
http://www.w3.org/TR/xmlschema-1/ 1 3/28/2009 7:15 PM

XML Schema Part 1: Structures Second Edition

W3C Recommendation 28 October 2004

This version:
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Latest version:
http://www.w3.org/TR/xmlschema-1/

Previous version:
http://www.w3.org/TR/2004/PER-xmlschema-1-20040318/

Editors:
Henry S. Thompson, University of Edinburgh <ht@cogsci.ed.ac.uk>
David Beech, Oracle Corporation <David.Beech@oracle.com>
Murray Maloney, for Commerce One <murray@muzmo.com>
Noah Mendelsohn, Lotus Development Corporation
<Noah_Mendelsohn@lotus.com>

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative formats: XML, XHTML with visible
change markup, Independent copy of the schema for schema documents ,
and Independent copy of the DTD for schema documents . See also translations.

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and
document use rules apply.

Abstract

XML Schema: Structures specifies the XML Schema definition language, which offers
facilities for describing the structure and constraining the contents of XML 1.0 documents,
including those which exploit the XML Namespace facility. The schema language, which is
itself represented in XML 1.0 and uses namespaces, substantially reconstructs and
considerably extends the capabilities found in XML 1.0 document type definitions (DTDs).
This specification depends on XML Schema Part 2: Datatypes.

Status of this Document

This section describes the status of this document at the time of its publication. Other

http://www.w3.org/TR/xmlschema-1/ 2 3/28/2009 7:15 PM

documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This is a W3C Recommendation, which forms part of the Second Edition of XML Schema.
This document has been reviewed by W3C Members and other interested parties and has
been endorsed by the Director as a W3C Recommendation. It is a stable document and
may be used as reference material or cited as a normative reference from another
document. W3C's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment. This enhances the functionality
and interoperability of the Web.

This document has been produced by the W3C XML Schema Working Group as part of
the W3C XML Activity. The goals of the XML Schema language are discussed in the XML
Schema Requirements document. The authors of this document are the members of the
XML Schema Working Group. Different parts of this specification have different editors.

This document was produced under the 24 January 2002 Current Patent Practice (CPP)
as amended by the W3C Patent Policy Transition Procedure. The Working Group
maintains a public list of patent disclosures relevant to this document; that page also
includes instructions for disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains Essential Claim(s) with respect to this
specification should disclose the information in accordance with section 6 of the W3C
Patent Policy.

The English version of this specification is the only normative version. Information about
translations of this document is available at
http://www.w3.org/2001/05/xmlschema-translations .

This second edition is not a new version, it merely incorporates the changes dictated by
the corrections to errors found in the first edition as agreed by the XML Schema Working
Group, as a convenience to readers. A separate list of all such corrections is available at
http://www.w3.org/2001/05/xmlschema-errata.

The errata list for this second edition is available at
http://www.w3.org/2004/03/xmlschema-errata.

Please report errors in this document to www-xml-schema-comments@w3.org (archive).

Note: David Beech has retired since the publication of the first edition, and can be
reached at davidbeech@earthlink.net.

Murray Maloney is no longer affiliated with Commerce One; his contact details are
unchanged.

Noah Mendelsohn's affiliation has changed since the publication of the first edition.
He is now at IBM, and can be contacted at noah_mendelsohn@us.ibm.com

Table of Contents

1 Introduction

http://www.w3.org/TR/xmlschema-1/ 3 3/28/2009 7:15 PM

 1.1 Purpose
 1.2 Dependencies on Other Specifications
 1.3 Documentation Conventions and Terminology
2 Conceptual Framework
 2.1 Overview of XML Schema
 2.2 XML Schema Abstract Data Model
 2.3 Constraints and Validation Rules
 2.4 Conformance
 2.5 Names and Symbol Spaces
 2.6 Schema-Related Markup in Documents Being Validated
 2.7 Representation of Schemas on the World Wide Web
3 Schema Component Details
 3.1 Introduction
 3.2 Attribute Declarations
 3.3 Element Declarations
 3.4 Complex Type Definitions
 3.5 AttributeUses
 3.6 Attribute Group Definitions
 3.7 Model Group Definitions
 3.8 Model Groups
 3.9 Particles
 3.10 Wildcards
 3.11 Identity-constraint Definitions
 3.12 Notation Declarations
 3.13 Annotations
 3.14 Simple Type Definitions
 3.15 Schemas as a Whole
4 Schemas and Namespaces: Access and Composition
 4.1 Layer 1: Summary of the Schema-validity Assessment Core
 4.2 Layer 2: Schema Documents, Namespaces and Composition
 4.3 Layer 3: Schema Document Access and Web-interoperability
5 Schemas and Schema-validity Assessment
 5.1 Errors in Schema Construction and Structure
 5.2 Assessing Schema-Validity
 5.3 Missing Sub-components
 5.4 Responsibilities of Schema-aware Processors

Appendices

A Schema for Schemas (normative)
B References (normative)
C Outcome Tabulations (normative)
 C.1 Validation Rules
 C.2 Contributions to the post-schema-validation infoset
 C.3 Schema Representation Constraints
 C.4 Schema Component Constraints
D Required Information Set Items and Properties (normative)
E Schema Components Diagram (non-normative)
F Glossary (non-normative)
G DTD for Schemas (non-normative)

http://www.w3.org/TR/xmlschema-1/ 4 3/28/2009 7:15 PM

H Analysis of the Unique Particle Attribution Constraint (non-normative)
I References (non-normative)
J Acknowledgements (non-normative)

1 Introduction

This document sets out the structural part (XML Schema: Structures) of the XML Schema
definition language.

Chapter 2 presents a Conceptual Framework (§2) for XML Schemas, including an
introduction to the nature of XML Schemas and an introduction to the XML Schema
abstract data model, along with other terminology used throughout this document.

Chapter 3, Schema Component Details (§3), specifies the precise semantics of each
component of the abstract model, the representation of each component in XML, with
reference to a DTD and XML Schema for an XML Schema document type, along with a
detailed mapping between the elements and attribute vocabulary of this representation
and the components and properties of the abstract model.

Chapter 4 presents Schemas and Namespaces: Access and Composition (§4) , including
the connection between documents and schemas, the import, inclusion and redefinition of
declarations and definitions and the foundations of schema-validity assessment.

Chapter 5 discusses Schemas and Schema-validity Assessment (§5) , including the
overall approach to schema-validity assessment of documents, and responsibilities of
schema-aware processors.

The normative appendices include a Schema for Schemas (normative) (§A) for the XML
representation of schemas and References (normative) (§B).

The non-normative appendices include the DTD for Schemas (non-normative) (§G) and a
Glossary (non-normative) (§F).

This document is primarily intended as a language definition reference. As such, although
it contains a few examples, it is not primarily designed to serve as a motivating
introduction to the design and its features, or as a tutorial for new users. Rather it
presents a careful and fully explicit definition of that design, suitable for guiding
implementations. For those in search of a step-by-step introduction to the design, the
non-normative [XML Schema: Primer] is a much better starting point than this document.

1.1 Purpose

The purpose of XML Schema: Structures is to define the nature of XML schemas and
their component parts, provide an inventory of XML markup constructs with which to
represent schemas, and define the application of schemas to XML documents.

The purpose of an XML Schema: Structures schema is to define and describe a class of
XML documents by using schema components to constrain and document the meaning,
usage and relationships of their constituent parts: datatypes, elements and their content
and attributes and their values. Schemas may also provide for the specification of

http://www.w3.org/TR/xmlschema-1/ 5 3/28/2009 7:15 PM

additional document information, such as normalization and defaulting of attribute and
element values. Schemas have facilities for self-documentation. Thus, XML Schema:
Structures can be used to define, describe and catalogue XML vocabularies for classes of
XML documents.

Any application that consumes well-formed XML can use the XML Schema: Structures
formalism to express syntactic, structural and value constraints applicable to its document
instances. The XML Schema: Structures formalism allows a useful level of constraint
checking to be described and implemented for a wide spectrum of XML applications.
However, the language defined by this specification does not attempt to provide all the
facilities that might be needed by any application. Some applications may require
constraint capabilities not expressible in this language, and so may need to perform their
own additional validations.

1.2 Dependencies on Other Specifications

The definition of XML Schema: Structures depends on the following specifications:
[XML-Infoset], [XML-Namespaces], [XPath], and [XML Schemas: Datatypes].

See Required Information Set Items and Properties (normative) (§D) for a tabulation of
the information items and properties specified in [XML-Infoset] which this specification
requires as a precondition to schema-aware processing.

1.3 Documentation Conventions and Terminology

The section introduces the highlighting and typography as used in this document to
present technical material.

Special terms are defined at their point of introduction in the text. For example
[Definition:] a term is something used with a special meaning. The definition is labeled as
such and the term it defines is displayed in boldface. The end of the definition is not
specially marked in the displayed or printed text. Uses of defined terms are links to their
definitions, set off with middle dots, for instance ·term·.

Non-normative examples are set off in boxes and accompanied by a brief explanation:

Example
<schema targetNamespace="http://www.example.com/XMLSchema/1.0/mySchema">

And an explanation of the example.

The definition of each kind of schema component consists of a list of its properties and
their contents, followed by descriptions of the semantics of the properties:

Schema Component: Example

{example property}

Definition of the property.

http://www.w3.org/TR/xmlschema-1/ 6 3/28/2009 7:15 PM

References to properties of schema components are links to the relevant definition as
exemplified above, set off with curly braces, for instance {example property}.

The correspondence between an element information item which is part of the XML
representation of a schema and one or more schema components is presented in a
tableau which illustrates the element information item(s) involved. This is followed by a
tabulation of the correspondence between properties of the component and properties of
the information item. Where context may determine which of several different components
may arise, several tabulations, one per context, are given. The property correspondences
are normative, as are the illustrations of the XML representation element information
items.

In the XML representation, bold-face attribute names (e.g. count below) indicate a
required attribute information item, and the rest are optional. Where an attribute
information item has an enumerated type definition, the values are shown separated by
vertical bars, as for size below; if there is a default value, it is shown following a colon.
Where an attribute information item has a built-in simple type definition defined in [XML
Schemas: Datatypes], a hyperlink to its definition therein is given.

The allowed content of the information item is shown as a grammar fragment, using the
Kleene operators ?, * and +. Each element name therein is a hyperlink to its own
illustration.

Note: The illustrations are derived automatically from the Schema for Schemas
(normative) (§A). In the case of apparent conflict, the Schema for Schemas
(normative) (§A) takes precedence, as it, together with the ·Schema Representation
Constraints·, provide the normative statement of the form of XML representations.

XML Representation Summary: example Element Information Item
<example
 count = integer
 size = (large | medium | small) : medium>

 Content: (all | any*)
</example>

Example Schema Component

Property Representation
{example
property}

Description of what the property corresponds to, e.g. the value
of the size [attribute]

References to elements in the text are links to the relevant illustration as exemplified
above, set off with angle brackets, for instance <example>.

References to properties of information items as defined in [XML-Infoset] are notated as
links to the relevant section thereof, set off with square brackets, for example [children].

Properties which this specification defines for information items are introduced as follows:

PSVI Contributions for example information items

http://www.w3.org/TR/xmlschema-1/ 7 3/28/2009 7:15 PM

[new property]

The value the property gets.

References to properties of information items defined in this specification are notated as
links to their introduction as exemplified above, set off with square brackets, for example
[new property].

The following highlighting is used for non-normative commentary in this document:

Note: General comments directed to all readers.

Following [XML 1.0 (Second Edition)], within normative prose in this specification, the
words may and must are defined as follows:

may
Conforming documents and XML Schema-aware processors are permitted to but
need not behave as described.

must
Conforming documents and XML Schema-aware processors are required to behave
as described; otherwise they are in error.

Note however that this specification provides a definition of error and of conformant
processors' responsibilities with respect to errors (see Schemas and Schema-validity
Assessment (§5)) which is considerably more complex than that of [XML 1.0 (Second
Edition)].

2 Conceptual Framework

This chapter gives an overview of XML Schema: Structures at the level of its abstract data
model. Schema Component Details (§3) provides details on this model, including a
normative representation in XML for the components of the model. Readers interested
primarily in learning to write schema documents may wish to first read [XML Schema:
Primer] for a tutorial introduction, and only then consult the sub-sections of Schema
Component Details (§3) named XML Representation of ... for the details.

2.1 Overview of XML Schema

An XML Schema consists of components such as type definitions and element
declarations. These can be used to assess the validity of well-formed element and
attribute information items (as defined in [XML-Infoset]), and furthermore may specify
augmentations to those items and their descendants. This augmentation makes explicit
information which may have been implicit in the original document, such as normalized
and/or default values for attributes and elements and the types of element and attribute
information items. [Definition:] We refer to the augmented infoset which results from
conformant processing as defined in this specification as the post-schema-validation
infoset, or PSVI.

Schema-validity assessment has two aspects:

http://www.w3.org/TR/xmlschema-1/ 8 3/28/2009 7:15 PM

1 Determining local schema-validity, that is whether an element or attribute information
item satisfies the constraints embodied in the relevant components of an XML Schema;

2 Synthesizing an overall validation outcome for the item, combining local schema-validity
with the results of schema-validity assessments of its descendants, if any, and adding
appropriate augmentations to the infoset to record this outcome.

Throughout this specification, [Definition:] the word valid and its derivatives are used to
refer to clause 1 above, the determination of local schema-validity .

Throughout this specification, [Definition:] the word assessment is used to refer to the
overall process of local validation, schema-validity assessment and infoset augmentation .

2.2 XML Schema Abstract Data Model
 2.2.1 Type Definition Components
 2.2.2 Declaration Components
 2.2.3 Model Group Components
 2.2.4 Identity-constraint Definition Components
 2.2.5 Group Definition Components
 2.2.6 Annotation Components

This specification builds on [XML 1.0 (Second Edition)] and [XML-Namespaces]. The
concepts and definitions used herein regarding XML are framed at the abstract level of
information items as defined in [XML-Infoset]. By definition, this use of the infoset provides
a priori guarantees of well-formedness (as defined in [XML 1.0 (Second Edition)]) and
namespace conformance (as defined in [XML-Namespaces]) for all candidates for
·assessment· and for all ·schema documents·.

Just as [XML 1.0 (Second Edition)] and [XML-Namespaces] can be described in terms of
information items, XML Schemas can be described in terms of an abstract data model. In
defining XML Schemas in terms of an abstract data model, this specification rigorously
specifies the information which must be available to a conforming XML Schema
processor. The abstract model for schemas is conceptual only, and does not mandate any
particular implementation or representation of this information. To facilitate interoperation
and sharing of schema information, a normative XML interchange format for schemas is
provided.

[Definition:] Schema component is the generic term for the building blocks that
comprise the abstract data model of the schema. [Definition:] An XML Schema is a set
of ·schema components·. There are 13 kinds of component in all, falling into three groups.
The primary components, which may (type definitions) or must (element and attribute
declarations) have names are as follows:

Simple type definitions
Complex type definitions
Attribute declarations
Element declarations

The secondary components, which must have names, are as follows:

Attribute group definitions
Identity-constraint definitions

http://www.w3.org/TR/xmlschema-1/ 9 3/28/2009 7:15 PM

Model group definitions
Notation declarations

Finally, the "helper" components provide small parts of other components; they are not
independent of their context:

Annotations
Model groups
Particles
Wildcards
Attribute Uses

During ·validation·, [Definition:] declaration components are associated by (qualified)
name to information items being ·validated·.

On the other hand, [Definition:] definition components define internal schema
components that can be used in other schema components .

[Definition:] Declarations and definitions may have and be identified by names, which are
NCNames as defined by [XML-Namespaces].

[Definition:] Several kinds of component have a target namespace, which is either
·absent· or a namespace name, also as defined by [XML-Namespaces]. The ·target
namespace· serves to identify the namespace within which the association between the
component and its name exists. In the case of declarations, this in turn determines the
namespace name of, for example, the element information items it may ·validate·.

Note: At the abstract level, there is no requirement that the components of a schema
share a ·target namespace·. Any schema for use in ·assessment· of documents
containing names from more than one namespace will of necessity include
components with different ·target namespaces·. This contrasts with the situation at
the level of the XML representation of components, in which each schema document
contributes definitions and declarations to a single target namespace.

·Validation·, defined in detail in Schema Component Details (§3), is a relation between
information items and schema components. For example, an attribute information item
may ·validate· with respect to an attribute declaration, a list of element information items
may ·validate· with respect to a content model, and so on. The following sections briefly
introduce the kinds of components in the schema abstract data model, other major
features of the abstract model, and how they contribute to ·validation·.

2.2.1 Type Definition Components

The abstract model provides two kinds of type definition component: simple and complex.

[Definition:] This specification uses the phrase type definition in cases where no
distinction need be made between simple and complex types .

Type definitions form a hierarchy with a single root. The subsections below first describe
characteristics of that hierarchy, then provide an introduction to simple and complex type
definitions themselves.

http://www.w3.org/TR/xmlschema-1/ 10 3/28/2009 7:15 PM

2.2.1.1 Type Definition Hierarchy

[Definition:] Except for a distinguished ·ur-type definition·, every ·type definition· is, by
construction, either a ·restriction· or an ·extension· of some other type definition. The
graph of these relationships forms a tree known as the Type Definition Hierarchy.

[Definition:] A type definition whose declarations or facets are in a one-to-one relation
with those of another specified type definition, with each in turn restricting the possibilities
of the one it corresponds to, is said to be a restriction. The specific restrictions might
include narrowed ranges or reduced alternatives. Members of a type, A, whose definition
is a ·restriction· of the definition of another type, B, are always members of type B as well.

[Definition:] A complex type definition which allows element or attribute content in addition
to that allowed by another specified type definition is said to be an extension.

[Definition:] A distinguished complex type definition, the ur-type definition, whose name
is anyType in the XML Schema namespace, is present in each ·XML Schema·, serving as
the root of the type definition hierarchy for that schema .

[Definition:] A type definition used as the basis for an ·extension· or ·restriction· is known
as the base type definition of that definition.

2.2.1.2 Simple Type Definition

A simple type definition is a set of constraints on strings and information about the values
they encode, applicable to the ·normalized value· of an attribute information item or of an
element information item with no element children. Informally, it applies to the values of
attributes and the text-only content of elements.

Each simple type definition, whether built-in (that is, defined in [XML Schemas:
Datatypes]) or user-defined, is a ·restriction· of some particular simple ·base type
definition·. For the built-in primitive type definitions, this is [Definition:] the simple ur-type
definition, a special restriction of the ·ur-type definition·, whose name is anySimpleType
in the XML Schema namespace. The ·simple ur-type definition· is considered to have an
unconstrained lexical space, and a value space consisting of the union of the value
spaces of all the built-in primitive datatypes and the set of all lists of all members of the
value spaces of all the built-in primitive datatypes.

The mapping from lexical space to value space is unspecified for items whose type
definition is the ·simple ur-type definition·. Accordingly this specification does not constrain
processors' behaviour in areas where this mapping is implicated, for example checking
such items against enumerations, constructing default attributes or elements whose
declared type definition is the ·simple ur-type definition·, checking identity constraints
involving such items.

Note: The Working Group expects to return to this area in a future version of this
specification.

Simple types may also be defined whose members are lists of items themselves
constrained by some other simple type definition, or whose membership is the union of

http://www.w3.org/TR/xmlschema-1/ 11 3/28/2009 7:15 PM

the memberships of some other simple type definitions. Such list and union simple type
definitions are also restrictions of the ·simple ur-type definition·.

For detailed information on simple type definitions, see Simple Type Definitions (§3.14)
and [XML Schemas: Datatypes]. The latter also defines an extensive inventory of
pre-defined simple types.

2.2.1.3 Complex Type Definition

A complex type definition is a set of attribute declarations and a content type, applicable to
the [attributes] and [children] of an element information item respectively. The content type
may require the [children] to contain neither element nor character information items (that
is, to be empty), to be a string which belongs to a particular simple type or to contain a
sequence of element information items which conforms to a particular model group, with
or without character information items as well.

Each complex type definition other than the ·ur-type definition· is either

a restriction of a complex ·base type definition·

or

an ·extension· of a simple or complex ·base type definition·.

A complex type which extends another does so by having additional content model
particles at the end of the other definition's content model, or by having additional attribute
declarations, or both.

Note: This specification allows only appending, and not other kinds of extensions.
This decision simplifies application processing required to cast instances from
derived to base type. Future versions may allow more kinds of extension, requiring
more complex transformations to effect casting.

For detailed information on complex type definitions, see Complex Type Definitions (§3.4).

2.2.2 Declaration Components

There are three kinds of declaration component: element, attribute, and notation. Each is
described in a section below. Also included is a discussion of element substitution groups,
which is a feature provided in conjunction with element declarations.

2.2.2.1 Element Declaration

An element declaration is an association of a name with a type definition, either simple or
complex, an (optional) default value and a (possibly empty) set of identity-constraint
definitions. The association is either global or scoped to a containing complex type
definition. A top-level element declaration with name 'A' is broadly comparable to a pair of
DTD declarations as follows, where the associated type definition fills in the ellipses:

<!ELEMENT A . . .>

http://www.w3.org/TR/xmlschema-1/ 12 3/28/2009 7:15 PM

<!ATTLIST A . . .>

Element declarations contribute to ·validation· as part of model group ·validation·, when
their defaults and type components are checked against an element information item with
a matching name and namespace, and by triggering identity-constraint definition
·validation·.

For detailed information on element declarations, see Element Declarations (§3.3).

2.2.2.2 Element Substitution Group

In XML 1.0, the name and content of an element must correspond exactly to the element
type referenced in the corresponding content model.

[Definition:] Through the new mechanism of element substitution groups, XML
Schemas provides a more powerful model supporting substitution of one named element
for another. Any top-level element declaration can serve as the defining member, or head,
for an element substitution group. Other top-level element declarations, regardless of
target namespace, can be designated as members of the substitution group headed by
this element. In a suitably enabled content model, a reference to the head ·validates· not
just the head itself, but elements corresponding to any other member of the substitution
group as well.

All such members must have type definitions which are either the same as the head's type
definition or restrictions or extensions of it. Therefore, although the names of elements
can vary widely as new namespaces and members of the substitution group are defined,
the content of member elements is strictly limited according to the type definition of the
substitution group head.

Note that element substitution groups are not represented as separate components. They
are specified in the property values for element declarations (see Element Declarations
(§3.3)).

2.2.2.3 Attribute Declaration

An attribute declaration is an association between a name and a simple type definition,
together with occurrence information and (optionally) a default value. The association is
either global, or local to its containing complex type definition. Attribute declarations
contribute to ·validation· as part of complex type definition ·validation·, when their
occurrence, defaults and type components are checked against an attribute information
item with a matching name and namespace.

For detailed information on attribute declarations, see Attribute Declarations (§3.2).

2.2.2.4 Notation Declaration

A notation declaration is an association between a name and an identifier for a notation.
For an attribute information item to be ·valid· with respect to a NOTATION simple type
definition, its value must have been declared with a notation declaration.

http://www.w3.org/TR/xmlschema-1/ 13 3/28/2009 7:15 PM

For detailed information on notation declarations, see Notation Declarations (§3.12).

2.2.3 Model Group Components

The model group, particle, and wildcard components contribute to the portion of a
complex type definition that controls an element information item's content.

2.2.3.1 Model Group

A model group is a constraint in the form of a grammar fragment that applies to lists of
element information items. It consists of a list of particles, i.e. element declarations,
wildcards and model groups. There are three varieties of model group:

Sequence (the element information items match the particles in sequential order);
Conjunction (the element information items match the particles, in any order);
Disjunction (the element information items match one of the particles).

For detailed information on model groups, see Model Groups (§3.8).

2.2.3.2 Particle

A particle is a term in the grammar for element content, consisting of either an element
declaration, a wildcard or a model group, together with occurrence constraints. Particles
contribute to ·validation· as part of complex type definition ·validation·, when they allow
anywhere from zero to many element information items or sequences thereof, depending
on their contents and occurrence constraints.

[Definition:] A particle can be used in a complex type definition to constrain the
·validation· of the [children] of an element information item; such a particle is called a
content model.

Note: XML Schema: Structures ·content models· are similar to but more expressive
than [XML 1.0 (Second Edition)] content models; unlike [XML 1.0 (Second Edition)],
XML Schema: Structures applies ·content models· to the ·validation· of both mixed
and element-only content.

For detailed information on particles, see Particles (§3.9).

2.2.3.3 Attribute Use

An attribute use plays a role similar to that of a particle, but for attribute declarations: an
attribute declaration within a complex type definition is embedded within an attribute use,
which specifies whether the declaration requires or merely allows its attribute, and
whether it has a default or fixed value.

2.2.3.4 Wildcard

http://www.w3.org/TR/xmlschema-1/ 14 3/28/2009 7:15 PM

A wildcard is a special kind of particle which matches element and attribute information
items dependent on their namespace name, independently of their local names.

For detailed information on wildcards, see Wildcards (§3.10).

2.2.4 Identity-constraint Definition Components

An identity-constraint definition is an association between a name and one of several
varieties of identity-constraint related to uniqueness and reference. All the varieties use
[XPath] expressions to pick out sets of information items relative to particular target
element information items which are unique, or a key, or a ·valid· reference, within a
specified scope. An element information item is only ·valid· with respect to an element
declaration with identity-constraint definitions if those definitions are all satisfied for all the
descendants of that element information item which they pick out.

For detailed information on identity-constraint definitions, see Identity-constraint
Definitions (§3.11).

2.2.5 Group Definition Components

There are two kinds of convenience definitions provided to enable the re-use of pieces of
complex type definitions: model group definitions and attribute group definitions.

2.2.5.1 Model Group Definition

A model group definition is an association between a name and a model group, enabling
re-use of the same model group in several complex type definitions.

For detailed information on model group definitions, see Model Group Definitions (§3.7).

2.2.5.2 Attribute Group Definition

An attribute group definition is an association between a name and a set of attribute
declarations, enabling re-use of the same set in several complex type definitions.

For detailed information on attribute group definitions, see Attribute Group Definitions
(§3.6).

2.2.6 Annotation Components

An annotation is information for human and/or mechanical consumers. The interpretation
of such information is not defined in this specification.

For detailed information on annotations, see Annotations (§3.13).

2.3 Constraints and Validation Rules

The [XML 1.0 (Second Edition)] specification describes two kinds of constraints on XML

http://www.w3.org/TR/xmlschema-1/ 15 3/28/2009 7:15 PM

documents: well-formedness and validity constraints. Informally, the well-formedness
constraints are those imposed by the definition of XML itself (such as the rules for the use
of the < and > characters and the rules for proper nesting of elements), while validity
constraints are the further constraints on document structure provided by a particular
DTD.

The preceding section focused on ·validation·, that is the constraints on information items
which schema components supply. In fact however this specification provides four
different kinds of normative statements about schema components, their representations
in XML and their contribution to the ·validation· of information items:

Schema Component Constraint
[Definition:] Constraints on the schema components themselves, i.e. conditions
components must satisfy to be components at all. Located in the sixth sub-section of
the per-component sections of Schema Component Details (§3) and tabulated in
Schema Component Constraints (§C.4).

Schema Representation Constraint
[Definition:] Constraints on the representation of schema components in XML
beyond those which are expressed in Schema for Schemas (normative) (§A) .
Located in the third sub-section of the per-component sections of Schema
Component Details (§3) and tabulated in Schema Representation Constraints
(§C.3).

Validation Rules
[Definition:] Contributions to ·validation· associated with schema components.
Located in the fourth sub-section of the per-component sections of Schema
Component Details (§3) and tabulated in Validation Rules (§C.1).

Schema Information Set Contribution
[Definition:] Augmentations to ·post-schema-validation infoset ·s expressed by
schema components, which follow as a consequence of ·validation· and/or
·assessment·. Located in the fifth sub-section of the per-component sections of
Schema Component Details (§3) and tabulated in Contributions to the
post-schema-validation infoset (§C.2).

The last of these, schema information set contributions, are not as new as they might at
first seem. XML 1.0 validation augments the XML 1.0 information set in similar ways, for
example by providing values for attributes not present in instances, and by implicitly
exploiting type information for normalization or access. (As an example of the latter case,
consider the effect of NMTOKENS on attribute white space, and the semantics of ID and
IDREF.) By including schema information set contributions, this specification makes explicit
some features that XML 1.0 left implicit.

2.4 Conformance

This specification describes three levels of conformance for schema aware processors.
The first is required of all processors. Support for the other two will depend on the
application environments for which the processor is intended.

[Definition:] Minimally conforming processors must completely and correctly implement
the ·Schema Component Constraints·, ·Validation Rules·, and ·Schema Information Set
Contributions· contained in this specification.

http://www.w3.org/TR/xmlschema-1/ 16 3/28/2009 7:15 PM

[Definition:] ·Minimally conforming· processors which accept schemas represented in the
form of XML documents as described in Layer 2: Schema Documents, Namespaces and
Composition (§4.2) are additionally said to provide conformance to the XML
Representation of Schemas. Such processors must, when processing schema
documents, completely and correctly implement all ·Schema Representation Constraints·
in this specification, and must adhere exactly to the specifications in Schema Component
Details (§3) for mapping the contents of such documents to ·schema components· for use
in ·validation· and ·assessment·.

Note: By separating the conformance requirements relating to the concrete syntax of
XML schema documents, this specification admits processors which use schemas
stored in optimized binary representations, dynamically created schemas represented
as programming language data structures, or implementations in which particular
schemas are compiled into executable code such as C or Java. Such processors can
be said to be ·minimally conforming· but not necessarily in ·conformance to the XML
Representation of Schemas·.

[Definition:] Fully conforming processors are network-enabled processors which are not
only both ·minimally conforming· and ·in conformance to the XML Representation of
Schemas·, but which additionally must be capable of accessing schema documents from
the World Wide Web according to Representation of Schemas on the World Wide Web
(§2.7) and How schema definitions are located on the Web (§4.3.2) . .

Note: Although this specification provides just these three standard levels of
conformance, it is anticipated that other conventions can be established in the future.
For example, the World Wide Web Consortium is considering conventions for
packaging on the Web a variety of resources relating to individual documents and
namespaces. Should such developments lead to new conventions for representing
schemas, or for accessing them on the Web, new levels of conformance can be
established and named at that time. There is no need to modify or republish this
specification to define such additional levels of conformance.

See Schemas and Namespaces: Access and Composition (§4) for a more detailed
explanation of the mechanisms supporting these levels of conformance.

2.5 Names and Symbol Spaces

As discussed in XML Schema Abstract Data Model (§2.2), most schema components
(may) have ·names·. If all such names were assigned from the same "pool", then it would
be impossible to have, for example, a simple type definition and an element declaration
both with the name "title" in a given ·target namespace·.

Therefore [Definition:] this specification introduces the term symbol space to denote a
collection of names, each of which is unique with respect to the others . A symbol space is
similar to the non-normative concept of namespace partition introduced in
[XML-Namespaces]. There is a single distinct symbol space within a given ·target
namespace· for each kind of definition and declaration component identified in XML
Schema Abstract Data Model (§2.2), except that within a target namespace, simple type
definitions and complex type definitions share a symbol space. Within a given symbol
space, names are unique, but the same name may appear in more than one symbol

http://www.w3.org/TR/xmlschema-1/ 17 3/28/2009 7:15 PM

space without conflict. For example, the same name can appear in both a type definition
and an element declaration, without conflict or necessary relation between the two.

Locally scoped attribute and element declarations are special with regard to symbol
spaces. Every complex type definition defines its own local attribute and element
declaration symbol spaces, where these symbol spaces are distinct from each other and
from any of the other symbol spaces. So, for example, two complex type definitions
having the same target namespace can contain a local attribute declaration for the
unqualified name "priority", or contain a local element declaration for the name "address",
without conflict or necessary relation between the two.

2.6 Schema-Related Markup in Documents Being Validated
 2.6.1 xsi:type
 2.6.2 xsi:nil
 2.6.3 xsi:schemaLocation, xsi:noNamespaceSchemaLocation

The XML representation of schema components uses a vocabulary identified by the
namespace name http://www.w3.org/2001/XMLSchema. For brevity, the text and examples
in this specification use the prefix xs: to stand for this namespace; in practice, any prefix
can be used.

XML Schema: Structures also defines several attributes for direct use in any XML
documents. These attributes are in a different namespace, which has the namespace
name http://www.w3.org/2001/XMLSchema-instance. For brevity, the text and examples in
this specification use the prefix xsi: to stand for this latter namespace; in practice, any
prefix can be used. All schema processors have appropriate attribute declarations for
these attributes built in, see Attribute Declaration for the 'type' attribute (§3.2.7), Attribute
Declaration for the 'nil' attribute (§3.2.7) , Attribute Declaration for the 'schemaLocation'
attribute (§3.2.7) and Attribute Declaration for the 'noNamespaceSchemaLocation'
attribute (§3.2.7).

2.6.1 xsi:type

The Simple Type Definition (§2.2.1.2) or Complex Type Definition (§2.2.1.3) used in
·validation· of an element is usually determined by reference to the appropriate schema
components. An element information item in an instance may, however, explicitly assert
its type using the attribute xsi:type. The value of this attribute is a ·QName·; see QName
Interpretation (§3.15.3) for the means by which the ·QName· is associated with a type
definition.

2.6.2 xsi:nil

XML Schema: Structures introduces a mechanism for signaling that an element should be
accepted as ·valid· when it has no content despite a content type which does not require
or even necessarily allow empty content. An element may be ·valid· without content if it
has the attribute xsi:nil with the value true. An element so labeled must be empty, but
can carry attributes if permitted by the corresponding complex type.

2.6.3 xsi:schemaLocation, xsi:noNamespaceSchemaLocation

http://www.w3.org/TR/xmlschema-1/ 18 3/28/2009 7:15 PM

The xsi:schemaLocation and xsi:noNamespaceSchemaLocation attributes can be used in a
document to provide hints as to the physical location of schema documents which may be
used for ·assessment·. See How schema definitions are located on the Web (§4.3.2) for
details on the use of these attributes.

2.7 Representation of Schemas on the World Wide Web

On the World Wide Web, schemas are conventionally represented as XML documents
(preferably of MIME type application/xml or text/xml, but see clause 1.1 of Inclusion
Constraints and Semantics (§4.2.1)), conforming to the specifications in Layer 2: Schema
Documents, Namespaces and Composition (§4.2) . For more information on the
representation and use of schema documents on the World Wide Web see Standards for
representation of schemas and retrieval of schema documents on the Web (§4.3.1) and
How schema definitions are located on the Web (§4.3.2) .

3 Schema Component Details

3.1 Introduction
 3.1.1 Components and Properties
 3.1.2 XML Representations of Components
 3.1.3 The Mapping between XML Representations and Components
 3.1.4 White Space Normalization during Validation

The following sections provide full details on the composition of all schema components,
together with their XML representations and their contributions to ·assessment·. Each
section is devoted to a single component, with separate subsections for

properties: their values and significance1.
XML representation and the mapping to properties2.
constraints on representation3.
validation rules4.
·post-schema-validation infoset · contributions5.
constraints on the components themselves6.

The sub-sections immediately below introduce conventions and terminology used
throughout the component sections.

3.1.1 Components and Properties

Components are defined in terms of their properties, and each property in turn is defined
by giving its range, that is the values it may have. This can be understood as defining a
schema as a labeled directed graph, where the root is a schema, every other vertex is a
schema component or a literal (string, boolean, number) and every labeled edge is a
property. The graph is not acyclic: multiple copies of components with the same name in
the same ·symbol space· may not exist, so in some cases re-entrant chains of properties
must exist. Equality of components for the purposes of this specification is always defined
as equality of names (including target namespaces) within symbol spaces.

Note: A schema and its components as defined in this chapter are an idealization of

http://www.w3.org/TR/xmlschema-1/ 19 3/28/2009 7:15 PM

the information a schema-aware processor requires: implementations are not
constrained in how they provide it. In particular, no implications about literal
embedding versus indirection follow from the use below of language such as
"properties . . . having . . . components as values".

[Definition:] Throughout this specification, the term absent is used as a distinguished
property value denoting absence.

Any property not identified as optional is required to be present; optional properties which
are not present are taken to have ·absent· as their value. Any property identified as a
having a set, subset or list value may have an empty value unless this is explicitly ruled
out: this is not the same as ·absent·. Any property value identified as a superset or subset
of some set may be equal to that set, unless a proper superset or subset is explicitly
called for. By 'string' in Part 1 of this specification is meant a sequence of ISO 10646
characters identified as legal XML characters in [XML 1.0 (Second Edition)].

3.1.2 XML Representations of Components

The principal purpose of XML Schema: Structures is to define a set of schema
components that constrain the contents of instances and augment the information sets
thereof. Although no external representation of schemas is required for this purpose, such
representations will obviously be widely used. To provide for this in an appropriate and
interoperable way, this specification provides a normative XML representation for
schemas which makes provision for every kind of schema component. [Definition:] A
document in this form (i.e. a <schema> element information item) is a schema
document. For the schema document as a whole, and its constituents, the sections below
define correspondences between element information items (with declarations in Schema
for Schemas (normative) (§A) and DTD for Schemas (non-normative) (§G)) and schema
components. All the element information items in the XML representation of a schema
must be in the XML Schema namespace, that is their [namespace name] must be
http://www.w3.org/2001/XMLSchema. Although a common way of creating the XML Infosets
which are or contain ·schema documents· will be using an XML parser, this is not
required: any mechanism which constructs conformant infosets as defined in
[XML-Infoset] is a possible starting point.

Two aspects of the XML representations of components presented in the following
sections are constant across them all:

All of them allow attributes qualified with namespace names other than the XML
Schema namespace itself: these appear as annotations in the corresponding
schema component;

1.

All of them allow an <annotation> as their first child, for human-readable
documentation and/or machine-targeted information.

2.

3.1.3 The Mapping between XML Representations and Components

For each kind of schema component there is a corresponding normative XML
representation. The sections below describe the correspondences between the properties
of each kind of schema component on the one hand and the properties of information
items in that XML representation on the other, together with constraints on that

http://www.w3.org/TR/xmlschema-1/ 20 3/28/2009 7:15 PM

representation above and beyond those implicit in the Schema for Schemas (normative)
(§A).

The language used is as if the correspondences were mappings from XML representation
to schema component, but the mapping in the other direction, and therefore the
correspondence in the abstract, can always be constructed therefrom.

In discussing the mapping from XML representations to schema components below, the
value of a component property is often determined by the value of an attribute information
item, one of the [attributes] of an element information item. Since schema documents are
constrained by the Schema for Schemas (normative) (§A) , there is always a simple type
definition associated with any such attribute information item. [Definition:] The phrase
actual value is used to refer to the member of the value space of the simple type
definition associated with an attribute information item which corresponds to its
·normalized value·. This will often be a string, but may also be an integer, a boolean, a
URI reference, etc. This term is also occasionally used with respect to element or attribute
information items in a document being ·validated·.

Many properties are identified below as having other schema components or sets of
components as values. For the purposes of exposition, the definitions in this section
assume that (unless the property is explicitly identified as optional) all such values are in
fact present. When schema components are constructed from XML representations
involving reference by name to other components, this assumption may be violated if one
or more references cannot be resolved. This specification addresses the matter of
missing components in a uniform manner, described in Missing Sub-components (§5.3):
no mention of handling missing components will be found in the individual component
descriptions below.

Forward reference to named definitions and declarations is allowed, both within and
between ·schema documents·. By the time the component corresponding to an XML
representation which contains a forward reference is actually needed for ·validation· an
appropriately-named component may have become available to discharge the reference:
see Schemas and Namespaces: Access and Composition (§4) for details.

3.1.4 White Space Normalization during Validation

Throughout this specification, [Definition:] the initial value of some attribute information
item is the value of the [normalized value] property of that item. Similarly, the initial value
of an element information item is the string composed of, in order, the [character code] of
each character information item in the [children] of that element information item.

The above definition means that comments and processing instructions, even in the midst
of text, are ignored for all ·validation· purposes.

[Definition:] The normalized value of an element or attribute information item is an ·initial
value· whose white space, if any, has been normalized according to the value of the
whiteSpace facet of the simple type definition used in its ·validation·:

preserve
No normalization is done, the value is the ·normalized value·

replace

http://www.w3.org/TR/xmlschema-1/ 21 3/28/2009 7:15 PM

All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return) are replaced
with #x20 (space).

collapse
Subsequent to the replacements specified above under replace, contiguous
sequences of #x20s are collapsed to a single #x20, and initial and/or final #x20s are
deleted.

If the simple type definition used in an item's ·validation· is the ·simple ur-type definition·,
the ·normalized value· must be determined as in the preserve case above.

There are three alternative validation rules which may supply the necessary background
for the above: Attribute Locally Valid (§3.2.4) (clause 3), Element Locally Valid (Type)
(§3.3.4) (clause 3.1.3) or Element Locally Valid (Complex Type) (§3.4.4) (clause 2.2).

These three levels of normalization correspond to the processing mandated in XML 1.0 for
element content, CDATA attribute content and tokenized attributed content, respectively.
See Attribute Value Normalization in [XML 1.0 (Second Edition)] for the precedent for
replace and collapse for attributes. Extending this processing to element content is
necessary to ensure a consistent ·validation· semantics for simple types, regardless of
whether they are applied to attributes or elements. Performing it twice in the case of
attributes whose [normalized value] has already been subject to replacement or collapse
on the basis of information in a DTD is necessary to ensure consistent treatment of
attributes regardless of the extent to which DTD-based information has been made use of
during infoset construction.

Note: Even when DTD-based information has been appealed to, and Attribute Value
Normalization has taken place, the above definition of ·normalized value· may mean
further normalization takes place, as for instance when character entity references in
attribute values result in white space characters other than spaces in their ·initial
value·s.

3.2 Attribute Declarations
 3.2.1 The Attribute Declaration Schema Component
 3.2.2 XML Representation of Attribute Declaration Schema Components
 3.2.3 Constraints on XML Representations of Attribute Declarations
 3.2.4 Attribute Declaration Validation Rules
 3.2.5 Attribute Declaration Information Set Contributions
 3.2.6 Constraints on Attribute Declaration Schema Components
 3.2.7 Built-in Attribute Declarations

Attribute declarations provide for:

Local ·validation· of attribute information item values using a simple type definition;
Specifying default or fixed values for attribute information items.

Example
<xs:attribute name="age" type="xs:positiveInteger" use="required"/>

The XML representation of an attribute declaration.

http://www.w3.org/TR/xmlschema-1/ 22 3/28/2009 7:15 PM

3.2.1 The Attribute Declaration Schema Component

The attribute declaration schema component has the following properties:

Schema Component: Attribute Declaration

{name}

An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{type definition}

A simple type definition.
{scope}

Optional. Either global or a complex type definition.
{value constraint}

Optional. A pair consisting of a value and one of default, fixed.
{annotation}

Optional. An annotation.

The {name} property must match the local part of the names of attributes being
·validated·.

The value of the attribute must conform to the supplied {type definition}.

A non-·absent· value of the {target namespace} property provides for ·validation· of
namespace-qualified attribute information items (which must be explicitly prefixed in the
character-level form of XML documents). ·Absent· values of {target namespace} ·validate·
unqualified (unprefixed) items.

A {scope} of global identifies attribute declarations available for use in complex type
definitions throughout the schema. Locally scoped declarations are available for use only
within the complex type definition identified by the {scope} property. This property is
·absent· in the case of declarations within attribute group definitions: their scope will be
determined when they are used in the construction of complex type definitions.

{value constraint} reproduces the functions of XML 1.0 default and #FIXED attribute values.
default specifies that the attribute is to appear unconditionally in the
·post-schema-validation infoset ·, with the supplied value used whenever the attribute is
not actually present; fixed indicates that the attribute value if present must equal the
supplied constraint value, and if absent receives the supplied value as for default. Note
that it is values that are supplied and/or checked, not strings.

See Annotations (§3.13) for information on the role of the {annotation} property.

Note: A more complete and formal presentation of the semantics of {name}, {target
namespace} and {value constraint} is provided in conjunction with other aspects of
complex type ·validation· (see Element Locally Valid (Complex Type) (§3.4.4).)

[XML-Infoset] distinguishes attributes with names such as xmlns or xmlns:xsl from
ordinary attributes, identifying them as [namespace attributes]. Accordingly, it is

http://www.w3.org/TR/xmlschema-1/ 23 3/28/2009 7:15 PM

unnecessary and in fact not possible for schemas to contain attribute declarations
corresponding to such namespace declarations, see xmlns Not Allowed (§3.2.6). No
means is provided in this specification to supply a default value for a namespace
declaration.

3.2.2 XML Representation of Attribute Declaration Schema Components

The XML representation for an attribute declaration schema component is an <attribute>
element information item. It specifies a simple type definition for an attribute either by
reference or explicitly, and may provide default information. The correspondences
between the properties of the information item and properties of the component are as
follows:

XML Representation Summary: attribute Element Information Item
<attribute
 default = string
 fixed = string
 form = (qualified | unqualified)
 id = ID
 name = NCName
 ref = QName
 type = QName
 use = (optional | prohibited | required) : optional
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType?)
</attribute>

If the <attribute> element information item has <schema> as its parent, the
corresponding schema component is as follows:

Attribute Declaration Schema Component

Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute] of the parent
<schema> element information item, or ·absent· if there is none.

{type
definition}

The simple type definition corresponding to the <simpleType>
element information item in the [children], if present, otherwise
the simple type definition ·resolved· to by the ·actual value· of the
type [attribute], if present, otherwise the ·simple ur-type
definition·.

{scope} global.

{value
constraint}

If there is a default or a fixed [attribute], then a pair consisting
of the ·actual value· (with respect to the {type definition}) of that
[attribute] and either default or fixed, as appropriate, otherwise
·absent·.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

http://www.w3.org/TR/xmlschema-1/ 24 3/28/2009 7:15 PM

otherwise if the <attribute> element information item has <complexType> or
<attributeGroup> as an ancestor and the ref [attribute] is absent, it corresponds to
an attribute use with properties as follows (unless use='prohibited', in which case
the item corresponds to nothing at all):

Attribute Use Schema Component

Property Representation
{required} true if the use [attribute] is present with ·actual value· required,

otherwise false.

{attribute
declaration}

See the Attribute Declaration mapping immediately below.

{value
constraint}

If there is a default or a fixed [attribute], then a pair consisting
of the ·actual value· (with respect to the {type definition} of the
{attribute declaration}) of that [attribute] and either default or
fixed, as appropriate, otherwise ·absent·.

Attribute Declaration Schema Component

Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

If form is present and its ·actual value· is qualified, or if form is
absent and the ·actual value· of attributeFormDefault on the
<schema> ancestor is qualified, then the ·actual value· of the
targetNamespace [attribute] of the parent <schema> element
information item, or ·absent· if there is none, otherwise ·absent·.

{type
definition}

The simple type definition corresponding to the <simpleType>
element information item in the [children], if present, otherwise
the simple type definition ·resolved· to by the ·actual value· of the
type [attribute], if present, otherwise the ·simple ur-type
definition·.

{scope} If the <attribute> element information item has <complexType>
as an ancestor, the complex definition corresponding to that
item, otherwise (the <attribute> element information item is within
an <attributeGroup> definition), ·absent·.

{value
constraint}

·absent·.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

otherwise (the <attribute> element information item has <complexType> or
<attributeGroup> as an ancestor and the ref [attribute] is present), it corresponds
to an attribute use with properties as follows (unless use='prohibited', in which
case the item corresponds to nothing at all):

http://www.w3.org/TR/xmlschema-1/ 25 3/28/2009 7:15 PM

Attribute Use Schema Component

Property Representation
{required} true if the use [attribute] is present with ·actual value· required,

otherwise false.

{attribute
declaration}

The (top-level) attribute declaration ·resolved· to by the ·actual
value· of the ref [attribute]

{value
constraint}

If there is a default or a fixed [attribute], then a pair consisting
of the ·actual value· (with respect to the {type definition} of the
{attribute declaration}) of that [attribute] and either default or
fixed, as appropriate, otherwise ·absent·.

http://www.w3.org/TR/xmlschema-1/ 26 3/28/2009 7:15 PM

Attribute Use Schema Component

Attribute declarations can appear at the top level of a schema document, or within
complex type definitions, either as complete (local) declarations, or by reference to
top-level declarations, or within attribute group definitions. For complete declarations,
top-level or local, the type attribute is used when the declaration can use a built-in or
pre-declared simple type definition. Otherwise an anonymous <simpleType> is provided
inline.

The default when no simple type definition is referenced or provided is the ·simple ur-type
definition·, which imposes no constraints at all.

Attribute information items ·validated· by a top-level declaration must be qualified with the
{target namespace} of that declaration (if this is ·absent·, the item must be unqualified).
Control over whether attribute information items ·validated· by a local declaration must be
similarly qualified or not is provided by the form [attribute], whose default is provided by
the attributeFormDefault [attribute] on the enclosing <schema>, via its determination of
{target namespace}.

The names for top-level attribute declarations are in their own ·symbol space·. The names
of locally-scoped attribute declarations reside in symbol spaces local to the type definition
which contains them.

3.2.3 Constraints on XML Representations of Attribute Declarations

Schema Representation Constraint: Attribute Declaration Representation OK
In addition to the conditions imposed on <attribute> element information items by the
schema for schemas, all of the following must be true:
1 default and fixed must not both be present.
2 If default and use are both present, use must have the ·actual value· optional.
3 If the item's parent is not <schema>, then all of the following must be true:

3.1 One of ref or name must be present, but not both.
3.2 If ref is present, then all of <simpleType>, form and type must be absent.

4 type and <simpleType> must not both be present.
5 The corresponding attribute declaration must satisfy the conditions set out in

Constraints on Attribute Declaration Schema Components (§3.2.6) .

3.2.4 Attribute Declaration Validation Rules

Validation Rule: Attribute Locally Valid
For an attribute information item to be locally ·valid· with respect to an attribute
declaration all of the following must be true:
1 The declaration must not be ·absent· (see Missing Sub-components (§5.3) for how

this can fail to be the case).
2 Its {type definition} must not be absent.
3 The item's ·normalized value· must be locally ·valid· with respect to that {type

definition} as per String Valid (§3.14.4).
4 The item's ·actual value· must match the value of the {value constraint}, if it is present

and fixed.

http://www.w3.org/TR/xmlschema-1/ 27 3/28/2009 7:15 PM

Validation Rule: Schema-Validity Assessment (Attribute)
The schema-validity assessment of an attribute information item depends on its
·validation· alone.

[Definition:] During ·validation·, associations between element and attribute information
items among the [children] and [attributes] on the one hand, and element and attribute
declarations on the other, are established as a side-effect. Such declarations are called
the context-determined declarations. See clause 3.1 (in Element Locally Valid
(Complex Type) (§3.4.4)) for attribute declarations, clause 2 (in Element Sequence
Locally Valid (Particle) (§3.9.4)) for element declarations.

For an attribute information item's schema-validity to have been assessed all of the
following must be true:

1 A non-·absent· attribute declaration must be known for it, namely one of the following:
1.1 A declaration which has been established as its ·context-determined declaration·;
1.2 A declaration resolved to by its [local name] and [namespace name] as defined by

QName resolution (Instance) (§3.15.4), provided its ·context-determined
declaration· is not skip.

2 Its ·validity· with respect to that declaration must have been evaluated as per Attribute
Locally Valid (§3.2.4).

3 Both clause 1 and clause 2 of Attribute Locally Valid (§3.2.4) must be satisfied.

[Definition:] For attributes, there is no difference between assessment and strict
assessment, so if the above holds, the attribute information item has been strictly
assessed.

3.2.5 Attribute Declaration Information Set Contributions

Schema Information Set Contribution: Assessment Outcome (Attribute)
If the schema-validity of an attribute information item has been assessed as per
Schema-Validity Assessment (Attribute) (§3.2.4) , then in the ·post-schema-validation
infoset· it has properties as follows:

PSVI Contributions for attribute information items

[validation context]

The nearest ancestor element information item with a [schema information]
property.

[validity]

The appropriate case among the following:
1 If it was ·strictly assessed·, then the appropriate case among the

following:
1.1 If it was ·valid· as defined by Attribute Locally Valid (§3.2.4), then

valid;
1.2 otherwise invalid.

2 otherwise notKnown.
[validation attempted]

The appropriate case among the following:
1 If it was ·strictly assessed·, then full;

http://www.w3.org/TR/xmlschema-1/ 28 3/28/2009 7:15 PM

2 otherwise none.
[schema specified]

infoset. See Attribute Default Value (§3.4.5) for the other possible value.

Schema Information Set Contribution: Validation Failure (Attribute)
If the local ·validity·, as defined by Attribute Locally Valid (§3.2.4) above, of an attribute
information item has been assessed, in the ·post-schema-validation infoset · the item
has a property:

PSVI Contributions for attribute information items

[schema error code]

The appropriate case among the following:
1 If the item is not ·valid·, then a list. Applications wishing to provide

information as to the reason(s) for the ·validation· failure are encouraged
to record one or more error codes (see Outcome Tabulations (normative)
(§C)) herein.

2 otherwise ·absent·.

Schema Information Set Contribution: Attribute Declaration
If an attribute information item is ·valid· with respect to an attribute declaration as per
Attribute Locally Valid (§3.2.4) then in the ·post-schema-validation infoset· the attribute
information item may, at processor option, have a property:

PSVI Contributions for attribute information items

[attribute declaration]

An ·item isomorphic· to the declaration component itself.

Schema Information Set Contribution: Attribute Validated by Type
If clause 3 of Attribute Locally Valid (§3.2.4) applies with respect to an attribute
information item, in the ·post-schema-validation infoset · the attribute information item
has a property:

PSVI Contributions for attribute information items

[schema normalized value]

The ·normalized value· of the item as ·validated·.

Furthermore, the item has one of the following alternative sets of properties:

Either

PSVI Contributions for attribute information items

[type definition]

An ·item isomorphic· to the relevant attribute declaration's {type definition}

http://www.w3.org/TR/xmlschema-1/ 29 3/28/2009 7:15 PM

component.
[member type definition]

If and only if that type definition has {variety} union, then an ·item
isomorphic· to that member of its {member type definitions} which actually
·validated· the attribute item's [normalized value].

or

PSVI Contributions for attribute information items

[type definition type]

simple.
[type definition namespace]

The {target namespace} of the ·type definition·.
[type definition anonymous]

true if the {name} of the ·type definition· is ·absent·, otherwise false.
[type definition name]

The {name} of the ·type definition·, if it is not ·absent·. If it is ·absent·,
schema processors may, but need not, provide a value unique to the
definition.

If the ·type definition· has {variety} union, then calling [Definition:] that member of the
{member type definitions} which actually ·validated· the attribute item's ·normalized
value· the actual member type definition, there are three additional properties:

PSVI Contributions for attribute information items

[member type definition namespace]

The {target namespace} of the ·actual member type definition·.
[member type definition anonymous]

true if the {name} of the ·actual member type definition· is ·absent·,
otherwise false.

[member type definition name]

The {name} of the ·actual member type definition·, if it is not ·absent·. If it is
·absent·, schema processors may, but need not, provide a value unique to
the definition.

The first (·item isomorphic·) alternative above is provided for applications such as query
processors which need access to the full range of details about an item's ·assessment·,
for example the type hierarchy; the second, for lighter-weight processors for whom
representing the significant parts of the type hierarchy as information items might be a
significant burden.

Also, if the declaration has a {value constraint}, the item has a property:

PSVI Contributions for attribute information items

http://www.w3.org/TR/xmlschema-1/ 30 3/28/2009 7:15 PM

[schema default]

The canonical lexical representation of the declaration's {value constraint}
value.

If the attribute information item was not ·strictly assessed·, then instead of the values
specified above,
1 The item's [schema normalized value] property has the ·initial value· of the item as its

value;
2 The [type definition] and [member type definition] properties, or their alternatives, are

based on the ·simple ur-type definition·.

3.2.6 Constraints on Attribute Declaration Schema Components

All attribute declarations (see Attribute Declarations (§3.2)) must satisfy the following
constraints.

Schema Component Constraint: Attribute Declaration Properties Correct
All of the following must be true:
1 The values of the properties of an attribute declaration must be as described in the

property tableau in The Attribute Declaration Schema Component (§3.2.1) , modulo
the impact of Missing Sub-components (§5.3).

2 if there is a {value constraint}, the canonical lexical representation of its value must be
·valid· with respect to the {type definition} as defined in String Valid (§3.14.4).

3 If the {type definition} is or is derived from ID then there must not be a {value
constraint}.

Schema Component Constraint: xmlns Not Allowed
The {name} of an attribute declaration must not match xmlns.

Note: The {name} of an attribute is an ·NCName·, which implicitly prohibits attribute
declarations of the form xmlns:*.

Schema Component Constraint: xsi: Not Allowed
The {target namespace} of an attribute declaration, whether local or top-level, must not
match http://www.w3.org/2001/XMLSchema-instance (unless it is one of the four built-in
declarations given in the next section).

Note: This reinforces the special status of these attributes, so that they not only
need not be declared to be allowed in instances, but must not be declared. It also
removes any temptation to experiment with supplying global or fixed values for e.g.
xsi:type or xsi:nil, which would be seriously misleading, as they would have no
effect.

3.2.7 Built-in Attribute Declarations

There are four attribute declarations present in every schema by definition:

Attribute Declaration for the 'type' attribute

Property Value

http://www.w3.org/TR/xmlschema-1/ 31 3/28/2009 7:15 PM

Attribute Declaration for the 'type' attribute

Property Value
{name} type

{target namespace} http://www.w3.org/2001/XMLSchema-instance

{type definition} The built-in QName simple type definition

{scope} global

{value constraint} ·absent·
{annotation} ·absent·

Attribute Declaration for the 'nil' attribute

Property Value
{name} nil

{target namespace} http://www.w3.org/2001/XMLSchema-instance

{type definition} The built-in boolean simple type definition

{scope} global

{value constraint} ·absent·
{annotation} ·absent·

Attribute Declaration for the 'schemaLocation' attribute

Property Value
{name} schemaLocation

{target
namespace}

http://www.w3.org/2001/XMLSchema-instance

{type definition} An anonymous simple type definition, as follows:
Property Value
{name} ·absent·
{target namespace} http://www.w3.org/2001/XMLSchema-instance

{base type
definition}

The built in ·simple ur-type definition·

{facets} ·absent·
{variety} list

{item type
definition}

The built-in anyURI simple type definition

{annotation} ·absent·

{scope} global

{value constraint} ·absent·

http://www.w3.org/TR/xmlschema-1/ 32 3/28/2009 7:15 PM

Attribute Declaration for the 'schemaLocation' attribute

Property Value
{annotation} ·absent·

Attribute Declaration for the 'noNamespaceSchemaLocation' attribute

Property Value
{name} noNamespaceSchemaLocation

{target namespace} http://www.w3.org/2001/XMLSchema-instance

{type definition} The built-in anyURI simple type definition

{scope} global

{value constraint} ·absent·
{annotation} ·absent·

3.3 Element Declarations
 3.3.1 The Element Declaration Schema Component
 3.3.2 XML Representation of Element Declaration Schema Components
 3.3.3 Constraints on XML Representations of Element Declarations
 3.3.4 Element Declaration Validation Rules
 3.3.5 Element Declaration Information Set Contributions
 3.3.6 Constraints on Element Declaration Schema Components

Element declarations provide for:

Local ·validation· of element information item values using a type definition;
Specifying default or fixed values for an element information items;
Establishing uniquenesses and reference constraint relationships among the values
of related elements and attributes;
Controlling the substitutability of elements through the mechanism of ·element
substitution groups·.

Example
<xs:element name="PurchaseOrder" type="PurchaseOrderType"/>

<xs:element name="gift">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element ref="PurchaseOrder"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

XML representations of several different types of element declaration

3.3.1 The Element Declaration Schema Component

http://www.w3.org/TR/xmlschema-1/ 33 3/28/2009 7:15 PM

The element declaration schema component has the following properties:

Schema Component: Element Declaration

{name}

An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{type definition}

Either a simple type definition or a complex type definition.
{scope}

Optional. Either global or a complex type definition.
{value constraint}

Optional. A pair consisting of a value and one of default, fixed.
{nillable}

A boolean.
{identity-constraint definitions}

A set of constraint definitions.
{substitution group affiliation}

Optional. A top-level element definition.
{substitution group exclusions}

A subset of {extension, restriction}.
{disallowed substitutions}

A subset of {substitution, extension, restriction}.
{abstract}

A boolean.
{annotation}

Optional. An annotation.

The {name} property must match the local part of the names of element information items
being ·validated·.

A {scope} of global identifies element declarations available for use in content models
throughout the schema. Locally scoped declarations are available for use only within the
complex type identified by the {scope} property. This property is ·absent· in the case of
declarations within named model groups: their scope is determined when they are used in
the construction of complex type definitions.

A non-·absent· value of the {target namespace} property provides for ·validation· of
namespace-qualified element information items. ·Absent· values of {target namespace}
·validate· unqualified items.

An element information item is ·valid· if it satisfies the {type definition}. For such an item,
schema information set contributions appropriate to the {type definition} are added to the
corresponding element information item in the ·post-schema-validation infoset ·.

If {nillable} is true, then an element may also be ·valid· if it carries the namespace qualified
attribute with [local name] nil from namespace
http://www.w3.org/2001/XMLSchema-instance and value true (see xsi:nil (§2.6.2)) even if it
has no text or element content despite a {content type} which would otherwise require

http://www.w3.org/TR/xmlschema-1/ 34 3/28/2009 7:15 PM

content. Formal details of element ·validation· are described in Element Locally Valid
(Element) (§3.3.4).

{value constraint} establishes a default or fixed value for an element. If default is specified,
and if the element being ·validated· is empty, then the canonical form of the supplied
constraint value becomes the [schema normalized value] of the ·validated· element in the
·post-schema-validation infoset ·. If fixed is specified, then the element's content must
either be empty, in which case fixed behaves as default, or its value must match the
supplied constraint value.

Note: The provision of defaults for elements goes beyond what is possible in XML 1.0
DTDs, and does not exactly correspond to defaults for attributes. In particular, an
element with a non-empty {value constraint} whose simple type definition includes the
empty string in its lexical space will nonetheless never receive that value, because
the {value constraint} will override it.

{identity-constraint definitions} express constraints establishing uniquenesses and
reference relationships among the values of related elements and attributes. See
Identity-constraint Definitions (§3.11).

Element declarations are potential members of the substitution group, if any, identified by
{substitution group affiliation}. Potential membership is transitive but not symmetric; an
element declaration is a potential member of any group of which its {substitution group
affiliation} is a potential member. Actual membership may be blocked by the effects of
{substitution group exclusions} or {disallowed substitutions}, see below.

An empty {substitution group exclusions} allows a declaration to be nominated as the
{substitution group affiliation} of other element declarations having the same {type
definition} or types derived therefrom. The explicit values of {substitution group
exclusions} rule out element declarations having types which are extensions or restrictions
respectively of {type definition}. If both values are specified, then the declaration may not
be nominated as the {substitution group affiliation} of any other declaration.

The supplied values for {disallowed substitutions} determine whether an element
declaration appearing in a ·content model· will be prevented from additionally ·validating·
elements (a) with an xsi:type (§2.6.1) that identifies an extension or restriction of the type
of the declared element, and/or (b) from ·validating· elements which are in the substitution
group headed by the declared element. If {disallowed substitutions} is empty, then all
derived types and substitution group members are allowed.

Element declarations for which {abstract} is true can appear in content models only when
substitution is allowed; such declarations may not themselves ever be used to ·validate·
element content.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.3.2 XML Representation of Element Declaration Schema Components

The XML representation for an element declaration schema component is an <element>
element information item. It specifies a type definition for an element either by reference
or explicitly, and may provide occurrence and default information. The correspondences

http://www.w3.org/TR/xmlschema-1/ 35 3/28/2009 7:15 PM

between the properties of the information item and properties of the component(s) it
corresponds to are as follows:

XML Representation Summary: element Element Information Item
<element
 abstract = boolean : false
 block = (#all | List of (extension | restriction | substitution))
 default = string
 final = (#all | List of (extension | restriction))
 fixed = string
 form = (qualified | unqualified)
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 name = NCName
 nillable = boolean : false
 ref = QName
 substitutionGroup = QName
 type = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, ((simpleType | complexType)?, (unique | key |
keyref)*))
</element>

If the <element> element information item has <schema> as its parent, the
corresponding schema component is as follows:

Element Declaration Schema Component
Property Representation
{name} The ·actual value· of the name [attribute].

{target namespace} The ·actual value· of the targetNamespace [attribute] of the
parent <schema> element information item, or ·absent· if
there is none.

{scope} global.

{type definition} The type definition corresponding to the <simpleType> or
<complexType> element information item in the [children],
if either is present, otherwise the type definition ·resolved·
to by the ·actual value· of the type [attribute], otherwise the
{type definition} of the element declaration ·resolved· to by
the ·actual value· of the substitutionGroup [attribute], if
present, otherwise the ·ur-type definition·.

{nillable} The ·actual value· of the nillable [attribute], if present,
otherwise false.

{value constraint} If there is a default or a fixed [attribute], then a pair
consisting of the ·actual value· (with respect to the {type
definition}, if it is a simple type definition, or the {type
definition}'s {content type}, if that is a simple type definition,
or else with respect to the built-in string simple type
definition) of that [attribute] and either default or fixed, as
appropriate, otherwise ·absent·.

http://www.w3.org/TR/xmlschema-1/ 36 3/28/2009 7:15 PM

Element Declaration Schema Component

Property Representation
{identity-constraint
definitions}

A set consisting of the identity-constraint-definitions
corresponding to all the <key>, <unique> and <keyref>
element information items in the [children], if any,
otherwise the empty set.

{substitution group
affiliation}

The element declaration ·resolved· to by the ·actual value·
of the substitutionGroup [attribute], if present, otherwise
·absent·.

{disallowed
substitutions}

A set depending on the ·actual value· of the block
[attribute], if present, otherwise on the ·actual value· of the
blockDefault [attribute] of the ancestor <schema> element
information item, if present, otherwise on the empty string.
Call this the EBV (for effective block value). Then the value
of this property is the appropriate case among the
following:
1 If the EBV is the empty string, then the empty set;
2 If the EBV is #all, then {extension, restriction,

substitution};
3 otherwise a set with members drawn from the set

above, each being present or absent depending on
whether the ·actual value· (which is a list) contains an
equivalently named item.

Note: Although the blockDefault [attribute] of
<schema> may include values other than extension,
restriction or substitution, those values are ignored
in the determination of {disallowed substitutions} for
element declarations (they are used elsewhere).

{substitution group
exclusions}

As for {disallowed substitutions} above, but using the final
and finalDefault [attributes] in place of the block and
blockDefault [attributes] and with the relevant set being
{extension, restriction}.

{abstract} The ·actual value· of the abstract [attribute], if present,
otherwise false.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise
·absent·.

otherwise if the <element> element information item has <complexType> or
<group> as an ancestor and the ref [attribute] is absent, the corresponding
schema components are as follows (unless minOccurs=maxOccurs=0, in which case
the item corresponds to no component at all):

http://www.w3.org/TR/xmlschema-1/ 37 3/28/2009 7:15 PM

Particle Schema Component

Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present, otherwise
1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if present,
otherwise 1.

{term} A (local) element declaration as given below.

http://www.w3.org/TR/xmlschema-1/ 38 3/28/2009 7:15 PM

Particle Schema Component

An element declaration as in the first case above, with the exception of its {target
namespace} and {scope} properties, which are as below:

Element Declaration Schema Component

Property Representation
{target
namespace}

If form is present and its ·actual value· is qualified, or if form is
absent and the ·actual value· of elementFormDefault on the
<schema> ancestor is qualified, then the ·actual value· of the
targetNamespace [attribute] of the parent <schema> element
information item, or ·absent· if there is none, otherwise ·absent·.

{scope} If the <element> element information item has <complexType>
as an ancestor, the complex definition corresponding to that
item, otherwise (the <element> element information item is within
a named <group> definition), ·absent·.

otherwise (the <element> element information item has <complexType> or
<group> as an ancestor and the ref [attribute] is present), the corresponding
schema component is as follows (unless minOccurs=maxOccurs=0, in which case
the item corresponds to no component at all):

Particle Schema Component

Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present, otherwise
1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if present,
otherwise 1.

{term} The (top-level) element declaration ·resolved· to by the ·actual
value· of the ref [attribute].

<element> corresponds to an element declaration, and allows the type definition of that
declaration to be specified either by reference or by explicit inclusion.

<element>s within <schema> produce global element declarations; <element>s within
<group> or <complexType> produce either particles which contain global element
declarations (if there's a ref attribute) or local declarations (otherwise). For complete
declarations, top-level or local, the type attribute is used when the declaration can use a
built-in or pre-declared type definition. Otherwise an anonymous <simpleType> or
<complexType> is provided inline.

Element information items ·validated· by a top-level declaration must be qualified with the
{target namespace} of that declaration (if this is ·absent·, the item must be unqualified).
Control over whether element information items ·validated· by a local declaration must be
similarly qualified or not is provided by the form [attribute], whose default is provided by
the elementFormDefault [attribute] on the enclosing <schema>, via its determination of

http://www.w3.org/TR/xmlschema-1/ 39 3/28/2009 7:15 PM

{target namespace}.

As noted above the names for top-level element declarations are in a separate ·symbol
space· from the symbol spaces for the names of type definitions, so there can (but need
not be) a simple or complex type definition with the same name as a top-level element. As
with attribute names, the names of locally-scoped element declarations with no {target
namespace} reside in symbol spaces local to the type definition which contains them.

Note that the above allows for two levels of defaulting for unspecified type definitions. An
<element> with no referenced or included type definition will correspond to an element
declaration which has the same type definition as the head of its substitution group if it
identifies one, otherwise the ·ur-type definition·. This has the important consequence that
the minimum valid element declaration, that is, one with only a name attribute and no
contents, is also (nearly) the most general, validating any combination of text and element
content and allowing any attributes, and providing for recursive validation where possible.

See below at XML Representation of Identity-constraint Definition Schema Components
(§3.11.2) for <key>, <unique> and <keyref>.

Example
<xs:element name="unconstrained"/>

<xs:element name="emptyElt">
 <xs:complexType>
 <xs:attribute ...>. . .</xs:attribute>
 </xs:complexType>
</xs:element>

<xs:element name="contextOne">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="myLocalElement" type="myFirstType"/>
 <xs:element ref="globalElement"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="contextTwo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="myLocalElement" type="mySecondType"/>
 <xs:element ref="globalElement"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The first example above declares an element whose type, by default, is the ·ur-type
definition·. The second uses an embedded anonymous complex type definition.

The last two examples illustrate the use of local element declarations. Instances of
myLocalElement within contextOne will be constrained by myFirstType, while those within
contextTwo will be constrained by mySecondType.

Note: The possibility that differing attribute declarations and/or content models would
apply to elements with the same name in different contexts is an extension beyond
the expressive power of a DTD in XML 1.0.

http://www.w3.org/TR/xmlschema-1/ 40 3/28/2009 7:15 PM

Example
 <xs:complexType name="facet">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="value" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="facet" type="xs:facet" abstract="true"/>

 <xs:element name="encoding" substitutionGroup="xs:facet">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:encodings"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:element name="period" substitutionGroup="xs:facet">
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:duration"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="datatype">
 <xs:sequence>
 <xs:element ref="facet" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="optional"/>
 . . .
 </xs:complexType>

An example from a previous version of the schema for datatypes. The facet type is
defined and the facet element is declared to use it. The facet element is abstract -- it's
only defined to stand as the head for a substitution group. Two further elements are
declared, each a member of the facet substitution group. Finally a type is defined which
refers to facet, thereby allowing either period or encoding (or any other member of the
group).

3.3.3 Constraints on XML Representations of Element Declarations

Schema Representation Constraint: Element Declaration Representation OK
In addition to the conditions imposed on <element> element information items by the
schema for schemas: all of the following must be true:
1 default and fixed must not both be present.
2 If the item's parent is not <schema>, then all of the following must be true:

2.1 One of ref or name must be present, but not both.

http://www.w3.org/TR/xmlschema-1/ 41 3/28/2009 7:15 PM

2.2 If ref is present, then all of <complexType>, <simpleType>, <key>, <keyref>,
<unique>, nillable, default, fixed, form, block and type must be absent, i.e. only
minOccurs, maxOccurs, id are allowed in addition to ref, along with <annotation>.

3 type and either <simpleType> or <complexType> are mutually exclusive.
4 The corresponding particle and/or element declarations must satisfy the conditions set

out in Constraints on Element Declaration Schema Components (§3.3.6) and
Constraints on Particle Schema Components (§3.9.6) .

3.3.4 Element Declaration Validation Rules

Validation Rule: Element Locally Valid (Element)
For an element information item to be locally ·valid· with respect to an element
declaration all of the following must be true:
1 The declaration must not be ·absent·.
2 Its {abstract} must be false.
3 The appropriate case among the following must be true:

3.1 If {nillable} is false, then there must be no attribute information item among the
element information item's [attributes] whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local name] is nil.

3.2 If {nillable} is true and there is such an attribute information item and its ·actual
value· is true , then all of the following must be true:
3.2.1 The element information item must have no character or element information

item [children].
3.2.2 There must be no fixed {value constraint}.

4 If there is an attribute information item among the element information item's
[attributes] whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local name] is type, then all
of the following must be true:
4.1 The ·normalized value· of that attribute information item must be ·valid· with

respect to the built-in QName simple type, as defined by String Valid (§3.14.4);
4.2 The ·local name· and ·namespace name· (as defined in QName Interpretation

(§3.15.3)), of the ·actual value· of that attribute information item must resolve to a
type definition, as defined in QName resolution (Instance) (§3.15.4) --
[Definition:] call this type definition the local type definition;

4.3 The ·local type definition· must be validly derived from the {type definition} given
the union of the {disallowed substitutions} and the {type definition}'s {prohibited
substitutions}, as defined in Type Derivation OK (Complex) (§3.4.6) (if it is a
complex type definition), or given {disallowed substitutions} as defined in Type
Derivation OK (Simple) (§3.14.6) (if it is a simple type definition).

[Definition:] The phrase actual type definition occurs below. If the above three
clauses are satisfied, this should be understood as referring to the ·local type
definition·, otherwise to the {type definition}.

5 The appropriate case among the following must be true:
5.1 If the declaration has a {value constraint}, the item has neither element nor

character [children] and clause 3.2 has not applied, then all of the following must
be true:
5.1.1 If the ·actual type definition· is a ·local type definition· then the canonical

lexical representation of the {value constraint} value must be a valid default for
the ·actual type definition· as defined in Element Default Valid (Immediate)
(§3.3.6).

http://www.w3.org/TR/xmlschema-1/ 42 3/28/2009 7:15 PM

5.1.2 The element information item with the canonical lexical representation of the
{value constraint} value used as its ·normalized value· must be ·valid· with
respect to the ·actual type definition· as defined by Element Locally Valid (Type)
(§3.3.4).

5.2 If the declaration has no {value constraint} or the item has either element or
character [children] or clause 3.2 has applied, then all of the following must be
true:
5.2.1 The element information item must be ·valid· with respect to the ·actual type

definition· as defined by Element Locally Valid (Type) (§3.3.4).
5.2.2 If there is a fixed {value constraint} and clause 3.2 has not applied, all of the

following must be true:
5.2.2.1 The element information item must have no element information item

[children].
5.2.2.2 The appropriate case among the following must be true:

5.2.2.2.1 If the {content type} of the ·actual type definition· is mixed, then the
·initial value· of the item must match the canonical lexical representation of
the {value constraint} value.

5.2.2.2.2 If the {content type} of the ·actual type definition· is a simple type
definition, then the ·actual value· of the item must match the canonical
lexical representation of the {value constraint} value.

6 The element information item must be ·valid· with respect to each of the
{identity-constraint definitions} as per Identity-constraint Satisfied (§3.11.4).

7 If the element information item is the ·validation root·, it must be ·valid· per Validation
Root Valid (ID/IDREF) (§3.3.4).

Validation Rule: Element Locally Valid (Type)
For an element information item to be locally ·valid· with respect to a type definition all
of the following must be true:
1 The type definition must not be ·absent·;
2 It must not have {abstract} with value true.
3 The appropriate case among the following must be true:

3.1 If the type definition is a simple type definition, then all of the following must be
true:
3.1.1 The element information item's [attributes] must be empty, excepting those

whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local name] is one of
type, nil, schemaLocation or noNamespaceSchemaLocation.

3.1.2 The element information item must have no element information item
[children].

3.1.3 If clause 3.2 of Element Locally Valid (Element) (§3.3.4) did not apply, then
the ·normalized value· must be ·valid· with respect to the type definition as
defined by String Valid (§3.14.4).

3.2 If the type definition is a complex type definition, then the element information
item must be ·valid· with respect to the type definition as per Element Locally Valid
(Complex Type) (§3.4.4);

Validation Rule: Validation Root Valid (ID/IDREF)
For an element information item which is the ·validation root· to be ·valid· all of the
following must be true:
1 There must be no ID/IDREF binding in the item's [ID/IDREF table] whose [binding] is

http://www.w3.org/TR/xmlschema-1/ 43 3/28/2009 7:15 PM

the empty set.
2 There must be no ID/IDREF binding in the item's [ID/IDREF table] whose [binding]

has more than one member.

See ID/IDREF Table (§3.15.5) for the definition of ID/IDREF binding.

Note: The first clause above applies when there is a reference to an undefined ID.
The second applies when there is a multiply-defined ID. They are separated out to
ensure that distinct error codes (see Outcome Tabulations (normative) (§C)) are
associated with these two cases.
Note: Although this rule applies at the ·validation root·, in practice processors,
particularly streaming processors, may wish to detect and signal the clause 2 case
as it arises.
Note: This reconstruction of [XML 1.0 (Second Edition)]'s ID/IDREF functionality is
imperfect in that if the ·validation root· is not the document element of an XML
document, the results will not necessarily be the same as those a validating parser
would give were the document to have a DTD with equivalent declarations.

Validation Rule: Schema-Validity Assessment (Element)
The schema-validity assessment of an element information item depends on its
·validation· and the ·assessment· of its element information item children and
associated attribute information items, if any.

So for an element information item's schema-validity to be assessed all of the following
must be true:

1 One of the following must be true:
1.1 All of the following must be true:

1.1.1 A non-·absent· element declaration must be known for it, because one of the
following is true
1.1.1.1 A declaration was stipulated by the processor (see Assessing

Schema-Validity (§5.2)).
1.1.1.2 A declaration has been established as its ·context-determined

declaration·.
1.1.1.3 All of the following must be true:

1.1.1.3.1 Its ·context-determined declaration· is not skip.
1.1.1.3.2 Its [local name] and [namespace name] resolve to an element

declaration as defined by QName resolution (Instance) (§3.15.4).
1.1.2 Its ·validity· with respect to that declaration must have been evaluated as per

Element Locally Valid (Element) (§3.3.4).
1.1.3 If that evaluation involved the evaluation of Element Locally Valid (Type)

(§3.3.4), clause 1 thereof must be satisfied.
1.2 All of the following must be true:

1.2.1 A non-·absent· type definition is known for it because one of the following is
true
1.2.1.1 A type definition was stipulated by the processor (see Assessing

Schema-Validity (§5.2)).
1.2.1.2 All of the following must be true:

1.2.1.2.1 There is an attribute information item among the element information
item's [attributes] whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local name] is

http://www.w3.org/TR/xmlschema-1/ 44 3/28/2009 7:15 PM

type.
1.2.1.2.2 The ·normalized value· of that attribute information item is ·valid· with

respect to the built-in QName simple type, as defined by String Valid
(§3.14.4).

1.2.1.2.3 The ·local name· and ·namespace name· (as defined in QName
Interpretation (§3.15.3)), of the ·actual value· of that attribute information
item resolve to a type definition, as defined in QName resolution (Instance)
(§3.15.4) -- [Definition:] call this type definition the local type definition.

1.2.1.2.4 If there is also a processor-stipulated type definition, the ·local type
definition· must be validly derived from that type definition given its
{prohibited substitutions}, as defined in Type Derivation OK (Complex)
(§3.4.6) (if it is a complex type definition), or given the empty set, as defined
in Type Derivation OK (Simple) (§3.14.6) (if it is a simple type definition).

1.2.2 The element information item's ·validity· with respect to the ·local type
definition· (if present and validly derived) or the processor-stipulated type
definition (if no ·local type definition· is present) has been evaluated as per
Element Locally Valid (Type) (§3.3.4).

2 The schema-validity of all the element information items among its [children] has been
assessed as per Schema-Validity Assessment (Element) (§3.3.4) , and the
schema-validity of all the attribute information items among its [attributes] has been
assessed as per Schema-Validity Assessment (Attribute) (§3.2.4) .

[Definition:] If either case of clause 1 above holds, the element information item has
been strictly assessed.

If the item cannot be ·strictly assessed·, because neither clause 1.1 nor clause 1.2
above are satisfied, [Definition:] an element information item's schema validity may be
laxly assessed if its ·context-determined declaration· is not skip by ·validating· with
respect to the ·ur-type definition· as per Element Locally Valid (Type) (§3.3.4).

Note: In general if clause 1.1 above holds clause 1.2 does not, and vice versa.
When an xsi:type [attribute] is involved, however, clause 1.2 takes precedence, as
is made clear in Element Locally Valid (Element) (§3.3.4).

Note: The {name} and {target namespace} properties are not mentioned above
because they are checked during particle ·validation·, as per Element Sequence
Locally Valid (Particle) (§3.9.4).

3.3.5 Element Declaration Information Set Contributions

Schema Information Set Contribution: Assessment Outcome (Element)
If the schema-validity of an element information item has been assessed as per
Schema-Validity Assessment (Element) (§3.3.4) , then in the ·post-schema-validation
infoset· it has properties as follows:

PSVI Contributions for element information items

[validation context]

The nearest ancestor element information item with a [schema information]
property (or this element item itself if it has such a property).

[validity]

http://www.w3.org/TR/xmlschema-1/ 45 3/28/2009 7:15 PM

The appropriate case among the following:
1 If it was ·strictly assessed·, then the appropriate case among the

following:
1.1 If all of the following are true

1.1.1
1.1.1.1 clause 1.1 of Schema-Validity Assessment (Element)

(§3.3.4) applied and the item was ·valid· as defined by Element
Locally Valid (Element) (§3.3.4);

1.1.1.2 clause 1.2 of Schema-Validity Assessment (Element)
(§3.3.4) applied and the item was ·valid· as defined by Element
Locally Valid (Type) (§3.3.4).

1.1.2 Neither its [children] nor its [attributes] contains an information
item (element or attribute respectively) whose [validity] is invalid.

1.1.3 Neither its [children] nor its [attributes] contains an information
item (element or attribute respectively) with a ·context-determined
declaration· of mustFind whose [validity] is notKnown.

, then valid;
1.2 otherwise invalid..

2 otherwise notKnown.
[validation attempted]

The appropriate case among the following:
1 If it was ·strictly assessed· and neither its [children] nor its [attributes]

contains an information item (element or attribute respectively) whose
[validation attempted] is not full, then full;

2 If it was not ·strictly assessed· and neither its [children] nor its [attributes]
contains an information item (element or attribute respectively) whose
[validation attempted] is not none, then none;

3 otherwise partial.

Schema Information Set Contribution: Validation Failure (Element)
If the local ·validity·, as defined by Element Locally Valid (Element) (§3.3.4) above
and/or Element Locally Valid (Type) (§3.3.4) below, of an element information item has
been assessed, in the ·post-schema-validation infoset · the item has a property:

PSVI Contributions for element information items

[schema error code]

The appropriate case among the following:
1 If the item is not ·valid·, then a list. Applications wishing to provide

information as to the reason(s) for the ·validation· failure are encouraged
to record one or more error codes (see Outcome Tabulations (normative)
(§C)) herein.

2 otherwise ·absent·.

Schema Information Set Contribution: Element Declaration
If an element information item is ·valid· with respect to an element declaration as per
Element Locally Valid (Element) (§3.3.4) then in the ·post-schema-validation infoset · the
element information item must, at processor option, have either:

http://www.w3.org/TR/xmlschema-1/ 46 3/28/2009 7:15 PM

PSVI Contributions for element information items

[element declaration]

an ·item isomorphic· to the declaration component itself

or

PSVI Contributions for element information items

[nil]

true if clause 3.2 of Element Locally Valid (Element) (§3.3.4) above is
satisfied, otherwise false

Schema Information Set Contribution: Element Validated by Type
If an element information item is ·valid· with respect to a ·type definition· as per Element
Locally Valid (Type) (§3.3.4), in the ·post-schema-validation infoset · the item has a
property:

PSVI Contributions for element information items

[schema normalized value]

The appropriate case among the following:
1 If clause 3.2 of Element Locally Valid (Element) (§3.3.4) and Element

Default Value (§3.3.5) above have not applied and either the ·type
definition· is a simple type definition or its {content type} is a simple type
definition, then the ·normalized value· of the item as ·validated·.

2 otherwise ·absent·.

Furthermore, the item has one of the following alternative sets of properties:

Either

PSVI Contributions for element information items

[type definition]

An ·item isomorphic· to the ·type definition· component itself.
[member type definition]

If and only if that type definition is a simple type definition with {variety}
union, or a complex type definition whose {content type} is a simple type
definition with {variety} union, then an ·item isomorphic· to that member of
the union's {member type definitions} which actually ·validated· the element
item's ·normalized value·.

or

PSVI Contributions for element information items

http://www.w3.org/TR/xmlschema-1/ 47 3/28/2009 7:15 PM

[type definition type]

simple or complex, depending on the ·type definition·.
[type definition namespace]

The {target namespace} of the ·type definition·.
[type definition anonymous]

true if the {name} of the ·type definition· is ·absent·, otherwise false.
[type definition name]

The {name} of the ·type definition·, if it is not ·absent·. If it is ·absent·,
schema processors may, but need not, provide a value unique to the
definition.

If the ·type definition· is a simple type definition or its {content type} is a simple type
definition, and that type definition has {variety} union, then calling [Definition:] that
member of the {member type definitions} which actually ·validated· the element item's
·normalized value· the actual member type definition, there are three additional
properties:

PSVI Contributions for element information items

[member type definition namespace]

The {target namespace} of the ·actual member type definition·.
[member type definition anonymous]

true if the {name} of the ·actual member type definition· is ·absent·,
otherwise false.

[member type definition name]

The {name} of the ·actual member type definition·, if it is not ·absent·. If it is
·absent·, schema processors may, but need not, provide a value unique to
the definition.

The first (·item isomorphic·) alternative above is provided for applications such as query
processors which need access to the full range of details about an item's ·assessment·,
for example the type hierarchy; the second, for lighter-weight processors for whom
representing the significant parts of the type hierarchy as information items might be a
significant burden.

Also, if the declaration has a {value constraint}, the item has a property:

PSVI Contributions for element information items

[schema default]

The canonical lexical representation of the declaration's {value constraint}
value.

Note that if an element is ·laxly assessed·, then the [type definition] and [member type
definition] properties, or their alternatives, are based on the ·ur-type definition·.

Schema Information Set Contribution: Element Default Value

http://www.w3.org/TR/xmlschema-1/ 48 3/28/2009 7:15 PM

If the local ·validity·, as defined by Element Locally Valid (Element) (§3.3.4) above, of an
element information item has been assessed, in the ·post-schema-validation infoset · the
item has a property:

PSVI Contributions for element information items

[schema specified]

The appropriate case among the following:
1 If the item is ·valid· with respect to an element declaration as per Element

Locally Valid (Element) (§3.3.4) and the {value constraint} is present, but
clause 3.2 of Element Locally Valid (Element) (§3.3.4) above is not
satisfied and the item has no element or character information item
[children], then schema. Furthermore, the ·post-schema-validation
infoset· has the canonical lexical representation of the {value constraint}
value as the item's [schema normalized value] property.

2 otherwise infoset.

3.3.6 Constraints on Element Declaration Schema Components

All element declarations (see Element Declarations (§3.3)) must satisfy the following
constraint.

Schema Component Constraint: Element Declaration Properties Correct
All of the following must be true:
1 The values of the properties of an element declaration must be as described in the

property tableau in The Element Declaration Schema Component (§3.3.1) , modulo
the impact of Missing Sub-components (§5.3).

2 If there is a {value constraint}, the canonical lexical representation of its value must be
·valid· with respect to the {type definition} as defined in Element Default Valid
(Immediate) (§3.3.6).

3 If there is a non-·absent· {substitution group affiliation}, then {scope} must be global.
4 If there is a {substitution group affiliation}, the {type definition} of the element

declaration must be validly derived from the {type definition} of the {substitution group
affiliation}, given the value of the {substitution group exclusions} of the {substitution
group affiliation}, as defined in Type Derivation OK (Complex) (§3.4.6) (if the {type
definition} is complex) or as defined in Type Derivation OK (Simple) (§3.14.6) (if the
{type definition} is simple).

5 If the {type definition} or {type definition}'s {content type} is or is derived from ID then
there must not be a {value constraint}.

Note: The use of ID as a type definition for elements goes beyond XML 1.0, and
should be avoided if backwards compatibility is desired.

6 Circular substitution groups are disallowed. That is, it must not be possible to return to
an element declaration by repeatedly following the {substitution group affiliation}
property.

The following constraints define relations appealed to elsewhere in this specification.

Schema Component Constraint: Element Default Valid (Immediate)
For a string to be a valid default with respect to a type definition the appropriate case

http://www.w3.org/TR/xmlschema-1/ 49 3/28/2009 7:15 PM

among the following must be true:
1 If the type definition is a simple type definition, then the string must be ·valid· with

respect to that definition as defined by String Valid (§3.14.4).
2 If the type definition is a complex type definition, then all of the following must be

true:
2.1 its {content type} must be a simple type definition or mixed.
2.2 The appropriate case among the following must be true:

2.2.1 If the {content type} is a simple type definition, then the string must be ·valid·
with respect to that simple type definition as defined by String Valid (§3.14.4).

2.2.2 If the {content type} is mixed, then the {content type}'s particle must be
·emptiable· as defined by Particle Emptiable (§3.9.6).

Schema Component Constraint: Substitution Group OK (Transitive)
For an element declaration (call it D) to be validly substitutable for another element
declaration (call it C) subject to a blocking constraint (a subset of { substitution,
extension, restriction}, the value of a {disallowed substitutions}) one of the following
must be true:
1 D and C are the same element declaration.
2 All of the following must be true:

2.1 The blocking constraint does not contain substitution.
2.2 There is a chain of {substitution group affiliation}s from D to C, that is, either D's

{substitution group affiliation} is C, or D's {substitution group affiliation}'s
{substitution group affiliation} is C, or . . .

2.3 The set of all {derivation method}s involved in the derivation of D's {type
definition} from C's {type definition} does not intersect with the union of the blocking
constraint, C's {prohibited substitutions} (if C is complex, otherwise the empty set)
and the {prohibited substitutions} (respectively the empty set) of any intermediate
{type definition}s in the derivation of D's {type definition} from C's {type definition}.

Schema Component Constraint: Substitution Group
[Definition:] Every element declaration (call this HEAD) in the {element declarations} of
a schema defines a substitution group, a subset of those {element declarations}, as
follows:

Define P, the potential substitution group for HEAD, as follows:

1 The element declaration itself is in P;
2 P is closed with respect to {substitution group affiliation}, that is, if any element

declaration in the {element declarations} has a {substitution group affiliation} in P,
then that element is also in P itself.

HEAD's actual ·substitution group· is then the set consisting of each member of P such
that all of the following must be true:
1 Its {abstract} is false.
2 It is validly substitutable for HEAD subject to HEAD's {disallowed substitutions} as the

blocking constraint, as defined in Substitution Group OK (Transitive) (§3.3.6).

3.4 Complex Type Definitions
 3.4.1 The Complex Type Definition Schema Component
 3.4.2 XML Representation of Complex Type Definitions
 3.4.3 Constraints on XML Representations of Complex Type Definitions

http://www.w3.org/TR/xmlschema-1/ 50 3/28/2009 7:15 PM

 3.4.4 Complex Type Definition Validation Rules
 3.4.5 Complex Type Definition Information Set Contributions
 3.4.6 Constraints on Complex Type Definition Schema Components
 3.4.7 Built-in Complex Type Definition

Complex Type Definitions provide for:

Constraining element information items by providing Attribute Declaration (§2.2.2.3)s
governing the appearance and content of [attributes]
Constraining element information item [children] to be empty, or to conform to a
specified element-only or mixed content model, or else constraining the character
information item [children] to conform to a specified simple type definition.
Using the mechanisms of Type Definition Hierarchy (§2.2.1.1) to derive a complex
type from another simple or complex type.
Specifying ·post-schema-validation infoset contributions · for elements.
Limiting the ability to derive additional types from a given complex type.
Controlling the permission to substitute, in an instance, elements of a derived type
for elements declared in a content model to be of a given complex type.

Example
<xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="shipTo" type="USAddress"/>
 <xs:element name="billTo" type="USAddress"/>
 <xs:element ref="comment" minOccurs="0"/>
 <xs:element name="items" type="Items"/>
 </xs:sequence>
 <xs:attribute name="orderDate" type="xs:date"/>
 </xs:complexType>

The XML representation of a complex type definition.

3.4.1 The Complex Type Definition Schema Component

A complex type definition schema component has the following properties:

Schema Component: Complex Type Definition

{name}

Optional. An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{base type definition}

Either a simple type definition or a complex type definition.
{derivation method}

Either extension or restriction.
{final}

A subset of {extension, restriction}.
{abstract}

A boolean
{attribute uses}

http://www.w3.org/TR/xmlschema-1/ 51 3/28/2009 7:15 PM

A set of attribute uses.
{attribute wildcard}

Optional. A wildcard.
{content type}

One of empty, a simple type definition or a pair consisting of a ·content
model· (I.e. a Particle (§2.2.3.2)) and one of mixed, element-only.

{prohibited substitutions}

A subset of {extension, restriction}.
{annotations}

A set of annotations.

Complex types definitions are identified by their {name} and {target namespace}. Except
for anonymous complex type definitions (those with no {name}), since type definitions (i.e.
both simple and complex type definitions taken together) must be uniquely identified
within an ·XML Schema·, no complex type definition can have the same name as another
simple or complex type definition. Complex type {name}s and {target namespace}s are
provided for reference from instances (see xsi:type (§2.6.1)), and for use in the XML
representation of schema components (specifically in <element>). See References to
schema components across namespaces (§4.2.3) for the use of component identifiers
when importing one schema into another.

Note: The {name} of a complex type is not ipso facto the [(local) name] of the
element information items ·validated· by that definition. The connection between a
name and a type definition is described in Element Declarations (§3.3).

As described in Type Definition Hierarchy (§2.2.1.1), each complex type is derived from a
{base type definition} which is itself either a Simple Type Definition (§2.2.1.2) or a
Complex Type Definition (§2.2.1.3). {derivation method} specifies the means of derivation
as either extension or restriction (see Type Definition Hierarchy (§2.2.1.1)).

A complex type with an empty specification for {final} can be used as a {base type
definition} for other types derived by either of extension or restriction; the explicit values
extension, and restriction prevent further derivations by extension and restriction
respectively. If all values are specified, then [Definition:] the complex type is said to be
final, because no further derivations are possible . Finality is not inherited, that is, a type
definition derived by restriction from a type definition which is final for extension is not
itself, in the absence of any explicit final attribute of its own, final for anything.

Complex types for which {abstract} is true must not be used as the {type definition} for the
·validation· of element information items. It follows that they must not be referenced from
an xsi:type (§2.6.1) attribute in an instance document. Abstract complex types can be
used as {base type definition}s, or even as the {type definition}s of element declarations,
provided in every case a concrete derived type definition is used for ·validation·, either via
xsi:type (§2.6.1) or the operation of a substitution group.

{attribute uses} are a set of attribute uses. See Element Locally Valid (Complex Type)
(§3.4.4) and Attribute Locally Valid (§3.2.4) for details of attribute ·validation·.

{attribute wildcard}s provide a more flexible specification for ·validation· of attributes not
explicitly included in {attribute uses}. Informally, the specific values of {attribute wildcard}

http://www.w3.org/TR/xmlschema-1/ 52 3/28/2009 7:15 PM

are interpreted as follows:

any: [attributes] can include attributes with any qualified or unqualified name.
a set whose members are either namespace names or ·absent·: [attributes] can
include any attribute(s) from the specified namespace(s). If ·absent· is included in
the set, then any unqualified attributes are (also) allowed.
'not' and a namespace name: [attributes] cannot include attributes from the specified
namespace.
'not' and ·absent·: [attributes] cannot include unqualified attributes.

See Element Locally Valid (Complex Type) (§3.4.4) and Wildcard allows Namespace
Name (§3.10.4) for formal details of attribute wildcard ·validation·.

{content type} determines the ·validation· of [children] of element information items.
Informally:

A {content type} with the distinguished value empty ·validates· elements with no
character or element information item [children].
A {content type} which is a Simple Type Definition (§2.2.1.2) ·validates· elements
with character-only [children].
An element-only {content type} ·validates· elements with [children] that conform to
the supplied ·content model·.
A mixed {content type} ·validates· elements whose element [children] (i.e.
specifically ignoring other [children] such as character information items) conform to
the supplied ·content model·.

{prohibited substitutions} determine whether an element declaration appearing in a ·
content model· is prevented from additionally ·validating· element items with an xsi:type
(§2.6.1) attribute that identifies a complex type definition derived by extension or
restriction from this definition, or element items in a substitution group whose type
definition is similarly derived: If {prohibited substitutions} is empty, then all such
substitutions are allowed, otherwise, the derivation method(s) it names are disallowed.

See Annotations (§3.13) for information on the role of the {annotations} property.

3.4.2 XML Representation of Complex Type Definitions

The XML representation for a complex type definition schema component is a
<complexType> element information item.

The XML representation for complex type definitions with a simple type definition {content
type} is significantly different from that of those with other {content type}s, and this is
reflected in the presentation below, which displays first the elements involved in the first
case, then those for the second. The property mapping is shown once for each case.

XML Representation Summary: complexType Element Information Item
<complexType
 abstract = boolean : false
 block = (#all | List of (extension | restriction))
 final = (#all | List of (extension | restriction))

http://www.w3.org/TR/xmlschema-1/ 53 3/28/2009 7:15 PM

 id = ID
 mixed = boolean : false
 name = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (simpleContent | complexContent | ((group | all |
choice | sequence)?, ((attribute | attributeGroup)*, anyAttribute?))))
</complexType>

Whichever alternative for the content of <complexType> is chosen, the following
property mappings apply:

Complex Type Definition Schema Component

Property Representation
{name} The ·actual value· of the name [attribute] if present, otherwise

·absent·.
{target
namespace}

The ·actual value· of the targetNamespace [attribute] of the
<schema> ancestor element information item if present,
otherwise ·absent·.

{abstract} The ·actual value· of the abstract [attribute], if present,
otherwise false.

{prohibited
substitutions}

A set corresponding to the ·actual value· of the block [attribute],
if present, otherwise on the ·actual value· of the blockDefault
[attribute] of the ancestor <schema> element information item,
if present, otherwise on the empty string. Call this the EBV (for
effective block value). Then the value of this property is the
appropriate case among the following:
1 If the EBV is the empty string, then the empty set;
2 If the EBV is #all, then {extension, restriction};
3 otherwise a set with members drawn from the set above,

each being present or absent depending on whether the
·actual value· (which is a list) contains an equivalently named
item.

Note: Although the blockDefault [attribute] of <schema>
may include values other than restriction orextension,
those values are ignored in the determination of
{prohibited substitutions} for complex type definitions
(they are used elsewhere).

{final} As for {prohibited substitutions} above, but using the final and
finalDefault [attributes] in place of the block and blockDefault
[attributes].

{annotations} The annotations corresponding to the <annotation> element
information item in the [children], if present, in the
<simpleContent> and <complexContent> [children], if present,
and in their <restriction> and <extension> [children], if present,
otherwise ·absent·.

When the <simpleContent> alternative is chosen, the following elements are
relevant, and the remaining property mappings are as below. Note that either

http://www.w3.org/TR/xmlschema-1/ 54 3/28/2009 7:15 PM

<restriction> or <extension> must be chosen as the content of <simpleContent>.
<simpleContent
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (restriction | extension))
</simpleContent>

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (simpleType?, (minExclusive | minInclusive |
maxExclusive | maxInclusive | totalDigits | fractionDigits | length |
minLength | maxLength | enumeration | whiteSpace | pattern)*)?,
((attribute | attributeGroup)*, anyAttribute?))
</restriction>

<extension
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
</extension>

<attributeGroup
 id = ID
 ref = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</attributeGroup>

<anyAttribute
 id = ID
 namespace = ((##any | ##other) | List of (anyURI | (##targetNamespace |
##local))) : ##any
 processContents = (lax | skip | strict) : strict
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</anyAttribute>

Complex Type Definition with simple content Schema Component
Property Representation
{base type
definition}

The type definition ·resolved· to by the ·actual value· of the base
[attribute]

{derivation
method}

If the <restriction> alternative is chosen, then restriction, otherwise
(the <extension> alternative is chosen) extension.

{attribute
uses}

A union of sets of attribute uses as follows
1 The set of attribute uses corresponding to the <attribute>

[children], if any.
2 The {attribute uses} of the attribute groups ·resolved· to by the

·actual value·s of the ref [attribute] of the <attributeGroup>
[children], if any.

3 if the type definition ·resolved· to by the ·actual value· of the base
[attribute] is a complex type definition, the {attribute uses} of that
type definition, unless the <restriction> alternative is chosen, in
which case some members of that type definition's {attribute

http://www.w3.org/TR/xmlschema-1/ 55 3/28/2009 7:15 PM

Complex Type Definition with simple content Schema Component
Property Representation

uses} may not be included, namely those whose {attribute
declaration}'s {name} and {target namespace} are the same as
one of the following:
3.1 the {name} and {target namespace} of the {attribute

declaration} of an attribute use in the set per clause 1 or clause
2 above;

3.2 what would have been the {name} and {target namespace} of
the {attribute declaration} of an attribute use in the set per
clause 1 above but for the ·actual value· of the use [attribute] of
the relevant <attribute> among the [children] of <restriction>
being prohibited.

{attribute
wildcard}

1 [Definition:] Let the local wildcard be defined as the appropriate
case among the following:
1.1 If there is an <anyAttribute> present, then a wildcard based

on the ·actual value·s of the namespace and processContents
[attributes] and the <annotation> [children], exactly as for the
wildcard corresponding to an <any> element as set out in XML
Representation of Wildcard Schema Components (§3.10.2) ;

1.2 otherwise ·absent·.
2 [Definition:] Let the complete wildcard be defined as the

appropriate case among the following:
2.1 If there are no <attributeGroup> [children] corresponding to

attribute groups with non-·absent· {attribute wildcard}s, then
the ·local wildcard·.

2.2 If there are one or more <attributeGroup> [children]
corresponding to attribute groups with non- ·absent· {attribute
wildcard}s, then the appropriate case among the following:
2.2.1 If there is an <anyAttribute> present, then a wildcard

whose {process contents} and {annotation} are those of the
·local wildcard·, and whose {namespace constraint} is the
intensional intersection of the {namespace constraint} of the
·local wildcard· and of the {namespace constraint}s of all the
non-·absent· {attribute wildcard}s of the attribute groups
corresponding to the <attributeGroup> [children], as defined
in Attribute Wildcard Intersection (§3.10.6) .

2.2.2 If there is no <anyAttribute> present, then a wildcard
whose properties are as follows:

{process contents}
The {process contents} of the first non-·absent· {attribute

wildcard} of an attribute group among the attribute
groups corresponding to the <attributeGroup>
[children].

{namespace constraint}
The intensional intersection of the {namespace

constraint}s of all the non-·absent· {attribute wildcard}s

http://www.w3.org/TR/xmlschema-1/ 56 3/28/2009 7:15 PM

Complex Type Definition with simple content Schema Component
Property Representation

of the attribute groups corresponding to the
<attributeGroup> [children], as defined in Attribute
Wildcard Intersection (§3.10.6) .

{annotation}
·absent·.

3 The value is then determined by the appropriate case among the
following:
3.1 If the <restriction> alternative is chosen, then the ·complete

wildcard·;
3.2 If the <extension> alternative is chosen, then

3.2.1 [Definition:] let the base wildcard be defined as the
appropriate case among the following:
3.2.1.1 If the type definition ·resolved· to by the ·actual value·

of the base [attribute] is a complex type definition with an
{attribute wildcard}, then that {attribute wildcard}.

3.2.1.2 otherwise ·absent·.
3.2.2 The value is then determined by the appropriate case

among the following:
3.2.2.1 If the ·base wildcard· is non-·absent·, then the

appropriate case among the following:
3.2.2.1.1 If the ·complete wildcard· is ·absent·, then the

·base wildcard·.
3.2.2.1.2 otherwise a wildcard whose {process contents}

and {annotation} are those of the ·complete wildcard·,
and whose {namespace constraint} is the intensional
union of the {namespace constraint} of the ·complete
wildcard· and of the ·base wildcard·, as defined in
Attribute Wildcard Union (§3.10.6) .

3.2.2.2 otherwise (the ·base wildcard· is ·absent·) the
·complete wildcard·

{content
type}

the appropriate case among the following:
1 If the type definition ·resolved· to by the ·actual value· of the base

[attribute] is a complex type definition whose own {content type}
is a simple type definition and the <restriction> alternative is
chosen, then starting from either
1.1 the simple type definition corresponding to the <simpleType>

among the [children] of <restriction> if there is one;
1.2 otherwise (<restriction> has no <simpleType> among its

[children]), the simple type definition which is the {content type}
of the type definition ·resolved· to by the ·actual value· of the
base [attribute]

a simple type definition which restricts the simple type definition
identified in clause 1.1 or clause 1.2 with a set of facet
components corresponding to the appropriate element
information items among the <restriction>'s [children] (i.e. those

http://www.w3.org/TR/xmlschema-1/ 57 3/28/2009 7:15 PM

Complex Type Definition with simple content Schema Component

Property Representation
which specify facets, if any), as defined in Simple Type
Restriction (Facets) (§3.14.6);

2 If the type definition ·resolved· to by the ·actual value· of the base
[attribute] is a complex type definition whose own {content type}
is mixed and a particle which is ·emptiable·, as defined in Particle
Emptiable (§3.9.6) and the <restriction> alternative is chosen,
then starting from the simple type definition corresponding to the
<simpleType> among the [children] of <restriction> (which must
be present) a simple type definition which restricts that simple
type definition with a set of facet components corresponding to
the appropriate element information items among the
<restriction>'s [children] (i.e. those which specify facets, if any),
as defined in Simple Type Restriction (Facets) (§3.14.6);

3 If the type definition ·resolved· to by the ·actual value· of the base
[attribute] is a complex type definition (whose own {content type}
must be a simple type definition, see below) and the <extension>
alternative is chosen, then the {content type} of that complex
type definition;

4 otherwise (the type definition ·resolved· to by the ·actual value· of
the base [attribute] is a simple type definition and the <extension>
alternative is chosen), then that simple type definition.

When the <complexContent> alternative is chosen, the following elements are
relevant (as are the <attributeGroup> and <anyAttribute> elements, not repeated
here), and the additional property mappings are as below. Note that either
<restriction> or <extension> must be chosen as the content of <complexContent>,
but their content models are different in this case from the case above when they
occur as children of <simpleContent>.

The property mappings below are also used in the case where the third alternative
(neither <simpleContent> nor <complexContent>) is chosen. This case is
understood as shorthand for complex content restricting the ·ur-type definition·,
and the details of the mappings should be modified as necessary.
<complexContent
 id = ID
 mixed = boolean
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (restriction | extension))
</complexContent>

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (group | all | choice | sequence)?, ((attribute |
attributeGroup)*, anyAttribute?))
</restriction>

<extension
 base = QName
 id = ID

http://www.w3.org/TR/xmlschema-1/ 58 3/28/2009 7:15 PM

 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, ((group | all | choice | sequence)?, ((attribute |
attributeGroup)*, anyAttribute?)))
</extension>

Complex Type Definition with complex content Schema Component
Property Representation
{base type
definition}

The type definition ·resolved· to by the ·actual value· of the base
[attribute]

{derivation
method}

If the <restriction> alternative is chosen, then restriction, otherwise
(the <extension> alternative is chosen) extension.

{attribute
uses}

A union of sets of attribute uses as follows:
1 The set of attribute uses corresponding to the <attribute>

[children], if any.
2 The {attribute uses} of the attribute groups ·resolved· to by the

·actual value·s of the ref [attribute] of the <attributeGroup>
[children], if any.

3 The {attribute uses} of the type definition ·resolved· to by the
·actual value· of the base [attribute], unless the <restriction>
alternative is chosen, in which case some members of that type
definition's {attribute uses} may not be included, namely those
whose {attribute declaration}'s {name} and {target namespace}
are the same as one of the following:
3.1 The {name} and {target namespace} of the {attribute

declaration} of an attribute use in the set per clause 1 or
clause 2 above;

3.2 what would have been the {name} and {target namespace}
of the {attribute declaration} of an attribute use in the set per
clause 1 above but for the ·actual value· of the use [attribute]
of the relevant <attribute> among the [children] of
<restriction> being prohibited.

{attribute
wildcard}

As above for the <simpleContent> alternative.

{content
type}

1 [Definition:] Let the effective mixed be the appropriate case
among the following:
1.1 If the mixed [attribute] is present on <complexContent>, then

its ·actual value·;
1.2 If the mixed [attribute] is present on <complexType>, then its

·actual value·;
1.3 otherwise false.

2 [Definition:] Let the effective content be the appropriate case
among the following:
2.1 If one of the following is true

2.1.1 There is no <group>, <all>, <choice> or <sequence>
among the [children];

2.1.2 There is an <all> or <sequence> among the [children]
with no [children] of its own excluding <annotation>;

http://www.w3.org/TR/xmlschema-1/ 59 3/28/2009 7:15 PM

Complex Type Definition with complex content Schema Component
Property Representation

2.1.3 There is a <choice> among the [children] with no
[children] of its own excluding <annotation> whose
minOccurs [attribute] has the ·actual value· 0;

, then the appropriate case among the following:
2.1.4 If the ·effective mixed· is true, then A particle whose

properties are as follows:

{min occurs}
1

{max occurs}
1

{term}
A model group whose {compositor} is sequence and

whose {particles} is empty.

.
2.1.5 otherwise empty

2.2 otherwise the particle corresponding to the <all>, <choice>,
<group> or <sequence> among the [children].

3 Then the value of the property is the appropriate case among the
following:
3.1 If the <restriction> alternative is chosen, then the

appropriate case among the following:
3.1.1 If the ·effective content· is empty , then empty;
3.1.2 otherwise a pair consisting of

3.1.2.1 mixed if the ·effective mixed· is true, otherwise
elementOnly

3.1.2.2 The ·effective content·.
3.2 If the <extension> alternative is chosen, then the

appropriate case among the following:
3.2.1 If the ·effective content· is empty, then the {content type}

of the type definition ·resolved· to by the ·actual value· of the
base [attribute]

3.2.2 If the type definition ·resolved· to by the ·actual value· of
the base [attribute] has a {content type} of empty, then a
pair as per clause 3.1.2 above;

3.2.3 otherwise a pair of mixed or elementOnly (determined
as per clause 3.1.2.1 above) and a particle whose
properties are as follows:

{min occurs}
1

{max occurs}
1

{term}
A model group whose {compositor} is sequence and

http://www.w3.org/TR/xmlschema-1/ 60 3/28/2009 7:15 PM

Complex Type Definition with complex content Schema Component

Property Representation
whose {particles} are the particle of the {content type}
of the type definition ·resolved· to by the ·actual value·
of the base [attribute] followed by the ·effective
content·.

Note: Aside from the simple coherence requirements enforced above, constraining
type definitions identified as restrictions to actually be restrictions, that is, to ·validate·
a subset of the items which are ·validated· by their base type definition, is enforced in
Constraints on Complex Type Definition Schema Components (§3.4.6) .
Note: The only substantive function of the value prohibited for the use attribute of an
<attribute> is in establishing the correspondence between a complex type defined by
restriction and its XML representation. It serves to prevent inheritance of an identically
named attribute use from the {base type definition}. Such an <attribute> does not
correspond to any component, and hence there is no interaction with either explicit or
inherited wildcards in the operation of Complex Type Definition Validation Rules
(§3.4.4) or Constraints on Complex Type Definition Schema Components (§3.4.6) .

Careful consideration of the above concrete syntax reveals that a type definition need
consist of no more than a name, i.e. that <complexType name="anyThing"/> is allowed.

Example
<xs:complexType name="length1">
 <xs:simpleContent>
 <xs:extension base="xs:nonNegativeInteger">
 <xs:attribute name="unit" type="xs:NMTOKEN"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

<xs:element name="width" type="length1"/>

 <width unit="cm">25</width>

<xs:complexType name="length2">
 <xs:complexContent>
 <xs:restriction base="xs:anyType">
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger"/>
 <xs:element name="unit" type="xs:NMTOKEN"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:element name="depth" type="length2"/>

 <depth>
 <size>25</size><unit>cm</unit>
 </depth>

<xs:complexType name="length3">
 <xs:sequence>
 <xs:element name="size" type="xs:nonNegativeInteger"/>

http://www.w3.org/TR/xmlschema-1/ 61 3/28/2009 7:15 PM

 <xs:element name="unit" type="xs:NMTOKEN"/>
 </xs:sequence>
</xs:complexType>

Three approaches to defining a type for length: one with character data content
constrained by reference to a built-in datatype, and one attribute, the other two using
two elements. length3 is the abbreviated alternative to length2: they correspond to
identical type definition components.

Example
<xs:complexType name="personName">
 <xs:sequence>
 <xs:element name="title" minOccurs="0"/>
 <xs:element name="forename" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="surname"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="extendedName">
 <xs:complexContent>
 <xs:extension base="personName">
 <xs:sequence>
 <xs:element name="generation" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name="addressee" type="extendedName"/>

 <addressee>
 <forename>Albert</forename>
 <forename>Arnold</forename>
 <surname>Gore</surname>
 <generation>Jr</generation>
 </addressee>

A type definition for personal names, and a definition derived by extension which adds a
single element; an element declaration referencing the derived definition, and a ·valid·
instance thereof.

Example
<xs:complexType name="simpleName">
 <xs:complexContent>
 <xs:restriction base="personName">
 <xs:sequence>
 <xs:element name="forename" minOccurs="1" maxOccurs="1"/>
 <xs:element name="surname"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

<xs:element name="who" type="simpleName"/>

 <who>
 <forename>Bill</forename>
 <surname>Clinton</surname>
 </who>

A simplified type definition derived from the base type from the previous example by

http://www.w3.org/TR/xmlschema-1/ 62 3/28/2009 7:15 PM

restriction, eliminating one optional daughter and fixing another to occur exactly once;
an element declared by reference to it, and a ·valid· instance thereof.

Example
<xs:complexType name="paraType" mixed="true">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="emph"/>
 <xs:element ref="strong"/>
 </xs:choice>
 <xs:attribute name="version" type="xs:number"/>
</xs:complexType>

A further illustration of the abbreviated form, with the mixed attribute appearing on
complexType itself.

3.4.3 Constraints on XML Representations of Complex Type Definitions

Schema Representation Constraint: Complex Type Definition Representation OK
In addition to the conditions imposed on <complexType> element information items by
the schema for schemas, all of the following must be true:
1 If the <complexContent> alternative is chosen, the type definition ·resolved· to by the

·actual value· of the base [attribute] must be a complex type definition;
2 If the <simpleContent> alternative is chosen, all of the following must be true:

2.1 The type definition ·resolved· to by the ·actual value· of the base [attribute] must
be one of the following:
2.1.1 a complex type definition whose {content type} is a simple type definition;
2.1.2 only if the <restriction> alternative is also chosen, a complex type definition

whose {content type} is mixed and a particle which is ·emptiable·, as defined in
Particle Emptiable (§3.9.6);

2.1.3 only if the <extension> alternative is also chosen, a simple type definition.
2.2 If clause 2.1.2 above is satisfied, then there must be a <simpleType> among the

[children] of <restriction>.
Note: Although not explicitly ruled out either here or in Schema for Schemas

(normative) (§A), specifying <xs:complexType . . .mixed='true' when the
<simpleContent> alternative is chosen has no effect on the corresponding
component, and should be avoided. This may be ruled out in a subsequent
version of this specification.

3 The corresponding complex type definition component must satisfy the conditions set
out in Constraints on Complex Type Definition Schema Components (§3.4.6) ;

4 If clause 2.2.1 or clause 2.2.2 in the correspondence specification above for {attribute
wildcard} is satisfied, the intensional intersection must be expressible, as defined in
Attribute Wildcard Intersection (§3.10.6) .

3.4.4 Complex Type Definition Validation Rules

Validation Rule: Element Locally Valid (Complex Type)
For an element information item to be locally ·valid· with respect to a complex type
definition all of the following must be true:
1 {abstract} is false.
2 If clause 3.2 of Element Locally Valid (Element) (§3.3.4) did not apply, then the

appropriate case among the following must be true:

http://www.w3.org/TR/xmlschema-1/ 63 3/28/2009 7:15 PM

2.1 If the {content type} is empty, then the element information item has no character
or element information item [children].

2.2 If the {content type} is a simple type definition, then the element information item
has no element information item [children], and the ·normalized value· of the
element information item is ·valid· with respect to that simple type definition as
defined by String Valid (§3.14.4).

2.3 If the {content type} is element-only, then the element information item has no
character information item [children] other than those whose [character code] is
defined as a white space in [XML 1.0 (Second Edition)].

2.4 If the {content type} is element-only or mixed, then the sequence of the element
information item's element information item [children], if any, taken in order, is
·valid· with respect to the {content type}'s particle, as defined in Element Sequence
Locally Valid (Particle) (§3.9.4).

3 For each attribute information item in the element information item's [attributes]
excepting those whose [namespace name] is identical to
http://www.w3.org/2001/XMLSchema-instance and whose [local name] is one of type,
nil, schemaLocation or noNamespaceSchemaLocation, the appropriate case among the
following must be true:
3.1 If there is among the {attribute uses} an attribute use with an {attribute

declaration} whose {name} matches the attribute information item's [local name]
and whose {target namespace} is identical to the attribute information item's
[namespace name] (where an ·absent· {target namespace} is taken to be identical
to a [namespace name] with no value), then the attribute information must be
·valid· with respect to that attribute use as per Attribute Locally Valid (Use) (§3.5.4).
In this case the {attribute declaration} of that attribute use is the
·context-determined declaration· for the attribute information item with respect to
Schema-Validity Assessment (Attribute) (§3.2.4) and Assessment Outcome
(Attribute) (§3.2.5).

3.2 otherwise all of the following must be true:
3.2.1 There must be an {attribute wildcard}.
3.2.2 The attribute information item must be ·valid· with respect to it as defined in

Item Valid (Wildcard) (§3.10.4) .
4 The {attribute declaration} of each attribute use in the {attribute uses} whose

{required} is true matches one of the attribute information items in the element
information item's [attributes] as per clause 3.1 above.

5 Let [Definition:] the wild IDs be the set of all attribute information item to which
clause 3.2 applied and whose ·validation· resulted in a ·context-determined
declaration· of mustFind or no ·context-determined declaration· at all, and whose
[local name] and [namespace name] resolve (as defined by QName resolution
(Instance) (§3.15.4)) to an attribute declaration whose {type definition} is or is derived
from ID. Then all of the following must be true:
5.1 There must be no more than one item in ·wild IDs·.
5.2 If ·wild IDs· is non-empty, there must not be any attribute uses among the

{attribute uses} whose {attribute declaration}'s {type definition} is or is derived from
ID.
Note: This clause serves to ensure that even via attribute wildcards no element

has more than one attribute of type ID, and that even when an element
legitimately lacks a declared attribute of type ID, a wildcard-validated attribute
must not supply it. That is, if an element has a type whose attribute declarations
include one of type ID, it either has that attribute or no attribute of type ID.

http://www.w3.org/TR/xmlschema-1/ 64 3/28/2009 7:15 PM

Note: When an {attribute wildcard} is present, this does not introduce any
ambiguity with respect to how attribute information items for which an attribute use
is present amongst the {attribute uses} whose name and target namespace match
are ·assessed·. In such cases the attribute use always takes precedence, and the
·assessment· of such items stands or falls entirely on the basis of the attribute use
and its {attribute declaration}. This follows from the details of clause 3.

3.4.5 Complex Type Definition Information Set Contributions

Schema Information Set Contribution: Attribute Default Value
For each attribute use in the {attribute uses} whose {required} is false and whose {value
constraint} is not ·absent· but whose {attribute declaration} does not match one of the
attribute information items in the element information item's [attributes] as per clause
3.1 of Element Locally Valid (Complex Type) (§3.4.4) above, the
·post-schema-validation infoset · has an attribute information item whose properties are
as below added to the [attributes] of the element information item.

[local name]
The {attribute declaration}'s {name}.

[namespace name]
The {attribute declaration}'s {target namespace}.

[schema normalized value]
The canonical lexical representation of the ·effective value constraint· value.

[schema default]
The canonical lexical representation of the ·effective value constraint· value.

[validation context]
The nearest ancestor element information item with a [schema information]
property.

[validity]
valid.

[validation attempted]
full.

[schema specified]
schema.

The added items should also either have [type definition] (and [member type definition]
if appropriate) properties, or their lighter-weight alternatives, as specified in Attribute
Validated by Type (§3.2.5).

3.4.6 Constraints on Complex Type Definition Schema Components

All complex type definitions (see Complex Type Definitions (§3.4)) must satisfy the
following constraints.

Schema Component Constraint: Complex Type Definition Properties Correct
All of the following must be true:
1 The values of the properties of a complex type definition must be as described in the

property tableau in The Complex Type Definition Schema Component (§3.4.1) ,
modulo the impact of Missing Sub-components (§5.3).

2 If the {base type definition} is a simple type definition, the {derivation method} must be

http://www.w3.org/TR/xmlschema-1/ 65 3/28/2009 7:15 PM

extension.
3 Circular definitions are disallowed, except for the ·ur-type definition·. That is, it must

be possible to reach the ·ur-type definition· by repeatedly following the {base type
definition}.

4 Two distinct attribute declarations in the {attribute uses} must not have identical
{name}s and {target namespace}s.

5 Two distinct attribute declarations in the {attribute uses} must not have {type
definition}s which are or are derived from ID.

Schema Component Constraint: Derivation Valid (Extension)
If the {derivation method} is extension, the appropriate case among the following must
be true:
1 If the {base type definition} is a complex type definition, then all of the following must

be true:
1.1 The {final} of the {base type definition} must not contain extension.
1.2 Its {attribute uses} must be a subset of the {attribute uses} of the complex type

definition itself, that is, for every attribute use in the {attribute uses} of the {base
type definition}, there must be an attribute use in the {attribute uses} of the complex
type definition itself whose {attribute declaration} has the same {name}, {target
namespace} and {type definition} as its attribute declaration.

1.3 If it has an {attribute wildcard}, the complex type definition must also have one,
and the base type definition's {attribute wildcard}'s {namespace constraint} must be
a subset of the complex type definition's {attribute wildcard}'s {namespace
constraint}, as defined by Wildcard Subset (§3.10.6) .

1.4 One of the following must be true:
1.4.1 The {content type} of the {base type definition} and the {content type} of the

complex type definition itself must be the same simple type definition.
1.4.2 The {content type} of both the {base type definition} and the complex type

definition itself must be empty.
1.4.3 All of the following must be true:

1.4.3.1 The {content type} of the complex type definition itself must specify a
particle.

1.4.3.2 One of the following must be true:
1.4.3.2.1 The {content type} of the {base type definition} must be empty.
1.4.3.2.2 All of the following must be true:

1.4.3.2.2.1 Both {content type}s must be mixed or both must be
element-only.

1.4.3.2.2.2 The particle of the complex type definition must be a ·valid
extension· of the {base type definition}'s particle, as defined in Particle
Valid (Extension) (§3.9.6).

1.5 It must in principle be possible to derive the complex type definition in two steps,
the first an extension and the second a restriction (possibly vacuous), from that
type definition among its ancestors whose {base type definition} is the ·ur-type
definition·.

Note: This requirement ensures that nothing removed by a restriction is
subsequently added back by an extension. It is trivial to check if the extension
in question is the only extension in its derivation, or if there are no restrictions
bar the first from the ·ur-type definition·.

Constructing the intermediate type definition to check this constraint is

http://www.w3.org/TR/xmlschema-1/ 66 3/28/2009 7:15 PM

straightforward: simply re-order the derivation to put all the extension steps
first, then collapse them into a single extension. If the resulting definition can
be the basis for a valid restriction to the desired definition, the constraint is
satisfied.

2 If the {base type definition} is a simple type definition, then all of the following must
be true:
2.1 The {content type} must be the same simple type definition.
2.2 The {final} of the {base type definition} must not contain extension.

[Definition:] If this constraint Derivation Valid (Extension) (§3.4.6) holds of a complex
type definition, it is a valid extension of its {base type definition}.

Schema Component Constraint: Derivation Valid (Restriction, Complex)
If the {derivation method} is restriction all of the following must be true:
1 The {base type definition} must be a complex type definition whose {final} does not

contain restriction.
2 For each attribute use (call this R) in the {attribute uses} the appropriate case among

the following must be true:
2.1 If there is an attribute use in the {attribute uses} of the {base type definition} (call

this B) whose {attribute declaration} has the same {name} and {target namespace},
then all of the following must be true:
2.1.1 one of the following must be true:

2.1.1.1 B's {required} is false.
2.1.1.2 R's {required} is true.

2.1.2 R's {attribute declaration}'s {type definition} must be validly derived from B's
{type definition} given the empty set as defined in Type Derivation OK (Simple)
(§3.14.6).

2.1.3 [Definition:] Let the effective value constraint of an attribute use be its
{value constraint}, if present, otherwise its {attribute declaration}'s {value
constraint} . Then one of the following must be true:
2.1.3.1 B's ·effective value constraint· is ·absent· or default.
2.1.3.2 R's ·effective value constraint· is fixed with the same string as B's.

2.2 otherwise the {base type definition} must have an {attribute wildcard} and the
{target namespace} of the R's {attribute declaration} must be ·valid· with respect to
that wildcard, as defined in Wildcard allows Namespace Name (§3.10.4) .

3 For each attribute use in the {attribute uses} of the {base type definition} whose
{required} is true, there must be an attribute use with an {attribute declaration} with
the same {name} and {target namespace} as its {attribute declaration} in the {attribute
uses} of the complex type definition itself whose {required} is true.

4 If there is an {attribute wildcard}, all of the following must be true:
4.1 The {base type definition} must also have one.
4.2 The complex type definition's {attribute wildcard}'s {namespace constraint} must

be a subset of the {base type definition}'s {attribute wildcard}'s {namespace
constraint}, as defined by Wildcard Subset (§3.10.6) .

4.3 Unless the {base type definition} is the ·ur-type definition·, the complex type
definition's {attribute wildcard}'s {process contents} must be identical to or stronger
than the {base type definition}'s {attribute wildcard}'s {process contents}, where
strict is stronger than lax is stronger than skip.

5 One of the following must be true:
5.1 The {base type definition} must be the ·ur-type definition·.

http://www.w3.org/TR/xmlschema-1/ 67 3/28/2009 7:15 PM

5.2 All of the following must be true:
5.2.1 The {content type} of the complex type definition must be a simple type

definition
5.2.2 One of the following must be true:

5.2.2.1 The {content type} of the {base type definition} must be a simple type
definition from which the {content type} is validly derived given the empty set
as defined in Type Derivation OK (Simple) (§3.14.6).

5.2.2.2 The {base type definition} must be mixed and have a particle which is
·emptiable· as defined in Particle Emptiable (§3.9.6).

5.3 All of the following must be true:
5.3.1 The {content type} of the complex type itself must be empty
5.3.2 One of the following must be true:

5.3.2.1 The {content type} of the {base type definition} must also be empty.
5.3.2.2 The {content type} of the {base type definition} must be elementOnly or

mixed and have a particle which is ·emptiable· as defined in Particle Emptiable
(§3.9.6).

5.4 All of the following must be true:
5.4.1 One of the following must be true:

5.4.1.1 The {content type} of the complex type definition itself must be
element-only

5.4.1.2 The {content type} of the complex type definition itself and of the {base
type definition} must be mixed

5.4.2 The particle of the complex type definition itself must be a ·valid restriction· of
the particle of the {content type} of the {base type definition} as defined in
Particle Valid (Restriction) (§3.9.6).

Note: Attempts to derive complex type definitions whose {content type} is
element-only by restricting a {base type definition} whose {content type} is empty
are not ruled out by this clause. However if the complex type definition itself has
a non-pointless particle it will fail to satisfy Particle Valid (Restriction) (§3.9.6). On
the other hand some type definitions with pointless element-only content, for
example an empty <sequence>, will satisfy Particle Valid (Restriction) (§3.9.6)
with respect to an empty {base type definition}, and so be valid restrictions.

[Definition:] If this constraint Derivation Valid (Restriction, Complex) (§3.4.6) holds of a
complex type definition, it is a valid restriction of its {base type definition}.

Note: To restrict a complex type definition with a simple base type definition to empty,
use a simple type definition with a fixed value of the empty string: this preserves the
type information.

The following constraint defines a relation appealed to elsewhere in this specification.

Schema Component Constraint: Type Derivation OK (Complex)
For a complex type definition (call it D, for derived) to be validly derived from a type
definition (call this B, for base) given a subset of {extension, restriction} all of the
following must be true:
1 If B and D are not the same type definition, then the {derivation method} of D must not

be in the subset.
2 One of the following must be true:

2.1 B and D must be the same type definition.
2.2 B must be D's {base type definition}.
2.3 All of the following must be true:

http://www.w3.org/TR/xmlschema-1/ 68 3/28/2009 7:15 PM

2.3.1 D's {base type definition} must not be the ·ur-type definition·.
2.3.2 The appropriate case among the following must be true:

2.3.2.1 If D's {base type definition} is complex, then it must be validly derived
from B given the subset as defined by this constraint.

2.3.2.2 If D's {base type definition} is simple, then it must be validly derived from
B given the subset as defined in Type Derivation OK (Simple) (§3.14.6).

Note: This constraint is used to check that when someone uses a type in a context
where another type was expected (either via xsi:type or substitution groups), that the
type used is actually derived from the expected type, and that that derivation does not
involve a form of derivation which was ruled out by the expected type.

Note:

The wording of clause 2.1 above appeals to a notion of component identity which is
only incompletely defined by this version of this specification. In some cases, the
wording of this specification does make clear the rules for component identity. These
cases include:

When they are both top-level components with the same component type,
namespace name, and local name;
When they are necessarily the same type definition (for example, when the two
types definitions in question are the type definitions associated with two attribute
or element declarations, which are discovered to be the same declaration);
When they are the same by construction (for example, when an element's type
definition defaults to being the same type definition as that of its
substitution-group head or when a complex type definition inherits an attribute
declaration from its base type definition).

In other cases two conforming implementations may disagree as to whether
components are identical.

3.4.7 Built-in Complex Type Definition

There is a complex type definition nearly equivalent to the ·ur-type definition· present in
every schema by definition. It has the following properties:

Complex Type Definition of the Ur-Type

Property Value
{name} anyType

{target
namespace}

http://www.w3.org/2001/XMLSchema

{base type
definition}

Itself

{derivation
method}

restriction

http://www.w3.org/TR/xmlschema-1/ 69 3/28/2009 7:15 PM

Complex Type Definition of the Ur-Type

Property Value
{content type} A pair consisting of mixed and a particle with the following properties:

Property Value
{min
occurs}

1

{max
occurs}

1

{term} a model group with the following properties:
Property Value
{compositor} sequence

{particles} a list containing one particle with the
following properties:
Property Value
{min
occurs}

0

{max
occurs}

unbounded

{term} a wildcard with the
following properties:
Property Value
{namespace
constraint}

any

{process contents} lax

{attribute uses} The empty set

{attribute
wildcard}

a wildcard with the following properties::
Property Value
{namespace constraint} any

{process contents} lax

{final} The empty set

{prohibited
substitutions}

The empty set

{abstract} false

The mixed content specification together with the lax wildcard and attribute specification
produce the defining property for the ·ur-type definition·, namely that every type definition
is (eventually) a restriction of the ·ur-type definition·: its permissions and requirements are

http://www.w3.org/TR/xmlschema-1/ 70 3/28/2009 7:15 PM

(nearly) the least restrictive possible.

Note: This specification does not provide an inventory of built-in complex type
definitions for use in user schemas. A preliminary library of complex type definitions is
available which includes both mathematical (e.g. rational) and utility (e.g. array) type
definitions. In particular, there is a text type definition which is recommended for use
as the type definition in element declarations intended for general text content, as it
makes sensible provision for various aspects of internationalization. For more details,
see the schema document for the type library at its namespace name:
http://www.w3.org/2001/03/XMLSchema/TypeLibrary.xsd.

3.5 AttributeUses
 3.5.1 The Attribute Use Schema Component
 3.5.2 XML Representation of Attribute Use Components
 3.5.3 Constraints on XML Representations of Attribute Uses
 3.5.4 Attribute Use Validation Rules
 3.5.5 Attribute Use Information Set Contributions
 3.5.6 Constraints on Attribute Use Schema Components

An attribute use is a utility component which controls the occurrence and defaulting
behavior of attribute declarations. It plays the same role for attribute declarations in
complex types that particles play for element declarations.

Example
<xs:complexType>
 . . .
 <xs:attribute ref="xml:lang" use="required"/>
 <xs:attribute ref="xml:space" default="preserve"/>
 <xs:attribute name="version" type="xs:number" fixed="1.0"/>
</xs:complexType>

XML representations which all involve attribute uses, illustrating some of the
possibilities for controlling occurrence.

3.5.1 The Attribute Use Schema Component

The attribute use schema component has the following properties:

Schema Component: Attribute Use

{required}

A boolean.
{attribute declaration}

An attribute declaration.
{value constraint}

Optional. A pair consisting of a value and one of default, fixed.

{required} determines whether this use of an attribute declaration requires an appropriate
attribute information item to be present, or merely allows it.

http://www.w3.org/TR/xmlschema-1/ 71 3/28/2009 7:15 PM

{attribute declaration} provides the attribute declaration itself, which will in turn determine
the simple type definition used.

{value constraint} allows for local specification of a default or fixed value. This must be
consistent with that of the {attribute declaration}, in that if the {attribute declaration}
specifies a fixed value, the only allowed {value constraint} is the same fixed value.

3.5.2 XML Representation of Attribute Use Components

Attribute uses correspond to all uses of <attribute> which allow a use attribute. These in
turn correspond to two components in each case, an attribute use and its {attribute
declaration} (although note the latter is not new when the attribute use is a reference to a
top-level attribute declaration). The appropriate mapping is described in XML
Representation of Attribute Declaration Schema Components (§3.2.2) .

3.5.3 Constraints on XML Representations of Attribute Uses

None as such.

3.5.4 Attribute Use Validation Rules

Validation Rule: Attribute Locally Valid (Use)
For an attribute information item to be ·valid· with respect to an attribute use its
·normalized value· must match the canonical lexical representation of the attribute use's
{value constraint} value, if it is present and fixed.

3.5.5 Attribute Use Information Set Contributions

None as such.

3.5.6 Constraints on Attribute Use Schema Components

All attribute uses (see AttributeUses (§3.5)) must satisfy the following constraints.

Schema Component Constraint: Attribute Use Correct
All of the following must be true:
1 The values of the properties of an attribute use must be as described in the property

tableau in The Attribute Use Schema Component (§3.5.1) , modulo the impact of
Missing Sub-components (§5.3).

2 If the {attribute declaration} has a fixed {value constraint}, then if the attribute use
itself has a {value constraint}, it must also be fixed and its value must match that of
the {attribute declaration}'s {value constraint}.

3.6 Attribute Group Definitions
 3.6.1 The Attribute Group Definition Schema Component
 3.6.2 XML Representation of Attribute Group Definition Schema Components
 3.6.3 Constraints on XML Representations of Attribute Group Definitions
 3.6.4 Attribute Group Definition Validation Rules
 3.6.5 Attribute Group Definition Information Set Contributions

http://www.w3.org/TR/xmlschema-1/ 72 3/28/2009 7:15 PM

 3.6.6 Constraints on Attribute Group Definition Schema Components

A schema can name a group of attribute declarations so that they may be incorporated as
a group into complex type definitions.

Attribute group definitions do not participate in ·validation· as such, but the {attribute uses}
and {attribute wildcard} of one or more complex type definitions may be constructed in
whole or part by reference to an attribute group. Thus, attribute group definitions provide a
replacement for some uses of XML's parameter entity facility. Attribute group definitions
are provided primarily for reference from the XML representation of schema components
(see <complexType> and <attributeGroup>).

Example
<xs:attributeGroup name="myAttrGroup">
 <xs:attribute . . ./>
 . . .
</xs:attributeGroup>

<xs:complexType name="myelement">
 . . .
 <xs:attributeGroup ref="myAttrGroup"/>
</xs:complexType>

XML representations for attribute group definitions. The effect is as if the attribute
declarations in the group were present in the type definition.

3.6.1 The Attribute Group Definition Schema Component

The attribute group definition schema component has the following properties:

Schema Component: Attribute Group Definition

{name}

An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{attribute uses}

A set of attribute uses.
{attribute wildcard}

Optional. A wildcard.
{annotation}

Optional. An annotation.

Attribute groups are identified by their {name} and {target namespace}; attribute group
identities must be unique within an ·XML Schema·. See References to schema
components across namespaces (§4.2.3) for the use of component identifiers when
importing one schema into another.

{attribute uses} is a set attribute uses, allowing for local specification of occurrence and
default or fixed values.

http://www.w3.org/TR/xmlschema-1/ 73 3/28/2009 7:15 PM

{attribute wildcard} provides for an attribute wildcard to be included in an attribute group.
See above under Complex Type Definitions (§3.4) for the interpretation of attribute
wildcards during ·validation·.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.6.2 XML Representation of Attribute Group Definition Schema Components

The XML representation for an attribute group definition schema component is an
<attributeGroup> element information item. It provides for naming a group of attribute
declarations and an attribute wildcard for use by reference in the XML representation of
complex type definitions and other attribute group definitions. The correspondences
between the properties of the information item and properties of the component it
corresponds to are as follows:

XML Representation Summary: attributeGroup Element Information Item
<attributeGroup
 id = ID
 name = NCName
 ref = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, ((attribute | attributeGroup)*, anyAttribute?))
</attributeGroup>

When an <attributeGroup> appears as a daughter of <schema> or <redefine>, it
corresponds to an attribute group definition as below. When it appears as a
daughter of <complexType> or <attributeGroup>, it does not correspond to any
component as such.

Attribute Group Definition Schema Component

Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute] of the parent
schema element information item.

{attribute
uses}

The union of the set of attribute uses corresponding to the
<attribute> [children], if any, with the {attribute uses} of the
attribute groups ·resolved· to by the ·actual value·s of the ref
[attribute] of the <attributeGroup> [children], if any.

{attribute
wildcard}

As for the ·complete wildcard· as described in XML
Representation of Complex Type Definitions (§3.4.2).

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

The example above illustrates a pattern which recurs in the XML representation of
schemas: The same element, in this case attributeGroup, serves both to define and to
incorporate by reference. In the first case the name attribute is required, in the second the
ref attribute is required, and the element must be empty. These two are mutually
exclusive, and also conditioned by context: the defining form, with a name, must occur at

http://www.w3.org/TR/xmlschema-1/ 74 3/28/2009 7:15 PM

the top level of a schema, whereas the referring form, with a ref, must occur within a
complex type definition or an attribute group definition.

3.6.3 Constraints on XML Representations of Attribute Group Definitions

Schema Representation Constraint: Attribute Group Definition Representation OK
In addition to the conditions imposed on <attributeGroup> element information items by
the schema for schemas, all of the following must be true:
1 The corresponding attribute group definition, if any, must satisfy the conditions set out

in Constraints on Attribute Group Definition Schema Components (§3.6.6) .
2 If clause 2.2.1 or clause 2.2.2 in the correspondence specification in XML

Representation of Complex Type Definitions (§3.4.2) for {attribute wildcard}, as
referenced above, is satisfied, the intensional intersection must be expressible, as
defined in Attribute Wildcard Intersection (§3.10.6) .

3 Circular group reference is disallowed outside <redefine>. That is, unless this element
information item's parent is <redefine>, then among the [children], if any, there must
not be an <attributeGroup> with ref [attribute] which resolves to the component
corresponding to this <attributeGroup>. Indirect circularity is also ruled out. That is,
when QName resolution (Schema Document) (§3.15.3) is applied to a ·QName·
arising from any <attributeGroup>s with a ref [attribute] among the [children], it must
not be the case that a ·QName· is encountered at any depth which resolves to the
component corresponding to this <attributeGroup>.

3.6.4 Attribute Group Definition Validation Rules

None as such.

3.6.5 Attribute Group Definition Information Set Contributions

None as such.

3.6.6 Constraints on Attribute Group Definition Schema Components

All attribute group definitions (see Attribute Group Definitions (§3.6)) must satisfy the
following constraint.

Schema Component Constraint: Attribute Group Definition Properties Correct
All of the following must be true:
1 The values of the properties of an attribute group definition must be as described in

the property tableau in The Attribute Group Definition Schema Component (§3.6.1) ,
modulo the impact of Missing Sub-components (§5.3);

2 Two distinct members of the {attribute uses} must not have {attribute declaration}s
both of whose {name}s match and whose {target namespace}s are identical.

3 Two distinct members of the {attribute uses} must not have {attribute declaration}s
both of whose {type definition}s are or are derived from ID.

3.7 Model Group Definitions
 3.7.1 The Model Group Definition Schema Component
 3.7.2 XML Representation of Model Group Definition Schema Components

http://www.w3.org/TR/xmlschema-1/ 75 3/28/2009 7:15 PM

 3.7.3 Constraints on XML Representations of Model Group Definitions
 3.7.4 Model Group Definition Validation Rules
 3.7.5 Model Group Definition Information Set Contributions
 3.7.6 Constraints on Model Group Definition Schema Components

A model group definition associates a name and optional annotations with a Model Group
(§2.2.3.1). By reference to the name, the entire model group can be incorporated by
reference into a {term}.

Model group definitions are provided primarily for reference from the XML Representation
of Complex Type Definitions (§3.4.2) (see <complexType> and <group>). Thus, model
group definitions provide a replacement for some uses of XML's parameter entity facility.

Example
<xs:group name="myModelGroup">
 <xs:sequence>
 <xs:element ref="someThing"/>
 . . .
 </xs:sequence>
</xs:group>

<xs:complexType name="trivial">
 <xs:group ref="myModelGroup"/>
 <xs:attribute .../>
</xs:complexType>

<xs:complexType name="moreSo">
 <xs:choice>
 <xs:element ref="anotherThing"/>
 <xs:group ref="myModelGroup"/>
 </xs:choice>
 <xs:attribute .../>
</xs:complexType>

A minimal model group is defined and used by reference, first as the whole content
model, then as one alternative in a choice.

3.7.1 The Model Group Definition Schema Component

The model group definition schema component has the following properties:

Schema Component: Model Group Definition

{name}

An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{model group}

A model group.
{annotation}

Optional. An annotation.

Model group definitions are identified by their {name} and {target namespace}; model

http://www.w3.org/TR/xmlschema-1/ 76 3/28/2009 7:15 PM

group identities must be unique within an ·XML Schema·. See References to schema
components across namespaces (§4.2.3) for the use of component identifiers when
importing one schema into another.

Model group definitions per se do not participate in ·validation·, but the {term} of a particle
may correspond in whole or in part to a model group from a model group definition.

{model group} is the Model Group (§2.2.3.1) for which the model group definition provides
a name.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.7.2 XML Representation of Model Group Definition Schema Components

The XML representation for a model group definition schema component is a <group>
element information item. It provides for naming a model group for use by reference in the
XML representation of complex type definitions and model groups. The correspondences
between the properties of the information item and properties of the component it
corresponds to are as follows:

XML Representation Summary: group Element Information Item
<group
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 name = NCName
 ref = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (all | choice | sequence)?)
</group>

If there is a name [attribute] (in which case the item will have <schema> or
<redefine> as parent), then the item corresponds to a model group definition
component with properties as follows:

Model Group Definition Schema Component

Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute] of the
parent schema element information item.

{model group} A model group which is the {term} of a particle corresponding to
the <all>, <choice> or <sequence> among the [children] (there
must be one).

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

Otherwise, the item will have a ref [attribute], in which case it corresponds to a
particle component with properties as follows (unless minOccurs=maxOccurs=0, in
which case the item corresponds to no component at all):

http://www.w3.org/TR/xmlschema-1/ 77 3/28/2009 7:15 PM

Particle Schema Component

Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present, otherwise
1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if present,
otherwise 1.

{term} The {model group} of the model group definition ·resolved· to by the
·actual value· of the ref [attribute]

http://www.w3.org/TR/xmlschema-1/ 78 3/28/2009 7:15 PM

Particle Schema Component

The name of this section is slightly misleading, in that the second, un-named, case above
(with a ref and no name) is not really a named model group at all, but a reference to one.
Also note that in the first (named) case above no reference is made to minOccurs or
maxOccurs: this is because the schema for schemas does not allow them on the child of
<group> when it is named. This in turn is because the {min occurs} and {max occurs} of
the particles which refer to the definition are what count.

Given the constraints on its appearance in content models, an <all> should only occur as
the only item in the [children] of a named model group definition or a content model: see
Constraints on Model Group Schema Components (§3.8.6) .

3.7.3 Constraints on XML Representations of Model Group Definitions

Schema Representation Constraint: Model Group Definition Representation OK
In addition to the conditions imposed on <group> element information items by the
schema for schemas, the corresponding model group definition, if any, must satisfy the
conditions set out in Constraints on Model Group Schema Components (§3.8.6) .

3.7.4 Model Group Definition Validation Rules

None as such.

3.7.5 Model Group Definition Information Set Contributions

None as such.

3.7.6 Constraints on Model Group Definition Schema Components

All model group definitions (see Model Group Definitions (§3.7)) must satisfy the following
constraint.

Schema Component Constraint: Model Group Definition Properties Correct
The values of the properties of a model group definition must be as described in the
property tableau in The Model Group Definition Schema Component (§3.7.1) , modulo
the impact of Missing Sub-components (§5.3).

3.8 Model Groups
 3.8.1 The Model Group Schema Component
 3.8.2 XML Representation of Model Group Schema Components
 3.8.3 Constraints on XML Representations of Model Groups
 3.8.4 Model Group Validation Rules
 3.8.5 Model Group Information Set Contributions
 3.8.6 Constraints on Model Group Schema Components

When the [children] of element information items are not constrained to be empty or by
reference to a simple type definition (Simple Type Definitions (§3.14)), the sequence of
element information item [children] content may be specified in more detail with a model

http://www.w3.org/TR/xmlschema-1/ 79 3/28/2009 7:15 PM

group. Because the {term} property of a particle can be a model group, and model groups
contain particles, model groups can indirectly contain other model groups; the grammar
for content models is therefore recursive.

Example
<xs:all>
 <xs:element ref="cats"/>
 <xs:element ref="dogs"/>
</xs:all>

<xs:sequence>
 <xs:choice>
 <xs:element ref="left"/>
 <xs:element ref="right"/>
 </xs:choice>
 <xs:element ref="landmark"/>
</xs:sequence>

XML representations for the three kinds of model group, the third nested inside the
second.

3.8.1 The Model Group Schema Component

The model group schema component has the following properties:

Schema Component: Model Group

{compositor}

One of all, choice or sequence.
{particles}

A list of particles
{annotation}

Optional. An annotation.

specifies a sequential (sequence), disjunctive (choice) or conjunctive (all) interpretation of
the {particles}. This in turn determines whether the element information item [children]
·validated· by the model group must:

(sequence) correspond, in order, to the specified {particles};
(choice) corresponded to exactly one of the specified {particles};
(all) contain all and only exactly zero or one of each element specified in {particles}.
The elements can occur in any order. In this case, to reduce implementation
complexity, {particles} is restricted to contain local and top-level element
declarations only, with {min occurs}=0 or 1, {max occurs}=1.

When two or more particles contained directly or indirectly in the {particles} of a model
group have identically named element declarations as their {term}, the type definitions of
those declarations must be the same. By 'indirectly' is meant particles within the {particles}
of a group which is itself the {term} of a directly contained particle, and so on recursively.

See Annotations (§3.13) for information on the role of the {annotation} property.

http://www.w3.org/TR/xmlschema-1/ 80 3/28/2009 7:15 PM

3.8.2 XML Representation of Model Group Schema Components

The XML representation for a model group schema component is either an <all>, a
<choice> or a <sequence> element information item. The correspondences between the
properties of those information items and properties of the component they correspond to
are as follows:

XML Representation Summary: all Element Information Item
<all
 id = ID
 maxOccurs = 1 : 1
 minOccurs = (0 | 1) : 1
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, element*)
</all>

<choice
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (element | group | choice | sequence | any)*)
</choice>

<sequence
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (element | group | choice | sequence | any)*)
</sequence>

Each of the above items corresponds to a particle containing a model group, with
properties as follows (unless minOccurs=maxOccurs=0, in which case the item
corresponds to no component at all):

Particle Schema Component

Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present, otherwise
1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if present,
otherwise 1.

{term} A model group as given below:

Model Group Schema Component
Property Representation
{compositor} One of all, choice, sequence depending on the element

information item.

http://www.w3.org/TR/xmlschema-1/ 81 3/28/2009 7:15 PM

Model Group Schema Component

Property Representation
{particles} A sequence of particles corresponding to all the <all>, <choice>,

<sequence>, <any>, <group> or <element> items among the
[children], in order.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

3.8.3 Constraints on XML Representations of Model Groups

Schema Representation Constraint: Model Group Representation OK
In addition to the conditions imposed on <all>, <choice> and <sequence> element
information items by the schema for schemas, the corresponding particle and model
group must satisfy the conditions set out in Constraints on Model Group Schema
Components (§3.8.6) and Constraints on Particle Schema Components (§3.9.6) .

3.8.4 Model Group Validation Rules

Validation Rule: Element Sequence Valid
[Definition:] Define a partition of a sequence as a sequence of sub-sequences, some
or all of which may be empty, such that concatenating all the sub-sequences yields the
original sequence.

For a sequence (possibly empty) of element information items to be locally ·valid· with
respect to a model group the appropriate case among the following must be true:

1 If the {compositor} is sequence, then there must be a ·partition· of the sequence into
n sub-sequences where n is the length of {particles} such that each of the
sub-sequences in order is ·valid· with respect to the corresponding particle in the
{particles} as defined in Element Sequence Locally Valid (Particle) (§3.9.4).

2 If the {compositor} is choice, then there must be a particle among the {particles} such
that the sequence is ·valid· with respect to that particle as defined in Element
Sequence Locally Valid (Particle) (§3.9.4).

3 If the {compositor} is all, then there must be a ·partition· of the sequence into n
sub-sequences where n is the length of {particles} such that there is a one-to-one
mapping between the sub-sequences and the {particles} where each sub-sequence is
·valid· with respect to the corresponding particle as defined in Element Sequence
Locally Valid (Particle) (§3.9.4).

Nothing in the above should be understood as ruling out groups whose {particles} is
empty: although no sequence can be ·valid· with respect to such a group whose
{compositor} is choice, the empty sequence is ·valid· with respect to empty groups
whose {compositor} is sequence or all.

Note: The above definition is implicitly non-deterministic, and should not be taken as
a recipé for implementations. Note in particular that when {compositor} is all, particles
is restricted to a list of local and top-level element declarations (see Constraints on
Model Group Schema Components (§3.8.6)). A much simpler implementation is

http://www.w3.org/TR/xmlschema-1/ 82 3/28/2009 7:15 PM

possible than would arise from a literal interpretation of the definition above;
informally, the content is ·valid· when each declared element occurs exactly once (or
at most once, if {min occurs} is 0), and each is ·valid· with respect to its corresponding
declaration. The elements can occur in arbitrary order.

3.8.5 Model Group Information Set Contributions

None as such.

3.8.6 Constraints on Model Group Schema Components

All model groups (see Model Groups (§3.8)) must satisfy the following constraints.

Schema Component Constraint: Model Group Correct
All of the following must be true:
1 The values of the properties of a model group must be as described in the property

tableau in The Model Group Schema Component (§3.8.1), modulo the impact of
Missing Sub-components (§5.3).

2 Circular groups are disallowed. That is, within the {particles} of a group there must not
be at any depth a particle whose {term} is the group itself.

Schema Component Constraint: All Group Limited
When a model group has {compositor} all, then all of the following must be true:
1 It appears only as the value of one or both of the following properties:

1.1 the {model group} property of a model group definition.
1.2 the {term} property of a particle with {max occurs}=1which is part of a pair which

constitutes the {content type} of a complex type definition.
2 The {max occurs} of all the particles in the {particles} of the group must be 0 or 1.

Schema Component Constraint: Element Declarations Consistent
If the {particles} contains, either directly, indirectly (that is, within the {particles} of a
contained model group, recursively) or ·implicitly· two or more element declaration
particles with the same {name} and {target namespace}, then all their type definitions
must be the same top-level definition, that is, all of the following must be true:
1 all their {type definition}s must have a non-·absent· {name}.
2 all their {type definition}s must have the same {name}.
3 all their {type definition}s must have the same {target namespace}.

[Definition:] A list of particles implicitly contains an element declaration if a member
of the list contains that element declaration in its ·substitution group·.

Schema Component Constraint: Unique Particle Attribution
A content model must be formed such that during ·validation· of an element information
item sequence, the particle component contained directly, indirectly or ·implicitly· therein
with which to attempt to ·validate· each item in the sequence in turn can be uniquely
determined without examining the content or attributes of that item, and without any
information about the items in the remainder of the sequence.

Note: This constraint reconstructs for XML Schema the equivalent constraints of
[XML 1.0 (Second Edition)] and SGML. Given the presence of element substitution
groups and wildcards, the concise expression of this constraint is difficult, see

http://www.w3.org/TR/xmlschema-1/ 83 3/28/2009 7:15 PM

Analysis of the Unique Particle Attribution Constraint (non-normative) (§H) for
further discussion.

Since this constraint is expressed at the component level, it applies to content
models whose origins (e.g. via type derivation and references to named model
groups) are no longer evident. So particles at different points in the content model
are always distinct from one another, even if they originated from the same named
model group.

Note: Because locally-scoped element declarations may or may not have a {target
namespace}, the scope of declarations is not relevant to enforcing either of the two
preceding constraints.

The following constraints define relations appealed to elsewhere in this specification.

Schema Component Constraint: Effective Total Range (all and sequence)
The effective total range of a particle whose {term} is a group whose {compositor} is all
or sequence is a pair of minimum and maximum, as follows:

minimum
The product of the particle's {min occurs} and the sum of the {min occurs} of every
wildcard or element declaration particle in the group's {particles} and the minimum
part of the effective total range of each of the group particles in the group's
{particles} (or 0 if there are no {particles}).

maximum
unbounded if the {max occurs} of any wildcard or element declaration particle in
the group's {particles} or the maximum part of the effective total range of any of
the group particles in the group's {particles} is unbounded, or if any of those is
non-zero and the {max occurs} of the particle itself is unbounded, otherwise the
product of the particle's {max occurs} and the sum of the {max occurs} of every
wildcard or element declaration particle in the group's {particles} and the
maximum part of the effective total range of each of the group particles in the
group's {particles} (or 0 if there are no {particles}).

Schema Component Constraint: Effective Total Range (choice)
The effective total range of a particle whose {term} is a group whose {compositor} is
choice is a pair of minimum and maximum, as follows:

minimum
The product of the particle's {min occurs} and the minimum of the {min occurs} of
every wildcard or element declaration particle in the group's {particles} and the
minimum part of the effective total range of each of the group particles in the
group's {particles} (or 0 if there are no {particles}).

maximum
unbounded if the {max occurs} of any wildcard or element declaration particle in
the group's {particles} or the maximum part of the effective total range of any of
the group particles in the group's {particles} is unbounded, or if any of those is
non-zero and the {max occurs} of the particle itself is unbounded, otherwise the
product of the particle's {max occurs} and the maximum of the {max occurs} of
every wildcard or element declaration particle in the group's {particles} and the
maximum part of the effective total range of each of the group particles in the

http://www.w3.org/TR/xmlschema-1/ 84 3/28/2009 7:15 PM

group's {particles} (or 0 if there are no {particles}).

3.9 Particles
 3.9.1 The Particle Schema Component
 3.9.2 XML Representation of Particle Components
 3.9.3 Constraints on XML Representations of Particles
 3.9.4 Particle Validation Rules
 3.9.5 Particle Information Set Contributions
 3.9.6 Constraints on Particle Schema Components

As described in Model Groups (§3.8), particles contribute to the definition of content
models.

Example
<xs:element ref="egg" minOccurs="12" maxOccurs="12"/>

<xs:group ref="omelette" minOccurs="0"/>

<xs:any maxOccurs="unbounded"/>

XML representations which all involve particles, illustrating some of the possibilities for
controlling occurrence.

3.9.1 The Particle Schema Component

The particle schema component has the following properties:

Schema Component: Particle

{min occurs}

A non-negative integer.
{max occurs}

Either a non-negative integer or unbounded.
{term}

One of a model group, a wildcard, or an element declaration.

In general, multiple element information item [children], possibly with intervening character
[children] if the content type is mixed, can be ·validated· with respect to a single particle.
When the {term} is an element declaration or wildcard, {min occurs} determines the
minimum number of such element [children] that can occur. The number of such children
must be greater than or equal to {min occurs}. If {min occurs} is 0, then occurrence of
such children is optional.

Again, when the {term} is an element declaration or wildcard, the number of such element
[children] must be less than or equal to any numeric specification of {max occurs}; if {max
occurs} is unbounded, then there is no upper bound on the number of such children.

When the {term} is a model group, the permitted occurrence range is determined by a
combination of {min occurs} and {max occurs} and the occurrence ranges of the {term}'s

http://www.w3.org/TR/xmlschema-1/ 85 3/28/2009 7:15 PM

{particles}.

3.9.2 XML Representation of Particle Components

Particles correspond to all three elements (<element> not immediately within <schema>,
<group> not immediately within <schema> and <any>) which allow minOccurs and
maxOccurs attributes. These in turn correspond to two components in each case, a particle
and its {term}. The appropriate mapping is described in XML Representation of Element
Declaration Schema Components (§3.3.2), XML Representation of Model Group Schema
Components (§3.8.2) and XML Representation of Wildcard Schema Components
(§3.10.2) respectively.

3.9.3 Constraints on XML Representations of Particles

None as such.

3.9.4 Particle Validation Rules

Validation Rule: Element Sequence Locally Valid (Particle)
For a sequence (possibly empty) of element information items to be locally ·valid· with
respect to a particle the appropriate case among the following must be true:
1 If the {term} is a wildcard, then all of the following must be true:

1.1 The length of the sequence must be greater than or equal to the {min occurs}.
1.2 If {max occurs} is a number, the length of the sequence must be less than or

equal to the {max occurs}.
1.3 Each element information item in the sequence must be ·valid· with respect to the

wildcard as defined by Item Valid (Wildcard) (§3.10.4) .
2 If the {term} is an element declaration, then all of the following must be true:

2.1 The length of the sequence must be greater than or equal to the {min occurs}.
2.2 If {max occurs} is a number, the length of the sequence must be less than or

equal to the {max occurs}.
2.3 For each element information item in the sequence one of the following must be

true:
2.3.1 The element declaration is local (i.e. its {scope} must not be global), its

{abstract} is false, the element information item's [namespace name] is identical
to the element declaration's {target namespace} (where an ·absent· {target
namespace} is taken to be identical to a [namespace name] with no value) and
the element information item's [local name] matches the element declaration's
{name}.

In this case the element declaration is the ·context-determined declaration· for the
element information item with respect to Schema-Validity Assessment (Element)
(§3.3.4) and Assessment Outcome (Element) (§3.3.5) .

2.3.2 The element declaration is top-level (i.e. its {scope} is global), {abstract} is
false, the element information item's [namespace name] is identical to the
element declaration's {target namespace} (where an ·absent· {target namespace}
is taken to be identical to a [namespace name] with no value) and the element
information item's [local name] matches the element declaration's {name}.

http://www.w3.org/TR/xmlschema-1/ 86 3/28/2009 7:15 PM

In this case the element declaration is the ·context-determined declaration· for the
element information item with respect to Schema-Validity Assessment (Element)
(§3.3.4) and Assessment Outcome (Element) (§3.3.5) .

2.3.3 The element declaration is top-level (i.e. its {scope} is global), its {disallowed
substitutions} does not contain substitution, the [local] and [namespace name] of
the element information item resolve to an element declaration, as defined in
QName resolution (Instance) (§3.15.4) -- [Definition:] call this declaration the
substituting declaration and the ·substituting declaration· together with the
particle's element declaration's {disallowed substitutions} is validly substitutable
for the particle's element declaration as defined in Substitution Group OK
(Transitive) (§3.3.6).

In this case the ·substituting declaration· is the ·context-determined declaration· for
the element information item with respect to Schema-Validity Assessment
(Element) (§3.3.4) and Assessment Outcome (Element) (§3.3.5) .

3 If the {term} is a model group, then all of the following must be true:
3.1 There is a ·partition· of the sequence into n sub-sequences such that n is greater

than or equal to {min occurs}.
3.2 If {max occurs} is a number, n must be less than or equal to {max occurs}.
3.3 Each sub-sequence in the ·partition· is ·valid· with respect to that model group as

defined in Element Sequence Valid (§3.8.4).
Note: Clauses clause 1 and clause 2.3.3 do not interact: an element information
item validatable by a declaration with a substitution group head in a different
namespace is not validatable by a wildcard which accepts the head's namespace
but not its own.

3.9.5 Particle Information Set Contributions

None as such.

3.9.6 Constraints on Particle Schema Components

All particles (see Particles (§3.9)) must satisfy the following constraints.

Schema Component Constraint: Particle Correct
All of the following must be true:
1 The values of the properties of a particle must be as described in the property tableau

in The Particle Schema Component (§3.9.1) , modulo the impact of Missing
Sub-components (§5.3).

2 If {max occurs} is not unbounded, that is, it has a numeric value, then all of the
following must be true:
2.1 {min occurs} must not be greater than {max occurs}.
2.2 {max occurs} must be greater than or equal to 1.

The following constraints define relations appealed to elsewhere in this specification.

Schema Component Constraint: Particle Valid (Extension)
[Definition:] For a particle (call it E, for extension) to be a valid extension of another

http://www.w3.org/TR/xmlschema-1/ 87 3/28/2009 7:15 PM

particle (call it B, for base) one of the following must be true:
1 They are the same particle.
2 E's {min occurs}={max occurs}=1 and its {term} is a sequence group whose {particles}'

first member is a particle all of whose properties, recursively, are identical to those of
B, with the exception of {annotation} properties.

The approach to defining a type by restricting another type definition set out here is
designed to ensure that types defined in this way are guaranteed to be a subset of the
type they restrict. This is accomplished by requiring a clear mapping between the
components of the base type definition and the restricting type definition. Permissible
mappings are set out below via a set of recursive definitions, bottoming out in the obvious
cases, e.g. where an (restricted) element declaration corresponds to another (base)
element declaration with the same name and type but the same or wider range of
occurrence.

Note: The structural correspondence approach to guaranteeing the subset relation
set out here is necessarily verbose, but has the advantage of being checkable in a
straightforward way. The working group solicits feedback on how difficult this is in
practice, and on whether other approaches are found to be viable.

Schema Component Constraint: Particle Valid (Restriction)
[Definition:] For a particle (call it R, for restriction) to be a valid restriction of another
particle (call it B, for base) one of the following must be true:
1 They are the same particle.
2 depending on the kind of particle, per the table below, with the qualifications that all of

the following must be true:
2.1 Any top-level element declaration particle (in R or B) which is the {substitution

group affiliation} of one or more other element declarations and whose ·substitution
group· contains at least one element declaration other than itself is treated as if it
were a choice group whose {min occurs} and {max occurs} are those of the
particle, and whose {particles} consists of one particle with {min occurs} and {max
occurs} of 1 for each of the declarations in its ·substitution group·.

2.2 Any pointless occurrences of <sequence>, <choice> or <all> are ignored, where
pointlessness is understood as follows:

<sequence>
One of the following must be true:

2.2.1 {particles} is empty.
2.2.2 All of the following must be true:

2.2.2.1 The particle within which this <sequence> appears has {max
occurs} and {min occurs} of 1.

2.2.2.2 One of the following must be true:
2.2.2.2.1 The <sequence>'s {particles} has only one member.
2.2.2.2.2 The particle within which this <sequence> appears is itself

among the {particles} of a <sequence>.
<all>

One of the following must be true:
2.2.1 {particles} is empty.
2.2.2 {particles} has only one member.

<choice>

http://www.w3.org/TR/xmlschema-1/ 88 3/28/2009 7:15 PM

One of the following must be true:
2.2.1 {particles} is empty and the particle within which this <choice> appears

has {min occurs} of 0.
2.2.2 All of the following must be true:

2.2.2.1 The particle within which this <choice> appears has {max occurs}
and {min occurs} of 1.

2.2.2.2 One of the following must be true:
2.2.2.2.1 The <choice>'s {particles} has only one member.
2.2.2.2.2 The particle within which this <choice> appears is itself among

the {particles} of a <choice>.

Base Particle

elt any all choice sequence

Derived
Particle

elt NameAnd-
TypeOK NSCompat Recurse-

AsIfGroup
Recurse-
AsIfGroup

RecurseAs-
IfGroup

any Forbidden NSSubset Forbidden Forbidden Forbidden

all Forbidden NSRecurse-
CheckCardinality Recurse Forbidden Forbidden

choice Forbidden NSRecurse-
CheckCardinality Forbidden RecurseLax Forbidden

seq-
uence Forbidden NSRecurse-

CheckCardinality
Recurse-
Unordered MapAndSum Recurse

Schema Component Constraint: Occurrence Range OK
For a particle's occurrence range to be a valid restriction of another's occurrence range
all of the following must be true:
1 Its {min occurs} is greater than or equal to the other's {min occurs}.
2 one of the following must be true:

2.1 The other's {max occurs} is unbounded.
2.2 Both {max occurs} are numbers, and the particle's is less than or equal to the

other's.

Schema Component Constraint: Particle Restriction OK (Elt:Elt -- NameAndTypeOK)
For an element declaration particle to be a ·valid restriction· of another element
declaration particle all of the following must be true:
1 The declarations' {name}s and {target namespace}s are the same.
2 R's occurrence range is a valid restriction of B's occurrence range as defined by

Occurrence Range OK (§3.9.6).
3 One of the following must be true:

3.1 Both B's declaration's {scope} and R's declaration's {scope} are global.
3.2 All of the following must be true:

3.2.1 Either B's {nillable} is true or R's {nillable} is false.
3.2.2 either B's declaration's {value constraint} is absent, or is not fixed, or R's

declaration's {value constraint} is fixed with the same value.

http://www.w3.org/TR/xmlschema-1/ 89 3/28/2009 7:15 PM

3.2.3 R's declaration's {identity-constraint definitions} is a subset of B's
declaration's {identity-constraint definitions}, if any.

3.2.4 R's declaration's {disallowed substitutions} is a superset of B's declaration's
{disallowed substitutions}.

3.2.5 R's {type definition} is validly derived given {extension, list, union} from B's
{type definition} as defined by Type Derivation OK (Complex) (§3.4.6) or Type
Derivation OK (Simple) (§3.14.6), as appropriate.

Note: The above constraint on {type definition} means that in deriving a type by
restriction, any contained type definitions must themselves be explicitly derived by
restriction from the corresponding type definitions in the base definition, or be one
of the member types of a corresponding union..

Schema Component Constraint: Particle Derivation OK (Elt:Any -- NSCompat)
For an element declaration particle to be a ·valid restriction· of a wildcard particle all of
the following must be true:
1 The element declaration's {target namespace} is ·valid· with respect to the wildcard's

{namespace constraint} as defined by Wildcard allows Namespace Name (§3.10.4) .
2 R's occurrence range is a valid restriction of B's occurrence range as defined by

Occurrence Range OK (§3.9.6).

Schema Component Constraint: Particle Derivation OK (Elt:All/Choice/Sequence --
RecurseAsIfGroup)

For an element declaration particle to be a ·valid restriction· of a group particle (all,
choice or sequence) a group particle of the variety corresponding to B's, with {min
occurs} and {max occurs} of 1 and with {particles} consisting of a single particle the
same as the element declaration must be a ·valid restriction· of the group as defined by
Particle Derivation OK (All:All,Sequence:Sequence -- Recurse) (§3.9.6) , Particle
Derivation OK (Choice:Choice -- RecurseLax) (§3.9.6) or Particle Derivation OK
(All:All,Sequence:Sequence -- Recurse) (§3.9.6), depending on whether the group is all,
choice or sequence.

Schema Component Constraint: Particle Derivation OK (Any:Any -- NSSubset)
For a wildcard particle to be a ·valid restriction· of another wildcard particle all of the
following must be true:
1 R's occurrence range must be a valid restriction of B's occurrence range as defined

by Occurrence Range OK (§3.9.6).
2 R's {namespace constraint} must be an intensional subset of B's {namespace

constraint} as defined by Wildcard Subset (§3.10.6) .
3 Unless B is the content model wildcard of the ·ur-type definition·, R's {process

contents} must be identical to or stronger than B's {process contents}, where strict is
stronger than lax is stronger than skip.

Note:

The exception to the third clause above for derivations from the ·ur-type definition·
is necessary as its wildcards have a {process contents} of lax, so without this
exception, no use of wildcards with {process contents} of skip would be possible.

Schema Component Constraint: Particle Derivation OK (All/Choice/Sequence:Any --
NSRecurseCheckCardinality)

For a group particle to be a ·valid restriction· of a wildcard particle all of the following

http://www.w3.org/TR/xmlschema-1/ 90 3/28/2009 7:15 PM

must be true:
1 Every member of the {particles} of the group is a ·valid restriction· of the wildcard as

defined by Particle Valid (Restriction) (§3.9.6).
2 The effective total range of the group, as defined by Effective Total Range (all and

sequence) (§3.8.6) (if the group is all or sequence) or Effective Total Range (choice)
(§3.8.6) (if it is choice) is a valid restriction of B's occurrence range as defined by
Occurrence Range OK (§3.9.6).

Schema Component Constraint: Particle Derivation OK (All:All,Sequence:Sequence
-- Recurse)

For an all or sequence group particle to be a ·valid restriction· of another group particle
with the same {compositor} all of the following must be true:
1 R's occurrence range is a valid restriction of B's occurrence range as defined by

Occurrence Range OK (§3.9.6).
2 There is a complete ·order-preserving· functional mapping from the particles in the

{particles} of R to the particles in the {particles} of B such that all of the following
must be true:
2.1 Each particle in the {particles} of R is a ·valid restriction· of the particle in the

{particles} of B it maps to as defined by Particle Valid (Restriction) (§3.9.6).
2.2 All particles in the {particles} of B which are not mapped to by any particle in the

{particles} of R are ·emptiable· as defined by Particle Emptiable (§3.9.6).
Note: Although the ·validation· semantics of an all group does not depend on the
order of its particles, derived all groups are required to match the order of their
base in order to simplify checking that the derivation is OK.

[Definition:] A complete functional mapping is order-preserving if each particle r in the
domain R maps to a particle b in the range B which follows (not necessarily
immediately) the particle in the range B mapped to by the predecessor of r, if any,
where "predecessor" and "follows" are defined with respect to the order of the lists
which constitute R and B.

Schema Component Constraint: Particle Derivation OK (Choice:Choice --
RecurseLax)

For a choice group particle to be a ·valid restriction· of another choice group particle all
of the following must be true:
1 R's occurrence range is a valid restriction of B's occurrence range as defined by

Occurrence Range OK (§3.9.6);
2 There is a complete ·order-preserving· functional mapping from the particles in the

{particles} of R to the particles in the {particles} of B such that each particle in the
{particles} of R is a ·valid restriction· of the particle in the {particles} of B it maps to as
defined by Particle Valid (Restriction) (§3.9.6).

Note: Although the ·validation· semantics of a choice group does not depend on
the order of its particles, derived choice groups are required to match the order of
their base in order to simplify checking that the derivation is OK.

Schema Component Constraint: Particle Derivation OK (Sequence:All --
RecurseUnordered)

For a sequence group particle to be a ·valid restriction· of an all group particle all of the
following must be true:
1 R's occurrence range is a valid restriction of B's occurrence range as defined by

Occurrence Range OK (§3.9.6).

http://www.w3.org/TR/xmlschema-1/ 91 3/28/2009 7:15 PM

2 There is a complete functional mapping from the particles in the {particles} of R to the
particles in the {particles} of B such that all of the following must be true:
2.1 No particle in the {particles} of B is mapped to by more than one of the particles in

the {particles} of R;
2.2 Each particle in the {particles} of R is a ·valid restriction· of the particle in the

{particles} of B it maps to as defined by Particle Valid (Restriction) (§3.9.6);
2.3 All particles in the {particles} of B which are not mapped to by any particle in the

{particles} of R are ·emptiable· as defined by Particle Emptiable (§3.9.6).
Note: Although this clause allows reordering, because of the limits on the contents
of all groups the checking process can still be deterministic.

Schema Component Constraint: Particle Derivation OK (Sequence:Choice --
MapAndSum)

For a sequence group particle to be a ·valid restriction· of a choice group particle all of
the following must be true:
1 There is a complete functional mapping from the particles in the {particles} of R to the

particles in the {particles} of B such that each particle in the {particles} of R is a ·valid
restriction· of the particle in the {particles} of B it maps to as defined by Particle Valid
(Restriction) (§3.9.6).

2 The pair consisting of the product of the {min occurs} of R and the length of its
{particles} and unbounded if {max occurs} is unbounded otherwise the product of the
{max occurs} of R and the length of its {particles} is a valid restriction of B's
occurrence range as defined by Occurrence Range OK (§3.9.6).

Note: This clause is in principle more restrictive than absolutely necessary, but in
practice will cover all the likely cases, and is much easier to specify than the fully
general version.

Note: This case allows the "unfolding" of iterated disjunctions into sequences. It
may be particularly useful when the disjunction is an implicit one arising from the
use of substitution groups.

Schema Component Constraint: Particle Emptiable
[Definition:] For a particle to be emptiable one of the following must be true:
1 Its {min occurs} is 0.
2 Its {term} is a group and the minimum part of the effective total range of that group, as

defined by Effective Total Range (all and sequence) (§3.8.6) (if the group is all or
sequence) or Effective Total Range (choice) (§3.8.6) (if it is choice), is 0.

3.10 Wildcards
 3.10.1 The Wildcard Schema Component
 3.10.2 XML Representation of Wildcard Schema Components
 3.10.3 Constraints on XML Representations of Wildcards
 3.10.4 Wildcard Validation Rules
 3.10.5 Wildcard Information Set Contributions
 3.10.6 Constraints on Wildcard Schema Components

In order to exploit the full potential for extensibility offered by XML plus namespaces, more
provision is needed than DTDs allow for targeted flexibility in content models and attribute
declarations. A wildcard provides for ·validation· of attribute and element information items
dependent on their namespace name, but independently of their local name.

http://www.w3.org/TR/xmlschema-1/ 92 3/28/2009 7:15 PM

Example
<xs:any processContents="skip"/>

<xs:any namespace="##other" processContents="lax"/>

<xs:any namespace="http://www.w3.org/1999/XSL/Transform"/>

<xs:any namespace="##targetNamespace"/>

<xs:anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/>

XML representations of the four basic types of wildcard, plus one attribute wildcard.

3.10.1 The Wildcard Schema Component

The wildcard schema component has the following properties:

Schema Component: Wildcard

{namespace constraint}

One of any; a pair of not and a namespace name or ·absent·; or a set whose
members are either namespace names or ·absent·.

{process contents}

One of skip, lax or strict.
{annotation}

Optional. An annotation.

{namespace constraint} provides for ·validation· of attribute and element items that:

(any) have any namespace or are not namespace-qualified;1.
(not and a namespace name) are namespace-qualified with a namespace other than
the specified namespace name;

2.

(not and ·absent·) are namespace-qualified;3.
(a set whose members are either namespace names or ·absent·) have any of the
specified namespaces and/or, if ·absent· is included in the set, are unqualified.

4.

{process contents} controls the impact on ·assessment· of the information items allowed
by wildcards, as follows:

strict
There must be a top-level declaration for the item available, or the item must have
an xsi:type, and the item must be ·valid· as appropriate.

skip
No constraints at all: the item must simply be well-formed XML.

lax
If the item has a uniquely determined declaration available, it must be ·valid· with
respect to that definition, that is, ·validate· if you can, don't worry if you can't.

See Annotations (§3.13) for information on the role of the {annotation} property.

http://www.w3.org/TR/xmlschema-1/ 93 3/28/2009 7:15 PM

3.10.2 XML Representation of Wildcard Schema Components

The XML representation for a wildcard schema component is an <any> or <anyAttribute>
element information item. The correspondences between the properties of an <any>
information item and properties of the components it corresponds to are as follows (see
<complexType> and <attributeGroup> for the correspondences for <anyAttribute>):

XML Representation Summary: any Element Information Item
<any
 id = ID
 maxOccurs = (nonNegativeInteger | unbounded) : 1
 minOccurs = nonNegativeInteger : 1
 namespace = ((##any | ##other) | List of (anyURI | (##targetNamespace |
##local))) : ##any
 processContents = (lax | skip | strict) : strict
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</any>

A particle containing a wildcard, with properties as follows (unless
minOccurs=maxOccurs=0, in which case the item corresponds to no component at
all):

Particle Schema Component

Property Representation
{min
occurs}

The ·actual value· of the minOccurs [attribute], if present, otherwise
1.

{max
occurs}

unbounded, if the maxOccurs [attribute] equals unbounded,
otherwise the ·actual value· of the maxOccurs [attribute], if present,
otherwise 1.

{term} A wildcard as given below:

Wildcard Schema Component
Property Representation
{namespace
constraint}

Dependent on the ·actual value· of the namespace [attribute]: if
absent, then any, otherwise as follows:

##any
any

##other
a pair of not and the ·actual value· of the targetNamespace
[attribute] of the <schema> ancestor element information
item if present, otherwise ·absent·.

otherwise
a set whose members are namespace names
corresponding to the space-delimited substrings of the
string, except
1 if one such substring is ##targetNamespace, the

http://www.w3.org/TR/xmlschema-1/ 94 3/28/2009 7:15 PM

Wildcard Schema Component

Property Representation
corresponding member is the ·actual value· of the
targetNamespace [attribute] of the <schema> ancestor
element information item if present, otherwise ·absent·.

2 if one such substring is ##local, the corresponding
member is ·absent·.

{process
contents}

The ·actual value· of the processContents [attribute], if present,
otherwise strict.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

Wildcards are subject to the same ambiguity constraints (Unique Particle Attribution
(§3.8.6)) as other content model particles: If an instance element could match either an
explicit particle and a wildcard, or one of two wildcards, within the content model of a type,
that model is in error.

3.10.3 Constraints on XML Representations of Wildcards

Schema Representation Constraint: Wildcard Representation OK
In addition to the conditions imposed on <any> element information items by the
schema for schemas, the corresponding particle and model group must satisfy the
conditions set out in Constraints on Model Group Schema Components (§3.8.6) and
Constraints on Particle Schema Components (§3.9.6) .

3.10.4 Wildcard Validation Rules

Validation Rule: Item Valid (Wildcard)
For an element or attribute information item to be locally ·valid· with respect to a
wildcard constraint its [namespace name] must be ·valid· with respect to the wildcard
constraint, as defined in Wildcard allows Namespace Name (§3.10.4) .

When this constraint applies the appropriate case among the following must be true:

1 If {process contents} is lax, then the item has no ·context-determined declaration· with
respect to Assessment Outcome (Element) (§3.3.5) , Schema-Validity Assessment
(Element) (§3.3.4) and Schema-Validity Assessment (Attribute) (§3.2.4) .

2 If {process contents} is strict, then the item's ·context-determined declaration· is
mustFind.

3 If {process contents} is skip, then the item's ·context-determined declaration· is skip.

Validation Rule: Wildcard allows Namespace Name
For a value which is either a namespace name or ·absent· to be ·valid· with respect to a
wildcard constraint (the value of a {namespace constraint}) one of the following must be
true:
1 The constraint must be any.

http://www.w3.org/TR/xmlschema-1/ 95 3/28/2009 7:15 PM

2 All of the following must be true:
2.1 The constraint is a pair of not and a namespace name or ·absent·

([Definition:] call this the namespace test).
2.2 The value must not be identical to the ·namespace test·.
2.3 The value must not be ·absent·.

3 The constraint is a set, and the value is identical to one of the members of the set.

3.10.5 Wildcard Information Set Contributions

None as such.

3.10.6 Constraints on Wildcard Schema Components

All wildcards (see Wildcards (§3.10)) must satisfy the following constraint.

Schema Component Constraint: Wildcard Properties Correct
The values of the properties of a wildcard must be as described in the property tableau
in The Wildcard Schema Component (§3.10.1) , modulo the impact of Missing
Sub-components (§5.3).

The following constraints define a relation appealed to elsewhere in this specification.

Schema Component Constraint: Wildcard Subset
For a namespace constraint (call it sub) to be an intensional subset of another
namespace constraint (call it super) one of the following must be true:
1 super must be any.
2 All of the following must be true:

2.1 sub must be a pair of not and a value (a namespace name or ·absent·).
2.2 super must be a pair of not and the same value.

3 All of the following must be true:
3.1 sub must be a set whose members are either namespace names or ·absent·.
3.2 One of the following must be true:

3.2.1 super must be the same set or a superset thereof.
3.2.2 super must be a pair of not and a value (a namespace name or ·absent·) and

neither that value nor ·absent· must be in sub's set.

Schema Component Constraint: Attribute Wildcard Union
For a wildcard's {namespace constraint} value to be the intensional union of two other
such values (call them O1 and O2): the appropriate case among the following must be
true:
1 If O1 and O2 are the same value, then that value must be the value.
2 If either O1 or O2 is any, then any must be the value.
3 If both O1 and O2 are sets of (namespace names or ·absent·), then the union of

those sets must be the value.
4 If the two are negations of different values (namespace names or ·absent·), then a

pair of not and ·absent· must be the value.
5 If either O1 or O2 is a pair of not and a namespace name and the other is a set of

(namespace names or ·absent·) (call this set S), then The appropriate case among
the following must be true:
5.1 If the set S includes both the negated namespace name and ·absent·, then any

http://www.w3.org/TR/xmlschema-1/ 96 3/28/2009 7:15 PM

must be the value.
5.2 If the set S includes the negated namespace name but not ·absent·, then a pair

of not and ·absent· must be the value.
5.3 If the set S includes ·absent· but not the negated namespace name, then the

union is not expressible.
5.4 If the set S does not include either the negated namespace name or ·absent·,

then whichever of O1 or O2 is a pair of not and a namespace name must be the
value.

6 If either O1 or O2 is a pair of not and ·absent· and the other is a set of (namespace
names or ·absent·) (again, call this set S), then The appropriate case among the
following must be true:
6.1 If the set S includes ·absent·, then any must be the value.
6.2 If the set S does not include ·absent·, then a pair of not and ·absent· must be the

value.
In the case where there are more than two values, the intensional union is determined
by identifying the intensional union of two of the values as above, then the intensional
union of that value with the third (providing the first union was expressible), and so on
as required.

Schema Component Constraint: Attribute Wildcard Intersection
For a wildcard's {namespace constraint} value to be the intensional intersection of two
other such values (call them O1 and O2): the appropriate case among the following
must be true:
1 If O1 and O2 are the same value, then that value must be the value.
2 If either O1 or O2 is any, then the other must be the value.
3 If either O1 or O2 is a pair of not and a value (a namespace name or ·absent·) and

the other is a set of (namespace names or ·absent·), then that set, minus the
negated value if it was in the set, minus ·absent· if it was in the set, must be the
value.

4 If both O1 and O2 are sets of (namespace names or ·absent·), then the intersection
of those sets must be the value.

5 If the two are negations of different namespace names, then the intersection is not
expressible.

6 If the one is a negation of a namespace name and the other is a negation of ·absent·,
then the one which is the negation of a namespace name must be the value.

In the case where there are more than two values, the intensional intersection is
determined by identifying the intensional intersection of two of the values as above,
then the intensional intersection of that value with the third (providing the first
intersection was expressible), and so on as required.

3.11 Identity-constraint Definitions
 3.11.1 The Identity-constraint Definition Schema Component
 3.11.2 XML Representation of Identity-constraint Definition Schema Components
 3.11.3 Constraints on XML Representations of Identity-constraint Definitions
 3.11.4 Identity-constraint Definition Validation Rules
 3.11.5 Identity-constraint Definition Information Set Contributions
 3.11.6 Constraints on Identity-constraint Definition Schema Components

Identity-constraint definition components provide for uniqueness and reference constraints
with respect to the contents of multiple elements and attributes.

http://www.w3.org/TR/xmlschema-1/ 97 3/28/2009 7:15 PM

Example
<xs:key name="fullName">
 <xs:selector xpath=".//person"/>
 <xs:field xpath="forename"/>
 <xs:field xpath="surname"/>
</xs:key>

<xs:keyref name="personRef" refer="fullName">
 <xs:selector xpath=".//personPointer"/>
 <xs:field xpath="@first"/>
 <xs:field xpath="@last"/>
</xs:keyref>

<xs:unique name="nearlyID">
 <xs:selector xpath=".//*"/>
 <xs:field xpath="@id"/>
</xs:unique>

XML representations for the three kinds of identity-constraint definitions.

3.11.1 The Identity-constraint Definition Schema Component

The identity-constraint definition schema component has the following properties:

Schema Component: Identity-constraint Definition

{name}

An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{identity-constraint category}

One of key, keyref or unique.
{selector}

A restricted XPath ([XPath]) expression.
{fields}

A non-empty list of restricted XPath ([XPath]) expressions.
{referenced key}

Required if {identity-constraint category} is keyref, forbidden otherwise. An
identity-constraint definition with {identity-constraint category} equal to key or
unique.

{annotation}

Optional. A set of annotations.

Identity-constraint definitions are identified by their {name} and {target namespace};
Identity-constraint definition identities must be unique within an ·XML Schema·. See
References to schema components across namespaces (§4.2.3) for the use of
component identifiers when importing one schema into another.

Informally, {identity-constraint category} identifies the Identity-constraint definition as
playing one of three roles:

(unique) the Identity-constraint definition asserts uniqueness, with respect to the

http://www.w3.org/TR/xmlschema-1/ 98 3/28/2009 7:15 PM

content identified by {selector}, of the tuples resulting from evaluation of the {fields}
XPath expression(s).
(key) the Identity-constraint definition asserts uniqueness as for unique. key further
asserts that all selected content actually has such tuples.
(keyref) the Identity-constraint definition asserts a correspondence, with respect to
the content identified by {selector}, of the tuples resulting from evaluation of the
{fields} XPath expression(s), with those of the {referenced key}.

These constraints are specified along side the specification of types for the attributes and
elements involved, i.e. something declared as of type integer may also serve as a key.
Each constraint declaration has a name, which exists in a single symbol space for
constraints. The equality and inequality conditions appealed to in checking these
constraints apply to the value of the fields selected, so that for example 3.0 and 3 would
be conflicting keys if they were both number, but non-conflicting if they were both strings,
or one was a string and one a number. Values of differing type can only be equal if one
type is derived from the other, and the value is in the value space of both.

Overall the augmentations to XML's ID/IDREF mechanism are:

Functioning as a part of an identity-constraint is in addition to, not instead of, having
a type;
Not just attribute values, but also element content and combinations of values and
content can be declared to be unique;
Identity-constraints are specified to hold within the scope of particular elements;
(Combinations of) attribute values and/or element content can be declared to be
keys, that is, not only unique, but always present and non-nillable;
The comparison between keyref {fields} and key or unique {fields} is by value
equality, not by string equality.

{selector} specifies a restricted XPath ([XPath]) expression relative to instances of the
element being declared. This must identify a node set of subordinate elements (i.e.
contained within the declared element) to which the constraint applies.

{fields} specifies XPath expressions relative to each element selected by a {selector}. This
must identify a single node (element or attribute) whose content or value, which must be
of a simple type, is used in the constraint. It is possible to specify an ordered list of
{fields}s, to cater to multi-field keys, keyrefs, and uniqueness constraints.

In order to reduce the burden on implementers, in particular implementers of streaming
processors, only restricted subsets of XPath expressions are allowed in {selector} and
{fields}. The details are given in Constraints on Identity-constraint Definition Schema
Components (§3.11.6).

Note: Provision for multi-field keys etc. goes beyond what is supported by xsl:key.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.11.2 XML Representation of Identity-constraint Definition Schema Components

The XML representation for an identity-constraint definition schema component is either a
<key>, a <keyref> or a <unique> element information item. The correspondences

http://www.w3.org/TR/xmlschema-1/ 99 3/28/2009 7:15 PM

between the properties of those information items and properties of the component they
correspond to are as follows:

XML Representation Summary: unique Element Information Item
<unique
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (selector, field+))
</unique>

<key
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (selector, field+))
</key>

<keyref
 id = ID
 name = NCName
 refer = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (selector, field+))
</keyref>

<selector
 id = ID
 xpath = a subset of XPath expression, see below
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</selector>

<field
 id = ID
 xpath = a subset of XPath expression, see below
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</field>

Identity-constraint Definition Schema Component
Property Representation
{name} The ·actual value· of the name [attribute]

{target namespace} The ·actual value· of the targetNamespace [attribute] of the
parent schema element information item.

{identity-constraint
category}

One of key, keyref or unique, depending on the item.

{selector} A restricted XPath expression corresponding to the
·actual value· of the xpath [attribute] of the <selector>
element information item among the [children]

{fields} A sequence of XPath expressions, corresponding to the
·actual value·s of the xpath [attribute]s of the <field>
element information item [children], in order.

http://www.w3.org/TR/xmlschema-1/ 100 3/28/2009 7:15 PM

Identity-constraint Definition Schema Component

Property Representation
{referenced key} If the item is a <keyref>, the identity-constraint definition

·resolved· to by the ·actual value· of the refer [attribute],
otherwise ·absent·.

{annotation} The annotations corresponding to the <annotation>
element information item in the [children], if present, and
in the <selector> and <field> [children], if present,
otherwise ·absent·.

Example
<xs:element name="vehicle">
 <xs:complexType>
 . . .
 <xs:attribute name="plateNumber" type="xs:integer"/>
 <xs:attribute name="state" type="twoLetterCode"/>
 </xs:complexType>
</xs:element>

<xs:element name="state">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="code" type="twoLetterCode"/>
 <xs:element ref="vehicle" maxOccurs="unbounded"/>
 <xs:element ref="person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:key name="reg"> <!-- vehicles are keyed by their plate within states -->
 <xs:selector xpath=".//vehicle"/>
 <xs:field xpath="@plateNumber"/>
 </xs:key>
</xs:element>

<xs:element name="root">
 <xs:complexType>
 <xs:sequence>
 . . .
 <xs:element ref="state" maxOccurs="unbounded"/>
 . . .
 </xs:sequence>
 </xs:complexType>

 <xs:key name="state"> <!-- states are keyed by their code -->
 <xs:selector xpath=".//state"/>
 <xs:field xpath="code"/>
 </xs:key>

 <xs:keyref name="vehicleState" refer="state">
 <!-- every vehicle refers to its state -->
 <xs:selector xpath=".//vehicle"/>
 <xs:field xpath="@state"/>
 </xs:keyref>

 <xs:key name="regKey"> <!-- vehicles are keyed by a pair of state and plate -->
 <xs:selector xpath=".//vehicle"/>
 <xs:field xpath="@state"/>
 <xs:field xpath="@plateNumber"/>
 </xs:key>

http://www.w3.org/TR/xmlschema-1/ 101 3/28/2009 7:15 PM

 <xs:keyref name="carRef" refer="regKey"> <!-- people's cars are a reference -->
 <xs:selector xpath=".//car"/>
 <xs:field xpath="@regState"/>
 <xs:field xpath="@regPlate"/>
 </xs:keyref>

</xs:element>

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 . . .
 <xs:element name="car">
 <xs:complexType>
 <xs:attribute name="regState" type="twoLetterCode"/>
 <xs:attribute name="regPlate" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

A state element is defined, which contains a code child and some vehicle and person
children. A vehicle in turn has a plateNumber attribute, which is an integer, and a state
attribute. State's codes are a key for them within the document. Vehicle's plateNumbers
are a key for them within states, and state and plateNumber is asserted to be a key for
vehicle within the document as a whole. Furthermore, a person element has an empty
car child, with regState and regPlate attributes, which are then asserted together to
refer to vehicles via the carRef constraint. The requirement that a vehicle's state
match its containing state's code is not expressed here.

3.11.3 Constraints on XML Representations of Identity-constraint Definitions

Schema Representation Constraint: Identity-constraint Definition Representation
OK

In addition to the conditions imposed on <key>, <keyref> and <unique> element
information items by the schema for schemas, the corresponding identity-constraint
definition must satisfy the conditions set out in Constraints on Identity-constraint
Definition Schema Components (§3.11.6).

3.11.4 Identity-constraint Definition Validation Rules

Validation Rule: Identity-constraint Satisfied
For an element information item to be locally ·valid· with respect to an identity-constraint
all of the following must be true:
1 The {selector}, with the element information item as the context node, evaluates to a

node-set (as defined in [XPath]). [Definition:] Call this the target node set.
2 Each node in the ·target node set· is either the context node oran element node

among its descendants.
3 For each node in the ·target node set· all of the {fields}, with that node as the context

node, evaluate to either an empty node-set or a node-set with exactly one member,
which must have a simple type. [Definition:] Call the sequence of the
type-determined values (as defined in [XML Schemas: Datatypes]) of the [schema
normalized value] of the element and/or attribute information items in those node-sets
in order the key-sequence of the node.

http://www.w3.org/TR/xmlschema-1/ 102 3/28/2009 7:15 PM

4 [Definition:] Call the subset of the ·target node set· for which all the {fields} evaluate
to a node-set with exactly one member which is an element or attribute node with a
simple type the qualified node set. The appropriate case among the following must
be true:
4.1 If the {identity-constraint category} is unique, then no two members of the

·qualified node set· have ·key-sequences· whose members are pairwise equal, as
defined by Equal in [XML Schemas: Datatypes].

4.2 If the {identity-constraint category} is key, then all of the following must be true:
4.2.1 The ·target node set· and the ·qualified node set· are equal, that is, every

member of the ·target node set· is also a member of the ·qualified node set· and
vice versa.

4.2.2 No two members of the ·qualified node set· have ·key-sequences· whose
members are pairwise equal, as defined by Equal in [XML Schemas: Datatypes].

4.2.3 No element member of the ·key-sequence· of any member of the ·qualified
node set· was assessed as ·valid· by reference to an element declaration whose
{nillable} is true.

4.3 If the {identity-constraint category} is keyref, then for each member of the
·qualified node set· (call this the keyref member), there must be a ·node table·
associated with the {referenced key} in the [identity-constraint table] of the element
information item (see Identity-constraint Table (§3.11.5), which must be understood
as logically prior to this clause of this constraint, below) and there must be an entry
in that table whose ·key-sequence· is equal to the keyref member's
·key-sequence· member for member, as defined by Equal in [XML Schemas:
Datatypes].
Note: The use of [schema normalized value] in the definition of ·key sequence·
above means that default or fixed value constraints may play a part in ·key
sequence·s.

Note: Because the validation of keyref (see clause 4.3) depends on finding
appropriate entries in a element information item's ·node table·, and ·node tables· are
assembled strictly recursively from the node tables of descendants, only element
information items within the sub-tree rooted at the element information item being
·validated· can be referenced successfully.
Note: Although this specification defines a ·post-schema-validation infoset ·
contribution which would enable schema-aware processors to implement clause 4.2.3
above (Element Declaration (§3.3.5)), processors are not required to provide it. This
clause can be read as if in the absence of this infoset contribution, the value of the
relevant {nillable} property must be available.

3.11.5 Identity-constraint Definition Information Set Contributions

Schema Information Set Contribution: Identity-constraint Table
[Definition:] An eligible identity-constraint of an element information item is one such
that clause 4.1 or clause 4.2 of Identity-constraint Satisfied (§3.11.4) is satisfied with
respect to that item and that constraint, or such that any of the element information item
[children] of that item have an [identity-constraint table] property whose value has an
entry for that constraint.

[Definition:] A node table is a set of pairs each consisting of a ·key-sequence· and an
element node.

http://www.w3.org/TR/xmlschema-1/ 103 3/28/2009 7:15 PM

Whenever an element information item has one or more ·eligible identity-constraints·, in
the ·post-schema-validation infoset · that element information item has a property as
follows:

PSVI Contributions for element information items

[identity-constraint table]

one Identity-constraint Binding information item for each ·eligible
identity-constraint·, with properties as follows:

PSVI Contributions for Identity-constraint Binding information
items

[definition]

The ·eligible identity-constraint·.
[node table]

A ·node table· with one entry for every ·key-sequence· (call it k)
and node (call it n) such that one of the following must be true:
1 There is an entry in one of the ·node tables· associated with

the [definition] in an Identity-constraint Binding information
item in at least one of the [identity-constraint table]s of the
element information item [children] of the element
information item whose ·key-sequence· is k and whose node
is n;

2 n appears with ·key-sequence· k in the ·qualified node set·
for the [definition].

provided no two entries have the same ·key-sequence· but
distinct nodes. Potential conflicts are resolved by not including
any conflicting entries which would have owed their inclusion to
clause 1 above. Note that if all the conflicting entries arose
under clause 1 above, this means no entry at all will appear for
the offending ·key-sequence·.

Note: The complexity of the above arises from the fact that keyref
identity-constraints may be defined on domains distinct from the embedded domain
of the identity-constraint they reference, or the domains may be the same but
self-embedding at some depth. In either case the ·node table· for the referenced
identity-constraint needs to propagate upwards, with conflict resolution.

The Identity-constraint Binding information item, unlike others in this
specification, is essentially an internal bookkeeping mechanism. It is introduced to
support the definition of Identity-constraint Satisfied (§3.11.4) above. Accordingly,
conformant processors may, but are not required to, expose them via
[identity-constraint table] properties in the ·post-schema-validation infoset ·. In other
words, the above constraints may be read as saying ·validation· of
identity-constraints proceeds as if such infoset items existed.

3.11.6 Constraints on Identity-constraint Definition Schema Components

http://www.w3.org/TR/xmlschema-1/ 104 3/28/2009 7:15 PM

All identity-constraint definitions (see Identity-constraint Definitions (§3.11)) must satisfy
the following constraint.

Schema Component Constraint: Identity-constraint Definition Properties Correct
All of the following must be true:
1 The values of the properties of an identity-constraint definition must be as described

in the property tableau in The Identity-constraint Definition Schema Component
(§3.11.1), modulo the impact of Missing Sub-components (§5.3).

2 If the {identity-constraint category} is keyref, the cardinality of the {fields} must equal
that of the {fields} of the {referenced key}.

Schema Component Constraint: Selector Value OK
All of the following must be true:
1 The {selector} must be a valid XPath expression, as defined in [XPath].
2 One of the following must be true:

2.1 It must conform to the following extended BNF:

Selector XPath expressions

[1] Selector ::= Path ('|' Path)*
[2] Path ::= ('.//')? Step ('/' Step)*
[3] Step ::= '.' | NameTest
[4] NameTest ::= QName | '*' | NCName ':' '*'

2.2 It must be an XPath expression involving the child axis whose abbreviated form
is as given above.

For readability, whitespace may be used in selector XPath expressions even though not
explicitly allowed by the grammar: whitespace may be freely added within patterns
before or after any token.

Lexical productions

[5] token ::= '.' | '/' | '//' | '|' | '@' | NameTest
[6] whitespace ::= S

When tokenizing, the longest possible token is always returned.

Schema Component Constraint: Fields Value OK
All of the following must be true:
1 Each member of the {fields} must be a valid XPath expression, as defined in [XPath].
2 One of the following must be true:

2.1 It must conform to the extended BNF given above for Selector, with the following
modification:

Path in Field XPath expressions

[7] Path ::= ('.//')? (Step '/')* (Step | '@' NameTest)

This production differs from the one above in allowing the final step to match an
attribute node.

2.2 It must be an XPath expression involving the child and/or attribute axes whose

http://www.w3.org/TR/xmlschema-1/ 105 3/28/2009 7:15 PM

abbreviated form is as given above.
For readability, whitespace may be used in field XPath expressions even though not
explicitly allowed by the grammar: whitespace may be freely added within patterns
before or after any token.

When tokenizing, the longest possible token is always returned.

3.12 Notation Declarations
 3.12.1 The Notation Declaration Schema Component
 3.12.2 XML Representation of Notation Declaration Schema Components
 3.12.3 Constraints on XML Representations of Notation Declarations
 3.12.4 Notation Declaration Validation Rules
 3.12.5 Notation Declaration Information Set Contributions
 3.12.6 Constraints on Notation Declaration Schema Components

Notation declarations reconstruct XML 1.0 NOTATION declarations.

Example
<xs:notation name="jpeg" public="image/jpeg" system="viewer.exe">

The XML representation of a notation declaration.

3.12.1 The Notation Declaration Schema Component

The notation declaration schema component has the following properties:

Schema Component: Notation Declaration

{name}

An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{system identifier}

Optional if {public identifier} is present. A URI reference.
{public identifier}

Optional if {system identifier} is present. A public identifier, as defined in [XML
1.0 (Second Edition)].

{annotation}

Optional. An annotation.

Notation declarations do not participate in ·validation· as such. They are referenced in the
course of ·validating· strings as members of the NOTATION simple type.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.12.2 XML Representation of Notation Declaration Schema Components

The XML representation for a notation declaration schema component is a <notation>

http://www.w3.org/TR/xmlschema-1/ 106 3/28/2009 7:15 PM

element information item. The correspondences between the properties of that
information item and properties of the component it corresponds to are as follows:

XML Representation Summary: notation Element Information Item
<notation
 id = ID
 name = NCName
 public = token
 system = anyURI
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</notation>

Notation Declaration Schema Component

Property Representation
{name} The ·actual value· of the name [attribute]

{target
namespace}

The ·actual value· of the targetNamespace [attribute] of the
parent schema element information item.

{system
identifier}

The ·actual value· of the system [attribute], if present, otherwise
·absent·.

{public
identifier}

The ·actual value· of the public [attribute]

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise ·absent·.

Example
<xs:notation name="jpeg"
 public="image/jpeg" system="viewer.exe" />

<xs:element name="picture">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:hexBinary">
 <xs:attribute name="pictype">
 <xs:simpleType>
 <xs:restriction base="xs:NOTATION">
 <xs:enumeration value="jpeg"/>
 <xs:enumeration value="png"/>
 . . .
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

<picture pictype="jpeg">...</picture>

3.12.3 Constraints on XML Representations of Notation Declarations

Schema Representation Constraint: Notation Definition Representation OK

http://www.w3.org/TR/xmlschema-1/ 107 3/28/2009 7:15 PM

In addition to the conditions imposed on <notation> element information items by the
schema for schemas, the corresponding notation definition must satisfy the conditions
set out in Constraints on Notation Declaration Schema Components (§3.12.6) .

3.12.4 Notation Declaration Validation Rules

None as such.

3.12.5 Notation Declaration Information Set Contributions

Schema Information Set Contribution: Validated with Notation
Whenever an attribute information item is ·valid· with respect to a NOTATION, in the
·post-schema-validation infoset · its parent element information item either has a
property as follows:

PSVI Contributions for element information items

[notation]

An ·item isomorphic· to the notation declaration whose {name} and {target
namespace} match the ·local name· and ·namespace name· (as defined in
QName Interpretation (§3.15.3)) of the attribute item's ·actual value·

or has a pair of properties as follows:

PSVI Contributions for element information items

[notation system]

The value of the {system identifier} of that notation declaration.
[notation public]

The value of the {public identifier} of that notation declaration.

Note: For compatibility, only one such attribute should appear on any given
element. If more than one such attribute does appear, which one supplies the
infoset property or properties above is not defined.

3.12.6 Constraints on Notation Declaration Schema Components

All notation declarations (see Notation Declarations (§3.12)) must satisfy the following
constraint.

Schema Component Constraint: Notation Declaration Correct
The values of the properties of a notation declaration must be as described in the
property tableau in The Notation Declaration Schema Component (§3.12.1) , modulo the
impact of Missing Sub-components (§5.3).

3.13 Annotations
 3.13.1 The Annotation Schema Component
 3.13.2 XML Representation of Annotation Schema Components

http://www.w3.org/TR/xmlschema-1/ 108 3/28/2009 7:15 PM

 3.13.3 Constraints on XML Representations of Annotations
 3.13.4 Annotation Validation Rules
 3.13.5 Annotation Information Set Contributions
 3.13.6 Constraints on Annotation Schema Components

Annotations provide for human- and machine-targeted annotations of schema
components.

Example
<xs:simpleType fn:note="special">
 <xs:annotation>
 <xs:documentation>A type for experts only</xs:documentation>
 <xs:appinfo>
 <fn:specialHandling>checkForPrimes</fn:specialHandling>
 </xs:appinfo>
 </xs:annotation>

XML representations of three kinds of annotation.

3.13.1 The Annotation Schema Component

The annotation schema component has the following properties:

Schema Component: Annotation

{application information}

A sequence of element information items.
{user information}

A sequence of element information items.
{attributes}

A sequence of attribute information items.

{user information} is intended for human consumption, {application information} for
automatic processing. In both cases, provision is made for an optional URI reference to
supplement the local information, as the value of the source attribute of the respective
element information items. ·Validation· does not involve dereferencing these URIs, when
present. In the case of {user information}, indication should be given as to the identity of
the (human) language used in the contents, using the xml:lang attribute.

{attributes} ensures that when schema authors take advantage of the provision for adding
attributes from namespaces other than the XML Schema namespace to schema
documents, they are available within the components corresponding to the element items
where such attributes appear.

Annotations do not participate in ·validation· as such. Provided an annotation itself
satisfies all relevant ·Schema Component Constraints· it cannot affect the ·validation· of
element information items.

3.13.2 XML Representation of Annotation Schema Components

http://www.w3.org/TR/xmlschema-1/ 109 3/28/2009 7:15 PM

Annotation of schemas and schema components, with material for human or computer
consumption, is provided for by allowing application information and human information at
the beginning of most major schema elements, and anywhere at the top level of schemas.
The XML representation for an annotation schema component is an <annotation> element
information item. The correspondences between the properties of that information item
and properties of the component it corresponds to are as follows:

XML Representation Summary: annotation Element Information Item
<annotation
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (appinfo | documentation)*
</annotation>

<appinfo
 source = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: ({any})*
</appinfo>

<documentation
 source = anyURI
 xml:lang = language
 {any attributes with non-schema namespace . . .}>
 Content: ({any})*
</documentation>

Annotation Schema Component

Property Representation
{application
information}

A sequence of the <appinfo> element information items from
among the [children], in order, if any, otherwise the empty
sequence.

{user
information}

A sequence of the <documentation> element information items
from among the [children], in order, if any, otherwise the empty
sequence.

{attributes} A sequence of attribute information items, namely those allowed
by the attribute wildcard in the type definition for the
<annotation> item itself or for the enclosing items which
correspond to the component within which the annotation
component is located.

The annotation component corresponding to the <annotation> element in the example
above will have one element item in each of its {user information} and {application
information} and one attribute item in its {attributes}.

3.13.3 Constraints on XML Representations of Annotations

Schema Representation Constraint: Annotation Definition Representation OK
In addition to the conditions imposed on <annotation> element information items by the
schema for schemas, the corresponding annotation must satisfy the conditions set out
in Constraints on Annotation Schema Components (§3.13.6) .

http://www.w3.org/TR/xmlschema-1/ 110 3/28/2009 7:15 PM

3.13.4 Annotation Validation Rules

None as such.

3.13.5 Annotation Information Set Contributions

None as such: the addition of annotations to the ·post-schema-validation infoset · is
covered by the ·post-schema-validation infoset · contributions of the enclosing
components.

3.13.6 Constraints on Annotation Schema Components

All annotations (see Annotations (§3.13)) must satisfy the following constraint.

Schema Component Constraint: Annotation Correct
The values of the properties of an annotation must be as described in the property
tableau in The Annotation Schema Component (§3.13.1) , modulo the impact of Missing
Sub-components (§5.3).

3.14 Simple Type Definitions
 3.14.1 (non-normative) The Simple Type Definition Schema Component
 3.14.2 (non-normative) XML Representation of Simple Type Definition Schema
Components
 3.14.3 (non-normative) Constraints on XML Representations of Simple Type
Definitions
 3.14.4 Simple Type Definition Validation Rules
 3.14.5 Simple Type Definition Information Set Contributions
 3.14.6 Constraints on Simple Type Definition Schema Components
 3.14.7 Built-in Simple Type Definition

Note: This section consists of a combination of non-normative versions of normative
material from [XML Schemas: Datatypes], for local cross-reference purposes, and
normative material relating to the interface between schema components defined in
this specification and the simple type definition component.

Simple type definitions provide for constraining character information item [children] of
element and attribute information items.

Example
<xs:simpleType name="fahrenheitWaterTemp">
 <xs:restriction base="xs:number">
 <xs:fractionDigits value="2"/>
 <xs:minExclusive value="0.00"/>
 <xs:maxExclusive value="100.00"/>
 </xs:restriction>
</xs:simpleType>

The XML representation of a simple type definition.

3.14.1 (non-normative) The Simple Type Definition Schema Component

http://www.w3.org/TR/xmlschema-1/ 111 3/28/2009 7:15 PM

The simple type definition schema component has the following properties:

Schema Component: Simple Type Definition

{name}

Optional. An NCName as defined by [XML-Namespaces].
{target namespace}

Either ·absent· or a namespace name, as defined in [XML-Namespaces].
{base type definition}

A simple type definition, which may be the ·simple ur-type definition·.
{facets}

A set of constraining facets.
{fundamental facets}

A set of fundamental facets.
{final}

A subset of {extension, list, restriction, union}.
{variety}

One of {atomic, list, union}. Depending on the value of {variety}, further
properties are defined as follows:
atomic

{primitive type definition}

A built-in primitive simple type definition.

list
{item type definition}

A simple type definition.

union
{member type definitions}

A non-empty sequence of simple type definitions.

{annotation}

Optional. An annotation.

Simple types are identified by their {name} and {target namespace}. Except for
anonymous simple types (those with no {name}), since type definitions (i.e. both simple
and complex type definitions taken together) must be uniquely identified within an ·XML
Schema·, no simple type definition can have the same name as another simple or
complex type definition. Simple type {name}s and {target namespace}s are provided for
reference from instances (see xsi:type (§2.6.1)), and for use in the XML representation of
schema components (specifically in <element> and <attribute>). See References to
schema components across namespaces (§4.2.3) for the use of component identifiers
when importing one schema into another.

Note: The {name} of a simple type is not ipso facto the [(local) name] of the element
or attribute information items ·validated· by that definition. The connection between a
name and a type definition is described in Element Declarations (§3.3) and Attribute
Declarations (§3.2).

A simple type definition with an empty specification for {final} can be used as the {base
type definition} for other types derived by either of extension or restriction, or as the {item

http://www.w3.org/TR/xmlschema-1/ 112 3/28/2009 7:15 PM

type definition} in the definition of a list, or in the {member type definitions} of a union; the
explicit values extension, restriction, list and union prevent further derivations by extension
(to yield a complex type) and restriction (to yield a simple type) and use in constructing
lists and unions respectively.

{variety} determines whether the simple type corresponds to an atomic, list or union type
as defined by [XML Schemas: Datatypes].

As described in Type Definition Hierarchy (§2.2.1.1), every simple type definition is a
·restriction· of some other simple type (the {base type definition}), which is the ·simple
ur-type definition· if and only if the type definition in question is one of the built-in primitive
datatypes, or a list or union type definition which is not itself derived by restriction from a
list or union respectively. Each atomic type is ultimately a restriction of exactly one such
built-in primitive datatype, which is its {primitive type definition}.

{facets} for each simple type definition are selected from those defined in [XML Schemas:
Datatypes]. For atomic definitions, these are restricted to those appropriate for the
corresponding {primitive type definition}. Therefore, the value space and lexical space (i.e.
what is ·validated· by any atomic simple type) is determined by the pair ({primitive type
definition}, {facets}).

As specified in [XML Schemas: Datatypes], list simple type definitions ·validate· space
separated tokens, each of which conforms to a specified simple type definition, the {item
type definition}. The item type specified must not itself be a list type, and must be one of
the types identified in [XML Schemas: Datatypes] as a suitable item type for a list simple
type. In this case the {facets} apply to the list itself, and are restricted to those appropriate
for lists.

A union simple type definition ·validates· strings which satisfy at least one of its {member
type definitions}. As in the case of list, the {facets} apply to the union itself, and are
restricted to those appropriate for unions.

The ·simple ur-type definition· must not be named as the ·base type definition· of any
user-defined atomic simple type definitions: as it has no constraining facets, this would be
incoherent.

See Annotations (§3.13) for information on the role of the {annotation} property.

3.14.2 (non-normative) XML Representation of Simple Type Definition Schema
Components

Note: This section reproduces a version of material from [XML Schemas: Datatypes],
for local cross-reference purposes.

XML Representation Summary: simpleType Element Information Item

http://www.w3.org/TR/xmlschema-1/ 113 3/28/2009 7:15 PM

<simpleType
 final = (#all | List of (list | union | restriction))
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (restriction | list | union))
</simpleType>

<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (simpleType?, (minExclusive | minInclusive |
maxExclusive | maxInclusive | totalDigits | fractionDigits | length |
minLength | maxLength | enumeration | whiteSpace | pattern)*))
</restriction>

<list
 id = ID
 itemType = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType?)
</list>

<union
 id = ID
 memberTypes = List of QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType*)
</union>

Simple Type Definition Schema Component
Property Representation
{name} The ·actual value· of the name [attribute] if present, otherwise

·absent·.
{target
namespace}

The ·actual value· of the targetNamespace [attribute] of the
<schema> ancestor element information item if present,
otherwise ·absent·.

{base type
definition}

The appropriate case among the following:
1 If the <restriction> alternative is chosen, then the type

definition ·resolved· to by the ·actual value· of the base
[attribute] of <restriction>, if present, otherwise the type
definition corresponding to the <simpleType> among the
[children] of <restriction>.

2 If the <list> or <union> alternative is chosen, then the ·simple
ur-type definition·.

{final} As for the {prohibited substitutions} property of complex type
definitions, but using the final and finalDefault [attributes] in
place of the block and blockDefault [attributes] and with the
relevant set being {extension, restriction, list, union}.

{variety} If the <list> alternative is chosen, then list, otherwise if the
<union> alternative is chosen, then union, otherwise (the
<restriction> alternative is chosen), then the {variety} of the

http://www.w3.org/TR/xmlschema-1/ 114 3/28/2009 7:15 PM

Simple Type Definition Schema Component

Property Representation
{base type definition}.

If the {variety} is atomic, the following additional property mappings also apply:

Atomic Simple Type Definition Schema Component

Property Representation
{primitive
type
definition}

The built-in primitive type definition from which the {base type
definition} is derived.

{facets} A set of facet components ·constituting a restriction· of the {facets}
of the {base type definition} with respect to a set of facet
components corresponding to the appropriate element information
items among the [children] of <restriction> (i.e. those which
specify facets, if any), as defined in Simple Type Restriction
(Facets) (§3.14.6).

If the {variety} is list, the following additional property mappings also apply:

List Simple Type Definition Schema Component

Property Representation
{item type
definition}

The appropriate case among the following:
1 If the <list> alternative is chosen, then the type definition

·resolved· to by the ·actual value· of the itemType [attribute] of
<list>, if present, otherwise the type definition corresponding to
the <simpleType> among the [children] of <list>.

2 If the <restriction> option is chosen, then the {item type
definition} of the {base type definition}.

{facets} If the <restriction> alternative is chosen, a set of facet components
·constituting a restriction· of the {facets} of the {base type definition}
with respect to a set of facet components corresponding to the
appropriate element information items among the [children] of
<restriction> (i.e. those which specify facets, if any), as defined in
Simple Type Restriction (Facets) (§3.14.6), otherwise the empty
set.

If the {variety} is union, the following additional property mappings also apply:

Union Simple Type Definition Schema Component
Property Representation
{member
type
definitions}

The appropriate case among the following:
1 If the <union> alternative is chosen, then [Definition:] define the

explicit members as the type definitions ·resolved· to by the
items in the ·actual value· of the memberTypes [attribute], if any,
followed by the type definitions corresponding to the

http://www.w3.org/TR/xmlschema-1/ 115 3/28/2009 7:15 PM

Union Simple Type Definition Schema Component

Property Representation
<simpleType>s among the [children] of <union>, if any. The
actual value is then formed by replacing any union type
definition in the ·explicit members· with the members of their
{member type definitions}, in order.

2 If the <restriction> option is chosen, then the {member type
definitions} of the {base type definition}.

{facets} If the <restriction> alternative is chosen, a set of facet
components ·constituting a restriction· of the {facets} of the {base
type definition} with respect to a set of facet components
corresponding to the appropriate element information items
among the [children] of <restriction> (i.e. those which specify
facets, if any), as defined in Simple Type Restriction (Facets)
(§3.14.6), otherwise the empty set.

3.14.3 Constraints on XML Representations of Simple Type Definitions

Schema Representation Constraint: Simple Type Definition Representation OK
In addition to the conditions imposed on <simpleType> element information items by the
schema for schemas, all of the following must be true:
1 The corresponding simple type definition, if any, must satisfy the conditions set out in

Constraints on Simple Type Definition Schema Components (§3.14.6) .
2 If the <restriction> alternative is chosen, either it must have a base [attribute] or a

<simpleType> among its [children], but not both.
3 If the <list> alternative is chosen, either it must have an itemType [attribute] or a

<simpleType> among its [children], but not both.
4 Circular union type definition is disallowed. That is, if the <union> alternative is

chosen, there must not be any entries in the memberTypes [attribute] at any depth
which resolve to the component corresponding to the <simpleType>.

3.14.4 Simple Type Definition Validation Rules

Validation Rule: String Valid
For a string to be locally ·valid· with respect to a simple type definition all of the
following must be true:
1 It is schema-valid with respect to that definition as defined by Datatype Valid in [XML

Schemas: Datatypes].
2 The appropriate case among the following must be true:

2.1 If The definition is ENTITY or is validly derived from ENTITY given the empty set,
as defined in Type Derivation OK (Simple) (§3.14.6), then the string must be a
·declared entity name·.

2.2 If The definition is ENTITIES or is validly derived from ENTITIES given the empty
set, as defined in Type Derivation OK (Simple) (§3.14.6), then every
whitespace-delimited substring of the string must be a ·declared entity name·.

2.3 otherwise no further condition applies.

http://www.w3.org/TR/xmlschema-1/ 116 3/28/2009 7:15 PM

[Definition:] A string is a declared entity name if it is equal to the [name] of some
unparsed entity information item in the value of the [unparsedEntities] property of the
document information item at the root of the infoset containing the element or attribute
information item whose ·normalized value· the string is.

3.14.5 Simple Type Definition Information Set Contributions

None as such.

3.14.6 Constraints on Simple Type Definition Schema Components

All simple type definitions other than the ·simple ur-type definition· and the built-in primitive
datatype definitions (see Simple Type Definitions (§3.14)) must satisfy both the following
constraints.

Schema Component Constraint: Simple Type Definition Properties Correct
All of the following must be true:
1 The values of the properties of a simple type definition must be as described in the

property tableau in Datatype definition, modulo the impact of Missing
Sub-components (§5.3).

2 All simple type definitions must be derived ultimately from the ·simple ur-type
definition (so· circular definitions are disallowed). That is, it must be possible to reach
a built-in primitive datatype or the ·simple ur-type definition· by repeatedly following
the {base type definition}.

3 The {final} of the {base type definition} must not contain restriction.

Schema Component Constraint: Derivation Valid (Restriction, Simple)
The appropriate case among the following must be true:
1 If the {variety} is atomic, then all of the following must be true:

1.1 The {base type definition} must be an atomic simple type definition or a built-in
primitive datatype.

1.2 The {final} of the {base type definition} must not contain restriction.
1.3 For each facet in the {facets} (call this DF) all of the following must be true:

1.3.1 DF must be an allowed constraining facet for the {primitive type definition}, as
specified in the appropriate subsection of 3.2 Primitive datatypes.

1.3.2 If there is a facet of the same kind in the {facets} of the {base type definition}
(call this BF),then the DF's {value} must be a valid restriction of BF's {value} as
defined in [XML Schemas: Datatypes].

2 If the {variety} is list, then all of the following must be true:
2.1 The {item type definition} must have a {variety} of atomic or union (in which case

all the {member type definitions} must be atomic).
2.2
2.3 The appropriate case among the following must be true:

2.3.1 If the {base type definition} is the ·simple ur-type definition· , then all of the
following must be true:
2.3.1.1 The {final} of the {item type definition} must not contain list.
2.3.1.2 The {facets} must only contain the whiteSpace facet component.

2.3.2 otherwise all of the following must be true:
2.3.2.1 The {base type definition} must have a {variety} of list.

http://www.w3.org/TR/xmlschema-1/ 117 3/28/2009 7:15 PM

2.3.2.2 The {final} of the {base type definition} must not contain restriction.
2.3.2.3 The {item type definition} must be validly derived from the {base type

definition}'s {item type definition} given the empty set, as defined in Type
Derivation OK (Simple) (§3.14.6).

2.3.2.4 Only length, minLength, maxLength, whiteSpace, pattern and
enumeration facet components are allowed among the {facets}.

2.3.2.5 For each facet in the {facets} (call this DF), if there is a facet of the same
kind in the {facets} of the {base type definition} (call this BF),then the DF's
{value} must be a valid restriction of BF's {value} as defined in [XML Schemas:
Datatypes].

The first case above will apply when a list is derived by specifying an item type, the
second when derived by restriction from another list.

3 If the {variety} is union, then all of the following must be true:
3.1 The {member type definitions} must all have {variety} of atomic or list.
3.2
3.3 The appropriate case among the following must be true:

3.3.1 If the {base type definition} is the ·simple ur-type definition· , then all of the
following must be true:
3.3.1.1 All of the {member type definitions} must have a {final} which does not

contain union.
3.3.1.2 The {facets} must be empty.

3.3.2 otherwise all of the following must be true:
3.3.2.1 The {base type definition} must have a {variety} of union.
3.3.2.2 The {final} of the {base type definition} must not contain restriction.
3.3.2.3 The {member type definitions}, in order, must be validly derived from the

corresponding type definitions in the {base type definition}'s {member type
definitions} given the empty set, as defined in Type Derivation OK (Simple)
(§3.14.6).

3.3.2.4 Only pattern and enumeration facet components are allowed among the
{facets}.

3.3.2.5 For each facet in the {facets} (call this DF), if there is a facet of the same
kind in the {facets} of the {base type definition} (call this BF),then the DF's
{value} must be a valid restriction of BF's {value} as defined in [XML Schemas:
Datatypes].

The first case above will apply when a union is derived by specifying one or more
member types, the second when derived by restriction from another union.

[Definition:] If this constraint Derivation Valid (Restriction, Simple) (§3.14.6) holds of a
simple type definition, it is a valid restriction of its ·base type definition·.

The following constraint defines relations appealed to elsewhere in this specification.

Schema Component Constraint: Type Derivation OK (Simple)
For a simple type definition (call it D, for derived) to be validly derived from a type
definition (call this B, for base) given a subset of {extension, restriction, list, union} (of
which only restriction is actually relevant) one of the following must be true:
1 They are the same type definition.
2 All of the following must be true:

2.1 restriction is not in the subset, or in the {final} of its own {base type definition};
2.2 One of the following must be true:

2.2.1 D's ·base type definition· is B.

http://www.w3.org/TR/xmlschema-1/ 118 3/28/2009 7:15 PM

2.2.2 D's ·base type definition· is not the ·ur-type definition· and is validly derived
from B given the subset, as defined by this constraint.

2.2.3 D's {variety} is list or union and B is the ·simple ur-type definition·.
2.2.4 B's {variety} is union and D is validly derived from a type definition in B's

{member type definitions} given the subset, as defined by this constraint.
Note: With respect to clause 1, see the Note on identity at the end of (§3.4.6) above.

Schema Component Constraint: Simple Type Restriction (Facets)
For a simple type definition (call it R) to restrict another simple type definition (call it B)
with a set of facets (call this S) all of the following must be true:
1 The {variety} of R is the same as that of B.
2 If {variety} is atomic, the {primitive type definition} of R is the same as that of B.
3 The {facets} of R are the union of S and the {facets} of B, eliminating duplicates. To

eliminate duplicates, when a facet of the same kind occurs in both S and the {facets}
of B, the one in the {facets} of B is not included, with the exception of enumeration
and pattern facets, for which multiple occurrences with distinct values are allowed.

Additional constraint(s) may apply depending on the kind of facet, see the appropriate
sub-section of 4.3 Constraining Facets

[Definition:] If clause 3 above holds, the {facets} of R constitute a restriction of the
{facets} of B with respect to S.

3.14.7 Built-in Simple Type Definition

There is a simple type definition nearly equivalent to the ·simple ur-type definition· present
in every schema by definition. It has the following properties:

Simple Type Definition of the Ur-Type

Property Value
{name} anySimpleType

{target namespace} http://www.w3.org/2001/XMLSchema

{base type definition} ·the ur-type definition·
{final} The empty set

{variety} ·absent·

The ·simple ur-type definition· is the root of the simple type definition hierarchy, and as
such mediates between the other simple type definitions, which all eventually trace back
to it via their {base type definition} properties, and the ·ur-type definition·, which is its
{base type definition}. This is why the ·simple ur-type definition· is exempted from the first
clause of Simple Type Definition Properties Correct (§3.14.6), which would otherwise bar
it because of its derivation from a complex type definition and absence of {variety}.

Simple type definitions for all the built-in primitive datatypes, namely string, boolean, float,
double, number, dateTime, duration, time, date, gMonth, gMonthDay, gDay, gYear,
gYearMonth, hexBinary, base64Binary, anyURI (see the Primitive Datatypes section of

http://www.w3.org/TR/xmlschema-1/ 119 3/28/2009 7:15 PM

[XML Schemas: Datatypes]) are present by definition in every schema. All are in the XML
Schema {target namespace} (namespace name http://www.w3.org/2001/XMLSchema),
have an atomic {variety} with an empty {facets} and the ·simple ur-type definition· as their
·base type definition· and themselves as {primitive type definition}.

Similarly, simple type definitions for all the built-in derived datatypes (see the Derived
Datatypes section of [XML Schemas: Datatypes]) are present by definition in every
schema, with properties as specified in [XML Schemas: Datatypes] and as represented in
XML in Schema for Schemas (normative) (§A) .

3.15 Schemas as a Whole
 3.15.1 The Schema Itself
 3.15.2 XML Representations of Schemas
 3.15.3 Constraints on XML Representations of Schemas
 3.15.4 Validation Rules for Schemas as a Whole
 3.15.5 Schema Information Set Contributions
 3.15.6 Constraints on Schemas as a Whole

A schema consists of a set of schema components.

Example
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.com/example">
 . . .
</xs:schema>

The XML representation of the skeleton of a schema.

3.15.1 The Schema Itself

At the abstract level, the schema itself is just a container for its components.

Schema Component: Schema

{type definitions}

A set of named simple and complex type definitions.
{attribute declarations}

A set of named (top-level) attribute declarations.
{element declarations}

A set of named (top-level) element declarations.
{attribute group definitions}

A set of named attribute group definitions.
{model group definitions}

A set of named model group definitions.
{notation declarations}

A set of notation declarations.
{annotations}

A set of annotations.

http://www.w3.org/TR/xmlschema-1/ 120 3/28/2009 7:15 PM

3.15.2 XML Representations of Schemas

A schema is represented in XML by one or more ·schema documents·, that is, one or
more <schema> element information items. A ·schema document· contains
representations for a collection of schema components, e.g. type definitions and element
declarations, which have a common {target namespace}. A ·schema document· which has
one or more <import> element information items corresponds to a schema with
components with more than one {target namespace}, see Import Constraints and
Semantics (§4.2.3).

XML Representation Summary: schema Element Information Item
<schema
 attributeFormDefault = (qualified | unqualified) : unqualified
 blockDefault = (#all | List of (extension | restriction | substitution))
 : ''
 elementFormDefault = (qualified | unqualified) : unqualified
 finalDefault = (#all | List of (extension | restriction | list | union))
 : ''
 id = ID
 targetNamespace = anyURI
 version = token
 xml:lang = language
 {any attributes with non-schema namespace . . .}>

 Content: ((include | import | redefine | annotation)*, (((simpleType |
complexType | group | attributeGroup) | element | attribute | notation),
annotation*)*)
</schema>

Schema Schema Component
Property Representation
{type
definitions}

The simple and complex type definitions corresponding to all
the <simpleType> and <complexType> element information
items in the [children], if any, plus any included or imported
definitions, see Assembling a schema for a single target
namespace from multiple schema definition documents (§4.2.1)
and References to schema components across namespaces
(§4.2.3).

{attribute
declarations}

The (top-level) attribute declarations corresponding to all the
<attribute> element information items in the [children], if any,
plus any included or imported declarations, see Assembling a
schema for a single target namespace from multiple schema
definition documents (§4.2.1) and References to schema
components across namespaces (§4.2.3) .

{element
declarations}

The (top-level) element declarations corresponding to all the
<element> element information items in the [children], if any,
plus any included or imported declarations, see Assembling a
schema for a single target namespace from multiple schema
definition documents (§4.2.1) and References to schema
components across namespaces (§4.2.3) .

http://www.w3.org/TR/xmlschema-1/ 121 3/28/2009 7:15 PM

Schema Schema Component

Property Representation
{attribute
group
definitions}

The attribute group definitions corresponding to all the
<attributeGroup> element information items in the [children], if
any, plus any included or imported definitions, see Assembling
a schema for a single target namespace from multiple schema
definition documents (§4.2.1) and References to schema
components across namespaces (§4.2.3) .

{model group
definitions}

The model group definitions corresponding to all the <group>
element information items in the [children], if any, plus any
included or imported definitions, see Assembling a schema for
a single target namespace from multiple schema definition
documents (§4.2.1) and References to schema components
across namespaces (§4.2.3).

{notation
declarations}

The notation declarations corresponding to all the <notation>
element information items in the [children], if any, plus any
included or imported declarations, see Assembling a schema
for a single target namespace from multiple schema definition
documents (§4.2.1) and References to schema components
across namespaces (§4.2.3).

{annotations} The annotations corresponding to all the <annotation> element
information items in the [children], if any.

Note that none of the attribute information items displayed above correspond directly to
properties of schemas. The blockDefault, finalDefault, attributeFormDefault,
elementFormDefaultand targetNamespace attributes are appealed to in the sub-sections
above, as they provide global information applicable to many representation/component
correspondences. The other attributes (id and version) are for user convenience, and this
specification defines no semantics for them.

The definition of the schema abstract data model in XML Schema Abstract Data Model
(§2.2) makes clear that most components have a {target namespace}. Most components
corresponding to representations within a given <schema> element information item will
have a {target namespace} which corresponds to the targetNamespace attribute.

Since the empty string is not a legal namespace name, supplying an empty string for
targetNamespace is incoherent, and is not the same as not specifying it at all. The
appropriate form of schema document corresponding to a ·schema· whose components
have no {target namespace} is one which has no targetNamespace attribute specified at all.

Note: The XML namespaces Recommendation discusses only instance document
syntax for elements and attributes; it therefore provides no direct framework for
managing the names of type definitions, attribute group definitions, and so on.
Nevertheless, the specification applies the target namespace facility uniformly to all
schema components, i.e. not only declarations but also definitions have a {target
namespace}.

Although the example schema at the beginning of this section might be a complete XML

http://www.w3.org/TR/xmlschema-1/ 122 3/28/2009 7:15 PM

document, <schema> need not be the document element, but can appear within other
documents. Indeed there is no requirement that a schema correspond to a (text)
document at all: it could correspond to an element information item constructed 'by hand',
for instance via a DOM-conformant API.

Aside from <include> and <import>, which do not correspond directly to any schema
component at all, each of the element information items which may appear in the content
of <schema> corresponds to a schema component, and all except <annotation> are
named. The sections below present each such item in turn, setting out the components to
which it may correspond.

3.15.2.1 References to Schema Components

Reference to schema components from a schema document is managed in a uniform
way, whether the component corresponds to an element information item from the same
schema document or is imported (References to schema components across
namespaces (§4.2.3)) from an external schema (which may, but need not, correspond to
an actual schema document). The form of all such references is a ·QName·.

[Definition:] A QName is a name with an optional namespace qualification, as defined in
[XML-Namespaces]. When used in connection with the XML representation of schema
components or references to them, this refers to the simple type QName as defined in
[XML Schemas: Datatypes].

[Definition:] An NCName is a name with no colon, as defined in [XML-Namespaces].
When used in connection with the XML representation of schema components in this
specification, this refers to the simple type NCName as defined in [XML Schemas:
Datatypes].

In each of the XML representation expositions in the following sections, an attribute is
shown as having type QName if and only if it is interpreted as referencing a schema
component.

Example
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns="http://www.example.com"
 targetNamespace="http://www.example.com">
 . . .

 <xs:element name="elem1" type="Address"/>

 <xs:element name="elem2" type="xhtml:blockquote"/>

 <xs:attribute name="attr1"
 type="xsl:quantity"/>
 . . .
</xs:schema>

The first of these is most probably a local reference, i.e. a reference to a type definition
corresponding to a <complexType> element information item located elsewhere in the
schema document, the other two refer to type definitions from schemas for other

http://www.w3.org/TR/xmlschema-1/ 123 3/28/2009 7:15 PM

namespaces and assume that their namespaces have been declared for import. See
References to schema components across namespaces (§4.2.3) for a discussion of
importing.

3.15.2.2 References to Schema Components from Elsewhere

The names of schema components such as type definitions and element declarations are
not of type ID: they are not unique within a schema, just within a symbol space. This
means that simple fragment identifiers will not always work to reference schema
components from outside the context of schema documents.

There is currently no provision in the definition of the interpretation of fragment identifiers
for the text/xml MIME type, which is the MIME type for schemas, for referencing schema
components as such. However, [XPointer] provides a mechanism which maps well onto
the notion of symbol spaces as it is reflected in the XML representation of schema
components. A fragment identifier of the form
#xpointer(xs:schema/xs:element[@name="person"]) will uniquely identify the
representation of a top-level element declaration with name person, and similar fragment
identifiers can obviously be constructed for the other global symbol spaces.

Short-form fragment identifiers may also be used in some cases, that is when a DTD or
XML Schema is available for the schema in question, and the provision of an id attribute
for the representations of all primary and secondary schema components, which is of type
ID, has been exploited.

It is a matter for applications to specify whether they interpret document-level references
of either of the above varieties as being to the relevant element information item (i.e.
without special recognition of the relation of schema documents to schema components)
or as being to the corresponding schema component.

3.15.3 Constraints on XML Representations of Schemas

Schema Representation Constraint: QName Interpretation
Where the type of an attribute information item in a document involved in ·validation· is
identified as ·QName·, its ·actual value· is composed of a [Definition:] local name and
a [Definition:] namespace name. Its ·actual value· is determined based on its
·normalized value· and the containing element information item's [in-scope
namespaces] following [XML-Namespaces]:

The appropriate case among the following must be true:

1 If its ·normalized value· is prefixed, then all of the following must be true:
1.1 There must be a namespace in the [in-scope namespaces] whose [prefix]

matches the prefix.
1.2 its ·namespace name· is the [namespace name] of that namespace.
1.3 Its ·local name· is the portion of its ·normalized value· after the colon (':').

2 otherwise (its ·normalized value· is unprefixed) all of the following must be true:
2.1 its ·local name· is its ·normalized value·.
2.2 The appropriate case among the following must be true:

http://www.w3.org/TR/xmlschema-1/ 124 3/28/2009 7:15 PM

2.2.1 If there is a namespace in the [in-scope namespaces] whose [prefix] has no
value, then its ·namespace name· is the [namespace name] of that namespace.

2.2.2 otherwise its ·namespace name· is ·absent·.

In the absence of the [in-scope namespaces] property in the infoset for the schema
document in question, processors must reconstruct equivalent information as
necessary, using the [namespace attributes] of the containing element information item
and its ancestors.

[Definition:] Whenever the word resolve in any form is used in this chapter in connection
with a ·QName· in a schema document, the following definition QName resolution
(Schema Document) (§3.15.3) should be understood:

Schema Representation Constraint: QName resolution (Schema Document)
For a ·QName· to resolve to a schema component of a specified kind all of the following
must be true:
1 That component is a member of the value of the appropriate property of the schema

which corresponds to the schema document within which the ·QName· appears, that
is the appropriate case among the following must be true:
1.1 If the kind specified is simple or complex type definition, then the property is the

{type definitions}.
1.2 If the kind specified is attribute declaration, then the property is the {attribute

declarations}.
1.3 If the kind specified is element declaration, then the property is the {element

declarations}.
1.4 If the kind specified is attribute group, then the property is the {attribute group

definitions}.
1.5 If the kind specified is model group, then the property is the {model group

definitions}.
1.6 If the kind specified is notation declaration, then the property is the {notation

declarations}.
2 The component's {name} matches the ·local name· of the ·QName·;
3 The component's {target namespace} is identical to the ·namespace name· of the

·QName·;
4 The appropriate case among the following must be true:

4.1 If the ·namespace name· of the ·QName· is ·absent·, then one of the following
must be true:
4.1.1 The <schema> element information item of the schema document containing

the ·QName· has no targetNamespace [attribute].
4.1.2 The <schema> element information item of the that schema document

contains an <import> element information item with no namespace [attribute].
4.2 otherwise the ·namespace name· of the ·QName· is the same as one of the

following:
4.2.1 The ·actual value· of the targetNamespace [attribute] of the <schema> element

information item of the schema document containing the ·QName·.
4.2.2 The ·actual value· of the namespace [attribute] of some <import> element

information item contained in the <schema> element information item of that
schema document.

.

http://www.w3.org/TR/xmlschema-1/ 125 3/28/2009 7:15 PM

3.15.4 Validation Rules for Schemas as a Whole

As the discussion above at Schema Component Details (§3) makes clear, at the level of
schema components and ·validation·, reference to components by name is normally not
involved. In a few cases, however, qualified names appearing in information items being
·validated· must be resolved to schema components by such lookup. The following
constraint is appealed to in these cases.

Validation Rule: QName resolution (Instance)
A pair of a local name and a namespace name (or ·absent·) resolve to a schema
component of a specified kind in the context of ·validation· by appeal to the appropriate
property of the schema being used for the ·assessment·. Each such property indexes
components by name. The property to use is determined by the kind of component
specified, that is, the appropriate case among the following must be true:
1 If the kind specified is simple or complex type definition, then the property is the {type

definitions}.
2 If the kind specified is attribute declaration, then the property is the {attribute

declarations}.
3 If the kind specified is element declaration, then the property is the {element

declarations}.
4 If the kind specified is attribute group, then the property is the {attribute group

definitions}.
5 If the kind specified is model group, then the property is the {model group definitions}.
6 If the kind specified is notation declaration, then the property is the {notation

declarations}.
The component resolved to is the entry in the table whose {name} matches the local
name of the pair and whose {target namespace} is identical to the namespace name of
the pair.

3.15.5 Schema Information Set Contributions

Schema Information Set Contribution: Schema Information
Schema components provide a wealth of information about the basis of ·assessment·,
which may well be of relevance to subsequent processing. Reflecting component
structure into a form suitable for inclusion in the ·post-schema-validation infoset · is the
way this specification provides for making this information available.

Accordingly, [Definition:] by an item isomorphic to a component is meant an
information item whose type is equivalent to the component's, with one property per
property of the component, with the same name, and value either the same atomic
value, or an information item corresponding in the same way to its component value,
recursively, as necessary.

Processors must add a property in the ·post-schema-validation infoset · to the element
information item at which ·assessment· began, as follows:

PSVI Contributions for element information items

[schema information]

http://www.w3.org/TR/xmlschema-1/ 126 3/28/2009 7:15 PM

A set of namespace schema information information items, one for each
namespace name which appears as the {target namespace} of any schema
component in the schema used for that assessment, and one for ·absent· if
any schema component in the schema had no {target namespace}. Each
namespace schema information information item has the following
properties and values:

PSVI Contributions for namespace schema
information information items

[schema namespace]

A namespace name or ·absent·.
[schema components]

A (possibly empty) set of schema component information
items, each one an ·item isomorphic· to a component whose
{target namespace} is the sibling [schema namespace]
property above, drawn from the schema used for
·assessment·.

[schema documents]

A (possibly empty) set of schema document information
items, with properties and values as follows, for each schema
document which contributed components to the schema, and
whose targetNamespace matches the sibling [schema
namespace] property above (or whose targetNamespace was
·absent· but that contributed components to that namespace by
being <include>d by a schema document with that
targetNamespace as per Assembling a schema for a single
target namespace from multiple schema definition documents
(§4.2.1)):

PSVI Contributions for schema
document information items

[document location]

Either a URI reference, if available, otherwise
·absent·

[document]

A document information item, if available,
otherwise ·absent·.

The {schema components} property is provided for processors which wish to provide a
single access point to the components of the schema which was used during
·assessment·. Lightweight processors are free to leave it empty, but if it is provided, it
must contain at a minimum all the top-level (i.e. named) components which actually
figured in the ·assessment·, either directly or (because an anonymous component which
figured is contained within) indirectly.

http://www.w3.org/TR/xmlschema-1/ 127 3/28/2009 7:15 PM

Schema Information Set Contribution: ID/IDREF Table
In the ·post-schema-validation infoset· a set of ID/IDREF binding information items is
associated with the ·validation root· element information item:

PSVI Contributions for element information items

[ID/IDREF table]

A (possibly empty) set of ID/IDREF binding information items, as specified
below.

[Definition:] Let the eligible item set be the set of consisting of every attribute or
element information item for which all of the following are true
1 its [validation context] is the ·validation root·;
2 it was successfully ·validated· with respect to an attribute declaration as per Attribute

Locally Valid (§3.2.4) or element declaration as per Element Locally Valid (Element)
(§3.3.4) (as appropriate) whose attribute {type definition} or element {type definition}
(respectively) is the built-in ID, IDREF or IDREFS simple type definition or a type
derived from one of them.

Then there is one ID/IDREF binding in the [ID/IDREF table] for every distinct string
which isone of the following:

1 the ·actual value· of a member of the ·eligible item set· whose type definition is or is
derived from ID or IDREF;

2 one of the items in the ·actual value· of a member of the ·eligible item set· whose type
definition is or is derived from IDREFS.

Each ID/IDREF binding has properties as follows:

PSVI Contributions for ID/IDREF binding information items

[id]

The string identified above.
[binding]

A set consisting of every element information item for which all of the
following are true
1 its [validation context] is the ·validation root·;
2 it has an attribute information item in its [attributes] or an element

information item in its [children] which was ·validated· by the built-in ID
simple type definition or a type derived from it whose [schema
normalized value] is the [id] of this ID/IDREF binding.

The net effect of the above is to have one entry for every string used as an id, whether
by declaration or by reference, associated with those elements, if any, which actually
purport to have that id. See Validation Root Valid (ID/IDREF) (§3.3.4) above for the
validation rule which actually checks for errors here.

Note: The ID/IDREF binding information item, unlike most other aspects of this
specification, is essentially an internal bookkeeping mechanism. It is introduced to
support the definition of Validation Root Valid (ID/IDREF) (§3.3.4) above.
Accordingly, conformant processors may, but are not required to, expose it in the

http://www.w3.org/TR/xmlschema-1/ 128 3/28/2009 7:15 PM

·post-schema-validation infoset ·. In other words, the above constraint may be read
as saying ·assessment· proceeds as if such an infoset item existed.

3.15.6 Constraints on Schemas as a Whole

All schemas (see Schemas as a Whole (§3.15)) must satisfy the following constraint.

Schema Component Constraint: Schema Properties Correct
All of the following must be true:
1 The values of the properties of a schema must be as described in the property

tableau in The Schema Itself (§3.15.1), modulo the impact of Missing
Sub-components (§5.3);

2 Each of the {type definitions}, {element declarations}, {attribute group definitions},
{model group definitions} and {notation declarations} must not contain two or more
schema components with the same {name} and {target namespace}.

4 Schemas and Namespaces: Access and Composition

This chapter defines the mechanisms by which this specification establishes the
necessary precondition for ·assessment·, namely access to one or more schemas. This
chapter also sets out in detail the relationship between schemas and namespaces, as well
as mechanisms for modularization of schemas, including provision for incorporating
definitions and declarations from one schema in another, possibly with modifications.

Conformance (§2.4) describes three levels of conformance for schema processors, and
Schemas and Schema-validity Assessment (§5) provides a formal definition of
·assessment·. This section sets out in detail the 3-layer architecture implied by the three
conformance levels. The layers are:

The ·assessment· core, relating schema components and instance information
items;

1.

Schema representation: the connections between XML representations and schema
components, including the relationships between namespaces and schema
components;

2.

XML Schema web-interoperability guidelines: instance->schema and
schema->schema connections for the WWW.

3.

Layer 1 specifies the manner in which a schema composed of schema components can
be applied to in the ·assessment· of an instance element information item. Layer 2
specifies the use of <schema> elements in XML documents as the standard XML
representation for schema information in a broad range of computer systems and
execution environments. To support interoperation over the World Wide Web in particular,
layer 3 provides a set of conventions for schema reference on the Web. Additional details
on each of the three layers is provided in the sections below.

4.1 Layer 1: Summary of the Schema-validity Assessment Core

The fundamental purpose of the ·assessment· core is to define ·assessment· for a single
element information item and its descendants with respect to a complex type definition. All
processors are required to implement this core predicate in a manner which conforms

http://www.w3.org/TR/xmlschema-1/ 129 3/28/2009 7:15 PM

exactly to this specification.

·assessment· is defined with reference to an ·XML Schema· (note not a ·schema
document·) which consists of (at a minimum) the set of schema components (definitions
and declarations) required for that ·assessment·. This is not a circular definition, but rather
a post facto observation: no element information item can be fully assessed unless all the
components required by any aspect of its (potentially recursive) ·assessment· are present
in the schema.

As specified above, each schema component is associated directly or indirectly with a
target namespace, or explicitly with no namespace. In the case of multi-namespace
documents, components for more than one target namespace will co-exist in a schema.

Processors have the option to assemble (and perhaps to optimize or pre-compile) the
entire schema prior to the start of an ·assessment· episode, or to gather the schema lazily
as individual components are required. In all cases it is required that:

The processor succeed in locating the ·schema components· transitively required to
complete an ·assessment· (note that components derived from ·schema documents·
can be integrated with components obtained through other means);
no definition or declaration changes once it has been established;
if the processor chooses to acquire declarations and definitions dynamically, that
there be no side effects of such dynamic acquisition that would cause the results of
·assessment· to differ from that which would have been obtained from the same
schema components acquired in bulk.

Note: the ·assessment· core is defined in terms of schema components at the
abstract level, and no mention is made of the schema definition syntax (i.e.
<schema>). Although many processors will acquire schemas in this format, others
may operate on compiled representations, on a programmatic representation as
exposed in some programming language, etc.

The obligation of a schema-aware processor as far as the ·assessment· core is concerned
is to implement one or more of the options for ·assessment· given below in Assessing
Schema-Validity (§5.2). Neither the choice of element information item for that
·assessment·, nor which of the means of initiating ·assessment· are used, is within the
scope of this specification.

Although ·assessment· is defined recursively, it is also intended to be implementable in
streaming processors. Such processors may choose to incrementally assemble the
schema during processing in response, for example, to encountering new namespaces.
The implication of the invariants expressed above is that such incremental assembly must
result in an ·assessment· outcome that is the same as would be given if ·assessment· was
undertaken again with the final, fully assembled schema.

4.2 Layer 2: Schema Documents, Namespaces and Composition
 4.2.1 Assembling a schema for a single target namespace from multiple schema
definition documents
 4.2.2 Including modified component definitions
 4.2.3 References to schema components across namespaces

http://www.w3.org/TR/xmlschema-1/ 130 3/28/2009 7:15 PM

The sub-sections of Schema Component Details (§3) define an XML representation for
type definitions and element declarations and so on, specifying their target namespace
and collecting them into schema documents. The two following sections relate to
assembling a complete schema for ·assessment· from multiple sources. They should not
be understood as a form of text substitution, but rather as providing mechanisms for
distributed definition of schema components, with appropriate schema-specific semantics.

Note: The core ·assessment· architecture requires that a complete schema with all
the necessary declarations and definitions be available. This may involve resolving
both instance->schema and schema->schema references. As observed earlier in
Conformance (§2.4), the precise mechanisms for resolving such references are
expected to evolve over time. In support of such evolution, this specification observes
the design principle that references from one schema document to a schema use
mechanisms that directly parallel those used to reference a schema from an instance
document.
Note: In the sections below, "schemaLocation" really belongs at layer 3. For
convenience, it is documented with the layer 2 mechanisms of import and include,
with which it is closely associated.

4.2.1 Assembling a schema for a single target namespace from multiple schema
definition documents

Schema components for a single target namespace can be assembled from several
·schema documents·, that is several <schema> element information items:

XML Representation Summary: include Element Information Item
<include
 id = ID
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</include>

A <schema> information item may contain any number of <include> elements. Their
schemaLocation attributes, consisting of a URI reference, identify other ·schema
documents·, that is <schema> information items.

The ·XML Schema· corresponding to <schema> contains not only the components
corresponding to its definition and declaration [children], but also all the components of all
the ·XML Schemas· corresponding to any <include>d schema documents. Such included
schema documents must either (a) have the same targetNamespace as the <include>ing
schema document, or (b) no targetNamespace at all, in which case the <include>d schema
document is converted to the <include>ing schema document's targetNamespace.

Schema Representation Constraint: Inclusion Constraints and Semantics
In addition to the conditions imposed on <include> element information items by the
schema for schemas, all of the following must be true:
1 If the ·actual value· of the schemaLocation [attribute] successfully resolves one of the

following must be true:
1.1 It resolves to (a fragment of) a resource which is an XML document (of type

http://www.w3.org/TR/xmlschema-1/ 131 3/28/2009 7:15 PM

application/xml or text/xml with an XML declaration for preference, but this is not
required), which in turn corresponds to a <schema> element information item in a
well-formed information set, which in turn corresponds to a valid schema.

1.2 It resolves to a <schema> element information item in a well-formed information
set, which in turn corresponds to a valid schema.

In either case call the <include>d <schema> item SII, the valid schema I and the
<include>ing item's parent <schema> item SII’.

2 One of the following must be true:
2.1 SII has a targetNamespace [attribute], and its ·actual value· is identical to the

·actual value· of the targetNamespace [attribute] of SII’ (which must have such an
[attribute]).

2.2 Neither SII nor SII’ have a targetNamespace [attribute].
2.3 SII has no targetNamespace [attribute] (but SII’ does).

3 The appropriate case among the following must be true:
3.1 If clause 2.1 or clause 2.2 above is satisfied, then the schema corresponding to

SII’ must include not only definitions or declarations corresponding to the
appropriate members of its own [children], but also components identical to all the
·schema components· of I.

3.2 If clause 2.3 above is satisfied, then the schema corresponding to the <include>d
item's parent <schema> must include not only definitions or declarations
corresponding to the appropriate members of its own [children], but also
components identical to all the ·schema components· of I, except that anywhere
the ·absent· target namespace name would have appeared, the ·actual value· of
the targetNamespace [attribute] of SII’ is used. In particular, it replaces ·absent· in
the following places:
3.2.1 The {target namespace} of named schema components, both at the top level

and (in the case of nested type definitions and nested attribute and element
declarations whose code was qualified) nested within definitions;

3.2.2 The {namespace constraint} of a wildcard, whether negated or not;

It is not an error for the ·actual value· of the schemaLocation [attribute] to fail to resolve it
all, in which case no corresponding inclusion is performed. It is an error for it to resolve
but the rest of clause 1 above to fail to be satisfied. Failure to resolve may well cause
less than complete ·assessment· outcomes, of course.

As discussed in Missing Sub-components (§5.3), ·QName·s in XML representations
may fail to ·resolve·, rendering components incomplete and unusable because of
missing subcomponents. During schema construction, implementations must retain
·QName· values for such references, in case an appropriately-named component
becomes available to discharge the reference by the time it is actually needed. ·Absent·
target ·namespace name·s of such as-yet unresolved reference ·QName·s in
<include>d components must also be converted if clause 3.2 is satisfied.

Note: The above is carefully worded so that multiple <include>ing of the same
schema document will not constitute a violation of clause 2 of Schema Properties
Correct (§3.15.6), but applications are allowed, indeed encouraged, to avoid
<include>ing the same schema document more than once to forestall the necessity of
establishing identity component by component.

4.2.2 Including modified component definitions

http://www.w3.org/TR/xmlschema-1/ 132 3/28/2009 7:15 PM

In order to provide some support for evolution and versioning, it is possible to incorporate
components corresponding to a schema document with modifications. The modifications
have a pervasive impact, that is, only the redefined components are used, even when
referenced from other incorporated components, whether redefined themselves or not.

XML Representation Summary: redefine Element Information Item
<redefine
 id = ID
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>

 Content: (annotation | (simpleType | complexType | group |
attributeGroup))*
</redefine>

A <schema> information item may contain any number of <redefine> elements. Their
schemaLocation attributes, consisting of a URI reference, identify other ·schema
documents·, that is <schema> information items.

The ·XML Schema· corresponding to <schema> contains not only the components
corresponding to its definition and declaration [children], but also all the components of all
the ·XML Schemas· corresponding to any <redefine>d schema documents. Such schema
documents must either (a) have the same targetNamespace as the <redefine>ing schema
document, or (b) no targetNamespace at all, in which case the <redefine>d schema
document is converted to the <redefine>ing schema document's targetNamespace.

The definitions within the <redefine> element itself are restricted to be redefinitions of
components from the <redefine>d schema document, in terms of themselves. That is,

Type definitions must use themselves as their base type definition;
Attribute group definitions and model group definitions must be supersets or subsets
of their original definitions, either by including exactly one reference to themselves or
by containing only (possibly restricted) components which appear in a corresponding
way in their <redefine>d selves.

Not all the components of the <redefine>d schema document need be redefined.

This mechanism is intended to provide a declarative and modular approach to schema
modification, with functionality no different except in scope from what would be achieved
by wholesale text copying and redefinition by editing. In particular redefining a type is not
guaranteed to be side-effect free: it may have unexpected impacts on other type
definitions which are based on the redefined one, even to the extent that some such
definitions become ill-formed.

Note: The pervasive impact of redefinition reinforces the need for implementations to
adopt some form of lazy or 'just-in-time' approach to component construction, which
is also called for in order to avoid inappropriate dependencies on the order in which
definitions and references appear in (collections of) schema documents.

Example
v1.xsd:

http://www.w3.org/TR/xmlschema-1/ 133 3/28/2009 7:15 PM

 <xs:complexType name="personName">
 <xs:sequence>
 <xs:element name="title" minOccurs="0"/>
 <xs:element name="forename" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="addressee" type="personName"/>

v2.xsd:
 <xs:redefine schemaLocation="v1.xsd">
 <xs:complexType name="personName">
 <xs:complexContent>
 <xs:extension base="personName">
 <xs:sequence>
 <xs:element name="generation" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>

 <xs:element name="author" type="personName"/>

The schema corresponding to v2.xsd has everything specified by v1.xsd, with the
personName type redefined, as well as everything it specifies itself. According to this
schema, elements constrained by the personName type may end with a generation
element. This includes not only the author element, but also the addressee element.

Schema Representation Constraint: Redefinition Constraints and Semantics
In addition to the conditions imposed on <redefine> element information items by the
schema for schemas all of the following must be true:
1 If there are any element information items among the [children] other than

<annotation> then the ·actual value· of the schemaLocation [attribute] must
successfully resolve.

2 If the ·actual value· of the schemaLocation [attribute] successfully resolves one of the
following must be true:
2.1 it resolves to (a fragment of) a resource which is an XML document (see clause

1.1), which in turn corresponds to a <schema> element information item in a
well-formed information set, which in turn corresponds to a valid schema.

2.2 It resolves to a <schema> element information item in a well-formed information
set, which in turn corresponds to a valid schema.

In either case call the <redefine>d <schema> item SII, the valid schema I and the
<redefine>ing item's parent <schema> item SII’.

3 One of the following must be true:
3.1 SII has a targetNamespace [attribute], and its ·actual value· is identical to the

·actual value· of the targetNamespace [attribute] of SII’ (which must have such an
[attribute]).

3.2 Neither SII nor SII’ have a targetNamespace [attribute].
3.3 SII has no targetNamespace [attribute] (but SII’ does).

4 The appropriate case among the following must be true:
4.1 If clause 3.1 or clause 3.2 above is satisfied, then the schema corresponding to

SII’ must include not only definitions or declarations corresponding to the
appropriate members of its own [children], but also components identical to all the
·schema components· of I, with the exception of those explicitly redefined (see

http://www.w3.org/TR/xmlschema-1/ 134 3/28/2009 7:15 PM

Individual Component Redefinition (§4.2.2) below).
4.2 If clause 3.3 above is satisfied, then the schema corresponding to SII’ must

include not only definitions or declarations corresponding to the appropriate
members of its own [children], but also components identical to all the ·schema
components· of I, with the exception of those explicitly redefined (see Individual
Component Redefinition (§4.2.2) below), except that anywhere the ·absent· target
namespace name would have appeared, the ·actual value· of the targetNamespace
[attribute] of SII’ is used (see clause 3.2 in Inclusion Constraints and Semantics
(§4.2.1) for details).

5 Within the [children], each <simpleType> must have a <restriction> among its
[children] and each <complexType> must have a restriction or extension among its
grand-[children] the ·actual value· of whose base [attribute] must be the same as the
·actual value· of its own name attribute plus target namespace;

6 Within the [children], for each <group> the appropriate case among the following
must be true:
6.1 If it has a <group> among its contents at some level the ·actual value· of whose

ref [attribute] is the same as the ·actual value· of its own name attribute plus target
namespace, then all of the following must be true:
6.1.1 It must have exactly one such group.
6.1.2 The ·actual value· of both that group's minOccurs and maxOccurs [attribute]

must be 1 (or ·absent·).
6.2 If it has no such self-reference, then all of the following must be true:

6.2.1 The ·actual value· of its own name attribute plus target namespace must
successfully ·resolve· to a model group definition in I.

6.2.2 The {model group} of the model group definition which corresponds to it per
XML Representation of Model Group Definition Schema Components (§3.7.2)
must be a ·valid restriction· of the {model group} of that model group definition in
I, as defined in Particle Valid (Restriction) (§3.9.6).

7 Within the [children], for each <attributeGroup> the appropriate case among the
following must be true:
7.1 If it has an <attributeGroup> among its contents the ·actual value· of whose ref

[attribute] is the same as the ·actual value· of its own name attribute plus target
namespace, then it must have exactly one such group.

7.2 If it has no such self-reference, then all of the following must be true:
7.2.1 The ·actual value· of its own name attribute plus target namespace must

successfully ·resolve· to an attribute group definition in I.
7.2.2 The {attribute uses} and {attribute wildcard} of the attribute group definition

which corresponds to it per XML Representation of Attribute Group Definition
Schema Components (§3.6.2) must be ·valid restrictions· of the {attribute uses}
and {attribute wildcard} of that attribute group definition in I, as defined in clause
2, clause 3 and clause 4 of Derivation Valid (Restriction, Complex) (§3.4.6)
(where references to the base type definition are understood as references to the
attribute group definition in I).

Note: An attribute group restrictively redefined per clause 7.2 corresponds to an
attribute group whose {attribute uses} consist all and only of those attribute uses
corresponding to <attribute>s explicitly present among the [children] of the
<redefine>ing <attributeGroup>. No inheritance from the <redefine>d attribute
group occurs. Its {attribute wildcard} is similarly based purely on an explicit
<anyAttribute>, if present.

http://www.w3.org/TR/xmlschema-1/ 135 3/28/2009 7:15 PM

Schema Representation Constraint: Individual Component Redefinition
Corresponding to each non-<annotation> member of the [children] of a <redefine> there
are one or two schema components in the <redefine>ing schema:
1 The <simpleType> and <complexType> [children] information items each correspond

to two components:
1.1 One component which corresponds to the top-level definition item with the same

name in the <redefine>d schema document, as defined in Schema Component
Details (§3), except that its {name} is ·absent·;

1.2 One component which corresponds to the information item itself, as defined in
Schema Component Details (§3), except that its {base type definition} is the
component defined in 1.1 above.

This pairing ensures the coherence constraints on type definitions are respected,
while at the same time achieving the desired effect, namely that references to names
of redefined components in both the <redefine>ing and <redefine>d schema
documents resolve to the redefined component as specified in 1.2 above.

2 The <group> and <attributeGroup> [children] each correspond to a single component,
as defined in Schema Component Details (§3), except that if and when a
self-reference based on a ref [attribute] whose ·actual value· is the same as the
item's name plus target namespace is resolved, a component which corresponds to
the top-level definition item of that name and the appropriate kind in I is used.

In all cases there must be a top-level definition item of the appropriate name and kind in
the <redefine>d schema document.

Note: The above is carefully worded so that multiple equivalent <redefine>ing of the
same schema document will not constitute a violation of clause 2 of Schema
Properties Correct (§3.15.6), but applications are allowed, indeed encouraged, to
avoid <redefine>ing the same schema document in the same way more than once to
forestall the necessity of establishing identity component by component (although this
will have to be done for the individual redefinitions themselves).

4.2.3 References to schema components across namespaces

As described in XML Schema Abstract Data Model (§2.2), every top-level schema
component is associated with a target namespace (or, explicitly, with none). This section
sets out the exact mechanism and syntax in the XML form of schema definition by which a
reference to a foreign component is made, that is, a component with a different target
namespace from that of the referring component.

Two things are required: not only a means of addressing such foreign components but
also a signal to schema-aware processors that a schema document contains such
references:

XML Representation Summary: import Element Information Item
<import
 id = ID
 namespace = anyURI
 schemaLocation = anyURI
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</import>

http://www.w3.org/TR/xmlschema-1/ 136 3/28/2009 7:15 PM

The <import> element information item identifies namespaces used in external
references, i.e. those whose ·QName· identifies them as coming from a different
namespace (or none) than the enclosing schema document's targetNamespace. The
·actual value· of its namespace [attribute] indicates that the containing schema document
may contain qualified references to schema components in that namespace (via one or
more prefixes declared with namespace declarations in the normal way). If that attribute is
absent, then the import allows unqualified reference to components with no target
namespace. Note that components to be imported need not be in the form of a ·schema
document·; the processor is free to access or construct components using means of its
own choosing.

The ·actual value· of the schemaLocation, if present, gives a hint as to where a serialization
of a ·schema document· with declarations and definitions for that namespace (or none)
may be found. When no schemaLocation [attribute] is present, the schema author is
leaving the identification of that schema to the instance, application or user, via the
mechanisms described below in Layer 3: Schema Document Access and
Web-interoperability (§4.3). When a schemaLocation is present, it must contain a single
URI reference which the schema author warrants will resolve to a serialization of a
·schema document· containing the component(s) in the <import>ed namespace referred
to elsewhere in the containing schema document.

Note: Since both the namespace and schemaLocation [attribute] are optional, a bare
<import/> information item is allowed. This simply allows unqualified reference to
foreign components with no target namespace without giving any hints as to where to
find them.

Example
The same namespace may be used both for real work, and in the course of defining
schema components in terms of foreign components:
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:html="http://www.w3.org/1999/xhtml"
 targetNamespace="uri:mywork" xmlns:my="uri:mywork">

 <import namespace="http://www.w3.org/1999/xhtml"/>

 <annotation>
 <documentation>
 <html:p>[Some documentation for my schema]</html:p>
 </documentation>
 </annotation>

 . . .

 <complexType name="myType">
 <sequence>
 <element ref="html:p" minOccurs="0"/>
 </sequence>
 . . .
 </complexType>

 <element name="myElt" type="my:myType"/>
</schema>

The treatment of references as ·QNames· implies that since (with the exception of the
schema for schemas) the target namespace and the XML Schema namespace differ,
without massive redeclaration of the default namespace either internal references to the

http://www.w3.org/TR/xmlschema-1/ 137 3/28/2009 7:15 PM

names being defined in a schema document or the schema declaration and definition
elements themselves must be explicitly qualified. This example takes the first option --
most other examples in this specification have taken the second.

Schema Representation Constraint: Import Constraints and Semantics
In addition to the conditions imposed on <import> element information items by the
schema for schemas all of the following must be true:
1 The appropriate case among the following must be true:

1.1 If the namespace [attribute] is present, then its ·actual value· must not match the
·actual value· of the enclosing <schema>'s targetNamespace [attribute].

1.2 If the namespace [attribute] is not present, then the enclosing <schema> must
have a targetNamespace [attribute]

2 If the application schema reference strategy using the ·actual value·s of the
schemaLocation and namespace [attributes], provides a referent, as defined by Schema
Document Location Strategy (§4.3.2), one of the following must be true:
2.1 The referent is (a fragment of) a resource which is an XML document (see clause

1.1), which in turn corresponds to a <schema> element information item in a
well-formed information set, which in turn corresponds to a valid schema.

2.2 The referent is a <schema> element information item in a well-formed information
set, which in turn corresponds to a valid schema.

In either case call the <schema> item SII and the valid schema I.
3 The appropriate case among the following must be true:

3.1 If there is a namespace [attribute], then its ·actual value· must be identical to the
·actual value· of the targetNamespace [attribute] of SII.

3.2 If there is no namespace [attribute], then SII must have no targetNamespace
[attribute]

It is not an error for the application schema reference strategy to fail. It is an error for it
to resolve but the rest of clause 2 above to fail to be satisfied. Failure to find a referent
may well cause less than complete ·assessment· outcomes, of course.

The ·schema components· (that is {type definitions}, {attribute declarations}, {element
declarations}, {attribute group definitions}, {model group definitions}, {notation
declarations}) of a schema corresponding to a <schema> element information item with
one or more <import> element information items must include not only definitions or
declarations corresponding to the appropriate members of its [children], but also, for
each of those <import> element information items for which clause 2 above is satisfied,
a set of ·schema components· identical to all the ·schema components· of I.

Note: The above is carefully worded so that multiple <import>ing of the same
schema document will not constitute a violation of clause 2 of Schema Properties
Correct (§3.15.6), but applications are allowed, indeed encouraged, to avoid
<import>ing the same schema document more than once to forestall the necessity of
establishing identity component by component. Given that the schemaLocation
[attribute] is only a hint, it is open to applications to ignore all but the first <import> for
a given namespace, regardless of the ·actual value· of schemaLocation, but such a
strategy risks missing useful information when new schemaLocations are offered.

4.3 Layer 3: Schema Document Access and Web-interoperability
 4.3.1 Standards for representation of schemas and retrieval of schema documents

http://www.w3.org/TR/xmlschema-1/ 138 3/28/2009 7:15 PM

on the Web
 4.3.2 How schema definitions are located on the Web

Layers 1 and 2 provide a framework for ·assessment· and XML definition of schemas in a
broad variety of environments. Over time, a range of standards and conventions may well
evolve to support interoperability of XML Schema implementations on the World Wide
Web. Layer 3 defines the minimum level of function required of all conformant processors
operating on the Web: it is intended that, over time, future standards (e.g. XML Packages)
for interoperability on the Web and in other environments can be introduced without the
need to republish this specification.

4.3.1 Standards for representation of schemas and retrieval of schema documents
on the Web

For interoperability, serialized ·schema documents·, like all other Web resources, may be
identified by URI and retrieved using the standard mechanisms of the Web (e.g. http,
https, etc.) Such documents on the Web must be part of XML documents (see clause
1.1), and are represented in the standard XML schema definition form described by layer
2 (that is as <schema> element information items).

Note: there will often be times when a schema document will be a complete XML 1.0
document whose document element is <schema>. There will be other occasions in
which <schema> items will be contained in other documents, perhaps referenced
using fragment and/or XPointer notation.
Note: The variations among server software and web site administration policies
make it difficult to recommend any particular approach to retrieval requests intended
to retrieve serialized ·schema documents ·. An Accept header of application/xml,
text/xml; q=0.9, */* is perhaps a reasonable starting point.

4.3.2 How schema definitions are located on the Web

As described in Layer 1: Summary of the Schema-validity Assessment Core (§4.1) ,
processors are responsible for providing the schema components (definitions and
declarations) needed for ·assessment·. This section introduces a set of normative
conventions to facilitate interoperability for instance and schema documents retrieved and
processed from the Web.

Note: As discussed above in Layer 2: Schema Documents, Namespaces and
Composition (§4.2), other non-Web mechanisms for delivering schemas for
·assessment· may exist, but are outside the scope of this specification.

Processors on the Web are free to undertake ·assessment· against arbitrary schemas in
any of the ways set out in Assessing Schema-Validity (§5.2). However, it is useful to have
a common convention for determining the schema to use. Accordingly, general-purpose
schema-aware processors (i.e. those not specialized to one or a fixed set of
pre-determined schemas) undertaking ·assessment· of a document on the web must
behave as follows:

unless directed otherwise by the user, ·assessment· is undertaken on the document
element information item of the specified document;

http://www.w3.org/TR/xmlschema-1/ 139 3/28/2009 7:15 PM

unless directed otherwise by the user, the processor is required to construct a
schema corresponding to a schema document whose targetNamespace is identical to
the namespace name, if any, of the element information item on which ·assessment·
is undertaken.

The composition of the complete schema for use in ·assessment· is discussed in Layer 2:
Schema Documents, Namespaces and Composition (§4.2) above. The means used to
locate appropriate schema document(s) are processor and application dependent, subject
to the following requirements:

Schemas are represented on the Web in the form specified above in Standards for
representation of schemas and retrieval of schema documents on the Web (§4.3.1) ;

1.

The author of a document uses namespace declarations to indicate the intended
interpretation of names appearing therein; there may or may not be a schema
retrievable via the namespace name. Accordingly whether a processor's default
behavior is or is not to attempt such dereferencing, it must always provide for
user-directed overriding of that default.

Note: Experience suggests that it is not in all cases safe or desirable from a
performance point of view to dereference namespace names as a matter of
course. User community and/or consumer/provider agreements may establish
circumstances in which such dereference is a sensible default strategy: this
specification allows but does not require particular communities to establish and
implement such conventions. Users are always free to supply namespace
names as schema location information when dereferencing is desired: see
below.

2.

On the other hand, in case a document author (human or not) created a document
with a particular schema in view, and warrants that some or all of the document
conforms to that schema, the schemaLocation and noNamespaceSchemaLocation
[attributes] (in the XML Schema instance namespace, that is,
http://www.w3.org/2001/XMLSchema-instance) (hereafter xsi:schemaLocation and
xsi:noNamespaceSchemaLocation) are provided. The first records the author's warrant
with pairs of URI references (one for the namespace name, and one for a hint as to
the location of a schema document defining names for that namespace name). The
second similarly provides a URI reference as a hint as to the location of a schema
document with no targetNamespace [attribute].

Unless directed otherwise, for example by the invoking application or by command
line option, processors should attempt to dereference each schema document
location URI in the ·actual value· of such xsi:schemaLocation and
xsi:noNamespaceSchemaLocation [attributes], see details below.

3.

xsi:schemaLocation and xsi:noNamespaceSchemaLocation [attributes] can occur on
any element. However, it is an error if such an attribute occurs after the first
appearance of an element or attribute information item within an element information
item initially ·validated· whose [namespace name] it addresses. According to the
rules of Layer 1: Summary of the Schema-validity Assessment Core (§4.1) , the
corresponding schema may be lazily assembled, but is otherwise stable throughout
·assessment·. Although schema location attributes can occur on any element, and
can be processed incrementally as discovered, their effect is essentially global to the
·assessment·. Definitions and declarations remain in effect beyond the scope of the
element on which the binding is declared.

4.

http://www.w3.org/TR/xmlschema-1/ 140 3/28/2009 7:15 PM

Example
Multiple schema bindings can be declared using a single attribute. For example
consider a stylesheet:
 <stylesheet xmlns="http://www.w3.org/1999/XSL/Transform"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/XSL/Transform
 http://www.w3.org/1999/XSL/Transform.xsd
 http://www.w3.org/1999/xhtml
 http://www.w3.org/1999/xhtml.xsd">

The namespace names used in schemaLocation can, but need not be identical to those
actually qualifying the element within whose start tag it is found or its other attributes.
For example, as above, all schema location information can be declared on the
document element of a document, if desired, regardless of where the namespaces are
actually used.

Schema Representation Constraint: Schema Document Location Strategy
Given a namespace name (or none) and (optionally) a URI reference from
xsi:schemaLocation or xsi:noNamespaceSchemaLocation, schema-aware processors may
implement any combination of the following strategies, in any order:
1 Do nothing, for instance because a schema containing components for the given

namespace name is already known to be available, or because it is known in advance
that no efforts to locate schema documents will be successful (for example in
embedded systems);

2 Based on the location URI, identify an existing schema document, either as a
resource which is an XML document or a <schema> element information item, in
some local schema repository;

3 Based on the namespace name, identify an existing schema document, either as a
resource which is an XML document or a <schema> element information item, in
some local schema repository;

4 Attempt to resolve the location URI, to locate a resource on the web which is or
contains or references a <schema> element;

5 Attempt to resolve the namespace name to locate such a resource.
Whenever possible configuration and/or invocation options for selecting and/or ordering
the implemented strategies should be provided.

Improved or alternative conventions for Web interoperability can be standardized in the
future without reopening this specification. For example, the W3C is currently considering
initiatives to standardize the packaging of resources relating to particular documents
and/or namespaces: this would be an addition to the mechanisms described here for layer
3. This architecture also facilitates innovation at layer 2: for example, it would be possible
in the future to define an additional standard for the representation of schema
components which allowed e.g. type definitions to be specified piece by piece, rather than
all at once.

5 Schemas and Schema-validity Assessment

The architecture of schema-aware processing allows for a rich characterization of XML
documents: schema validity is not a binary predicate.

http://www.w3.org/TR/xmlschema-1/ 141 3/28/2009 7:15 PM

This specification distinguishes between errors in schema construction and structure, on
the one hand, and schema validation outcomes, on the other.

5.1 Errors in Schema Construction and Structure

Before ·assessment· can be attempted, a schema is required. Special-purpose
applications are free to determine a schema for use in ·assessment· by whatever means
are appropriate, but general purpose processors should implement the strategy set out in
Schema Document Location Strategy (§4.3.2) , starting with the namespaces declared in
the document whose ·assessment· is being undertaken, and the ·actual value·s of the
xsi:schemaLocation and xsi:noNamespaceSchemaLocation [attributes] thereof, if any, along
with any other information about schema identity or schema document location provided
by users in application-specific ways, if any.

It is an error if a schema and all the components which are the value of any of its
properties, recursively, fail to satisfy all the relevant Constraints on Schemas set out in the
last section of each of the subsections of Schema Component Details (§3).

If a schema is derived from one or more schema documents (that is, one or more
<schema> element information items) based on the correspondence rules set out in
Schema Component Details (§3) and Schemas and Namespaces: Access and
Composition (§4), two additional conditions hold:

It is an error if any such schema document would not be fully valid with respect to a
schema corresponding to the Schema for Schemas (normative) (§A) , that is,
following schema-validation with such a schema, the <schema> element information
items would have a [validation attempted] property with value full or partial and a
[validity] property with value valid.
It is an error if any such schema document is or contains any element information
items which violate any of the relevant Schema Representation Constraints set out
in Schema Representation Constraints (§C.3).

The three cases described above are the only types of error which this specification
defines. With respect to the processes of the checking of schema structure and the
construction of schemas corresponding to schema documents, this specification imposes
no restrictions on processors after an error is detected. However ·assessment· with
respect to schema-like entities which do not satisfy all the above conditions is incoherent.
Accordingly, conformant processors must not attempt to undertake ·assessment· using
such non-schemas.

5.2 Assessing Schema-Validity

With a schema which satisfies the conditions expressed in Errors in Schema Construction
and Structure (§5.1) above, the schema-validity of an element information item can be
assessed. Three primary approaches to this are possible:

1 The user or application identifies a complex type definition from among the {type
definitions} of the schema, and appeals to Schema-Validity Assessment (Element)
(§3.3.4) (clause 1.2);

2 The user or application identifies a element declaration from among the {element

http://www.w3.org/TR/xmlschema-1/ 142 3/28/2009 7:15 PM

declarations} of the schema, checks that its {name} and {target namespace} match the
[local name] and [namespace name] of the item, and appeals to Schema-Validity
Assessment (Element) (§3.3.4) (clause 1.1);

3 The processor starts from Schema-Validity Assessment (Element) (§3.3.4) with no
stipulated declaration or definition, and either ·strict· or ·lax· assessment ensues,
depending on whether or not the element information and the schema determine either
an element declaration (by name) or a type definition (via xsi:type) or not.

The outcome of this effort, in any case, will be manifest in the [validation attempted] and
[validity] properties on the element information item and its [attributes] and [children],
recursively, as defined by Assessment Outcome (Element) (§3.3.5) and Assessment
Outcome (Attribute) (§3.2.5). It is up to applications to decide what constitutes a
successful outcome.

Note that every element and attribute information item participating in the ·assessment·
will also have a [validation context] property which refers back to the element information
item at which ·assessment· began. [Definition:] This item, that is the element information
item at which ·assessment· began, is called the validation root.

Note: This specification does not reconstruct the XML 1.0 notion of root in either
schemas or instances. Equivalent functionality is provided for at ·assessment·
invocation, via clause 2 above.
Note: This specification has nothing normative to say about multiple ·assessment·
episodes. It should however be clear from the above that if a processor restarts
·assessment· with respect to a ·post-schema-validation infoset· some
·post-schema-validation infoset · contributions from the previous ·assessment· may be
overwritten. Restarting nonetheless may be useful, particularly at a node whose
[validation attempted] property is none, in which case there are three obvious cases
in which additional useful information may result:

·assessment· was not attempted because of a ·validation· failure, but
declarations and/or definitions are available for at least some of the [children] or
[attributes];
·assessment· was not attempted because a named definition or declaration was
missing, but after further effort the processor has retrieved it.
·assessment· was not attempted because it was skipped, but the processor has
at least some declarations and/or definitions available for at least some of the
[children] or [attributes].

5.3 Missing Sub-components

At the beginning of Schema Component Details (§3), attention is drawn to the fact that
most kinds of schema components have properties which are described therein as having
other components, or sets of other components, as values, but that when components are
constructed on the basis of their correspondence with element information items in
schema documents, such properties usually correspond to QNames, and the ·resolution·
of such QNames may fail, resulting in one or more values of or containing ·absent· where
a component is mandated.

If at any time during ·assessment·, an element or attribute information item is being

http://www.w3.org/TR/xmlschema-1/ 143 3/28/2009 7:15 PM

·validated· with respect to a component of any kind any of whose properties has or
contains such an ·absent· value, the ·validation· is modified, as following:

In the case of attribute information items, the effect is as if clause 1 of Attribute
Locally Valid (§3.2.4) had failed;
In the case of element information items, the effect is as if clause 1 of Element
Locally Valid (Element) (§3.3.4) had failed;
In the case of element information items, processors may choose to continue
·assessment·: see ·lax assessment·.

Because of the value specification for [validation attempted] in Assessment Outcome
(Element) (§3.3.5), if this situation ever arises, the document as a whole cannot show a
[validation attempted] of full.

5.4 Responsibilities of Schema-aware Processors

Schema-aware processors are responsible for processing XML documents, schemas and
schema documents, as appropriate given the level of conformance (as defined in
Conformance (§2.4)) they support, consistently with the conditions set out above.

A Schema for Schemas (normative)

The XML representation of the schema for schema documents is presented here as a
normative part of the specification, and as an illustrative example of how the XML Schema
language can define itself using its own constructs. The names of XML Schema language
types, elements, attributes and groups defined here are evocative of their purpose, but are
occasionally verbose.

There is some annotation in comments, but a fuller annotation will require the use of
embedded documentation facilities or a hyperlinked external annotation for which tools
are not yet readily available.

Since a schema document is an XML document, it has optional XML and doctype
declarations that are provided here for completeness. The root schema element defines a
new schema. Since this is a schema for XML Schema: Structures, the targetNamespace
references the XML Schema namespace itself.

<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "XMLSchema.dtd" [

<!-- provide ID type information even for parsers which only read the
 internal subset -->
<!ATTLIST xs:schema id ID #IMPLIED>
<!ATTLIST xs:complexType id ID #IMPLIED>
<!ATTLIST xs:complexContent id ID #IMPLIED>
<!ATTLIST xs:simpleContent id ID #IMPLIED>
<!ATTLIST xs:extension id ID #IMPLIED>
<!ATTLIST xs:element id ID #IMPLIED>
<!ATTLIST xs:group id ID #IMPLIED>
<!ATTLIST xs:all id ID #IMPLIED>
<!ATTLIST xs:choice id ID #IMPLIED>
<!ATTLIST xs:sequence id ID #IMPLIED>
<!ATTLIST xs:any id ID #IMPLIED>
<!ATTLIST xs:anyAttribute id ID #IMPLIED>
<!ATTLIST xs:attribute id ID #IMPLIED>
<!ATTLIST xs:attributeGroup id ID #IMPLIED>

http://www.w3.org/TR/xmlschema-1/ 144 3/28/2009 7:15 PM

<!ATTLIST xs:unique id ID #IMPLIED>
<!ATTLIST xs:key id ID #IMPLIED>
<!ATTLIST xs:keyref id ID #IMPLIED>
<!ATTLIST xs:selector id ID #IMPLIED>
<!ATTLIST xs:field id ID #IMPLIED>
<!ATTLIST xs:include id ID #IMPLIED>
<!ATTLIST xs:import id ID #IMPLIED>
<!ATTLIST xs:redefine id ID #IMPLIED>
<!ATTLIST xs:notation id ID #IMPLIED>
]>

<?xml version='1.0'?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" blockDefault="#all"
 elementFormDefault="qualified" xml:lang="EN"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 version="Id: structures.xsd,v 1.2 2004/01/15 11:34:25 ht Exp ">
 <xs:annotation>
 <xs:documentation source="../structures/structures-with-errata.html.html">
 The schema corresponding to this document is normative,
 with respect to the syntactic constraints it expresses in the
 XML Schema language. The documentation (within <documentation> elements)
 below, is not normative, but rather highlights important aspects of
 the W3C Recommendation of which this is a part</xs:documentation>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 The simpleType element and all of its members are defined
 in datatypes.xsd</xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="datatypes.xsd"/>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 Get access to the xml: attribute groups for xml:lang
 as declared on 'schema' and 'documentation' below
 </xs:documentation>
 </xs:annotation>
 </xs:import>
 <xs:complexType name="openAttrs">
 <xs:annotation>
 <xs:documentation>
 This type is extended by almost all schema types
 to allow attributes from other namespaces to be
 added to user schemas.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:anyType">
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="annotated">
 <xs:annotation>
 <xs:documentation>
 This type is extended by all types which allow annotation
 other than <schema> itself
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:extension>
 </xs:complexContent>

http://www.w3.org/TR/xmlschema-1/ 145 3/28/2009 7:15 PM

 </xs:complexType>
 <xs:group name="schemaTop">
 <xs:annotation>
 <xs:documentation>
 This group is for the
 elements which occur freely at the top level of schemas.
 All of their types are based on the "annotated" type by extension.</xs:document
 </xs:annotation>
 <xs:choice>
 <xs:group ref="xs:redefinable"/>
 <xs:element ref="xs:element"/>
 <xs:element ref="xs:attribute"/>
 <xs:element ref="xs:notation"/>
 </xs:choice>
 </xs:group>
 <xs:group name="redefinable">
 <xs:annotation>
 <xs:documentation>
 This group is for the
 elements which can self-redefine (see <redefine> below).</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element ref="xs:simpleType"/>
 <xs:element ref="xs:complexType"/>
 <xs:element ref="xs:group"/>
 <xs:element ref="xs:attributeGroup"/>
 </xs:choice>
 </xs:group>
 <xs:simpleType name="formChoice">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="qualified"/>
 <xs:enumeration value="unqualified"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="reducedDerivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="derivationSet">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 #all or (possibly empty) subset of {extension, restriction}</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list itemType="xs:reducedDerivationControl"/>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:simpleType name="typeDerivationControl">
 <xs:annotation>

http://www.w3.org/TR/xmlschema-1/ 146 3/28/2009 7:15 PM

 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="fullDerivationSet">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 #all or (possibly empty) subset of {extension, restriction, list, union}</xs:do
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list itemType="xs:typeDerivationControl"/>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:element name="schema" id="schema">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-schema"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xs:include"/>
 <xs:element ref="xs:import"/>
 <xs:element ref="xs:redefine"/>
 <xs:element ref="xs:annotation"/>
 </xs:choice>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="xs:schemaTop"/>
 <xs:element ref="xs:annotation" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 <xs:attribute name="targetNamespace" type="xs:anyURI"/>
 <xs:attribute name="version" type="xs:token"/>
 <xs:attribute name="finalDefault" type="xs:fullDerivationSet"
 default="" use="optional"/>
 <xs:attribute name="blockDefault" type="xs:blockSet" default=""
 use="optional"/>
 <xs:attribute name="attributeFormDefault" type="xs:formChoice"
 default="unqualified" use="optional"/>
 <xs:attribute name="elementFormDefault" type="xs:formChoice"
 default="unqualified" use="optional"/>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:key name="element">
 <xs:selector xpath="xs:element"/>
 <xs:field xpath="@name"/>
 </xs:key>

http://www.w3.org/TR/xmlschema-1/ 147 3/28/2009 7:15 PM

 <xs:key name="attribute">
 <xs:selector xpath="xs:attribute"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="type">
 <xs:selector xpath="xs:complexType|xs:simpleType"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="group">
 <xs:selector xpath="xs:group"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="attributeGroup">
 <xs:selector xpath="xs:attributeGroup"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="notation">
 <xs:selector xpath="xs:notation"/>
 <xs:field xpath="@name"/>
 </xs:key>
 <xs:key name="identityConstraint">
 <xs:selector xpath=".//xs:key|.//xs:unique|.//xs:keyref"/>
 <xs:field xpath="@name"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="allNNI">
 <xs:annotation>
 <xs:documentation>
 for maxOccurs</xs:documentation>
 </xs:annotation>
 <xs:union memberTypes="xs:nonNegativeInteger">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="unbounded"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:attributeGroup name="occurs">
 <xs:annotation>
 <xs:documentation>
 for all particles</xs:documentation>
 </xs:annotation>
 <xs:attribute name="minOccurs" type="xs:nonNegativeInteger" default="1"
 use="optional"/>
 <xs:attribute name="maxOccurs" type="xs:allNNI" default="1" use="optional"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="defRef">
 <xs:annotation>
 <xs:documentation>
 for element, group and attributeGroup,
 which both define and reference</xs:documentation>
 </xs:annotation>
 <xs:attribute name="name" type="xs:NCName"/>
 <xs:attribute name="ref" type="xs:QName"/>
 </xs:attributeGroup>
 <xs:group name="typeDefParticle">
 <xs:annotation>
 <xs:documentation>
 'complexType' uses this</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="group" type="xs:groupRef"/>
 <xs:element ref="xs:all"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 </xs:choice>
 </xs:group>

http://www.w3.org/TR/xmlschema-1/ 148 3/28/2009 7:15 PM

 <xs:group name="nestedParticle">
 <xs:choice>
 <xs:element name="element" type="xs:localElement"/>
 <xs:element name="group" type="xs:groupRef"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 <xs:element ref="xs:any"/>
 </xs:choice>
 </xs:group>
 <xs:group name="particle">
 <xs:choice>
 <xs:element name="element" type="xs:localElement"/>
 <xs:element name="group" type="xs:groupRef"/>
 <xs:element ref="xs:all"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 <xs:element ref="xs:any"/>
 </xs:choice>
 </xs:group>
 <xs:complexType name="attribute">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="xs:defRef"/>
 <xs:attribute name="type" type="xs:QName"/>
 <xs:attribute name="use" default="optional" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="prohibited"/>
 <xs:enumeration value="optional"/>
 <xs:enumeration value="required"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="fixed" type="xs:string"/>
 <xs:attribute name="form" type="xs:formChoice"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelAttribute">
 <xs:complexContent>
 <xs:restriction base="xs:attribute">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:attribute name="form" use="prohibited"/>
 <xs:attribute name="use" use="prohibited"/>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="attrDecls">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="attribute" type="xs:attribute"/>
 <xs:element name="attributeGroup" type="xs:attributeGroupRef"/>
 </xs:choice>
 <xs:element ref="xs:anyAttribute" minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <xs:element name="anyAttribute" type="xs:wildcard" id="anyAttribute">
 <xs:annotation>

http://www.w3.org/TR/xmlschema-1/ 149 3/28/2009 7:15 PM

 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-anyAttribute"/>
 </xs:annotation>
 </xs:element>
 <xs:group name="complexTypeModel">
 <xs:choice>
 <xs:element ref="xs:simpleContent"/>
 <xs:element ref="xs:complexContent"/>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 This branch is short for
 <complexContent>
 <restriction base="xs:anyType">
 ...
 </restriction>
 </complexContent></xs:documentation>
 </xs:annotation>
 <xs:group ref="xs:typeDefParticle" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 </xs:choice>
 </xs:group>
 <xs:complexType name="complexType" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:complexTypeModel"/>
 <xs:attribute name="name" type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Will be restricted to required or forbidden</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="mixed" type="xs:boolean" default="false"
 use="optional">
 <xs:annotation>
 <xs:documentation>
 Not allowed if simpleContent child is chosen.
 May be overriden by setting on complexContent child.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="abstract" type="xs:boolean" default="false"
 use="optional"/>
 <xs:attribute name="final" type="xs:derivationSet"/>
 <xs:attribute name="block" type="xs:derivationSet"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelComplexType">
 <xs:complexContent>
 <xs:restriction base="xs:complexType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:complexTypeModel"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localComplexType">
 <xs:complexContent>
 <xs:restriction base="xs:complexType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:complexTypeModel"/>
 </xs:sequence>
 <xs:attribute name="name" use="prohibited"/>

http://www.w3.org/TR/xmlschema-1/ 150 3/28/2009 7:15 PM

 <xs:attribute name="abstract" use="prohibited"/>
 <xs:attribute name="final" use="prohibited"/>
 <xs:attribute name="block" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="restrictionType">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:group ref="xs:typeDefParticle"/>
 <xs:group ref="xs:simpleRestrictionModel"/>
 </xs:choice>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:attribute name="base" type="xs:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="complexRestrictionType">
 <xs:complexContent>
 <xs:restriction base="xs:restrictionType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:annotation>
 <xs:documentation>This choice is added simply to
 make this a valid restriction per the REC</xs:documentation>
 </xs:annotation>
 <xs:group ref="xs:typeDefParticle"/>
 </xs:choice>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="extensionType">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:group ref="xs:typeDefParticle" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:attribute name="base" type="xs:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="complexContent" id="complexContent">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-complexContent"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:choice>
 <xs:element name="restriction" type="xs:complexRestrictionType"/>
 <xs:element name="extension" type="xs:extensionType"/>
 </xs:choice>
 <xs:attribute name="mixed" type="xs:boolean">
 <xs:annotation>
 <xs:documentation>
 Overrides any setting on complexType parent.</xs:documentation>
 </xs:annotation>
 </xs:attribute>

http://www.w3.org/TR/xmlschema-1/ 151 3/28/2009 7:15 PM

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="simpleRestrictionType">
 <xs:complexContent>
 <xs:restriction base="xs:restrictionType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:annotation>
 <xs:documentation>This choice is added simply to
 make this a valid restriction per the REC</xs:documentation>
 </xs:annotation>
 <xs:group ref="xs:simpleRestrictionModel"/>
 </xs:choice>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="simpleExtensionType">
 <xs:complexContent>
 <xs:restriction base="xs:extensionType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 No typeDefParticle group reference</xs:documentation>
 </xs:annotation>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="simpleContent" id="simpleContent">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-simpleContent"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:choice>
 <xs:element name="restriction" type="xs:simpleRestrictionType"/>
 <xs:element name="extension" type="xs:simpleExtensionType"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="complexType" type="xs:topLevelComplexType" id="complexType">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-complexType"/>
 </xs:annotation>
 </xs:element>
 <xs:simpleType name="blockSet">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 #all or (possibly empty) subset of {substitution, extension,
 restriction}</xs:documentation>
 </xs:annotation>
 <xs:union>

http://www.w3.org/TR/xmlschema-1/ 152 3/28/2009 7:15 PM

 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:restriction base="xs:derivationControl">
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="substitution"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:complexType name="element" abstract="true">
 <xs:annotation>
 <xs:documentation>
 The element element can be used either
 at the top level to define an element-type binding globally,
 or within a content model to either reference a globally-defined
 element or type or declare an element-type binding locally.
 The ref form is not allowed at the top level.</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attributeGroup ref="xs:defRef"/>
 <xs:attribute name="type" type="xs:QName"/>
 <xs:attribute name="substitutionGroup" type="xs:QName"/>
 <xs:attributeGroup ref="xs:occurs"/>
 <xs:attribute name="default" type="xs:string"/>
 <xs:attribute name="fixed" type="xs:string"/>
 <xs:attribute name="nillable" type="xs:boolean" default="false"
 use="optional"/>
 <xs:attribute name="abstract" type="xs:boolean" default="false"
 use="optional"/>
 <xs:attribute name="final" type="xs:derivationSet"/>
 <xs:attribute name="block" type="xs:blockSet"/>
 <xs:attribute name="form" type="xs:formChoice"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelElement">
 <xs:complexContent>
 <xs:restriction base="xs:element">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:attribute name="form" use="prohibited"/>
 <xs:attribute name="minOccurs" use="prohibited"/>

http://www.w3.org/TR/xmlschema-1/ 153 3/28/2009 7:15 PM

 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localElement">
 <xs:complexContent>
 <xs:restriction base="xs:element">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="substitutionGroup" use="prohibited"/>
 <xs:attribute name="final" use="prohibited"/>
 <xs:attribute name="abstract" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="element" type="xs:topLevelElement" id="element">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-element"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="group" abstract="true">
 <xs:annotation>
 <xs:documentation>
 group type for explicit groups, named top-level groups and
 group references</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:particle" minOccurs="0" maxOccurs="unbounded"/>
 <xs:attributeGroup ref="xs:defRef"/>
 <xs:attributeGroup ref="xs:occurs"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="realGroup">
 <xs:complexContent>
 <xs:restriction base="xs:group">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element ref="xs:all"/>
 <xs:element ref="xs:choice"/>
 <xs:element ref="xs:sequence"/>
 </xs:choice>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="namedGroup">
 <xs:complexContent>
 <xs:restriction base="xs:realGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element name="all">
 <xs:complexType>

http://www.w3.org/TR/xmlschema-1/ 154 3/28/2009 7:15 PM

 <xs:complexContent>
 <xs:restriction base="xs:all">
 <xs:group ref="xs:allModel"/>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="choice" type="xs:simpleExplicitGroup"/>
 <xs:element name="sequence" type="xs:simpleExplicitGroup"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="groupRef">
 <xs:complexContent>
 <xs:restriction base="xs:realGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="ref" type="xs:QName" use="required"/>
 <xs:attribute name="name" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="explicitGroup">
 <xs:annotation>
 <xs:documentation>
 group type for the three kinds of group</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:group">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:nestedParticle" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="prohibited"/>
 <xs:attribute name="ref" type="xs:QName" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="simpleExplicitGroup">
 <xs:complexContent>
 <xs:restriction base="xs:explicitGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:nestedParticle" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="minOccurs" use="prohibited"/>
 <xs:attribute name="maxOccurs" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="allModel">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0" maxOccurs="unbounded">

http://www.w3.org/TR/xmlschema-1/ 155 3/28/2009 7:15 PM

 <xs:annotation>
 <xs:documentation>This choice with min/max is here to
 avoid a pblm with the Elt:All/Choice/Seq
 Particle derivation constraint</xs:documentation>
 </xs:annotation>
 <xs:element name="element" type="xs:narrowMaxMin"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="narrowMaxMin">
 <xs:annotation>
 <xs:documentation>restricted max/min</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:localElement">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:choice minOccurs="0">
 <xs:element name="simpleType" type="xs:localSimpleType"/>
 <xs:element name="complexType" type="xs:localComplexType"/>
 </xs:choice>
 <xs:group ref="xs:identityConstraint" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="minOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:allNNI">
 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="all">
 <xs:annotation>
 <xs:documentation>
 Only elements allowed inside</xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:restriction base="xs:explicitGroup">
 <xs:group ref="xs:allModel"/>
 <xs:attribute name="minOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:enumeration value="0"/>
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxOccurs" default="1" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:allNNI">
 <xs:enumeration value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>

http://www.w3.org/TR/xmlschema-1/ 156 3/28/2009 7:15 PM

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="all" type="xs:all" id="all">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#element-all"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="choice" type="xs:explicitGroup" id="choice">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-choice"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="sequence" type="xs:explicitGroup" id="sequence">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-sequence"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="group" type="xs:namedGroup" id="group">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#element-group"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="wildcard">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="namespace" type="xs:namespaceList" default="##any"
 use="optional"/>
 <xs:attribute name="processContents" default="strict" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="skip"/>
 <xs:enumeration value="lax"/>
 <xs:enumeration value="strict"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="any" id="any">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#element-any"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:wildcard">
 <xs:attributeGroup ref="xs:occurs"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:annotation>
 <xs:documentation>
 simple type for the value of the 'namespace' attr of
 'any' and 'anyAttribute'</xs:documentation>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 Value is
 ##any - - any non-conflicting WFXML/attribute at all

 ##other - - any non-conflicting WFXML/attribute from
 namespace other than targetNS

 ##local - - any unqualified non-conflicting WFXML/attribute

http://www.w3.org/TR/xmlschema-1/ 157 3/28/2009 7:15 PM

 one or - - any non-conflicting WFXML/attribute from
 more URI the listed namespaces
 references
 (space separated)

 ##targetNamespace or ##local may appear in the above list, to
 refer to the targetNamespace of the enclosing
 schema or an absent targetNamespace respectively</xs:documentation>
 </xs:annotation>
 <xs:simpleType name="namespaceList">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="##any"/>
 <xs:enumeration value="##other"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:union memberTypes="xs:anyURI">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="##targetNamespace"/>
 <xs:enumeration value="##local"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:element name="attribute" type="xs:topLevelAttribute" id="attribute">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-attribute"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="attributeGroup" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:attrDecls"/>
 <xs:attributeGroup ref="xs:defRef"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="namedAttributeGroup">
 <xs:complexContent>
 <xs:restriction base="xs:attributeGroup">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:attrDecls"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="ref" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="attributeGroupRef">
 <xs:complexContent>
 <xs:restriction base="xs:attributeGroup">

http://www.w3.org/TR/xmlschema-1/ 158 3/28/2009 7:15 PM

 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="ref" type="xs:QName" use="required"/>
 <xs:attribute name="name" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="attributeGroup" type="xs:namedAttributeGroup"
 id="attributeGroup">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-attributeGroup"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="include" id="include">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-include"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="schemaLocation" type="xs:anyURI" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="redefine" id="redefine">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-redefine"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xs:annotation"/>
 <xs:group ref="xs:redefinable"/>
 </xs:choice>
 <xs:attribute name="schemaLocation" type="xs:anyURI" use="required"/>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="import" id="import">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-import"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="namespace" type="xs:anyURI"/>
 <xs:attribute name="schemaLocation" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="selector" id="selector">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-selector"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>

http://www.w3.org/TR/xmlschema-1/ 159 3/28/2009 7:15 PM

 <xs:extension base="xs:annotated">
 <xs:attribute name="xpath" use="required">
 <xs:simpleType>
 <xs:annotation>
 <xs:documentation>A subset of XPath expressions for use
in selectors</xs:documentation>
 <xs:documentation>A utility type, not for public
use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:annotation>
 <xs:documentation>The following pattern is intended to allow XPa
 expressions per the following EBNF:
 Selector ::= Path ('|' Path)*
 Path ::= ('.//')? Step ('/' Step)*
 Step ::= '.' | NameTest
 NameTest ::= QName | '*' | NCName ':' '*'
 child:: is also allowed
 </xs:documentation>
 </xs:annotation>
 <xs:pattern
 value="(\.//)?(((child::)?((\i\c*:)?(\i\c*|*)))|\.)(/(((chil
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="field" id="field">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#element-field"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="xpath" use="required">
 <xs:simpleType>
 <xs:annotation>
 <xs:documentation>A subset of XPath expressions for use
in fields</xs:documentation>
 <xs:documentation>A utility type, not for public
use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:annotation>
 <xs:documentation>The following pattern is intended to allow XPa
 expressions per the same EBNF as for selector,
 with the following change:
 Path ::= ('.//')? (Step '/')* (Step | '@' NameTest)
 </xs:documentation>
 </xs:annotation>
 <xs:pattern
 value="(\.//)?((((child::)?((\i\c*:)?(\i\c*|*)))|\.)/)*((((c
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="keybase">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element ref="xs:selector"/>
 <xs:element ref="xs:field" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>

http://www.w3.org/TR/xmlschema-1/ 160 3/28/2009 7:15 PM

 <xs:attribute name="name" type="xs:NCName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:group name="identityConstraint">
 <xs:annotation>
 <xs:documentation>The three kinds of identity constraints, all with
 type of or derived from 'keybase'.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element ref="xs:unique"/>
 <xs:element ref="xs:key"/>
 <xs:element ref="xs:keyref"/>
 </xs:choice>
 </xs:group>
 <xs:element name="unique" type="xs:keybase" id="unique">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-unique"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="key" type="xs:keybase" id="key">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-1/#element-key"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="keyref" id="keyref">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-keyref"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:keybase">
 <xs:attribute name="refer" type="xs:QName" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="notation" id="notation">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-notation"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="public" type="xs:public"/>
 <xs:attribute name="system" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="public">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 <xs:documentation>
 A public identifier, per ISO 8879</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token"/>
 </xs:simpleType>
 <xs:element name="appinfo" id="appinfo">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-appinfo"/>

http://www.w3.org/TR/xmlschema-1/ 161 3/28/2009 7:15 PM

 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:any processContents="lax"/>
 </xs:sequence>
 <xs:attribute name="source" type="xs:anyURI"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="documentation" id="documentation">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-documentation"/>
 </xs:annotation>
 <xs:complexType mixed="true">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:any processContents="lax"/>
 </xs:sequence>
 <xs:attribute name="source" type="xs:anyURI"/>
 <xs:attribute ref="xml:lang"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="annotation" id="annotation">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-1/#element-annotation"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:openAttrs">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="xs:appinfo"/>
 <xs:element ref="xs:documentation"/>
 </xs:choice>
 <xs:attribute name="id" type="xs:ID"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:annotation>
 <xs:documentation>
 notations for use within XML Schema schemas</xs:documentation>
 </xs:annotation>
 <xs:notation name="XMLSchemaStructures" public="structures"
 system="http://www.w3.org/2000/08/XMLSchema.xsd"/>
 <xs:notation name="XML" public="REC-xml-19980210"
 system="http://www.w3.org/TR/1998/REC-xml-19980210"/>
 <xs:complexType name="anyType" mixed="true">
 <xs:annotation>
 <xs:documentation>
 Not the real urType, but as close an approximation as we can
 get in the XML representation</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </xs:sequence>
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
</xs:schema>

Note: And that is the end of the schema for schema documents.

B References (normative)

http://www.w3.org/TR/xmlschema-1/ 162 3/28/2009 7:15 PM

XML 1.0 (Second Edition)
Extensible Markup Language (XML) 1.0, Second Edition , Tim Bray et al., eds., W3C,
6 October 2000. See http://www.w3.org/TR/2000/REC-xml-20001006

XML Schema Requirements
XML Schema Requirements , Ashok Malhotra and Murray Maloney, eds., W3C, 15
February 1999. See http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215

XML Schemas: Datatypes
XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2
May 2001. See
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html

XML-Infoset
XML Information Set, John Cowan and Richard Tobin, eds., W3C, 16 March 2001.
See http://www.w3.org/TR/2001/WD-xml-infoset-20010316/

XML-Namespaces
Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999. See
http://www.w3.org/TR/1999/REC-xml-names-19990114/

XPath
XML Path Language, James Clark and Steve DeRose, eds., W3C, 16 November
1999. See http://www.w3.org/TR/1999/REC-xpath-19991116

XPointer
XML Pointer Language (XPointer), Eve Maler and Steve DeRose, eds., W3C, 8
January 2001. See http://www.w3.org/TR/2001/WD-xptr-20010108/

C Outcome Tabulations (normative)

To facilitate consistent reporting of schema errors and ·validation· failures, this section
tabulates and provides unique names for all the constraints listed in this document.
Wherever such constraints have numbered parts, reports should use the name given
below plus the part number, separated by a period ('.'). Thus for example
cos-ct-extends.1.2 should be used to report a violation of the clause 1.2 of Derivation
Valid (Extension) (§3.4.6).

C.1 Validation Rules

cvc-assess-attr
Schema-Validity Assessment (Attribute)

cvc-assess-elt
Schema-Validity Assessment (Element)

cvc-attribute
Attribute Locally Valid

cvc-au
Attribute Locally Valid (Use)

cvc-complex-type
Element Locally Valid (Complex Type)

cvc-datatype-valid
Datatype Valid

cvc-elt
Element Locally Valid (Element)

cvc-enumeration-valid

http://www.w3.org/TR/xmlschema-1/ 163 3/28/2009 7:15 PM

enumeration valid
cvc-facet-valid

Facet Valid
cvc-fractionDigits-valid

fractionDigits Valid
cvc-id

Validation Root Valid (ID/IDREF)
cvc-identity-constraint

Identity-constraint Satisfied
cvc-length-valid

Length Valid
cvc-maxExclusive-valid

maxExclusive Valid
cvc-maxInclusive-valid

maxInclusive Valid
cvc-maxLength-valid

maxLength Valid
cvc-minExclusive-valid

minExclusive Valid
cvc-minInclusive-valid

minInclusive Valid
cvc-minLength-valid

minLength Valid
cvc-model-group

Element Sequence Valid
cvc-particle

Element Sequence Locally Valid (Particle)
cvc-pattern-valid

pattern valid
cvc-resolve-instance

QName resolution (Instance)
cvc-simple-type

String Valid
cvc-totalDigits-valid

totalDigits Valid
cvc-type

Element Locally Valid (Type)
cvc-wildcard

Item Valid (Wildcard)
cvc-wildcard-namespace

Wildcard allows Namespace Name

C.2 Contributions to the post-schema-validation infoset

attribute information item properties
[attribute declaration] (Attribute Declaration)
[member type definition] (Attribute Validated by Type)
[member type definition anonymous] (Attribute Validated by Type)
[member type definition name] (Attribute Validated by Type)
[member type definition namespace] (Attribute Validated by Type)

http://www.w3.org/TR/xmlschema-1/ 164 3/28/2009 7:15 PM

[schema default] (Attribute Validated by Type)
[schema error code] (Validation Failure (Attribute))
[schema normalized value] (Attribute Validated by Type)
[schema specified] (Assessment Outcome (Attribute))
[type definition] (Attribute Validated by Type)
[type definition anonymous] (Attribute Validated by Type)
[type definition name] (Attribute Validated by Type)
[type definition namespace] (Attribute Validated by Type)
[type definition type] (Attribute Validated by Type)
[validation attempted] (Assessment Outcome (Attribute))
[validation context] (Assessment Outcome (Attribute))
[validity] (Assessment Outcome (Attribute))

element information item properties
[element declaration] (Element Declaration)
[ID/IDREF table] (ID/IDREF Table)
[identity-constraint table] (Identity-constraint Table)
[member type definition] (Element Validated by Type)
[member type definition anonymous] (Element Validated by Type)
[member type definition name] (Element Validated by Type)
[member type definition namespace] (Element Validated by Type)
[nil] (Element Declaration)
[notation] (Validated with Notation)
[notation public] (Validated with Notation)
[notation system] (Validated with Notation)
[schema default] (Element Validated by Type)
[schema error code] (Validation Failure (Element))
[schema information] (Schema Information)
[schema normalized value] (Element Validated by Type)
[schema specified] (Element Default Value)
[type definition] (Element Validated by Type)
[type definition anonymous] (Element Validated by Type)
[type definition name] (Element Validated by Type)
[type definition namespace] (Element Validated by Type)
[type definition type] (Element Validated by Type)
[validation attempted] (Assessment Outcome (Element))
[validation context] (Assessment Outcome (Element))
[validity] (Assessment Outcome (Element))

ID/IDREF binding information item properties
[binding] (ID/IDREF Table)
[id] (ID/IDREF Table)

Identity-constraint Binding information item properties
[definition] (Identity-constraint Table)
[node table] (Identity-constraint Table)

namespace schema information information item properties
[schema components] (Schema Information)
[schema documents] (Schema Information)
[schema namespace] (Schema Information)

schema document information item properties
[document] (Schema Information)
[document location] (Schema Information)

http://www.w3.org/TR/xmlschema-1/ 165 3/28/2009 7:15 PM

 C.3 Schema Representation Constraints

schema_reference
Schema Document Location Strategy

src-annotation
Annotation Definition Representation OK

src-attribute
Attribute Declaration Representation OK

src-attribute_group
Attribute Group Definition Representation OK

src-ct
Complex Type Definition Representation OK

src-element
Element Declaration Representation OK

src-expredef
Individual Component Redefinition

src-identity-constraint
Identity-constraint Definition Representation OK

src-import
Import Constraints and Semantics

src-include
Inclusion Constraints and Semantics

src-list-itemType-or-simpleType
itemType attribute or simpleType child

src-model_group
Model Group Representation OK

src-model_group_defn
Model Group Definition Representation OK

src-multiple-enumerations
Multiple enumerations

src-multiple-patterns
Multiple patterns

src-notation
Notation Definition Representation OK

src-qname
QName Interpretation

src-redefine
Redefinition Constraints and Semantics

src-resolve
QName resolution (Schema Document)

src-restriction-base-or-simpleType
base attribute or simpleType child

src-simple-type
Simple Type Definition Representation OK

src-single-facet-value
Single Facet Value

src-union-memberTypes-or-simpleTypes
memberTypes attribute or simpleType children

src-wildcard
Wildcard Representation OK

http://www.w3.org/TR/xmlschema-1/ 166 3/28/2009 7:15 PM

C.4 Schema Component Constraints

a-props-correct
Attribute Declaration Properties Correct

ag-props-correct
Attribute Group Definition Properties Correct

an-props-correct
Annotation Correct

au-props-correct
Attribute Use Correct

c-fields-xpaths
Fields Value OK

c-props-correct
Identity-constraint Definition Properties Correct

c-selector-xpath
Selector Value OK

cos-all-limited
All Group Limited

cos-applicable-facets
applicable facets

cos-aw-intersect
Attribute Wildcard Intersection

cos-aw-union
Attribute Wildcard Union

cos-choice-range
Effective Total Range (choice)

cos-ct-derived-ok
Type Derivation OK (Complex)

cos-ct-extends
Derivation Valid (Extension)

cos-element-consistent
Element Declarations Consistent

cos-equiv-class
Substitution Group

cos-equiv-derived-ok-rec
Substitution Group OK (Transitive)

cos-group-emptiable
Particle Emptiable

cos-list-of-atomic
list of atomic

cos-no-circular-unions
no circular unions

cos-nonambig
Unique Particle Attribution

cos-ns-subset
Wildcard Subset

cos-particle-extend
Particle Valid (Extension)

cos-particle-restrict
Particle Valid (Restriction)

http://www.w3.org/TR/xmlschema-1/ 167 3/28/2009 7:15 PM

cos-seq-range
Effective Total Range (all and sequence)

cos-st-derived-ok
Type Derivation OK (Simple)

cos-st-restricts
Derivation Valid (Restriction, Simple)

cos-valid-default
Element Default Valid (Immediate)

ct-props-correct
Complex Type Definition Properties Correct

derivation-ok-restriction
Derivation Valid (Restriction, Complex)

e-props-correct
Element Declaration Properties Correct

enumeration-required-notation
enumeration facet value required for NOTATION

enumeration-valid-restriction
enumeration valid restriction

fractionDigits-totalDigits
fractionDigits less than or equal to totalDigits

fractionDigits-valid-restriction
fractionDigits valid restriction

length-minLength-maxLength
length and minLength or maxLength

length-valid-restriction
length valid restriction

maxExclusive-valid-restriction
maxExclusive valid restriction

maxInclusive-maxExclusive
maxInclusive and maxExclusive

maxInclusive-valid-restriction
maxInclusive valid restriction

maxLength-valid-restriction
maxLength valid restriction

mg-props-correct
Model Group Correct

mgd-props-correct
Model Group Definition Properties Correct

minExclusive-less-than-equal-to-maxExclusive
minExclusive <= maxExclusive

minExclusive-less-than-maxInclusive
minExclusive < maxInclusive

minExclusive-valid-restriction
minExclusive valid restriction

minInclusive-less-than-equal-to-maxInclusive
minInclusive <= maxInclusive

minInclusive-less-than-maxExclusive
minInclusive < maxExclusive

minInclusive-minExclusive
minInclusive and minExclusive

http://www.w3.org/TR/xmlschema-1/ 168 3/28/2009 7:15 PM

minInclusive-valid-restriction
minInclusive valid restriction

minLength-less-than-equal-to-maxLength
minLength <= maxLength

minLength-valid-restriction
minLength valid restriction

n-props-correct
Notation Declaration Correct

no-xmlns
xmlns Not Allowed

no-xsi
xsi: Not Allowed

p-props-correct
Particle Correct

range-ok
Occurrence Range OK

rcase-MapAndSum
Particle Derivation OK (Sequence:Choice -- MapAndSum)

rcase-NameAndTypeOK
Particle Restriction OK (Elt:Elt -- NameAndTypeOK)

rcase-NSCompat
Particle Derivation OK (Elt:Any -- NSCompat)

rcase-NSRecurseCheckCardinality
Particle Derivation OK (All/Choice/Sequence:Any -- NSRecurseCheckCardinality)

rcase-NSSubset
Particle Derivation OK (Any:Any -- NSSubset)

rcase-Recurse
Particle Derivation OK (All:All,Sequence:Sequence -- Recurse)

rcase-RecurseAsIfGroup
Particle Derivation OK (Elt:All/Choice/Sequence -- RecurseAsIfGroup)

rcase-RecurseLax
Particle Derivation OK (Choice:Choice -- RecurseLax)

rcase-RecurseUnordered
Particle Derivation OK (Sequence:All -- RecurseUnordered)

sch-props-correct
Schema Properties Correct

st-props-correct
Simple Type Definition Properties Correct

st-restrict-facets
Simple Type Restriction (Facets)

totalDigits-valid-restriction
totalDigits valid restriction

w-props-correct
Wildcard Properties Correct

whiteSpace-valid-restriction
whiteSpace valid restriction

D Required Information Set Items and Properties (normative)

http://www.w3.org/TR/xmlschema-1/ 169 3/28/2009 7:15 PM

This specification requires as a precondition for ·assessment· an information set as
defined in [XML-Infoset] which supports at least the following information items and
properties:

Attribute Information Item
[local name], [namespace name], [normalized value]

Character Information Item
[character code]

Element Information Item
[local name], [namespace name], [children], [attributes], [in-scope namespaces] or
[namespace attributes]

Namespace Information Item
[prefix], [namespace name]

In addition, infosets should support the [unparsedEntities] property of the Document
Information Item. Failure to do so will mean all items of type ENTITY or ENTITIES will fail
to ·validate·.

This specification does not require any destructive alterations to the input information set:
all the information set contributions specified herein are additive.

This appendix is intended to satisfy the requirements for Conformance to the
[XML-Infoset] specification.

E Schema Components Diagram (non-normative)

http://www.w3.org/TR/xmlschema-1/ 170 3/28/2009 7:15 PM

http://www.w3.org/TR/xmlschema-1/ 171 3/28/2009 7:15 PM

F Glossary (non-normative)

The listing below is for the benefit of readers of a printed version of this document: it
collects together all the definitions which appear in the document above.

absent
Throughout this specification, the term absent is used as a distinguished property
value denoting absence

actual value
The phrase actual value is used to refer to the member of the value space of the
simple type definition associated with an attribute information item which
corresponds to its ·normalized value·

assessment
the word assessment is used to refer to the overall process of local validation,
schema-validity assessment and infoset augmentation

base type definition
A type definition used as the basis for an ·extension· or ·restriction· is known as the
base type definition of that definition

component name
Declarations and definitions may have and be identified by names, which are
NCNames as defined by [XML-Namespaces]

conformance to the XML Representation of Schemas
·Minimally conforming· processors which accept schemas represented in the form of
XML documents as described in Layer 2: Schema Documents, Namespaces and
Composition (§4.2) are additionally said to provide conformance to the XML
Representation of Schemas.

content model
A particle can be used in a complex type definition to constrain the ·validation· of the
[children] of an element information item; such a particle is called a content model

context-determined declaration
During ·validation·, associations between element and attribute information items
among the [children] and [attributes] on the one hand, and element and attribute
declarations on the other, are established as a side-effect. Such declarations are
called the context-determined declarations

declaration
declaration components are associated by (qualified) name to information items
being ·validated·

declared entity name
A string is a declared entity name if it is equal to the [name] of some unparsed
entity information item in the value of the [unparsedEntities] property of the
document information item at the root of the infoset containing the element or
attribute information item whose ·normalized value· the string is.

definition
definition components define internal schema components that can be used in
other schema components

element substitution group
Through the new mechanism of element substitution groups, XML Schemas
provides a more powerful model supporting substitution of one named element for
another

http://www.w3.org/TR/xmlschema-1/ 172 3/28/2009 7:15 PM

extension
A complex type definition which allows element or attribute content in addition to that
allowed by another specified type definition is said to be an extension

final
the complex type is said to be final, because no further derivations are possible

fully conforming
Fully conforming processors are network-enabled processors which are not only
both ·minimally conforming· and ·in conformance to the XML Representation of
Schemas·, but which additionally must be capable of accessing schema documents
from the World Wide Web according to Representation of Schemas on the World
Wide Web (§2.7) and How schema definitions are located on the Web (§4.3.2) .

implicitly contains
A list of particles implicitly contains an element declaration if a member of the list
contains that element declaration in its ·substitution group·

initial value
the initial value of some attribute information item is the value of the [normalized
value] property of that item. Similarly, the initial value of an element information
item is the string composed of, in order, the [character code] of each character
information item in the [children] of that element information item

item isomorphic to a component
by an item isomorphic to a component is meant an information item whose type is
equivalent to the component's, with one property per property of the component,
with the same name, and value either the same atomic value, or an information item
corresponding in the same way to its component value, recursively, as necessary

laxly assessed
an element information item's schema validity may be laxly assessed if its
·context-determined declaration· is not skip by ·validating· with respect to the ·ur-type
definition· as per Element Locally Valid (Type) (§3.3.4)

minimally conforming
Minimally conforming processors must completely and correctly implement the
·Schema Component Constraints·, ·Validation Rules·, and ·Schema Information Set
Contributions· contained in this specification

NCName
An NCName is a name with no colon, as defined in [XML-Namespaces]. When used
in connection with the XML representation of schema components in this
specification, this refers to the simple type NCName as defined in [XML Schemas:
Datatypes]

normalized value
The normalized value of an element or attribute information item is an ·initial value·
whose white space, if any, has been normalized according to the value of the
whiteSpace facet of the simple type definition used in its ·validation·:

partition
Define a partition of a sequence as a sequence of sub-sequences, some or all of
which may be empty, such that concatenating all the sub-sequences yields the
original sequence

post-schema-validation infoset
We refer to the augmented infoset which results from conformant processing as
defined in this specification as the post-schema-validation infoset, or PSVI

QName
A QName is a name with an optional namespace qualification, as defined in

http://www.w3.org/TR/xmlschema-1/ 173 3/28/2009 7:15 PM

[XML-Namespaces]. When used in connection with the XML representation of
schema components or references to them, this refers to the simple type QName as
defined in [XML Schemas: Datatypes]

resolve
Whenever the word resolve in any form is used in this chapter in connection with a
·QName· in a schema document, the following definition QName resolution (Schema
Document) (§3.15.3) should be understood

restriction
A type definition whose declarations or facets are in a one-to-one relation with those
of another specified type definition, with each in turn restricting the possibilities of
the one it corresponds to, is said to be a restriction

schema component
Schema component is the generic term for the building blocks that comprise the
abstract data model of the schema.

Schema Component Constraint
Constraints on the schema components themselves, i.e. conditions components
must satisfy to be components at all. Located in the sixth sub-section of the
per-component sections of Schema Component Details (§3) and tabulated in
Schema Component Constraints (§C.4)

schema document
A document in this form (i.e. a <schema> element information item) is a schema
document

Schema Information Set Contribution
Augmentations to ·post-schema-validation infoset ·s expressed by schema
components, which follow as a consequence of ·validation· and/or ·assessment·.
Located in the fifth sub-section of the per-component sections of Schema
Component Details (§3) and tabulated in Contributions to the post-schema-validation
infoset (§C.2)

Schema Representation Constraint
Constraints on the representation of schema components in XML beyond those
which are expressed in Schema for Schemas (normative) (§A) . Located in the third
sub-section of the per-component sections of Schema Component Details (§3) and
tabulated in Schema Representation Constraints (§C.3)

simple ur-type definition
the simple ur-type definition, a special restriction of the ·ur-type definition·, whose
name is anySimpleType in the XML Schema namespace

substitution group
Every element declaration (call this HEAD) in the {element declarations} of a
schema defines a substitution group, a subset of those {element declarations}, as
follows:

symbol space
this specification introduces the term symbol space to denote a collection of
names, each of which is unique with respect to the others

target namespace
Several kinds of component have a target namespace, which is either ·absent· or a
namespace name, also as defined by [XML-Namespaces]

type definition
This specification uses the phrase type definition in cases where no distinction
need be made between simple and complex types

Type Definition Hierarchy

http://www.w3.org/TR/xmlschema-1/ 174 3/28/2009 7:15 PM

Except for a distinguished ·ur-type definition·, every ·type definition· is, by
construction, either a ·restriction· or an ·extension· of some other type definition. The
graph of these relationships forms a tree known as the Type Definition Hierarchy

ur-type definition
A distinguished complex type definition, the ur-type definition, whose name is
anyType in the XML Schema namespace, is present in each ·XML Schema·, serving
as the root of the type definition hierarchy for that schema

valid
the word valid and its derivatives are used to refer to clause 1 above, the
determination of local schema-validity

valid extension
If this constraint Derivation Valid (Extension) (§3.4.6) holds of a complex type
definition, it is a valid extension of its {base type definition}

valid restriction
If this constraint Derivation Valid (Restriction, Complex) (§3.4.6) holds of a complex
type definition, it is a valid restriction of its {base type definition}

valid restriction
If this constraint Derivation Valid (Restriction, Simple) (§3.14.6) holds of a simple
type definition, it is a valid restriction of its ·base type definition·

validation root
This item, that is the element information item at which ·assessment· began, is
called the validation root

Validation Rules
Contributions to ·validation· associated with schema components. Located in the
fourth sub-section of the per-component sections of Schema Component Details
(§3) and tabulated in Validation Rules (§C.1)

XML Schema
An XML Schema is a set of ·schema components·

G DTD for Schemas (non-normative)

The DTD for schema documents is given below. Note there is no implication here that
schema must be the root element of a document.

Although this DTD is non-normative, any XML document which is not valid per this DTD,
given redefinitions in its internal subset of the 'p' and 's' parameter entities below
appropriate to its namespace declaration of the XML Schema namespace, is almost
certainly not a valid schema document, with the exception of documents with multiple
namespace prefixes for the XML Schema namespace itself. Accordingly authoring XML
Schema documents using this DTD and DTD-based authoring tools, and specifying it as
the DOCTYPE of documents intended to be XML Schema documents and validating them
with a validating XML parser, are sensible development strategies which users are
encouraged to adopt until XML Schema-based authoring tools and validators are more
widely available.

<!-- DTD for XML Schemas: Part 1: Structures
 Public Identifier: "-//W3C//DTD XMLSCHEMA 200102//EN"
 Official Location: http://www.w3.org/2001/XMLSchema.dtd -->
<!-- Id: structures.dtd,v 1.1 2003/08/28 13:30:52 ht Exp -->
<!-- With the exception of cases with multiple namespace
 prefixes for the XML Schema namespace, any XML document which is
 not valid per this DTD given redefinitions in its internal subset of the

http://www.w3.org/TR/xmlschema-1/ 175 3/28/2009 7:15 PM

 'p' and 's' parameter entities below appropriate to its namespace
 declaration of the XML Schema namespace is almost certainly not
 a valid schema. -->

<!-- The simpleType element and its constituent parts
 are defined in XML Schema: Part 2: Datatypes -->
<!ENTITY % xs-datatypes PUBLIC 'datatypes' 'datatypes.dtd' >

<!ENTITY % p 'xs:'> <!-- can be overriden in the internal subset of a
 schema document to establish a different
 namespace prefix -->
<!ENTITY % s ':xs'> <!-- if %p is defined (e.g. as foo:) then you must
 also define %s as the suffix for the appropriate
 namespace declaration (e.g. :foo) -->
<!ENTITY % nds 'xmlns%s;'>

<!-- Define all the element names, with optional prefix -->
<!ENTITY % schema "%p;schema">
<!ENTITY % complexType "%p;complexType">
<!ENTITY % complexContent "%p;complexContent">
<!ENTITY % simpleContent "%p;simpleContent">
<!ENTITY % extension "%p;extension">
<!ENTITY % element "%p;element">
<!ENTITY % unique "%p;unique">
<!ENTITY % key "%p;key">
<!ENTITY % keyref "%p;keyref">
<!ENTITY % selector "%p;selector">
<!ENTITY % field "%p;field">
<!ENTITY % group "%p;group">
<!ENTITY % all "%p;all">
<!ENTITY % choice "%p;choice">
<!ENTITY % sequence "%p;sequence">
<!ENTITY % any "%p;any">
<!ENTITY % anyAttribute "%p;anyAttribute">
<!ENTITY % attribute "%p;attribute">
<!ENTITY % attributeGroup "%p;attributeGroup">
<!ENTITY % include "%p;include">
<!ENTITY % import "%p;import">
<!ENTITY % redefine "%p;redefine">
<!ENTITY % notation "%p;notation">

<!-- annotation elements -->
<!ENTITY % annotation "%p;annotation">
<!ENTITY % appinfo "%p;appinfo">
<!ENTITY % documentation "%p;documentation">

<!-- Customisation entities for the ATTLIST of each element type.
 Define one of these if your schema takes advantage of the
 anyAttribute='##other' in the schema for schemas -->

<!ENTITY % schemaAttrs ''>
<!ENTITY % complexTypeAttrs ''>
<!ENTITY % complexContentAttrs ''>
<!ENTITY % simpleContentAttrs ''>
<!ENTITY % extensionAttrs ''>
<!ENTITY % elementAttrs ''>
<!ENTITY % groupAttrs ''>
<!ENTITY % allAttrs ''>
<!ENTITY % choiceAttrs ''>
<!ENTITY % sequenceAttrs ''>
<!ENTITY % anyAttrs ''>
<!ENTITY % anyAttributeAttrs ''>
<!ENTITY % attributeAttrs ''>
<!ENTITY % attributeGroupAttrs ''>
<!ENTITY % uniqueAttrs ''>
<!ENTITY % keyAttrs ''>
<!ENTITY % keyrefAttrs ''>
<!ENTITY % selectorAttrs ''>

http://www.w3.org/TR/xmlschema-1/ 176 3/28/2009 7:15 PM

<!ENTITY % fieldAttrs ''>
<!ENTITY % includeAttrs ''>
<!ENTITY % importAttrs ''>
<!ENTITY % redefineAttrs ''>
<!ENTITY % notationAttrs ''>
<!ENTITY % annotationAttrs ''>
<!ENTITY % appinfoAttrs ''>
<!ENTITY % documentationAttrs ''>

<!ENTITY % complexDerivationSet "CDATA">
 <!-- #all or space-separated list drawn from derivationChoice -->
<!ENTITY % blockSet "CDATA">
 <!-- #all or space-separated list drawn from
 derivationChoice + 'substitution' -->

<!ENTITY % mgs '%all; | %choice; | %sequence;'>
<!ENTITY % cs '%choice; | %sequence;'>
<!ENTITY % formValues '(qualified|unqualified)'>

<!ENTITY % attrDecls '((%attribute;| %attributeGroup;)*,(%anyAttribute;)?)'>

<!ENTITY % particleAndAttrs '((%mgs; | %group;)?, %attrDecls;)'>

<!-- This is used in part2 -->
<!ENTITY % restriction1 '((%mgs; | %group;)?)'>

%xs-datatypes;

<!-- the duplication below is to produce an unambiguous content model
 which allows annotation everywhere -->
<!ELEMENT %schema; ((%include; | %import; | %redefine; | %annotation;)*,
 ((%simpleType; | %complexType;
 | %element; | %attribute;
 | %attributeGroup; | %group;
 | %notation;),
 (%annotation;)*)*)>
<!ATTLIST %schema;
 targetNamespace %URIref; #IMPLIED
 version CDATA #IMPLIED
 %nds; %URIref; #FIXED 'http://www.w3.org/2001/XMLS
 xmlns CDATA #IMPLIED
 finalDefault %complexDerivationSet; ''
 blockDefault %blockSet; ''
 id ID #IMPLIED
 elementFormDefault %formValues; 'unqualified'
 attributeFormDefault %formValues; 'unqualified'
 xml:lang CDATA #IMPLIED
 %schemaAttrs;>
<!-- Note the xmlns declaration is NOT in the Schema for Schemas,
 because at the Infoset level where schemas operate,
 xmlns(:prefix) is NOT an attribute! -->
<!-- The declaration of xmlns is a convenience for schema authors -->

<!-- The id attribute here and below is for use in external references
 from non-schemas using simple fragment identifiers.
 It is NOT used for schema-to-schema reference, internal or
 external. -->

<!-- a type is a named content type specification which allows attribute
 declarations-->
<!-- -->

<!ELEMENT %complexType; ((%annotation;)?,
 (%simpleContent;|%complexContent;|
 %particleAndAttrs;))>

<!ATTLIST %complexType;

http://www.w3.org/TR/xmlschema-1/ 177 3/28/2009 7:15 PM

 name %NCName; #IMPLIED
 id ID #IMPLIED
 abstract %boolean; #IMPLIED
 final %complexDerivationSet; #IMPLIED
 block %complexDerivationSet; #IMPLIED
 mixed (true|false) 'false'
 %complexTypeAttrs;>

<!-- particleAndAttrs is shorthand for a root type -->
<!-- mixed is disallowed if simpleContent, overriden if complexContent
 has one too. -->

<!-- If anyAttribute appears in one or more referenced attributeGroups
 and/or explicitly, the intersection of the permissions is used -->

<!ELEMENT %complexContent; ((%annotation;)?, (%restriction;|%extension;))>
<!ATTLIST %complexContent;
 mixed (true|false) #IMPLIED
 id ID #IMPLIED
 %complexContentAttrs;>

<!-- restriction should use the branch defined above, not the simple
 one from part2; extension should use the full model -->

<!ELEMENT %simpleContent; ((%annotation;)?, (%restriction;|%extension;))>
<!ATTLIST %simpleContent;
 id ID #IMPLIED
 %simpleContentAttrs;>

<!-- restriction should use the simple branch from part2, not the
 one defined above; extension should have no particle -->

<!ELEMENT %extension; ((%annotation;)?, (%particleAndAttrs;))>
<!ATTLIST %extension;
 base %QName; #REQUIRED
 id ID #IMPLIED
 %extensionAttrs;>

<!-- an element is declared by either:
 a name and a type (either nested or referenced via the type attribute)
 or a ref to an existing element declaration -->

<!ELEMENT %element; ((%annotation;)?, (%complexType;| %simpleType;)?,
 (%unique; | %key; | %keyref;)*)>
<!-- simpleType or complexType only if no type|ref attribute -->
<!-- ref not allowed at top level -->
<!ATTLIST %element;
 name %NCName; #IMPLIED
 id ID #IMPLIED
 ref %QName; #IMPLIED
 type %QName; #IMPLIED
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 nillable %boolean; #IMPLIED
 substitutionGroup %QName; #IMPLIED
 abstract %boolean; #IMPLIED
 final %complexDerivationSet; #IMPLIED
 block %blockSet; #IMPLIED
 default CDATA #IMPLIED
 fixed CDATA #IMPLIED
 form %formValues; #IMPLIED
 %elementAttrs;>
<!-- type and ref are mutually exclusive.
 name and ref are mutually exclusive, one is required -->
<!-- In the absence of type AND ref, type defaults to type of
 substitutionGroup, if any, else the ur-type, i.e. unconstrained -->
<!-- default and fixed are mutually exclusive -->

http://www.w3.org/TR/xmlschema-1/ 178 3/28/2009 7:15 PM

<!ELEMENT %group; ((%annotation;)?,(%mgs;)?)>
<!ATTLIST %group;
 name %NCName; #IMPLIED
 ref %QName; #IMPLIED
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 id ID #IMPLIED
 %groupAttrs;>

<!ELEMENT %all; ((%annotation;)?, (%element;)*)>
<!ATTLIST %all;
 minOccurs (1) #IMPLIED
 maxOccurs (1) #IMPLIED
 id ID #IMPLIED
 %allAttrs;>

<!ELEMENT %choice; ((%annotation;)?, (%element;| %group;| %cs; | %any;)*)>
<!ATTLIST %choice;
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 id ID #IMPLIED
 %choiceAttrs;>

<!ELEMENT %sequence; ((%annotation;)?, (%element;| %group;| %cs; | %any;)*)>
<!ATTLIST %sequence;
 minOccurs %nonNegativeInteger; #IMPLIED
 maxOccurs CDATA #IMPLIED
 id ID #IMPLIED
 %sequenceAttrs;>

<!-- an anonymous grouping in a model, or
 a top-level named group definition, or a reference to same -->

<!-- Note that if order is 'all', group is not allowed inside.
 If order is 'all' THIS group must be alone (or referenced alone) at
 the top level of a content model -->
<!-- If order is 'all', minOccurs==maxOccurs==1 on element/any inside -->
<!-- Should allow minOccurs=0 inside order='all' . . . -->

<!ELEMENT %any; (%annotation;)?>
<!ATTLIST %any;
 namespace CDATA '##any'
 processContents (skip|lax|strict) 'strict'
 minOccurs %nonNegativeInteger; '1'
 maxOccurs CDATA '1'
 id ID #IMPLIED
 %anyAttrs;>

<!-- namespace is interpreted as follows:
 ##any - - any non-conflicting WFXML at all

 ##other - - any non-conflicting WFXML from namespace other
 than targetNamespace

 ##local - - any unqualified non-conflicting WFXML/attribute
 one or - - any non-conflicting WFXML from
 more URI the listed namespaces
 references

 ##targetNamespace ##local may appear in the above list,
 with the obvious meaning -->

<!ELEMENT %anyAttribute; (%annotation;)?>
<!ATTLIST %anyAttribute;
 namespace CDATA '##any'
 processContents (skip|lax|strict) 'strict'
 id ID #IMPLIED
 %anyAttributeAttrs;>

http://www.w3.org/TR/xmlschema-1/ 179 3/28/2009 7:15 PM

<!-- namespace is interpreted as for 'any' above -->

<!-- simpleType only if no type|ref attribute -->
<!-- ref not allowed at top level, name iff at top level -->
<!ELEMENT %attribute; ((%annotation;)?, (%simpleType;)?)>
<!ATTLIST %attribute;
 name %NCName; #IMPLIED
 id ID #IMPLIED
 ref %QName; #IMPLIED
 type %QName; #IMPLIED
 use (prohibited|optional|required) #IMPLIED
 default CDATA #IMPLIED
 fixed CDATA #IMPLIED
 form %formValues; #IMPLIED
 %attributeAttrs;>
<!-- type and ref are mutually exclusive.
 name and ref are mutually exclusive, one is required -->
<!-- default for use is optional when nested, none otherwise -->
<!-- default and fixed are mutually exclusive -->
<!-- type attr and simpleType content are mutually exclusive -->

<!-- an attributeGroup is a named collection of attribute decls, or a
 reference thereto -->
<!ELEMENT %attributeGroup; ((%annotation;)?,
 (%attribute; | %attributeGroup;)*,
 (%anyAttribute;)?) >
<!ATTLIST %attributeGroup;
 name %NCName; #IMPLIED
 id ID #IMPLIED
 ref %QName; #IMPLIED
 %attributeGroupAttrs;>

<!-- ref iff no content, no name. ref iff not top level -->

<!-- better reference mechanisms -->
<!ELEMENT %unique; ((%annotation;)?, %selector;, (%field;)+)>
<!ATTLIST %unique;
 name %NCName; #REQUIRED
 id ID #IMPLIED
 %uniqueAttrs;>

<!ELEMENT %key; ((%annotation;)?, %selector;, (%field;)+)>
<!ATTLIST %key;
 name %NCName; #REQUIRED
 id ID #IMPLIED
 %keyAttrs;>

<!ELEMENT %keyref; ((%annotation;)?, %selector;, (%field;)+)>
<!ATTLIST %keyref;
 name %NCName; #REQUIRED
 refer %QName; #REQUIRED
 id ID #IMPLIED
 %keyrefAttrs;>

<!ELEMENT %selector; ((%annotation;)?)>
<!ATTLIST %selector;
 xpath %XPathExpr; #REQUIRED
 id ID #IMPLIED
 %selectorAttrs;>
<!ELEMENT %field; ((%annotation;)?)>
<!ATTLIST %field;
 xpath %XPathExpr; #REQUIRED
 id ID #IMPLIED
 %fieldAttrs;>

<!-- Schema combination mechanisms -->
<!ELEMENT %include; (%annotation;)?>
<!ATTLIST %include;

http://www.w3.org/TR/xmlschema-1/ 180 3/28/2009 7:15 PM

 schemaLocation %URIref; #REQUIRED
 id ID #IMPLIED
 %includeAttrs;>

<!ELEMENT %import; (%annotation;)?>
<!ATTLIST %import;
 namespace %URIref; #IMPLIED
 schemaLocation %URIref; #IMPLIED
 id ID #IMPLIED
 %importAttrs;>

<!ELEMENT %redefine; (%annotation; | %simpleType; | %complexType; |
 %attributeGroup; | %group;)*>
<!ATTLIST %redefine;
 schemaLocation %URIref; #REQUIRED
 id ID #IMPLIED
 %redefineAttrs;>

<!ELEMENT %notation; (%annotation;)?>
<!ATTLIST %notation;
 name %NCName; #REQUIRED
 id ID #IMPLIED
 public CDATA #REQUIRED
 system %URIref; #IMPLIED
 %notationAttrs;>

<!-- Annotation is either application information or documentation -->
<!-- By having these here they are available for datatypes as well
 as all the structures elements -->

<!ELEMENT %annotation; (%appinfo; | %documentation;)*>
<!ATTLIST %annotation; %annotationAttrs;>

<!-- User must define annotation elements in internal subset for this
 to work -->
<!ELEMENT %appinfo; ANY> <!-- too restrictive -->
<!ATTLIST %appinfo;
 source %URIref; #IMPLIED
 id ID #IMPLIED
 %appinfoAttrs;>
<!ELEMENT %documentation; ANY> <!-- too restrictive -->
<!ATTLIST %documentation;
 source %URIref; #IMPLIED
 id ID #IMPLIED
 xml:lang CDATA #IMPLIED
 %documentationAttrs;>

<!NOTATION XMLSchemaStructures PUBLIC
 'structures' 'http://www.w3.org/2001/XMLSchema.xsd' >
<!NOTATION XML PUBLIC
 'REC-xml-1998-0210' 'http://www.w3.org/TR/1998/REC-xml-19980210' >

H Analysis of the Unique Particle Attribution Constraint
(non-normative)

A specification of the import of Unique Particle Attribution (§3.8.6) which does not appeal
to a processing model is difficult. What follows is intended as guidance, without claiming
to be complete.

[Definition:] Two non-group particles overlap if

They are both element declaration particles whose declarations have the same
{name} and {target namespace}.

http://www.w3.org/TR/xmlschema-1/ 181 3/28/2009 7:15 PM

or

They are both element declaration particles one of whose {name} and {target
namespace} are the same as those of an element declaration in the other's
·substitution group·.

or

They are both wildcards, and the intensional intersection of their {namespace
constraint}s as defined in Attribute Wildcard Intersection (§3.10.6) is not the empty
set.

or

One is a wildcard and the other an element declaration, and the {target namespace}
of any member of its ·substitution group· is ·valid· with respect to the {namespace
constraint} of the wildcard.

A content model will violate the unique attribution constraint if it contains two particles
which ·overlap· and which either

are both in the {particles} of a choice or all group

or

may ·validate· adjacent information items and the first has {min occurs} less than
{max occurs}.

Two particles may ·validate· adjacent information items if they are separated by at most
epsilon transitions in the most obvious transcription of a content model into a finite-state
automaton.

A precise formulation of this constraint can also be offered in terms of operations on
finite-state automaton: transcribe the content model into an automaton in the usual way
using epsilon transitions for optionality and unbounded maxOccurs, unfolding other
numeric occurrence ranges and treating the heads of substitution groups as if they were
choices over all elements in the group, but using not element QNames as transition
labels, but rather pairs of element QNames and positions in the model. Determinize this
automaton, treating wildcard transitions as opaque. Now replace all QName+position
transition labels with the element QNames alone. If the result has any states with two or
more identical-QName-labeled transitions from it, or a QName-labeled transition and a
wildcard transition which subsumes it, or two wildcard transitions whose intentional
intersection is non-empty, the model does not satisfy the Unique Attribution constraint.

I References (non-normative)

DCD
Document Content Description for XML (DCD), Tim Bray et al., eds., W3C, 10
August 1998. See http://www.w3.org/TR/1998/NOTE-dcd-19980731

DDML
Document Definition Markup Language, Ronald Bourret, John Cowan, Ingo

http://www.w3.org/TR/xmlschema-1/ 182 3/28/2009 7:15 PM

Macherius, Simon St. Laurent, eds., W3C, 19 January 1999. See
http://www.w3.org/TR/1999/NOTE-ddml-19990119

SOX
Schema for Object-oriented XML, Andrew Davidson et al., eds., W3C, 1998. See
http://www.w3.org/1999/07/NOTE-SOX-19990730/

SOX-2
Schema for Object-oriented XML, Version 2.0, Andrew Davidson, et al., W3C, 30
July 1999. See http://www.w3.org/TR/NOTE-SOX/

XDR
XML-Data Reduced, Charles Frankston and Henry S. Thompson, 3 July 1998. See
http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm

XML Schema: Primer
XML Schema Part 0: Primer, David C. Fallside, ed., W3C, 2 May 2001. See
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/primer.html

XML-Data
XML-Data, Andrew Layman et al., W3C, 05 January 1998. See
http://www.w3.org/TR/1998/NOTE-XML-data-0105/

J Acknowledgements (non-normative)

The following contributed material to the first edition of this specification:

David Fallside, IBM
Scott Lawrence, Agranat Systems
Andrew Layman, Microsoft
Eve L. Maler, Sun Microsystems
Asir S. Vedamuthu, webMethods, Inc

The editors acknowledge the members of the XML Schema Working Group, the members
of other W3C Working Groups, and industry experts in other forums who have contributed
directly or indirectly to the process or content of creating this document. The Working
Group is particularly grateful to Lotus Development Corp. and IBM for providing
teleconferencing facilities.

At the time the first edition of this specification was published, the members of the XML
Schema Working Group were:

Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Charles E. Campbell, Informix
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU
David Cleary, Progress Software
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox
Roger L. Costello, MITRE
Haavard Danielson, Progress Software

http://www.w3.org/TR/xmlschema-1/ 183 3/28/2009 7:15 PM

Josef Dietl, Mozquito Technologies
David Ezell, Hewlett-Packard Company
Alexander Falk, Altova GmbH
David Fallside, IBM
Dan Fox, Defense Logistics Information Service (DLIS)
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Dave Hollander, Contivo, Inc (co-chair)
Mary Holstege, Invited Expert
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Rick Jelliffe, Academia Sinica
Simon Johnston, Rational Software
Bob Lojek, Mozquito Technologies
Ashok Malhotra, Microsoft
Lisa Martin, IBM
Noah Mendelsohn, Lotus Development Corporation
Adrian Michel, Commerce One
Alex Milowski, Invited Expert
Don Mullen, TIBCO Extensibility
Dave Peterson, Graphic Communications Association
Jonathan Robie, Software AG
Eric Sedlar, Oracle Corp.
C. M. Sperberg-McQueen, W3C (co-chair)
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Henry S. Thompson, University of Edinburgh
Mark Tucker, Health Level Seven
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Aki Yoshida, SAP AG
Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation and
contributions of a number of people not currently members of the Working Group,
including in particular those named below. Affiliations given are those current at the time
of their work with the WG.

Paula Angerstein, Vignette Corporation
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation
Mike Cokus, MITRE
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
George Feinberg, Object Design
Charles Frankston, Microsoft
Ernesto Guerrieri, Inso

http://www.w3.org/TR/xmlschema-1/ 184 3/28/2009 7:15 PM

Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft
Dmitry Lenkov, Hewlett-Packard Company
John McCarthy, Lawrence Berkeley National Laboratory
Murata Makoto, Xerox
Eve Maler, Sun Microsystems
Murray Maloney, Muzmo Communication, acting for Commerce One
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
John C. Schneider, MITRE
Lew Shannon, NCR
William Shea, Merrill Lynch
Ralph Swick, W3C
Tony Stewart, Rivcom
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar

The lists given above pertain to the first edition. At the time work on this second edition
was completed, the membership of the Working Group was:

Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Allen Brown, Microsoft
Charles E. Campbell, Invited expert
Peter Chen, Invited expert
Tony Cincotta, NIST
David Ezell, National Association of Convenience Stores
Matthew Fuchs, Invited expert
Sandy Gao, IBM
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, Invited expert
Mary Holstege, Mark Logic
Mario Jeckle, DaimlerChrysler
Marcel Jemio, Data Interchange Standards Association
Kohsuke Kawaguchi, Sun Microsystems
Ashok Malhotra, Invited expert
Lisa Martin, IBM
Jim Melton, Oracle Corp
Noah Mendelsohn, IBM
Dave Peterson, Invited expert
Anli Shundi, TIBCO Extensibility
C. M. Sperberg-McQueen, W3C (co-chair)

http://www.w3.org/TR/xmlschema-1/ 185 3/28/2009 7:15 PM

Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Henry S. Thompson, University of Edinburgh
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, Invited expert
Kongyi Zhou, Oracle Corp.

We note with sadness the accidental death of Mario Jeckle shortly after the completion of
work on this document. In addition to those named above, several people served on the
Working Group during the development of this second edition:

Oriol Carbo, University of Edinburgh
Tyng-Ruey Chuang, Academia Sinica
Joey Coyle, Health Level 7
Tim Ewald, DevelopMentor
Nelson Hung, Corel
Melanie Kudela, Uniform Code Council
Matthew MacKenzie, XML Global
Cliff Schmidt, Microsoft
John Stanton, Defense Information Systems Agency
John Tebbutt, NIST
Ross Thompson, Contivo
Scott Vorthmann, TIBCO Extensibility

	XML Schema Part 1: Structures Second Edition
	28 Oct 2004 Henry S. Thompson et al (eds.) World Wide Web Consortium
	Abstract
	Status of this Document
	Table of Contents
	1 Introduction
	2 Conceptual Framework
	3 Schema Component Details
	4 Schemas and Namespaces: Access and Composition
	5 Schemas and Schema-validity Assessment
	A Schema for Schemas (normative)
	B References (normative)
	C Outcome Tabulations (normative)
	D Required Information Set Items and Properties (normative)
	E Schema Components Diagram (non-normative)
	F Glossary (non-normative)
	G DTD for Schemas (non-normative)
	H Analysis of the Unique Particle Attribution Constraint (non-normative)
	I References (non-normative)
	J Acknowledgements (non-normative)

	
	W3C Title Page

