
http://www.w3.org/TR/xmlenc-core1/ 1 3/28/2009 11:32 AM

XML Encryption Syntax and Processing Version 1.1

W3C Working Draft 26 February 2009

This version:
http://www.w3.org/TR/2009/WD-xmlenc-core1-20090226/

Latest version:
http://www.w3.org/TR/xmlenc-core1/

Previous version:
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

Latest XML Encryption recommendation:
http://www.w3.org/TR/xmlenc-core/

Editors
Donald Eastlake <dee3@torque.pothole.com>
Joseph Reagle <reagle@w3.org>

Authors
Takeshi Imamura <IMAMU@jp.ibm.com>
Blair Dillaway <blaird@microsoft.com>
Ed Simon <edsimon@xmlsec.com>
Kelvin Yiu <kelviny@microsoft.com>

Contributors
See participants.

Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use
rules apply.

Abstract

This document specifies a process for encrypting data and representing the result in XML. The data
may be arbitrary data (including an XML document), an XML element, or XML element content. The
result of encrypting data is an XML Encryption element which contains or references the cipher data.

Status of this document

This section describes the status of this document at the time of its publication. Other documents
may supersede this document. A list of current W3C publications and the latest revision of this
technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

This is a First Public Working Draft of "XML Encryption 1.1."

At the time of this publication, the most recent W3C Recommendation of XML Encryption 1 is the 10
December 2002 XML Encryption Recommendation. A diff-marked version of this specification is
available; it shows differences between the latest recommendation and this version of the
specification.

http://www.w3.org/TR/xmlenc-core1/ 2 3/28/2009 11:32 AM

Conformance-affecting changes against this previous recommendation mainly affect the set of
mandatory to implement cryptographic algorithms, by adding Elliptic Curve Diffie-Hellman Key
Agreement. There is currently no consensus about the inclusion of this algorithm as mandatory to
implement, and the Working Group seeks early community input into what algorithms should be
supported. Arguments for and against specific approaches are called out in an editorial note in
section 5.1 Algorithm Identifiers and Implementation Requirements.

This document was developed by the XML Security Working Group. The Working Group expects to
advance this Working Draft to Recommendation Status.

Please send comments about this document to public-xmlsec-comments@w3.org (with public
archive).

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy.
W3C maintains a public list of any patent disclosures made in connection with the deliverables of the
group; that page also includes instructions for disclosing a patent. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the
information in accordance with section 6 of the W3C Patent Policy.

Table of Contents

Introduction
Editorial and Conformance Conventions1.
Design Philosophy2.
Versions, Namespaces URIs, and Identifiers3.
Acknowledgements4.

1.

Encryption Overview and Examples
Encryption Granularity

Encrypting an XML Element1.
Encrypting XML Element Content (Elements)2.
Encrypting XML Element Content (Character Data)3.
Encrypting Arbitrary Data and XML Documents4.
Super-Encryption: Encrypting EncryptedData5.

1.

EncryptedData and EncryptedKey Usage
EncryptedData with Symmetric Key (KeyName)1.
EncryptedKey (ReferenceList, ds:RetrievalMethod,CarriedKeyName)2.

2.

2.

Encryption Syntax
The EncryptedType Element1.
The EncryptionMethod Element2.
The CipherData Element

The CipherReference Element1.
3.

The EncryptedData Element4.
Extensions to ds:KeyInfo Element

The EncryptedKey Element1.
The ds:RetrievalMethod Element2.

5.

The ReferenceList Element6.
The EncryptionProperties Element7.

3.

Processing Rules
Encryption1.
Decryption2.
Encrypting XML

A Decrypt Implementation (Non-normative)1.
3.

4.

http://www.w3.org/TR/xmlenc-core1/ 3 3/28/2009 11:32 AM

A Decrypt and Replace Implementation (Non-normative)2.
Serializing XML (Non-normative)3.
Text Wrapping (Non-normative)4.

Algorithms
Algorithm Identifiers and Implementation Requirements1.
Block Encryption Algorithms2.
Stream Encryption Algorithms3.
Key Transport4.
Key Agreement5.
Symmetric Key Wrap6.
Message Digest7.
Message Authentication8.
Canonicalization9.

5.

Security Considerations
Relationship to XML Digital Signatures1.
Information Revealed2.
Nonce and IV (Initialization Value or Vector)3.
Denial of Service4.
Unsafe Content5.

6.

Conformance7.
XML Encryption Media Type

Introduction1.
application/xenc+xml Registration2.

8.

Schema and Valid Examples9.
References10.

1 Introduction

This document specifies a process for encrypting data and representing the result in XML. The data
may be arbitrary data (including an XML document), an XML element, or XML element content. The
result of encrypting data is an XML Encryption EncryptedData element which contains (via one of its
children's content) or identifies (via a URI reference) the cipher data.

When encrypting an XML element or element content the EncryptedData element replaces the
element or content (respectively) in the encrypted version of the XML document.

When encrypting arbitrary data (including entire XML documents), the EncryptedData element may
become the root of a new XML document or become a child element in an application-chosen XML
document.

1.1 Editorial and Conformance Conventions

This specification uses XML schemas [XML-schema] to describe the content model.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be
interpreted as described in RFC2119 [KEYWORDS]:

"they MUST only be used where it is actually required for interoperation or to limit
behavior which has potential for causing harm (e.g., limiting retransmissions)"

Consequently, we use these capitalized keywords to unambiguously specify requirements over
protocol and application features and behavior that affect the interoperability and security of
implementations. These key words are not used (capitalized) to describe XML grammar; schema
definitions unambiguously describe such requirements and we wish to reserve the prominence of

http://www.w3.org/TR/xmlenc-core1/ 4 3/28/2009 11:32 AM

these terms for the natural language descriptions of protocols and features. For instance, an XML
attribute might be described as being "optional." Compliance with the XML-namespace specification
[XML-NS] is described as "REQUIRED."

1.2 Design Philosophy

The design philosophy and requirements of this specification (including the limitations related to
instance validity) are addressed in the XML Encryption Requirements [EncReq].

1.3 Versions, Namespaces, URIs, and Identifiers

No provision is made for an explicit version number in this syntax. If a future version is needed, it will
use a different namespace. The experimental XML namespace [XML-NS] URI that MUST be used
by implementations of this (dated) specification is:

 xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'

This namespace is also used as the prefix for algorithm identifiers used by this specification. While
applications MUST support XML and XML namespaces, the use of internal entities [XML, section
4.2.1], the "xenc" XML namespace prefix [XML-NS, section 2] and defaulting/scoping conventions
are OPTIONAL; we use these facilities to provide compact and readable examples. Additionally, the
entity &xenc; is defined so as to provide short-hand identifiers for URIs defined in this specification.
For example "&xenc;Element" corresponds to "http://www.w3.org/2001/04/xmlenc#Element".

This specification makes use of the XML Signature [XML-DSIG] namespace and schema definitions

 xmlns:ds='http://www.w3.org/2000/09/xmldsig#'

URIs [URI] MUST abide by the [XML-Schema] anyURI type definition and the [XML-DSIG, 4.3.3.1
The URI Attribute] specification (i.e., permitted characters, character escaping, scheme support,
etc.).

1.4 Acknowledgements

The contributions of the following Working Group members to this specification are gratefully
acknowledged in accordance with the contributor policies and the active WG roster.

Joseph Ashwood
Simon Blake-Wilson, Certicom
Frank D. Cavallito, BEA Systems
Eric Cohen, PricewaterhouseCoopers
Blair Dillaway, Microsoft (Author)
Blake Dournaee, RSA Security
Donald Eastlake, Motorola (Editor)
Barb Fox, Microsoft
Christian Geuer-Pollmann, University of Siegen
Tom Gindin, IBM
Jiandong Guo, Phaos
Phillip Hallam-Baker, Verisign
Amir Herzberg, NewGenPay
Merlin Hughes, Baltimore
Frederick Hirsch
Maryann Hondo, IBM
Takeshi Imamura, IBM (Author)
Mike Just, Entrust, Inc.

http://www.w3.org/TR/xmlenc-core1/ 5 3/28/2009 11:32 AM

Brian LaMacchia, Microsoft
Hiroshi Maruyama, IBM
John Messing, Law-on-Line
Shivaram Mysore, Sun Microsystems
Thane Plambeck, Verisign
Joseph Reagle, W3C (Chair, Editor)
Aleksey Sanin
Jim Schaad, Soaring Hawk Consulting
Ed Simon, XMLsec (Author)
Daniel Toth, Ford
Yongge Wang, Certicom
Steve Wiley, myProof

Additionally, we thank the following for their comments during and subsequent to Last Call:

Martin Dürst, W3C
Dan Lanz, Zolera
Susan Lesch, W3C
David Orchard, BEA Systems
Ronald Rivest, MIT

Contributions for version 1.1 were received from the members of the XML Security Working Group:

TBD. See public list of participants for now.

2 Encryption Overview and Examples (Non-normative)

This section provides an overview and examples of XML Encryption syntax. The formal syntax is
found in Encryption Syntax (section 3); the specific processing is given in Processing Rules (section
4).

Expressed in shorthand form, the EncryptedData element has the following structure (where "?"
denotes zero or one occurrence; "+" denotes one or more occurrences; "*" denotes zero or more
occurrences; and the empty element tag means the element must be empty):

 <EncryptedData Id? Type? MimeType? Encoding?>
 <EncryptionMethod/>?
 <ds:KeyInfo>
 <EncryptedKey>?
 <AgreementMethod>?
 <ds:KeyName>?
 <ds:RetrievalMethod>?
 <ds:*>?
 </ds:KeyInfo>?
 <CipherData>
 <CipherValue>?
 <CipherReference URI?>?
 </CipherData>
 <EncryptionProperties>?
 </EncryptedData>

The CipherData element envelopes or references the raw encrypted data. If enveloping, the raw
encrypted data is the CipherValue element's content; if referencing, the CipherReference element's
URI attribute points to the location of the raw encrypted data

2.1 Encryption Granularity

Consider the following fictitious payment information, which includes identification information and
information appropriate to a payment method (e.g., credit card, money transfer, or electronic check):

http://www.w3.org/TR/xmlenc-core1/ 6 3/28/2009 11:32 AM

 <?xml version='1.0'?>
 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <CreditCard Limit='5,000' Currency='USD'>
 <Number>4019 2445 0277 5567</Number>
 <Issuer>Example Bank</Issuer>
 <Expiration>04/02</Expiration>
 </CreditCard>
 </PaymentInfo>

This markup represents that John Smith is using his credit card with a limit of $5,000USD.

2.1.1 Encrypting an XML Element

Smith's credit card number is sensitive information! If the application wishes to keep that information
confidential, it can encrypt the CreditCard element:

 <?xml version='1.0'?>
 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
 xmlns='http://www.w3.org/2001/04/xmlenc#'>
 <CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData>
 </EncryptedData>
 </PaymentInfo>

By encrypting the entire CreditCard element from its start to end tags, the identity of the element
itself is hidden. (An eavesdropper doesn't know whether he used a credit card or money transfer.)
The CipherData element contains the encrypted serialization of the CreditCard element.

2.1.2 Encrypting XML Element Content (Elements)

As an alternative scenario, it may be useful for intermediate agents to know that John used a credit
card with a particular limit, but not the card's number, issuer, and expiration date. In this case, the
content (character data or children elements) of the CreditCard element is encrypted:

 <?xml version='1.0'?>
 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <CreditCard Limit='5,000' Currency='USD'>
 <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
 Type='http://www.w3.org/2001/04/xmlenc#Content'>
 <CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData>
 </EncryptedData>
 </CreditCard>
 </PaymentInfo>

2.1.3 Encrypting XML Element Content (Character Data)

Or, consider the scenario in which all the information except the actual credit card number can be in
the clear, including the fact that the Number element exists:

 <?xml version='1.0'?>
 <PaymentInfo xmlns='http://example.org/paymentv2'>
 <Name>John Smith</Name>
 <CreditCard Limit='5,000' Currency='USD'>

http://www.w3.org/TR/xmlenc-core1/ 7 3/28/2009 11:32 AM

 <Number>
 <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
 Type='http://www.w3.org/2001/04/xmlenc#Content'>
 <CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData>
 </EncryptedData>
 </Number>
 <Issuer>Example Bank</Issuer>
 <Expiration>04/02</Expiration>
 </CreditCard>
 </PaymentInfo>

Both CreditCard and Number are in the clear, but the character data content of Number is encrypted.

2.1.4 Encrypting Arbitrary Data and XML Documents

If the application scenario requires all of the information to be encrypted, the whole document is
encrypted as an octet sequence. This applies to arbitrary data including XML documents.

 <?xml version='1.0'?>
 <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
 MimeType='text/xml'>
 <CipherData>
 <CipherValue>A23B45C56</CipherValue>
 </CipherData>
 </EncryptedData>

2.1.5 Super-Encryption: Encrypting EncryptedData

An XML document may contain zero or more EncryptedData elements. EncryptedData cannot be the
parent or child of another EncryptedData element. However, the actual data encrypted can be
anything, including EncryptedData and EncryptedKey elements (i.e., super-encryption). During
super-encryption of an EncryptedData or EncryptedKey element, one must encrypt the entire element.
Encrypting only the content of these elements, or encrypting selected child elements is an invalid
instance under the provided schema.
For example, consider the following:

 <pay:PaymentInfo xmlns:pay='http://example.org/paymentv2'>
 <EncryptedData Id='ED1' xmlns='http://www.w3.org/2001/04/xmlenc#'
 Type='http://www.w3.org/2001/04/xmlenc#Element'>
 <CipherData>
 <CipherValue>originalEncryptedData</CipherValue>
 </CipherData>
 </EncryptedData>
 </pay:PaymentInfo>

A valid super-encryption of "//xenc:EncryptedData[@Id='ED1']" would be:

 <pay:PaymentInfo xmlns:pay='http://example.org/paymentv2'>
 <EncryptedData Id='ED2' xmlns='http://www.w3.org/2001/04/xmlenc#'
 Type='http://www.w3.org/2001/04/xmlenc#Element'>
 <CipherData>
 <CipherValue>newEncryptedData</CipherValue>
 </CipherData>
 </EncryptedData>
 </pay:PaymentInfo>

where the CipherValue content of 'newEncryptedData' is the base64 encoding of the encrypted octet
sequence resulting from encrypting the EncryptedData element with Id='ED1'.

http://www.w3.org/TR/xmlenc-core1/ 8 3/28/2009 11:32 AM

2.2 EncryptedData and EncryptedKey Usage

2.2.1 EncryptedData with Symmetric Key (KeyName)

 [s1] <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
 Type='http://www.w3.org/2001/04/xmlenc#Element'/>
 [s2] <EncryptionMethod
 Algorithm='http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/>
 [s3] <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
 [s4] <ds:KeyName>John Smith</ds:KeyName>
 [s5] </ds:KeyInfo>
 [s6] <CipherData><CipherValue>DEADBEEF</CipherValue></CipherData>
 [s7] </EncryptedData>

[s1] The type of data encrypted may be represented as an attribute value to aid in decryption and
subsequent processing. In this case, the data encrypted was an 'element'. Other alternatives include
'content' of an element, or an external octet sequence which can also be identified via the MimeType
and Encoding attributes.

[s2] This (3DES CBC) is a symmetric key cipher.

[s4] The symmetric key has an associated name "John Smith".

[s6] CipherData contains a CipherValue, which is a base64 encoded octet sequence. Alternately, it
could contain a CipherReference, which is a URI reference along with transforms necessary to obtain
the encrypted data as an octet sequence

2.2.2 EncryptedKey (ReferenceList, ds:RetrievalMethod, CarriedKeyName)

The following EncryptedData structure is very similar to the one above, except this time the key is
referenced using a ds:RetrievalMethod:

 [t01] <EncryptedData Id='ED'
 xmlns='http://www.w3.org/2001/04/xmlenc#'>
 [t02] <EncryptionMethod
 Algorithm='http://www.w3.org/2001/04/xmlenc#aes128-cbc'/>
 [t03] <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
 [t04] <ds:RetrievalMethod URI='#EK'
 Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>
 [t05] <ds:KeyName>Sally Doe</ds:KeyName>
 [t06] </ds:KeyInfo>
 [t07] <CipherData><CipherValue>DEADBEEF</CipherValue></CipherData>
 [t08] </EncryptedData>

[t02] This (AES-128-CBC) is a symmetric key cipher.

[t04] ds:RetrievalMethod is used to indicate the location of a key with type &xenc;EncryptedKey. The
(AES) key is located at '#EK'.

[t05] ds:KeyName provides an alternative method of identifying the key needed to decrypt the
CipherData. Either or both the ds:KeyName and ds:KeyRetrievalMethod could be used to identify the
same key.

Within the same XML document, there existed an EncryptedKey structure that was referenced within
[t04]:

 [t09] <EncryptedKey Id='EK' xmlns='http://www.w3.org/2001/04/xmlenc#'>
 [t10] <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

http://www.w3.org/TR/xmlenc-core1/ 9 3/28/2009 11:32 AM

 [t11] <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'>
 [t12] <ds:KeyName>John Smith</ds:KeyName>
 [t13] </ds:KeyInfo>
 [t14] <CipherData><CipherValue>xyzabc</CipherValue></CipherData>
 [t15] <ReferenceList>
 [t16] <DataReference URI='#ED'/>
 [t17] </ReferenceList>
 [t18] <CarriedKeyName>Sally Doe</CarriedKeyName>
 [t19] </EncryptedKey>

[t09] The EncryptedKey element is similar to the EncryptedData element except that the data
encrypted is always a key value.

[t10] The EncryptionMethod is the RSA public key algorithm.

[t12] ds:KeyName of "John Smith" is a property of the key necessary for decrypting (using RSA) the
CipherData.

[t14] The CipherData's CipherValue is an octet sequence that is processed (serialized, encrypted,
and encoded) by a referring encrypted object's EncryptionMethod. (Note, an EncryptedKey's
EncryptionMethod is the algorithm used to encrypt these octets and does not speak about what type
of octets they are.)

[t15-17] A ReferenceList identifies the encrypted objects (DataReference and KeyReference)
encrypted with this key. The ReferenceList contains a list of references to data encrypted by the
symmetric key carried within this structure.

[t18] The CarriedKeyName element is used to identify the encrypted key value which may be
referenced by the KeyName element in ds:KeyInfo. (Since ID attribute values must be unique to a
document,CarriedKeyName can indicate that several EncryptedKey structures contain the same key
value encrypted for different recipients.)

3 Encryption Syntax
This section provides a detailed description of the syntax and features for XML Encryption. Features
described in this section MUST be implemented unless otherwise noted. The syntax is defined via
[XML-Schema] with the following XML preamble, declaration, internal entity, and import:

 Schema Definition:

 <?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE schema PUBLIC "-//W3C//DTD XMLSchema 200102//EN"
 "http://www.w3.org/2001/XMLSchema.dtd"
 [
 <!ATTLIST schema
 xmlns:xenc CDATA #FIXED 'http://www.w3.org/2001/04/xmlenc#'
 xmlns:ds CDATA #FIXED 'http://www.w3.org/2000/09/xmldsig#'>
 <!ENTITY xenc 'http://www.w3.org/2001/04/xmlenc#'>
 <!ENTITY % p ''>
 <!ENTITY % s ''>
]>

 <schema xmlns='http://www.w3.org/2001/XMLSchema' version='1.0'
 xmlns:ds='http://www.w3.org/2000/09/xmldsig#'
 xmlns:xenc='http://www.w3.org/2001/04/xmlenc#'
 targetNamespace='http://www.w3.org/2001/04/xmlenc#'
 elementFormDefault='qualified'>

 <import namespace='http://www.w3.org/2000/09/xmldsig#'
 schemaLocation='http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-s

3.1 The EncryptedType Element

http://www.w3.org/TR/xmlenc-core1/ 10 3/28/2009 11:32 AM

EncryptedType is the abstract type from which EncryptedData and EncryptedKey are derived. While
these two latter element types are very similar with respect to their content models, a syntactical
distinction is useful to processing. Implementation MUST generate laxly schema valid [XML-schema]
EncryptedData or EncryptedKey as specified by the subsequent schema declarations. (Note the laxly
schema valid generation means that the content permitted by xsd:ANY need not be valid.)
Implementations SHOULD create these XML structures (EncryptedType elements and their
descendants/content) in Normalization Form C [NFC, NFC-Corrigendum].

 Schema Definition:

 <complexType name='EncryptedType' abstract='true'>
 <sequence>
 <element name='EncryptionMethod' type='xenc:EncryptionMethodType'
 minOccurs='0'/>
 <element ref='ds:KeyInfo' minOccurs='0'/>
 <element ref='xenc:CipherData'/>
 <element ref='xenc:EncryptionProperties' minOccurs='0'/>
 </sequence>
 <attribute name='Id' type='ID' use='optional'/>
 <attribute name='Type' type='anyURI' use='optional'/>
 <attribute name='MimeType' type='string' use='optional'/>
 <attribute name='Encoding' type='anyURI' use='optional'/>
 </complexType>

EncryptionMethod is an optional element that describes the encryption algorithm applied to the cipher
data. If the element is absent, the encryption algorithm must be known by the recipient or the
decryption will fail.

ds:KeyInfo is an optional element, defined by [XML-DSIG], that carries information about the key
used to encrypt the data. Subsequent sections of this specification define new elements that may
appear as children of ds:KeyInfo.

CipherData is a mandatory element that contains the CipherValue or CipherReference with the
encrypted data.

EncryptionProperties can contain additional information concerning the generation of the
EncryptedType (e.g., date/time stamp).

Id is an optional attribute providing for the standard method of assigning a string id to the element
within the document context.

Type is an optional attribute identifying type information about the plaintext form of the encrypted
content. While optional, this specification takes advantage of it for mandatory processing described
in Processing Rules: Decryption (section 4.2). If the EncryptedData element contains data of Type
'element' or element 'content', and replaces that data in an XML document context, it is strongly
recommended the Type attribute be provided. Without this information, the decryptor will be unable to
automatically restore the XML document to its original cleartext form.

MimeType is an optional (advisory) attribute which describes the media type of the data which has
been encrypted. The value of this attribute is a string with values defined by [MIME]. For example, if
the data that is encrypted is a base64 encoded PNG, the transfer Encoding may be specified as
'http://www.w3.org/2000/09/xmldsig#base64' and the MimeType as 'image/png'. This attribute is purely
advisory; no validation of the MimeType information is required and it does not indicate the encryption
application must do any additional processing. Note, this information may not be necessary if it is
already bound to the identifier in the Type attribute. For example, the Element and Content types
defined in this specification are always UTF-8 encoded text.

3.2 The EncryptionMethod Element

http://www.w3.org/TR/xmlenc-core1/ 11 3/28/2009 11:32 AM

EncryptionMethod is an optional element that describes the encryption algorithm applied to the
cipher data. If the element is absent, the encryption algorithm must be known by the recipient or the
decryption will fail.

 Schema Definition:

 <complexType name='EncryptionMethodType' mixed='true'>
 <sequence>
 <element name='KeySize' minOccurs='0' type='xenc:KeySizeType'/>
 <element name='OAEPparams' minOccurs='0' type='base64Binary'/>
 <any namespace='##other' minOccurs='0' maxOccurs='unbounded'/>
 </sequence>
 <attribute name='Algorithm' type='anyURI' use='required'/>
 </complexType>

The permitted child elements of the EncryptionMethod are determined by the specific value of the
Algorithm attribute URI, and the KeySize child element is always permitted. For example, the
RSA-OAEP algorithm (section 5.4.2) uses the ds:DigestMethod and OAEPparams elements. (We rely
upon the ANY schema construct because it is not possible to specify element content based on the
value of an attribute.)

The presence of any child element under EncryptionMethod which is not permitted by the algorithm
or the presence of a KeySize child inconsistent with the algorithm MUST be treated as an error. (All
algorithm URIs specified in this document imply a key size but this is not true in general. Most
popular stream cipher algorithms take variable size keys.)

3.3 The CipherData Element

The CipherData is a mandatory element that provides the encrypted data. It must either contain the
encrypted octet sequence as base64 encoded text of the CipherValue element, or provide a
reference to an external location containing the encrypted octet sequence via the CipherReference
element.

 Schema Definition:

 <element name='CipherData' type='xenc:CipherDataType'/>
 <complexType name='CipherDataType'>
 <choice>
 <element name='CipherValue' type='base64Binary'/>
 <element ref='xenc:CipherReference'/>
 </choice>
 </complexType>

3.3.1 The CipherReference Element

If CipherValue is not supplied directly, the CipherReference identifies a source which, when
processed, yields the encrypted octet sequence.

The actual value is obtained as follows. The CipherReference URI contains an identifier that is
dereferenced. Should the CipherReference element contain an OPTIONAL sequence of Transforms,
the data resulting from dereferencing the URI is transformed as specified so as to yield the intended
cipher value. For example, if the value is base64 encoded within an XML document; the transforms
could specify an XPath expression followed by a base64 decoding so as to extract the octets.

The syntax of the URI and Transforms is similar to that of [XML-DSIG]. However, there is a difference
between signature and encryption processing. In [XML-DSIG] both generation and validation
processing start with the same source data and perform that transform in the same order. In
encryption, the decryptor has only the cipher data and the specified transforms are enumerated for

http://www.w3.org/TR/xmlenc-core1/ 12 3/28/2009 11:32 AM

the decryptor, in the order necessary to obtain the octets. Consequently, because it has different
semantics Transforms is in the &xenc; namespace.

For example, if the relevant cipher value is captured within a CipherValue element within a different
XML document, the CipherReference might look as follows:

 <CipherReference URI="http://www.example.com/CipherValues.xml">
 <Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <ds:XPath xmlns:rep="http://www.example.org/repository">
 self::text()[parent::rep:CipherValue[@Id="example1"]]
 </ds:XPath>
 </ds:Transform>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
 </Transforms>
 </CipherReference>

Implementations MUST support the CipherReference feature and the same URI encoding,
dereferencing, scheme, and HTTP response codes as that of [XML-DSIG]. The Transform feature
and particular transform algorithms are OPTIONAL.

 Schema Definition:

 <element name='CipherReference' type='xenc:CipherReferenceType'/>
 <complexType name='CipherReferenceType'>
 <sequence>
 <element name='Transforms' type='xenc:TransformsType' minOccurs='0'/>
 </sequence>
 <attribute name='URI' type='anyURI' use='required'/>
 </complexType>

 <complexType name='TransformsType'>
 <sequence>
 <element ref='ds:Transform' maxOccurs='unbounded'/>
 </sequence>
 </complexType>

3.4 The EncryptedData Element

The EncryptedData element is the core element in the syntax. Not only does its CipherData child
contain the encrypted data, but it's also the element that replaces the encrypted element, or serves
as the new document root.

 Schema Definition:

 <element name='EncryptedData' type='xenc:EncryptedDataType'/>
 <complexType name='EncryptedDataType'>
 <complexContent>
 <extension base='xenc:EncryptedType'>
 </extension>
 </complexContent>
 </complexType>

3.5 Extensions to ds:KeyInfo Element

There are three ways that the keying material needed to decrypt CipherData can be provided:

The EncryptedData or EncryptedKey element specify the associated keying material via a child
of ds:KeyInfo. All of the child elements of ds:KeyInfo specified in [XML-DSIG] MAY be used as
qualified:

Support for ds:KeyValue is OPTIONAL and may be used to transport public keys, such as1.

1.

http://www.w3.org/TR/xmlenc-core1/ 13 3/28/2009 11:32 AM

Diffie-Hellman Key Values (section 5.5.1). (Including the plaintext decryption key, whether
a private key or a secret key, is obviously NOT RECOMMENDED.)
Support of ds:KeyName to refer to an EncryptedKey CarriedKeyName is RECOMMENDED.2.
Support for same document ds:RetrievalMethod is REQUIRED.3.

In addition, we provide two additional child elements: applications MUST support EncryptedKey
(section 3.5.1) and MAY support AgreementMethod (section 5.5).

A detached (not inside ds:KeyInfo) EncryptedKey element can specify the EncryptedData or
EncryptedKey to which its decrypted key will apply via a DataReference or KeyReference (section
3.6).

2.

The keying material can be determined by the recipient by application context and thus need
not be explicitly mentioned in the transmitted XML.

3.

3.5.1 The EncryptedKey Element

Identifer
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"

(This can be used within a ds:RetrievalMethod element to identify the referent's type.)

The EncryptedKey element is used to transport encryption keys from the originator to a known
recipient(s). It may be used as a stand-alone XML document, be placed within an application
document, or appear inside an EncryptedData element as a child of a ds:KeyInfo element. The key
value is always encrypted to the recipient(s). When EncryptedKey is decrypted the resulting octets
are made available to the EncryptionMethod algorithm without any additional processing.

 Schema Definition:

 <element name='EncryptedKey' type='xenc:EncryptedKeyType'/>
 <complexType name='EncryptedKeyType'>
 <complexContent>
 <extension base='xenc:EncryptedType'>
 <sequence>
 <element ref='xenc:ReferenceList' minOccurs='0'/>
 <element name='CarriedKeyName' type='string' minOccurs='0'/>
 </sequence>
 <attribute name='Recipient' type='string' use='optional'/>
 </extension>
 </complexContent>
 </complexType>

ReferenceList is an optional element containing pointers to data and keys encrypted using this key.
The reference list may contain multiple references to EncryptedKey and EncryptedData elements.
This is done using KeyReference and DataReference elements respectively. These are defined below.

CarriedKeyName is an optional element for associating a user readable name with the key value. This
may then be used to reference the key using the ds:KeyName element within ds:KeyInfo. The same
CarriedKeyName label, unlike an ID type, may occur multiple times within a single document. The
value of the key is to be the same in all EncryptedKey elements identified with the same
CarriedKeyName label within a single XML document. Note that because whitespace is significant in
the value of the ds:KeyName element, whitespace is also significant in the value of the CarriedKeyName
element.

Recipient is an optional attribute that contains a hint as to which recipient this encrypted key value is
intended for. Its contents are application dependent.

The Type attribute inherited from EncryptedType can be used to further specify the type of the
encrypted key if the EncryptionMethod Algorithm does not define a unambiguous
encoding/representation. (Note, all the algorithms in this specification have an unambiguous

http://www.w3.org/TR/xmlenc-core1/ 14 3/28/2009 11:32 AM

representation for their associated key structures.)

3.5.2 The ds:RetrievalMethod Element

The ds:RetrievalMethod [XML-DSIG]with a Type of 'http://www.w3.org/2001/04/xmlenc#EncryptedKey'
provides a way to express a link to an EncryptedKey element containing the key needed to decrypt
the CipherData associated with an EncryptedData or EncryptedKey element. The ds:RetrievalMethod
with this type is always a child of the ds:KeyInfo element and may appear multiple times. If there is
more than one instance of a ds:RetrievalMethod in a ds:KeyInfo of this type, then the EncryptedKey
objects referred to must contain the same key value, possibly encrypted in different ways or for
different recipients.

 Schema Definition:

 <!--
 <attribute name='Type' type='anyURI' use='optional'
 fixed='http://www.w3.org/2001/04/xmlenc#EncryptedKey' />
 -->

3.6 The ReferenceList Element

ReferenceList is an element that contains pointers from a key value of an EncryptedKey to items
encrypted by that key value (EncryptedData or EncryptedKey elements).

 Schema Definition:

 <element name='ReferenceList'>
 <complexType>
 <choice minOccurs='1' maxOccurs='unbounded'>
 <element name='DataReference' type='xenc:ReferenceType'/>
 <element name='KeyReference' type='xenc:ReferenceType'/>
 </choice>
 </complexType>
 </element>

 <complexType name='ReferenceType'>
 <sequence>
 <any namespace='##other' minOccurs='0' maxOccurs='unbounded'/>
 </sequence>
 <attribute name='URI' type='anyURI' use='required'/>
 </complexType>

DataReference elements are used to refer to EncryptedData elements that were encrypted using the
key defined in the enclosing EncryptedKey element. Multiple DataReference elements can occur if
multiple EncryptedData elements exist that are encrypted by the same key.

KeyReference elements are used to refer to EncryptedKey elements that were encrypted using the
key defined in the enclosing EncryptedKey element. Multiple KeyReference elements can occur if
multiple EncryptedKey elements exist that are encrypted by the same key.

For both types of references one may optionally specify child elements to aid the recipient in
retrieving the EncryptedKey and/or EncryptedData elements. These could include information such as
XPath transforms, decompression transforms, or information on how to retrieve the elements from a
document storage facility. For example:

 <ReferenceList>
 <DataReference URI="#invoice34">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
 <ds:XPath xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 self::xenc:EncryptedData[@Id="example1"]

http://www.w3.org/TR/xmlenc-core1/ 15 3/28/2009 11:32 AM

 </ds:XPath>
 </ds:Transform>
 </ds:Transforms>
 </DataReference>
 </ReferenceList>

3.7 The EncryptionProperties Element

Identifier
Type="http://www.w3.org/2001/04/xmlenc#EncryptionProperties"

(This can be used within a ds:Reference element to identify the referent's type.)

Additional information items concerning the generation of the EncryptedData or EncryptedKey can be
placed in an EncryptionProperty element (e.g., date/time stamp or the serial number of
cryptographic hardware used during encryption). The Target attribute identifies the EncryptedType
structure being described. anyAttribute permits the inclusion of attributes from the XML namespace
to be included (i.e., xml:space, xml:lang, and xml:base).

 Schema Definition:

 <element name='EncryptionProperties' type='xenc:EncryptionPropertiesType'/>
 <complexType name='EncryptionPropertiesType'>
 <sequence>
 <element ref='xenc:EncryptionProperty' maxOccurs='unbounded'/>
 </sequence>
 <attribute name='Id' type='ID' use='optional'/>
 </complexType>

 <element name='EncryptionProperty' type='xenc:EncryptionPropertyType'/>
 <complexType name='EncryptionPropertyType' mixed='true'>
 <choice maxOccurs='unbounded'>
 <any namespace='##other' processContents='lax'/>
 </choice>
 <attribute name='Target' type='anyURI' use='optional'/>
 <attribute name='Id' type='ID' use='optional'/>
 <anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/>
 </complexType>

4 Processing Rules

This section describes the operations to be performed as part of encryption and decryption
processing by implementations of this specification. The conformance requirements are specified
over the following roles:

Application
The application which makes request of an XML Encryption implementation via the provision of
data and parameters necessary for its processing.

Encryptor
An XML Encryption implementation with the role of encrypting data.

Decryptor
An XML Encryption implementation with the role of decrypting data.

4.1 Encryption

For each data item to be encrypted as an EncryptedData or EncryptedKey (elements derived from
EncryptedType), the encryptor must:

Select the algorithm (and parameters) to be used in encrypting this data.1.
Obtain and (optionally) represent the key.2.

http://www.w3.org/TR/xmlenc-core1/ 16 3/28/2009 11:32 AM

If the key is to be identified (via naming, URI, or included in a child element), construct
the ds:KeyInfo as appropriate (e.g., ds:KeyName, ds:KeyValue, ds:RetrievalMethod, etc.)

1.

If the key itself is to be encrypted, construct an EncryptedKey element by recursively
applying this encryption process. The result may then be a child of ds:KeyInfo, or it may
exist elsewhere and may be identified in the preceding step.

2.

 Encrypt the data
If the data is an 'element' [XML, section 3] or element 'content' [XML, section 3.1], obtain
the octets by serializing the data in UTF-8 as specified in [XML]. (The application MUST
provide XML data in [NFC].) Serialization MAY be done by the encryptor. If the
encryptor does not serialize, then the application MUST perform the serialization.

1.

If the data is of any other type that is not already octets, the application MUST serialize it
as octets.

2.

Encrypt the octets using the algorithm and key from steps 1 and 2.3.
Unless the decryptor will implicitly know the type of the encrypted data, the encryptor
SHOULD provide the type for representation.

The definition of this type as bound to an identifier specifies how to obtain and interpret
the plaintext octets after decryption. For example, the identifier could indicate that the
data is an instance of another application (e.g., some XML compression application) that
must be further processed. Or, if the data is a simple octet sequence it MAY be described
with the MimeType and Encoding attributes. For example, the data might be an XML
document (MimeType="text/xml"), sequence of characters (MimeType="text/plain"), or
binary image data (MimeType="image/png").

4.

3.

Build the EncryptedType (EncryptedData or EncryptedKey) structure:

An EncryptedType structure represents all of the information previously discussed including the
type of the encrypted data, encryption algorithm, parameters, key, type of the encrypted data,
etc.

If the encrypted octet sequence obtained in step 3 is to be stored in the CipherData
element within the EncryptedType, then the encrypted octet sequence is base64 encoded
and inserted as the content of a CipherValue element.

1.

If the encrypted octet sequence is to be stored externally to the EncryptedType structure,
then store or return the encrypted octet sequence, and represent the URI and transforms
(if any) required for the decryptor to retrieve the encrypted octet sequence within a
CipherReference element.

2.

4.

Process EncryptedData
If the Type of the encrypted data is 'element' or element 'content', then the encryptor
MUST be able to return the EncryptedData element to the application. The application
MAY use this as the top-level element in a new XML document or insert it into another
XML document, which may require a re-encoding.

The encryptor SHOULD be able to replace the unencrypted 'element' or 'content' with
the EncryptedData element. When an application requires an XML element or content to
be replaced, it supplies the XML document context in addition to identifying the element
or content to be replaced. The encryptor removes the identified element or content and
inserts the EncryptedData element in its place.

(Note: If the Type is "content" the document resulting from decryption will not be
well-formed if (a) the original plaintext was not well-formed (e.g., PCDATA by itself is not
well-formed) and (b) the EncryptedData element was previously the root element of the
document)

1.

If the Type of the encrypted data is not 'element' or element 'content', then the encryptor
MUST always return the EncryptedData element to the application. The application
MAY use this as the top-level element in a new XML document or insert it into another

2.

5.

http://www.w3.org/TR/xmlenc-core1/ 17 3/28/2009 11:32 AM

XML document, which may require a re-encoding.

4.2 Decryption

For each EncryptedType derived element, (i.e., EncryptedData or EncryptedKey), to be decrypted, the
decryptor must:

Process the element to determine the algorithm, parameters and ds:KeyInfo element to be
used. If some information is omitted, the application MUST supply it.

1.

Locate the data encryption key according to the ds:KeyInfo element, which may contain one or
more children elements. These children have no implied processing order. If the data
encryption key is encrypted, locate the corresponding key to decrypt it. (This may be a
recursive step as the key-encryption key may itself be encrypted.) Or, one might retrieve the
data encryption key from a local store using the provided attributes or implicit binding.

2.

Decrypt the data contained in the CipherData element.
If a CipherValue child element is present, then the associated text value is retrieved and
base64 decoded so as to obtain the encrypted octet sequence.

1.

If a CipherReference child element is present, the URI and transforms (if any) are used to
retrieve the encrypted octet sequence.

2.

The encrypted octet sequence is decrypted using the algorithm/parameters and key
value already determined from steps 1 and 2.

3.

3.

Process decrypted data of Type 'element' or element 'content'.
The cleartext octet sequence obtained in step 3 is interpreted as UTF-8 encoded
character data.

1.

The decryptor MUST be able to return the value of Type and the UTF-8 encoded XML
character data. The decryptor is NOT REQUIRED to perform validation on the serialized
XML.

2.

The decryptor SHOULD support the ability to replace the EncryptedData element with
the decrypted 'element' or element 'content' represented by the UTF-8 encoded
characters. The decryptor is NOT REQUIRED to perform validation on the result of this
replacement operation.

The application supplies the XML document context and identifies the EncryptedData
element being replaced. If the document into which the replacement is occurring is not
UTF-8, the decryptor MUST transcode the UTF-8 encoded characters into the target
encoding.

3.

4.

Process decrypted data if Type is unspecified or is not 'element' or element 'content'.
The cleartext octet sequence obtained in Step 3 MUST be returned to the application for
further processing along with the Type, MimeType, and Encoding attribute values when
specified. MimeType and Encoding are advisory. The Type value is normative as it may
contain information necessary for the processing or interpretation of the data by the
application.

1.

Note, this step includes processing data decrypted from an EncryptedKey. The cleartext
octet sequence represents a key value and is used by the application in decrypting other
EncryptedType element(s).

2.

5.

4.3 XML Encryption

Encryption and decryption operations are transforms on octets. The application is responsible for
the marshalling XML such that it can be serialized into an octet sequence, encrypted, decrypted, and
be of use to the recipient.

For example, if the application wishes to canonicalize its data or encode/compress the data in an
XML packaging format, the application needs to marshal the XML accordingly and identify the
resulting type via the EncryptedData Type attribute. The likelihood of successful decryption and

http://www.w3.org/TR/xmlenc-core1/ 18 3/28/2009 11:32 AM

subsequent processing will be dependent on the recipient's support for the given type. Also, if the
data is intended to be processed both before encryption and after decryption (e.g., XML Signature
[XML-DSIG] validation or an XSLT transform) the encrypting application must be careful to preserve
information necessary for that process's success.

For interoperability purposes, the following types MUST be implemented such that an
implementation will be able to take as input and yield as output data matching the production rules
39 and 43 from [XML]:

element 'http://www.w3.org/2001/04/xmlenc#Element '
"[39] element ::= EmptyElemTag | STag content ETag"

content 'http://www.w3.org/2001/04/xmlenc#Content '
"[43] content ::= CharData? ((element | Reference | CDSect | PI | Comment) CharData?)*"

The following sections contain specifications for decrypting, replacing, and serializing XML content
(i.e., Type 'element' or element 'content') using the [XPath] data model. These sections are
non-normative and OPTIONAL to implementers of this specification, but they may be normatively
referenced by and MANDATORY to other specifications that require a consistent processing for
applications, such as [XML-DSIG-Decrypt].

4.3.1 A Decrypt Implementation (Non-normative)

Where P is the context in which the serialized XML should be parsed (a document node or element
node) and O is the octet sequence representing UTF-8 encoded characters resulting from step 4.3 in
the Decryption Processing (section 4.2). Y is node-set representing the decrypted content obtained
by the following steps:

Let C be the parsing context of a child of P, which consists of the following items:
Prefix and namespace name of each namespace that is in scope for P.
Name and value of each general entity that is effective for the XML document causing P.

1.

Wrap the decrypted octet stream O in the context C as specified in Text Wrapping.2.
Parse the wrapped octet stream as described in The Reference Processing Model (section
4.3.3.2) of [XML-Signature], resulting in a node-set.

3.

Y is the node-set obtained by removing the root node, the wrapping element node, and its
associated set of attribute and namespace nodes from the node-set obtained in Step 3.

4.

4.3.2 A Decrypt and Replace Implementation (Non-normative)

Where X is the [XPath] node set corresponding to an XML document and e is an EncryptedData
element node in X.

Z is an [XPath] node-set that identical to X except where the element node e is an
EncryptedData element type. In which case:

Decrypt e in the context of its parent node as specified in the Decryption Implementation
(section 4.3.1) yielding Y, an [XPath] node set.

1.

Include Y in place of e and its descendants in X. Since [XPath] does not define methods
of replacing node-sets from different documents, the result MUST be equivalent to
replacing e with the octet stream resulting from its decryption in the serialized form of X
and reparsing the document. However, the actual method of performing this operation is
left to the implementor.

2.

1.

4.3.3 Serializing XML (Non-normative)

Default Namespace Considerations

http://www.w3.org/TR/xmlenc-core1/ 19 3/28/2009 11:32 AM

In Encrypting XML (section 4.1, step 3.1), when serializing an XML fragment special care SHOULD
be taken with respect to default namespaces. If the data will be subsequently decrypted in the
context of a parent XML document then serialization can produce elements in the wrong
namespace. Consider the following fragment of XML:

 <Document xmlns="http://example.org/">
 <ToBeEncrypted xmlns="" />
 </Document>

Serialization of the element ToBeEncrypted fragment via [XML-C14N] would result in the characters
"<ToBeEncrypted></ToBeEncrypted>" as an octet stream. The resulting encrypted document would be:

 <Document xmlns="http://example.org/">
 <EncryptedData xmlns="...">
 <!-- Containing the encrypted
 "<ToBeEncrypted></ToBeEncrypted>" -->
 </EncryptedData>
 </Document>

Decrypting and replacing the EncryptedData within this document would produce the following
incorrect result:

 <Document xmlns="http://example.org/">
 <ToBeEncrypted/>
 </Document>

This problem arises because most XML serializations assume that the serialized data will be parsed
directly in a context where there is no default namespace declaration. Consequently, they do not
redundantly declare the empty default namespace with an xmlns="". If, however, the serialized data
is parsed in a context where a default namespace declaration is in scope (e.g., the parsing context of
a A Decrypt Implementation (section 4.3.1)), then it may affect the interpretation of the serialized
data.

To solve this problem, a canonicalization algorithm MAY be augmented as follows for use as an XML
encryption serializer:

A default namespace declaration with an empty value (i.e., xmlns="") SHOULD be emitted
where it would normally be suppressed by the canonicalization algorithm.

While the result may not be in proper canonical form, this is harmless as the resulting octet stream
will not be used directly in a [XML-Signature] signature value computation. Returning to the
preceding example with our new augmentation, the ToBeEncrypted element would be serialized as
follows:

<ToBeEncrypted xmlns=""></ToBeEncrypted>

When processed in the context of the parent document, this serialized fragment will be parsed and
interpreted correctly.

This augmentation can be retroactively applied to an existing canonicalization implementation by
canonicalizing each apex node and its descendants from the node set, inserting xmlns="" at the
appropriate points, and concatenating the resulting octet streams.

XML Attribute Considerations

Similar attention between the relationship of a fragment and the context into which it is being
inserted should be given to the xml:base, xml:lang, and xml:space attributes as mentioned in the

http://www.w3.org/TR/xmlenc-core1/ 20 3/28/2009 11:32 AM

Security Considerations of [XML-exc-C14N]. For example, if the element:

 <Bongo href="example.xml"/>

is taken from a context and serialized with no xml:base [XML-Base] attribute and parsed in the
context of the element:

 <Baz xml:base="http://example.org/"/>

the result will be:

 <Baz xml:base="http://example.org/"><Bongo href="example.xml"/></Baz>

Bongo's href is subsequently interpreted as "http://example.org/example.xml". If this is not the
correct URI, Bongo should have been serialized with its own xml:base attribute.

Unfortunately, the recommendation that an empty value be emitted to divorce the default namespace
of the fragment from the context into which it is being inserted can not be made for the attributes
xml:base, and xml:space. (Error 41 of the XML 1.0 Second Edition Specification Errata clarifies that
an empty string value of the attribute xml:lang is considered as if, "there is no language information
available, just as if xml:lang had not been specified".)The interpretation of an empty value for the
xml:base or xml:space attributes is undefined or maintains the contextual value. Consequently,
applications SHOULD ensure (1) fragments that are to be encrypted are not dependent on XML
attributes, or (2) if they are dependent and the resulting document is intended to be valid [XML], the
fragment's definition permits the presence of the attributes and that the attributes have non-empty
values.

4.3.4 Text Wrapping (Non-normative)

This section specifies the process for wrapping text in a given parsing context. The process is based
on the proposal by Richard Tobin [Tobin] for constructing the infoset [XML-Infoset] of an external
entity.

The process consists of the following steps:

If the parsing context contains any general entities, then emit a document type declaration that
provides entity declarations.

1.

Emit a dummy element start-tag with namespace declaration attributes declaring all the
namespaces in the parsing context.

2.

Emit the text.3.
Emit a dummy element end-tag.4.

In the above steps, the document type declaration and dummy element tags MUST be encoded in
UTF-8.

Consider the following document containing an EncryptedData element:

<!DOCTYPE Document [
 <!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">
]>
<Document xmlns="http://example.org/">
 <foo:Body xmlns:foo="http://example.org/foo">
 <EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 ...
 </EncryptedData>
 </foo:Body>
</Document>

http://www.w3.org/TR/xmlenc-core1/ 21 3/28/2009 11:32 AM

If the EncryptedData element is fed is decrypted to the text "<One><foo:Two/></One>", then the
wrapped form is as follows:

<!DOCTYPE dummy [
 <!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">
]>
<dummy xmlns="http://example.org/"
 xmlns:foo="http://example.org/foo"><One><foo:Two/></One></dummy>

5. Algorithms

This section discusses algorithms used with the XML Encryption specification. Entries contain the
identifier to be used as the value of the Algorithm attribute of the EncryptionMethod element or other
element representing the role of the algorithm, a reference to the formal specification, definitions for
the representation of keys and the results of cryptographic operations where applicable, and general
applicability comments.

5.1 Algorithm Identifiers and Implementation Requirements

All algorithms listed below have implicit parameters depending on their role. For example, the data to
be encrypted or decrypted, keying material, and direction of operation (encrypting or decrypting) for
encryption algorithms. Any explicit additional parameters to an algorithm appear as content elements
within the element. Such parameter child elements have descriptive element names, which are
frequently algorithm specific, and SHOULD be in the same namespace as this XML Encryption
specification, the XML Signature specification, or in an algorithm specific namespace. An example of
such an explicit parameter could be a nonce (unique quantity) provided to a key agreement
algorithm.

This specification defines a set of algorithms, their URIs, and requirements for implementation.
Levels of requirement specified, such as "REQUIRED" or "OPTIONAL", refer to implementation, not
use. Furthermore, the mechanism is extensible, and alternative algorithms may be used.

There is currently no consensus on mandatory to implement algorithms; the current
draft text represents one possible outcome. Positions of some Working Group members
against the currently expressed set of mandatory to implement algorithms include:

Given limited support in parts of the industry, Elliptic Curve Diffie-Hellman Key
Agreement is not acceptable as a mandatory to implement algorithm, and might
lead to lack of implementation of this version of the specification.
There should be recommended algorithms, but no mandatory to implement
algorithms. The rationale is that this gives greater flexibility to deployments. (Other
WG members argued against this since it could harm interoperability not having
mandatory algorithms.)

The opposing position is that, going forward, this specification needs to have credible
algorithm agility for both hash and public-key algorithms: Should one set of algorithms
prove weak, this would enable a quick switch-over. Therefore, there should be two
mandatory to implement public-key algorithms from different families. At this time,
elliptic curve based algorithms are the only credible contenders. They have the
additional benefit of providing a reasonable balance between key sizes and security
level.

Table of Algorithms

The table below lists the categories of algorithms. Within each category, a brief name, the level of
implementation requirement, and an identifying URI are given for each algorithm.

http://www.w3.org/TR/xmlenc-core1/ 22 3/28/2009 11:32 AM

Block Encryption
REQUIRED TRIPLEDES
http://www.w3.org/2001/04/xmlenc#tripledes-cbc

1.

REQUIRED AES-128
http://www.w3.org/2001/04/xmlenc#aes128-cbc

2.

REQUIRED AES-256
http://www.w3.org/2001/04/xmlenc#aes256-cbc

3.

OPTIONAL AES-192
http://www.w3.org/2001/04/xmlenc#aes192-cbc

4.

Stream Encryption
none
Syntax and recommendations are given below to support user specified algorithms.

1.

Key Transport
REQUIRED RSA-v1.5
http://www.w3.org/2001/04/xmlenc#rsa-1_5

1.

REQUIRED RSA-OAEP
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

2.

Key Agreement
OPTIONAL Diffie-Hellman
http://www.w3.org/2001/04/xmlenc#dh

1.

REQUIRED Elliptic Curve Diffie-Hellman (Ephemeral-Static mode)
http://www.w3.org/2009/xmlenc11#ECDH-ES

2.

Symmetric Key Wrap
REQUIRED TRIPLEDES KeyWrap
http://www.w3.org/2001/04/xmlenc#kw-tripledes

1.

REQUIRED AES-128 KeyWrap
http://www.w3.org/2001/04/xmlenc#kw-aes128

2.

REQUIRED AES-256 KeyWrap
http://www.w3.org/2001/04/xmlenc#kw-aes256

3.

OPTIONAL AES-192 KeyWrap
http://www.w3.org/2001/04/xmlenc#kw-aes192

4.

Message Digest
REQUIRED SHA1
http://www.w3.org/2000/09/xmldsig#sha1

1.

RECOMMENDED SHA256
http://www.w3.org/2001/04/xmlenc#sha256

2.

OPTIONAL SHA512
http://www.w3.org/2001/04/xmlenc#sha512

3.

OPTIONAL RIPEMD-160
http://www.w3.org/2001/04/xmlenc#ripemd160

4.

Message Authentication
RECOMMENDED XML Digital Signature
http://www.w3.org/2000/09/xmldsig#

1.

Canonicalization
OPTIONAL Canonical XML (omits comments)
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

1.

OPTIONAL Canonical XML with Comments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

2.

OPTIONAL Exclusive XML Canonicalization (omits comments)
http://www.w3.org/2001/10/xml-exc-c14n#

3.

OPTIONAL Exclusive XML Canonicalization with Comments
http://www.w3.org/2001/10/xml-exc-c14n#WithComments

4.

Encoding
REQUIRED base64
http://www.w3.org/2000/09/xmldsig#base64

1.

http://www.w3.org/TR/xmlenc-core1/ 23 3/28/2009 11:32 AM

5.2 Block Encryption Algorithms

Block encryption algorithms are designed for encrypting and decrypting data in fixed size, multiple
octet blocks. Their identifiers appear as the value of the Algorithm attributes of EncryptionMethod
elements that are children of EncryptedData.

Block encryption algorithms take, as implicit arguments, the data to be encrypted or decrypted, the
keying material, and their direction of operation. For all of these algorithms specified below, an
initialization vector (IV) is required that is encoded with the cipher text. For user specified block
encryption algorithms, the IV, if any, could be specified as being with the cipher data, as an algorithm
content element, or elsewhere.

The IV is encoded with and before the cipher text for the algorithms below for ease of availability to
the decryption code and to emphasize its association with the cipher text. Good cryptographic
practice requires that a different IV be used for every encryption.

Padding

Since the data being encrypted is an arbitrary number of octets, it may not be a multiple of the block
size. This is solved by padding the plain text up to the block size before encryption and unpadding
after decryption. The padding algorithm is to calculate the smallest non-zero number of octets, say N,
that must be suffixed to the plain text to bring it up to a multiple of the block size. We will assume the
block size is B octets so N is in the range of 1 to B. Pad by suffixing the plain text with N-1 arbitrary
pad bytes and a final byte whose value is N. On decryption, just take the last byte and, after sanity
checking it, strip that many bytes from the end of the decrypted cipher text.

For example, assume an 8 byte block size and plain text of 0x616263. The padded plain text would
then be 0x616263????????05 where the "??" bytes can be any value. Similarly, plain text of
0x2122232425262728 would be padded to 0x2122232425262728??????????????08.

5.2.1 Triple DES

Identifier:
http://www.w3.org/2001/04/xmlenc#tripledes-cbc (REQUIRED)

ANSI X9.52 [TRIPLEDES] specifies three sequential FIPS 46-3 [DES] operations. The XML
Encryption TRIPLEDES consists of a DES encrypt, a DES decrypt, and a DES encrypt used in the
Cipher Block Chaining (CBC) mode with 192 bits of key and a 64 bit Initialization Vector (IV). Of the
key bits, the first 64 are used in the first DES operation, the second 64 bits in the middle DES
operation, and the third 64 bits in the last DES operation.

Note: Each of these 64 bits of key contain 56 effective bits and 8 parity bits. Thus there are only 168
operational bits out of the 192 being transported for a TRIPLEDES key. (Depending on the criterion
used for analysis, the effective strength of the key may be thought to be 112 bits (due to meet in the
middle attacks) or even less.)

The resulting cipher text is prefixed by the IV. If included in XML output, it is then base64 encoded.
An example TRIPLEDES EncryptionMethod is as follows:

 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

5.2.2 AES

http://www.w3.org/TR/xmlenc-core1/ 24 3/28/2009 11:32 AM

Identifier:
http://www.w3.org/2001/04/xmlenc#aes128-cbc (REQUIRED)
http://www.w3.org/2001/04/xmlenc#aes192-cbc (OPTIONAL)
http://www.w3.org/2001/04/xmlenc#aes256-cbc (REQUIRED)

[AES] is used in the Cipher Block Chaining (CBC) mode with a 128 bit initialization vector (IV). The
resulting cipher text is prefixed by the IV. If included in XML output, it is then base64 encoded. An
example AES EncryptionMethod is as follows:

 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

5.3 Stream Encryption Algorithms

Simple stream encryption algorithms generate, based on the key, a stream of bytes which are
XORed with the plain text data bytes to produce the cipher text on encryption and with the cipher text
bytes to produce plain text on decryption. They are normally used for the encryption of data and are
specified by the value of the Algorithm attribute of the EncryptionMethod child of an EncryptedData
element.

NOTE: It is critical that each simple stream encryption key (or key and initialization vector (IV) if an IV
is also used) be used once only. If the same key (or key and IV) is ever used on two messages then,
by XORing the two cipher texts, you can obtain the XOR of the two plain texts. This is usually very
compromising.

No specific stream encryption algorithms are specified herein but this section is included to provide
general guidelines.

Stream algorithms typically use the optional KeySize explicit parameter. In cases where the key size
is not apparent from the algorithm URI or key source, as in the use of key agreement methods, this
parameter sets the key size. If the size of the key to be used is apparent and disagrees with the
KeySize parameter, an error MUST be returned. Implementation of any stream algorithms is optional.
The schema for the KeySize parameter is as follows:

 Schema Definition:

 <simpleType name='KeySizeType'>
 <restriction base="integer"/>
 </simpleType>

5.4 Key Transport

Key Transport algorithms are public key encryption algorithms especially specified for encrypting and
decrypting keys. Their identifiers appear as Algorithm attributes to EncryptionMethod elements that
are children of EncryptedKey. EncryptedKey is in turn the child of a ds:KeyInfo element. The type of
key being transported, that is to say the algorithm in which it is planned to use the transported key, is
given by the Algorithm attribute of the EncryptionMethod child of the EncryptedData or EncryptedKey
parent of this ds:KeyInfo element.

(Key Transport algorithms may optionally be used to encrypt data in which case they appear directly
as the Algorithm attribute of an EncryptionMethod child of an EncryptedData element. Because they
use public key algorithms directly, Key Transport algorithms are not efficient for the transport of any
amounts of data significantly larger than symmetric keys.)

The RSA v1.5 Key Transport algorithm given below are those used in conjunction with TRIPLEDES
and the Cryptographic Message Syntax (CMS) of S/MIME [CMS-Algorithms]. The RSA v2 Key

http://www.w3.org/TR/xmlenc-core1/ 25 3/28/2009 11:32 AM

Transport algorithm given below is that used in conjunction with AES and CMS [AES-WRAP].

5.4.1 RSA Version 1.5

Identifier:
http://www.w3.org/2001/04/xmlenc#rsa-1_5 (REQUIRED)

The RSAES-PKCS1-v1_5 algorithm, specified in RFC 2437 [PKCS1], takes no explicit parameters.
An example of an RSA Version 1.5 EncryptionMethod element is:

 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

The CipherValue for such an encrypted key is the base64 [MIME] encoding of the octet string
computed as per RFC 2437 [PKCS1, section 7.2.1: Encryption operation]. As specified in the
EME-PKCS1-v1_5 function RFC 2437 [PKCS1, section 9.1.2.1], the value input to the key transport
function is as follows:

 CRYPT (PAD (KEY))

where the padding is of the following special form:

 02 | PS* | 00 | key

where "|" is concatenation, "02" and "00" are fixed octets of the corresponding hexadecimal value,
PS is a string of strong pseudo-random octets [RANDOM] at least eight octets long, containing no
zero octets, and long enough that the value of the quantity being CRYPTed is one octet shorter than
the RSA modulus, and "key" is the key being transported. The key is 192 bits for TRIPLEDES and
128, 192, or 256 bits for AES. Support of this key transport algorithm for transporting 192 bit keys is
MANDATORY to implement. Support of this algorithm for transporting other keys is OPTIONAL.
RSA-OAEP is RECOMMENDED for the transport of AES keys.

The resulting base64 [MIME] string is the value of the child text node of the CipherData element, e.g.

 <CipherData>
 <CipherValue>IWijxQjUrcXBYoCei4QxjWo9Kg8D3p9tlWoT4
 t0/gyTE96639In0FZFY2/rvP+/bMJ01EArmKZsR5VW3rwoPxw=
 </Ciphervalue>
 </CipherData>

5.4.2 RSA-OAEP

Identifier:
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p (REQUIRED)

The RSAES-OAEP-ENCRYPT algorithm, as specified in RFC 2437 [PKCS1], takes three
parameters. The two user specified parameters are a MANDATORY message digest function and an
OPTIONAL encoding octet string OAEPparams. The message digest function is indicated by the
Algorithm attribute of a child ds:DigestMethod element and the mask generation function, the third
parameter, is always MGF1 with SHA1 (mgf1SHA1Identifier). Both the message digest and mask
generation functions are used in the EME-OAEP-ENCODE operation as part of
RSAES-OAEP-ENCRYPT. The encoding octet string is the base64 decoding of the content of an
optional OAEPparams child element . If no OAEPparams child is provided, a null string is used.

Schema Definition:

http://www.w3.org/TR/xmlenc-core1/ 26 3/28/2009 11:32 AM

 <!-- use these element types as children of EncryptionMethod
 when used with RSA-OAEP -->
 <element name='OAEPparams' minOccurs='0' type='base64Binary'/>
 <element ref='ds:DigestMethod' minOccurs='0'/>

An example of an RSA-OAEP element is:

 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
 <OAEPparams> 9lWu3Q== </OAEPparams>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <EncryptionMethod>

The CipherValue for an RSA-OAEP encrypted key is the base64 [MIME] encoding of the octet string
computed as per RFC 2437 [PKCS1, section 7.1.1: Encryption operation]. As described in the
EME-OAEP-ENCODE function RFC 2437 [PKCS1, section 9.1.1.1], the value input to the key
transport function is calculated using the message digest function and string specified in the
DigestMethod and OAEPparams elements and using the mask generator function MGF1 (with SHA1)
specified in RFC 2437. The desired output length for EME-OAEP-ENCODE is one byte shorter than
the RSA modulus.

The transported key size is 192 bits for TRIPLEDES and 128, 192, or 256 bits for AES.
Implementations MUST implement RSA-OAEP for the transport of 128 and 256 bit keys. They MAY
implement RSA-OAEP for the transport of other keys.

5.5 Key Agreement

A Key Agreement algorithm provides for the derivation of a shared secret key based on a shared
secret computed from certain types of compatible public keys from both the sender and the recipient.
Information from the originator to determine the secret is indicated by an optional OriginatorKeyInfo
parameter child of an AgreementMethod element while that associated with the recipient is indicated
by an optional RecipientKeyInfo. A shared key is derived from this shared secret by a method
determined by the Key Agreement algorithm.

Note: XML Encryption does not provide an on-line key agreement negotiation protocol. The
AgreementMethod element can be used by the originator to identify the keys and computational
procedure that were used to obtain a shared encryption key. The method used to obtain or select the
keys or algorithm used for the agreement computation is beyond the scope of this specification.

The AgreementMethod element appears as the content of a ds:KeyInfo since, like other ds:KeyInfo
children, it yields a key. This ds:KeyInfo is in turn a child of an EncryptedData or EncryptedKey
element. The Algorithm attribute and KeySize child of the EncryptionMethod element under this
EncryptedData or EncryptedKey element are implicit parameters to the key agreement computation.
In cases where this EncryptionMethod algorithm URI is insufficient to determine the key length, a
KeySize MUST have been included. In addition, the sender may place a KA-Nonce element under
AgreementMethod to assure that different keying material is generated even for repeated agreements
using the same sender and recipient public keys. For example:

 <EncryptedData>
 <EncryptionMethod Algorithm="Example:Block/Alg"
 <KeySize>80</KeySize>
 </EncryptionMethod>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <AgreementMethod Algorithm="example:Agreement/Algorithm">
 <KA-Nonce>Zm9v</KA-Nonce>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#sha1"/>
 <OriginatorKeyInfo>
 <ds:KeyValue>....</ds:KeyValue>

http://www.w3.org/TR/xmlenc-core1/ 27 3/28/2009 11:32 AM

 </OriginatorKeyInfo>
 <RecipientKeyInfo>
 <ds:KeyValue>....</ds:KeyValue>
 </RecipientKeyInfo>
 </AgreementMethod>
 </ds:KeyInfo>
 <CipherData>...</CipherData>
</EncryptedData>

If the agreed key is being used to wrap a key, rather than data as above, then AgreementMethod
would appear inside a ds:KeyInfo inside an EncryptedKey element.

The Schema for AgreementMethod is as follows:

 Schema Definition:

 <element name="AgreementMethod" type="xenc:AgreementMethodType"/>
 <complexType name="AgreementMethodType" mixed="true">
 <sequence>
 <element name="KA-Nonce" minOccurs="0" type="base64Binary"/>
 <!-- <element ref="ds:DigestMethod" minOccurs="0"/> -->
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 <element name="OriginatorKeyInfo" minOccurs="0"
 type="ds:KeyInfoType"/>
 <element name="RecipientKeyInfo" minOccurs="0"
 type="ds:KeyInfoType"/>
 </sequence>
 <attribute name="Algorithm" type="anyURI" use="required"/>
 </complexType>

5.5.1 Diffie-Hellman Key Values

Identifier:
http://www.w3.org/2001/04/xmlenc#DHKeyValue (OPTIONAL)

Diffie-Hellman keys can appear directly within KeyValue elements or be obtained by
ds:RetrievalMethod fetches as well as appearing in certificates and the like. The above identifier can
be used as the value of the Type attribute of Reference or ds:RetrievalMethod elements.

As specified in [ESDH], a DH public key consists of up to six quantities, two large primes p and q, a
"generator" g, the public key, and validation parameters "seed" and "pgenCounter". These relate as
follows: The public key = (g**x mod p) where x is the corresponding private key; p = j*q + 1 where j
>= 2. "seed" and "pgenCounter" are optional and can be used to determine if the Diffie-Hellman key
has been generated in conformance with the algorithm specified in [ESDH]. Because the primes and
generator can be safely shared over many DH keys, they may be known from the application
environment and are optional. The schema for a DHKeyValue is as follows:

 Schema:

 <element name="DHKeyValue" type="xenc:DHKeyValueType"/>
 <complexType name="DHKeyValueType">
 <sequence>
 <sequence minOccurs="0">
 <element name="P" type="ds:CryptoBinary"/>
 <element name="Q" type="ds:CryptoBinary"/>
 <element name="Generator"type="ds:CryptoBinary"/>
 </sequence>
 <element name="Public" type="ds:CryptoBinary"/>
 <sequence minOccurs="0">
 <element name="seed" type="ds:CryptoBinary"/>
 <element name="pgenCounter" type="ds:CryptoBinary"/>
 </sequence>
 </sequence>
 </complexType>

http://www.w3.org/TR/xmlenc-core1/ 28 3/28/2009 11:32 AM

5.5.2 Diffie-Hellman Key Agreement

Identifier:
http://www.w3.org/2001/04/xmlenc#dh (OPTIONAL)

The Diffie-Hellman (DH) key agreement protocol [ESDH] involves the derivation of shared secret
information based on compatible DH keys from the sender and recipient. Two DH public keys are
compatible if they have the same prime and generator. If, for the second one, Y = g**y mod p, then
the two parties can calculate the shared secret ZZ = (g**(x*y) mod p) even though each knows
only their own private key and the other party's public key. Leading zero bytes MUST be maintained
in ZZ so it will be the same length, in bytes, as p. The size of p MUST be at least 512 bits and g at
least 160 bits. There are numerous other complex security considerations in the selection of g, p,
and a random x as described in [ESDH].

Diffie-Hellman key agreement is optional to implement. An example of a DH AgreementMethod
element is as follows:

 <AgreementMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#dh"
 ds:xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KA-Nonce>Zm9v</KA-Nonce>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <OriginatorKeyInfo>
 <ds:X509Data><ds:X509Certificate>
 ...
 </ds:X509Certificate></ds:X509Data>
 </OriginatorKeyInfo>
 <RecipientKeyInfo><ds:KeyValue>
 ...
 </ds:KeyValue></RecipientKeyInfo>
 </AgreementMethod>

Assume the Diffie-Hellman shared secret is the octet sequence ZZ. The shared keying material
needed will then be calculated as follows:

 Keying Material = KM(1) | KM(2) | ...

where "|" is byte stream concatenation and

 KM(counter) = DigestAlg (ZZ | counter | EncryptionAlg |
 KA-Nonce | KeySize)

DigestAlg

The message digest algorithm specified by the DigestMethod child of AgreementMethod.
EncryptionAlg

The URI of the encryption algorithm, including possible key wrap algorithms, in which the
derived keying material is to be used ("Example:Block/Alg" in the example above), not the URI
of the agreement algorithm. This is the value of the Algorithm attribute of the EncryptionMethod
child of the EncryptedData or EncryptedKey grandparent of AgreementMethod.

KA-Nonce

The base64 decoding the content of the KA-Nonce child of AgreementMethod, if present. If the
KA-Nonce element is absent, it is null.

Counter

A one byte counter starting at one and incrementing by one. It is expressed as two hex digits
where letters A through F are in upper case.

KeySize

The size in bits of the key to be derived from the shared secret as the UTF-8 string for the

http://www.w3.org/TR/xmlenc-core1/ 29 3/28/2009 11:32 AM

corresponding decimal integer with only digits in the string and no leading zeros. For some
algorithms the key size is inherent in the URI. For others, such as most stream ciphers, it must
be explicitly provided.

For example, the initial (KM(1)) calculation for the EncryptionMethod of the Key Agreement example
(section 5.5) would be as follows, where the binary one byte counter value of 1 is represented by the
two character UTF-8 sequence 01, ZZ is the shared secret, and "foo" is the base64 decoding of
"Zm9v".

 SHA-1 (ZZ01Example:Block/Algfoo80)

Assuming that ZZ is 0xDEADBEEF, that would be

 SHA-1(0xDEADBEEF30314578616D706C653A426C6F636B2F416C67666F6F3830)

whose value is

 0x534C9B8C4ABDCB50038B42015A181711068B08C1

Each application of DigestAlg for successive values of Counter will produce some additional number
of bytes of keying material. From the concatenated string of one or more KM's, enough leading bytes
are taken to meet the need for an actual key and the remainder discarded. For example, if DigestAlg
is SHA-1 which produces 20 octets of hash, then for 128 bit AES the first 16 bytes from KM(1) would
be taken and the remaining 4 bytes discarded. For 256 bit AES, all of KM(1) suffixed with the first 12
bytes of KM(2) would be taken and the remaining 8 bytes of KM(2) discarded.

5.5.3 Elliptic Curve Diffie-Hellman (ECDH) Key Values

Identifier:
http://www.w3.org/2009/xmldsig11#ECKeyValue (RECOMMENDED)

ECDH has identical public key parameters as ECDSA and can be represented with the ECPublicKey
element [XMLDSIG11]. Note that if the curve parameters are explicitly stated using the
ECParameters element, then the Cofactor element MUST be included.

As with Diffie-Hellman keys, Elliptic Curve Key Values can appear directly within KeyValue elements
or be obtained by ds:RetrievalMethod fetches as well as appearing in certificates and the like. The
above identifier can be used as the value of the Type attribute of Reference or ds:RetrievalMethod
elements.

5.5.4 Elliptic Curve Diffie-Hellman (ECDH) Key Agreement (Ephemeral-Static Mode)

Identifier:
http://www.w3.org/2009/xmlenc11#ECDH-ES (REQUIRED)

ECDH is the elliptic curve analogue to the Diffie-Hellman key agreement algorithm. Details of the
ECDH primitive can be found in section 5.7.1.2 of NIST SP 800-56A [SP800-56A]. When ECDH is
used in Ephemeral-Static (ES) mode, the recipient has a static key pair, but the sender generates a
ephemeral key pair for each message. The same ephemeral key may be used when there are
multiple recipients that use the same curve parameters.

The shared key material is calculated from the Diffie-Hellman shared secret using a key derivation
function (KDF). While applications may define other KDFs, compliant implementations MUST
implement the Concatenation KDF specified in section 5.8.1 of SP800-56A [SP800-56A].
Parameters for the Concatenation KDF are represented by the SP80056AConcatKDF element. An

http://www.w3.org/TR/xmlenc-core1/ 30 3/28/2009 11:32 AM

example of a DH AgreementMethod element is as follows:

 <AgreementMethod
 Algorithm="http://www.w3.org/2009/xmlenc11#ECDH-ES"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:ds11="http://www.w3.org/2009/xmldsig11"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 xmlns:xenc11="http://www.w3.org/2009/xmlenc11#">

 <xenc11:SP80056AConcatKDF>
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <xenc11:OtherInfo AlgorithmID="0" PartyUInfo="" PartyVInfo=""/>
 </xenc11:SP80056AConcatKDF>
 <OriginatorKeyInfo>
 <ds:KeyValue>
 <ds11:ECPublicKey>
 ...
 </ds11:ECPublicKey>
 </ds:KeyValue>
 </OriginatorKeyInfo>
 <RecipientKeyInfo>
 <ds:X509Data>
 <ds:X509IssuerSerial>
 ...
 </ds:X509IssuerSerial>
 </ds:X509Data>
 </RecipientKeyInfo>
 </AgreementMethod>

The SP80056AConcatKDF element consists of 2 subelements:

The DigestMethod element identifies the digest algorithm used by the KDF. Compliant
implementations MUST support SHA-256. Support for SHA-1 and SHA-384 are
RECOMMENDED.

1.

The OtherInfo element identities the subfields of OtherInfo as defined by SP800-56A. This
element is REQUIRED for applications that comply with SP800-56A, but is OPTIONAL
otherwise. When the output of the KDF is used with either the Triple DES Key Wrap or the
AES Key Wrap algorithms, the AlgorithmID attribute shall contain the value "00".

2.

The schema for the SP80056AConcatKDF element is as follows:

Schema Definition:
 <element name="SP80056AConcatKDF" type="xenc11:SP80056AConcatKDFType"/>
 <complexType name="SP80056AConcatKDFType">
 <sequence>
 <element ref="ds:DigestMethod"/>
 <element name="OtherInfo" type="xenc11:OtherInfoType" minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="OtherInfoType">
 <attribute name="AlgorithmID" type="hexBinary"/>
 <attribute name="PartyUInfo" type="hexBinary"/>
 <attribute name="PartyVInfo" type="hexBinary"/>
 <attribute name="SuppPubInfo" type="hexBinary" use="optional"/>
 </complexType>

DTD Definition:
 TBD

5.6 Symmetric Key Wrap

Symmetric Key Wrap algorithms are shared secret key encryption algorithms especially specified for
encrypting and decrypting symmetric keys. Their identifiers appear as Algorithm attribute values to

http://www.w3.org/TR/xmlenc-core1/ 31 3/28/2009 11:32 AM

EncryptionMethod elements that are children of EncryptedKey which is in turn a child of ds:KeyInfo
which is in turn a child of EncryptedData or another EncryptedKey. The type of the key being wrapped
is indicated by the Algorithm attribute of EncryptionMethod child of the parent of the ds:KeyInfo
grandparent of the EncryptionMethod specifying the symmetric key wrap algorithm.

5.6.1 CMS Key Checksum

Some key wrap algorithms make use of a key checksum as defined in CMS [CMS-Wrap]. The
algorithm that provides an integrity check value for the key being wrapped is:

Compute the 20 octet SHA-1 hash on the key being wrapped.1.
Use the first 8 octets of this hash as the checksum value.2.

5.6.2 CMS Triple DES Key Wrap

Identifiers and Requirements:
http://www.w3.org/2001/04/xmlenc#kw-tripledes (REQUIRED)

XML Encryption implementations MUST support TRIPLEDES wrapping of 168 bit keys and may
optionally support TRIPLEDES wrapping of other keys.

An example of a TRIPLEDES Key Wrap EncryptionMethod element is as follows:

 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#kw-tripledes"/>

The following algorithm wraps (encrypts) a key (the wrapped key, WK) under a TRIPLEDES
key-encryption-key (KEK) as adopted from [CMS-Algorithms]:

Represent the key being wrapped as an octet sequence. If it is a TRIPLEDES key, this is 24
octets (192 bits) with odd parity bit as the bottom bit of each octet.

1.

Compute the CMS key checksum (section 5.6.1) call this CKS.2.
Let WKCKS = WK || CKS, where || is concatenation.3.
Generate 8 random octets [RANDOM] and call this IV.4.
Encrypt WKCKS in CBC mode using KEK as the key and IV as the initialization vector. Call the
results TEMP1.

5.

Let TEMP2 = IV || TEMP1.6.
Reverse the order of the octets in TEMP2 and call the result TEMP3.7.
Encrypt TEMP3 in CBC mode using the KEK and an initialization vector of 0x4adda22c79e82105.
The resulting cipher text is the desired result. It is 40 octets long if a 168 bit key is being
wrapped.

8.

The following algorithm unwraps (decrypts) a key as adopted from [CMS-Algorithms]:

Check if the length of the cipher text is reasonable given the key type. It must be 40 bytes for a
168 bit key and either 32, 40, or 48 bytes for a 128, 192, or 256 bit key. If the length is not
supported or inconsistent with the algorithm for which the key is intended, return error.

1.

Decrypt the cipher text with TRIPLEDES in CBC mode using the KEK and an initialization vector
(IV) of 0x4adda22c79e82105. Call the output TEMP3.

2.

Reverse the order of the octets in TEMP3 and call the result TEMP2.3.
Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets.4.
Decrypt TEMP1 using TRIPLEDES in CBC mode using the KEK and the IV found in the
previous step. Call the result WKCKS.

5.

Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are those octets before the
CKS.

6.

Calculate a CMS key checksum (section 5.6.1) over the WK and compare with the CKS extracted7.

http://www.w3.org/TR/xmlenc-core1/ 32 3/28/2009 11:32 AM

in the above step. If they are not equal, return error.
WK is the wrapped key, now extracted for use in data decryption.8.

5.6.3 AES KeyWrap

Identifiers and Requirements:
http://www.w3.org/2001/04/xmlenc#kw-aes128 (REQUIRED)
http://www.w3.org/2001/04/xmlenc#kw-aes192 (OPTIONAL)
http://www.w3.org/2001/04/xmlenc#kw-aes256 (REQUIRED)

Implementation of AES key wrap is described below, as suggested by NIST. It provides for
confidentiality and integrity. This algorithm is defined only for inputs which are a multiple of 64 bits.
The information wrapped need not actually be a key. The algorithm is the same whatever the size of
the AES key used in wrapping, called the key encrypting key or KEK. The implementation
requirements are indicated below.

128 bit AES Key Encrypting Key
Implementation of wrapping 128 bit keys REQUIRED.
Wrapping of other key sizes OPTIONAL.

192 bit AES Key Encrypting Key
All support OPTIONAL.

256 bit AES Key Encrypting Key
Implementation of wrapping 256 bit keys REQUIRED.
Wrapping of other key sizes OPTIONAL.

Assume that the data to be wrapped consists of N 64-bit data blocks denoted P(1), P(2), P(3) ...
P(N). The result of wrapping will be N+1 64-bit blocks denoted C(0), C(1), C(2), ... C(N). The key
encrypting key is represented by K. Assume integers i, j, and t and intermediate 64-bit register A,
128-bit register B, and array of 64-bit quantities R(1) through R(N).

"|" represents concatenation so x|y, where x and y and 64-bit quantities, is the 128-bit quantity with x
in the most significant bits and y in the least significant bits. AES(K)enc(x) is the operation of AES
encrypting the 128-bit quantity x under the key K. AES(K)dec(x) is the corresponding decryption
operation. XOR(x,y) is the bitwise exclusive or of x and y. MSB(x) and LSB(y) are the most significant
64 bits and least significant 64 bits of x and y respectively.

If N is 1, a single AES operation is performed for wrap or unwrap. If N>1, then 6*N AES operations are
performed for wrap or unwrap.

The key wrap algorithm is as follows:

If N is 1:
B=AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1))
C(0)=MSB(B)

C(1)=LSB(B)

If N>1, perform the following steps:

1.

Initialize variables:
Set A to 0xA6A6A6A6A6A6A6A6
For i=1 to N,
R(i)=P(i)

2.

Calculate intermediate values:
For j=0 to 5,

For i=1 to N,
t= i + j*N
B=AES(K)enc(A|R(i))
A=XOR(t,MSB(B))

R(i)=LSB(B)

3.

http://www.w3.org/TR/xmlenc-core1/ 33 3/28/2009 11:32 AM

Output the results:
Set C(0)=A
For i=1 to N,
C(i)=R(i)

4.

The key unwrap algorithm is as follows:

If N is 1:
B=AES(K)dec(C(0)|C(1))

P(1)=LSB(B)

If MSB(B) is 0xA6A6A6A6A6A6A6A6, return success. Otherwise, return an integrity check
failure error.

If N>1, perform the following steps:

1.

Initialize the variables:
A=C(0)

For i=1 to N,
R(i)=C(i)

2.

Calculate intermediate values:
For j=5 to 0,

For i=N to 1,
t= i + j*N
B=AES(K)dec(XOR(t,A)|R(i))
A=MSB(B)

R(i)=LSB(B)

3.

Output the results:
For i=1 to N,
P(i)=R(i)

If A is 0xA6A6A6A6A6A6A6A6, return success. Otherwise, return an integrity check failure
error.

4.

For example, wrapping the data 0x00112233445566778899AABBCCDDEEFF with the KEK
0x000102030405060708090A0B0C0D0E0F produces the ciphertext of 0x1FA68B0A8112B447,
0xAEF34BD8FB5A7B82, 0x9D3E862371D2CFE5.

5.7 Message Digest

Message digest algorithms can be used in AgreementMethod as part of the key derivation, within
RSA-OAEP encryption as a hash function, and in connection with the HMAC message authentication
code method as described in [XML-DSIG].)

5.7.1 SHA1

Identifier:
http://www.w3.org/2000/09/xmldsig#sha1 (REQUIRED)

The SHA-1 algorithm [SHA] takes no explicit parameters. An example of an SHA-1 DigestMethod
element is:

 <DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

A SHA-1 digest is a 160-bit string. The content of the DigestValue element shall be the base64
encoding of this bit string viewed as a 20-octet octet stream. For example, the DigestValue element
for the message digest:

 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D

http://www.w3.org/TR/xmlenc-core1/ 34 3/28/2009 11:32 AM

from Appendix A of the SHA-1 standard would be:

 <DigestValue>qZk+NkcGgWq6PiVxeFDCbJzQ2J0=</DigestValue>

5.7.2 SHA256

Identifier:
http://www.w3.org/2001/04/xmlenc#sha256 (RECOMMENDED)

The SHA-256 algorithm [SHA] takes no explicit parameters. An example of an SHA-256
DigestMethod element is:

 <DigestMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

A SHA-256 digest is a 256-bit string. The content of the DigestValue element shall be the base64
encoding of this bit string viewed as a 32-octet octet stream.

5.7.3 SHA512

Identifier:
http://www.w3.org/2001/04/xmlenc#sha512 (OPTIONAL)

The SHA-512 algorithm [SHA] takes no explicit parameters. An example of an SHA-512
DigestMethod element is:

 <DigestMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/>

A SHA-512 digest is a 512-bit string. The content of the DigestValue element shall be the base64
encoding of this bit string viewed as a 64-octet octet stream.

5.7.4 RIPEMD-160

Identifier:
http://www.w3.org/2001/04/xmlenc#ripemd160 (OPTIONAL)

The RIPEMD-160 algorithm [RIPEMD-160] takes no explicit parameters. An example of an
RIPEMD-160 DigestMethod element is:

 <DigestMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#ripemd160"/>

A RIPEMD-160 digest is a 160-bit string. The content of the DigestValue element shall be the
base64 encoding of this bit string viewed as a 20-octet octet stream.

5.8 Message Authentication

Identifier:
http://www.w3.org/2000/09/xmldsig# (RECOMMENDED)

XML Signature [XML-DSIG] is OPTIONAL to implement for XML encryption applications. It is the
recommended way to provide key based authentication.

http://www.w3.org/TR/xmlenc-core1/ 35 3/28/2009 11:32 AM

5.9 Canonicalization

A Canonicalization of XML is a method of consistently serializing XML into an octet stream as is
necessary prior to encrypting XML.

5.9.1 Inclusive Canonicalization

Identifiers:
http://www.w3.org/TR/2001/REC-xml-c14n-20010315 (OPTIONAL)
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments (OPTIONAL)

Canonical XML [Canon] is a method of serializing XML which includes the in scope namespace and
xml namespace attribute context from ancestors of the XML being serialized.

If XML is to be encrypted and then later decrypted into a different environment and it is desired to
preserve namespace prefix bindings and the value of attributes in the "xml" namespace of its original
environment, then the canonical XML with comments version of the XML should be the serialization
that is encrypted.

5.9.2 Exclusive Canonicalization

Identifiers:
http://www.w3.org/2001/10/xml-exc-c14n# (OPTIONAL)
http://www.w3.org/2001/10/xml-exc-c14n#WithComments (OPTIONAL)

Exclusive XML Canonicalization [Exclusive] serializes XML in such a way as to include to the
minimum extent practical the namespace prefix binding and xml namespace attribute context
inherited from ancestor elements.

It is the recommended method where the outer context of a fragment which was signed and then
encrypted may be changed. Otherwise the validation of the signature over the fragment may fail
because the canonicalization by signature validation may include unnecessary namespaces into the
fragment.

6 Security Considerations

6.1 Relationship to XML Digital Signatures

The application of both encryption and digital signatures over portions of an XML document can
make subsequent decryption and signature verification difficult. In particular, when verifying a
signature one must know whether the signature was computed over the encrypted or unencrypted
form of elements.

A separate, but important, issue is introducing cryptographic vulnerabilities when combining digital
signatures and encryption over a common XML element. Hal Finney has suggested that encrypting
digitally signed data, while leaving the digital signature in the clear, may allow plaintext guessing
attacks. This vulnerability can be mitigated by using secure hashes and the nonces in the text being
processed.

In accordance with the requirements document [EncReq] the interaction of encryption and signing is
an application issue and out of scope of the specification. However, we make the following
recommendations:

When data is encrypted, any digest or signature over that data should be encrypted. This1.

http://www.w3.org/TR/xmlenc-core1/ 36 3/28/2009 11:32 AM

satisfies the first issue in that only those signatures that can be seen can be validated. It also
addresses the possibility of a plaintext guessing vulnerability, though it may not be possible to
identify (or even know of) all the signatures over a given piece of data.
Employ the "decrypt-except" signature transform [XML-DSIG-Decrypt]. It works as follows:
during signature transform processing, if you encounter a decrypt transform, decrypt all
encrypted content in the document except for those excepted by an enumerated set of
references.

2.

Additionally, while the following warnings pertain to incorrect inferences by the user about the
authenticity of information encrypted, applications should discourage user misapprehension by
communicating clearly which information has integrity, or is authenticated, confidential, or
non-repudiable when multiple processes (e.g., signature and encryption) and algorithms (e.g.,
symmetric and asymmetric) are used:

When an encrypted envelope contains a signature, the signature does not necessarily protect
the authenticity or integrity of the ciphertext [Davis] .

1.

While the signature secures plaintext it only covers that which is signed, recipients of encrypted
messages must not infer integrity or authenticity of other unsigned information (e.g., headers)
within the encrypted envelope, see [XML-DSIG, 8.1.1 Only What is Signed is Secure].

2.

6.2 Information Revealed

Where a symmetric key is shared amongst multiple recipients, that symmetric key should only be
used for the data intended for all recipients; even if one recipient is not directed to information
intended (exclusively) for another in the same symmetric key, the information might be discovered
and decrypted.

Additionally, application designers should be careful not to reveal any information in parameters or
algorithm identifiers (e.g., information in a URI) that weakens the encryption.

6.3 Nonce and IV (Initialization Value or Vector)

An undesirable characteristic of many encryption algorithms and/or their modes is that the same
plaintext when encrypted with the same key has the same resulting ciphertext. While this is
unsurprising, it invites various attacks which are mitigated by including an arbitrary and
non-repeating (under a given key) data with the plaintext prior to encryption. In encryption chaining
modes this data is the first to be encrypted and is consequently called the IV (initialization value or
vector).

Different algorithms and modes have further requirements on the characteristic of this information
(e.g., randomness and secrecy) that affect the features (e.g., confidentiality and integrity) and their
resistance to attack.

Given that XML data is redundant (e.g., Unicode encodings and repeated tags) and that attackers
may know the data's structure (e.g., DTDs and schemas) encryption algorithms must be carefully
implemented and used in this regard.

For the Cipher Block Chaining (CBC) mode used by this specification, the IV must not be reused for
any key and should be random, but it need not be secret. Additionally, under this mode an adversary
modifying the IV can make a known change in the plain text after decryption. This attack can be
avoided by securing the integrity of the plain text data, for example by signing it.

6.4 Denial of Service

This specification permits recursive processing. For example, the following scenario is possible:
EncryptedKey A requires EncryptedKey B to be decrypted, which itself requires EncryptedKey A! Or,

http://www.w3.org/TR/xmlenc-core1/ 37 3/28/2009 11:32 AM

an attacker might submit an EncryptedData for decryption that references network resources that are
very large or continually redirected. Consequently, implementations should be able to restrict
arbitrary recursion and the total amount of processing and networking resources a request can
consume.

6.5 Unsafe Content

XML Encryption can be used to obscure, via encryption, content that applications (e.g., firewalls,
virus detectors, etc.) consider unsafe (e.g., executable code, viruses, etc.). Consequently, such
applications must consider encrypted content to be as unsafe as the unsafest content transported in
its application context. Consequently, such applications may choose to (1) disallow such content, (2)
require access to the decrypted form for inspection, or (3) ensure that arbitrary content can be safely
processed by receiving applications.

7 Conformance

An implementation is conformant to this specification if it successfully generates syntax according to
the schema definitions and satisfies all MUST/REQUIRED/SHALL requirements, including algorithm
support and processing. Processing requirements are specified over the roles of decryptor,
encryptor, and their calling application.

8 XML Encryption Media Type

8.1 Introduction

XML Encryption Syntax and Processing [XML-Encryption] specifies a process for encrypting data
and representing the result in XML. The data may be arbitrary data (including an XML document), an
XML element, or XML element content. The result of encrypting data is an XML Encryption element
which contains or references the cipher data.

The application/xenc+xml media type allows XML Encryption applications to identify encrypted
documents. Additionally it allows applications cognizant of this media-type (even if they are not XML
Encryption implementations) to note that the media type of the decrypted (original) object might be a
type other than XML.

8.2 application/xenc+xml Registration

This is a media type registration as defined in Multipurpose Internet Mail Extensions (MIME) Part
Four: Registration Procedures [MIME-REG]

MIME media type name: application

MIME subtype name: xenc+xml

Required parameters: none

Optional parameters: charset

The allowable and recommended values for, and interpretation of the charset parameter
are identical to those given for 'application/xml' in section 3.2 of RFC 3023 [XML-MT].

Encoding considerations:

The encoding considerations are identical to those given for 'application/xml' in section
3.2 of RFC 3023 [XML-MT].

http://www.w3.org/TR/xmlenc-core1/ 38 3/28/2009 11:32 AM

Security considerations:

See the [XML-Encryption] Security Considerations section.

Interoperability considerations: none

Published specification: [XML-Encryption]

Applications which use this media type:

XML Encryption is device-, platform-, and vendor-neutral and is supported by a range of
Web applications.

Additional Information:

Magic number(s): none

Although no byte sequences can be counted on to consistently identify XML
Encryption documents, they will be XML documents in which the root
element's QName's LocalPart is 'EncryptedData' or 'EncryptedKey' with an
associated namespace name of 'http://www.w3.org/2001/04/xmlenc#'. The
application/xenc+xml type name MUST only be used for data objects in
which the root element is from the XML Encryption namespace. XML
documents which contain these element types in places other than the root
element can be described using facilities such as [XML-schema].

File extension(s): .xml

Macintosh File Type Code(s): "TEXT"

Person & email address to contact for further information:

Joseph Reagle <reagle@w3.org>

XENC Working Group <xml-encryption@w3.org>

Intended usage: COMMON

Author/Change controller:

The XML Encryption specification is a work product of the World Wide Web Consortium (W3C)
which has change control over the specification.

9 Schema and Valid Examples

Schema
xenc-schema.xsd

Example
enc-example.xml (not cryptographically valid but exercises much of the schema)

10 References

TRIPLEDES
ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation. 1998.

AES
NIST FIPS 197: Advanced Encryption Standard (AES). November 2001.

http://www.w3.org/TR/xmlenc-core1/ 39 3/28/2009 11:32 AM

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
AES-WRAP

RFC3394: Advanced Encryption Standard (AES) Key Wrap Algorithm. J. Schaad and R.
Housley. Informational, September 2002.

CMS-Algorithms
RFC3370: Cryptographic Message Syntax (CMS) Algorithms. R. Housley. Informational,
February 2002.
http://www.ietf.org/rfc/rfc3370.txt

CMS-Wrap
RFC3217: Triple-DES and RC2 Key Wrapping. R. Housley. Informational, December 2001.
http://www.ietf.org/rfc/rfc3217.txt

Davis
Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP, and XML. D. Davis.
USENIX Annual Technical Conference. 2001.
http://www.usenix.org/publications/library/proceedings/usenix01/davis.html

DES
NIST FIPS 46-3: Data Encryption Standard (DES). October 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

EncReq
XML Encryption Requirements. J. Reagle. W3C Note, March 2002.
http://www.w3.org/TR/2002/NOTE-xml-encryption-req-20020304

ESDH
RFC 2631: Diffie-Hellman Key Agreement Method. E. Rescorla. Standards Track, 1999.
http://www.ietf.org/rfc/rfc2631.txt
http://www.w3.org/TR/2002/CR-xml-exc-c14n-20020212

Glossary
RFC 2828: Internet Security Glossary. R Shirey. Informational, May 2000.
http://www.ietf.org/rfc/rfc2828.txt

HMAC
RFC 2104: HMAC: Keyed-Hashing for Message Authentication. H. Krawczyk, M. Bellare, and
R. Canetti. Informational, February 1997.
http://www.ietf.org/rfc/rfc2104.txt

HTTP
RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1. J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, and T. Berners-Lee. Standards Track, June 1999.
http://www.ietf.org/rfc/rfc2616.txt

KEYWORDS
RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. Best
Current Practice, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

MD5
RFC 1321: The MD5 Message-Digest Algorithm. R. Rivest. Informational, April 1992.
http://www.ietf.org/rfc/rfc1321.txt

MIME
RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. N. Freed and N. Borenstein. Standards Track, November 1996.
http://www.ietf.org/rfc/rfc2045.txt

MIME-REG
RFC 2048: Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures.
N. Freed, J. Klensin, and J. Postel. Best Current Practice, November 1996.
http://www.ietf.org/rfc/rfc2048.txt

NFC
TR15, Unicode Normalization Forms. M. Davis and M. Dürst. Revision 18: November 1999.
http://www.unicode.org/unicode/reports/tr15/tr15-18.html.

NFC-Corrigendum
Corrigendum #2: Yod with Hiriq Normalization.

http://www.w3.org/TR/xmlenc-core1/ 40 3/28/2009 11:32 AM

http://www.unicode.org/versions/corrigendum2.html.
prop1

XML Encryption strawman proposal. E. Simon and B. LaMacchia. Aug 2000.
http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0001.html

prop2
Another proposal of XML Encryption. T. Imamura. Aug 2000.
http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/0005.html

prop3
XML Encryption Syntax and Processing. B. Dillaway, B. Fox, T. Imamura, B. LaMacchia, H.
Maruyama, J. Schaad, and E. Simon. December 2000.
http://lists.w3.org/Archives/Public/xml-encryption/2000Dec/att-0024/01-XMLEncryption_v01.html

PKCS1
RFC 2437: PKCS #1: RSA Cryptography Specifications Version 2.0. B. Kaliski and J. Staddon.
Informational, October 1998.
http://www.ietf.org/rfc/rfc2437.txt

RANDOM
RFC 1750: Randomness Recommendations for Security. D. Eastlake, S. Crocker, and J.
Schiller. Informational, December 1994.
http://www.ietf.org/rfc/rfc1750.txt

RIPEMD-160
CryptoBytes, Volume 3, Number 2. The Cryptographic Hash Function RIPEMD-160. RSA
Laboratories. Autumn 1997.
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf
http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf

SHA
FIPS PUB 180-2. Secure Hash Standard. U.S. Department of Commerce/National Institute of
Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

SP800-56A
NIST Special Publication 800-56A: Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography (Revised). March 2007

Tobin
R. Tobin. Infoset for external entities, XML Core mailing list, 2000 [W3C Member Only].
http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000OctDec/0054

UTF-16
RFC 2781: UTF-16, an encoding of ISO 10646. P. Hoffman and F. Yergeau. Informational,
February 2000.
http://www.ietf.org/rfc/rfc2781.txt

UTF-8
RFC 2279: UTF-8, a transformation format of ISO 10646F. F. Yergeau. Standards Track,
January 1998.
http://www.ietf.org/rfc/rfc2279.txt

URI
RFC 2396: Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee, R. Fielding,
and L. Masinter. Standards Track, August 1998.
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2141.txt
RFC 2611: URN Namespace Definition Mechanisms. Best Current Practices. Daigle, D. van
Gulik, R. Iannella, P. Falstrom. June 1999.
http://www.ietf.org/rfc/rfc2611.txt

X509v3
ITU-T Recommendation X.509 version 3 (1997). "Information Technology - Open Systems
Interconnection - The Directory Authentication Framework" ISO/IEC 9594-8:1997.

XML
Extensible Markup Language (XML) 1.0 (Second Edition). T. Bray, J. Paoli, C. M.

http://www.w3.org/TR/xmlenc-core1/ 41 3/28/2009 11:32 AM

Sperberg-McQueen, and E. Maler. W3C Recommendation, October 2000.
XML-Base

XML Base. J. Marsh. W3C Recommendation, June 2001.
http://www.w3.org/TR/2001/REC-xmlbase-20010627/

XML-C14N
Canonical XML. J. Boyer. W3C Recommendation, March 2001.
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.ietf.org/rfc/rfc3076.txt

XML-exc-C14N
Exclusive XML Canonicalization. J. Boyer, D. Eastlake, and J. Reagle. W3C Recommendation,
July 2002.
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

XML-DSIG
XML-Signature Syntax and Processing. D. Eastlake, J. Reagle, and D. Solo. W3C
Recommendation, February 2002.
http://www.w3.org/TR/xmldsig-core/

XMLDSIG11
XML Signature Syntax and Processing Version 1.1. D. Eastlake, J. Reagle, D. Solo, F. Hirsch,
T. Roessler. K. Yiu. W3C Working Draft, February 2009.

XML-DSIG-Decrypt
Decryption Transform for XML Signature. M. Hughes, T. Imamura and H. Maruyama. W3C
Recommendation, December 2002.
http://www.w3.org/TR/2002/REC-xmlenc-decrypt-20021210

XML-Encryption
XML Encryption Syntax and Processing. D. Eastlake and J. Reagle. W3C Candidate
Recommendation, December 2002.
http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/

XML-Infoset
XML Information Set. J. Cowan and R. Tobin. W3C Recommendation, October 2001
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/

XML-MT
RFC 3023: XML Media Types. M. Murata, S. St. Laurent, and D. Kohn. Informational, January
2001.
http://www.ietf.org/rfc/rfc2376.txt

XML-NS
Namespaces in XML. T. Bray, D. Hollander, and A. Layman. W3C Recommendation, January
1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114/

XML-schema
XML Schema Part 1: Structures D. Beech, M. Maloney, and N. Mendelsohn. W3C
Recommendation, May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
XML Schema Part 2: Datatypes. P. Biron and A. Malhotra. W3C Recommendation, May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

XPath
XML Path Language (XPath) Version 1.0. J. Clark and S. DeRose. W3C Recommendation,
October 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116

	XML Encryption Syntax and Processing Version 1.1
	 26 Feb 2009 Donald Eastlake and Joseph Reagle (ed.), World Wide Web Consortium
	Abstract
	Status of this document
	Table of Contents
	1 Introduction
	2 Encryption Overview and Examples (Non-normative)
	3 Encryption Syntax
	4 Processing Rules
	5. Algorithms
	6 Security Considerations
	7 Conformance
	8 XML Encryption Media Type
	9 Schema and Valid Examples
	10 References

	
	W3C Title Page

