. Two
values that are not ·incomparable· are comparable.

intervening union
If a datatype M is in the ·transitive membership· of a ·union· datatype U, but not one of
U's ·member types·, then a sequence of one or more ·union· datatypes necessarily
exists, such that the first is one of the ·member types· of U, each is one of the ·member
types· of its predecessor in the sequence, and M is one of the ·member types· of the
last in the sequence. The ·union· datatypes in this sequence are said to intervene
between M and U. When U and M are given by the context, the datatypes in the
sequence are referred to as the intervening unions. When M is one of the ·member
types· of U, the set of intervening unions is the empty set.

item type
The ·atomic· or ·union· datatype that participates in the definition of a ·list· datatype is
the item type of that ·list· datatype.

leap-second
A leap-second is an additional second added to the last day of December, June,
October, or March, when such an adjustment is deemed necessary by the International
Earth Rotation and Reference Systems Service in order to keep ·UTC· within 0.9
seconds of observed astronomical time. When leap seconds are introduced, the last
minute in the day has more than sixty seconds. In theory leap seconds can also be
removed from a day, but this has not yet occurred. (See [International Earth Rotation
Service (IERS)], [ITU-R TF.460-6].) Leap seconds are not supported by the types
defined here.

lexical
A constraining facet which directly restricts the ·lexical space· of a datatype is a lexical
facet.

lexical mapping
The lexical mapping for a datatype is a prescribed relation which maps from the
·lexical space· of the datatype into its ·value space·.

lexical representation
The members of the ·lexical space· are lexical representations of the values to which
they are mapped.

lexical space
The lexical space of a datatype is the prescribed set of strings which ·the lexical
mapping· for that datatype maps to values of that datatype.

list
List datatypes are those having values each of which consists of a finite-length (possibly
empty) sequence of ·atomic values·. The values in a list are drawn from some ·atomic·
datatype (or from a ·union· of ·atomic· datatypes), which is the ·item type· of the list.

literal
A sequence of zero or more characters in the Universal Character Set (UCS) which may
or may not prove upon inspection to be a member of the ·lexical space· of a given
datatype and thus a ·lexical representation· of a given value in that datatype's ·value
space·, is referred to as a literal.

match
match

may
MAY

member types

http://www.w3.org/TR/xmlschema11-2/ 258 5/5/2009 6:46 PM

The datatypes that participate in the definition of a ·union· datatype are known as the
member types of that ·union· datatype.

minimally conforming
Implementations claiming minimal conformance to this specification independent of
any host language MUST do all of the following:
1 Support all the ·built-in· datatypes defined in this specification.
2 Completely and correctly implement all of the ·constraints on schemas· defined in this

specification.
3 Completely and correctly implement all of the ·Validation Rules· defined in this

specification, when checking the datatype validity of literals against datatypes.
mod

If m and n are numbers, then m mod n is m − n × (m ·div· n) .
must

MUST
must not

MUST NOT
nearest built-in datatype

For any datatype T, the nearest built-in datatype to T is the first ·built-in· datatype
encountered in following the chain of links connecting each datatype to its ·base type·. If
T is a ·built-in· datatype, then the nearest built-in datatype of T is T itself; otherwise, it is
the nearest built-in datatype of T's ·base type·.

optional
An optional property is permitted but not required to have the distinguished value
absent.

ordered
A ·value space·, and hence a datatype, is said to be ordered if some members of the
·value space· are drawn from a ·primitive· datatype for which the table in Fundamental
Facets (§F.1) specifies the value total or partial for the ordered facet.

ordinary
Ordinary datatypes are all datatypes other than the ·special· and ·primitive· datatypes.

owner
A component may be referred to as the owner of its properties, and of the values of
those properties.

pre-lexical
A constraining facet which is used to normalize an initial ·literal· before checking to see
whether the resulting character sequence is a member of a datatype's ·lexical space· is
a pre-lexical facet.

precisionDecimal
The precisionDecimal datatype represents the numeric value and (arithmetic) precision
of decimal numbers which retain precision; it also includes values for positive and
negative infinity and for "not a number", and it differentiates between "positive zero" and
"negative zero".

primitive
Primitive datatypes are those datatypes that are not ·special· and are not defined in
terms of other datatypes; they exist ab initio.

regular expression
A regular expression is composed from zero or more ·branch·es, separated by |
characters.

restriction
A datatype R is a restriction of another datatype B when

Schema Representation Constraint

http://www.w3.org/TR/xmlschema11-2/ 259 5/5/2009 6:46 PM

Schema Representation Constraint
should

SHOULD
special

The special datatypes are anySimpleType and anyAtomicType.
special value

A special value is an object whose only relevant properties for purposes of this
specification are that it is distinct from, and unequal to, any other values (special or
otherwise).

transitive membership
The transitive membership of a ·union· is the set of its own ·member types·, and the
·member types· of its members, and so on. More formally, if U is a ·union·, then (a) its
·member types· are in the transitive membership of U, and (b) for any datatypes T1 and
T2, if T1 is in the transitive membership of U and T2 is one of the ·member types· of T1,
then T2 is also in the transitive membership of U.

union
Union datatypes are (a) those whose ·value spaces·, ·lexical spaces·, and ·lexical
mappings· are the union of the ·value spaces·, ·lexical spaces·, and ·lexical mappings·
of one or more other datatypes, which are the ·member types· of the union, or (b) those
derived by ·facet-based restriction· of another union datatype.

unknown
A datatype which is not available for use is said to be unknown.

unknown
An ·constraining facet· which is not supported by the processor in use is unknown.

user-defined
User-defined datatypes are those datatypes that are defined by individual schema
designers.

UTC
Universal Coordinated Time (UTC) is an adaptation of TAI which closely approximates
UT1 by adding ·leap-seconds· to selected ·UTC· days.

Validation Rule
Validation Rule

value space
The value space of a datatype is the set of values for that datatype.

value-based
A constraining facet which directly restricts the ·value space· of a datatype is a
value-based facet.

wildcard character
The wildcard character is a metacharacter which matches almost any single character:

XDM representation
For any value V and any datatype T, the XDM representation of V under T is defined
recursively as follows. Call the XDM representation X. Then
1 If T = ·xs:anySimpleType· or ·xs:anyAtomicType· then X is V, and the dynamic type of X

is xs:untypedAtomic.
2 If T . {variety} = atomic, then let T2 be the ·nearest built-in datatype· to T. If V is a

member of the ·value space· of T2, then X is V and the dynamic type of X is T2.
Otherwise (i.e. if V is not a member of the ·value space· of T2), X is the ·XDM
representation· of V under T2 . {base type definition}.

3 If T . {variety} = list, then X is a sequence of atomic values, each atomic value being
the ·XDM representation· of the corresponding item in the list V under T . {item type
definition}.

http://www.w3.org/TR/xmlschema11-2/ 260 5/5/2009 6:46 PM

4 If T . {variety} = union, then X is the ·XDM representation· of V under the ·active basic
member· of V when validated against T. If there is no ·active basic member·, then V
has no ·XDM representation· under T.

K References

K.1 Normative

IEEE 754-2008
IEEE. IEEE Standard for Floating-Point Arithmetic. 29 August 2008.
http://ieeexplore.ieee.org/ISOL/standardstoc.jsp?punumber=4610933

Namespaces in XML
World Wide Web Consortium. Namespaces in XML 1.1 (Second Edition), ed. Tim Bray
et al. W3C Recommendation 16 August 2006. Available at:
http://www.w3.org/TR/xml-names11/ The edition cited is the one current at the date of
publication of this specification. Implementations MAY follow the edition cited and/or any
later edition(s); it is implementation-defined which. For details of the dependency of this
specification on Namespaces in XML 1.1, see Dependencies on Other Specifications
(§1.3).

Namespaces in XML 1.0
World Wide Web Consortium. Namespaces in XML 1.0 (Second Edition), ed. Tim Bray
et al. W3C Recommendation 16 August 2006. Available at:
http://www.w3.org/TR/REC-xml-names/ The edition cited is the one current at the date
of publication of this specification. Implementations MAY follow the edition cited and/or
any later edition(s); it is implementation-defined which. For details of the dependency of
this specification on Namespaces in XML 1.0, see Dependencies on Other
Specifications (§1.3).

RFC 3548
S. Josefsson, ed. RFC 3548: The Base16, Base32, and Base64 Data Encodings. July
2003. Available at: http://www.ietf.org/rfc/rfc3548.txt

Unicode Database
The Unicode Consortium. Unicode Character Database. Revision 5.1.0, by Mark Davis
and Ken Whistler, 2008-03-18. Available at:
http://www.unicode.org/Public/5.1.0/ucd/UCD.html

XDM
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model (XDM), ed. Mary
Fernández et al. W3C Recommendation 23 January 2007. Available at:
http://www.w3.org/TR/xpath-datamodel/.

XML
World Wide Web Consortium. Extensible Markup Language (XML) 1.1 (Second
Edition), ed. Tim Bray et al. W3C Recommendation 16 August 2006, edited in place 29
September 2006. Available at http://www.w3.org/TR/xml11/ The edition cited is the one
current at the date of publication of this specification. Implementations MAY follow the
edition cited and/or any later edition(s); it is implementation-defined which. For details of
the dependency of this specification on XML 1.1, see Dependencies on Other
Specifications (§1.3).

XML 1.0
World Wide Web Consortium. Extensible Markup Language (XML) 1.0(Fifth Edition), ed.
Tim Bray et al. W3C Recommendation 26 November 2008. Available at
http://www.w3.org/TR/REC-xml/. The edition cited is the one current at the date of
publication of this specification. Implementations MAY follow the edition cited and/or any

http://www.w3.org/TR/xmlschema11-2/ 261 5/5/2009 6:46 PM

later edition(s); it is implementation-defined which. For details of the dependency of this
specification on XML, see Dependencies on Other Specifications (§1.3).

XPath 2.0
World Wide Web Consortium. XML Path Language 2.0, ed. Anders Berglund et al. W3C
Recommendation 23 January 2007. Available at: http://www.w3.org/TR/xpath20/.

XQuery 1.0 and XPath 2.0 Functions and Operators
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and Operators, ed.
Ashok Malhotra, Jim Melton, and Norman Walsh. W3C Recommendation 23 January
2007 Available at: http://www.w3.org/TR/xpath-functions/.

XSD 1.1 Part 1: Structures
World Wide Web Consortium. W3C XML Schema Definition Language (XSD) 1.1 Part
1: Structures, ed. Shudi (Sandy) Gao 高殊镝, C. M. Sperberg-McQueen, and Henry S.
Thompson. W3C Candidate Recommendation 30 April 2009. Available at:
http://www.w3.org/TR/2009/CR-xmlschema11-1-20090430/structures.html The edition
cited is the one current at the date of publication of this specification. Implementations
MAY follow the edition cited and/or any later edition(s); it is implementation-defined
which.

K.2 Non-normative

BCP 47
Internet Engineering Task Force (IETF). Best Current Practices 47. 2006. Available at:
http://tools.ietf.org/rfc/bcp/bcp47. Concatenation of RFC 4646: Tags for Identifying
Languages, ed. A. Phillips and M. Davis, September 2006,
http://www.ietf.org/rfc/bcp/bcp47.txt, and RFC 4647: Matching of Language Tags, ed. A
Phillips and M. Davis, September 2006, http://www.rfc-editor.org/rfc/bcp/bcp47.txt.

Clinger, WD (1990)
William D Clinger. How to Read Floating Point Numbers Accurately. In Proceedings of
Conference on Programming Language Design and Implementation, pages 92-101.
Available at: ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps

HTML 4.01
World Wide Web Consortium. HTML 4.01 Specification, ed. Dave Raggett, Arnaud Le
Hors, and Ian Jacobs. W3C Recommendation 24 December 1999. Available at:
http://www.w3.org/TR/html401/

International Earth Rotation Service (IERS)
International Earth Rotation Service (IERS). See http://maia.usno.navy.mil

ISO 11404
ISO (International Organization for Standardization). Language-independent Datatypes.
ISO/IEC 11404:2007. See
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39479

ISO 8601
ISO (International Organization for Standardization). Representations of dates and
times, 1988-06-15.

ISO 8601:2000 Second Edition
ISO (International Organization for Standardization). Representations of dates and
times, second edition, 2000-12-15.

ITU-R TF.460-6
International Telecommunication Union (ITU). Recommendation ITU-R TF.460-6:
Standard-frequency and time-signal emissions. [Geneva: ITU, February 2002.]

LEIRI
Legacy extended IRIs for XML resource identification, ed. Henry S. Thompson, Richard

http://www.w3.org/TR/xmlschema11-2/ 262 5/5/2009 6:46 PM

Tobin, and Norman Walsh. W3C Working Group Note 3 November 2008. See
http://www.w3.org/TR/leiri/

Perl
The Perl Programming Language. See
http://www.perl.com/pub/language/info/software.html

RDF Schema
World Wide Web Consortium. RDF Vocabulary Description Language 1.0: RDF
Schema, ed. Dan Brickley and R. V. Guha. W3C Recommendation 10 February 2004.
Available at: http://www.w3.org/TR/rdf-schema/

RFC 2045
N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. 1996. Available at:
http://www.ietf.org/rfc/rfc2045.txt

RFC 3066
H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995. Available
at: http://www.ietf.org/rfc/rfc3066.txt

RFC 3986
T. Berners-Lee, R. Fielding, and L. Masinter, RFC 3986: Uniform Resource Identifier
(URI): Generic Syntax. January 2005. Available at: http://www.ietf.org/rfc/rfc3986.txt

RFC 3987
M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers (IRIs) .
January 2005. Available at: http://www.ietf.org/rfc/rfc3987.txt

RFC 4646
A. Phillips and M. Davis, ed. RFC 4646: Tags for Identifying Languages 2006. Available
at: http://www.ietf.org/rfc/rfc4646.txt

RFC 4647
A. Phillips and M. Davis, ed. RFC 4647: Matching of Language Tags 2006. Available at:
http://www.ietf.org/rfc/rfc4647.txt

Ruby
World Wide Web Consortium. Ruby Annotation, ed. Marcin Sawicki et al. W3C
Recommendation 31 May 2001 (Markup errors corrected 25 June 2008). Available at:
http://www.w3.org/TR/ruby/

SQL
ISO (International Organization for Standardization). ISO/IEC 9075-2:1999, Information
technology --- Database languages --- SQL --- Part 2: Foundation (SQL/Foundation).
[Geneva]: International Organization for Standardization, 1999. See
http://www.iso.org/iso/home.htm

Timezones
World Wide Web Consortium. Working with Time Zones, ed. Addison Phillips et al.
W3C Working Group Note 13 October 2005. Available at
http://www.w3.org/TR/timezone/

U.S. Naval Observatory Time Service Department
Information about Leap Seconds Available at: http://tycho.usno.navy.mil/leapsec.html

Unicode Regular Expression Guidelines
Mark Davis. Unicode Regular Expression Guidelines, 1988. Available at:
http://www.unicode.org/unicode/reports/tr18/

USNO Historical List
U.S. Naval Observatory Time Service Department, Historical list of leap seconds
Available at: ftp://maia.usno.navy.mil/ser7/tai-utc.dat

XML Schema Language: Part 0 Primer
World Wide Web Consortium. XML Schema Language: Part 0 Primer Second Edition,
ed. David C. Fallside and Priscilla Walmsley. W3C Recommendation 28 October 2004.

http://www.w3.org/TR/xmlschema11-2/ 263 5/5/2009 6:46 PM

Available at: http://www.w3.org/TR/xmlschema-0/
XML Schema Requirements

XML Schema Requirements , ed. Ashok Malhotra and Murray Maloney. W3C Note 15
February 1999. Available at: http://www.w3.org/TR/NOTE-xml-schema-req

XSL
World Wide Web Consortium. Extensible Stylesheet Language (XSL), ed. Anders
Berglund. W3C Recommendation 05 December 2006. Available at:
http://www.w3.org/TR/xsl11/

L Acknowledgements (non-normative)

Along with the editors thereof, the following contributed material to the first version of this
specification:

Asir S. Vedamuthu, webMethods, Inc
Mark Davis, IBM

Co-editor Ashok Malhotra's work on this specification from March 1999 until February 2001
was supported by IBM, and from then until May 2004 by Microsoft. Since July 2004 his work
on this specification has been supported by Oracle Corporation.

The work of Dave Peterson as a co-editor of this specification was supported by IDEAlliance
(formerly GCA) through March 2004, and beginning in April 2004 by SGMLWorks!.

The work of C. M. Sperberg-McQueen as a co-editor of this specification was supported by
the World Wide Web Consortium through January 2009, and beginning in February 2009 by
Black Mesa Technologies LLC.

The XML Schema Working Group acknowledges with thanks the members of other W3C
Working Groups and industry experts in other forums who have contributed directly or
indirectly to the creation of this document and its predecessor.

At the time this Working Draft is published, the members in good standing of the XML
Schema Working Group are:

Paul V. Biron, Invited expert
David Ezell, National Association of Convenience Stores (NACS) (chair)
Shudi (Sandy) Gao 高殊镝, IBM
Mary Holstege, Mark Logic
Michael Kay, Invited expert
Paolo Marinelli, University of Bologna
Noah Mendelsohn, IBM
Dave Peterson, Invited expert
C. M. Sperberg-McQueen, invited expert
Henry S. Thompson, University of Edinburgh and W3C (staff contact)
Scott Tsao, The Boeing Company
Fabio Vitali, University of Bologna
Stefano Zacchiroli, University of Bologna

The XML Schema Working Group has benefited in its work from the participation and
contributions of a number of people who are no longer members of the Working Group in
good standing at the time of publication of this Working Draft. Their names are given below. In
particular we note with sadness the accidental death of Mario Jeckle shortly before publication

http://www.w3.org/TR/xmlschema11-2/ 264 5/5/2009 6:46 PM

of the first Working Draft of XML Schema 1.1. Affiliations given are (among) those current at
the time of the individuals' work with the WG.

Paula Angerstein, Vignette Corporation
Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Laila Benhlima, Ecole Mohammadia d'Ingenieurs Rabat (EMI)
Doris Bernardini, Defense Information Systems Agency (DISA)
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation
Charles E. Campbell, Invited expert
Oriol Carbo, University of Edinburgh
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU
Tyng-Ruey Chuang, Academia Sinica
Tony Cincotta, NIST
David Cleary, Progress Software
Mike Cokus, MITRE
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox
Roger L. Costello, MITRE
Joey Coyle, Health Level Seven
Haavard Danielson, Progress Software
Josef Dietl, Mozquito Technologies
Kenneth Dolson, Defense Information Systems Agency (DISA)
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
Tim Ewald, Developmentor
Alexander Falk, Altova GmbH
David Fallside, IBM
George Feinberg, Object Design
Dan Fox, Defense Logistics Information Service (DLIS)
Charles Frankston, Microsoft
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, TIBCO Extensibility
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Ernesto Guerrieri, Inso
Dave Hollander, Hewlett-Packard Company (co-chair)
Nelson Hung, Corel
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Mario Jeckle, DaimlerChrysler
Rick Jelliffe, Academia Sinica
Marcel Jemio, Data Interchange Standards Association
Simon Johnston, Rational Software

http://www.w3.org/TR/xmlschema11-2/ 265 5/5/2009 6:46 PM

Kohsuke Kawaguchi, Sun Microsystems
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Melanie Kudela, Uniform Code Council
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft
Dmitry Lenkov, Hewlett-Packard Company
Bob Lojek, Mozquito Technologies
John McCarthy, Lawrence Berkeley National Laboratory
Matthew MacKenzie, XML Global
Eve Maler, Sun Microsystems
Ashok Malhotra, IBM, Microsoft, Oracle
Murray Maloney, Muzmo Communication, acting for Commerce One
Lisa Martin, IBM
Jim Melton, Oracle Corp
Adrian Michel, Commerce One
Alex Milowski, Invited expert
Don Mullen, TIBCO Extensibility
Murata Makoto, Xerox
Ravi Murthy, Oracle
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
David Orchard, BEA Systems, Inc.
Paul Pedersen, Mark Logic Corporation
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
Jonathan Robie, Software AG
Cliff Schmidt, Microsoft
John C. Schneider, MITRE
Eric Sedlar, Oracle Corp.
Lew Shannon, NCR
Anli Shundi, TIBCO Extensibility
William Shea, Merrill Lynch
Jerry L. Smith, Defense Information Systems Agency (DISA)
John Stanton, Defense Information Systems Agency (DISA)
Tony Stewart, Rivcom
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Ralph Swick, W3C
John Tebbutt, NIST
Ross Thompson, Contivo
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar
Mark Tucker, Health Level Seven
Asir S. Vedamuthu, webMethods, Inc
Scott Vorthmann, TIBCO Extensibility
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Cherry Washington, Defense Information Systems Agency (DISA)
Aki Yoshida, SAP AG

http://www.w3.org/TR/xmlschema11-2/ 266 5/5/2009 6:46 PM

Kongyi Zhou, Oracle

	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes
	30 Apr 2009 David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen, and Henry S. Thompson for W3C
	Abstract
	Status of this Document
	Table of Contents
	1 Introduction
	2 Datatype System
	3 Built-in Datatypes and Their Definitions
	4 Datatype components
	5 Conformance
	A Schema for Schema Documents (Datatypes) (normative)
	B DTD for Datatype Definitions (non-normative)
	C Illustrative XML representations for the built-in simple type definitions
	D Built-up Value Spaces
	E Function Definitions
	F Datatypes and Facets
	G Regular Expressions
	H Implementation-defined and implementation-dependent features (normative)
	I Changes since version 1.0
	J Glossary (non-normative)
	K References
	L Acknowledgements (non-normative)

	
	W3C Title Page

