
 1
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

Working with Time Zones
W3C Working Group Note 13 October 2005
This version:

http://www.w3.org/TR/2005/NOTE-timezone-20051013/
Latest version:

http://www.w3.org/TR/timezone
Editors:

Addison Phillips, (Invited Expert)
Felix Sasaki, W3C
Mark Davis, IBM
Martin Dürst, Aoyama University

This document is also available in these non-normative formats: XML.

Copyright © 2005 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

This document discusses some of the problems encountered when working with the
date, time, and dateTime values from [XML Schema] when those value include (or omit)
time zone offsets. Many W3C technologies rely on date and time types. Examples
include the [XPathFO] specification, since it is the basis for XQuery and XSLT
processing of date/time values, but the concepts affect any date / time processing.

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This document discusses the topic of date, time, and dateTime values from [XML
Schema] with and without time zone offsets. Examples are given mainly relying on [XML
Schema] and [XPathFO], since these are the basis for [XQuery] and [XSLT 2.0]
processing of date/time values.

This document is a W3C Working Group Note. It has been produced by the i18n Core
Working Group, which is part of the Internationalization Activity.

 2
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

This document has been produced as a result of discussions between the i18n Core
Working Group and the two Working Groups XQuery Working Group and XSL Working
Group. These Working Groups will refer to this document from [XPathFO]. The i18n
Core Working Group will use material from this document for FAQs or tutorials on the
topic. Please send your comments on this document to the public mailing list www-i18n-
comments@w3.org (archive).

Publication as a Working Group Note does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted by
other documents at any time. It is inappropriate to cite this document as other than work
in progress.

Table of Contents

1 Working With Time Zones

1.1 Background

1.2 Identifying Time Zones and Zone Offsets

1.3 Incremental versus Field-Based Time

1.4 Guidelines

1.4.1 Working with Field-Based Dates and Times based on XML Schema

1.4.2 Working with Date and Time Values that Require a Time Zone (and not a zone
offset)

1.4.3 Comparing Times

1.5 Recommendations for XQuery / XSLT

Appendix

A References (Non-Normative)

1 Working With Time Zones

Time-related data is a common requirement for many applications. [XML Schema]
provides a variety of data types for dates and times, such as date, time, and dateTime.
These data types follow internationally friendly formats defined by [ISO 8601] and can be
used to address a variety of differing date or time applications.

The date, time, and dateTime types can either include or omit the time zone offset. The
presence (or absence) of the offset means that the data value must be handled

 3
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

differently for certain kinds of operations. In addition, the particular application and
source of the date and time values affects how dates and times with different time zones
or zone offsets should be handled, as well as how to handle values that lack any time
zone or zone offset indication.

Note: Users and implementers of languages or specifications which handle time-related
data should take the following recommendations into account even if time-zone-sensitive
data is rarely used. Sooner or later some data will be affected by the issues described.
Some examples of these include XQuery, XPath, and XSLT.

1.1 Background

There are three main applications of date, time, or dateTime data types in applications.

Incremental or Computer Time Most programming languages and development
environments provide data types for handling time which are based on a numeric value:
units of some specific length measured from a specific point in time (called the epoch).
For example, the Java type java.util.Date is a long (integer) value for the number of
milliseconds since 00:00 (midnight) on January 1, 1970 in UTC (Universal Coordinated
Time, sometimes also called GMT). Other systems use other units and epochs. Date
and time values based on a construct of this type (which we'll call computer time) are
time-zone-independent, since at any given moment it is the same time in UTC
everywhere on Earth: the values can be transformed for display for any particular time
zone offset, but the value itself is not tied to a specific location. Values of this type are
commonly used in applications as "time stamps", showing when an event occurred.
Some applications for these include:

o labeling log file entries with a timestamp
o recording actual process start or stop times
o measuring the duration of an event
o comparing two time values

Time Zone Independent Field-Based Time The human representation of computer times
is more complicated, and represents time using various separate field values, such as
hour, minute, month, or year. One application for this type of representation is for values
that are time zone independent, representing a logical event divorced from a particular
location on the Earth. For example, various kinds of "anniversary date" such as a
person's birthdate or an employee hire date would normally fall into this category, partly
because time is not expressed, and partly because the actual time of the start and end
of the day for a given geographic location may not be considered important. Some other
examples of this application of dates and times include:

last day of the quarter

holiday schedules

end date of a promotional offer

legally mandated start or end times

 4
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

Time Zone Dependent Field-Based Time In other cases, field-based dates and times are
supposed to represent values linked to a particular location or time zone. For example, if
you tell someone that you will make a telephone call to them at 14:00 from Paris, if that
person is in London they'll expect the phone to ring at 13:00. As with incremental time,
the event happens in the same instant around the globe and meaning of the value
depends on the offset from UTC. Some other examples of this application of dates and
times include:

• purchase order date
• tracking information for a package

1.2 Identifying Time Zones and Zone Offsets

[XML Schema] follows the [ISO 8601] standard for its lexical representation. Date and
time values in ISO 8601 are field-based using the definitions above and can indicate (or
omit) the zone offset from UTC. A zone offset is not the same thing as a time zone, and
the difference can be important. XML Schema only supports zone offset, but,
confusingly, calls it time zone, see for example section 3.2.8.1, lexical representation in
[XML Schema].

Although ISO 8601 is expressed in terms of the Gregorian calendar, it can be used to
represent values in any calendar system. The presentation of date and time values to
end users using different calendar and timekeeping systems is separate from the lexical
representation.

What is a "zone offset"? A zone offset is the difference in hours and minutes between a
particular time zone and UTC. In ISO 8601, the particular zone offset can be indicated in
a date or time value. The zone offset can be Z for UTC or it can be a value "+" or "-" from
UTC. For example, the value 08:00-08:00 represents 8:00 AM in a time zone 8 hours
behind UTC, which is the equivalent of 16:00Z (8:00 plus eight hours). The value
08:00+08:00 represents the opposite increment, or midnight (08:00 minus eight hours).

What is a "time zone"? A time zone is an identifier for a specific location or region which
translates into a combination of rules for calculating the UTC offset. For example, when
a website maintaining a group calendar in the United States schedules a recurring
meeting for 08:00 Pacific Time, it is referring to what is sometimes known as wall time (so
called because that is the time shown "on the clock (or calendar) on the wall"). This is
not equivalent to either 08:00-08:00 or 08:00-07:00, because Pacific Time does not have a
fixed offset from UTC; instead, the offset changes during the course of the year. As
mentioned before, XML Schema only supports zone offsets, and it does not make the
terminological distinction between zone offset and time zone. So a wall time expressed
as an XML Schema time value, must choose which zone offset to use. This may have
the unintended effect of causing a scheduled event to shift by an hour (or more) when
wall time changes to or from Daylight/Summer time.

To complicate matters, the rules for computing when daylight savings takes effect may
be somewhat complex and may change from year to year or from location to location. In
the United States, the state of Indiana, for example, does not follow daylight savings
time, but this will change in April 2006. See: http://www.mccsc.edu/time.html for further
information. The Northern and Southern hemispheres perform Daylight/Summer Time

 5
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

adjustments during opposing times during the year (corresponding to seasonal
differences in the two hemispheres).

To capture these situations, a calendar system must use an ID for the time zone. The
most definitive reference for dealing with wall time is the TZ database (also known as the
"Olson time zone database" [tzinfo]), which is used by systems such as various
commercial UNIX operating systems, Linux, Java, CLDR, ICU, and many other systems
and libraries. In the TZ database, "Pacific Time" is denoted with the ID
America/Los_Angeles. The TZ database also supplies aliases among different IDs; for
example, Asia/Ulan Bator is equivalent to Asia/Ulaanbaatar. From these alias relations, a
canonical identifier can be derived. The Common Locale Data Repository [CLDR] can be
used to provide a localized form for the IDs: see Appendix J in [UAX 35].

1.3 Incremental versus Field-Based Time

Incremental time and field-based time differ in the way certain operations work. For
example, incremental times can be directly compared—their integer values determine
which is earlier or later—while field based times must be normalized and their individual
fields compared. Field based times can have certain kinds of logical operations
performed on them (for example, rolling the date forward or back), while incremental
time requires a logical transformation. For example, to set the date 2005-08-30 forward
by one day, an implementation can add 'one unit' to the "day" field and adjust the month
and year as appropriate. In incremental time, a similar operation might be performed by
incrementing the value by 24 hours * 60 minutes * 60 seconds * 1000 milliseconds,
which is one logical day, but there may be errors when a particular day has more or
fewer seconds in it (such as occur during daylight savings transitions).

The SQL data types date, time, and timestamp are field based time values which are
intended to be zone offset independent. The data type timestamp with time zone is the
zone offset-dependent equivalent of timestamp in SQL. Programming languages, by
contrast, tend to use incremental time and convert to and from a localized textual
representation on demand. Databases may use incremental time or either zone offset-
dependent or independent field-based structures internally. For example, an Oracle 8
database treats a timestamp field as though it is in the local time of the database
instance.

As a result, users may not be clear on the differences between these types or may
create a mixture of different representations. For example, a Java programmer using
JDBC will retrieve incremental times (java.util.Date objects) from a database, even
though the actual field in the database is a (field-based) timestamp value.

In XML Schema, as with SQL, dates and times are always expressed using field-based
time. The date or time may express the zone offset from UTC (for example using a
format such as 08:00:00+01:00). UTC is indicated by the letter Z (for example 08:00:00Z).
Or, the zone offset may be omitted completely.

Properly speaking, an XML Schema date or time value with a zone offset is field-
based/zone offset dependent and one without is field-based/zone offset independent.

 6
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

If the two types are mixed, then the interpretation of the zone offset is not adequately
specified in [XML Schema]. In [XPathFO], the interpretation is implementation-defined
and is based on an implicit zone offset. This is usually either UTC or local time. The
presence or absence of the zone offset in the XML Schema representation may not be
indicative of the original data's intention because of the confusion described above.
Proper comparisons or processing rely on normalizing all date and time values into zone
offset-independent (or zone offset-dependent) forms and never mixing the two in a
particular operation.

1.4 Guidelines

This section describes different guidelines that can be applied to various time and date
comparisons.

1.4.1 Working with Field-Based Dates and Times based on XML Schema

Field-based time and date values require the user to determine whether to use a fixed
zone offset, a time zone, or nothing. While XML Schema times are field-based in terms
of the lexical representation, the underlying data may use incremental time, as may the
implementation processing the values. Each specific case requires specific handling.

• If all of the data values are used to represent incremental time, then the user
should always use a specific zone offset (and UTC is strongly recommended as
this offset, since most incremental time systems are based on it) and should
always specify that zone offset. Values that do not specify a zone offset should
be treated as if they use the same offset. If UTC is used, this produces the least
amount of modification in the data.

• If all of the data values are used to represent time zone independent values
(such as a list of employee's birth dates), then the zone offset should always be
omitted. Any values that have a zone offset should probably ignore the zone
offset (actually stripping it off, if possible), since zone changes are probably an
artifact of other processing. If a zone offset must absolutely be applied to the
data, then UTC should be used.

• If all of the data values are used represent time zone dependent values, then the
zone offset must always be supplied. Great care should be used to ensure that
the correct offset is used and not just the current zone offset. For example, if a
system in the U.S. Pacific time zone (America/Los_Angeles) generates a dateTime
value 2005-02-11T11:23:04-07:00 on 2005-08-16, it may be an error (since the
offset from UTC during August in that time zone is UTC-7, but the zone offset in
February is UTC-8).

• If there are time values (with no date portion) with a fixed UTC offset, then the
zone offset should always be indicated if and only if the time value really is fixed.
That is, this would not apply to a meeting scheduled in Pacific Time, but would
apply to a meeting that is always UTC-08:00 (and thus at 7:00 in the morning in
Pacific time during parts of the year).

1.4.2 Working with Date and Time Values that Require a Time Zone (and not a zone
offset)

 7
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

Documents or systems can also choose to accompany a time value with the appropriate
time zone identifier or TZID using a complex type. This is very important with recurring
times, such as calendar meeting times. If a regular meeting is at "08:00 Pacific Time", it
is insufficient to store and interchange just a zone offset.

Unfortunately, XML Schema date and time types do not provide for Olson IDs, so most
time operations cannot use TZIDs directly. Time zone identification in the date and time
types relies entirely on time zone offset from UTC. It is up to the document designer to
keep the TZID in a separate data field from the time value.

There are different ways to compare two <datetime, TZID> pairs. If both the date and
time are fixed (2004-09-31T01:30), then this can be done by computing the offsets on
that date and at those times, using the TZ database. This order then reflects whether
one datetime is (absolutely) before another.

If the dates are not fixed (such as <T01:30, TZID> �Enotice that the date value is
omitted) then in some sense, neither is 'before' the other, since each refers to a
repeating, interleaved set of points in time. The simplest comparison mechanism where
the dates may not be fully specified is simply to put both in canonical form, then order
them first by time then by TZID (alphabetical, caseless order). The Olson database does
not maintain a fixed canonical form; however, CLDR does provide such a form (see:
[CLDR]).

(It is also possible to have a looser comparison, whereby <time0, TZID0> is compared to
<time1, TZID1> over some interval of time: if one consistently has a smaller offset during
that period, it is considered to be less than the other value. However, there are cases
where this mechanism results in a partial ordering.)

1.4.3 Comparing Times

Conversion between or operations on data sets that mix values with and without zone
offsets present certain problems.

Example 1: Values with and without zone offsets
 <aDateTime>2005-06-07T13:14:27Z</aDateTime> <!-- with a zone offset -->
 <bDateTime>2005-06-07T11:00:00</bDateTime> <!-- without -->

If one wishes to write a comparison between the value of <aDateTime> and
<bDateTime>, then the two values must be reconciled to use the same reference point.
<aDateTime> uses UTC and can easily be converted to computer time or shifted to
another zone offset. <bDateTime> contains no indication of the zone offset. It may be
UTC or any other value (currently up to 14 hours different in either direction from UTC).

It is good practice to use an explicit zone offset wherever possible. If one is not
available, best practice is to use UTC as the implicit zone offset for conversions of this
nature. This is because the values are exactly centered in the range of possibilities and
because representation internally (as computer time) is usually based on UTC. Since a
single reference point has been used it may be possible to unwind the change later even
if erroneous conversion takes place. When working with multiple documents from
various sources, the "implicit" offset of the document may vary widely from that of the

 8
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

implementation doing the processing. If UTC is widely used, the chances of error are
reduced.

Content and query authors are warned that comparing or processing dateTimes with and
without time offsets may produce odd results and such processing should be avoided
whenever possible. Generating content that omits zone offset information (where it
exists) is a recipe for errors later. Of course, data such as the SQL types cited earlier
which is meant to represent wall time should continue to omit the zone offset. Query
writers can check for the presence (or absence) of zone offset and should do so to
modify dates and times explicitly (instead of allowing implicit conversion) whenever
possible.

1.5 Recommendations for XQuery / XSLT

Users of XQuery 1.0 and XSLT 2.0 and other standards should take the following
recommendations into account even if time-zone-sensitive data is rarely used. Sooner or
later some data will be affected by the issues described:

1. If possible, make sure that data always contains an explicit zone offset.
2. Do not apply operations based on date or time types (such as indexing) to

collections of data in which some data items may have zone offset information
and other data items may not have zone offset information.

3. If you have data that includes implicit and fixed explicit zone offsets, before
applying any date- or time-sensitive operations adjust the zone offset of the
implicit data to UTC with the functions for zone offset adjustment, cf. sec. 10.7 in
[XPathFO].

4. If you have data that contains both implicit and fixed explicit time zones and you
do not want to adjust the data subset which already has a zone offset, make sure
that you recognize this data subset, for example via the component extraction
functions, cf. sec. 10.5 in [XPathFO].

 9
From www.w3.org/TR/2005/NOTE-timezone-20051013/ 15 October 2005

A References (Non-Normative)

CLDR
Common Locale Data Repository. Unicode Consortium.

ISO 8601
ISO 8601:2004. Data elments and interchange formats�EInformation
interchange �ERepresentation of dates and times. ISO, 2004.

NOTE-datetime
Misha Wolf, Charles Wicksteed. Date and Time Formats. W3C Note 15
September 1997. Available at http://www.w3.org/TR/1998/NOTE-datetime-
19980827. The latest version of Note-datetime can be found at
http://www.w3.org/TR/NOTE-datetime.

RFC 3339
G. Klyne, C. Newman. Date and Time on the Internet: Timestamps, IETF
Standard, July 2002.

tzinfo
Time Zone Information Database . Available at http://www.twinsun.com/tz/tz-
link.htm.

UAX 35
Mark Davis, Locale Data Markup Language (LDML), Unicode Technical Standard
#35. Available at http://unicode.org/reports/tr35/tr35-5.html. The latest version of
LDML is available at http://unicode.org/reports/tr35/.

XML Schema
Paul V. Biron, Ashok Malhotra, editors. XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation 28 October 2004. Available at
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/. The latest version of
XML Schema is available at http://www.w3.org/TR/xmlschema-2/.

XPath 2.0
Anders Berglund, Mary F. Fernández, Scott Boag, et. al., editors. XPath 2.0.
W3C Working Draft 15 September 2005. Available at
http://www.w3.org/TR/2005/WD-xpath20-20050915/. The latest version of XPath
2.0 is available at http://www.w3.org/TR/xpath20/.

XPathFO
Ashok Malhotra, Jim Melton, Norman Walsh, editors. XQuery 1.0 and XPath 2.0
Functions and Operators. W3C Working Draft 15 September 2005. Available at
http://www.w3.org/TR/2005/WD-xpath-functions-20050915/. The latest version of
XPathFO is available at http://www.w3.org/TR/xpath-functions/.

XQuery
Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, Jérôme Siméon, editors. XQuery 1.0: An XML Query Language. Available
at http://www.w3.org/TR/2005/WD-xquery-20050915/. W3C Working Draft 15
September 2005. The latest version of XQuery is available at
http://www.w3.org/TR/xquery/.

XSLT 2.0
Michael Kay, editor. XSL Transformations (XSLT) Version 2.0. W3C Working
Draft 15 September 2005. Available at http://www.w3.org/TR/2005/WD-xslt20-
20050915/. The latest version of XSLT 2.0 is available at
http://www.w3.org/TR/xslt20/.

	Working with Time Zones
	13 Oct 2005 W3C Working Group
	Abstract
	Status of this Document
	Table of Contents
	1 Working With Time Zones
	1.1 Background
	1.2 Identifying Time Zones and Zone Offsets
	1.3 Incremental versus Field-Based Time
	1.4 Guidelines
	1.5 Recommendations for XQuery / XSLT

	A References (Non-Normative)

	
	W3C Title Page

