
http://www.w3.org/TR/xmlschema-0/ 1 3/28/2009 7:18 PM

XML Schema Part 0: Primer Second Edition

W3C Recommendation 28 October 2004

This version:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

Latest version:
http://www.w3.org/TR/xmlschema-0/

Previous version:
http://www.w3.org/TR/2004/PER-xmlschema-0-20040318/

Editors:
David C. Fallside, IBM <fallside@us.ibm.com>
Priscilla Walmsley <pwalmsley@datypic.com> - Second Edition

Please refer to the errata for this document, which may include some normative
corrections.

This document is also available in these non-normative formats: XML and XHTML with
visible change markup. See also translations.

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and
document use rules apply.

Abstract

XML Schema Part 0: Primer is a non-normative document intended to provide an easily
readable description of the XML Schema facilities, and is oriented towards quickly
understanding how to create schemas using the XML Schema language. XML Schema
Part 1: Structures and XML Schema Part 2: Datatypes provide the complete normative
description of the XML Schema language. This primer describes the language features
through numerous examples which are complemented by extensive references to the
normative texts.

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the
latest revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

http://www.w3.org/TR/xmlschema-0/ 2 3/28/2009 7:18 PM

This is a W3C Recommendation, the first part of the Second Edition of XML Schema.
This document has been reviewed by W3C Members and other interested parties and
has been endorsed by the Director as a W3C Recommendation. It is a stable document
and may be used as reference material. W3C's role in making the Recommendation is to
draw attention to the specification and to promote its widespread deployment. This
enhances the functionality and interoperability of the Web.

This document has been produced by the W3C XML Schema Working Group as part of
the W3C XML Activity. The goals of the XML Schema language are discussed in the
XML Schema Requirements document. The authors of this document are the members
of the XML Schema Working Group. Different parts of this specification have different
editors.

This document was produced under the 24 January 2002 Current Patent Practice (CPP)
as amended by the W3C Patent Policy Transition Procedure . The Working Group
maintains a public list of patent disclosures relevant to this document; that page also
includes instructions for disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains Essential Claim(s) with respect to this
specification should disclose the information in accordance with section 6 of the W3C
Patent Policy.

The English version of this specification is the only normative version. Information about
translations of this document is available at
http://www.w3.org/2001/05/xmlschema-translations.

This second edition is not a new version, it merely incorporates the changes dictated by
the corrections to errors found in the first edition as agreed by the XML Schema Working
Group, as a convenience to readers. A separate list of all such corrections is available at
http://www.w3.org/2001/05/xmlschema-errata.

The errata list for this second edition is available at
http://www.w3.org/2004/03/xmlschema-errata.

Please report errors in this document to www-xml-schema-comments@w3.org (archive).

Table of Contents

1 Introduction
2 Basic Concepts: The Purchase Order
 2.1 The Purchase Order Schema
 2.2 Complex Type Definitions, Element & Attribute Declarations
 2.3 Simple Types
 2.4 Anonymous Type Definitions
 2.5 Element Content
 2.6 Annotations
 2.7 Building Content Models
 2.8 Attribute Groups
 2.9 Nil Values
3 Advanced Concepts I: Namespaces, Schemas & Qualification
 3.1 Target Namespaces & Unqualified Locals

http://www.w3.org/TR/xmlschema-0/ 3 3/28/2009 7:18 PM

 3.2 Qualified Locals
 3.3 Global vs. Local Declarations
 3.4 Undeclared Target Namespaces
4 Advanced Concepts II: The International Purchase Order
 4.1 A Schema in Multiple Documents
 4.2 Deriving Types by Extension
 4.3 Using Derived Types in Instance Documents
 4.4 Deriving Complex Types by Restriction
 4.5 Redefining Types & Groups
 4.6 Substitution Groups
 4.7 Abstract Elements and Types
 4.8 Controlling the Creation & Use of Derived Types
5 Advanced Concepts III: The Quarterly Report
 5.1 Specifying Uniqueness
 5.2 Defining Keys & their References
 5.3 XML Schema Constraints vs. XML 1.0 ID Attributes
 5.4 Importing Types
 5.5 Any Element, Any Attribute
 5.6 schemaLocation
 5.7 Conformance

Appendices

A Acknowledgements
B Simple Types & their Facets
C Using Entities
D Regular Expressions
E Index
 E.1 XML Schema Elements
 E.2 XML Schema Attributes

1 Introduction

This document, XML Schema Part 0: Primer, provides an easily approachable
description of the XML Schema definition language, and should be used alongside the
formal descriptions of the language contained in Parts 1 and 2 of the XML Schema
specification. The intended audience of this document includes application developers
whose programs read and write schema documents, and schema authors who need to
know about the features of the language, especially features that provide functionality
above and beyond what is provided by DTDs. The text assumes that you have a basic
understanding of XML 1.0 and Namespaces in XML. Each major section of the primer
introduces new features of the language, and describes those features in the context of
concrete examples.

Basic Concepts: The Purchase Order (§2) covers the basic mechanisms of XML
Schema. It describes how to declare the elements and attributes that appear in XML
documents, the distinctions between simple and complex types, defining complex types,
the use of simple types for element and attribute values, schema annotation, a simple

http://www.w3.org/TR/xmlschema-0/ 4 3/28/2009 7:18 PM

mechanism for re-using element and attribute definitions, and nil values.

Advanced Concepts I: Namespaces, Schemas & Qualification (§3) , the first advanced
section in the primer, explains the basics of how namespaces are used in XML and
schema documents. This section is important for understanding many of the topics that
appear in the other advanced sections.

Advanced Concepts II: The International Purchase Order (§4) , the second advanced
section in the primer, describes mechanisms for deriving types from existing types, and
for controlling these derivations. The section also describes mechanisms for merging
together fragments of a schema from multiple sources, and for element substitution.

Advanced Concepts III: The Quarterly Report (§5) covers more advanced features,
including a mechanism for specifying uniqueness among attributes and elements, a
mechanism for using types across namespaces, a mechanism for extending types based
on namespaces, and a description of how documents are checked for conformance.

In addition to the sections just described, the primer contains a number of appendices
that provide detailed reference information on simple types and a regular expression
language.

The primer is a non-normative document, which means that it does not provide a
definitive (from the W3C's point of view) specification of the XML Schema language. The
examples and other explanatory material in this document are provided to help you
understand XML Schema, but they may not always provide definitive answers. In such
cases, you will need to refer to the XML Schema specification, and to help you do this,
we provide many links pointing to the relevant parts of the specification. More
specifically, XML Schema items mentioned in the primer text are linked to an index
[Index (§E)] of element names and attributes, and a summary table of datatypes, both in
the primer. The table and the index contain links to the relevant sections of XML Schema
parts 1 and 2.

2 Basic Concepts: The Purchase Order

The purpose of a schema is to define a class of XML documents, and so the term
"instance document" is often used to describe an XML document that conforms to a
particular schema. In fact, neither instances nor schemas need to exist as documents
per se -- they may exist as streams of bytes sent between applications, as fields in a
database record, or as collections of XML Infoset "Information Items" -- but to simplify the
primer, we have chosen to always refer to instances and schemas as if they are
documents and files.

Let us start by considering an instance document in a file called po.xml. It describes a
purchase order generated by a home products ordering and billing application:

Example
The Purchase Order, po.xml
<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">

http://www.w3.org/TR/xmlschema-0/ 5 3/28/2009 7:18 PM

 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild<!/comment>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

The purchase order consists of a main element, purchaseOrder, and the subelements
shipTo, billTo, comment, and items. These subelements (except comment) in turn contain
other subelements, and so on, until a subelement such as USPrice contains a number
rather than any subelements. Elements that contain subelements or carry attributes are
said to have complex types, whereas elements that contain numbers (and strings, and
dates, etc.) but do not contain any subelements are said to have simple types. Some
elements have attributes; attributes always have simple types.

The complex types in the instance document, and some of the simple types, are defined
in the schema for purchase orders. The other simple types are defined as part of XML
Schema's repertoire of built-in simple types.

Before going on to examine the purchase order schema, we digress briefly to mention
the association between the instance document and the purchase order schema. As you
can see by inspecting the instance document, the purchase order schema is not
mentioned. An instance is not actually required to reference a schema, and although
many will, we have chosen to keep this first section simple, and to assume that any
processor of the instance document can obtain the purchase order schema without any
information from the instance document. In later sections, we will introduce explicit
mechanisms for associating instances and schemas.

2.1 The Purchase Order Schema

The purchase order schema is contained in the file po.xsd:

http://www.w3.org/TR/xmlschema-0/ 6 3/28/2009 7:18 PM

Example
The Purchase Order Schema, po.xsd
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Purchase order schema for Example.com.
 Copyright 2000 Example.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>

 <xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Stock Keeping Unit, a code for identifying products -->
 <xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">

http://www.w3.org/TR/xmlschema-0/ 7 3/28/2009 7:18 PM

 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

The purchase order schema consists of a schema element and a variety of subelements,
most notably element, complexType, and simpleType which determine the appearance of
elements and their content in instance documents.

Each of the elements in the schema has a prefix xsd: which is associated with the XML
Schema namespace through the declaration,
xmlns:xsd="http://www.w3.org/2001/XMLSchema", that appears in the schema element.
The prefix xsd: is used by convention to denote the XML Schema namespace, although
any prefix can be used. The same prefix, and hence the same association, also appears
on the names of built-in simple types, e.g. xsd:string. The purpose of the association is
to identify the elements and simple types as belonging to the vocabulary of the XML
Schema language rather than the vocabulary of the schema author. For the sake of
clarity in the text, we just mention the names of elements and simple types (e.g.
simpleType), and omit the prefix.

2.2 Complex Type Definitions, Element & Attribute Declarations
 2.2.1 Occurrence Constraints
 2.2.2 Global Elements & Attributes
 2.2.3 Naming Conflicts

In XML Schema, there is a basic difference between complex types which allow
elements in their content and may carry attributes, and simple types which cannot have
element content and cannot carry attributes. There is also a major distinction between
definitions which create new types (both simple and complex), and declarations which
enable elements and attributes with specific names and types (both simple and complex)
to appear in document instances. In this section, we focus on defining complex types and
declaring the elements and attributes that appear within them.

New complex types are defined using the complexType element and such definitions
typically contain a set of element declarations, element references, and attribute
declarations. The declarations are not themselves types, but rather an association
between a name and the constraints which govern the appearance of that name in
documents governed by the associated schema. Elements are declared using the
element element, and attributes are declared using the attribute element. For example,
USAddress is defined as a complex type, and within the definition of USAddress we see five
element declarations and one attribute declaration:

Example
Defining the USAddress Type
<xsd:complexType name="USAddress" >
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>

http://www.w3.org/TR/xmlschema-0/ 8 3/28/2009 7:18 PM

 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

The consequence of this definition is that any element appearing in an instance whose
type is declared to be USAddress (e.g. shipTo in po.xml) must consist of five elements and
one attribute. These elements must be called name, street, city, state and zip as
specified by the values of the declarations' name attributes, and the elements must
appear in the same sequence (order) in which they are declared. The first four of these
elements will each contain a string, and the fifth will contain a number. The element
whose type is declared to be USAddress may appear with an attribute called country
which must contain the string US.

The USAddress definition contains only declarations involving the simple types: string,
decimal and NMTOKEN. In contrast, the PurchaseOrderType definition contains element
declarations involving complex types, e.g. USAddress, although note that both
declarations use the same type attribute to identify the type, regardless of whether the
type is simple or complex.

Example
Defining PurchaseOrderType
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

In defining PurchaseOrderType, two of the element declarations, for shipTo and billTo,
associate different element names with the same complex type, namely USAddress. The
consequence of this definition is that any element appearing in an instance document
(e.g. po.xml) whose type is declared to be PurchaseOrderType must consist of elements
named shipTo and billTo, each containing the five subelements (name, street, city,
state and zip) that were declared as part of USAddress. The shipTo and billTo elements
may also carry the country attribute that was declared as part of USAddress.

The PurchaseOrderType definition contains an orderDate attribute declaration which, like
the country attribute declaration, identifies a simple type. In fact, all attribute declarations
must reference simple types because, unlike element declarations, attributes cannot
contain other elements or other attributes.

The element declarations we have described so far have each associated a name with
an existing type definition. Sometimes it is preferable to use an existing element rather
than declare a new element, for example:

Example

http://www.w3.org/TR/xmlschema-0/ 9 3/28/2009 7:18 PM

<xsd:element ref="comment" minOccurs="0"/>

This declaration references an existing element, comment, that was declared elsewhere in
the purchase order schema. In general, the value of the ref attribute must reference a
global element, i.e. one that has been declared under schema rather than as part of a
complex type definition. The consequence of this declaration is that an element called
comment may appear in an instance document, and its content must be consistent with
that element's type, in this case, string.

2.2.1 Occurrence Constraints

The comment element is optional within PurchaseOrderType because the value of the
minOccurs attribute in its declaration is 0. In general, an element is required to appear
when the value of minOccurs is 1 or more. The maximum number of times an element
may appear is determined by the value of a maxOccurs attribute in its declaration. This
value may be a positive integer such as 41, or the term unbounded to indicate there is no
maximum number of occurrences. The default value for both the minOccurs and the
maxOccurs attributes is 1. Thus, when an element such as comment is declared without a
maxOccurs attribute, the element may not occur more than once. Be sure that if you
specify a value for only the minOccurs attribute, it is less than or equal to the default value
of maxOccurs, i.e. it is 0 or 1. Similarly, if you specify a value for only the maxOccurs
attribute, it must be greater than or equal to the default value of minOccurs, i.e. 1 or more.
If both attributes are omitted, the element must appear exactly once.

Attributes may appear once or not at all, but no other number of times, and so the syntax
for specifying occurrences of attributes is different than the syntax for elements. In
particular, attributes can be declared with a use attribute to indicate whether the attribute
is required (see for example, the partNum attribute declaration in po.xsd), optional, or
even prohibited.

Default values of both attributes and elements are declared using the default attribute,
although this attribute has a slightly different consequence in each case. When an
attribute is declared with a default value, the value of the attribute is whatever value
appears as the attribute's value in an instance document; if the attribute does not appear
in the instance document, the schema processor provides the attribute with a value equal
to that of the default attribute. Note that default values for attributes only make sense if
the attributes themselves are optional, and so it is an error to specify both a default value
and anything other than a value of optional for use.

The schema processor treats defaulted elements slightly differently. When an element is
declared with a default value, the value of the element is whatever value appears as the
element's content in the instance document; if the element appears without any content,
the schema processor provides the element with a value equal to that of the default
attribute. However, if the element does not appear in the instance document, the schema
processor does not provide the element at all. In summary, the differences between
element and attribute defaults can be stated as: Default attribute values apply when
attributes are missing, and default element values apply when elements are empty.

The fixed attribute is used in both attribute and element declarations to ensure that the

http://www.w3.org/TR/xmlschema-0/ 10 3/28/2009 7:18 PM

attributes and elements are set to particular values. For example, po.xsd contains a
declaration for the country attribute, which is declared with a fixed value US. This
declaration means that the appearance of a country attribute in an instance document is
optional (the default value of use is optional), although if the attribute does appear, its
value must be US, and if the attribute does not appear, the schema processor will provide
a country attribute with the value US. Note that the concepts of a fixed value and a default
value are mutually exclusive, and so it is an error for a declaration to contain both fixed
and default attributes.

The values of the attributes used in element and attribute declarations to constrain their
occurrences are summarized in Table 1.

Table 1. Occurrence Constraints for Elements and Attributes

Elements
(minOccurs,
maxOccurs)
fixed, default

Attributes
use, fixed,

default
Notes

(1, 1) -, - required, -, - element/attribute must appear once, it may have any
value

(1, 1) 37, - required, 37,
- element/attribute must appear once, its value must be 37

(2, unbounded)
37, - n/a

element must appear twice or more, its value must be
37; in general, minOccurs and maxOccurs values may
be positive integers, and maxOccurs value may also be
"unbounded"

(0, 1) -, - optional, -, - element/attribute may appear once, it may have any
value

(0, 1) 37, - n/a
element may appear once, if it does not appear it is not
provided; if it does appear and it is empty, its value is 37;
if it does appear and it is not empty, its value must be 37

n/a optional, 37,
-

attribute may appear once, if it does appear its value
must be 37, if it does not appear its value is 37

(0, 1) -, 37 n/a
element may appear once; if it does not appear it is not
provided; if it does appear and it is empty, its value is 37;
otherwise its value is that given

n/a optional, -,
37

attribute may appear once; if it does not appear its value
is 37, otherwise its value is that given

(0, 2) -, 37 n/a

element may appear once, twice, or not at all; if the
element does not appear it is not provided; if it does
appear and it is empty, its value is 37; otherwise its value
is that given; in general, minOccurs and maxOccurs
values may be positive integers, and maxOccurs value
may also be "unbounded"

(0, 0) -, - prohibited, -,
- element/attribute must not appear

http://www.w3.org/TR/xmlschema-0/ 11 3/28/2009 7:18 PM

Note that neither minOccurs, maxOccurs, nor use may appear in the declarations of
global elements and attributes.

2.2.2 Global Elements & Attributes

Global elements, and global attributes, are created by declarations that appear as the
children of the schema element. Once declared, a global element or a global attribute
can be referenced in one or more declarations using the ref attribute as described
above. A declaration that references a global element enables the referenced element to
appear in the instance document in the context of the referencing declaration. So, for
example, the comment element appears in po.xml at the same level as the shipTo, billTo
and items elements because the declaration that references comment appears in the
complex type definition at the same level as the declarations of the other three elements.

The declaration of a global element also enables the element to appear at the top-level
of an instance document. Hence purchaseOrder, which is declared as a global element in
po.xsd, can appear as the top-level element in po.xml. Note that this rationale will also
allow a comment element to appear as the top-level element in a document like po.xml.

There are a number of caveats concerning the use of global elements and attributes.
One caveat is that global declarations cannot contain references; global declarations
must identify simple and complex types directly. Put concretely, global declarations
cannot contain the ref attribute, they must use the type attribute (or, as we describe
shortly, be followed by an anonymous type definition). A second caveat is that cardinality
constraints cannot be placed on global declarations, although they can be placed on
local declarations that reference global declarations. In other words, global declarations
cannot contain the attributes minOccurs, maxOccurs, or use.

2.2.3 Naming Conflicts

We have now described how to define new complex types (e.g. PurchaseOrderType),
declare elements (e.g. purchaseOrder) and declare attributes (e.g. orderDate). These
activities generally involve naming, and so the question naturally arises: What happens if
we give two things the same name? The answer depends upon the two things in
question, although in general the more similar are the two things, the more likely there
will be a conflict.

Here are some examples to illustrate when same names cause problems. If the two
things are both types, say we define a complex type called USStates and a simple type
called USStates, there is a conflict. If the two things are a type and an element or
attribute, say we define a complex type called USAddress and we declare an element
called USAddress, there is no conflict. If the two things are elements within different
types (i.e. not global elements), say we declare one element called name as part of the
USAddress type and a second element called name as part of the Item type, there is no
conflict. (Such elements are sometimes called local element declarations.) Finally, if the
two things are both types and you define one and XML Schema has defined the other,
say you define a simple type called decimal, there is no conflict. The reason for the
apparent contradiction in the last example is that the two types belong to different
namespaces. We explore the use of namespaces in schema in a later section.

http://www.w3.org/TR/xmlschema-0/ 12 3/28/2009 7:18 PM

 2.3 Simple Types
 2.3.1 List Types
 2.3.2 Union Types

The purchase order schema declares several elements and attributes that have simple
types. Some of these simple types, such as string and decimal, are built in to XML
Schema, while others are derived from the built-in's. For example, the partNum attribute
has a type called SKU (Stock Keeping Unit) that is derived from string. Both built-in
simple types and their derivations can be used in all element and attribute declarations.
Table 2 lists all the simple types built in to XML Schema, along with examples of the
different types.

Table 2. Simple Types Built In to XML Schema
Simple Type Examples (delimited by commas) Notes
string Confirm this is electric
normalizedString Confirm this is electric see (3)
token Confirm this is electric see (4)
base64Binary GpM7
hexBinary 0FB7
integer ...-1, 0, 1, ... see (2)
positiveInteger 1, 2, ... see (2)
negativeInteger ... -2, -1 see (2)
nonNegativeInteger 0, 1, 2, ... see (2)
nonPositiveInteger ... -2, -1, 0 see (2)

long -9223372036854775808, ... -1, 0, 1, ...
9223372036854775807 see (2)

unsignedLong 0, 1, ... 18446744073709551615 see (2)
int -2147483648, ... -1, 0, 1, ... 2147483647 see (2)
unsignedInt 0, 1, ...4294967295 see (2)
short -32768, ... -1, 0, 1, ... 32767 see (2)
unsignedShort 0, 1, ... 65535 see (2)
byte -128, ...-1, 0, 1, ... 127 see (2)
unsignedByte 0, 1, ... 255 see (2)
decimal -1.23, 0, 123.4, 1000.00 see (2)

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

equivalent to
single-precision 32-bit
floating point, NaN is
"not a number", see
(2)

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN equivalent to
double-precision

http://www.w3.org/TR/xmlschema-0/ 13 3/28/2009 7:18 PM

64-bit floating point,
see (2)

boolean true, false, 1, 0

duration P1Y2M3DT10H30M12.3S

1 year, 2 months, 3
days, 10 hours, 30
minutes, and 12.3
seconds

dateTime 1999-05-31T13:20:00.000-05:00

May 31st 1999 at
1.20pm Eastern
Standard Time which
is 5 hours behind
Co-Ordinated
Universal Time, see
(2)

date 1999-05-31 see (2)
time 13:20:00.000, 13:20:00.000-05:00 see (2)
gYear 1999 1999, see (2) (5)

gYearMonth 1999-02

the month of February
1999, regardless of
the number of days,
see (2) (5)

gMonth --05 May, see (2) (5)

gMonthDay --05-31 every May 31st, see
(2) (5)

gDay ---31 the 31st day, see (2)
(5)

Name shipTo XML 1.0 Name type

QName po:USAddress XML Namespace
QName

NCName USAddress

XML Namespace
NCName, i.e. a
QName without the
prefix and colon

anyURI
http://www.example.com/,
http://www.example.com/doc.html#ID5

language en-GB, en-US, fr
valid values for
xml:lang as defined in
XML 1.0

ID XML 1.0 ID attribute
type, see (1)

IDREF XML 1.0 IDREF
attribute type, see (1)

http://www.w3.org/TR/xmlschema-0/ 14 3/28/2009 7:18 PM

IDREFS XML 1.0 IDREFS
attribute type, see (1)

ENTITY XML 1.0 ENTITY
attribute type, see (1)

ENTITIES XML 1.0 ENTITIES
attribute type, see (1)

NOTATION XML 1.0 NOTATION
attribute type, see (1)

NMTOKEN
US,
Brésil

XML 1.0 NMTOKEN
attribute type, see (1)

NMTOKENS
US UK,
Brésil Canada Mexique

XML 1.0 NMTOKENS
attribute type, i.e. a
whitespace separated
list of NMTOKEN's,
see (1)

Notes: (1) To retain compatibility between XML Schema and XML 1.0 DTDs, the simple
types ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN, NMTOKENS
should only be used in attributes. (2) A value of this type can be represented by more
than one lexical format, e.g. 100 and 1.0E2 are both valid float formats representing
"one hundred". However, rules have been established for this type that define a
canonical lexical format, see XML Schema Part 2. (3) Newline, tab and carriage-return
characters in a normalizedString type are converted to space characters before
schema processing. (4) As normalizedString, and adjacent space characters are
collapsed to a single space character, and leading and trailing spaces are removed. (5)
The "g" prefix signals time periods in the Gregorian calendar.

New simple types are defined by deriving them from existing simple types (built-in's and
derived). In particular, we can derive a new simple type by restricting an existing simple
type, in other words, the legal range of values for the new type are a subset of the
existing type's range of values. We use the simpleType element to define and name the
new simple type. We use the restriction element to indicate the existing (base) type,
and to identify the "facets" that constrain the range of values. A complete list of facets is
provided in Appendix B.

Suppose we wish to create a new type of integer called myInteger whose range of values
is between 10000 and 99999 (inclusive). We base our definition on the built-in simple
type integer, whose range of values also includes integers less than 10000 and greater
than 99999. To define myInteger, we restrict the range of the integer base type by
employing two facets called minInclusive and maxInclusive:

Example
Defining myInteger, Range 10000-99999
<xsd:simpleType name="myInteger">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>

http://www.w3.org/TR/xmlschema-0/ 15 3/28/2009 7:18 PM

 </xsd:restriction>
</xsd:simpleType>

The example shows one particular combination of a base type and two facets used to
define myInteger, but a look at the list of built-in simple types and their facets (Appendix
B) should suggest other viable combinations.

The purchase order schema contains another, more elaborate, example of a simple type
definition. A new simple type called SKU is derived (by restriction) from the simple type
string. Furthermore, we constrain the values of SKU using a facet called pattern in
conjunction with the regular expression "\d{3}-[A-Z]{2}" that is read "three digits
followed by a hyphen followed by two upper-case ASCII letters":

Example
Defining the Simple Type "SKU"
<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>

This regular expression language is described more fully in Appendix D.

XML Schema defines twelve facets which are listed in Appendix B. Among these, the
enumeration facet is particularly useful and it can be used to constrain the values of
almost every simple type, except the boolean type. The enumeration facet limits a simple
type to a set of distinct values. For example, we can use the enumeration facet to define
a new simple type called USState, derived from string, whose value must be one of the
standard US state abbreviations:

Example
Using the Enumeration Facet
<xsd:simpleType name="USState">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="AK"/>
 <xsd:enumeration value="AL"/>
 <xsd:enumeration value="AR"/>
 <!-- and so on ... -->
 </xsd:restriction>
</xsd:simpleType>

USState would be a good replacement for the string type currently used in the state
element declaration. By making this replacement, the legal values of a state element,
i.e. the state subelements of billTo and shipTo, would be limited to one of AK, AL, AR,
etc. Note that the enumeration values specified for a particular type must be unique.

2.3.1 List Types

XML Schema has the concept of a list type, in addition to the so-called atomic types that
constitute most of the types listed in Table 2. (Atomic types, list types, and the union

http://www.w3.org/TR/xmlschema-0/ 16 3/28/2009 7:18 PM

types described in the next section are collectively called simple types.) The value of an
atomic type is indivisible from XML Schema's perspective. For example, the NMTOKEN
value US is indivisible in the sense that no part of US, such as the character "S", has any
meaning by itself. In contrast, list types are comprised of sequences of atomic types and
consequently the parts of a sequence (the "atoms") themselves are meaningful. For
example, NMTOKENS is a list type, and an element of this type would be a white-space
delimited list of NMTOKEN's, such as "US UK FR". XML Schema has three built-in list types,
they are NMTOKENS, IDREFS, and ENTITIES.

In addition to using the built-in list types, you can create new list types by derivation from
existing atomic types. (You cannot create list types from existing list types, nor from
complex types.) For example, to create a list of myInteger's:

Example
Creating a List of myInteger's
<xsd:simpleType name="listOfMyIntType">
 <xsd:list itemType="myInteger"/>
</xsd:simpleType>

And an element in an instance document whose content conforms to listOfMyIntType is:

Example
<listOfMyInt>20003 15037 95977 95945</listOfMyInt>

Several facets can be applied to list types: length, minLength, maxLength, pattern, and
enumeration. For example, to define a list of exactly six US states (SixUSStates), we first
define a new list type called USStateList from USState, and then we derive SixUSStates
by restricting USStateList to only six items:

Example
List Type for Six US States
<xsd:simpleType name="USStateList">
 <xsd:list itemType="USState"/>
</xsd:simpleType>

<xsd:simpleType name="SixUSStates">
 <xsd:restriction base="USStateList">
 <xsd:length value="6"/>
 </xsd:restriction>
</xsd:simpleType>

Elements whose type is SixUSStates must have six items, and each of the six items must
be one of the (atomic) values of the enumerated type USState, for example:

Example
<sixStates>PA NY CA NY LA AK</sixStates>

http://www.w3.org/TR/xmlschema-0/ 17 3/28/2009 7:18 PM

Note that it is possible to derive a list type from the atomic type string. However, a string
may contain white space, and white space delimits the items in a list type, so you should
be careful using list types whose base type is string. For example, suppose we have
defined a list type with a length facet equal to 3, and base type string, then the following
3 item list is legal:

Example
Asie Europe Afrique

But the following 3 "item" list is illegal:

Example
Asie Europe Amérique Latine

Even though "Amérique Latine" may exist as a single string outside of the list, when it is
included in the list, the whitespace between Amérique and Latine effectively creates a
fourth item, and so the latter example will not conform to the 3-item list type.

2.3.2 Union Types

Atomic types and list types enable an element or an attribute value to be one or more
instances of one atomic type. In contrast, a union type enables an element or attribute
value to be one or more instances of one type drawn from the union of multiple atomic
and list types. To illustrate, we create a union type for representing American states as
singleton letter abbreviations or lists of numeric codes. The zipUnion union type is built
from one atomic type and one list type:

Example
Union Type for Zip Codes
<xsd:simpleType name="zipUnion">
 <xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>

When we define a union type, the memberTypes attribute value is a list of all the types in
the union.

Now, assuming we have declared an element called zips of type zipUnion, valid
instances of the element are:

Example
<zips>CA</zips>
<zips>95630 95977 95945</zips>
<zips>AK</zips>

Two facets, pattern and enumeration, can be applied to a union type.

http://www.w3.org/TR/xmlschema-0/ 18 3/28/2009 7:18 PM

2.4 Anonymous Type Definitions

Schemas can be constructed by defining sets of named types such as
PurchaseOrderType and then declaring elements such as purchaseOrder that reference
the types using the type= construction. This style of schema construction is
straightforward but it can be unwieldy, especially if you define many types that are
referenced only once and contain very few constraints. In these cases, a type can be
more succinctly defined as an anonymous type which saves the overhead of having to be
named and explicitly referenced.

The definition of the type Items in po.xsd contains two element declarations that use
anonymous types (item and quantity). In general, you can identify anonymous types by
the lack of a type= in an element (or attribute) declaration, and by the presence of an
un-named (simple or complex) type definition:

Example
Two Anonymous Type Definitions
<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

In the case of the item element, it has an anonymous complex type consisting of the
elements productName, quantity, USPrice, comment, and shipDate, and an attribute called
partNum. In the case of the quantity element, it has an anonymous simple type derived
from positiveInteger whose value ranges between 1 and 99.

2.5 Element Content
 2.5.1 Complex Types from Simple Types
 2.5.2 Mixed Content
 2.5.3 Empty Content
 2.5.4 anyType

The purchase order schema has many examples of elements containing other elements
(e.g. items), elements having attributes and containing other elements (e.g. shipTo), and

http://www.w3.org/TR/xmlschema-0/ 19 3/28/2009 7:18 PM

elements containing only a simple type of value (e.g. USPrice). However, we have not
seen an element having attributes but containing only a simple type of value, nor have
we seen an element that contains other elements mixed with character content, nor have
we seen an element that has no content at all. In this section we'll examine these
variations in the content models of elements.

2.5.1 Complex Types from Simple Types

Let us first consider how to declare an element that has an attribute and contains a
simple value. In an instance document, such an element might appear as:

Example
<internationalPrice currency="EUR">423.46</internationalPrice>

The purchase order schema declares a USPrice element that is a starting point:

Example
<xsd:element name="USPrice" type="decimal"/>

Now, how do we add an attribute to this element? As we have said before, simple types
cannot have attributes, and decimal is a simple type. Therefore, we must define a
complex type to carry the attribute declaration. We also want the content to be simple
type decimal. So our original question becomes: How do we define a complex type that is
based on the simple type decimal? The answer is to derive a new complex type from the
simple type decimal:

Example
Deriving a Complex Type from a Simple Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:decimal">
 <xsd:attribute name="currency" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

We use the complexType element to start the definition of a new (anonymous) type. To
indicate that the content model of the new type contains only character data and no
elements, we use a simpleContent element. Finally, we derive the new type by extending
the simple decimal type. The extension consists of adding a currency attribute using a
standard attribute declaration. (We cover type derivation in detail in Advanced Concepts
II: The International Purchase Order (§4) .) The internationalPrice element declared in
this way will appear in an instance as shown in the example at the beginning of this
section.

http://www.w3.org/TR/xmlschema-0/ 20 3/28/2009 7:18 PM

2.5.2 Mixed Content

The construction of the purchase order schema may be characterized as elements
containing subelements, and the deepest subelements contain character data. XML
Schema also provides for the construction of schemas where character data can appear
alongside subelements, and character data is not confined to the deepest subelements.

To illustrate, consider the following snippet from a customer letter that uses some of the
same elements as the purchase order:

Example
Snippet of Customer Letter
<letterBody>
<salutation>Dear Mr.<name>Robert Smith</name>.</salutation>
Your order of <quantity>1</quantity> <productName>Baby
Monitor</productName> shipped from our warehouse on
<shipDate>1999-05-21</shipDate>.
</letterBody>

Notice the text appearing between elements and their child elements. Specifically, text
appears between the elements salutation, quantity, productName and shipDate which
are all children of letterBody, and text appears around the element name which is the
child of a child of letterBody. The following snippet of a schema declares letterBody:

Example
Snippet of Schema for Customer Letter
<xsd:element name="letterBody">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="salutation">
 <xsd:complexType mixed="true">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="quantity" type="xsd:positiveInteger"/>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 <!-- etc. -->
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

The elements appearing in the customer letter are declared, and their types are defined
using the element and complexType element constructions we have seen before. To
enable character data to appear between the child-elements of letterBody, the mixed
attribute on the type definition is set to true.

Note that the mixed model in XML Schema differs fundamentally from the mixed model in
XML 1.0. Under the XML Schema mixed model, the order and number of child elements
appearing in an instance must agree with the order and number of child elements

http://www.w3.org/TR/xmlschema-0/ 21 3/28/2009 7:18 PM

specified in the model. In contrast, under the XML 1.0 mixed model, the order and
number of child elements appearing in an instance cannot be constrained. In summary,
XML Schema provides full validation of mixed models in contrast to the partial schema
validation provided by XML 1.0.

2.5.3 Empty Content

Now suppose that we want the internationalPrice element to convey both the unit of
currency and the price as attribute values rather than as separate attribute and content
values. For example:

Example
<internationalPrice currency="EUR" value="423.46"/>

Such an element has no content at all; its content model is empty. To define a type
whose content is empty, we essentially define a type that allows only elements in its
content, but we do not actually declare any elements and so the type's content model is
empty:

Example
An Empty Complex Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

In this example, we define an (anonymous) type having complexContent, i.e. only
elements. The complexContent element signals that we intend to restrict or extend the
content model of a complex type, and the restriction of anyType declares two attributes
but does not introduce any element content (see Deriving Complex Types by Restriction
(§4.4) for more details on restriction). The internationalPrice element declared in this
way may legitimately appear in an instance as shown in the example above.

The preceding syntax for an empty-content element is relatively verbose, and it is
possible to declare the internationalPrice element more compactly:

Example
Shorthand for an Empty Complex Type
<xsd:element name="internationalPrice">
 <xsd:complexType>
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:complexType>

http://www.w3.org/TR/xmlschema-0/ 22 3/28/2009 7:18 PM

</xsd:element>

This compact syntax works because a complex type defined without any simpleContent
or complexContent is interpreted as shorthand for complex content that restricts anyType.

2.5.4 anyType

The anyType represents an abstraction called the ur-type which is the base type from
which all simple and complex types are derived. An anyType type does not constrain its
content in any way. It is possible to use anyType like other types, for example:

Example
<xsd:element name="anything" type="xsd:anyType"/>

The content of the element declared in this way is unconstrained, so the element value
may be 423.46, but it may be any other sequence of characters as well, or indeed a
mixture of characters and elements. In fact, anyType is the default type when none is
specified, so the above could also be written as follows:

Example
<xsd:element name="anything"/>

If unconstrained element content is needed, for example in the case of elements
containing prose which requires embedded markup to support internationalization, then
the default declaration or a slightly restricted form of it may be suitable. The text type
described in Any Element, Any Attribute (§5.5) is an example of such a type that is
suitable for such purposes.

2.6 Annotations

XML Schema provides three elements for annotating schemas for the benefit of both
human readers and applications. In the purchase order schema, we put a basic schema
description and copyright information inside the documentation element, which is the
recommended location for human readable material. We recommend you use the
xml:lang attribute with any documentation elements to indicate the language of the
information. Alternatively, you may indicate the language of all information in a schema
by placing an xml:lang attribute on the schema element.

The appinfo element, which we did not use in the purchase order schema, can be used
to provide information for tools, stylesheets and other applications. An interesting
example using appinfo is a schema that describes the simple types in XML Schema Part
2: Datatypes. Information describing this schema, e.g. which facets are applicable to
particular simple types, is represented inside appinfo elements, and this information was
used by an application to automatically generate text for the XML Schema Part 2
document.

Both documentation and appinfo appear as subelements of annotation, which may itself

http://www.w3.org/TR/xmlschema-0/ 23 3/28/2009 7:18 PM

appear at the beginning of most schema constructions. To illustrate, the following
example shows annotation elements appearing at the beginning of an element
declaration and a complex type definition:

Example
Annotations in Element Declaration & Complex Type Definition
<xsd:element name="internationalPrice">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 element declared with anonymous type
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 empty anonymous type with 2 attributes
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:attribute name="currency" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:decimal"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

The annotation element may also appear at the beginning of other schema
constructions such as those indicated by the elements schema, simpleType, and
attribute.

2.7 Building Content Models

The definitions of complex types in the purchase order schema all declare sequences of
elements that must appear in the instance document. The occurrence of individual
elements declared in the so-called content models of these types may be optional, as
indicated by a 0 value for the attribute minOccurs (e.g. in comment), or be otherwise
constrained depending upon the values of minOccurs and maxOccurs. XML Schema also
provides constraints that apply to groups of elements appearing in a content model.
These constraints mirror those available in XML 1.0 plus some additional constraints.
Note that the constraints do not apply to attributes.

XML Schema enables groups of elements to be defined and named, so that the
elements can be used to build up the content models of complex types (thus mimicking
common usage of parameter entities in XML 1.0). Un-named groups of elements can
also be defined, and along with elements in named groups, they can be constrained to
appear in the same order (sequence) as they are declared. Alternatively, they can be
constrained so that only one of the elements may appear in an instance.

To illustrate, we introduce two groups into the PurchaseOrderType definition from the
purchase order schema so that purchase orders may contain either separate shipping
and billing addresses, or a single address for those cases in which the shippee and billee
are co-located:

http://www.w3.org/TR/xmlschema-0/ 24 3/28/2009 7:18 PM

Example
Nested Choice and Sequence Groups
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref="shipAndBill"/>
 <xsd:element name="singleUSAddress" type="USAddress"/>
 </xsd:choice>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:group id="shipAndBill">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 </xsd:sequence>
</xsd:group>

The choice group element allows only one of its children to appear in an instance. One
child is an inner group element that references the named group shipAndBill consisting
of the element sequence shipTo, billTo, and the second child is a singleUSAddress.
Hence, in an instance document, the purchaseOrder element must contain either a
shipTo element followed by a billTo element or a singleUSAddress element. The choice
group is followed by the comment and items element declarations, and both the choice
group and the element declarations are children of a sequence group. The effect of these
various groups is that the address element(s) must be followed by comment and items
elements in that order.

There exists a third option for constraining elements in a group: All the elements in the
group may appear once or not at all, and they may appear in any order. The all group
(which provides a simplified version of the SGML &-Connector) is limited to the top-level
of any content model. Moreover, the group's children must all be individual elements (no
groups), and no element in the content model may appear more than once, i.e. the
permissible values of minOccurs and maxOccurs are 0 and 1. For example, to allow the
child elements of purchaseOrder to appear in any order, we could redefine
PurchaseOrderType as:

Example
An 'All' Group
<xsd:complexType name="PurchaseOrderType">
 <xsd:all>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

By this definition, a comment element may optionally appear within purchaseOrder, and it

http://www.w3.org/TR/xmlschema-0/ 25 3/28/2009 7:18 PM

may appear before or after any shipTo, billTo and items elements, but it can appear
only once. Moreover, the stipulations of an all group do not allow us to declare an
element such as comment outside the group as a means of enabling it to appear more
than once. XML Schema stipulates that an all group must appear as the sole child at the
top of a content model. In other words, the following is illegal:

Example
Illegal Example with an 'All' Group
<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:all>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element name="items" type="Items"/>
 </xsd:all>
 <xsd:sequence>
 <xsd:element ref="comment" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

Finally, named and un-named groups that appear in content models (represented by
group and choice, sequence, all respectively) may carry minOccurs and maxOccurs
attributes. By combining and nesting the various groups provided by XML Schema, and
by setting the values of minOccurs and maxOccurs, it is possible to represent any content
model expressible with an XML 1.0 DTD. Furthermore, the all group provides additional
expressive power.

2.8 Attribute Groups

Suppose we want to provide more information about each item in a purchase order, for
example, each item's weight and preferred shipping method. We can accomplish this by
adding weightKg and shipBy attribute declarations to the item element's (anonymous)
type definition:

Example
Adding Attributes to the Inline Type Definition
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>

http://www.w3.org/TR/xmlschema-0/ 26 3/28/2009 7:18 PM

 <xsd:attribute name="partNum" type="SKU" use="required"/>
 <!-- add weightKg and shipBy attributes -->
 <xsd:attribute name="weightKg" type="xsd:decimal"/>
 <xsd:attribute name="shipBy">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="air"/>
 <xsd:enumeration value="land"/>
 <xsd:enumeration value="any"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
</xsd:element>

Alternatively, we can create a named attribute group containing all the desired attributes
of an item element, and reference this group by name in the item element declaration:

Example
Adding Attributes Using an Attribute Group
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>

 <!-- attributeGroup replaces individual declarations -->
 <xsd:attributeGroup ref="ItemDelivery"/>
 </xsd:complexType>
</xsd:element>

<xsd:attributeGroup id="ItemDelivery">
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 <xsd:attribute name="weightKg" type="xsd:decimal"/>
 <xsd:attribute name="shipBy">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="air"/>
 <xsd:enumeration value="land"/>
 <xsd:enumeration value="any"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
</xsd:attributeGroup>

Using an attribute group in this way can improve the readability of schemas, and
facilitates updating schemas because an attribute group can be defined and edited in
one place and referenced in multiple definitions and declarations. These characteristics
of attribute groups make them similar to parameter entities in XML 1.0. Note that an
attribute group may contain other attribute groups. Note also that both attribute

http://www.w3.org/TR/xmlschema-0/ 27 3/28/2009 7:18 PM

declarations and attribute group references must appear at the end of complex type
definitions.

2.9 Nil Values

One of the purchase order items listed in po.xml, the Lawnmower, does not have a
shipDate element. Within the context of our scenario, the schema author may have
intended such absences to indicate items not yet shipped. But in general, the absence of
an element does not have any particular meaning: It may indicate that the information is
unknown, or not applicable, or the element may be absent for some other reason.
Sometimes it is desirable to represent an unshipped item, unknown information, or
inapplicable information explicitly with an element, rather than by an absent element. For
example, it may be desirable to represent a "null" value being sent to or from a relational
database with an element that is present. Such cases can be represented using XML
Schema's nil mechanism which enables an element to appear with or without a non-nil
value.

XML Schema's nil mechanism involves an "out of band" nil signal. In other words, there
is no actual nil value that appears as element content, instead there is an attribute to
indicate that the element content is nil. To illustrate, we modify the shipDate element
declaration so that nils can be signalled:

Example
<xsd:element name="shipDate" type="xsd:date" nillable="true"/>

And to explicitly represent that shipDate has a nil value in the instance document, we set
the nil attribute (from the XML Schema namespace for instances) to true:

Example
<shipDate xsi:nil="true"></shipDate>

The nil attribute is defined as part of the XML Schema namespace for instances,
http://www.w3.org/2001/XMLSchema-instance, and so it must appear in the instance
document with a prefix (such as xsi:) associated with that namespace. (As with the xsd:
prefix, the xsi: prefix is used by convention only.) Note that the nil mechanism applies
only to element values, and not to attribute values. An element with xsi:nil="true" may
not have any element content but it may still carry attributes.

3 Advanced Concepts I: Namespaces, Schemas & Qualification

A schema can be viewed as a collection (vocabulary) of type definitions and element
declarations whose names belong to a particular namespace called a target namespace.
Target namespaces enable us to distinguish between definitions and declarations from
different vocabularies. For example, target namespaces would enable us to distinguish
between the declaration for element in the XML Schema language vocabulary, and a
declaration for element in a hypothetical chemistry language vocabulary. The former is
part of the http://www.w3.org/2001/XMLSchema target namespace, and the latter is part of

http://www.w3.org/TR/xmlschema-0/ 28 3/28/2009 7:18 PM

another target namespace.

When we want to check that an instance document conforms to one or more schemas
(through a process called schema validation), we need to identify which element and
attribute declarations and type definitions in the schemas should be used to check which
elements and attributes in the instance document. The target namespace plays an
important role in the identification process. We examine the role of the target namespace
in the next section.

The schema author also has several options that affect how the identities of elements
and attributes are represented in instance documents. More specifically, the author can
decide whether or not the appearance of locally declared elements and attributes in an
instance must be qualified by a namespace, using either an explicit prefix or implicitly by
default. The schema author's choice regarding qualification of local elements and
attributes has a number of implications regarding the structures of schemas and instance
documents, and we examine some of these implications in the following sections.

3.1 Target Namespaces & Unqualified Locals

In a new version of the purchase order schema, po1.xsd, we explicitly declare a target
namespace, and specify that both locally defined elements and locally defined attributes
must be unqualified. The target namespace in po1.xsd is http://www.example.com/PO1,
as indicated by the value of the targetNamespace attribute.

Qualification of local elements and attributes can be globally specified by a pair of
attributes, elementFormDefault and attributeFormDefault, on the schema element, or can
be specified separately for each local declaration using the form attribute. All such
attributes' values may each be set to unqualified or qualified, to indicate whether or not
locally declared elements and attributes must be unqualified.

In po1.xsd we globally specify the qualification of elements and attributes by setting the
values of both elementFormDefault and attributeFormDefault to unqualified. Strictly
speaking, these settings are unnecessary because the values are the defaults for the two
attributes; we make them here to highlight the contrast between this case and other
cases we describe later.

Example
Purchase Order Schema with Target Namespace, po1.xsd
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">

 <element name="purchaseOrder" type="po:PurchaseOrderType"/>
 <element name="comment" type="string"/>

 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="po:USAddress"/>
 <element name="billTo" type="po:USAddress"/>
 <element ref="po:comment" minOccurs="0"/>

http://www.w3.org/TR/xmlschema-0/ 29 3/28/2009 7:18 PM

 <!-- etc. -->
 </sequence>
 <!-- etc. -->
 </complexType>

 <complexType name="USAddress">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <!-- etc. -->
 </sequence>
 </complexType>

 <!-- etc. -->

</schema>

To see how the target namespace of this schema is populated, we examine in turn each
of the type definitions and element declarations. Starting from the end of the schema, we
first define a type called USAddress that consists of the elements name, street, etc. One
consequence of this type definition is that the USAddress type is included in the schema's
target namespace. We next define a type called PurchaseOrderType that consists of the
elements shipTo, billTo, comment, etc. PurchaseOrderType is also included in the
schema's target namespace. Notice that the type references in the three element
declarations are prefixed, i.e. po:USAddress, po:USAddress and po:comment, and the prefix
is associated with the namespace http://www.example.com/PO1. This is the same
namespace as the schema's target namespace, and so a processor of this schema will
know to look within this schema for the definition of the type USAddress and the
declaration of the element comment. It is also possible to refer to types in another schema
with a different target namespace, hence enabling re-use of definitions and declarations
between schemas.

At the beginning of the schema po1.xsd, we declare the elements purchaseOrder and
comment. They are included in the schema's target namespace. The purchaseOrder
element's type is prefixed, for the same reason that USAddress is prefixed. In contrast, the
comment element's type, string, is not prefixed. The po1.xsd schema contains a default
namespace declaration, and so unprefixed types such as string and unprefixed
elements such as element and complexType are associated with the default namespace
http://www.w3.org/2001/XMLSchema. In fact, this is the target namespace of XML Schema
itself, and so a processor of po1.xsd will know to look within the schema of XML Schema
-- otherwise known as the "schema for schemas" -- for the definition of the type string
and the declaration of the element called element.

Let us now examine how the target namespace of the schema affects a conforming
instance document:

Example
A Purchase Order with Unqualified Locals, po1.xml
<?xml version="1.0"?>
<apo:purchaseOrder xmlns:apo="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>

http://www.w3.org/TR/xmlschema-0/ 30 3/28/2009 7:18 PM

 <street>123 Maple Street</street>
 <!-- etc. -->
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <!-- etc. -->
 </billTo>
 <apo:comment>Hurry, my lawn is going wild<!/apo:comment>
 <!-- etc. -->
</apo:purchaseOrder>

The instance document declares one namespace, http://www.example.com/PO1, and
associates it with the prefix apo:. This prefix is used to qualify two elements in the
document, namely purchaseOrder and comment. The namespace is the same as the target
namespace of the schema in po1.xsd, and so a processor of the instance document will
know to look in that schema for the declarations of purchaseOrder and comment. In fact,
target namespaces are so named because of the sense in which there exists a target
namespace for the elements purchaseOrder and comment. Target namespaces in the
schema therefore control the validation of corresponding namespaces in the instance.

The prefix apo: is applied to the global elements purchaseOrder and comment elements.
Furthermore, elementFormDefault and attributeFormDefault require that the prefix is not
applied to any of the locally declared elements such as shipTo, billTo, name and street,
and it is not applied to any of the attributes (which were all declared locally). The
purchaseOrder and comment are global elements because they are declared in the context
of the schema as a whole rather than within the context of a particular type. For example,
the declaration of purchaseOrder appears as a child of the schema element in po1.xsd,
whereas the declaration of shipTo appears as a child of the complexType element that
defines PurchaseOrderType.

When local elements and attributes are not required to be qualified, an instance author
may require more or less knowledge about the details of the schema to create schema
valid instance documents. More specifically, if the author can be sure that only the root
element (such as purchaseOrder) is global, then it is a simple matter to qualify only the
root element. Alternatively, the author may know that all the elements are declared
globally, and so all the elements in the instance document can be prefixed, perhaps
taking advantage of a default namespace declaration. (We examine this approach in
Global vs. Local Declarations (§3.3).) On the other hand, if there is no uniform pattern of
global and local declarations, the author will need detailed knowledge of the schema to
correctly prefix global elements and attributes.

3.2 Qualified Locals

Elements and attributes can be independently required to be qualified, although we start
by describing the qualification of local elements. To specify that all locally declared
elements in a schema must be qualified, we set the value of elementFormDefault to
qualified:

Example
Modifications to po1.xsd for Qualified Locals

http://www.w3.org/TR/xmlschema-0/ 31 3/28/2009 7:18 PM

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <element name="purchaseOrder" type="po:PurchaseOrderType"/>
 <element name="comment" type="string"/>

 <complexType name="PurchaseOrderType">
 <!-- etc. -->
 </complexType>

 <!-- etc. -->

</schema>

And in this conforming instance document, we qualify all the elements explicitly:

Example
A Purchase Order with Explicitly Qualified Locals
<?xml version="1.0"?>
<apo:purchaseOrder xmlns:apo="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <apo:shipTo country="US">
 <apo:name>Alice Smith</apo:name>
 <apo:street>123 Maple Street</apo:street>
 <!-- etc. -->
 </apo:shipTo>
 <apo:billTo country="US">
 <apo:name>Robert Smith</apo:name>
 <apo:street>8 Oak Avenue</apo:street>
 <!-- etc. -->
 </apo:billTo>
 <apo:comment>Hurry, my lawn is going wild<!/apo:comment>
 <!-- etc. -->
</apo:purchaseOrder>

Alternatively, we can replace the explicit qualification of every element with implicit
qualification provided by a default namespace, as shown here in po2.xml:

Example
A Purchase Order with Default Qualified Locals, po2.xml
<?xml version="1.0"?>
<purchaseOrder xmlns="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <!-- etc. -->
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <!-- etc. -->
 </billTo>
 <comment>Hurry, my lawn is going wild<!/comment>

http://www.w3.org/TR/xmlschema-0/ 32 3/28/2009 7:18 PM

 <!-- etc. -->
</purchaseOrder>

In po2.xml, all the elements in the instance belong to the same namespace, and the
namespace statement declares a default namespace that applies to all the elements in
the instance. Hence, it is unnecessary to explicitly prefix any of the elements. As another
illustration of using qualified elements, the schemas in Advanced Concepts III: The
Quarterly Report (§5) all require qualified elements.

Qualification of attributes is very similar to the qualification of elements. Attributes that
must be qualified, either because they are declared globally or because the
attributeFormDefault attribute is set to qualified, appear prefixed in instance
documents. One example of a qualified attribute is the xsi:nil attribute that was
introduced in Nil Values (§2.9). In fact, attributes that are required to be qualified must be
explicitly prefixed because the Namespaces in XML specification does not provide a
mechanism for defaulting the namespaces of attributes. Attributes that are not required
to be qualified appear in instance documents without prefixes, which is the typical case.

The qualification mechanism we have described so far has controlled all local element
and attribute declarations within a particular target namespace. It is also possible to
control qualification on a declaration by declaration basis using the form attribute. For
example, to require that the locally declared attribute publicKey is qualified in instances,
we declare it in the following way:

Example
Requiring Qualification of Single Attribute
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <!-- etc. -->
 <element name="secure">
 <complexType>
 <sequence>
 <!-- element declarations -->
 </sequence>
 <attribute name="publicKey" type="base64Binary" form="qualified"/>
 </complexType>
 </element>
</schema>

Notice that the value of the form attribute overrides the value of the
attributeFormDefault attribute for the publicKey attribute only. Also, the form attribute
can be applied to an element declaration in the same manner. An instance document
that conforms to the schema is:

Example
Instance with a Qualified Attribute
<?xml version="1.0"?>
<purchaseOrder xmlns="http://www.example.com/PO1"

http://www.w3.org/TR/xmlschema-0/ 33 3/28/2009 7:18 PM

 xmlns:po="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <!-- etc. -->
 <secure po:publicKey="GpM7">
 <!-- etc. -->
 </secure>
</purchaseOrder>

3.3 Global vs. Local Declarations

Another authoring style, applicable when all element names are unique within a
namespace, is to create schemas in which all elements are global. This is similar in
effect to the use of <!ELEMENT> in a DTD. In the example below, we have modified the
original po1.xsd such that all the elements are declared globally. Notice that we have
omitted the elementFormDefault and attributeFormDefault attributes in this example to
emphasize that their values are irrelevant when there are only global element and
attribute declarations.

Example
Modified version of po1.xsd using only global element declarations
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:po="http://www.example.com/PO1"
 targetNamespace="http://www.example.com/PO1">

 <element name="purchaseOrder" type="po:PurchaseOrderType"/>

 <element name="shipTo" type="po:USAddress"/>
 <element name="billTo" type="po:USAddress"/>
 <element name="comment" type="string"/>

 <element name="name" type="string"/>
 <element name="street" type="string"/>

 <complexType name="PurchaseOrderType">
 <sequence>
 <element ref="po:shipTo"/>
 <element ref="po:billTo"/>
 <element ref="po:comment" minOccurs="0"/>
 <!-- etc. -->
 </sequence>
 </complexType>

 <complexType name="USAddress">
 <sequence>
 <element ref="po:name"/>
 <element ref="po:street"/>
 <!-- etc. -->
 </sequence>
 </complexType>

 <!-- etc. -->

</schema>

This "global" version of po1.xsd will validate the instance document po2.xml which, as we
described previously, is also schema valid against the "qualified" version of po1.xsd. In
other words, both schema approaches can validate the same, namespace defaulted,

http://www.w3.org/TR/xmlschema-0/ 34 3/28/2009 7:18 PM

document. Thus, in one respect the two schema approaches are similar, although in
another important respect the two schema approaches are very different. Specifically,
when all elements are declared globally, it is not possible to take advantage of local
names. For example, you can only declare one global element called "title". However,
you can locally declare one element called "title" that has a string type, and is a
subelement of "book". Within the same schema (target namespace) you can declare a
second element also called "title" that is an enumeration of the values "Mr Mrs Ms".

3.4 Undeclared Target Namespaces

In Basic Concepts: The Purchase Order (§2) we explained the basics of XML Schema
using a schema that did not declare a target namespace and an instance document that
did not declare a namespace. So the question naturally arises: What is the target
namespace in these examples and how is it referenced?

In the purchase order schema, po.xsd, we did not declare a target namespace for the
schema, nor did we declare a prefix (like po: above) associated with the schema's target
namespace with which we could refer to types and elements defined and declared within
the schema. The consequence of not declaring a target namespace in a schema is that
the definitions and declarations from that schema, such as USAddress and purchaseOrder,
are referenced without namespace qualification. In other words there is no explicit
namespace prefix applied to the references nor is there any implicit namespace applied
to the reference by default. So for example, the purchaseOrder element is declared using
the type reference PurchaseOrderType. In contrast, all the XML Schema elements and
types used in po.xsd are explicitly qualified with the prefix xsd: that is associated with the
XML Schema namespace.

In cases where a schema is designed without a target namespace, it is strongly
recommended that all XML Schema elements and types are explicitly qualified with a
prefix such as xsd: that is associated with the XML Schema namespace (as in po.xsd).
The rationale for this recommendation is that if XML Schema elements and types are
associated with the XML Schema namespace by default, i.e. without prefixes, then
references to XML Schema types may not be distinguishable from references to
user-defined types.

Element declarations from a schema with no target namespace validate unqualified
elements in the instance document. That is, they validate elements for which no
namespace qualification is provided by either an explicit prefix or by default (xmlns:). So,
to validate a traditional XML 1.0 document which does not use namespaces at all, you
must provide a schema with no target namespace. Of course, there are many XML 1.0
documents that do not use namespaces, so there will be many schema documents
written without target namespaces; you must be sure to give to your processor a schema
document that corresponds to the vocabulary you wish to validate.

4 Advanced Concepts II: The International Purchase Order

The purchase order schema described in Basic Concepts: The Purchase Order (§2) was
contained in a single document, and most of the schema constructions-- such as element
declarations and type definitions-- were constructed from scratch. In reality, schema
authors will want to compose schemas from constructions located in multiple documents,

http://www.w3.org/TR/xmlschema-0/ 35 3/28/2009 7:18 PM

and to create new types based on existing types. In this section, we examine
mechanisms that enable such compositions and creations.

4.1 A Schema in Multiple Documents

As schemas become larger, it is often desirable to divide their content among several
schema documents for purposes such as ease of maintenance, access control, and
readability. For these reasons, we have taken the schema constructs concerning
addresses out of po.xsd, and put them in a new file called address.xsd. The modified
purchase order schema file is called ipo.xsd:

Example
The International Purchase Order Schema, ipo.xsd
<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">

 <annotation>
 <documentation xml:lang="en">
 International Purchase order schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <!-- include address constructs -->
 <include
 schemaLocation="http://www.example.com/schemas/address.xsd"/>

 <element name="purchaseOrder" type="ipo:PurchaseOrderType"/>

 <element name="comment" type="string"/>

 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="ipo:Address"/>
 <element name="billTo" type="ipo:Address"/>
 <element ref="ipo:comment" minOccurs="0"/>
 <element name="items" type="ipo:Items"/>
 </sequence>
 <attribute name="orderDate" type="date"/>
 </complexType>

 <complexType name="Items">
 <sequence>
 <element name="item" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="productName" type="string"/>
 <element name="quantity">
 <simpleType>
 <restriction base="positiveInteger">
 <maxExclusive value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="USPrice" type="decimal"/>
 <element ref="ipo:comment" minOccurs="0"/>
 <element name="shipDate" type="date" minOccurs="0"/>
 </sequence>
 <attribute name="partNum" type="ipo:SKU" use="required"/>

http://www.w3.org/TR/xmlschema-0/ 36 3/28/2009 7:18 PM

 </complexType>
 </element>
 </sequence>
 </complexType>

 <simpleType name="SKU">
 <restriction base="string">
 <pattern value="\d{3}-[A-Z]{2}"/>
 </restriction>
 </simpleType>

</schema>

The file containing the address constructs is:

Example
Addresses for International Purchase Order schema, address.xsd
<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">

 <annotation>
 <documentation xml:lang="en">
 Addresses for International Purchase order schema
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <complexType name="Address">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
 </complexType>

 <complexType name="USAddress">
 <complexContent>
 <extension base="ipo:Address">
 <sequence>
 <element name="state" type="ipo:USState"/>
 <element name="zip" type="positiveInteger"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="UKAddress">
 <complexContent>
 <extension base="ipo:Address">
 <sequence>
 <element name="postcode" type="ipo:UKPostcode"/>
 </sequence>
 <attribute name="exportCode" type="positiveInteger" fixed="1"/>
 </extension>
 </complexContent>
 </complexType>

 <!-- other Address derivations for more countries -->

 <simpleType name="USState">
 <restriction base="string">

http://www.w3.org/TR/xmlschema-0/ 37 3/28/2009 7:18 PM

 <enumeration value="AK"/>
 <enumeration value="AL"/>
 <enumeration value="AR"/>
 <!-- and so on ... -->
 </restriction>
 </simpleType>

 <!-- simple type definition for UKPostcode -->

</schema>

The various purchase order and address constructions are now contained in two schema
files, ipo.xsd and address.xsd. To include these constructions as part of the international
purchase order schema, in other words to include them in the international purchase
order's namespace, ipo.xsd contains the include element:

Example
<include schemaLocation="http://www.example.com/schemas/address.xsd"/>

The effect of this include element is to bring in the definitions and declarations contained
in address.xsd, and make them available as part of the international purchase order
schema target namespace. The one important caveat to using include is that the target
namespace of the included components must be the same as the target namespace of
the including schema, in this case http://www.example.com/IPO. Bringing in definitions
and declarations using the include mechanism effectively adds these components to the
existing target namespace. In Redefining Types & Groups (§4.5), we describe a similar
mechanism that enables you to modify certain components when they are brought in.

In our example, we have shown only one including document and one included
document. In practice it is possible to include more than one document using multiple
include elements, and documents can include documents that themselves include other
documents. However, nesting documents in this manner is legal only if all the included
parts of the schema are declared with the same target namespace.

Instance documents that conform to schema whose definitions span multiple schema
documents need only reference the 'topmost' document and the common namespace,
and it is the responsibility of the processor to gather together all the definitions specified
in the various included documents. In our example above, the instance document
ipo.xml (see Using Derived Types in Instance Documents (§4.3)) references only the
common target namespace, http://www.example.com/IPO, and (by implication) the one
schema file http://www.example.com/schemas/ipo.xsd. The processor is responsible for
obtaining the schema file address.xsd.

In Importing Types (§5.4) we describe how schemas can be used to validate content
from more than one namespace.

4.2 Deriving Types by Extension

To create our address constructs, we start by creating a complex type called Address in
the usual way (see address.xsd). The Address type contains the basic elements of an
address: a name, a street and a city. (Such a definition will not work for all countries, but

http://www.w3.org/TR/xmlschema-0/ 38 3/28/2009 7:18 PM

it serves the purpose of our example.) From this starting point we derive two new
complex types that contain all the elements of the original type plus additional elements
that are specific to addresses in the US and the UK. The technique we use here to derive
new (complex) address types by extending an existing type is the same technique we
used in Complex Types from Simple Types (§2.5.1) , except that our base type here is a
complex type whereas our base type in the previous section was a simple type.

We define the two new complex types, USAddress and UKAddress, using the complexType
element. In addition, we indicate that the content models of the new types are complex,
i.e. contain elements, by using the complexContent element, and we indicate that we are
extending the base type Address by the value of the base attribute on the extension
element.

When a complex type is derived by extension, its effective content model is the content
model of the base type plus the content model specified in the type derivation.
Furthermore, the two content models are treated as two children of a sequential group. In
the case of UKAddress, the content model of UKAddress is the content model of Address
plus the declarations for a postcode element and an exportCode attribute. This is like
defining the UKAddress from scratch as follows:

Example
Effective Content Model of UKAddress
<complexType name="UKAddress">
 <sequence>
 <!-- content model of Address -->
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>

 <!-- appended element declaration -->
 <element name="postcode" type="ipo:UKPostcode"/>
 </sequence>

 <!-- appended attribute declaration -->
 <attribute name="exportCode" type="positiveInteger" fixed="1"/>
</complexType>

4.3 Using Derived Types in Instance Documents

In our example scenario, purchase orders are generated in response to customer orders
which may involve shipping and billing addresses in different countries. The international
purchase order, ipo.xml below, illustrates one such case where goods are shipped to the
UK and the bill is sent to a US address. Clearly it is better if the schema for international
purchase orders does not have to spell out every possible combination of international
addresses for billing and shipping, and even more so if we can add new complex types of
international address simply by creating new derivations of Address.

XML Schema allows us to define the billTo and shipTo elements as Address types (see
ipo.xsd) but to use instances of international addresses in place of instances of Address.
In other words, an instance document whose content conforms to the UKAddress type will
be valid if that content appears within the document at a location where an Address is
expected (assuming the UKAddress content itself is valid). To make this feature of XML

http://www.w3.org/TR/xmlschema-0/ 39 3/28/2009 7:18 PM

Schema work, and to identify exactly which derived type is intended, the derived type
must be identified in the instance document. The type is identified using the xsi:type
attribute which is part of the XML Schema instance namespace. In the example, ipo.xml,
use of the UKAddress and USAddress derived types is identified through the values
assigned to the xsi:type attributes.

Example
An International Purchase order, ipo.xml
<?xml version="1.0"?>
<ipo:purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ipo="http://www.example.com/IPO"
 orderDate="1999-12-01">

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <postcode>CB1 1JR</postcode>
 </shipTo>

 <billTo xsi:type="ipo:USAddress">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>

 <items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:comment>Want this for the holidays<!/ipo:comment>
 <shipDate>1999-12-05</shipDate>
 </item>
 </items>
</ipo:purchaseOrder>

In Controlling the Creation & Use of Derived Types (§4.8) we describe how to prevent
derived types from being used in this sort of substitution.

4.4 Deriving Complex Types by Restriction

In addition to deriving new complex types by extending content models, it is possible to
derive new types by restricting the content models of existing types. Restriction of
complex types is conceptually the same as restriction of simple types, except that the
restriction of complex types involves a type's declarations rather than the acceptable
range of a simple type's values. A complex type derived by restriction is very similar to its
base type, except that its declarations are more limited than the corresponding
declarations in the base type. In fact, the values represented by the new type are a
subset of the values represented by the base type (as is the case with restriction of
simple types). In other words, an application prepared for the values of the base type
would not be surprised by the values of the restricted type.

http://www.w3.org/TR/xmlschema-0/ 40 3/28/2009 7:18 PM

For example, suppose we want to update our definition of a purchase order so that it
must contain a comment; the schema shown in ipo.xsd allows a purchaseOrder element to
appear without any child comment elements. To create our new
RestrictedPurchaseOrderType type, we define the new type in the usual way, indicate
that it is derived by restriction from the base type PurchaseOrderType , and provide a new
(more restrictive) value for the minimum number of comment element occurrences. Notice
that types derived by restriction must repeat all the particle components (element
declarations, model groups, and wildcards) of the base type definition that are to be
included in the derived type. However, attribute declarations do not need to be repeated
in the derived type definition; in this example, RestrictedPurchaseOrderType will inherit
the orderDate attribute declaration from PurchaseOrderType.

Example
Deriving RestrictedPurchaseOrderType by Restriction from PurchaseOrderType

<complexType name="RestrictedPurchaseOrderType">
 <complexContent>
 <restriction base="ipo:PurchaseOrderType">
 <sequence>
 <element name="shipTo" type="ipo:Address"/>
 <element name="billTo" type="ipo:Address"/>
 <element ref="ipo:comment" minOccurs="1"/>
 <element name="items" type="ipo:Items"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

This change narrows the allowable number of comment elements from a minimum of 0 to
a minimum of 1. Note that all RestrictedPurchaseOrderType type elements will also be
acceptable as PurchaseOrderType type elements.

To further illustrate restriction, Table 3 shows several examples of how element and
attribute declarations within type definitions may be restricted (the table shows element
syntax although the first three examples are equally valid attribute restrictions).

Table 3. Restriction Examples
Base Restriction(s) Notes

default="1" setting a default value where none was previously
given

fixed="100" setting a fixed value where none was previously
given

type="string" specifying a type where none was previously
given

(minOccurs,
maxOccurs)

(minOccurs,
maxOccurs)

(0, 1) (0, 0)
exclusion of an optional component; this may also
be accomplished by omitting the component's
declaration from the restricted type definition

http://www.w3.org/TR/xmlschema-0/ 41 3/28/2009 7:18 PM

(0, 1) (1, 1) making an optional component required

(0, unbounded)
(0, 0)

(0, 37)
(1, 37)

(1, 9)

(1, 8)
(2, 9)
(4, 7)
(3, 3)

(1, unbounded)
(1, 12)

(3, unbounded)
(6, 6)

(1, 1) (1, 1) cannot further restrict minOccurs or maxOccurs

4.5 Redefining Types & Groups

In A Schema in Multiple Documents (§4.1) we described how to include definitions and
declarations obtained from external schema files having the same target namespace.
The include mechanism enables you to use externally created schema components
"as-is", that is, without any modification. We have just described how to derive new types
by extension and by restriction, and the redefine mechanism we describe here enables
you to redefine simple and complex types, groups, and attribute groups that are obtained
from external schema files. Like the include mechanism, redefine requires the external
components to be in the same target namespace as the redefining schema, although
external components from schemas that have no namespace can also be redefined. In
the latter cases, the redefined components become part of the redefining schema's
target namespace.

To illustrate the redefine mechanism, we use it instead of the include mechanism in the
International Purchase Order schema, ipo.xsd, and we use it to modify the definition of
the complex type Address contained in address.xsd:

Example
Using redefine in the International Purchase Order
<schema targetNamespace="http://www.example.com/IPO"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:ipo="http://www.example.com/IPO">

 <!-- bring in address constructs -->
 <redefine
 schemaLocation="http://www.example.com/schemas/address.xsd">

 <!-- redefinition of Address -->
 <complexType name="Address">
 <complexContent>
 <extension base="ipo:Address">
 <sequence>

http://www.w3.org/TR/xmlschema-0/ 42 3/28/2009 7:18 PM

 <element name="country" type="string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 </redefine>

 <!-- etc. -->

</schema>

The redefine element acts very much like the include element as it includes all the
declarations and definitions from the address.xsd file. The complex type definition of
Address uses the familiar extension syntax to add a country element to the definition of
Address. However, note that the base type is also Address. Outside of the redefine
element, any such attempt to define a complex type with the same name (and in the
same namespace) as the base from which it is being derived would cause an error. But
in this case, there is no error, and the extended definition of Address becomes the only
definition of Address.

Now that Address has been redefined, the extension applies to all schema components
that make use of Address. For example, address.xsd contains definitions of international
address types that are derived from Address. These derivations reflect the redefined
Address type, as shown in the following snippet:

Example
Snippet of ipo.xml using Redefined Address

 <shipTo exportCode="1" xsi:type="ipo:UKAddress">
 <name>Helen Zoe</name>
 <street>47 Eden Street</street>
 <city>Cambridge</city>
 <!-- country was added to Address which is base type of UKAddress -->
 <country>United Kingdom</country>
 <!-- postcode was added as part of UKAddress -->
 <postcode>CB1 1JR</postcode>
 </shipTo>

Our example has been carefully constructed so that the redefined Address type does not
conflict in any way with the types that are derived from the original Address definition. But
note that it would be very easy to create a conflict. For example, if the international
address type derivations had extended Address by adding a country element, then the
redefinition of Address would be adding an element of the same name to the content
model of Address. It is illegal to have two elements of the same name (and in the same
target namespace) but different types in a content model, and so the attempt to redefine
Address would cause an error. In general, redefine does not protect you from such
errors, and it should be used cautiously.

4.6 Substitution Groups

XML Schema provides a mechanism, called substitution groups, that allows elements to

http://www.w3.org/TR/xmlschema-0/ 43 3/28/2009 7:18 PM

be substituted for other elements. More specifically, elements can be assigned to a
special group of elements that are said to be substitutable for a particular named element
called the head element. (Note that the head element as well as the substitutable
elementsmust be declared as global elements.) To illustrate, we declare two elements
called customerComment and shipComment and assign them to a substitution group whose
head element is comment, and so customerComment and shipComment can be used
anyplace that we are able to use comment. Elements in a substitution group must have the
same type as the head element, or they can have a type that has been derived from the
head element's type. To declare these two new elements, and to make them
substitutable for the comment element, we use the following syntax:

Example
Declaring Elements Substitutable for comment
<element name="shipComment" type="string"
 substitutionGroup="ipo:comment"/>
<element name="customerComment" type="string"
 substitutionGroup="ipo:comment"/>

When these declarations are added to the international purchase order schema,
shipComment and customerComment can be substituted for comment in the instance
document, for example:

Example
Snippet of ipo.xml with Substituted Elements
....
<items>
 <item partNum="833-AA">
 <productName>Lapis necklace</productName>
 <quantity>1</quantity>
 <USPrice>99.95</USPrice>
 <ipo:shipComment>
 Use gold wrap if possible
 </ipo:shipComment>
 <ipo:customerComment>
 Want this for the holidays!
 </ipo:customerComment>
 <shipDate>1999-12-05</shipDate>
 </item>
</items>
....

Note that when an instance document contains element substitutions whose types are
derived from those of their head elements, it is not necessary to identify the derived
types using the xsi:type construction that we described in Using Derived Types in
Instance Documents (§4.3).

The existence of a substitution group does not require any of the elements in that class
to be used, nor does it preclude use of the head element. It simply provides a
mechanism for allowing elements to be used interchangeably.

4.7 Abstract Elements and Types

http://www.w3.org/TR/xmlschema-0/ 44 3/28/2009 7:18 PM

XML Schema provides a mechanism to force substitution for a particular element or type.
When an element or type is declared to be "abstract", it cannot be used in an instance
document. When an element is declared to be abstract, a member of that element's
substitution group must appear in the instance document. When an element's
corresponding type definition is declared as abstract, all instances of that element must
use xsi:type to indicate a derived type that is not abstract.

In the substitution group example we described in Substitution Groups (§4.6), it would be
useful to specifically disallow use of the comment element so that instances must make
use of the customerComment and shipComment elements. To declare the comment element
abstract, we modify its original declaration in the international purchase order schema,
ipo.xsd, as follows:

Example
<element name="comment" type="string" abstract="true"/>

With comment declared as abstract, instances of international purchase orders are now
only valid if they contain customerComment and shipComment elements.

Declaring an element as abstract requires the use of a substitution group. Declaring a
type as abstract simply requires the use of a type derived from it (and identified by the
xsi:type attribute) in the instance document. Consider the following schema definition:

Example
Schema for Vehicles
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://cars.example.com/schema"
 xmlns:target="http://cars.example.com/schema">

 <complexType name="Vehicle" abstract="true"/>

 <complexType name="Car">
 <complexContent>
 <extension base="target:Vehicle"/>
 </complexContent>
 </complexType>

 <complexType name="Plane">
 <complexContent>
 <extension base="target:Vehicle"/>
 </complexContent>
 </complexType>

 <element name="transport" type="target:Vehicle"/>
</schema>

The transport element is not abstract, therefore it can appear in instance documents.
However, because its type definition is abstract, it may never appear in an instance
document without an xsi:type attribute that refers to a derived type. That means the
following is not schema-valid:

http://www.w3.org/TR/xmlschema-0/ 45 3/28/2009 7:18 PM

Example
<transport xmlns="http://cars.example.com/schema"/>

because the transport element's type is abstract. However, the following is
schema-valid:

Example
<transport xmlns="http://cars.example.com/schema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Car"/>

because it uses a non-abstract type that is substitutable for Vehicle.

4.8 Controlling the Creation & Use of Derived Types

So far, we have been able to derive new types and use them in instance documents
without any restraints. In reality, schema authors will sometimes want to control
derivations of particular types, and the use of derived types in instances.

XML Schema provides a couple of mechanisms that control the derivation of types. One
of these mechanisms allows the schema author to specify that for a particular complex
type, new types may not be derived from it, either (a) by restriction, (b) by extension, or
(c) at all. To illustrate, suppose we want to prevent any derivation of the Address type by
restriction because we intend for it only to be used as the base for extended types such
as USAddress and UKAddress. To prevent any such derivations, we slightly modify the
original definition of Address as follows:

Example
Preventing Derivations by Restriction of Address
<complexType name="Address" final="restriction">
 <sequence>
 <element name="name" type="string"/>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
</complexType>

The restriction value of the final attribute prevents derivations by restriction. Preventing
derivations at all, or by extension, are indicated by the values #all and extension
respectively. Moreover, there exists an optional finalDefault attribute on the schema
element whose value can be one of the values allowed for the final attribute. The effect
of specifying the finalDefault attribute is equivalent to specifying a final attribute on
every type definition and element declaration in the schema.

Another type-derivation mechanism controls which facets can be applied in the derivation
of a new simple type. When a simple type is defined, the fixed attribute may be applied
to any of its facets to prevent a derivation of that type from modifying the value of the
fixed facets. For example, we can define a Postcode simple type as:

http://www.w3.org/TR/xmlschema-0/ 46 3/28/2009 7:18 PM

Example
Preventing Changes to Simple Type Facets
<simpleType name="Postcode">
 <restriction base="string">
 <length value="7" fixed="true"/>
 </restriction>
</simpleType>

Once this simple type has been defined, we can derive a new postal code type in which
we apply a facet not fixed in the base definition, for example:

Example
Legal Derivation from Postcode
<simpleType name="UKPostcode">
 <restriction base="ipo:Postcode">
 <pattern value="[A-Z]{2}\d\s\d[A-Z]{2}"/>
 </restriction>
</simpleType>

However, we cannot derive a new postal code in which we re-apply any facet that was
fixed in the base definition:

Example
Illegal Derivation from Postcode
<simpleType name="UKPostcode">
 <restriction base="ipo:Postcode">
 <pattern value="[A-Z]{2}\d\d[A-Z]{2}"/>
 <!-- illegal attempt to modify facet fixed in base type -->
 <length value="6" fixed="true"/>
 </restriction>
</simpleType>

In addition to the mechanisms that control type derivations, XML Schema provides a
mechanism that controls which derivations and substitution groups may be used in
instance documents. In Using Derived Types in Instance Documents (§4.3) , we
described how the derived types, USAddress and UKAddress, could be used by the shipTo
and billTo elements in instance documents. These derived types can replace the
content model provided by the Address type because they are derived from the Address
type. However, replacement by derived types can be controlled using the block attribute
in a type definition. For example, if we want to block any derivation-by-restriction from
being used in place of Address (perhaps for the same reason we defined Address with
final="restriction"), we can modify the original definition of Address as follows:

Example
Preventing Derivations by Restriction of Address in the Instance
<complexType name="Address" block="restriction">
 <sequence>
 <element name="name" type="string"/>

http://www.w3.org/TR/xmlschema-0/ 47 3/28/2009 7:18 PM

 <element name="street" type="string"/>
 <element name="city" type="string"/>
 </sequence>
</complexType>

The restriction value on the block attribute prevents derivations-by-restriction from
replacing Address in an instance. However, it would not prevent UKAddress and USAddress
from replacing Address because they were derived by extension. Preventing replacement
by derivations at all, or by derivations-by-extension, are indicated by the values #all and
extension respectively. As with final, there exists an optional blockDefault attribute on
the schema element whose value can be one of the values allowed for the block attribute.
The effect of specifying the blockDefault attribute is equivalent to specifying a block
attribute on every type definition and element declaration in the schema.

5 Advanced Concepts III: The Quarterly Report

The home-products ordering and billing application can generate ad-hoc reports that
summarize how many of which types of products have been billed on a per region basis.
An example of such a report, one that covers the fourth quarter of 1999, is shown in
4Q99.xml.

Notice that in this section we use qualified elements in the schema, and default
namespaces where possible in the instances.

Example
Quarterly Report, 4Q99.xml
<purchaseReport
 xmlns="http://www.example.com/Report"
 period="P3M" periodEnding="1999-12-31">

 <regions>
 <zip code="95819">
 <part number="872-AA" quantity="1"/>
 <part number="926-AA" quantity="1"/>
 <part number="833-AA" quantity="1"/>
 <part number="455-BX" quantity="1"/>
 </zip>
 <zip code="63143">
 <part number="455-BX" quantity="4"/>
 </zip>
 </regions>

 <parts>
 <part number="872-AA">Lawnmower</part>
 <part number="926-AA">Baby Monitor</part>
 <part number="833-AA">Lapis Necklace</part>
 <part number="455-BX">Sturdy Shelves</part>
 </parts>

</purchaseReport>

The report lists, by number and quantity, the parts billed to various zip codes, and it
provides a description of each part mentioned. In summarizing the billing data, the
intention of the report is clear and the data is unambiguous because a number of

http://www.w3.org/TR/xmlschema-0/ 48 3/28/2009 7:18 PM

constraints are in effect. For example, each zip code appears only once (uniqueness
constraint). Similarly, the description of every billed part appears only once although
parts may be billed to several zip codes (referential constraint), see for example part
number 455-BX. In the following sections, we'll see how to specify these constraints using
XML Schema.

Example
The Report Schema, report.xsd
<schema targetNamespace="http://www.example.com/Report"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:r="http://www.example.com/Report"
 xmlns:xipo="http://www.example.com/IPO"
 elementFormDefault="qualified">

 <!-- for SKU -->
 <import namespace="http://www.example.com/IPO"/>

 <annotation>
 <documentation xml:lang="en">
 Report schema for Example.com
 Copyright 2000 Example.com. All rights reserved.
 </documentation>
 </annotation>

 <element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType"/>

 <element name="parts" type="r:PartsType"/>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>

 <unique name="dummy1">
 <selector xpath="r:regions/r:zip"/>
 <field xpath="@code"/>
 </unique>

 <key name="pNumKey">
 <selector xpath="r:parts/r:part"/>
 <field xpath="@number"/>
 </key>

 <keyref name="dummy2" refer="r:pNumKey">
 <selector xpath="r:regions/r:zip/r:part"/>
 <field xpath="@number"/>
 </keyref>

 </element>

 <complexType name="RegionsType">
 <sequence>
 <element name="zip" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <complexContent>
 <restriction base="anyType">
 <attribute name="number" type="xipo:SKU"/>

http://www.w3.org/TR/xmlschema-0/ 49 3/28/2009 7:18 PM

 <attribute name="quantity" type="positiveInteger"/>
 </restriction>
 </complexContent>
 </complexType>
 </element>
 </sequence>
 <attribute name="code" type="positiveInteger"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="PartsType">
 <sequence>
 <element name="part" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="number" type="xipo:SKU"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>

</schema>

5.1 Specifying Uniqueness

XML Schema enables us to indicate that any attribute or element value must be unique
within a certain scope. To indicate that one particular attribute or element value is unique,
we use the unique element first to "select" a set of elements, and then to identify the
attribute or element "field" relative to each selected element that has to be unique within
the scope of the set of selected elements. In the case of our report schema, report.xsd,
the selector element's xpath attribute contains an XPath expression, r:regions/r:zip,
that selects a list of all the zip elements in a report instance. Likewise, the field
element's xpath attribute contains a second XPath expression, @code, that specifies that
the code attribute values of those elements must be unique. Note that the XPath
expressions limit the scope of what must be unique. The report might contain another
code attribute, but its value does not have to be unique because it lies outside the scope
defined by the XPath expressions. Also note that the XPath expressions you can use in
the xpath attribute are limited to a subset of the full XPath language defined in XML Path
Language 1.0.

We can also indicate combinations of fields that must be unique. Going back to our
purchase order example, suppose we want each item to have a unique combination of
part number and product name. We could achieve such a constraint by specifying that
for each item element, the combined values of its partNum attribute and its productName
child must be unique.

To define combinations of values, we simply use multiple field elements to identify all
the values involved:

Example

http://www.w3.org/TR/xmlschema-0/ 50 3/28/2009 7:18 PM

A Unique Composed Value

<xsd:element name="items" type="Items">
 <xsd:unique name="partNumAndName">
 <xsd:selector xpath="item"/>
 <xsd:field xpath="@partNum"/>
 <xsd:field xpath="productName"/>
 </xsd:unique>
</xsd:element>

5.2 Defining Keys & their References

In the 1999 quarterly report, the description of every billed part appears only once. We
could enforce this constraint using unique, however, we also want to ensure that every
part-quantity element listed under a zip code has a corresponding part description. We
enforce the constraint using the key and keyref elements. The report schema,
report.xsd, shows that the key and keyref constructions are applied using almost the
same syntax as unique. The key element applies to the number attribute value of part
elements that are children of the parts element. This declaration of number as a key
means that its value must be unique and cannot be set to nil (i.e. is not nillable), and the
name that is associated with the key, pNumKey, makes the key referenceable from
elsewhere.

To ensure that the part-quantity elements have corresponding part descriptions, we say
that the number attribute (<field xpath="@number"/>) of those elements (<selector
xpath="r:regions/r:zip/r:part"/>) must reference the pNumKey key. This declaration of
number as a keyref does not mean that its value must be unique, but it does mean there
must exist a pNumKey with the same value.

As you may have figured out by analogy with unique, it is possible to define combinations
of key and keyref values. Using this mechanism, we could go beyond simply requiring
the product numbers to be equal, and define a combination of values that must be equal.
Such values may involve combinations of multiple value types (string, integer, date,
etc.), provided that the order and type of the field element references is the same in
both the key and keyref definitions.

5.3 XML Schema Constraints vs. XML 1.0 ID Attributes

XML 1.0 provides a mechanism for ensuring uniqueness using the ID attribute and its
associated attributes IDREF and IDREFS. This mechanism is also provided in XML
Schema through the ID, IDREF, and IDREFS simple types which can be used for declaring
XML 1.0-style attributes. XML Schema also introduces new mechanisms that are more
flexible and powerful. For example, XML Schema's mechanisms can be applied to any
element and attribute content, regardless of its type. In contrast, ID is a type of attribute
and so it cannot be applied to attributes, elements or their content. Furthermore, Schema
enables you to specify the scope within which uniqueness applies whereas the scope of
an ID is fixed to be the whole document. Finally, Schema enables you to create keys or a
keyref from combinations of element and attribute content whereas ID has no such
facility.

http://www.w3.org/TR/xmlschema-0/ 51 3/28/2009 7:18 PM

 5.4 Importing Types

The report schema, report.xsd, makes use of the simple type xipo:SKU that is defined in
another schema, and in another target namespace. Recall that we used include so that
the schema in ipo.xsd could make use of definitions and declarations from address.xsd.
We cannot use include here because it can only pull in definitions and declarations from
a schema whose target namespace is the same as the including schema's target
namespace. Hence, the include element does not identify a namespace (although it
does require a schemaLocation). The import mechanism that we describe in this section is
an important mechanism that enables schema components from different target
namespaces to be used together, and hence enables the schema validation of instance
content defined across multiple namespaces.

To import the type SKU and use it in the report schema, we identify the namespace in
which SKU is defined, and associate that namespace with a prefix for use in the report
schema. Concretely, we use the import element to identify SKU's target namespace,
http://www.example.com/IPO, and we associate the namespace with the prefix xipo using
a standard namespace declaration. The simple type SKU, defined in the namespace
http://www.example.com/IPO, may then be referenced as xipo:SKU in any of the report
schema's definitions and declarations.

In our example, we imported one simple type from one external namespace, and used it
for declaring attributes. XML Schema in fact permits multiple schema components to be
imported, from multiple namespaces, and they can be referred to in both definitions and
declarations. For example in report.xsd we could additionally reuse the comment element
declared in ipo.xsd by referencing that element in a declaration:

Example
<element ref="xipo:comment"/>

Note however, that we cannot reuse the shipTo element from ipo.xsd, and the following
is not legal because only global schema components can be imported:

Example
<element ref="xipo:shipTo"/>

In ipo.xsd, comment is declared as a global element, in other words it is declared as an
element of the schema. In contrast, shipTo is declared locally, in other words it is an
element declared inside a complex type definition, specifically the PurchaseOrderType
type.

Complex types can also be imported, and they can be used as the base types for
deriving new types. Only named complex types can be imported; local, anonymously
defined types cannot. Suppose we want to include in our reports the name of an analyst,
along with contact information. We can reuse the (globally defined) complex type
USAddress from address.xsd, and extend it to define a new type called Analyst in the
report schema by adding the new elements phone and email:

http://www.w3.org/TR/xmlschema-0/ 52 3/28/2009 7:18 PM

Example
Defining Analyst by Extending USAddress
<complexType name="Analyst">
 <complexContent>
 <extension base="xipo:USAddress">
 <sequence>
 <element name="phone" type="string"/>
 <element name="email" type="string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Using this new type we declare an element called analyst as part of the purchaseReport
element declaration (declarations not shown) in the report schema. Then, the following
instance document would conform to the modified report schema:

Example
Instance Document Conforming to Report Schema with Analyst Type
<r:purchaseReport
 xmlns:r="http://www.example.com/Report"
 period="P3M" periodEnding="1999-12-31">
 <!-- regions and parts elements omitted -->
 <r:analyst>
 <name>Wendy Uhro</name>
 <street>10 Corporate Towers</street>
 <city>San Jose</city>
 <state>CA</state>
 <zip>95113</zip>
 <r:phone>408-271-3366</r:phone>
 <r:email>uhro@example.com</r:email>
 </r:analyst>
</r:purchaseReport>

Note that the report now has both qualified and unqualified elements. This is because
some of the elements (name, street, city, state and zip) are locally declared in ipo.xsd,
whose elementFormDefault is unqualified (by default). The other elements in the
example are declared in report.xsd, whose elementFormDefault is set to qualified.

When schema components are imported from multiple namespaces, each namespace
must be identified with a separate import element. The import elements themselves
must appear as the first children of the schema element. Furthermore, each namespace
must be associated with a prefix, using a standard namespace declaration, and that
prefix is used to qualify references to any schema components belonging to that
namespace. Finally, import elements optionally contain a schemaLocation attribute to
help locate resources associated with the namespaces. We discuss the schemaLocation
attribute in more detail in a later section.

5.4.1 Type Libraries

As XML schemas become more widespread, schema authors will want to create simple
and complex types that can be shared and used as building blocks for creating new

http://www.w3.org/TR/xmlschema-0/ 53 3/28/2009 7:18 PM

schemas. XML Schemas already provides types that play this role, in particular, the types
described in the Simple Types appendix and in an introductory type library.

Schema authors will undoubtedly want to create their own libraries of types to represent
currency, units of measurement, business addresses, and so on. Each library might
consist of a schema containing one or more definitions, for example, a schema
containing a currency type:

Example
Example Currency Type in Type Library
<schema targetNamespace="http://www.example.com/Currency"
 xmlns:c="http://www.example.com/Currency"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <annotation>
 <documentation xml:lang="en">
 Definition of Currency type based on ISO 4217
 </documentation>
 </annotation>

 <complexType name="Currency">
 <simpleContent>
 <extension base="decimal">
 <attribute name="name">
 <simpleType>
 <restriction base="string">

 <enumeration value="AED">
 <annotation>
 <documentation xml:lang="en">
 United Arab Emirates: Dirham (1 Dirham = 100 Fils)
 </documentation>
 </annotation>
 </enumeration>

 <enumeration value="AFA">
 <annotation>
 <documentation xml:lang="en">
 Afghanistan: Afghani (1 Afghani = 100 Puls)
 </documentation>
 </annotation>
 </enumeration>

 <enumeration value="ALL">
 <annotation>
 <documentation xml:lang="en">
 Albania, Lek (1 Lek = 100 Qindarka)
 </documentation>
 </annotation>
 </enumeration>

 <!-- and other currencies -->

 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>

</schema>

http://www.w3.org/TR/xmlschema-0/ 54 3/28/2009 7:18 PM

An example of an element appearing in an instance and having this type:

Example
<convertFrom name="AFA">199.37</convertFrom>

Once we have defined the currency type, we can make it available for re-use in other
schemas through the import mechanism just described.

5.5 Any Element, Any Attribute

In previous sections we have seen several mechanisms for extending the content models
of complex types. For example, a mixed content model can contain arbitrary character
data in addition to elements, and for example, a content model can contain elements
whose types are imported from external namespaces. However, these mechanisms
provide very broad and very narrow controls respectively. The purpose of this section is
to describe a flexible mechanism that enables content models to be extended by any
elements and attributes belonging to specified namespaces.

To illustrate, consider a version of the quarterly report, 4Q99html.xml, in which we have
embedded an XHTML representation of the XML parts data. The XHTML content
appears as the content of the element htmlExample, and the default namespace is
changed on the outermost XHTML element (table) so that all the XHTML elements
belong to the XHTML namespace, http://www.w3.org/1999/xhtml:

Example
Quarterly Report with XHTML, 4Q99html.xml
<purchaseReport
 xmlns="http://www.example.com/Report"
 period="P3M" periodEnding="1999-12-31">

 <regions>
 <!-- part sales listed by zip code, data from 4Q99.xml -->
 </regions>

 <parts>
 <!-- part descriptions from 4Q99.xml -->
 </parts>

 <htmlExample>
 <table xmlns="http://www.w3.org/1999/xhtml"
 border="0" width="100%">
 <tr>
 <th align="left">Zip Code</th>
 <th align="left">Part Number</th>
 <th align="left">Quantity</th>
 </tr>
 <tr><td>95819</td><td> </td><td> </td></tr>
 <tr><td> </td><td>872-AA</td><td>1</td></tr>
 <tr><td> </td><td>926-AA</td><td>1</td></tr>
 <tr><td> </td><td>833-AA</td><td>1</td></tr>
 <tr><td> </td><td>455-BX</td><td>1</td></tr>
 <tr><td>63143</td><td> </td><td> </td></tr>
 <tr><td> </td><td>455-BX</td><td>4</td></tr>
 </table>

http://www.w3.org/TR/xmlschema-0/ 55 3/28/2009 7:18 PM

 </htmlExample>

</purchaseReport>

To permit the appearance of XHTML in the instance document we modify the report
schema by declaring a new element htmlExample whose content is defined by the any
element. In general, an any element specifies that any well-formed XML is permissible in
a type's content model. In the example, we require the XML to belong to the namespace
http://www.w3.org/1999/xhtml, in other words, it should be XHTML. The example also
requires there to be at least one element present from this namespace, as indicated by
the values of minOccurs and maxOccurs:

Example
Modification to purchaseReport Declaration to Allow XHTML in Instance
<element name="purchaseReport">
 <complexType>
 <sequence>
 <element name="regions" type="r:RegionsType"/>
 <element name="parts" type="r:PartsType"/>
 <element name="htmlExample">
 <complexType>
 <sequence>
 <any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="1" maxOccurs="unbounded"
 processContents="skip"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="period" type="duration"/>
 <attribute name="periodEnding" type="date"/>
 </complexType>
</element>

The modification permits some well-formed XML belonging to the namespace
http://www.w3.org/1999/xhtml to appear inside the htmlExample element. Therefore
4Q99html.xml is permissible because there is one element which (with its children) is
well-formed, the element appears inside the appropriate element (htmlExample), and the
instance document asserts that the element and its content belongs to the required
namespace. However, the XHTML may not actually be valid because nothing in
4Q99html.xml by itself can provide that guarantee. If such a guarantee is required, the
value of the processContents attribute should be set to strict (the default value). In this
case, an XML processor is obliged to obtain the schema associated with the required
namespace, and validate the XHTML appearing within the htmlExample element.

In another example, we define a text type which is similar to the text type defined in XML
Schema's introductory type library (see also Type Libraries (§5.4.1)), and is suitable for
internationalized human-readable text. The text type allows an unrestricted mixture of
character content and element content from any namespace, for example Ruby
annotations, along with an optional xml:lang attribute. The lax value of the
processContents attribute instructs an XML processor to validate the element content on
a can-do basis: It will validate elements and attributes for which it can obtain schema
information, but it will not signal errors for those it cannot obtain any schema information.

http://www.w3.org/TR/xmlschema-0/ 56 3/28/2009 7:18 PM

Example
Text Type
<xsd:complexType name="text">
 <xsd:complexContent mixed="true">
 <xsd:restriction base="xsd:anyType">
 <xsd:sequence>
 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute ref="xml:lang"/>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

Namespaces may be used to permit and forbid element content in various ways
depending upon the value of the namespace attribute, as shown in Table 4:

Table 4. Namespace Attribute in Any
Value of Namespace Attribute Allowable Element Content

##any Any well-formed XML from any namespace
(default)

##local Any well-formed XML that is not qualified, i.e. not
declared to be in a namespace

##other
Any well-formed XML that is from a namespace
other than the target namespace of the type being
defined (unqualified elements are not allowed)

"http://www.w3.org/1999/xhtml
##targetNamespace"

Any well-formed XML belonging to any namespace
in the (whitespace separated) list;
##targetNamespace is shorthand for the target
namespace of the type being defined

In addition to the any element which enables element content according to namespaces,
there is a corresponding anyAttribute element which enables attributes to appear in
elements. For example, we can permit any XHTML attribute to appear as part of the
htmlExample element by adding anyAttribute to its declaration:

Example
Modification to htmlExample Declaration to Allow XHTML Attributes
<element name="htmlExample">
 <complexType>
 <sequence>
 <any namespace="http://www.w3.org/1999/xhtml"
 minOccurs="1" maxOccurs="unbounded"
 processContents="skip"/>
 </sequence>
 <anyAttribute namespace="http://www.w3.org/1999/xhtml"/>
 </complexType>
</element>

This declaration permits an XHTML attribute, say href, to appear in the htmlExample

http://www.w3.org/TR/xmlschema-0/ 57 3/28/2009 7:18 PM

element. For example:

Example
An XHTML attribute in the htmlExample Element
....
 <htmlExample xmlns:h="http://www.w3.org/1999/xhtml"
 h:href="http://www.example.com/reports/4Q99.html">
 <!-- XHTML markup here -->
 </htmlExample>
....

The namespace attribute in an anyAttribute element can be set to any of the values
listed in Table 4 for the any element, and anyAttribute can be specified with a
processContents attribute. In contrast to an any element, anyAttribute cannot constrain
the number of attributes that may appear in an element.

5.6 schemaLocation

XML Schema uses the schemaLocation and xsi:schemaLocation attributes in three
circumstances.

1. In an instance document, the attribute xsi:schemaLocation provides hints from the
author to a processor regarding the location of schema documents. The author warrants
that these schema documents are relevant to checking the validity of the document
content, on a namespace by namespace basis. For example, we can indicate the
location of the Report schema to a processor of the Quarterly Report:

Example
Using schemaLocation in the Quarterly Report, 4Q99html.xml
<purchaseReport
 xmlns="http://www.example.com/Report"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/Report
 http://www.example.com/Report.xsd"
 period="P3M" periodEnding="1999-12-31">

 <!-- etc. -->

</purchaseReport>

The schemaLocation attribute value consists of one or more pairs of URI references,
separated by white space. The first member of each pair is a namespace name, and the
second member of the pair is a hint describing where to find an appropriate schema
document for that namespace. The presence of these hints does not require the
processor to obtain or use the cited schema documents, and the processor is free to use
other schemas obtained by any suitable means, or to use no schema at all.

A schema is not required to have a namespace (see Undeclared Target Namespaces
(§3.4)) and so there is a noNamespaceSchemaLocation attribute which is used to provide
hints for the locations of schema documents that do not have target namespaces.

http://www.w3.org/TR/xmlschema-0/ 58 3/28/2009 7:18 PM

2. In a schema, the include element has a required schemaLocation attribute, and it
contains a URI reference which must identify a schema document. The effect is to
compose a final effective schema by merging the declarations and definitions of the
including and the included schemas. For example, in Advanced Concepts II: The
International Purchase Order (§4), the type definitions of Address, USAddress, UKAddress,
USState (along with their attribute and local element declarations) from address.xsd were
added to the element declarations of purchaseOrder and comment, and the type definitions
of PurchaseOrderType, Items and SKU (along with their attribute and local element
declarations) from ipo.xsd to create a single schema.

3. Also in a schema, the import element has optional namespace and schemaLocation
attributes. If present, the schemaLocation attribute is understood in a way which parallels
the interpretation of xsi:schemaLocation in (1). Specifically, it provides a hint from the
author to a processor regarding the location of a schema document that the author
warrants supplies the required components for the namespace identified by the
namespace attribute. To import components that are not in any target namespace, the
import element is used without a namespace attribute (and with or without a
schemaLocation attribute). References to components imported in this manner are
unqualified.

Note that the schemaLocation is only a hint and some processors and applications will
have reasons to not use it. For example, an XHTML editor may have a built-in XHTML
schema.

5.7 Conformance

An instance document may be processed against a schema to verify whether the rules
specified in the schema are honored in the instance. Typically, such processing actually
does two things, (1) it checks for conformance to the rules, a process called schema
validation, and (2) it adds supplementary information that is not immediately present in
the instance, such as types and default values, called infoset contributions.

The author of an instance document, such as a particular purchase order, may claim, in
the instance itself, that it conforms to the rules in a particular schema. The author does
this using the schemaLocation attribute discussed above. But regardless of whether a
schemaLocation attribute is present, an application is free to process the document
against any schema. For example, a purchasing application may have the policy of
always using a certain purchase order schema, regardless of any schemaLocation values.

Conformance checking can be thought of as proceeding in steps, first checking that the
root element of the document instance has the right contents, then checking that each
subelement conforms to its description in a schema, and so on until the entire document
is verified. Processors are required to report what checking has been carried out.

To check an element for conformance, the processor first locates the declaration for the
element in a schema, and then checks that the targetNamespace attribute in the schema
matches the actual namespace URI of the element. Alternatively, it may determine that
the schema does not have a targetNamespace attribute and the instance element is not
namespace-qualified.

http://www.w3.org/TR/xmlschema-0/ 59 3/28/2009 7:18 PM

Supposing the namespaces match, the processor then examines the type of the
element, either as given by the declaration in the schema, or by an xsi:type attribute in
the instance. If the latter, the instance type must be an allowed substitution for the type
given in the schema; what is allowed is controlled by the block attribute in the element
declaration. At this same time, default values and other infoset contributions are applied.

Next the processor checks the immediate attributes and contents of the element,
comparing these against the attributes and contents permitted by the element's type. For
example, considering a shipTo element such as the one in The Purchase Order Schema
(§2.1), the processor checks what is permitted for an Address, because that is the shipTo
element's type.

If the element has a simple type, the processor verifies that the element has no attributes
or contained elements, and that its character content matches the rules for the simple
type. This sometimes involves checking the character sequence against regular
expressions or enumerations, and sometimes it involves checking that the character
sequence represents a value in a permitted range.

If the element has a complex type, then the processor checks that any required attributes
are present and that their values conform to the requirements of their simple types. It
also checks that all required subelements are present, and that the sequence of
subelements (and any mixed text) matches the content model declared for the complex
type. Regarding subelements, schemas can either require exact name matching, permit
substitution by an equivalent element or permit substitution by any element allowed by an
'any' particle.

Unless a schema indicates otherwise (as it can for 'any' particles) conformance checking
then proceeds one level more deeply by looking at each subelement in turn, repeating
the process described above.

A Acknowledgements

Many people have contributed ideas, material and feedback that has improved this
document. In particular, the editor acknowledges contributions from David Beech, Paul
Biron, Don Box, Allen Brown, David Cleary, Dan Connolly, Roger Costello, Martin Dürst,
Martin Gudgin, Dave Hollander, Joe Kesselman, John McCarthy, Andrew Layman, Eve
Maler, Ashok Malhotra, Noah Mendelsohn, Michael Sperberg-McQueen, Henry
Thompson, Misha Wolf, and Priscilla Walmsley for validating the examples.

At the time the first edition of this specification was published, the members of the XML
Schema Working Group were:

Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Charles E. Campbell, Informix
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU

http://www.w3.org/TR/xmlschema-0/ 60 3/28/2009 7:18 PM

David Cleary, Progress Software
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox
Roger L. Costello, MITRE
Haavard Danielson, Progress Software
Josef Dietl, Mozquito Technologies
David Ezell, Hewlett-Packard Company
Alexander Falk, Altova GmbH
David Fallside, IBM
Dan Fox, Defense Logistics Information Service (DLIS)
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Dave Hollander, Contivo, Inc (co-chair)
Mary Holstege, Invited Expert
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Rick Jelliffe, Academia Sinica
Simon Johnston, Rational Software
Bob Lojek, Mozquito Technologies
Ashok Malhotra, Microsoft
Lisa Martin, IBM
Noah Mendelsohn, Lotus Development Corporation
Adrian Michel, Commerce One
Alex Milowski, Invited Expert
Don Mullen, TIBCO Extensibility
Dave Peterson, Graphic Communications Association
Jonathan Robie, Software AG
Eric Sedlar, Oracle Corp.
C. M. Sperberg-McQueen, W3C (co-chair)
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Henry S. Thompson, University of Edinburgh
Mark Tucker, Health Level Seven
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Aki Yoshida, SAP AG
Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation and
contributions of a number of people not currently members of the Working Group,
including in particular those named below. Affiliations given are those current at the time
of their work with the WG.

Paula Angerstein, Vignette Corporation
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation

http://www.w3.org/TR/xmlschema-0/ 61 3/28/2009 7:18 PM

Mike Cokus, MITRE
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
George Feinberg, Object Design
Charles Frankston, Microsoft
Ernesto Guerrieri, Inso
Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft
Dmitry Lenkov, Hewlett-Packard Company
John McCarthy, Lawrence Berkeley National Laboratory
Murata Makoto, Xerox
Eve Maler, Sun Microsystems
Murray Maloney, Muzmo Communication, acting for Commerce One
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
John C. Schneider, MITRE
Lew Shannon, NCR
William Shea, Merrill Lynch
Ralph Swick, W3C
Tony Stewart, Rivcom
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar

The lists given above pertain to the first edition. At the time work on this second edition
was completed, the membership of the Working Group was:

Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Allen Brown, Microsoft
Charles E. Campbell, Invited expert
Peter Chen, Invited expert
Tony Cincotta, NIST
David Ezell, National Association of Convenience Stores
Matthew Fuchs, Invited expert
Sandy Gao, IBM
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, Invited expert
Mary Holstege, Mark Logic
Mario Jeckle, DaimlerChrysler
Marcel Jemio, Data Interchange Standards Association
Kohsuke Kawaguchi, Sun Microsystems

http://www.w3.org/TR/xmlschema-0/ 62 3/28/2009 7:18 PM

Ashok Malhotra, Invited expert
Lisa Martin, IBM
Jim Melton, Oracle Corp
Noah Mendelsohn, IBM
Dave Peterson, Invited expert
Anli Shundi, TIBCO Extensibility
C. M. Sperberg-McQueen, W3C (co-chair)
Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Henry S. Thompson, University of Edinburgh
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, Invited expert
Kongyi Zhou, Oracle Corp.

We note with sadness the accidental death of Mario Jeckle shortly after the completion
of work on this document. In addition to those named above, several people served on
the Working Group during the development of this second edition:

Oriol Carbo, University of Edinburgh
Tyng-Ruey Chuang, Academia Sinica
Joey Coyle, Health Level 7
Tim Ewald, DevelopMentor
Nelson Hung, Corel
Melanie Kudela, Uniform Code Council
Matthew MacKenzie, XML Global
Cliff Schmidt, Microsoft
John Stanton, Defense Information Systems Agency
John Tebbutt, NIST
Ross Thompson, Contivo
Scott Vorthmann, TIBCO Extensibility

B Simple Types & their Facets

The legal values for each simple type can be constrained through the application of one
or more facets. Tables B1.a and B1.b list all of XML Schema's built-in simple types and
the facets applicable to each type. The names of the simple types and the facets are
linked from the tables to the corresponding descriptions in XML Schema Part 2:
Datatypes.

Table B1.a. Simple Types & Applicable Facets
Simple Types Facets

length minLength maxLength pattern enumeration whiteSpace
string y y y y y y
normalizedString y y y y y y
token y y y y y see (1)
base64Binary y y y y y see (1)
hexBinary y y y y y see (1)

http://www.w3.org/TR/xmlschema-0/ 63 3/28/2009 7:18 PM

integer y y see (1)
positiveInteger y y see (1)
negativeInteger y y see (1)
nonNegativeInteger y y see (1)
nonPositiveInteger y y see (1)
long y y see (1)
unsignedLong y y see (1)
int y y see (1)
unsignedInt y y see (1)
short y y see (1)
unsignedShort y y see (1)
byte y y see (1)
unsignedByte y y see (1)
decimal y y see (1)
float y y see (1)
double y y see (1)
boolean y see (1)
duration y y see (1)
dateTime y y see (1)
date y y see (1)
time y y see (1)
gYear y y see (1)
gYearMonth y y see (1)
gMonth y y see (1)
gMonthDay y y see (1)
gDay y y see (1)
Name y y y y y see (1)
QName y y y y y see (1)
NCName y y y y y see (1)
anyURI y y y y y see (1)
language y y y y y see (1)
ID y y y y y see (1)
IDREF y y y y y see (1)
IDREFS y y y y y see (1)
ENTITY y y y y y see (1)
ENTITIES y y y y y see (1)

http://www.w3.org/TR/xmlschema-0/ 64 3/28/2009 7:18 PM

NOTATION y y y y y see (1)
NMTOKEN y y y y y see (1)
NMTOKENS y y y y y see (1)
Note: (1) Although the whiteSpace facet is applicable to this type, the only value that can
be specified is collapse.

The facets listed in Table B1.b apply only to simple types which are ordered. Not all
simple types are ordered and so B1.b does not list all of the simple types.

Table B1.b. Simple Types & Applicable Facets
Simple Types Facets

max
Inclusive

max
Exclusive

min
Inclusive

min
Exclusive

total
Digits

fraction
Digits

integer y y y y y see (1)
positiveInteger y y y y y see (1)
negativeInteger y y y y y see (1)
nonNegativeInteger y y y y y see (1)
nonPositiveInteger y y y y y see (1)
long y y y y y see (1)
unsignedLong y y y y y see (1)
int y y y y y see (1)
unsignedInt y y y y y see (1)
short y y y y y see (1)
unsignedShort y y y y y see (1)
byte y y y y y see (1)
unsignedByte y y y y y see (1)
decimal y y y y y y
float y y y y
double y y y y
duration y y y y
dateTime y y y y
date y y y y
time y y y y
gYear y y y y
gYearMonth y y y y
gMonth y y y y
gMonthDay y y y y

http://www.w3.org/TR/xmlschema-0/ 65 3/28/2009 7:18 PM

gDay y y y y
Note: (1) Although the fractionDigits facet is applicable to this type, the only value
that can be specified is zero.

C Using Entities

XML 1.0 provides various types of entities which are named fragments of content that
can be used in the construction of both DTD's (parameter entities) and instance
documents. In Building Content Models (§2.7), we noted how named groups mimic
parameter entities. In this section we show how entities can be declared in instance
documents, and how the functional equivalents of entities can be declared in schemas.

Suppose we want to declare and use an entity in an instance document, and that
document is also constrained by a schema. For example:

Example
Declaring and referencing an entity in an instance document.
<?xml version="1.0" ?>
<!DOCTYPE purchaseOrder [
<!ENTITY eacute "é">
]>
<purchaseOrder xmlns="http://www.example.com/PO1"
 orderDate="1999-10-20">
 <!-- etc. -->
 <city>Montréal</city>
 <!-- etc. -->
</purchaseOrder>

Here, we declare an entity called eacute as part of an internal (DTD) subset, and we
reference this entity in the content of the city element. Note that when this instance
document is processed, the entity will be resolved before schema validation takes place.
In other words, a schema processor will determine the validity of the city element using
Montréal as the element's value.

We can achieve a similar but not identical outcome by declaring an element in a schema,
and by setting the element's content appropriately:

Example
<xsd:element name="eacute" type="xsd:token" fixed="é"/>

And this element can be used in an instance document:

Example
Using an element instead of an entity in an instance document.
<?xml version="1.0" ?>
<purchaseOrder xmlns="http://www.example.com/PO1"
 xmlns:c="http://www.example.com/characterElements"

http://www.w3.org/TR/xmlschema-0/ 66 3/28/2009 7:18 PM

 orderDate="1999-10-20">
 <!-- etc. -->
 <city>Montr<c:eacute/>al</city>
 <!-- etc. -->
</purchaseOrder>

In this case, a schema processor will process two elements, a city element, and an
eacute element for the contents of which the processor will supply the single character é.
Note that the extra element will complicate string matching; the two forms of the name
"Montréal" given in the two examples above will not match each other using normal
string-comparison techniques.

D Regular Expressions

XML Schema's pattern facet uses a regular expression language that supports Unicode.
It is fully described in XML Schema Part 2. The language is similar to the regular
expression language used in the Perl Programming language, although expressions are
matched against entire lexical representations rather than user-scoped lexical
representations such as line and paragraph. For this reason, the expression language
does not contain the metacharacters ^ and $, although ^ is used to express exception,
e.g. [^0-9]x.

Table D1. Examples of Regular Expressions
Expression Match(es)
Chapter \d Chapter 0, Chapter 1, Chapter 2

Chapter\s\d Chapter followed by a single whitespace character (space, tab,
newline, etc.), followed by a single digit

Chapter\s\w Chapter followed by a single whitespace character (space, tab,
newline, etc.), followed by a word character (XML 1.0 Letter or Digit)

Española Española

\p{Lu} any uppercase character, the value of \p{} (e.g. "Lu") is defined by
Unicode

\p{IsGreek} any Greek character, the 'Is' construction may be applied to any block
name (e.g. "Greek") as defined by Unicode

\P{IsGreek} any non-Greek character, the 'Is' construction may be applied to any
block name (e.g. "Greek") as defined by Unicode

a*x x, ax, aax, aaax
a?x ax, x
a+x ax, aax, aaax

(a|b)+x ax, bx, aax, abx, bax, bbx, aaax, aabx, abax, abbx, baax, babx, bbax,
bbbx, aaaax

[abcde]x ax, bx, cx, dx, ex
[a-e]x ax, bx, cx, dx, ex
[\-ae]x -x, ax, ex

http://www.w3.org/TR/xmlschema-0/ 67 3/28/2009 7:18 PM

[ae\-]x ax, ex, -x
[^0-9]x any non-digit character followed by the character x
\Dx any non-digit character followed by the character x
.x any character followed by the character x
.*abc.* 1x2abc, abc1x2, z3456abchooray
ab{2}x abbx
ab{2,4}x abbx, abbbx, abbbbx
ab{2,}x abbx, abbbx, abbbbx
(ab){2}x ababx

E Index

E.1 XML Schema Elements

Each element name is followed by one or more links to examples (identified by section
number) in the Primer , plus a link to a formal XML description in either the Structures or
Datatypes parts of the XML Schema specification.

all: [(§2.7)] [Structures]

annotation: [(§2.6)] [Structures]

any: [(§5.5)] [Structures]

anyAttribute: [(§5.5)] [Structures]

appinfo: [(§2.6)] [Structures]

attribute: [(§2.2)] [Structures]

attributeGroup: [(§2.8)] [Structures]

choice: [(§2.7)] [Structures]

complexContent: [(§2.5.3)] [Structures]

complexType: [(§2.2)] [Structures]

documentation: [(§2.6)] [Structures]

element: [(§2.2)] [Structures]

enumeration: [(§2.3)] [Datatypes]

extension: [(§2.5.1)] [Structures], [(§4.2)] [Structures]

field: [(§5.1)] [Structures]

group: [(§2.7)] [Structures]

import: [(§5.4)] [Structures]

include: [(§4.1)] [Structures]

http://www.w3.org/TR/xmlschema-0/ 68 3/28/2009 7:18 PM

key: [(§5.2)] [Structures]

keyref: [(§5.2)] [Structures]

length: [(§2.3.1)] [Datatypes]

list: [(§2.3.1)] [Datatypes]

maxInclusive: [(§2.3)] [Datatypes]

maxLength: [(§2.3.1)] [Datatypes]

minInclusive: [(§2.3)] [Datatypes]

minLength: [(§2.3.1)] [Datatypes]

pattern: [(§2.3)] [Datatypes]

redefine: [(§4.5)] [Structures]

restriction: [(§2.3)] [Datatypes], [(§4.4)] [Structures]

schema: [(§2.1)] [Structures]

selector: [(§5.1)] [Structures]

sequence: [(§2.7)] [Structures]

simpleContent: [(§2.5.1)] [Structures]

simpleType: [(§2.3)] [Datatypes]

union: [(§2.3.2)] [Datatypes]

unique: [(§5.1)] [Structures]

E.2 XML Schema Attributes

Each attribute name is followed by one or more pairs of references. Each pair of
references consists of a link to an example in the Primer, plus a link to a formal XML
description in either the Structures or Datatypes parts of the XML Schema specification.

abstract: element declaration [Structures]

abstract: complex type definition [Structures]

attributeFormDefault: schema definition [Structures]

base: simple type definition [Datatypes]

base: complex type definition [Structures]

block: complex type definition [Structures]

blockDefault: schema definition [Structures]

default: attribute declaration [Structures]

default: element declaration [Structures]

elementFormDefault: schema definition [Structures]

http://www.w3.org/TR/xmlschema-0/ 69 3/28/2009 7:18 PM

final: complex type definition [Structures]

finalDefault: schema definition [Structures]

fixed: attribute declaration [Structures]

fixed: element declaration [Structures]

fixed: simple type definition [Datatypes]

form: attribute declaration [Structures]

form: element declaration [Structures]

itemType: list type definition [Datatypes]

memberTypes: union type definition [Datatypes]

maxOccurs: element declaration [Structures]

minOccurs: element declaration [Structures]

mixed: complex type definition [Structures]

name: element declaration [Structures]

name: attribute declaration [Structures]

name: complex type definition [Structures]

name: simple type definition [Datatypes]

namespace: element wildcard [Structures]

namespace: import specification [Structures]

xsi:noNamespaceSchemaLocation: instance element [Structures]

xsi:nil: instance element [Structures]

nillable: element declaration [Structures]

processContents: element wildcard [Structures]

processContents: attribute wildcard [Structures]

ref: element declaration [Structures]

schemaLocation: include specification [Structures]

schemaLocation: redefine specification [Structures]

schemaLocation: import specification [Structures]

xsi:schemaLocation: instance element [Structures]

substitutionGroup: element declaration [Structures]

targetNamespace: schema definition [Structures]

type: element declaration [Structures]

type: attribute declaration [Structures]

http://www.w3.org/TR/xmlschema-0/ 70 3/28/2009 7:18 PM

xsi:type: instance element [Structures]

use: attribute declaration [Structures]

xpath: identity constraint definition [Structures]

XML Schema's simple types are described in Table 2.

	XML Schema Part 0: Primer Second Edition
	28 Oct 2004 David C. Fallside and Priscilla Walmsley (eds.) World Wide Web Consortium
	Abstract
	Status of this Document
	Table of Contents
	1 Introduction
	2 Basic Concepts: The Purchase Order
	3 Advanced Concepts I: Namespaces, Schemas & Qualification
	4 Advanced Concepts II: The International Purchase Order
	5 Advanced Concepts III: The Quarterly Report
	A Acknowledgements
	B Simple Types & their Facets
	C Using Entities
	D Regular Expressions
	E Index

	
	W3C Title Page

