
http://www.w3.org/TR/xmlschema-2/ 1 3/28/2009 7:17 PM

XML Schema Part 2: Datatypes Second Edition

W3C Recommendation 28 October 2004

This version:
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Latest version:
http://www.w3.org/TR/xmlschema-2/

Previous version:
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/

Editors:
Paul V. Biron, Kaiser Permanente, for Health Level Seven <Paul.V.Biron@kp.org>
Ashok Malhotra, Microsoft (formerly of IBM) <ashokma@microsoft.com>

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: XML, XHTML with visible
change markup, Independent copy of the schema for schema documents, A schema for
built-in datatypes only, in a separate namespace, and Independent copy of the DTD for
schema documents. See also translations.

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and
document use rules apply.

Abstract

XML Schema: Datatypes is part 2 of the specification of the XML Schema language. It defines
facilities for defining datatypes to be used in XML Schemas as well as other XML
specifications. The datatype language, which is itself represented in XML 1.0, provides a
superset of the capabilities found in XML 1.0 document type definitions (DTDs) for specifying
datatypes on elements and attributes.

Status of this Document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This is a W3C Recommendation, which forms part of the Second Edition of XML Schema.
This document has been reviewed by W3C Members and other interested parties and has

http://www.w3.org/TR/xmlschema-2/ 2 3/28/2009 7:17 PM

been endorsed by the Director as a W3C Recommendation. It is a stable document and may
be used as reference material or cited as a normative reference from another document.
W3C's role in making the Recommendation is to draw attention to the specification and to
promote its widespread deployment. This enhances the functionality and interoperability of the
Web.

This document has been produced by the W3C XML Schema Working Group as part of the
W3C XML Activity. The goals of the XML Schema language are discussed in the XML
Schema Requirements document. The authors of this document are the members of the XML
Schema Working Group. Different parts of this specification have different editors.

This document was produced under the 24 January 2002 Current Patent Practice (CPP) as
amended by the W3C Patent Policy Transition Procedure. The Working Group maintains a
public list of patent disclosures relevant to this document; that page also includes instructions
for disclosing a patent. An individual who has actual knowledge of a patent which the
individual believes contains Essential Claim(s) with respect to this specification should
disclose the information in accordance with section 6 of the W3C Patent Policy.

The English version of this specification is the only normative version. Information about
translations of this document is available at
http://www.w3.org/2001/05/xmlschema-translations.

This second edition is not a new version, it merely incorporates the changes dictated by the
corrections to errors found in the first edition as agreed by the XML Schema Working Group,
as a convenience to readers. A separate list of all such corrections is available at
http://www.w3.org/2001/05/xmlschema-errata.

The errata list for this second edition is available at
http://www.w3.org/2004/03/xmlschema-errata.

Please report errors in this document to www-xml-schema-comments@w3.org (archive).

Note: Ashok Malhotra's affiliation has changed since the completion of editorial work on
this second edition. He is now at Oracle, and can be contacted at
<ashok.malhotra@oracle.com>.

Table of Contents

1 Introduction
 1.1 Purpose
 1.2 Requirements
 1.3 Scope
 1.4 Terminology
 1.5 Constraints and Contributions
2 Type System
 2.1 Datatype
 2.2 Value space
 2.3 Lexical space
 2.4 Facets
 2.5 Datatype dichotomies
3 Built-in datatypes
 3.1 Namespace considerations
 3.2 Primitive datatypes

http://www.w3.org/TR/xmlschema-2/ 3 3/28/2009 7:17 PM

 3.3 Derived datatypes
4 Datatype components
 4.1 Simple Type Definition
 4.2 Fundamental Facets
 4.3 Constraining Facets
5 Conformance

Appendices

A Schema for Datatype Definitions (normative)
B DTD for Datatype Definitions (non-normative)
C Datatypes and Facets
 C.1 Fundamental Facets
D ISO 8601 Date and Time Formats
 D.1 ISO 8601 Conventions
 D.2 Truncated and Reduced Formats
 D.3 Deviations from ISO 8601 Formats
E Adding durations to dateTimes
 E.1 Algorithm
 E.2 Commutativity and Associativity
F Regular Expressions
 F.1 Character Classes
G Glossary (non-normative)
H References
 H.1 Normative
 H.2 Non-normative
I Acknowledgements (non-normative)

1 Introduction

1.1 Purpose

The [XML 1.0 (Second Edition)] specification defines limited facilities for applying datatypes to
document content in that documents may contain or refer to DTDs that assign types to
elements and attributes. However, document authors, including authors of traditional
documents and those transporting data in XML, often require a higher degree of type
checking to ensure robustness in document understanding and data interchange.

The table below offers two typical examples of XML instances in which datatypes are implicit:
the instance on the left represents a billing invoice, the instance on the right a memo or
perhaps an email message in XML.

Data oriented Document oriented

<invoice>
 <orderDate>1999-01-21</orderDate>
 <shipDate>1999-01-25</shipDate>
 <billingAddress>
 <name>Ashok Malhotra</name>
 <street>123 Microsoft Ave.</street>
 <city>Hawthorne</city>
 <state>NY</state>

<memo importance='high'
 date='1999-03-23'>
 <from>Paul V. Biron</from>
 <to>Ashok Malhotra</to>
 <subject>Latest draft</subject>
 <body>
 We need to discuss the latest
 draft <emph>immediately</emph>.

http://www.w3.org/TR/xmlschema-2/ 4 3/28/2009 7:17 PM

Data oriented Document oriented
 <zip>10532-0000</zip>
 </billingAddress>
 <voice>555-1234</voice>
 <fax>555-4321</fax>
</invoice>

 Either email me at <email>
 mailto:paul.v.biron@kp.org</email>
 or call <phone>555-9876</phone>
 </body>
</memo>

The invoice contains several dates and telephone numbers, the postal abbreviation for a state
(which comes from an enumerated list of sanctioned values), and a ZIP code (which takes a
definable regular form). The memo contains many of the same types of information: a date,
telephone number, email address and an "importance" value (from an enumerated list, such
as "low", "medium" or "high"). Applications which process invoices and memos need to raise
exceptions if something that was supposed to be a date or telephone number does not
conform to the rules for valid dates or telephone numbers.

In both cases, validity constraints exist on the content of the instances that are not expressible
in XML DTDs. The limited datatyping facilities in XML have prevented validating XML
processors from supplying the rigorous type checking required in these situations. The result
has been that individual applications writers have had to implement type checking in an ad
hoc manner. This specification addresses the need of both document authors and
applications writers for a robust, extensible datatype system for XML which could be
incorporated into XML processors. As discussed below, these datatypes could be used in
other XML-related standards as well.

1.2 Requirements

The [XML Schema Requirements] document spells out concrete requirements to be fulfilled
by this specification, which state that the XML Schema Language must:

provide for primitive data typing, including byte, date, integer, sequence, SQL and Java
primitive datatypes, etc.;

1.

define a type system that is adequate for import/export from database systems (e.g.,
relational, object, OLAP);

2.

distinguish requirements relating to lexical data representation vs. those governing an
underlying information set;

3.

allow creation of user-defined datatypes, such as datatypes that are derived from
existing datatypes and which may constrain certain of its properties (e.g., range,
precision, length, format).

4.

1.3 Scope

This portion of the XML Schema Language discusses datatypes that can be used in an XML
Schema. These datatypes can be specified for element content that would be specified as
#PCDATA and attribute values of various types in a DTD. It is the intention of this
specification that it be usable outside of the context of XML Schemas for a wide range of
other XML-related activities such as [XSL] and [RDF Schema].

1.4 Terminology

The terminology used to describe XML Schema Datatypes is defined in the body of this
specification. The terms defined in the following list are used in building those definitions and
in describing the actions of a datatype processor:

http://www.w3.org/TR/xmlschema-2/ 5 3/28/2009 7:17 PM

[Definition:] for compatibility
A feature of this specification included solely to ensure that schemas which use this
feature remain compatible with [XML 1.0 (Second Edition)]

[Definition:] may
Conforming documents and processors are permitted to but need not behave as
described.

[Definition:] match
(Of strings or names:) Two strings or names being compared must be identical.
Characters with multiple possible representations in ISO/IEC 10646 (e.g. characters with
both precomposed and base+diacritic forms) match only if they have the same
representation in both strings. No case folding is performed. (Of strings and rules in the
grammar:) A string matches a grammatical production if it belongs to the language
generated by that production.

[Definition:] must
Conforming documents and processors are required to behave as described; otherwise
they are in ·error·.

[Definition:] error
A violation of the rules of this specification; results are undefined. Conforming software
·may· detect and report an error and ·may· recover from it.

1.5 Constraints and Contributions

This specification provides three different kinds of normative statements about schema
components, their representations in XML and their contribution to the schema-validation of
information items:

[Definition:] Constraint on Schemas
Constraints on the schema components themselves, i.e. conditions components ·must·
satisfy to be components at all. Largely to be found in Datatype components (§4).

[Definition:] Schema Representation Constraint
Constraints on the representation of schema components in XML. Some but not all of
these are expressed in Schema for Datatype Definitions (normative) (§A) and DTD for
Datatype Definitions (non-normative) (§B).

[Definition:] Validation Rule
Constraints expressed by schema components which information items ·must· satisfy to
be schema-valid. Largely to be found in Datatype components (§4).

2 Type System

This section describes the conceptual framework behind the type system defined in this
specification. The framework has been influenced by the [ISO 11404] standard on
language-independent datatypes as well as the datatypes for [SQL] and for programming
languages such as Java.

The datatypes discussed in this specification are computer representations of well known
abstract concepts such as integer and date. It is not the place of this specification to define
these abstract concepts; many other publications provide excellent definitions.

2.1 Datatype

[Definition:] In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct

http://www.w3.org/TR/xmlschema-2/ 6 3/28/2009 7:17 PM

values, called its ·value space·, b) a set of lexical representations, called its ·lexical space·,
and c) a set of ·facet·s that characterize properties of the ·value space·, individual values or
lexical items.

2.2 Value space

[Definition:] A value space is the set of values for a given datatype. Each value in the value
space of a datatype is denoted by one or more literals in its ·lexical space·.

The ·value space· of a given datatype can be defined in one of the following ways:

defined axiomatically from fundamental notions (intensional definition) [see ·primitive·]
enumerated outright (extensional definition) [see ·enumeration·]
defined by restricting the ·value space· of an already defined datatype to a particular
subset with a given set of properties [see ·derived·]
defined as a combination of values from one or more already defined ·value space·(s)
by a specific construction procedure [see ·list· and ·union·]

·value space·s have certain properties. For example, they always have the property of
·cardinality·, some definition of equality and might be ·ordered·, by which individual values
within the ·value space· can be compared to one another. The properties of ·value space·s
that are recognized by this specification are defined in Fundamental facets (§2.4.1).

2.3 Lexical space

In addition to its ·value space·, each datatype also has a lexical space.

[Definition:] A lexical space is the set of valid literals for a datatype.

For example, "100" and "1.0E2" are two different literals from the ·lexical space· of float which
both denote the same value. The type system defined in this specification provides a
mechanism for schema designers to control the set of values and the corresponding set of
acceptable literals of those values for a datatype.

Note: The literals in the ·lexical space·s defined in this specification have the following
characteristics:

Interoperability:
The number of literals for each value has been kept small; for many datatypes there
is a one-to-one mapping between literals and values. This makes it easy to
exchange the values between different systems. In many cases, conversion from
locale-dependent representations will be required on both the originator and the
recipient side, both for computer processing and for interaction with humans.

Basic readability:
Textual, rather than binary, literals are used. This makes hand editing, debugging,
and similar activities possible.

Ease of parsing and serializing:
Where possible, literals correspond to those found in common programming
languages and libraries.

2.3.1 Canonical Lexical Representation

http://www.w3.org/TR/xmlschema-2/ 7 3/28/2009 7:17 PM

While the datatypes defined in this specification have, for the most part, a single lexical
representation i.e. each value in the datatype's ·value space· is denoted by a single literal in
its ·lexical space·, this is not always the case. The example in the previous section showed
two literals for the datatype float which denote the same value. Similarly, there ·may· be
several literals for one of the date or time datatypes that denote the same value using
different timezone indicators.

[Definition:] A canonical lexical representation is a set of literals from among the valid set
of literals for a datatype such that there is a one-to-one mapping between literals in the
canonical lexical representation and values in the ·value space·.

2.4 Facets
 2.4.1 Fundamental facets
 2.4.2 Constraining or Non-fundamental facets

[Definition:] A facet is a single defining aspect of a ·value space·. Generally speaking, each
facet characterizes a ·value space· along independent axes or dimensions.

The facets of a datatype serve to distinguish those aspects of one datatype which differ from
other datatypes. Rather than being defined solely in terms of a prose description the
datatypes in this specification are defined in terms of the synthesis of facet values which
together determine the ·value space· and properties of the datatype.

Facets are of two types: fundamental facets that define the datatype and non-fundamental or
constraining facets that constrain the permitted values of a datatype.

2.4.1 Fundamental facets

[Definition:] A fundamental facet is an abstract property which serves to semantically
characterize the values in a ·value space·.

All fundamental facets are fully described in Fundamental Facets (§4.2).

2.4.2 Constraining or Non-fundamental facets

[Definition:] A constraining facet is an optional property that can be applied to a datatype to
constrain its ·value space·.

Constraining the ·value space· consequently constrains the ·lexical space·. Adding
·constraining facet·s to a ·base type· is described in Derivation by restriction (§4.1.2.1).

All constraining facets are fully described in Constraining Facets (§4.3).

2.5 Datatype dichotomies
 2.5.1 Atomic vs. list vs. union datatypes
 2.5.2 Primitive vs. derived datatypes
 2.5.3 Built-in vs. user-derived datatypes

It is useful to categorize the datatypes defined in this specification along various dimensions,
forming a set of characterization dichotomies.

http://www.w3.org/TR/xmlschema-2/ 8 3/28/2009 7:17 PM

2.5.1 Atomic vs. list vs. union datatypes

The first distinction to be made is that between ·atomic·, ·list· and ·union· datatypes.

[Definition:] Atomic datatypes are those having values which are regarded by this
specification as being indivisible.
[Definition:] List datatypes are those having values each of which consists of a
finite-length (possibly empty) sequence of values of an ·atomic· datatype.
[Definition:] Union datatypes are those whose ·value space·s and ·lexical space·s are
the union of the ·value space·s and ·lexical space·s of one or more other datatypes.

For example, a single token which ·match·es Nmtoken from [XML 1.0 (Second Edition)] could
be the value of an ·atomic· datatype (NMTOKEN); while a sequence of such tokens could be
the value of a ·list· datatype (NMTOKENS).

2.5.1.1 Atomic datatypes

·atomic· datatypes can be either ·primitive· or ·derived·. The ·value space· of an ·atomic·
datatype is a set of "atomic" values, which for the purposes of this specification, are not
further decomposable. The ·lexical space· of an ·atomic· datatype is a set of literals whose
internal structure is specific to the datatype in question.

2.5.1.2 List datatypes

Several type systems (such as the one described in [ISO 11404]) treat ·list· datatypes as
special cases of the more general notions of aggregate or collection datatypes.

·list· datatypes are always ·derived·. The ·value space· of a ·list· datatype is a set of
finite-length sequences of ·atomic· values. The ·lexical space· of a ·list· datatype is a set of
literals whose internal structure is a space-separated sequence of literals of the ·atomic·
datatype of the items in the ·list·.

[Definition:] The ·atomic· or ·union· datatype that participates in the definition of a ·list·
datatype is known as the itemType of that ·list· datatype.

Example
<simpleType name='sizes'>
 <list itemType='decimal'/>
</simpleType>
<cerealSizes xsi:type='sizes'> 8 10.5 12 </cerealSizes>

A ·list· datatype can be ·derived· from an ·atomic· datatype whose ·lexical space· allows space
(such as string or anyURI)or a ·union· datatype any of whose {member type definitions}'s
·lexical space· allows space. In such a case, regardless of the input, list items will be
separated at space boundaries.

Example
<simpleType name='listOfString'>

http://www.w3.org/TR/xmlschema-2/ 9 3/28/2009 7:17 PM

 <list itemType='string'/>
</simpleType>
<someElement xsi:type='listOfString'>
this is not list item 1
this is not list item 2
this is not list item 3
</someElement>

In the above example, the value of the someElement element is not a ·list· of ·length· 3;
rather, it is a ·list· of ·length· 18.

When a datatype is ·derived· from a ·list· datatype, the following ·constraining facet·s apply:

·length·
·maxLength·
·minLength·
·enumeration·
·pattern·
·whiteSpace·

For each of ·length·, ·maxLength· and ·minLength·, the unit of length is measured in number
of list items. The value of ·whiteSpace· is fixed to the value collapse.

For ·list· datatypes the ·lexical space· is composed of space-separated literals of its
·itemType·. Hence, any ·pattern· specified when a new datatype is ·derived· from a ·list·
datatype is matched against each literal of the ·list· datatype and not against the literals of the
datatype that serves as its ·itemType·.

Example
<xs:simpleType name='myList'>
 <xs:list itemType='xs:integer'/>
</xs:simpleType>
<xs:simpleType name='myRestrictedList'>
 <xs:restriction base='myList'>
 <xs:pattern value='123 (\d+\s)*456'/>
 </xs:restriction>
</xs:simpleType>
<someElement xsi:type='myRestrictedList'>123 456</someElement>
<someElement xsi:type='myRestrictedList'>123 987 456</someElement>
<someElement xsi:type='myRestrictedList'>123 987 567 456</someElement>

The canonical-lexical-representation for the ·list· datatype is defined as the lexical form in
which each item in the ·list· has the canonical lexical representation of its ·itemType·.

2.5.1.3 Union datatypes

The ·value space· and ·lexical space· of a ·union· datatype are the union of the ·value space·s
and ·lexical space·s of its ·memberTypes·. ·union· datatypes are always ·derived·. Currently,
there are no ·built-in· ·union· datatypes.

Example
A prototypical example of a ·union· type is the maxOccurs attribute on the element element

http://www.w3.org/TR/xmlschema-2/ 10 3/28/2009 7:17 PM

in XML Schema itself: it is a union of nonNegativeInteger and an enumeration with the
single member, the string "unbounded", as shown below.
 <attributeGroup name="occurs">
 <attribute name="minOccurs" type="nonNegativeInteger"
 use="optional" default="1"/>
 <attribute name="maxOccurs"use="optional" default="1">
 <simpleType>
 <union>
 <simpleType>
 <restriction base='nonNegativeInteger'/>
 </simpleType>
 <simpleType>
 <restriction base='string'>
 <enumeration value='unbounded'/>
 </restriction>
 </simpleType>
 </union>
 </simpleType>
 </attribute>
 </attributeGroup>

Any number (greater than 1) of ·atomic· or ·list· ·datatype·s can participate in a ·union· type.

[Definition:] The datatypes that participate in the definition of a ·union· datatype are known as
the memberTypes of that ·union· datatype.

The order in which the ·memberTypes· are specified in the definition (that is, the order of the
<simpleType> children of the <union> element, or the order of the QNames in the
memberTypes attribute) is significant. During validation, an element or attribute's value is
validated against the ·memberTypes· in the order in which they appear in the definition until a
match is found. The evaluation order can be overridden with the use of xsi:type.

Example
For example, given the definition below, the first instance of the <size> element validates
correctly as an integer (§3.3.13), the second and third as string (§3.2.1).
 <xsd:element name='size'>
 <xsd:simpleType>
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base='integer'/>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base='string'/>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
 </xsd:element>
 <size>1</size>
 <size>large</size>
 <size xsi:type='xsd:string'>1</size>

The canonical-lexical-representation for a ·union· datatype is defined as the lexical form in
which the values have the canonical lexical representation of the appropriate ·memberTypes·.

Note: A datatype which is ·atomic· in this specification need not be an "atomic" datatype
in any programming language used to implement this specification. Likewise, a datatype
which is a ·list· in this specification need not be a "list" datatype in any programming
language used to implement this specification. Furthermore, a datatype which is a ·union·

http://www.w3.org/TR/xmlschema-2/ 11 3/28/2009 7:17 PM

in this specification need not be a "union" datatype in any programming language used to
implement this specification.

2.5.2 Primitive vs. derived datatypes

Next, we distinguish between ·primitive· and ·derived· datatypes.

[Definition:] Primitive datatypes are those that are not defined in terms of other
datatypes; they exist ab initio.
[Definition:] Derived datatypes are those that are defined in terms of other datatypes.

For example, in this specification, float is a well-defined mathematical concept that cannot be
defined in terms of other datatypes, while a integer is a special case of the more general
datatype decimal.

[Definition:] The simple ur-type definition is a special restriction of the ur-type definition
whose name is anySimpleType in the XML Schema namespace. anySimpleType can be
considered as the ·base type· of all ·primitive· datatypes. anySimpleType is considered to
have an unconstrained lexical space and a ·value space· consisting of the union of the ·value
space·s of all the ·primitive· datatypes and the set of all lists of all members of the ·value
space·s of all the ·primitive· datatypes.

The datatypes defined by this specification fall into both the ·primitive· and ·derived·
categories. It is felt that a judiciously chosen set of ·primitive· datatypes will serve the widest
possible audience by providing a set of convenient datatypes that can be used as is, as well
as providing a rich enough base from which the variety of datatypes needed by schema
designers can be ·derived·.

In the example above, integer is ·derived· from decimal.

Note: A datatype which is ·primitive· in this specification need not be a "primitive"
datatype in any programming language used to implement this specification. Likewise, a
datatype which is ·derived· in this specification need not be a "derived" datatype in any
programming language used to implement this specification.

As described in more detail in XML Representation of Simple Type Definition Schema
Components (§4.1.2), each ·user-derived· datatype ·must· be defined in terms of another
datatype in one of three ways: 1) by assigning ·constraining facet·s which serve to restrict the
·value space· of the ·user-derived· datatype to a subset of that of the ·base type·; 2) by
creating a ·list· datatype whose ·value space· consists of finite-length sequences of values of
its ·itemType·; or 3) by creating a ·union· datatype whose ·value space· consists of the union
of the ·value space·s of its ·memberTypes·.

2.5.2.1 Derived by restriction

[Definition:] A datatype is said to be ·derived· by restriction from another datatype when
values for zero or more ·constraining facet·s are specified that serve to constrain its ·value
space· and/or its ·lexical space· to a subset of those of its ·base type·.

[Definition:] Every datatype that is ·derived· by restriction is defined in terms of an existing
datatype, referred to as its base type. base types can be either ·primitive· or ·derived·.

http://www.w3.org/TR/xmlschema-2/ 12 3/28/2009 7:17 PM

2.5.2.2 Derived by list

A ·list· datatype can be ·derived· from another datatype (its ·itemType·) by creating a ·value
space· that consists of a finite-length sequence of values of its ·itemType·.

2.5.2.3 Derived by union

One datatype can be ·derived· from one or more datatypes by ·union·ing their ·value space·s
and, consequently, their ·lexical space·s.

2.5.3 Built-in vs. user-derived datatypes

[Definition:] Built-in datatypes are those which are defined in this specification, and can
be either ·primitive· or ·derived·;
[Definition:] User-derived datatypes are those ·derived· datatypes that are defined by
individual schema designers.

Conceptually there is no difference between the ·built-in· ·derived· datatypes included in this
specification and the ·user-derived· datatypes which will be created by individual schema
designers. The ·built-in· ·derived· datatypes are those which are believed to be so common
that if they were not defined in this specification many schema designers would end up
"reinventing" them. Furthermore, including these ·derived· datatypes in this specification
serves to demonstrate the mechanics and utility of the datatype generation facilities of this
specification.

Note: A datatype which is ·built-in· in this specification need not be a "built-in" datatype
in any programming language used to implement this specification. Likewise, a datatype
which is ·user-derived· in this specification need not be a "user-derived" datatype in any
programming language used to implement this specification.

3 Built-in datatypes

http://www.w3.org/TR/xmlschema-2/ 13 3/28/2009 7:17 PM

Each built-in datatype in this specification (both ·primitive· and ·derived·) can be uniquely
addressed via a URI Reference constructed as follows:

the base URI is the URI of the XML Schema namespace1.
the fragment identifier is the name of the datatype2.

For example, to address the int datatype, the URI is:

http://www.w3.org/2001/XMLSchema#int

Additionally, each facet definition element can be uniquely addressed via a URI constructed
as follows:

http://www.w3.org/TR/xmlschema-2/ 14 3/28/2009 7:17 PM

the base URI is the URI of the XML Schema namespace1.
the fragment identifier is the name of the facet2.

For example, to address the maxInclusive facet, the URI is:

http://www.w3.org/2001/XMLSchema#maxInclusive

Additionally, each facet usage in a built-in datatype definition can be uniquely addressed via a
URI constructed as follows:

the base URI is the URI of the XML Schema namespace1.
the fragment identifier is the name of the datatype, followed by a period (".") followed by
the name of the facet

2.

For example, to address the usage of the maxInclusive facet in the definition of int, the URI is:

http://www.w3.org/2001/XMLSchema#int.maxInclusive

3.1 Namespace considerations

The ·built-in· datatypes defined by this specification are designed to be used with the XML
Schema definition language as well as other XML specifications. To facilitate usage within the
XML Schema definition language, the ·built-in· datatypes in this specification have the
namespace name:

http://www.w3.org/2001/XMLSchema

To facilitate usage in specifications other than the XML Schema definition language, such as
those that do not want to know anything about aspects of the XML Schema definition
language other than the datatypes, each ·built-in· datatype is also defined in the namespace
whose URI is:

http://www.w3.org/2001/XMLSchema-datatypes

This applies to both ·built-in· ·primitive· and ·built-in· ·derived· datatypes.

Each ·user-derived· datatype is also associated with a unique namespace. However,
·user-derived· datatypes do not come from the namespace defined by this specification;
rather, they come from the namespace of the schema in which they are defined (see XML
Representation of Schemas in [XML Schema Part 1: Structures]).

3.2 Primitive datatypes
 3.2.1 string
 3.2.2 boolean
 3.2.3 decimal
 3.2.4 float
 3.2.5 double
 3.2.6 duration
 3.2.7 dateTime
 3.2.8 time
 3.2.9 date
 3.2.10 gYearMonth
 3.2.11 gYear

http://www.w3.org/TR/xmlschema-2/ 15 3/28/2009 7:17 PM

 3.2.12 gMonthDay
 3.2.13 gDay
 3.2.14 gMonth
 3.2.15 hexBinary
 3.2.16 base64Binary
 3.2.17 anyURI
 3.2.18 QName
 3.2.19 NOTATION

The ·primitive· datatypes defined by this specification are described below. For each datatype,
the ·value space· and ·lexical space· are defined, ·constraining facet·s which apply to the
datatype are listed and any datatypes ·derived· from this datatype are specified.

·primitive· datatypes can only be added by revisions to this specification.

3.2.1 string

[Definition:] The string datatype represents character strings in XML. The ·value space· of
string is the set of finite-length sequences of characters (as defined in [XML 1.0 (Second
Edition)]) that ·match· the Char production from [XML 1.0 (Second Edition)]. A character is an
atomic unit of communication; it is not further specified except to note that every character
has a corresponding Universal Character Set code point, which is an integer.

Note: Many human languages have writing systems that require child elements for
control of aspects such as bidirectional formating or ruby annotation (see [Ruby] and
Section 8.2.4 Overriding the bidirectional algorithm: the BDO element of [HTML 4.01]).
Thus, string, as a simple type that can contain only characters but not child elements, is
often not suitable for representing text. In such situations, a complex type that allows
mixed content should be considered. For more information, see Section 5.5 Any Element,
Any Attribute of [XML Schema Language: Part 0 Primer].
Note: As noted in ordered, the fact that this specification does not specify an
·order-relation· for ·string· does not preclude other applications from treating strings as
being ordered.

3.2.1.1 Constraining facets

string has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.2.1.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from string:

normalizedString

http://www.w3.org/TR/xmlschema-2/ 16 3/28/2009 7:17 PM

3.2.2 boolean

[Definition:] boolean has the ·value space· required to support the mathematical concept of
binary-valued logic: {true, false}.

3.2.2.1 Lexical representation

An instance of a datatype that is defined as ·boolean· can have the following legal literals
{true, false, 1, 0}.

3.2.2.2 Canonical representation

The canonical representation for boolean is the set of literals {true, false}.

3.2.2.3 Constraining facets

boolean has the following ·constraining facets·:

pattern
whiteSpace

3.2.3 decimal

[Definition:] decimal represents a subset of the real numbers, which can be represented by
decimal numerals. The ·value space· of decimal is the set of numbers that can be obtained
by multiplying an integer by a non-positive power of ten, i.e., expressible as i × 10^-n where i
and n are integers and n >= 0. Precision is not reflected in this value space; the number 2.0 is
not distinct from the number 2.00. The ·order-relation· on decimal is the order relation on real
numbers, restricted to this subset.

Note: All ·minimally conforming· processors ·must· support decimal numbers with a
minimum of 18 decimal digits (i.e., with a ·totalDigits· of 18). However, ·minimally
conforming· processors ·may· set an application-defined limit on the maximum number of
decimal digits they are prepared to support, in which case that application-defined
maximum number ·must· be clearly documented.

3.2.3.1 Lexical representation

decimal has a lexical representation consisting of a finite-length sequence of decimal digits
(#x30-#x39) separated by a period as a decimal indicator. An optional leading sign is allowed.
If the sign is omitted, "+" is assumed. Leading and trailing zeroes are optional. If the fractional
part is zero, the period and following zero(es) can be omitted. For example: -1.23,
12678967.543233, +100000.00, 210.

3.2.3.2 Canonical representation

The canonical representation for decimal is defined by prohibiting certain options from the

http://www.w3.org/TR/xmlschema-2/ 17 3/28/2009 7:17 PM

Lexical representation (§3.2.3.1). Specifically, the preceding optional "+" sign is prohibited.
The decimal point is required. Leading and trailing zeroes are prohibited subject to the
following: there must be at least one digit to the right and to the left of the decimal point which
may be a zero.

3.2.3.3 Constraining facets

decimal has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.3.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from decimal:

integer

3.2.4 float

[Definition:] float is patterned after the IEEE single-precision 32-bit floating point type [IEEE
754-1985]. The basic ·value space· of float consists of the values m × 2^e, where m is an
integer whose absolute value is less than 2^24, and e is an integer between -149 and 104,
inclusive. In addition to the basic ·value space· described above, the ·value space· of float
also contains the following three special values: positive and negative infinity and
not-a-number (NaN). The ·order-relation· on float is: x < y iff y - x is positive for x and y in the
value space. Positive infinity is greater than all other non-NaN values. NaN equals itself but is
·incomparable· with (neither greater than nor less than) any other value in the ·value space·.

Note: "Equality" in this Recommendation is defined to be "identity" (i.e., values that are
identical in the ·value space· are equal and vice versa). Identity must be used for the few
operations that are defined in this Recommendation. Applications using any of the
datatypes defined in this Recommendation may use different definitions of equality for
computational purposes; [IEEE 754-1985]-based computation systems are examples.
Nothing in this Recommendation should be construed as requiring that such applications
use identity as their equality relationship when computing.

Any value ·incomparable· with the value used for the four bounding facets (·minInclusive·,
·maxInclusive·, ·minExclusive·, and ·maxExclusive·) will be excluded from the resulting
restricted ·value space·. In particular, when "NaN" is used as a facet value for a bounding
facet, since no other float values are ·comparable· with it, the result is a ·value space·
either having NaN as its only member (the inclusive cases) or that is empty (the exclusive
cases). If any other value is used for a bounding facet, NaN will be excluded from the

http://www.w3.org/TR/xmlschema-2/ 18 3/28/2009 7:17 PM

resulting restricted ·value space·; to add NaN back in requires union with the NaN-only
space.

This datatype differs from that of [IEEE 754-1985] in that there is only one NaN and only
one zero. This makes the equality and ordering of values in the data space differ from
that of [IEEE 754-1985] only in that for schema purposes NaN = NaN.

A literal in the ·lexical space· representing a decimal number d maps to the normalized value
in the ·value space· of float that is closest to d in the sense defined by [Clinger, WD (1990)]; if
d is exactly halfway between two such values then the even value is chosen.

3.2.4.1 Lexical representation

float values have a lexical representation consisting of a mantissa followed, optionally, by the
character "E" or "e", followed by an exponent. The exponent ·must· be an integer. The
mantissa must be a decimal number. The representations for exponent and mantissa must
follow the lexical rules for integer and decimal. If the "E" or "e" and the following exponent are
omitted, an exponent value of 0 is assumed.

The special values positive and negative infinity and not-a-number have lexical
representations INF, -INF and NaN, respectively. Lexical representations for zero may take a
positive or negative sign.

For example, -1E4, 1267.43233E12, 12.78e-2, 12 , -0, 0 and INF are all legal literals for
float.

3.2.4.2 Canonical representation

The canonical representation for float is defined by prohibiting certain options from the
Lexical representation (§3.2.4.1). Specifically, the exponent must be indicated by "E". Leading
zeroes and the preceding optional "+" sign are prohibited in the exponent. If the exponent is
zero, it must be indicated by "E0". For the mantissa, the preceding optional "+" sign is
prohibited and the decimal point is required. Leading and trailing zeroes are prohibited subject
to the following: number representations must be normalized such that there is a single digit
which is non-zero to the left of the decimal point and at least a single digit to the right of the
decimal point unless the value being represented is zero. The canonical representation for
zero is 0.0E0.

3.2.4.3 Constraining facets

float has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

http://www.w3.org/TR/xmlschema-2/ 19 3/28/2009 7:17 PM

3.2.5 double

[Definition:] The double datatype is patterned after the IEEE double-precision 64-bit floating
point type [IEEE 754-1985]. The basic ·value space· of double consists of the values m ×
2^e, where m is an integer whose absolute value is less than 2^53, and e is an integer
between -1075 and 970, inclusive. In addition to the basic ·value space· described above, the
·value space· of double also contains the following three special values: positive and negative
infinity and not-a-number (NaN). The ·order-relation· on double is: x < y iff y - x is positive for
x and y in the value space. Positive infinity is greater than all other non-NaN values. NaN
equals itself but is ·incomparable· with (neither greater than nor less than) any other value in
the ·value space·.

Note: "Equality" in this Recommendation is defined to be "identity" (i.e., values that are
identical in the ·value space· are equal and vice versa). Identity must be used for the few
operations that are defined in this Recommendation. Applications using any of the
datatypes defined in this Recommendation may use different definitions of equality for
computational purposes; [IEEE 754-1985]-based computation systems are examples.
Nothing in this Recommendation should be construed as requiring that such applications
use identity as their equality relationship when computing.

Any value ·incomparable· with the value used for the four bounding facets (·minInclusive·,
·maxInclusive·, ·minExclusive·, and ·maxExclusive·) will be excluded from the resulting
restricted ·value space·. In particular, when "NaN" is used as a facet value for a bounding
facet, since no other double values are ·comparable· with it, the result is a ·value space·
either having NaN as its only member (the inclusive cases) or that is empty (the exclusive
cases). If any other value is used for a bounding facet, NaN will be excluded from the
resulting restricted ·value space·; to add NaN back in requires union with the NaN-only
space.

This datatype differs from that of [IEEE 754-1985] in that there is only one NaN and only
one zero. This makes the equality and ordering of values in the data space differ from
that of [IEEE 754-1985] only in that for schema purposes NaN = NaN.

A literal in the ·lexical space· representing a decimal number d maps to the normalized value
in the ·value space· of double that is closest to d; if d is exactly halfway between two such
values then the even value is chosen. This is the best approximation of d ([Clinger, WD
(1990)], [Gay, DM (1990)]), which is more accurate than the mapping required by [IEEE
754-1985].

3.2.5.1 Lexical representation

double values have a lexical representation consisting of a mantissa followed, optionally, by
the character "E" or "e", followed by an exponent. The exponent ·must· be an integer. The
mantissa must be a decimal number. The representations for exponent and mantissa must
follow the lexical rules for integer and decimal. If the "E" or "e" and the following exponent are
omitted, an exponent value of 0 is assumed.

The special values positive and negative infinity and not-a-number have lexical
representations INF, -INF and NaN, respectively. Lexical representations for zero may take a
positive or negative sign.

http://www.w3.org/TR/xmlschema-2/ 20 3/28/2009 7:17 PM

For example, -1E4, 1267.43233E12, 12.78e-2, 12 , -0, 0 and INF are all legal literals for
double.

3.2.5.2 Canonical representation

The canonical representation for double is defined by prohibiting certain options from the
Lexical representation (§3.2.5.1). Specifically, the exponent must be indicated by "E". Leading
zeroes and the preceding optional "+" sign are prohibited in the exponent. If the exponent is
zero, it must be indicated by "E0". For the mantissa, the preceding optional "+" sign is
prohibited and the decimal point is required. Leading and trailing zeroes are prohibited subject
to the following: number representations must be normalized such that there is a single digit
which is non-zero to the left of the decimal point and at least a single digit to the right of the
decimal point unless the value being represented is zero. The canonical representation for
zero is 0.0E0.

3.2.5.3 Constraining facets

double has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.6 duration

[Definition:] duration represents a duration of time. The ·value space· of duration is a
six-dimensional space where the coordinates designate the Gregorian year, month, day, hour,
minute, and second components defined in § 5.5.3.2 of [ISO 8601], respectively. These
components are ordered in their significance by their order of appearance i.e. as year, month,
day, hour, minute, and second.

Note:

All ·minimally conforming· processors ·must· support year values with a minimum of 4
digits (i.e., YYYY) and a minimum fractional second precision of milliseconds or three
decimal digits (i.e. s.sss). However, ·minimally conforming· processors ·may· set an
application-defined limit on the maximum number of digits they are prepared to support in
these two cases, in which case that application-defined maximum number ·must· be
clearly documented.

3.2.6.1 Lexical representation

The lexical representation for duration is the [ISO 8601] extended format PnYn MnDTnH
nMnS, where nY represents the number of years, nM the number of months, nD the number
of days, 'T' is the date/time separator, nH the number of hours, nM the number of minutes

http://www.w3.org/TR/xmlschema-2/ 21 3/28/2009 7:17 PM

and nS the number of seconds. The number of seconds can include decimal digits to arbitrary
precision.

The values of the Year, Month, Day, Hour and Minutes components are not restricted but
allow an arbitrary unsigned integer, i.e., an integer that conforms to the pattern [0-9]+..
Similarly, the value of the Seconds component allows an arbitrary unsigned decimal.
Following [ISO 8601], at least one digit must follow the decimal point if it appears. That is, the
value of the Seconds component must conform to the pattern [0-9]+(\.[0-9]+)?. Thus, the
lexical representation of duration does not follow the alternative format of § 5.5.3.2.1 of [ISO
8601].

An optional preceding minus sign ('-') is allowed, to indicate a negative duration. If the sign is
omitted a positive duration is indicated. See also ISO 8601 Date and Time Formats (§D).

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes,
one would write: P1Y2M3DT10H30M. One could also indicate a duration of minus 120 days as:
-P120D.

Reduced precision and truncated representations of this format are allowed provided they
conform to the following:

If the number of years, months, days, hours, minutes, or seconds in any expression
equals zero, the number and its corresponding designator ·may· be omitted. However,
at least one number and its designator ·must· be present.
The seconds part ·may· have a decimal fraction.
The designator 'T' must be absent if and only if all of the time items are absent. The
designator 'P' must always be present.

For example, P1347Y, P1347M and P1Y2MT2H are all allowed; P0Y1347M and
P0Y1347M0D are allowed. P-1347M is not allowed although -P1347M is allowed. P1Y2MT is
not allowed.

3.2.6.2 Order relation on duration

In general, the ·order-relation· on duration is a partial order since there is no determinate
relationship between certain durations such as one month (P1M) and 30 days (P30D). The
·order-relation· of two duration values x and y is x < y iff s+x < s+y for each qualified
dateTime s in the list below. These values for s cause the greatest deviations in the addition
of dateTimes and durations. Addition of durations to time instants is defined in Adding
durations to dateTimes (§E).

1696-09-01T00:00:00Z
1697-02-01T00:00:00Z
1903-03-01T00:00:00Z
1903-07-01T00:00:00Z

The following table shows the strongest relationship that can be determined between example
durations. The symbol <> means that the order relation is indeterminate. Note that because of
leap-seconds, a seconds field can vary from 59 to 60. However, because of the way that
addition is defined in Adding durations to dateTimes (§E), they are still totally ordered.

 Relation

http://www.w3.org/TR/xmlschema-2/ 22 3/28/2009 7:17 PM

P1Y > P364D <> P365D <> P366D < P367D

P1M > P27D <> P28D <> P29D <> P30D <> P31D < P32D

P5M > P149D <> P150D <> P151D <> P152D <> P153D < P154D

Implementations are free to optimize the computation of the ordering relationship. For
example, the following table can be used to compare durations of a small number of months
against days.

 Months 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Days
Minimum 28 59 89 120 150 181 212 242 273 303 334 365 393 ...
Maximum 31 62 92 123 153 184 215 245 276 306 337 366 397 ...

3.2.6.3 Facet Comparison for durations

In comparing duration values with minInclusive, minExclusive, maxInclusive and
maxExclusive facet values indeterminate comparisons should be considered as "false".

3.2.6.4 Totally ordered durations

Certain derived datatypes of durations can be guaranteed have a total order. For this, they
must have fields from only one row in the list below and the time zone must either be required
or prohibited.

year, month
day, hour, minute, second

For example, a datatype could be defined to correspond to the [SQL] datatype Year-Month
interval that required a four digit year field and a two digit month field but required all other
fields to be unspecified. This datatype could be defined as below and would have a total
order.

<simpleType name='SQL-Year-Month-Interval'>
 <restriction base='duration'>
 <pattern value='P\p{Nd}{4}Y\p{Nd}{2}M'/>
 </restriction>
</simpleType>

3.2.6.5 Constraining facets

duration has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

http://www.w3.org/TR/xmlschema-2/ 23 3/28/2009 7:17 PM

3.2.7 dateTime

[Definition:] dateTime values may be viewed as objects with integer-valued year, month,
day, hour and minute properties, a decimal-valued second property, and a boolean timezoned
property. Each such object also has one decimal-valued method or computed property,
timeOnTimeline, whose value is always a decimal number; the values are dimensioned in
seconds, the integer 0 is 0001-01-01T00:00:00 and the value of timeOnTimeline for other
dateTime values is computed using the Gregorian algorithm as modified for leap-seconds.
The timeOnTimeline values form two related "timelines", one for timezoned values and one
for non-timezoned values. Each timeline is a copy of the ·value space· of decimal, with
integers given units of seconds.

The ·value space· of dateTime is closely related to the dates and times described in ISO
8601. For clarity, the text above specifies a particular origin point for the timeline. It should be
noted, however, that schema processors need not expose the timeOnTimeline value to
schema users, and there is no requirement that a timeline-based implementation use the
particular origin described here in its internal representation. Other interpretations of the
·value space· which lead to the same results (i.e., are isomorphic) are of course acceptable.

All timezoned times are Coordinated Universal Time (UTC, sometimes called "Greenwich
Mean Time"). Other timezones indicated in lexical representations are converted to UTC
during conversion of literals to values. "Local" or untimezoned times are presumed to be the
time in the timezone of some unspecified locality as prescribed by the appropriate legal
authority; currently there are no legally prescribed timezones which are durations whose
magnitude is greater than 14 hours. The value of each numeric-valued property (other than
timeOnTimeline) is limited to the maximum value within the interval determined by the
next-higher property. For example, the day value can never be 32, and cannot even be 29 for
month 02 and year 2002 (February 2002).

Note:

The date and time datatypes described in this recommendation were inspired by [ISO
8601]. '0001' is the lexical representation of the year 1 of the Common Era (1 CE,
sometimes written "AD 1" or "1 AD"). There is no year 0, and '0000' is not a valid lexical
representation. '-0001' is the lexical representation of the year 1 Before Common Era (1
BCE, sometimes written "1 BC").

Those using this (1.0) version of this Recommendation to represent negative years
should be aware that the interpretation of lexical representations beginning with a '-' is
likely to change in subsequent versions.

[ISO 8601] makes no mention of the year 0; in [ISO 8601:1998 Draft Revision] the form
'0000' was disallowed and this recommendation disallows it as well. However, [ISO
8601:2000 Second Edition], which became available just as we were completing version
1.0, allows the form '0000', representing the year 1 BCE. A number of external
commentators have also suggested that '0000' be allowed, as the lexical representation
for 1 BCE, which is the normal usage in astronomical contexts. It is the intention of the
XML Schema Working Group to allow '0000' as a lexical representation in the dateTime,
date, gYear, and gYearMonth datatypes in a subsequent version of this
Recommendation. '0000' will be the lexical representation of 1 BCE (which is a leap
year), '-0001' will become the lexical representation of 2 BCE (not 1 BCE as in this (1.0)
version), '-0002' of 3 BCE, etc.

http://www.w3.org/TR/xmlschema-2/ 24 3/28/2009 7:17 PM

Note: See the conformance note in (§3.2.6) which applies to this datatype as well.

3.2.7.1 Lexical representation

The ·lexical space· of dateTime consists of finite-length sequences of characters of the form:
'-'? yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss ('.' s+)? (zzzzzz)?, where

'-'? yyyy is a four-or-more digit optionally negative-signed numeral that represents the
year; if more than four digits, leading zeros are prohibited, and '0000' is prohibited (see
the Note above (§3.2.7); also note that a plus sign is not permitted);
the remaining '-'s are separators between parts of the date portion;
the first mm is a two-digit numeral that represents the month;
dd is a two-digit numeral that represents the day;
'T' is a separator indicating that time-of-day follows;
hh is a two-digit numeral that represents the hour; '24' is permitted if the minutes and
seconds represented are zero, and the dateTime value so represented is the first
instant of the following day (the hour property of a dateTime object in the ·value space·
cannot have a value greater than 23);
':' is a separator between parts of the time-of-day portion;
the second mm is a two-digit numeral that represents the minute;
ss is a two-integer-digit numeral that represents the whole seconds;
'.' s+ (if present) represents the fractional seconds;
zzzzzz (if present) represents the timezone (as described below).

For example, 2002-10-10T12:00:00-05:00 (noon on 10 October 2002, Central Daylight
Savings Time as well as Eastern Standard Time in the U.S.) is 2002-10-10T17:00:00Z, five
hours later than 2002-10-10T12:00:00Z.

For further guidance on arithmetic with dateTimes and durations, see Adding durations to
dateTimes (§E).

3.2.7.2 Canonical representation

Except for trailing fractional zero digits in the seconds representation, '24:00:00' time
representations, and timezone (for timezoned values), the mapping from literals to values is
one-to-one. Where there is more than one possible representation, the canonical
representation is as follows:

The 2-digit numeral representing the hour must not be '24';
The fractional second string, if present, must not end in '0';
for timezoned values, the timezone must be represented with 'Z' (All timezoned
dateTime values are UTC.).

3.2.7.3 Timezones

Timezones are durations with (integer-valued) hour and minute properties (with the hour
magnitude limited to at most 14, and the minute magnitude limited to at most 59, except that
if the hour magnitude is 14, the minute value must be 0); they may be both positive or both
negative.

http://www.w3.org/TR/xmlschema-2/ 25 3/28/2009 7:17 PM

The lexical representation of a timezone is a string of the form: (('+' | '-') hh ':' mm) |
'Z', where

hh is a two-digit numeral (with leading zeros as required) that represents the hours,
mm is a two-digit numeral that represents the minutes,
'+' indicates a nonnegative duration,
'-' indicates a nonpositive duration.

The mapping so defined is one-to-one, except that '+00:00', '-00:00', and 'Z' all represent the
same zero-length duration timezone, UTC; 'Z' is its canonical representation.

When a timezone is added to a UTC dateTime, the result is the date and time "in that
timezone". For example, 2002-10-10T12:00:00+05:00 is 2002-10-10T07:00:00Z and
2002-10-10T00:00:00+05:00 is 2002-10-09T19:00:00Z.

3.2.7.4 Order relation on dateTime

dateTime value objects on either timeline are totally ordered by their timeOnTimeline values;
between the two timelines, dateTime value objects are ordered by their timeOnTimeline
values when their timeOnTimeline values differ by more than fourteen hours, with those
whose difference is a duration of 14 hours or less being ·incomparable·.

In general, the ·order-relation· on dateTime is a partial order since there is no determinate
relationship between certain instants. For example, there is no determinate ordering between
(a) 2000-01-20T12:00:00 and (b) 2000-01-20T12:00:00Z. Based on timezones currently in
use, (c) could vary from 2000-01-20T12:00:00+12:00 to 2000-01-20T12:00:00-13:00. It is,
however, possible for this range to expand or contract in the future, based on local laws.
Because of this, the following definition uses a somewhat broader range of indeterminate
values: +14:00..-14:00.

The following definition uses the notation S[year] to represent the year field of S, S[month] to
represent the month field, and so on. The notation (Q & "-14:00") means adding the timezone
-14:00 to Q, where Q did not already have a timezone. This is a logical explanation of the
process. Actual implementations are free to optimize as long as they produce the same
results.

The ordering between two dateTimes P and Q is defined by the following algorithm:

A.Normalize P and Q. That is, if there is a timezone present, but it is not Z, convert it to Z
using the addition operation defined in Adding durations to dateTimes (§E)

Thus 2000-03-04T23:00:00+03:00 normalizes to 2000-03-04T20:00:00Z

B. If P and Q either both have a time zone or both do not have a time zone, compare P and Q
field by field from the year field down to the second field, and return a result as soon as it can
be determined. That is:

For each i in {year, month, day, hour, minute, second}
If P[i] and Q[i] are both not specified, continue to the next ia.
If P[i] is not specified and Q[i] is, or vice versa, stop and return P <> Qb.
If P[i] < Q[i], stop and return P < Qc.
If P[i] > Q[i], stop and return P > Qd.

1.

http://www.w3.org/TR/xmlschema-2/ 26 3/28/2009 7:17 PM

Stop and return P = Q2.

C.Otherwise, if P contains a time zone and Q does not, compare as follows:

P < Q if P < (Q with time zone +14:00)1.
P > Q if P > (Q with time zone -14:00)2.
P <> Q otherwise, that is, if (Q with time zone +14:00) < P < (Q with time zone -14:00)3.

D. Otherwise, if P does not contain a time zone and Q does, compare as follows:

P < Q if (P with time zone -14:00) < Q.1.
P > Q if (P with time zone +14:00) > Q.2.
P <> Q otherwise, that is, if (P with time zone +14:00) < Q < (P with time zone -14:00)3.

Examples:

Determinate Indeterminate

2000-01-15T00:00:00 <
2000-02-15T00:00:00

2000-01-01T12:00:00 <>
1999-12-31T23:00:00Z

2000-01-15T12:00:00 <
2000-01-16T12:00:00Z

2000-01-16T12:00:00 <>
2000-01-16T12:00:00Z

 2000-01-16T00:00:00 <>
2000-01-16T12:00:00Z

3.2.7.5 Totally ordered dateTimes

Certain derived types from dateTime can be guaranteed have a total order. To do so, they
must require that a specific set of fields are always specified, and that remaining fields (if any)
are always unspecified. For example, the date datatype without time zone is defined to
contain exactly year, month, and day. Thus dates without time zone have a total order among
themselves.

3.2.7.6 Constraining facets

dateTime has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.8 time

[Definition:] time represents an instant of time that recurs every day. The ·value space· of
time is the space of time of day values as defined in § 5.3 of [ISO 8601]. Specifically, it is a

http://www.w3.org/TR/xmlschema-2/ 27 3/28/2009 7:17 PM

set of zero-duration daily time instances.

Since the lexical representation allows an optional time zone indicator, time values are
partially ordered because it may not be able to determine the order of two values one of which
has a time zone and the other does not. The order relation on time values is the Order
relation on dateTime (§3.2.7.4) using an arbitrary date. See also Adding durations to
dateTimes (§E). Pairs of time values with or without time zone indicators are totally ordered.

Note: See the conformance note in (§3.2.6) which applies to the seconds part of this
datatype as well.

3.2.8.1 Lexical representation

The lexical representation for time is the left truncated lexical representation for dateTime:
hh:mm:ss.sss with optional following time zone indicator. For example, to indicate 1:20 pm for
Eastern Standard Time which is 5 hours behind Coordinated Universal Time (UTC), one
would write: 13:20:00-05:00. See also ISO 8601 Date and Time Formats (§D).

3.2.8.2 Canonical representation

The canonical representation for time is defined by prohibiting certain options from the Lexical
representation (§3.2.8.1). Specifically, either the time zone must be omitted or, if present, the
time zone must be Coordinated Universal Time (UTC) indicated by a "Z". Additionally, the
canonical representation for midnight is 00:00:00.

3.2.8.3 Constraining facets

time has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.9 date

[Definition:] The ·value space· of date consists of top-open intervals of exactly one day in
length on the timelines of dateTime, beginning on the beginning moment of each day (in each
timezone), i.e. '00:00:00', up to but not including '24:00:00' (which is identical with '00:00:00' of
the next day). For nontimezoned values, the top-open intervals disjointly cover the
nontimezoned timeline, one per day. For timezoned values, the intervals begin at every
minute and therefore overlap.

A "date object" is an object with year, month, and day properties just like those of dateTime
objects, plus an optional timezone-valued timezone property. (As with values of dateTime
timezones are a special case of durations.) Just as a dateTime object corresponds to a point

http://www.w3.org/TR/xmlschema-2/ 28 3/28/2009 7:17 PM

on one of the timelines, a date object corresponds to an interval on one of the two timelines
as just described.

Timezoned date values track the starting moment of their day, as determined by their
timezone; said timezone is generally recoverable for canonical representations. [Definition:]
The recoverable timezone is that duration which is the result of subtracting the first moment
(or any moment) of the timezoned date from the first moment (or the corresponding moment)
UTC on the same date. ·recoverable timezone·s are always durations between '+12:00' and
'-11:59'. This "timezone normalization" (which follows automatically from the definition of the
date ·value space·) is explained more in Lexical representation (§3.2.9.1).

For example: the first moment of 2002-10-10+13:00 is 2002-10-10T00:00:00+13, which is
2002-10-09T11:00:00Z, which is also the first moment of 2002-10-09-11:00. Therefore
2002-10-10+13:00 is 2002-10-09-11:00; they are the same interval.

Note: For most timezones, either the first moment or last moment of the day (a
dateTime value, always UTC) will have a date portion different from that of the date
itself! However, noon of that date (the midpoint of the interval) in that (normalized)
timezone will always have the same date portion as the date itself, even when that noon
point in time is normalized to UTC. For example, 2002-10-10-05:00 begins during
2002-10-09Z and 2002-10-10+05:00 ends during 2002-10-11Z, but noon of both
2002-10-10-05:00 and 2002-10-10+05:00 falls in the interval which is 2002-10-10Z.
Note: See the conformance note in (§3.2.6) which applies to the year part of this
datatype as well.

3.2.9.1 Lexical representation

For the following discussion, let the "date portion" of a dateTime or date object be an object
similar to a dateTime or date object, with similar year, month, and day properties, but no
others, having the same value for these properties as the original dateTime or date object.

The ·lexical space· of date consists of finite-length sequences of characters of the form: '-'?
yyyy '-' mm '-' dd zzzzzz? where the date and optional timezone are represented exactly
the same way as they are for dateTime. The first moment of the interval is that represented
by: '-' yyyy '-' mm '-' dd 'T00:00:00' zzzzzz? and the least upper bound of the interval is
the timeline point represented (noncanonically) by: '-' yyyy '-' mm '-' dd 'T24:00:00'
zzzzzz?.

Note: The ·recoverable timezone· of a date will always be a duration between '+12:00'
and '11:59'. Timezone lexical representations, as explained for dateTime, can range from
'+14:00' to '-14:00'. The result is that literals of dates with very large or very negative
timezones will map to a "normalized" date value with a ·recoverable timezone· different
from that represented in the original representation, and a matching difference of +/- 1
day in the date itself.

3.2.9.2 Canonical representation

Given a member of the date ·value space·, the date portion of the canonical representation
(the entire representation for nontimezoned values, and all but the timezone representation
for timezoned values) is always the date portion of the dateTime canonical representation of

http://www.w3.org/TR/xmlschema-2/ 29 3/28/2009 7:17 PM

the interval midpoint (the dateTime representation, truncated on the right to eliminate 'T' and
all following characters). For timezoned values, append the canonical representation of the
·recoverable timezone·.

3.2.10 gYearMonth

[Definition:] gYearMonth represents a specific gregorian month in a specific gregorian year.
The ·value space· of gYearMonth is the set of Gregorian calendar months as defined in §
5.2.1 of [ISO 8601]. Specifically, it is a set of one-month long, non-periodic instances e.g.
1999-10 to represent the whole month of 1999-10, independent of how many days this month
has.

Since the lexical representation allows an optional time zone indicator, gYearMonth values
are partially ordered because it may not be possible to unequivocally determine the order of
two values one of which has a time zone and the other does not. If gYearMonth values are
considered as periods of time, the order relation on gYearMonth values is the order relation
on their starting instants. This is discussed in Order relation on dateTime (§3.2.7.4). See also
Adding durations to dateTimes (§E). Pairs of gYearMonth values with or without time zone
indicators are totally ordered.

Note: Because month/year combinations in one calendar only rarely correspond to
month/year combinations in other calendars, values of this type are not, in general,
convertible to simple values corresponding to month/year combinations in other
calendars. This type should therefore be used with caution in contexts where conversion
to other calendars is desired.
Note: See the conformance note in (§3.2.6) which applies to the year part of this
datatype as well.

3.2.10.1 Lexical representation

The lexical representation for gYearMonth is the reduced (right truncated) lexical
representation for dateTime: CCYY-MM. No left truncation is allowed. An optional following
time zone qualifier is allowed. To accommodate year values outside the range from 0001 to
9999, additional digits can be added to the left of this representation and a preceding "-" sign
is allowed.

For example, to indicate the month of May 1999, one would write: 1999-05. See also ISO
8601 Date and Time Formats (§D).

3.2.10.2 Constraining facets

gYearMonth has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

http://www.w3.org/TR/xmlschema-2/ 30 3/28/2009 7:17 PM

3.2.11 gYear

[Definition:] gYear represents a gregorian calendar year. The ·value space· of gYear is the
set of Gregorian calendar years as defined in § 5.2.1 of [ISO 8601]. Specifically, it is a set of
one-year long, non-periodic instances e.g. lexical 1999 to represent the whole year 1999,
independent of how many months and days this year has.

Since the lexical representation allows an optional time zone indicator, gYear values are
partially ordered because it may not be possible to unequivocally determine the order of two
values one of which has a time zone and the other does not. If gYear values are considered
as periods of time, the order relation on gYear values is the order relation on their starting
instants. This is discussed in Order relation on dateTime (§3.2.7.4). See also Adding
durations to dateTimes (§E). Pairs of gYear values with or without time zone indicators are
totally ordered.

Note: Because years in one calendar only rarely correspond to years in other calendars,
values of this type are not, in general, convertible to simple values corresponding to years
in other calendars. This type should therefore be used with caution in contexts where
conversion to other calendars is desired.
Note: See the conformance note in (§3.2.6) which applies to the year part of this
datatype as well.

3.2.11.1 Lexical representation

The lexical representation for gYear is the reduced (right truncated) lexical representation for
dateTime: CCYY. No left truncation is allowed. An optional following time zone qualifier is
allowed as for dateTime. To accommodate year values outside the range from 0001 to 9999,
additional digits can be added to the left of this representation and a preceding "-" sign is
allowed.

For example, to indicate 1999, one would write: 1999. See also ISO 8601 Date and Time
Formats (§D).

3.2.11.2 Constraining facets

gYear has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.12 gMonthDay

[Definition:] gMonthDay is a gregorian date that recurs, specifically a day of the year such
as the third of May. Arbitrary recurring dates are not supported by this datatype. The ·value
space· of gMonthDay is the set of calendar dates, as defined in § 3 of [ISO 8601].

http://www.w3.org/TR/xmlschema-2/ 31 3/28/2009 7:17 PM

Specifically, it is a set of one-day long, annually periodic instances.

Since the lexical representation allows an optional time zone indicator, gMonthDay values are
partially ordered because it may not be possible to unequivocally determine the order of two
values one of which has a time zone and the other does not. If gMonthDay values are
considered as periods of time, in an arbitrary leap year, the order relation on gMonthDay
values is the order relation on their starting instants. This is discussed in Order relation on
dateTime (§3.2.7.4). See also Adding durations to dateTimes (§E). Pairs of gMonthDay
values with or without time zone indicators are totally ordered.

Note: Because day/month combinations in one calendar only rarely correspond to
day/month combinations in other calendars, values of this type do not, in general, have
any straightforward or intuitive representation in terms of most other calendars. This type
should therefore be used with caution in contexts where conversion to other calendars is
desired.

3.2.12.1 Lexical representation

The lexical representation for gMonthDay is the left truncated lexical representation for date:
--MM-DD. An optional following time zone qualifier is allowed as for date. No preceding sign is
allowed. No other formats are allowed. See also ISO 8601 Date and Time Formats (§D).

This datatype can be used to represent a specific day in a month. To say, for example, that
my birthday occurs on the 14th of September ever year.

3.2.12.2 Constraining facets

gMonthDay has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.13 gDay

[Definition:] gDay is a gregorian day that recurs, specifically a day of the month such as the
5th of the month. Arbitrary recurring days are not supported by this datatype. The ·value
space· of gDay is the space of a set of calendar dates as defined in § 3 of [ISO 8601].
Specifically, it is a set of one-day long, monthly periodic instances.

This datatype can be used to represent a specific day of the month. To say, for example, that
I get my paycheck on the 15th of each month.

Since the lexical representation allows an optional time zone indicator, gDay values are
partially ordered because it may not be possible to unequivocally determine the order of two
values one of which has a time zone and the other does not. If gDay values are considered as
periods of time, in an arbitrary month that has 31 days, the order relation on gDay values is

http://www.w3.org/TR/xmlschema-2/ 32 3/28/2009 7:17 PM

the order relation on their starting instants. This is discussed in Order relation on dateTime
(§3.2.7.4). See also Adding durations to dateTimes (§E). Pairs of gDay values with or without
time zone indicators are totally ordered.

Note: Because days in one calendar only rarely correspond to days in other calendars,
values of this type do not, in general, have any straightforward or intuitive representation
in terms of most other calendars. This type should therefore be used with caution in
contexts where conversion to other calendars is desired.

3.2.13.1 Lexical representation

The lexical representation for gDay is the left truncated lexical representation for date: ---DD .
An optional following time zone qualifier is allowed as for date. No preceding sign is allowed.
No other formats are allowed. See also ISO 8601 Date and Time Formats (§D).

3.2.13.2 Constraining facets

gDay has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.14 gMonth

[Definition:] gMonth is a gregorian month that recurs every year. The ·value space· of
gMonth is the space of a set of calendar months as defined in § 3 of [ISO 8601]. Specifically,
it is a set of one-month long, yearly periodic instances.

This datatype can be used to represent a specific month. To say, for example, that
Thanksgiving falls in the month of November.

Since the lexical representation allows an optional time zone indicator, gMonth values are
partially ordered because it may not be possible to unequivocally determine the order of two
values one of which has a time zone and the other does not. If gMonth values are considered
as periods of time, the order relation on gMonth is the order relation on their starting instants.
This is discussed in Order relation on dateTime (§3.2.7.4). See also Adding durations to
dateTimes (§E). Pairs of gMonth values with or without time zone indicators are totally
ordered.

Note: Because months in one calendar only rarely correspond to months in other
calendars, values of this type do not, in general, have any straightforward or intuitive
representation in terms of most other calendars. This type should therefore be used with
caution in contexts where conversion to other calendars is desired.

3.2.14.1 Lexical representation

http://www.w3.org/TR/xmlschema-2/ 33 3/28/2009 7:17 PM

The lexical representation for gMonth is the left and right truncated lexical representation for
date: --MM. An optional following time zone qualifier is allowed as for date. No preceding sign
is allowed. No other formats are allowed. See also ISO 8601 Date and Time Formats (§D).

3.2.14.2 Constraining facets

gMonth has the following ·constraining facets·:

pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive

3.2.15 hexBinary

[Definition:] hexBinary represents arbitrary hex-encoded binary data. The ·value space· of
hexBinary is the set of finite-length sequences of binary octets.

3.2.15.1 Lexical Representation

hexBinary has a lexical representation where each binary octet is encoded as a character
tuple, consisting of two hexadecimal digits ([0-9a-fA-F]) representing the octet code. For
example, "0FB7" is a hex encoding for the 16-bit integer 4023 (whose binary representation is
111110110111).

3.2.15.2 Canonical Representation

The canonical representation for hexBinary is defined by prohibiting certain options from the
Lexical Representation (§3.2.15.1). Specifically, the lower case hexadecimal digits ([a-f]) are
not allowed.

3.2.15.3 Constraining facets

hexBinary has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.2.16 base64Binary

[Definition:] base64Binary represents Base64-encoded arbitrary binary data. The ·value

http://www.w3.org/TR/xmlschema-2/ 34 3/28/2009 7:17 PM

space· of base64Binary is the set of finite-length sequences of binary octets. For
base64Binary data the entire binary stream is encoded using the Base64 Alphabet in [RFC
2045].

The lexical forms of base64Binary values are limited to the 65 characters of the Base64
Alphabet defined in [RFC 2045], i.e., a-z, A-Z, 0-9, the plus sign (+), the forward slash (/) and
the equal sign (=), together with the characters defined in [XML 1.0 (Second Edition)] as white
space. No other characters are allowed.

For compatibility with older mail gateways, [RFC 2045] suggests that base64 data should
have lines limited to at most 76 characters in length. This line-length limitation is not
mandated in the lexical forms of base64Binary data and must not be enforced by XML
Schema processors.

The lexical space of base64Binary is given by the following grammar (the notation is that
used in [XML 1.0 (Second Edition)]); legal lexical forms must match the Base64Binary
production.

Base64Binary ::= ((B64S B64S B64S B64S)*
 ((B64S B64S B64S B64) |
 (B64S B64S B16S '=') |
 (B64S B04S '=' #x20? '=')))?

B64S ::= B64 #x20?

B16S ::= B16 #x20?

B04S ::= B04 #x20?

B04 ::= [AQgw]
B16 ::= [AEIMQUYcgkosw048]
B64 ::= [A-Za-z0-9+/]

Note that this grammar requires the number of non-whitespace characters in the lexical form
to be a multiple of four, and for equals signs to appear only at the end of the lexical form;
strings which do not meet these constraints are not legal lexical forms of base64Binary
because they cannot successfully be decoded by base64 decoders.

Note: The above definition of the lexical space is more restrictive than that given in [RFC
2045] as regards whitespace -- this is not an issue in practice. Any string compatible with
the RFC can occur in an element or attribute validated by this type, because the
·whiteSpace· facet of this type is fixed to collapse, which means that all leading and
trailing whitespace will be stripped, and all internal whitespace collapsed to single space
characters, before the above grammar is enforced.

The canonical lexical form of a base64Binary data value is the base64 encoding of the value
which matches the Canonical-base64Binary production in the following grammar:

Canonical-base64Binary ::= (B64 B64 B64 B64)*
 ((B64 B64 B16 '=') | (B64 B04 '=='))?

Note: For some values the canonical form defined above does not conform to [RFC
2045], which requires breaking with linefeeds at appropriate intervals.

The length of a base64Binary value is the number of octets it contains. This may be
calculated from the lexical form by removing whitespace and padding characters and
performing the calculation shown in the pseudo-code below:

http://www.w3.org/TR/xmlschema-2/ 35 3/28/2009 7:17 PM

lex2 := killwhitespace(lexform) -- remove whitespace characters
lex3 := strip_equals(lex2) -- strip padding characters at end
length := floor (length(lex3) * 3 / 4) -- calculate length

Note on encoding: [RFC 2045] explicitly references US-ASCII encoding. However, decoding
of base64Binary data in an XML entity is to be performed on the Unicode characters
obtained after character encoding processing as specified by [XML 1.0 (Second Edition)]

3.2.16.1 Constraining facets

base64Binary has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.2.17 anyURI

[Definition:] anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI
value can be absolute or relative, and may have an optional fragment identifier (i.e., it may be
a URI Reference). This type should be used to specify the intention that the value fulfills the
role of a URI as defined by [RFC 2396], as amended by [RFC 2732].

The mapping from anyURI values to URIs is as defined by the URI reference escaping
procedure defined in Section 5.4 Locator Attribute of [XML Linking Language] (see also
Section 8 Character Encoding in URI References of [Character Model]). This means that a
wide range of internationalized resource identifiers can be specified when an anyURI is called
for, and still be understood as URIs per [RFC 2396], as amended by [RFC 2732], where
appropriate to identify resources.

Note: Section 5.4 Locator Attribute of [XML Linking Language] requires that relative URI
references be absolutized as defined in [XML Base] before use. This is an XLink-specific
requirement and is not appropriate for XML Schema, since neither the ·lexical space· nor
the ·value space· of the anyURI type are restricted to absolute URIs. Accordingly
absolutization must not be performed by schema processors as part of schema
validation.
Note: Each URI scheme imposes specialized syntax rules for URIs in that scheme,
including restrictions on the syntax of allowed fragment identifiers. Because it is
impractical for processors to check that a value is a context-appropriate URI reference,
this specification follows the lead of [RFC 2396] (as amended by [RFC 2732]) in this
matter: such rules and restrictions are not part of type validity and are not checked by
·minimally conforming· processors. Thus in practice the above definition imposes only
very modest obligations on ·minimally conforming· processors.

3.2.17.1 Lexical representation

The ·lexical space· of anyURI is finite-length character sequences which, when the algorithm
defined in Section 5.4 of [XML Linking Language] is applied to them, result in strings which

http://www.w3.org/TR/xmlschema-2/ 36 3/28/2009 7:17 PM

are legal URIs according to [RFC 2396], as amended by [RFC 2732].

Note: Spaces are, in principle, allowed in the ·lexical space· of anyURI, however, their
use is highly discouraged (unless they are encoded by %20).

3.2.17.2 Constraining facets

anyURI has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.2.18 QName

[Definition:] QName represents XML qualified names. The ·value space· of QName is the
set of tuples {namespace name, local part}, where namespace name is an anyURI and local
part is an NCName. The ·lexical space· of QName is the set of strings that ·match· the
QName production of [Namespaces in XML].

Note: The mapping between literals in the ·lexical space· and values in the ·value space·
of QName requires a namespace declaration to be in scope for the context in which
QName is used.

3.2.18.1 Constraining facets

QName has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

The use of ·length·, ·minLength· and ·maxLength· on datatypes ·derived· from QName is
deprecated. Future versions of this specification may remove these facets for this datatype.

3.2.19 NOTATION

[Definition:] NOTATION represents the NOTATION attribute type from [XML 1.0 (Second
Edition)]. The ·value space· of NOTATION is the set of QNames of notations declared in the
current schema. The ·lexical space· of NOTATION is the set of all names of notations
declared in the current schema (in the form of QNames).

Schema Component Constraint: enumeration facet value required for NOTATION
It is an ·error· for NOTATION to be used directly in a schema. Only datatypes that are

http://www.w3.org/TR/xmlschema-2/ 37 3/28/2009 7:17 PM

·derived· from NOTATION by specifying a value for ·enumeration· can be used in a
schema.

For compatibility (see Terminology (§1.4)) NOTATION should be used only on attributes and
should only be used in schemas with no target namespace.

3.2.19.1 Constraining facets

NOTATION has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

The use of ·length·, ·minLength· and ·maxLength· on datatypes ·derived· from NOTATION is
deprecated. Future versions of this specification may remove these facets for this datatype.

3.3 Derived datatypes
 3.3.1 normalizedString
 3.3.2 token
 3.3.3 language
 3.3.4 NMTOKEN
 3.3.5 NMTOKENS
 3.3.6 Name
 3.3.7 NCName
 3.3.8 ID
 3.3.9 IDREF
 3.3.10 IDREFS
 3.3.11 ENTITY
 3.3.12 ENTITIES
 3.3.13 integer
 3.3.14 nonPositiveInteger
 3.3.15 negativeInteger
 3.3.16 long
 3.3.17 int
 3.3.18 short
 3.3.19 byte
 3.3.20 nonNegativeInteger
 3.3.21 unsignedLong
 3.3.22 unsignedInt
 3.3.23 unsignedShort
 3.3.24 unsignedByte
 3.3.25 positiveInteger

This section gives conceptual definitions for all ·built-in· ·derived· datatypes defined by this
specification. The XML representation used to define ·derived· datatypes (whether ·built-in· or
·user-derived·) is given in section XML Representation of Simple Type Definition Schema
Components (§4.1.2) and the complete definitions of the ·built-in· ·derived· datatypes are
provided in Appendix A Schema for Datatype Definitions (normative) (§A).

http://www.w3.org/TR/xmlschema-2/ 38 3/28/2009 7:17 PM

3.3.1 normalizedString

[Definition:] normalizedString represents white space normalized strings. The ·value space·
of normalizedString is the set of strings that do not contain the carriage return (#xD), line
feed (#xA) nor tab (#x9) characters. The ·lexical space· of normalizedString is the set of
strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters.
The ·base type· of normalizedString is string.

3.3.1.1 Constraining facets

normalizedString has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.1.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from normalizedString:

token

3.3.2 token

[Definition:] token represents tokenized strings. The ·value space· of token is the set of
strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters,
that have no leading or trailing spaces (#x20) and that have no internal sequences of two or
more spaces. The ·lexical space· of token is the set of strings that do not contain the carriage
return (#xD), line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces
(#x20) and that have no internal sequences of two or more spaces. The ·base type· of token
is normalizedString.

3.3.2.1 Constraining facets

token has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.2.2 Derived datatypes

http://www.w3.org/TR/xmlschema-2/ 39 3/28/2009 7:17 PM

The following ·built-in· datatypes are ·derived· from token:

language
NMTOKEN
Name

3.3.3 language

[Definition:] language represents natural language identifiers as defined by by [RFC 3066] .
The ·value space· of language is the set of all strings that are valid language identifiers as
defined [RFC 3066] . The ·lexical space· of language is the set of all strings that conform to
the pattern [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})* . The ·base type· of language is token.

3.3.3.1 Constraining facets

language has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.4 NMTOKEN

[Definition:] NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Second
Edition)]. The ·value space· of NMTOKEN is the set of tokens that ·match· the Nmtoken
production in [XML 1.0 (Second Edition)]. The ·lexical space· of NMTOKEN is the set of
strings that ·match· the Nmtoken production in [XML 1.0 (Second Edition)]. The ·base type· of
NMTOKEN is token.

For compatibility (see Terminology (§1.4)) NMTOKEN should be used only on attributes.

3.3.4.1 Constraining facets

NMTOKEN has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.4.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from NMTOKEN:

http://www.w3.org/TR/xmlschema-2/ 40 3/28/2009 7:17 PM

NMTOKENS

3.3.5 NMTOKENS

[Definition:] NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 (Second
Edition)]. The ·value space· of NMTOKENS is the set of finite, non-zero-length sequences of
·NMTOKEN·s. The ·lexical space· of NMTOKENS is the set of space-separated lists of
tokens, of which each token is in the ·lexical space· of NMTOKEN. The ·itemType· of
NMTOKENS is NMTOKEN.

For compatibility (see Terminology (§1.4)) NMTOKENS should be used only on attributes.

3.3.5.1 Constraining facets

NMTOKENS has the following ·constraining facets·:

length
minLength
maxLength
enumeration
whiteSpace
pattern

3.3.6 Name

[Definition:] Name represents XML Names. The ·value space· of Name is the set of all
strings which ·match· the Name production of [XML 1.0 (Second Edition)]. The ·lexical space·
of Name is the set of all strings which ·match· the Name production of [XML 1.0 (Second
Edition)]. The ·base type· of Name is token.

3.3.6.1 Constraining facets

Name has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.6.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from Name:

NCName

3.3.7 NCName

http://www.w3.org/TR/xmlschema-2/ 41 3/28/2009 7:17 PM

[Definition:] NCName represents XML "non-colonized" Names. The ·value space· of
NCName is the set of all strings which ·match· the NCName production of [Namespaces in
XML]. The ·lexical space· of NCName is the set of all strings which ·match· the NCName
production of [Namespaces in XML]. The ·base type· of NCName is Name.

3.3.7.1 Constraining facets

NCName has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.7.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from NCName:

ID
IDREF
ENTITY

3.3.8 ID

[Definition:] ID represents the ID attribute type from [XML 1.0 (Second Edition)]. The ·value
space· of ID is the set of all strings that ·match· the NCName production in [Namespaces in
XML]. The ·lexical space· of ID is the set of all strings that ·match· the NCName production in
[Namespaces in XML]. The ·base type· of ID is NCName.

For compatibility (see Terminology (§1.4)) ID should be used only on attributes.

3.3.8.1 Constraining facets

ID has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.9 IDREF

[Definition:] IDREF represents the IDREF attribute type from [XML 1.0 (Second Edition)].
The ·value space· of IDREF is the set of all strings that ·match· the NCName production in
[Namespaces in XML]. The ·lexical space· of IDREF is the set of strings that ·match· the

http://www.w3.org/TR/xmlschema-2/ 42 3/28/2009 7:17 PM

NCName production in [Namespaces in XML]. The ·base type· of IDREF is NCName.

For compatibility (see Terminology (§1.4)) this datatype should be used only on attributes.

3.3.9.1 Constraining facets

IDREF has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.9.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from IDREF:

IDREFS

3.3.10 IDREFS

[Definition:] IDREFS represents the IDREFS attribute type from [XML 1.0 (Second Edition)].
The ·value space· of IDREFS is the set of finite, non-zero-length sequences of IDREFs. The
·lexical space· of IDREFS is the set of space-separated lists of tokens, of which each token is
in the ·lexical space· of IDREF. The ·itemType· of IDREFS is IDREF.

For compatibility (see Terminology (§1.4)) IDREFS should be used only on attributes.

3.3.10.1 Constraining facets

IDREFS has the following ·constraining facets·:

length
minLength
maxLength
enumeration
whiteSpace
pattern

3.3.11 ENTITY

[Definition:] ENTITY represents the ENTITY attribute type from [XML 1.0 (Second Edition)].
The ·value space· of ENTITY is the set of all strings that ·match· the NCName production in
[Namespaces in XML] and have been declared as an unparsed entity in a document type
definition. The ·lexical space· of ENTITY is the set of all strings that ·match· the NCName
production in [Namespaces in XML]. The ·base type· of ENTITY is NCName.

http://www.w3.org/TR/xmlschema-2/ 43 3/28/2009 7:17 PM

Note: The ·value space· of ENTITY is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) ENTITY should be used only on attributes.

3.3.11.1 Constraining facets

ENTITY has the following ·constraining facets·:

length
minLength
maxLength
pattern
enumeration
whiteSpace

3.3.11.2 Derived datatypes

The following ·built-in· datatypes are ·derived· from ENTITY:

ENTITIES

3.3.12 ENTITIES

[Definition:] ENTITIES represents the ENTITIES attribute type from [XML 1.0 (Second
Edition)]. The ·value space· of ENTITIES is the set of finite, non-zero-length sequences of
·ENTITY·s that have been declared as unparsed entities in a document type definition. The
·lexical space· of ENTITIES is the set of space-separated lists of tokens, of which each token
is in the ·lexical space· of ENTITY. The ·itemType· of ENTITIES is ENTITY.

Note: The ·value space· of ENTITIES is scoped to a specific instance document.

For compatibility (see Terminology (§1.4)) ENTITIES should be used only on attributes.

3.3.12.1 Constraining facets

ENTITIES has the following ·constraining facets·:

length
minLength
maxLength
enumeration
whiteSpace
pattern

3.3.13 integer

[Definition:] integer is ·derived· from decimal by fixing the value of ·fractionDigits· to be 0and
disallowing the trailing decimal point. This results in the standard mathematical concept of the
integer numbers. The ·value space· of integer is the infinite set {...,-2,-1,0,1,2,...}. The ·base

http://www.w3.org/TR/xmlschema-2/ 44 3/28/2009 7:17 PM

type· of integer is decimal.

3.3.13.1 Lexical representation

integer has a lexical representation consisting of a finite-length sequence of decimal digits
(#x30-#x39) with an optional leading sign. If the sign is omitted, "+" is assumed. For example:
-1, 0, 12678967543233, +100000.

3.3.13.2 Canonical representation

The canonical representation for integer is defined by prohibiting certain options from the
Lexical representation (§3.3.13.1). Specifically, the preceding optional "+" sign is prohibited
and leading zeroes are prohibited.

3.3.13.3 Constraining facets

integer has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.13.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from integer:

nonPositiveInteger
long
nonNegativeInteger

3.3.14 nonPositiveInteger

[Definition:] nonPositiveInteger is ·derived· from integer by setting the value of
·maxInclusive· to be 0. This results in the standard mathematical concept of the non-positive
integers. The ·value space· of nonPositiveInteger is the infinite set {...,-2,-1,0}. The ·base
type· of nonPositiveInteger is integer.

3.3.14.1 Lexical representation

nonPositiveInteger has a lexical representation consisting of an optional preceding sign
followed by a finite-length sequence of decimal digits (#x30-#x39). The sign may be "+" or

http://www.w3.org/TR/xmlschema-2/ 45 3/28/2009 7:17 PM

may be omitted only for lexical forms denoting zero; in all other lexical forms, the negative
sign ("-") must be present. For example: -1, 0, -12678967543233, -100000.

3.3.14.2 Canonical representation

The canonical representation for nonPositiveInteger is defined by prohibiting certain options
from the Lexical representation (§3.3.14.1). In the canonical form for zero, the sign must be
omitted. Leading zeroes are prohibited.

3.3.14.3 Constraining facets

nonPositiveInteger has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.14.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from nonPositiveInteger:

negativeInteger

3.3.15 negativeInteger

[Definition:] negativeInteger is ·derived· from nonPositiveInteger by setting the value of
·maxInclusive· to be -1. This results in the standard mathematical concept of the negative
integers. The ·value space· of negativeInteger is the infinite set {...,-2,-1}. The ·base type· of
negativeInteger is nonPositiveInteger.

3.3.15.1 Lexical representation

negativeInteger has a lexical representation consisting of a negative sign ("-") followed by a
finite-length sequence of decimal digits (#x30-#x39). For example: -1, -12678967543233,
-100000.

3.3.15.2 Canonical representation

The canonical representation for negativeInteger is defined by prohibiting certain options
from the Lexical representation (§3.3.15.1). Specifically, leading zeroes are prohibited.

http://www.w3.org/TR/xmlschema-2/ 46 3/28/2009 7:17 PM

3.3.15.3 Constraining facets

negativeInteger has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.16 long

[Definition:] long is ·derived· from integer by setting the value of ·maxInclusive· to be
9223372036854775807 and ·minInclusive· to be -9223372036854775808. The ·base type· of
long is integer.

3.3.16.1 Lexical representation

long has a lexical representation consisting of an optional sign followed by a finite-length
sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed. For example:
-1, 0, 12678967543233, +100000.

3.3.16.2 Canonical representation

The canonical representation for long is defined by prohibiting certain options from the
Lexical representation (§3.3.16.1). Specifically, the the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.3.16.3 Constraining facets

long has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.16.4 Derived datatypes

http://www.w3.org/TR/xmlschema-2/ 47 3/28/2009 7:17 PM

The following ·built-in· datatypes are ·derived· from long:

int

3.3.17 int

[Definition:] int is ·derived· from long by setting the value of ·maxInclusive· to be
2147483647 and ·minInclusive· to be -2147483648. The ·base type· of int is long.

3.3.17.1 Lexical representation

int has a lexical representation consisting of an optional sign followed by a finite-length
sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed. For example:
-1, 0, 126789675, +100000.

3.3.17.2 Canonical representation

The canonical representation for int is defined by prohibiting certain options from the Lexical
representation (§3.3.17.1). Specifically, the the optional "+" sign is prohibited and leading
zeroes are prohibited.

3.3.17.3 Constraining facets

int has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.17.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from int:

short

3.3.18 short

[Definition:] short is ·derived· from int by setting the value of ·maxInclusive· to be 32767 and
·minInclusive· to be -32768. The ·base type· of short is int.

3.3.18.1 Lexical representation

http://www.w3.org/TR/xmlschema-2/ 48 3/28/2009 7:17 PM

short has a lexical representation consisting of an optional sign followed by a finite-length
sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed. For example:
-1, 0, 12678, +10000.

3.3.18.2 Canonical representation

The canonical representation for short is defined by prohibiting certain options from the
Lexical representation (§3.3.18.1). Specifically, the the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.3.18.3 Constraining facets

short has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.18.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from short:

byte

3.3.19 byte

[Definition:] byte is ·derived· from short by setting the value of ·maxInclusive· to be 127 and
·minInclusive· to be -128. The ·base type· of byte is short.

3.3.19.1 Lexical representation

byte has a lexical representation consisting of an optional sign followed by a finite-length
sequence of decimal digits (#x30-#x39). If the sign is omitted, "+" is assumed. For example:
-1, 0, 126, +100.

3.3.19.2 Canonical representation

The canonical representation for byte is defined by prohibiting certain options from the Lexical
representation (§3.3.19.1). Specifically, the the optional "+" sign is prohibited and leading
zeroes are prohibited.

http://www.w3.org/TR/xmlschema-2/ 49 3/28/2009 7:17 PM

3.3.19.3 Constraining facets

byte has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.20 nonNegativeInteger

[Definition:] nonNegativeInteger is ·derived· from integer by setting the value of
·minInclusive· to be 0. This results in the standard mathematical concept of the non-negative
integers. The ·value space· of nonNegativeInteger is the infinite set {0,1,2,...}. The ·base
type· of nonNegativeInteger is integer.

3.3.20.1 Lexical representation

nonNegativeInteger has a lexical representation consisting of an optional sign followed by a
finite-length sequence of decimal digits (#x30-#x39). If the sign is omitted, the positive sign
("+") is assumed. If the sign is present, it must be "+" except for lexical forms denoting zero,
which may be preceded by a positive ("+") or a negative ("-") sign. For example: 1, 0,
12678967543233, +100000.

3.3.20.2 Canonical representation

The canonical representation for nonNegativeInteger is defined by prohibiting certain options
from the Lexical representation (§3.3.20.1). Specifically, the the optional "+" sign is prohibited
and leading zeroes are prohibited.

3.3.20.3 Constraining facets

nonNegativeInteger has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

http://www.w3.org/TR/xmlschema-2/ 50 3/28/2009 7:17 PM

3.3.20.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from nonNegativeInteger:

unsignedLong
positiveInteger

3.3.21 unsignedLong

[Definition:] unsignedLong is ·derived· from nonNegativeInteger by setting the value of
·maxInclusive· to be 18446744073709551615. The ·base type· of unsignedLong is
nonNegativeInteger.

3.3.21.1 Lexical representation

unsignedLong has a lexical representation consisting of a finite-length sequence of decimal
digits (#x30-#x39). For example: 0, 12678967543233, 100000.

3.3.21.2 Canonical representation

The canonical representation for unsignedLong is defined by prohibiting certain options from
the Lexical representation (§3.3.21.1). Specifically, leading zeroes are prohibited.

3.3.21.3 Constraining facets

unsignedLong has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.21.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from unsignedLong:

unsignedInt

3.3.22 unsignedInt

[Definition:] unsignedInt is ·derived· from unsignedLong by setting the value of
·maxInclusive· to be 4294967295. The ·base type· of unsignedInt is unsignedLong.

http://www.w3.org/TR/xmlschema-2/ 51 3/28/2009 7:17 PM

3.3.22.1 Lexical representation

unsignedInt has a lexical representation consisting of a finite-length sequence of decimal
digits (#x30-#x39). For example: 0, 1267896754, 100000.

3.3.22.2 Canonical representation

The canonical representation for unsignedInt is defined by prohibiting certain options from
the Lexical representation (§3.3.22.1). Specifically, leading zeroes are prohibited.

3.3.22.3 Constraining facets

unsignedInt has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.22.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from unsignedInt:

unsignedShort

3.3.23 unsignedShort

[Definition:] unsignedShort is ·derived· from unsignedInt by setting the value of
·maxInclusive· to be 65535. The ·base type· of unsignedShort is unsignedInt.

3.3.23.1 Lexical representation

unsignedShort has a lexical representation consisting of a finite-length sequence of decimal
digits (#x30-#x39). For example: 0, 12678, 10000.

3.3.23.2 Canonical representation

The canonical representation for unsignedShort is defined by prohibiting certain options from
the Lexical representation (§3.3.23.1). Specifically, the leading zeroes are prohibited.

3.3.23.3 Constraining facets

http://www.w3.org/TR/xmlschema-2/ 52 3/28/2009 7:17 PM

unsignedShort has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.23.4 Derived datatypes

The following ·built-in· datatypes are ·derived· from unsignedShort:

unsignedByte

3.3.24 unsignedByte

[Definition:] unsignedByte is ·derived· from unsignedShort by setting the value of
·maxInclusive· to be 255. The ·base type· of unsignedByte is unsignedShort.

3.3.24.1 Lexical representation

unsignedByte has a lexical representation consisting of a finite-length sequence of decimal
digits (#x30-#x39). For example: 0, 126, 100.

3.3.24.2 Canonical representation

The canonical representation for unsignedByte is defined by prohibiting certain options from
the Lexical representation (§3.3.24.1). Specifically, leading zeroes are prohibited.

3.3.24.3 Constraining facets

unsignedByte has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

3.3.25 positiveInteger

http://www.w3.org/TR/xmlschema-2/ 53 3/28/2009 7:17 PM

[Definition:] positiveInteger is ·derived· from nonNegativeInteger by setting the value of
·minInclusive· to be 1. This results in the standard mathematical concept of the positive
integer numbers. The ·value space· of positiveInteger is the infinite set {1,2,...}. The ·base
type· of positiveInteger is nonNegativeInteger.

3.3.25.1 Lexical representation

positiveInteger has a lexical representation consisting of an optional positive sign ("+")
followed by a finite-length sequence of decimal digits (#x30-#x39). For example: 1,
12678967543233, +100000.

3.3.25.2 Canonical representation

The canonical representation for positiveInteger is defined by prohibiting certain options from
the Lexical representation (§3.3.25.1). Specifically, the optional "+" sign is prohibited and
leading zeroes are prohibited.

3.3.25.3 Constraining facets

positiveInteger has the following ·constraining facets·:

totalDigits
fractionDigits
pattern
whiteSpace
enumeration
maxInclusive
maxExclusive
minInclusive
minExclusive

4 Datatype components

The following sections provide full details on the properties and significance of each kind of
schema component involved in datatype definitions. For each property, the kinds of values it
is allowed to have is specified. Any property not identified as optional is required to be
present; optional properties which are not present have absent as their value. Any property
identified as a having a set, subset or ·list· value may have an empty value unless this is
explicitly ruled out: this is not the same as absent. Any property value identified as a superset
or a subset of some set may be equal to that set, unless a proper superset or subset is
explicitly called for.

For more information on the notion of datatype (schema) components, see Schema
Component Details of [XML Schema Part 1: Structures].

4.1 Simple Type Definition
 4.1.1 The Simple Type Definition Schema Component
 4.1.2 XML Representation of Simple Type Definition Schema Components
 4.1.3 Constraints on XML Representation of Simple Type Definition

http://www.w3.org/TR/xmlschema-2/ 54 3/28/2009 7:17 PM

 4.1.4 Simple Type Definition Validation Rules
 4.1.5 Constraints on Simple Type Definition Schema Components
 4.1.6 Simple Type Definition for anySimpleType

Simple Type definitions provide for:

Establishing the ·value space· and ·lexical space· of a datatype, through the combined
set of ·constraining facet·s specified in the definition;
Attaching a unique name (actually a QName) to the ·value space· and ·lexical space·.

4.1.1 The Simple Type Definition Schema Component

The Simple Type Definition schema component has the following properties:

Schema Component: Simple Type Definition

{name}

Optional. An NCName as defined by [Namespaces in XML].
{target namespace}

Either absent or a namespace name, as defined in [Namespaces in XML].
{variety}

One of {atomic, list, union}. Depending on the value of {variety}, further properties
are defined as follows:
atomic

{primitive type definition}

A ·built-in· ·primitive· datatype definition).

list
{item type definition}

An ·atomic· or ·union· simple type definition.

union
{member type definitions}

A non-empty sequence of simple type definitions.

{facets}

A possibly empty set of Facets (§2.4).
{fundamental facets}

A set of Fundamental facets (§2.4.1)
{base type definition}

If the datatype has been ·derived· by ·restriction· then the Simple Type Definition
component from which it is ·derived·, otherwise the Simple Type Definition for
anySimpleType (§4.1.6).

{final}

A subset of {restriction, list, union}.
{annotation}

Optional. An annotation.

Datatypes are identified by their {name} and {target namespace}. Except for anonymous
datatypes (those with no {name}), datatype definitions ·must· be uniquely identified within a
schema.

If {variety} is ·atomic· then the ·value space· of the datatype defined will be a subset of the

http://www.w3.org/TR/xmlschema-2/ 55 3/28/2009 7:17 PM

·value space· of {base type definition} (which is a subset of the ·value space· of {primitive type
definition}). If {variety} is ·list· then the ·value space· of the datatype defined will be the set of
finite-length sequence of values from the ·value space· of {item type definition}. If {variety} is
·union· then the ·value space· of the datatype defined will be the union of the ·value space·s of
each datatype in {member type definitions}.

If {variety} is ·atomic· then the {variety} of {base type definition} must be ·atomic·. If {variety} is
·list· then the {variety} of {item type definition} must be either ·atomic· or ·union·. If {variety} is
·union· then {member type definitions} must be a list of datatype definitions.

The value of {facets} consists of the set of ·facet·s specified directly in the datatype definition
unioned with the possibly empty set of {facets} of {base type definition}.

The value of {fundamental facets} consists of the set of ·fundamental facet·s and their values.

If {final} is the empty set then the type can be used in deriving other types; the explicit values
restriction, list and union prevent further derivations by ·restriction·, ·list· and ·union·
respectively.

4.1.2 XML Representation of Simple Type Definition Schema Components

The XML representation for a Simple Type Definition schema component is a <simpleType>
element information item. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: simpleType Element Information Item
<simpleType
 final = (#all | List of (list | union | restriction))
 id = ID
 name = NCName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (restriction | list | union))
</simpleType>

Datatype Definition Schema Component
Property Representation
{name} The actual value of the name [attribute], if present, otherwise null
{final} A set corresponding to the actual value of the final [attribute], if

present, otherwise the actual value of the finalDefault [attribute] of
the ancestor schema element information item, if present, otherwise
the empty string, as follows:

the empty string
the empty set;

#all

{restriction, list, union};
otherwise

a set with members drawn from the set above, each being
present or absent depending on whether the string contains an
equivalently named space-delimited substring.

http://www.w3.org/TR/xmlschema-2/ 56 3/28/2009 7:17 PM

Datatype Definition Schema Component

Property Representation
Note: Although the finalDefault [attribute] of schema
may include values other than restriction, list or union,
those values are ignored in the determination of {final}

{target
namespace}

The actual value of the targetNamespace [attribute] of the parent
schema element information item.

{annotation} The annotation corresponding to the <annotation> element
information item in the [children], if present, otherwise null

A ·derived· datatype can be ·derived· from a ·primitive· datatype or another ·derived· datatype
by one of three means: by restriction, by list or by union.

4.1.2.1 Derivation by restriction

XML Representation Summary: restriction Element Information Item
<restriction
 base = QName
 id = ID
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, (simpleType?, (minExclusive | minInclusive |
maxExclusive | maxInclusive | totalDigits | fractionDigits | length | minLength |
maxLength | enumeration | whiteSpace | pattern)*))
</restriction>

Simple Type Definition Schema Component

Property Representation
{variety} The actual value of {variety} of {base type definition}
{facets} The union of the set of Facets (§2.4) components resolved to by the

facet [children] merged with {facets} from {base type definition},
subject to the Facet Restriction Valid constraints specified in Facets
(§2.4).

{base type
definition}

The Simple Type Definition component resolved to by the actual
value of the base [attribute] or the <simpleType> [children], whichever
is present.

Example
An electronic commerce schema might define a datatype called Sku (the barcode number
that appears on products) from the ·built-in· datatype string by supplying a value for the
·pattern· facet.
<simpleType name='Sku'>
 <restriction base='string'>
 <pattern value='\d{3}-[A-Z]{2}'/>
 </restriction>
</simpleType>

http://www.w3.org/TR/xmlschema-2/ 57 3/28/2009 7:17 PM

In this case, Sku is the name of the new ·user-derived· datatype, string is its ·base type·
and ·pattern· is the facet.

4.1.2.2 Derivation by list

XML Representation Summary: list Element Information Item
<list
 id = ID
 itemType = QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType?)
</list>

Simple Type Definition Schema Component

Property Representation
{variety} list
{item type
definition}

The Simple Type Definition component resolved to by the actual
value of the itemType [attribute] or the <simpleType> [children],
whichever is present.

A ·list· datatype must be ·derived· from an ·atomic· or a ·union· datatype, known as the
·itemType· of the ·list· datatype. This yields a datatype whose ·value space· is composed of
finite-length sequences of values from the ·value space· of the ·itemType· and whose ·lexical
space· is composed of space-separated lists of literals of the ·itemType·.

Example
A system might want to store lists of floating point values.
<simpleType name='listOfFloat'>
 <list itemType='float'/>
</simpleType>

In this case, listOfFloat is the name of the new ·user-derived· datatype, float is its
·itemType· and ·list· is the derivation method.

As mentioned in List datatypes (§2.5.1.2), when a datatype is ·derived· from a ·list· datatype,
the following ·constraining facet·s can be used:

·length·
·maxLength·
·minLength·
·enumeration·
·pattern·
·whiteSpace·

regardless of the ·constraining facet·s that are applicable to the ·atomic· datatype that serves
as the ·itemType· of the ·list·.

For each of ·length·, ·maxLength· and ·minLength·, the unit of length is measured in number

http://www.w3.org/TR/xmlschema-2/ 58 3/28/2009 7:17 PM

of list items. The value of ·whiteSpace· is fixed to the value collapse.

4.1.2.3 Derivation by union

XML Representation Summary: union Element Information Item
<union
 id = ID
 memberTypes = List of QName
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?, simpleType*)
</union>

Simple Type Definition Schema Component

Property Representation
{variety} union
{member
type
definitions}

The sequence of Simple Type Definition components resolved to by
the items in the actual value of the memberTypes [attribute], if any, in
order, followed by the Simple Type Definition components resolved to
by the <simpleType> [children], if any, in order. If {variety} is union for
any Simple Type Definition components resolved to above, then the
Simple Type Definition is replaced by its {member type definitions}.

A ·union· datatype can be ·derived· from one or more ·atomic·, ·list· or other ·union· datatypes,
known as the ·memberTypes· of that ·union· datatype.

Example
As an example, taken from a typical display oriented text markup language, one might want
to express font sizes as an integer between 8 and 72, or with one of the tokens "small",
"medium" or "large". The ·union· type definition below would accomplish that.
<xsd:attribute name="size">
 <xsd:simpleType>
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:minInclusive value="8"/>
 <xsd:maxInclusive value="72"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="small"/>
 <xsd:enumeration value="medium"/>
 <xsd:enumeration value="large"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>
</xsd:attribute>
<p>
A header
</p>
<p>
this is a test
</p>

http://www.w3.org/TR/xmlschema-2/ 59 3/28/2009 7:17 PM

As mentioned in Union datatypes (§2.5.1.3), when a datatype is ·derived· from a ·union·
datatype, the only following ·constraining facet·s can be used:

·pattern·
·enumeration·

regardless of the ·constraining facet·s that are applicable to the datatypes that participate in
the ·union·

4.1.3 Constraints on XML Representation of Simple Type Definition

Schema Representation Constraint: Single Facet Value
Unless otherwise specifically allowed by this specification (Multiple patterns (§4.3.4.3) and
Multiple enumerations (§4.3.5.3)) any given ·constraining facet· can only be specifed once
within a single derivation step.

Schema Representation Constraint: itemType attribute or simpleType child
Either the itemType [attribute] or the <simpleType> [child] of the <list> element must be
present, but not both.

Schema Representation Constraint: base attribute or simpleType child
Either the base [attribute] or the simpleType [child] of the <restriction> element must be
present, but not both.

Schema Representation Constraint: memberTypes attribute or simpleType children
Either the memberTypes [attribute] of the <union> element must be non-empty or there must
be at least one simpleType [child].

4.1.4 Simple Type Definition Validation Rules

Validation Rule: Facet Valid
A value in a ·value space· is facet-valid with respect to a ·constraining facet· component if:
1 the value is facet-valid with respect to the particular ·constraining facet· as specified

below.

Validation Rule: Datatype Valid
A string is datatype-valid with respect to a datatype definition if:
1 it ·match·es a literal in the ·lexical space· of the datatype, determined as follows:

1.1 if ·pattern· is a member of {facets}, then the string must be pattern valid (§4.3.4.4);
1.2 if ·pattern· is not a member of {facets}, then

1.2.1 if {variety} is ·atomic· then the string must ·match· a literal in the ·lexical space· of
{base type definition}

1.2.2 if {variety} is ·list· then the string must be a sequence of space-separated tokens,
each of which ·match·es a literal in the ·lexical space· of {item type definition}

1.2.3 if {variety} is ·union· then the string must ·match· a literal in the ·lexical space· of
at least one member of {member type definitions}

2 the value denoted by the literal ·match·ed in the previous step is a member of the ·value
space· of the datatype, as determined by it being Facet Valid (§4.1.4) with respect to
each member of {facets} (except for ·pattern·).

4.1.5 Constraints on Simple Type Definition Schema Components

http://www.w3.org/TR/xmlschema-2/ 60 3/28/2009 7:17 PM

Schema Component Constraint: applicable facets
The ·constraining facet·s which are allowed to be members of {facets} are dependent on
{base type definition} as specified in the following table:

{base type
definition} applicable {facets}

If {variety} is list, then
[all datatypes] length, minLength, maxLength, pattern, enumeration, whiteSpace

If {variety} is union, then
[all datatypes] pattern, enumeration

else if {variety} is atomic, then
string length, minLength, maxLength, pattern, enumeration, whiteSpace
boolean pattern, whiteSpace

float pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

double pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

decimal totalDigits, fractionDigits, pattern, whiteSpace, enumeration,
maxInclusive, maxExclusive, minInclusive, minExclusive

duration pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

dateTime pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

time pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

date pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

gYearMonth pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

gYear pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

gMonthDay pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

gDay pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

gMonth pattern, enumeration, whiteSpace, maxInclusive, maxExclusive,
minInclusive, minExclusive

hexBinary length, minLength, maxLength, pattern, enumeration, whiteSpace
base64Binary length, minLength, maxLength, pattern, enumeration, whiteSpace
anyURI length, minLength, maxLength, pattern, enumeration, whiteSpace
QName length, minLength, maxLength, pattern, enumeration, whiteSpace
NOTATION length, minLength, maxLength, pattern, enumeration, whiteSpace

Schema Component Constraint: list of atomic
If {variety} is ·list·, then the {variety} of {item type definition} ·must· be ·atomic· or ·union·.

http://www.w3.org/TR/xmlschema-2/ 61 3/28/2009 7:17 PM

Schema Component Constraint: no circular unions
If {variety} is ·union·, then it is an ·error· if {name} and {target namespace} ·match· {name}
and {target namespace} of any member of {member type definitions}.

4.1.6 Simple Type Definition for anySimpleType

There is a simple type definition nearly equivalent to the simple version of the ur-type
definition present in every schema by definition. It has the following properties:

Schema Component: anySimpleType

{name}

anySimpleType
{target namespace}

http://www.w3.org/2001/XMLSchema
{basetype definition}

the ur-type definition
{final}

the empty set
{variety}

absent

4.2 Fundamental Facets
 4.2.1 equal
 4.2.2 ordered
 4.2.3 bounded
 4.2.4 cardinality
 4.2.5 numeric

4.2.1 equal

Every ·value space· supports the notion of equality, with the following rules:

for any a and b in the ·value space·, either a is equal to b, denoted a = b, or a is not
equal to b, denoted a != b
there is no pair a and b from the ·value space· such that both a = b and a != b
for all a in the ·value space·, a = a
for any a and b in the ·value space·, a = b if and only if b = a
for any a, b and c in the ·value space·, if a = b and b = c, then a = c
for any a and b in the ·value space· if a = b, then a and b cannot be distinguished (i.e.,
equality is identity)
the ·value space·s of all ·primitive· datatypes are disjoint (they do not share any values)

On every datatype, the operation Equal is defined in terms of the equality property of the
·value space·: for any values a, b drawn from the ·value space·, Equal(a,b) is true if a = b, and
false otherwise.

Note that in consequence of the above:

given ·value space· A and ·value space· B where A and B are disjoint, every pair of

http://www.w3.org/TR/xmlschema-2/ 62 3/28/2009 7:17 PM

values a from A and b from B, a != b
two values which are members of the ·value space· of the same ·primitive· datatype may
always be compared with each other
if a datatype T is ·derived· by ·union· from ·memberTypes· A, B, ... then the ·value
space· of T is the union of ·value space·s of its ·memberTypes· A, B, Some values in
the ·value space· of T are also values in the ·value space· of A. Other values in the
·value space· of T will be values in the ·value space· of B and so on. Values in the ·value
space· of T which are also in the ·value space· of A can be compared with other values
in the ·value space· of A according to the above rules. Similarly for values of type T and
B and all the other ·memberTypes·.
if a datatype T' is ·derived· by ·restriction· from an atomic datatype T then the ·value
space· of T' is a subset of the ·value space· of T. Values in the ·value space·s of T and
T' can be compared according to the above rules
if datatypes T' and T'' are ·derived· by ·restriction· from a common atomic ancestor T
then the ·value space·s of T' and T'' may overlap. Values in the ·value space·s of T' and
T'' can be compared according to the above rules

Note: There is no schema component corresponding to the equal ·fundamental facet·.

4.2.2 ordered

[Definition:] An order relation on a ·value space· is a mathematical relation that imposes a
·total order· or a ·partial order· on the members of the ·value space·.

[Definition:] A ·value space·, and hence a datatype, is said to be ordered if there exists an
·order-relation· defined for that ·value space·.

[Definition:] A partial order is an ·order-relation· that is irreflexive, asymmetric and
transitive.

A ·partial order· has the following properties:

for no a in the ·value space·, a < a (irreflexivity)
for all a and b in the ·value space·, a < b implies not(b < a) (asymmetry)
for all a, b and c in the ·value space·, a < b and b < c implies a < c (transitivity)

The notation a <> b is used to indicate the case when a != b and neither a < b nor b < a. For
any values a and b from different ·primitive· ·value space·s, a <> b.

[Definition:] When a <> b, a and b are incomparable,[Definition:] otherwise they are
comparable.

[Definition:] A total order is an ·partial order· such that for no a and b is it the case that a <>
b.

A ·total order· has all of the properties specified above for ·partial order·, plus the following
property:

for all a and b in the ·value space·, either a < b or b < a or a = b

Note: The fact that this specification does not define an ·order-relation· for some
datatype does not mean that some other application cannot treat that datatype as being

http://www.w3.org/TR/xmlschema-2/ 63 3/28/2009 7:17 PM

ordered by imposing its own order relation.

·ordered· provides for:

indicating whether an ·order-relation· is defined on a ·value space·, and if so, whether
that ·order-relation· is a ·partial order· or a ·total order·

4.2.2.1 The ordered Schema Component

Schema Component: ordered

{value}

One of {false, partial, total}.

{value} depends on {variety}, {facets} and {member type definitions} in the Simple Type
Definition component in which a ·ordered· component appears as a member of {fundamental
facets}.

When {variety} is ·atomic·, {value} is inherited from {value} of {base type definition}. For all
·primitive· types {value} is as specified in the table in Fundamental Facets (§C.1).

When {variety} is ·list·, {value} is false.

When {variety} is ·union·, {value} is partial unless one of the following:

If every member of {member type definitions} is derived from a common ancestor other
than the simple ur-type, then {value} is the same as that ancestor's ordered facet
If every member of {member type definitions} has a {value} of false for the ordered
facet, then {value} is false

4.2.3 bounded

[Definition:] A value u in an ·ordered· ·value space· U is said to be an inclusive upper
bound of a ·value space· V (where V is a subset of U) if for all v in V, u >= v.

[Definition:] A value u in an ·ordered· ·value space· U is said to be an exclusive upper
bound of a ·value space· V (where V is a subset of U) if for all v in V, u > v.

[Definition:] A value l in an ·ordered· ·value space· L is said to be an inclusive lower bound
of a ·value space· V (where V is a subset of L) if for all v in V, l <= v.

[Definition:] A value l in an ·ordered· ·value space· L is said to be an exclusive lower
bound of a ·value space· V (where V is a subset of L) if for all v in V, l < v.

[Definition:] A datatype is bounded if its ·value space· has either an ·inclusive upper bound·
or an ·exclusive upper bound· and either an ·inclusive lower bound· or an ·exclusive lower
bound·.

·bounded· provides for:

indicating whether a ·value space· is ·bounded·

http://www.w3.org/TR/xmlschema-2/ 64 3/28/2009 7:17 PM

4.2.3.1 The bounded Schema Component

Schema Component: bounded

{value}

A boolean.

{value} depends on {variety}, {facets} and {member type definitions} in the Simple Type
Definition component in which a ·bounded· component appears as a member of {fundamental
facets}.

When {variety} is ·atomic·, if one of ·minInclusive· or ·minExclusive· and one of ·maxInclusive·
or ·maxExclusive· are among {facets} , then {value} is true; else {value} is false.

When {variety} is ·list·, if ·length· or both of ·minLength· and ·maxLength· are among {facets},
then {value} is true; else {value} is false.

When {variety} is ·union·, if {value} is true for every member of {member type definitions} and
all members of {member type definitions} share a common ancestor, then {value} is true; else
{value} is false.

4.2.4 cardinality

[Definition:] Every ·value space· has associated with it the concept of cardinality. Some
·value space·s are finite, some are countably infinite while still others could conceivably be
uncountably infinite (although no ·value space· defined by this specification is uncountable
infinite). A datatype is said to have the cardinality of its ·value space·.

It is sometimes useful to categorize ·value space·s (and hence, datatypes) as to their
cardinality. There are two significant cases:

·value space·s that are finite
·value space·s that are countably infinite

·cardinality· provides for:

indicating whether the ·cardinality· of a ·value space· is finite or countably infinite

4.2.4.1 The cardinality Schema Component

Schema Component: cardinality

{value}

One of {finite, countably infinite}.

{value} depends on {variety}, {facets} and {member type definitions} in the Simple Type
Definition component in which a ·cardinality· component appears as a member of
{fundamental facets}.

http://www.w3.org/TR/xmlschema-2/ 65 3/28/2009 7:17 PM

When {variety} is ·atomic· and {value} of {base type definition} is finite, then {value} is finite.

When {variety} is ·atomic· and {value} of {base type definition} is countably infinite and either
of the following conditions are true, then {value} is finite; else {value} is countably infinite:

one of ·length·, ·maxLength·, ·totalDigits· is among {facets},1.
all of the following are true:

one of ·minInclusive· or ·minExclusive· is among {facets}a.
one of ·maxInclusive· or ·maxExclusive· is among {facets}b.
either of the following are true:

·fractionDigits· is among {facets}i.
{base type definition} is one of date, gYearMonth, gYear, gMonthDay, gDay
or gMonth or any type ·derived· from them

ii.

c.

2.

When {variety} is ·list·, if ·length· or both of ·minLength· and ·maxLength· are among {facets},
then {value} is finite; else {value} is countably infinite.

When {variety} is ·union·, if {value} is finite for every member of {member type definitions},
then {value} is finite; else {value} is countably infinite.

4.2.5 numeric

[Definition:] A datatype is said to be numeric if its values are conceptually quantities (in some
mathematical number system).

[Definition:] A datatype whose values are not ·numeric· is said to be non-numeric.

·numeric· provides for:

indicating whether a ·value space· is ·numeric·

4.2.5.1 The numeric Schema Component

Schema Component: numeric

{value}

A boolean

{value} depends on {variety}, {facets}, {base type definition} and {member type definitions} in
the Simple Type Definition component in which a ·cardinality· component appears as a
member of {fundamental facets}.

When {variety} is ·atomic·, {value} is inherited from {value} of {base type definition}. For all
·primitive· types {value} is as specified in the table in Fundamental Facets (§C.1).

When {variety} is ·list·, {value} is false.

When {variety} is ·union·, if {value} is true for every member of {member type definitions}, then
{value} is true; else {value} is false.

http://www.w3.org/TR/xmlschema-2/ 66 3/28/2009 7:17 PM

4.3 Constraining Facets
 4.3.1 length
 4.3.2 minLength
 4.3.3 maxLength
 4.3.4 pattern
 4.3.5 enumeration
 4.3.6 whiteSpace
 4.3.7 maxInclusive
 4.3.8 maxExclusive
 4.3.9 minExclusive
 4.3.10 minInclusive
 4.3.11 totalDigits
 4.3.12 fractionDigits

4.3.1 length

[Definition:] length is the number of units of length, where units of length varies depending
on the type that is being ·derived· from. The value of length ·must· be a nonNegativeInteger.

For string and datatypes ·derived· from string, length is measured in units of characters as
defined in [XML 1.0 (Second Edition)]. For anyURI, length is measured in units of characters
(as for string). For hexBinary and base64Binary and datatypes ·derived· from them, length is
measured in octets (8 bits) of binary data. For datatypes ·derived· by ·list·, length is
measured in number of list items.

Note: For string and datatypes ·derived· from string, length will not always coincide with
"string length" as perceived by some users or with the number of storage units in some
digital representation. Therefore, care should be taken when specifying a value for
length and in attempting to infer storage requirements from a given value for length.

·length· provides for:

Constraining a ·value space· to values with a specific number of units of length, where
units of length varies depending on {base type definition}.

Example
The following is the definition of a ·user-derived· datatype to represent product codes which
must be exactly 8 characters in length. By fixing the value of the length facet we ensure
that types derived from productCode can change or set the values of other facets, such as
pattern, but cannot change the length.
<simpleType name='productCode'>
 <restriction base='string'>
 <length value='8' fixed='true'/>
 </restriction>
</simpleType>

4.3.1.1 The length Schema Component

Schema Component: length

http://www.w3.org/TR/xmlschema-2/ 67 3/28/2009 7:17 PM

{value}

A nonNegativeInteger.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for length other than {value}.

4.3.1.2 XML Representation of length Schema Components

The XML representation for a length schema component is a <length> element information
item. The correspondences between the properties of the information item and properties of
the component are as follows:

XML Representation Summary: length Element Information Item
<length
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</length>

length Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.1.3 length Validation Rules

Validation Rule: Length Valid
A value in a ·value space· is facet-valid with respect to ·length·, determined as follows:
1 if the {variety} is ·atomic· then

1.1 if {primitive type definition} is string or anyURI, then the length of the value, as
measured in characters ·must· be equal to {value};

1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value,
as measured in octets of the binary data, ·must· be equal to {value};

1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.
2 if the {variety} is ·list·, then the length of the value, as measured in list items, ·must· be

equal to {value}

The use of ·length· on datatypes ·derived· from QName and NOTATION is deprecated.
Future versions of this specification may remove this facet for these datatypes.

http://www.w3.org/TR/xmlschema-2/ 68 3/28/2009 7:17 PM

4.3.1.4 Constraints on length Schema Components

Schema Component Constraint: length and minLength or maxLength
If length is a member of {facets} then
1 It is an error for minLength to be a member of {facets} unless

1.1 the {value} of minLength <= the {value} of length and
1.2 there is type definition from which this one is derived by one or more restriction steps

in which minLength has the same {value} and length is not specified.
2 It is an error for maxLength to be a member of {facets} unless

2.1 the {value} of length <= the {value} of maxLength and
2.2 there is type definition from which this one is derived by one or more restriction steps

in which maxLength has the same {value} and length is not specified.

Schema Component Constraint: length valid restriction
It is an ·error· if length is among the members of {facets} of {base type definition} and
{value} is not equal to the {value} of the parent length.

4.3.2 minLength

[Definition:] minLength is the minimum number of units of length, where units of length
varies depending on the type that is being ·derived· from. The value of minLength ·must· be
a nonNegativeInteger.

For string and datatypes ·derived· from string, minLength is measured in units of characters
as defined in [XML 1.0 (Second Edition)]. For hexBinary and base64Binary and datatypes
·derived· from them, minLength is measured in octets (8 bits) of binary data. For datatypes
·derived· by ·list·, minLength is measured in number of list items.

Note: For string and datatypes ·derived· from string, minLength will not always coincide
with "string length" as perceived by some users or with the number of storage units in
some digital representation. Therefore, care should be taken when specifying a value for
minLength and in attempting to infer storage requirements from a given value for
minLength.

·minLength· provides for:

Constraining a ·value space· to values with at least a specific number of units of length,
where units of length varies depending on {base type definition}.

Example
The following is the definition of a ·user-derived· datatype which requires strings to have at
least one character (i.e., the empty string is not in the ·value space· of this datatype).
<simpleType name='non-empty-string'>
 <restriction base='string'>
 <minLength value='1'/>
 </restriction>
</simpleType>

4.3.2.1 The minLength Schema Component

http://www.w3.org/TR/xmlschema-2/ 69 3/28/2009 7:17 PM

Schema Component: minLength

{value}

A nonNegativeInteger.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for minLength other than {value}.

4.3.2.2 XML Representation of minLength Schema Component

The XML representation for a minLength schema component is a <minLength> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: minLength Element Information Item
<minLength
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minLength>

minLength Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.2.3 minLength Validation Rules

Validation Rule: minLength Valid
A value in a ·value space· is facet-valid with respect to ·minLength·, determined as follows:
1 if the {variety} is ·atomic· then

1.1 if {primitive type definition} is string or anyURI, then the length of the value, as
measured in characters ·must· be greater than or equal to {value};

1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value,
as measured in octets of the binary data, ·must· be greater than or equal to {value};

1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.
2 if the {variety} is ·list·, then the length of the value, as measured in list items, ·must· be

greater than or equal to {value}

http://www.w3.org/TR/xmlschema-2/ 70 3/28/2009 7:17 PM

The use of ·minLength· on datatypes ·derived· from QName and NOTATION is deprecated.
Future versions of this specification may remove this facet for these datatypes.

4.3.2.4 Constraints on minLength Schema Components

Schema Component Constraint: minLength <= maxLength
If both minLength and maxLength are members of {facets}, then the {value} of minLength
 ·must· be less than or equal to the {value} of maxLength.

Schema Component Constraint: minLength valid restriction
It is an ·error· if minLength is among the members of {facets} of {base type definition} and
{value} is less than the {value} of the parent minLength.

4.3.3 maxLength

[Definition:] maxLength is the maximum number of units of length, where units of length
varies depending on the type that is being ·derived· from. The value of maxLength ·must· be
a nonNegativeInteger.

For string and datatypes ·derived· from string, maxLength is measured in units of characters
as defined in [XML 1.0 (Second Edition)]. For hexBinary and base64Binary and datatypes
·derived· from them, maxLength is measured in octets (8 bits) of binary data. For datatypes
·derived· by ·list·, maxLength is measured in number of list items.

Note: For string and datatypes ·derived· from string, maxLength will not always coincide
with "string length" as perceived by some users or with the number of storage units in
some digital representation. Therefore, care should be taken when specifying a value for
maxLength and in attempting to infer storage requirements from a given value for
maxLength.

·maxLength· provides for:

Constraining a ·value space· to values with at most a specific number of units of length,
where units of length varies depending on {base type definition}.

Example
The following is the definition of a ·user-derived· datatype which might be used to accept
form input with an upper limit to the number of characters that are acceptable.
<simpleType name='form-input'>
 <restriction base='string'>
 <maxLength value='50'/>
 </restriction>
</simpleType>

4.3.3.1 The maxLength Schema Component

Schema Component: maxLength

{value}

http://www.w3.org/TR/xmlschema-2/ 71 3/28/2009 7:17 PM

A nonNegativeInteger.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for maxLength other than {value}.

4.3.3.2 XML Representation of maxLength Schema Components

The XML representation for a maxLength schema component is a <maxLength> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: maxLength Element Information Item
<maxLength
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxLength>

maxLength Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.3.3 maxLength Validation Rules

Validation Rule: maxLength Valid
A value in a ·value space· is facet-valid with respect to ·maxLength·, determined as follows:
1 if the {variety} is ·atomic· then

1.1 if {primitive type definition} is string or anyURI, then the length of the value, as
measured in characters ·must· be less than or equal to {value};

1.2 if {primitive type definition} is hexBinary or base64Binary, then the length of the value,
as measured in octets of the binary data, ·must· be less than or equal to {value};

1.3 if {primitive type definition} is QName or NOTATION, then any {value} is facet-valid.
2 if the {variety} is ·list·, then the length of the value, as measured in list items, ·must· be

less than or equal to {value}

The use of ·maxLength· on datatypes ·derived· from QName and NOTATION is deprecated.
Future versions of this specification may remove this facet for these datatypes.

http://www.w3.org/TR/xmlschema-2/ 72 3/28/2009 7:17 PM

4.3.3.4 Constraints on maxLength Schema Components

Schema Component Constraint: maxLength valid restriction
It is an ·error· if maxLength is among the members of {facets} of {base type definition} and
{value} is greater than the {value} of the parent maxLength.

4.3.4 pattern

[Definition:] pattern is a constraint on the ·value space· of a datatype which is achieved by
constraining the ·lexical space· to literals which match a specific pattern. The value of pattern
 ·must· be a ·regular expression·.

·pattern· provides for:

Constraining a ·value space· to values that are denoted by literals which match a
specific ·regular expression·.

Example
The following is the definition of a ·user-derived· datatype which is a better representation of
postal codes in the United States, by limiting strings to those which are matched by a
specific ·regular expression·.
<simpleType name='better-us-zipcode'>
 <restriction base='string'>
 <pattern value='[0-9]{5}(-[0-9]{4})?'/>
 </restriction>
</simpleType>

4.3.4.1 The pattern Schema Component

Schema Component: pattern

{value}

A ·regular expression·.
{annotation}

Optional. An annotation.

4.3.4.2 XML Representation of pattern Schema Components

The XML representation for a pattern schema component is a <pattern> element information
item. The correspondences between the properties of the information item and properties of
the component are as follows:

XML Representation Summary: pattern Element Information Item
<pattern
 id = ID
 value = string
 {any attributes with non-schema namespace . . .}>

http://www.w3.org/TR/xmlschema-2/ 73 3/28/2009 7:17 PM

 Content: (annotation?)
</pattern>

{value} ·must· be a valid ·regular expression·.

pattern Schema Component

Property Representation
{value} The actual value of the value [attribute]
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.4.3 Constraints on XML Representation of pattern

Schema Representation Constraint: Multiple patterns
If multiple <pattern> element information items appear as [children] of a <simpleType>, the
[value]s should be combined as if they appeared in a single ·regular expression· as
separate ·branch·es.

Note: It is a consequence of the schema representation constraint Multiple patterns
(§4.3.4.3) and of the rules for ·restriction· that ·pattern· facets specified on the same step
in a type derivation are ORed together, while ·pattern· facets specified on different steps
of a type derivation are ANDed together.

Thus, to impose two ·pattern· constraints simultaneously, schema authors may either
write a single ·pattern· which expresses the intersection of the two ·pattern·s they wish to
impose, or define each ·pattern· on a separate type derivation step.

4.3.4.4 pattern Validation Rules

Validation Rule: pattern valid
A literal in a ·lexical space· is facet-valid with respect to ·pattern· if:
1 the literal is among the set of character sequences denoted by the ·regular expression·

specified in {value}.

4.3.5 enumeration

[Definition:] enumeration constrains the ·value space· to a specified set of values.

enumeration does not impose an order relation on the ·value space· it creates; the value of
the ·ordered· property of the ·derived· datatype remains that of the datatype from which it is
·derived·.

·enumeration· provides for:

Constraining a ·value space· to a specified set of values.

Example
The following example is a datatype definition for a ·user-derived· datatype which limits the
values of dates to the three US holidays enumerated. This datatype definition would appear

http://www.w3.org/TR/xmlschema-2/ 74 3/28/2009 7:17 PM

in a schema authored by an "end-user" and shows how to define a datatype by
enumerating the values in its ·value space·. The enumerated values must be type-valid
literals for the ·base type·.
<simpleType name='holidays'>
 <annotation>
 <documentation>some US holidays</documentation>
 </annotation>
 <restriction base='gMonthDay'>
 <enumeration value='--01-01'>
 <annotation>
 <documentation>New Year's day</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--07-04'>
 <annotation>
 <documentation>4th of July</documentation>
 </annotation>
 </enumeration>
 <enumeration value='--12-25'>
 <annotation>
 <documentation>Christmas</documentation>
 </annotation>
 </enumeration>
 </restriction>
</simpleType>

4.3.5.1 The enumeration Schema Component

Schema Component: enumeration

{value}

A set of values from the ·value space· of the {base type definition}.
{annotation}

Optional. An annotation.

4.3.5.2 XML Representation of enumeration Schema Components

The XML representation for an enumeration schema component is an <enumeration>
element information item. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: enumeration Element Information Item
<enumeration
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</enumeration>

{value} ·must· be in the ·value space· of {base type definition}.

enumeration Schema Component
Property Representation

http://www.w3.org/TR/xmlschema-2/ 75 3/28/2009 7:17 PM

enumeration Schema Component

Property Representation
{value} The actual value of the value [attribute]
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.5.3 Constraints on XML Representation of enumeration

Schema Representation Constraint: Multiple enumerations
If multiple <enumeration> element information items appear as [children] of a
<simpleType> the {value} of the enumeration component should be the set of all such
[value]s.

4.3.5.4 enumeration Validation Rules

Validation Rule: enumeration valid
A value in a ·value space· is facet-valid with respect to ·enumeration· if the value is one of
the values specified in {value}

4.3.5.5 Constraints on enumeration Schema Components

Schema Component Constraint: enumeration valid restriction
It is an ·error· if any member of {value} is not in the ·value space· of {base type definition}.

4.3.6 whiteSpace

[Definition:] whiteSpace constrains the ·value space· of types ·derived· from string such that
the various behaviors specified in Attribute Value Normalization in [XML 1.0 (Second Edition)]
are realized. The value of whiteSpace must be one of {preserve, replace, collapse}.

preserve
No normalization is done, the value is not changed (this is the behavior required by
[XML 1.0 (Second Edition)] for element content)

replace
All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return) are replaced with
#x20 (space)

collapse
After the processing implied by replace, contiguous sequences of #x20's are collapsed
to a single #x20, and leading and trailing #x20's are removed.

Note: The notation #xA used here (and elsewhere in this specification) represents the
Universal Character Set (UCS) code point hexadecimal A (line feed), which is denoted by
U+000A. This notation is to be distinguished from
, which is the XML character
reference to that same UCS code point.

whiteSpace is applicable to all ·atomic· and ·list· datatypes. For all ·atomic· datatypes other
than string (and types ·derived· by ·restriction· from it) the value of whiteSpace is collapse

http://www.w3.org/TR/xmlschema-2/ 76 3/28/2009 7:17 PM

and cannot be changed by a schema author; for string the value of whiteSpace is preserve;
for any type ·derived· by ·restriction· from string the value of whiteSpace can be any of the
three legal values. For all datatypes ·derived· by ·list· the value of whiteSpace is collapse
and cannot be changed by a schema author. For all datatypes ·derived· by ·union·
 whiteSpace does not apply directly; however, the normalization behavior of ·union· types is
controlled by the value of whiteSpace on that one of the ·memberTypes· against which the
·union· is successfully validated.

Note: For more information on whiteSpace, see the discussion on white space
normalization in Schema Component Details in [XML Schema Part 1: Structures].

·whiteSpace· provides for:

Constraining a ·value space· according to the white space normalization rules.

Example
The following example is the datatype definition for the token ·built-in· ·derived· datatype.
<simpleType name='token'>
 <restriction base='normalizedString'>
 <whiteSpace value='collapse'/>
 </restriction>
</simpleType>

4.3.6.1 The whiteSpace Schema Component

Schema Component: whiteSpace

{value}

One of {preserve, replace, collapse}.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for whiteSpace other than {value}.

4.3.6.2 XML Representation of whiteSpace Schema Components

The XML representation for a whiteSpace schema component is a <whiteSpace> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: whiteSpace Element Information Item
<whiteSpace
 fixed = boolean : false
 id = ID
 value = (collapse | preserve | replace)
 {any attributes with non-schema namespace . . .}>

http://www.w3.org/TR/xmlschema-2/ 77 3/28/2009 7:17 PM

 Content: (annotation?)
</whiteSpace>

whiteSpace Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.6.3 whiteSpace Validation Rules

Note: There are no ·Validation Rule·s associated ·whiteSpace·. For more information,
see the discussion on white space normalization in Schema Component Details in [XML
Schema Part 1: Structures].

4.3.6.4 Constraints on whiteSpace Schema Components

Schema Component Constraint: whiteSpace valid restriction
It is an ·error· if whiteSpace is among the members of {facets} of {base type definition} and
any of the following conditions is true:
1 {value} is replace or preserve and the {value} of the parent whiteSpace is collapse
2 {value} is preserve and the {value} of the parent whiteSpace is replace

4.3.7 maxInclusive

[Definition:] maxInclusive is the ·inclusive upper bound· of the ·value space· for a datatype
with the ·ordered· property. The value of maxInclusive ·must· be in the ·value space· of the
·base type·.

·maxInclusive· provides for:

Constraining a ·value space· to values with a specific ·inclusive upper bound·.

Example
The following is the definition of a ·user-derived· datatype which limits values to integers
less than or equal to 100, using ·maxInclusive·.
<simpleType name='one-hundred-or-less'>
 <restriction base='integer'>
 <maxInclusive value='100'/>
 </restriction>
</simpleType>

4.3.7.1 The maxInclusive Schema Component

http://www.w3.org/TR/xmlschema-2/ 78 3/28/2009 7:17 PM

Schema Component: maxInclusive

{value}

A value from the ·value space· of the {base type definition}.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for maxInclusive other than {value}.

4.3.7.2 XML Representation of maxInclusive Schema Components

The XML representation for a maxInclusive schema component is a <maxInclusive> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: maxInclusive Element Information Item
<maxInclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxInclusive>

{value} ·must· be in the ·value space· of {base type definition}.

maxInclusive Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false, if

present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.7.3 maxInclusive Validation Rules

Validation Rule: maxInclusive Valid
A value in an ·ordered· ·value space· is facet-valid with respect to ·maxInclusive·,
determined as follows:
1 if the ·numeric· property in {fundamental facets} is true, then the value ·must· be

numerically less than or equal to {value};
2 if the ·numeric· property in {fundamental facets} is false (i.e., {base type definition} is one

of the date and time related datatypes), then the value ·must· be chronologically less than
or equal to {value};

http://www.w3.org/TR/xmlschema-2/ 79 3/28/2009 7:17 PM

4.3.7.4 Constraints on maxInclusive Schema Components

Schema Component Constraint: minInclusive <= maxInclusive
It is an ·error· for the value specified for ·minInclusive· to be greater than the value specified
for ·maxInclusive· for the same datatype.

Schema Component Constraint: maxInclusive valid restriction
It is an ·error· if any of the following conditions is true:
1 maxInclusive is among the members of {facets} of {base type definition} and {value} is

greater than the {value} of the parent maxInclusive
2 maxExclusive is among the members of {facets} of {base type definition} and {value} is

greater than or equal to the {value} of the parent maxExclusive
3 minInclusive is among the members of {facets} of {base type definition} and {value} is

less than the {value} of the parent minInclusive
4 minExclusive is among the members of {facets} of {base type definition} and {value} is

less than or equal to the {value} of the parent minExclusive

4.3.8 maxExclusive

[Definition:] maxExclusive is the ·exclusive upper bound· of the ·value space· for a datatype
with the ·ordered· property. The value of maxExclusive ·must· be in the ·value space· of the
·base type· or be equal to {value} in {base type definition}.

·maxExclusive· provides for:

Constraining a ·value space· to values with a specific ·exclusive upper bound·.

Example
The following is the definition of a ·user-derived· datatype which limits values to integers
less than or equal to 100, using ·maxExclusive·.
<simpleType name='less-than-one-hundred-and-one'>
 <restriction base='integer'>
 <maxExclusive value='101'/>
 </restriction>
</simpleType>

Note that the ·value space· of this datatype is identical to the previous one (named
'one-hundred-or-less').

4.3.8.1 The maxExclusive Schema Component

Schema Component: maxExclusive

{value}

A value from the ·value space· of the {base type definition}.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

http://www.w3.org/TR/xmlschema-2/ 80 3/28/2009 7:17 PM

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for maxExclusive other than {value}.

4.3.8.2 XML Representation of maxExclusive Schema Components

The XML representation for a maxExclusive schema component is a <maxExclusive>
element information item. The correspondences between the properties of the information
item and properties of the component are as follows:

XML Representation Summary: maxExclusive Element Information Item
<maxExclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</maxExclusive>

{value} ·must· be in the ·value space· of {base type definition}.

maxExclusive Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.8.3 maxExclusive Validation Rules

Validation Rule: maxExclusive Valid
A value in an ·ordered· ·value space· is facet-valid with respect to ·maxExclusive·,
determined as follows:
1 if the ·numeric· property in {fundamental facets} is true, then the value ·must· be

numerically less than {value};
2 if the ·numeric· property in {fundamental facets} is false (i.e., {base type definition} is one

of the date and time related datatypes), then the value ·must· be chronologically less than
{value};

4.3.8.4 Constraints on maxExclusive Schema Components

Schema Component Constraint: maxInclusive and maxExclusive
It is an ·error· for both ·maxInclusive· and ·maxExclusive· to be specified in the same
derivation step of a datatype definition.

Schema Component Constraint: minExclusive <= maxExclusive
It is an ·error· for the value specified for ·minExclusive· to be greater than the value
specified for ·maxExclusive· for the same datatype.

http://www.w3.org/TR/xmlschema-2/ 81 3/28/2009 7:17 PM

Schema Component Constraint: maxExclusive valid restriction
It is an ·error· if any of the following conditions is true:
1 maxExclusive is among the members of {facets} of {base type definition} and {value} is

greater than the {value} of the parent maxExclusive
2 maxInclusive is among the members of {facets} of {base type definition} and {value} is

greater than the {value} of the parent maxInclusive
3 minInclusive is among the members of {facets} of {base type definition} and {value} is

less than or equal to the {value} of the parent minInclusive
4 minExclusive is among the members of {facets} of {base type definition} and {value} is

less than or equal to the {value} of the parent minExclusive

4.3.9 minExclusive

[Definition:] minExclusive is the ·exclusive lower bound· of the ·value space· for a datatype
with the ·ordered· property. The value of minExclusive ·must· be in the ·value space· of the
·base type· or be equal to {value} in {base type definition}.

·minExclusive· provides for:

Constraining a ·value space· to values with a specific ·exclusive lower bound·.

Example
The following is the definition of a ·user-derived· datatype which limits values to integers
greater than or equal to 100, using ·minExclusive·.
<simpleType name='more-than-ninety-nine'>
 <restriction base='integer'>
 <minExclusive value='99'/>
 </restriction>
</simpleType>

Note that the ·value space· of this datatype is identical to the previous one (named
'one-hundred-or-more').

4.3.9.1 The minExclusive Schema Component

Schema Component: minExclusive

{value}

A value from the ·value space· of the {base type definition}.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for minExclusive other than {value}.

4.3.9.2 XML Representation of minExclusive Schema Components

http://www.w3.org/TR/xmlschema-2/ 82 3/28/2009 7:17 PM

The XML representation for a minExclusive schema component is a <minExclusive> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: minExclusive Element Information Item
<minExclusive
 fixed = boolean : false
 id = ID
 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minExclusive>

{value} ·must· be in the ·value space· of {base type definition}.

minExclusive Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.9.3 minExclusive Validation Rules

Validation Rule: minExclusive Valid
A value in an ·ordered· ·value space· is facet-valid with respect to ·minExclusive· if:
1 if the ·numeric· property in {fundamental facets} is true, then the value ·must· be

numerically greater than {value};
2 if the ·numeric· property in {fundamental facets} is false (i.e., {base type definition} is one

of the date and time related datatypes), then the value ·must· be chronologically greater
than {value};

4.3.9.4 Constraints on minExclusive Schema Components

Schema Component Constraint: minInclusive and minExclusive
It is an ·error· for both ·minInclusive· and ·minExclusive· to be specified for the same
datatype.

Schema Component Constraint: minExclusive < maxInclusive
It is an ·error· for the value specified for ·minExclusive· to be greater than or equal to the
value specified for ·maxInclusive· for the same datatype.

Schema Component Constraint: minExclusive valid restriction
It is an ·error· if any of the following conditions is true:
1 minExclusive is among the members of {facets} of {base type definition} and {value} is

less than the {value} of the parent minExclusive
2 maxInclusive is among the members of {facets} of {base type definition} and {value} is

greater the {value} of the parent maxInclusive

http://www.w3.org/TR/xmlschema-2/ 83 3/28/2009 7:17 PM

3 minInclusive is among the members of {facets} of {base type definition} and {value} is
less than the {value} of the parent minInclusive

4 maxExclusive is among the members of {facets} of {base type definition} and {value} is
greater than or equal to the {value} of the parent maxExclusive

4.3.10 minInclusive

[Definition:] minInclusive is the ·inclusive lower bound· of the ·value space· for a datatype
with the ·ordered· property. The value of minInclusive ·must· be in the ·value space· of the
·base type·.

·minInclusive· provides for:

Constraining a ·value space· to values with a specific ·inclusive lower bound·.

Example
The following is the definition of a ·user-derived· datatype which limits values to integers
greater than or equal to 100, using ·minInclusive·.
<simpleType name='one-hundred-or-more'>
 <restriction base='integer'>
 <minInclusive value='100'/>
 </restriction>
</simpleType>

4.3.10.1 The minInclusive Schema Component

Schema Component: minInclusive

{value}

A value from the ·value space· of the {base type definition}.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for minInclusive other than {value}.

4.3.10.2 XML Representation of minInclusive Schema Components

The XML representation for a minInclusive schema component is a <minInclusive> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: minInclusive Element Information Item
<minInclusive
 fixed = boolean : false
 id = ID

http://www.w3.org/TR/xmlschema-2/ 84 3/28/2009 7:17 PM

 value = anySimpleType
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</minInclusive>

{value} ·must· be in the ·value space· of {base type definition}.

minInclusive Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.10.3 minInclusive Validation Rules

Validation Rule: minInclusive Valid
A value in an ·ordered· ·value space· is facet-valid with respect to ·minInclusive· if:
1 if the ·numeric· property in {fundamental facets} is true, then the value ·must· be

numerically greater than or equal to {value};
2 if the ·numeric· property in {fundamental facets} is false (i.e., {base type definition} is one

of the date and time related datatypes), then the value ·must· be chronologically greater
than or equal to {value};

4.3.10.4 Constraints on minInclusive Schema Components

Schema Component Constraint: minInclusive < maxExclusive
It is an ·error· for the value specified for ·minInclusive· to be greater than or equal to the
value specified for ·maxExclusive· for the same datatype.

Schema Component Constraint: minInclusive valid restriction
It is an ·error· if any of the following conditions is true:
1 minInclusive is among the members of {facets} of {base type definition} and {value} is

less than the {value} of the parent minInclusive
2 maxInclusive is among the members of {facets} of {base type definition} and {value} is

greater the {value} of the parent maxInclusive
3 minExclusive is among the members of {facets} of {base type definition} and {value} is

less than or equal to the {value} of the parent minExclusive
4 maxExclusive is among the members of {facets} of {base type definition} and {value} is

greater than or equal to the {value} of the parent maxExclusive

4.3.11 totalDigits

[Definition:] totalDigits controls the maximum number of values in the ·value space· of
datatypes ·derived· from decimal, by restricting it to numbers that are expressible as i × 10^-n
where i and n are integers such that |i| < 10^totalDigits and 0 <= n <= totalDigits. The value of
totalDigits ·must· be a positiveInteger.

http://www.w3.org/TR/xmlschema-2/ 85 3/28/2009 7:17 PM

The term totalDigits is chosen to reflect the fact that it restricts the ·value space· to those
values that can be represented lexically using at most totalDigits digits. Note that it does not
restrict the ·lexical space· directly; a lexical representation that adds additional leading zero
digits or trailing fractional zero digits is still permitted.

4.3.11.1 The totalDigits Schema Component

Schema Component: totalDigits

{value}

A positiveInteger.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for totalDigits other than {value}.

4.3.11.2 XML Representation of totalDigits Schema Components

The XML representation for a totalDigits schema component is a <totalDigits> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: totalDigits Element Information Item
<totalDigits
 fixed = boolean : false
 id = ID
 value = positiveInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</totalDigits>

totalDigits Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.11.3 totalDigits Validation Rules

Validation Rule: totalDigits Valid
A value in a ·value space· is facet-valid with respect to ·totalDigits· if:
1 that value is expressible as i × 10^-n where i and n are integers such that |i| < 10^{value}

http://www.w3.org/TR/xmlschema-2/ 86 3/28/2009 7:17 PM

and 0 <= n <= {value}.

4.3.11.4 Constraints on totalDigits Schema Components

Schema Component Constraint: totalDigits valid restriction
It is an ·error· if totalDigits is among the members of {facets} of {base type definition} and
{value} is greater than the {value} of the parent totalDigits

4.3.12 fractionDigits

[Definition:] fractionDigits controls the size of the minimum difference between values in
the ·value space· of datatypes ·derived· from decimal, by restricting the ·value space· to
numbers that are expressible as i × 10^-n where i and n are integers and 0 <= n <=
fractionDigits. The value of fractionDigits ·must· be a nonNegativeInteger.

The term fractionDigits is chosen to reflect the fact that it restricts the ·value space· to those
values that can be represented lexically using at most fractionDigits to the right of the decimal
point. Note that it does not restrict the ·lexical space· directly; a non-·canonical lexical
representation· that adds additional leading zero digits or trailing fractional zero digits is still
permitted.

Example
The following is the definition of a ·user-derived· datatype which could be used to represent
the magnitude of a person's body temperature on the Celsius scale. This definition would
appear in a schema authored by an "end-user" and shows how to define a datatype by
specifying facet values which constrain the range of the ·base type·.
<simpleType name='celsiusBodyTemp'>
 <restriction base='decimal'>
 <totalDigits value='4'/>
 <fractionDigits value='1'/>
 <minInclusive value='36.4'/>
 <maxInclusive value='40.5'/>
 </restriction>
</simpleType>

4.3.12.1 The fractionDigits Schema Component

Schema Component: fractionDigits

{value}

A nonNegativeInteger.
{fixed}

A boolean.
{annotation}

Optional. An annotation.

If {fixed} is true, then types for which the current type is the {base type definition} cannot
specify a value for fractionDigits other than {value}.

http://www.w3.org/TR/xmlschema-2/ 87 3/28/2009 7:17 PM

4.3.12.2 XML Representation of fractionDigits Schema Components

The XML representation for a fractionDigits schema component is a <fractionDigits> element
information item. The correspondences between the properties of the information item and
properties of the component are as follows:

XML Representation Summary: fractionDigits Element Information Item
<fractionDigits
 fixed = boolean : false
 id = ID
 value = nonNegativeInteger
 {any attributes with non-schema namespace . . .}>

 Content: (annotation?)
</fractionDigits>

fractionDigits Schema Component

Property Representation
{value} The actual value of the value [attribute]
{fixed} The actual value of the fixed [attribute], if present, otherwise false
{annotation} The annotations corresponding to all the <annotation> element

information items in the [children], if any.

4.3.12.3 fractionDigits Validation Rules

Validation Rule: fractionDigits Valid
A value in a ·value space· is facet-valid with respect to ·fractionDigits· if:
1 that value is expressible as i × 10^-n where i and n are integers and 0 <= n <= {value}.

4.3.12.4 Constraints on fractionDigits Schema Components

Schema Component Constraint: fractionDigits less than or equal to totalDigits
It is an ·error· for ·fractionDigits· to be greater than ·totalDigits·.

Schema Component Constraint: fractionDigits valid restriction
It is an ·error· if ·fractionDigits· is among the members of {facets} of {base type definition}
and {value} is greater than the {value} of the parent ·fractionDigits·.

5 Conformance

This specification describes two levels of conformance for datatype processors. The first is
required of all processors. Support for the other will depend on the application environments
for which the processor is intended.

[Definition:] Minimally conforming processors ·must· completely and correctly implement
the ·Constraint on Schemas· and ·Validation Rule· .

[Definition:] Processors which accept schemas in the form of XML documents as described

http://www.w3.org/TR/xmlschema-2/ 88 3/28/2009 7:17 PM

in XML Representation of Simple Type Definition Schema Components (§4.1.2) (and other
relevant portions of Datatype components (§4)) are additionally said to provide conformance
to the XML Representation of Schemas, and ·must·, when processing schema documents,
completely and correctly implement all ·Schema Representation Constraint·s in this
specification, and ·must· adhere exactly to the specifications in XML Representation of Simple
Type Definition Schema Components (§4.1.2) (and other relevant portions of Datatype
components (§4)) for mapping the contents of such documents to schema components for
use in validation.

Note: By separating the conformance requirements relating to the concrete syntax of
XML schema documents, this specification admits processors which validate using
schemas stored in optimized binary representations, dynamically created schemas
represented as programming language data structures, or implementations in which
particular schemas are compiled into executable code such as C or Java. Such
processors can be said to be ·minimally conforming· but not necessarily in ·conformance
to the XML Representation of Schemas·.

A Schema for Datatype Definitions (normative)
<!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "XMLSchema.dtd" [

<!--
 keep this schema XML1.0 DTD valid
 -->
 <!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'>

 <!ELEMENT hfp:hasFacet EMPTY>
 <!ATTLIST hfp:hasFacet
 name NMTOKEN #REQUIRED>

 <!ELEMENT hfp:hasProperty EMPTY>
 <!ATTLIST hfp:hasProperty
 name NMTOKEN #REQUIRED
 value CDATA #REQUIRED>
<!--
 Make sure that processors that do not read the external
 subset will know about the various IDs we declare
 -->
 <!ATTLIST xs:simpleType id ID #IMPLIED>
 <!ATTLIST xs:maxExclusive id ID #IMPLIED>
 <!ATTLIST xs:minExclusive id ID #IMPLIED>
 <!ATTLIST xs:maxInclusive id ID #IMPLIED>
 <!ATTLIST xs:minInclusive id ID #IMPLIED>
 <!ATTLIST xs:totalDigits id ID #IMPLIED>
 <!ATTLIST xs:fractionDigits id ID #IMPLIED>
 <!ATTLIST xs:length id ID #IMPLIED>
 <!ATTLIST xs:minLength id ID #IMPLIED>
 <!ATTLIST xs:maxLength id ID #IMPLIED>
 <!ATTLIST xs:enumeration id ID #IMPLIED>
 <!ATTLIST xs:pattern id ID #IMPLIED>
 <!ATTLIST xs:appinfo id ID #IMPLIED>
 <!ATTLIST xs:documentation id ID #IMPLIED>
 <!ATTLIST xs:list id ID #IMPLIED>
 <!ATTLIST xs:union id ID #IMPLIED>
]>

<?xml version='1.0'?>
<xs:schema xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" blockDefault="#all"
 elementFormDefault="qualified" xml:lang="en"
 targetNamespace="http://www.w3.org/2001/XMLSchema"
 version="Id: datatypes.xsd,v 1.4 2004/05/29 10:26:33 ht Exp ">
 <xs:annotation>

http://www.w3.org/TR/xmlschema-2/ 89 3/28/2009 7:17 PM

 <xs:documentation source="../datatypes/datatypes-with-errata.html">
 The schema corresponding to this document is normative,
 with respect to the syntactic constraints it expresses in the
 XML Schema language. The documentation (within <documentation>
 elements) below, is not normative, but rather highlights important
 aspects of the W3C Recommendation of which this is a part
 </xs:documentation>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 First the built-in primitive datatypes. These definitions are for
 information only, the real built-in definitions are magic.
 </xs:documentation>
 <xs:documentation>
 For each built-in datatype in this schema (both primitive and
 derived) can be uniquely addressed via a URI constructed
 as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype

 For example, to address the int datatype, the URI is:

 http://www.w3.org/2001/XMLSchema#int

 Additionally, each facet definition element can be uniquely
 addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the facet

 For example, to address the maxInclusive facet, the URI is:

 http://www.w3.org/2001/XMLSchema#maxInclusive

 Additionally, each facet usage in a built-in datatype definition
 can be uniquely addressed via a URI constructed as follows:
 1) the base URI is the URI of the XML Schema namespace
 2) the fragment identifier is the name of the datatype, followed
 by a period (".") followed by the name of the facet

 For example, to address the usage of the maxInclusive facet in
 the definition of int, the URI is:

 http://www.w3.org/2001/XMLSchema#int.maxInclusive

 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="string" id="string">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#string"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace value="preserve" id="string.preserve"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="boolean" id="boolean">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>

http://www.w3.org/TR/xmlschema-2/ 90 3/28/2009 7:17 PM

 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#boolean"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="boolean.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="float" id="float">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#float"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="float.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="double" id="double">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 <hfp:hasProperty name="numeric" value="true"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#double"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="double.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="decimal" id="decimal">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="totalDigits"/>
 <hfp:hasFacet name="fractionDigits"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="total"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="true"/>

http://www.w3.org/TR/xmlschema-2/ 91 3/28/2009 7:17 PM

 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#decimal"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="decimal.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="duration" id="duration">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#duration"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="duration.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="dateTime" id="dateTime">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#dateTime"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="dateTime.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="time" id="time">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#time"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="time.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>

http://www.w3.org/TR/xmlschema-2/ 92 3/28/2009 7:17 PM

 <xs:simpleType name="date" id="date">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#date"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="date.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gYearMonth" id="gYearMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#gYearMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="gYearMonth.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gYear" id="gYear">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#gYear"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="gYear.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gMonthDay" id="gMonthDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>

http://www.w3.org/TR/xmlschema-2/ 93 3/28/2009 7:17 PM

 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#gMonthDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="gMonthDay.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gDay" id="gDay">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#gDay"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="gDay.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="gMonth" id="gMonth">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="maxInclusive"/>
 <hfp:hasFacet name="maxExclusive"/>
 <hfp:hasFacet name="minInclusive"/>
 <hfp:hasFacet name="minExclusive"/>
 <hfp:hasProperty name="ordered" value="partial"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#gMonth"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="gMonth.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="hexBinary" id="hexBinary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>

http://www.w3.org/TR/xmlschema-2/ 94 3/28/2009 7:17 PM

 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#binary"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="hexBinary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="base64Binary" id="base64Binary">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#base64Binary"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="base64Binary.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="anyURI" id="anyURI">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#anyURI"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="anyURI.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="QName" id="QName">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#QName"/>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="QName.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NOTATION" id="NOTATION">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>

http://www.w3.org/TR/xmlschema-2/ 95 3/28/2009 7:17 PM

 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#NOTATION"/>
 <xs:documentation>
 NOTATION cannot be used directly in a schema; rather a type
 must be derived from it by specifying at least one enumeration
 facet whose value is the name of a NOTATION declared in the
 schema.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anySimpleType">
 <xs:whiteSpace fixed="true" value="collapse" id="NOTATION.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:annotation>
 <xs:documentation>
 Now the derived primitive types
 </xs:documentation>
 </xs:annotation>
 <xs:simpleType name="normalizedString" id="normalizedString">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#normalizedString"/>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="replace" id="normalizedString.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="token" id="token">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#token"/>
 </xs:annotation>
 <xs:restriction base="xs:normalizedString">
 <xs:whiteSpace value="collapse" id="token.whiteSpace"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="language" id="language">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#language"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*"
 id="language.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.ietf.org/rfc/rfc3066.txt">
 pattern specifies the content of section 2.12 of XML 1.0e2
 and RFC 3066 (Revised version of RFC 1766).
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="IDREFS" id="IDREFS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasProperty name="ordered" value="false"/>

http://www.w3.org/TR/xmlschema-2/ 96 3/28/2009 7:17 PM

 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#IDREFS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:IDREF"/>
 </xs:simpleType>
 <xs:minLength value="1" id="IDREFS.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ENTITIES" id="ENTITIES">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#ENTITIES"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:ENTITY"/>
 </xs:simpleType>
 <xs:minLength value="1" id="ENTITIES.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NMTOKEN" id="NMTOKEN">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#NMTOKEN"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\c+" id="NMTOKEN.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Nmtoken">
 pattern matches production 7 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NMTOKENS" id="NMTOKENS">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasFacet name="length"/>
 <hfp:hasFacet name="minLength"/>
 <hfp:hasFacet name="maxLength"/>
 <hfp:hasFacet name="enumeration"/>
 <hfp:hasFacet name="whiteSpace"/>
 <hfp:hasFacet name="pattern"/>
 <hfp:hasProperty name="ordered" value="false"/>
 <hfp:hasProperty name="bounded" value="false"/>
 <hfp:hasProperty name="cardinality" value="countably infinite"/>
 <hfp:hasProperty name="numeric" value="false"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#NMTOKENS"/>
 </xs:annotation>
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:NMTOKEN"/>
 </xs:simpleType>

http://www.w3.org/TR/xmlschema-2/ 97 3/28/2009 7:17 PM

 <xs:minLength value="1" id="NMTOKENS.minLength"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="Name" id="Name">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#Name"/>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:pattern value="\i\c*" id="Name.pattern">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Name">
 pattern matches production 5 from the XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NCName" id="NCName">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#NCName"/>
 </xs:annotation>
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][\c-[:]]*" id="NCName.pattern">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/REC-xml-names/#NT-NCName">
 pattern matches production 4 from the Namespaces in XML spec
 </xs:documentation>
 </xs:annotation>
 </xs:pattern>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ID" id="ID">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#ID"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="IDREF" id="IDREF">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#IDREF"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="ENTITY" id="ENTITY">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#ENTITY"/>
 </xs:annotation>
 <xs:restriction base="xs:NCName"/>
 </xs:simpleType>
 <xs:simpleType name="integer" id="integer">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#integer"/>
 </xs:annotation>
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits fixed="true" value="0" id="integer.fractionDigits"/>
 <xs:pattern value="[\-+]?[0-9]+"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonPositiveInteger" id="nonPositiveInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#nonPositiveInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:maxInclusive value="0" id="nonPositiveInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="negativeInteger" id="negativeInteger">
 <xs:annotation>

http://www.w3.org/TR/xmlschema-2/ 98 3/28/2009 7:17 PM

 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#negativeInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:nonPositiveInteger">
 <xs:maxInclusive value="-1" id="negativeInteger.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="long" id="long">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#long"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-9223372036854775808" id="long.minInclusive"/>
 <xs:maxInclusive value="9223372036854775807" id="long.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="int" id="int">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#int"/>
 </xs:annotation>
 <xs:restriction base="xs:long">
 <xs:minInclusive value="-2147483648" id="int.minInclusive"/>
 <xs:maxInclusive value="2147483647" id="int.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="short" id="short">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#short"/>
 </xs:annotation>
 <xs:restriction base="xs:int">
 <xs:minInclusive value="-32768" id="short.minInclusive"/>
 <xs:maxInclusive value="32767" id="short.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="byte" id="byte">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#byte"/>
 </xs:annotation>
 <xs:restriction base="xs:short">
 <xs:minInclusive value="-128" id="byte.minInclusive"/>
 <xs:maxInclusive value="127" id="byte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="nonNegativeInteger" id="nonNegativeInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#nonNegativeInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0" id="nonNegativeInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedLong" id="unsignedLong">
 <xs:annotation>
 <xs:appinfo>
 <hfp:hasProperty name="bounded" value="true"/>
 <hfp:hasProperty name="cardinality" value="finite"/>
 </xs:appinfo>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#unsignedLong"/>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:maxInclusive value="18446744073709551615"
 id="unsignedLong.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedInt" id="unsignedInt">

http://www.w3.org/TR/xmlschema-2/ 99 3/28/2009 7:17 PM

 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#unsignedInt"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedLong">
 <xs:maxInclusive value="4294967295" id="unsignedInt.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedShort" id="unsignedShort">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#unsignedShort"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedInt">
 <xs:maxInclusive value="65535" id="unsignedShort.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="unsignedByte" id="unsignedByte">
 <xs:annotation>
 <xs:documentation source="http://www.w3.org/TR/xmlschema-2/#unsignedByte"/>
 </xs:annotation>
 <xs:restriction base="xs:unsignedShort">
 <xs:maxInclusive value="255" id="unsignedByte.maxInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="positiveInteger" id="positiveInteger">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#positiveInteger"/>
 </xs:annotation>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="1" id="positiveInteger.minInclusive"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="derivationControl">
 <xs:annotation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="substitution"/>
 <xs:enumeration value="extension"/>
 <xs:enumeration value="restriction"/>
 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:group name="simpleDerivation">
 <xs:choice>
 <xs:element ref="xs:restriction"/>
 <xs:element ref="xs:list"/>
 <xs:element ref="xs:union"/>
 </xs:choice>
 </xs:group>
 <xs:simpleType name="simpleDerivationSet">
 <xs:annotation>
 <xs:documentation>
 #all or (possibly empty) subset of {restriction, union, list}
 </xs:documentation>
 <xs:documentation>
 A utility type, not for public use</xs:documentation>
 </xs:annotation>
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="#all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:list>
 <xs:simpleType>
 <xs:restriction base="xs:derivationControl">

http://www.w3.org/TR/xmlschema-2/ 100 3/28/2009 7:17 PM

 <xs:enumeration value="list"/>
 <xs:enumeration value="union"/>
 <xs:enumeration value="restriction"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:list>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:complexType name="simpleType" abstract="true">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleDerivation"/>
 <xs:attribute name="final" type="xs:simpleDerivationSet"/>
 <xs:attribute name="name" type="xs:NCName">
 <xs:annotation>
 <xs:documentation>
 Can be restricted to required or forbidden
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="topLevelSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:NCName" use="required">
 <xs:annotation>
 <xs:documentation>
 Required at the top level
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="localSimpleType">
 <xs:complexContent>
 <xs:restriction base="xs:simpleType">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 <xs:group ref="xs:simpleDerivation"/>
 </xs:sequence>
 <xs:attribute name="name" use="prohibited">
 <xs:annotation>
 <xs:documentation>
 Forbidden when nested
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="final" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="simpleType" type="xs:topLevelSimpleType" id="simpleType">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-simpleType"/>
 </xs:annotation>
 </xs:element>
 <xs:group name="facets">
 <xs:annotation>
 <xs:documentation>

http://www.w3.org/TR/xmlschema-2/ 101 3/28/2009 7:17 PM

 We should use a substitution group for facets, but
 that's ruled out because it would allow users to
 add their own, which we're not ready for yet.
 </xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element ref="xs:minExclusive"/>
 <xs:element ref="xs:minInclusive"/>
 <xs:element ref="xs:maxExclusive"/>
 <xs:element ref="xs:maxInclusive"/>
 <xs:element ref="xs:totalDigits"/>
 <xs:element ref="xs:fractionDigits"/>
 <xs:element ref="xs:length"/>
 <xs:element ref="xs:minLength"/>
 <xs:element ref="xs:maxLength"/>
 <xs:element ref="xs:enumeration"/>
 <xs:element ref="xs:whiteSpace"/>
 <xs:element ref="xs:pattern"/>
 </xs:choice>
 </xs:group>
 <xs:group name="simpleRestrictionModel">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/>
 <xs:group ref="xs:facets" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:group>
 <xs:element name="restriction" id="restriction">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-restriction">
 base attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:group ref="xs:simpleRestrictionModel"/>
 <xs:attribute name="base" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="list" id="list">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-list">
 itemType attribute and simpleType child are mutually
 exclusive, but one or other is required
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="itemType" type="xs:QName" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="union" id="union">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-union">
 memberTypes attribute must be non-empty or there must be
 at least one simpleType child

http://www.w3.org/TR/xmlschema-2/ 102 3/28/2009 7:17 PM

 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:sequence>
 <xs:element name="simpleType" type="xs:localSimpleType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="memberTypes" use="optional">
 <xs:simpleType>
 <xs:list itemType="xs:QName"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="facet">
 <xs:complexContent>
 <xs:extension base="xs:annotated">
 <xs:attribute name="value" use="required"/>
 <xs:attribute name="fixed" type="xs:boolean" default="false"
 use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="noFixedFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="fixed" use="prohibited"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="minExclusive" type="xs:facet" id="minExclusive">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-minExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minInclusive" type="xs:facet" id="minInclusive">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-minInclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxExclusive" type="xs:facet" id="maxExclusive">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-maxExclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxInclusive" type="xs:facet" id="maxInclusive">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-maxInclusive"/>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="numFacet">
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:nonNegativeInteger" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>

http://www.w3.org/TR/xmlschema-2/ 103 3/28/2009 7:17 PM

 </xs:complexContent>
 </xs:complexType>
 <xs:element name="totalDigits" id="totalDigits">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-totalDigits"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:numFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:positiveInteger" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="fractionDigits" type="xs:numFacet" id="fractionDigits">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-fractionDigits"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="length" type="xs:numFacet" id="length">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-length"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="minLength" type="xs:numFacet" id="minLength">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-minLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="maxLength" type="xs:numFacet" id="maxLength">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-maxLength"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="enumeration" type="xs:noFixedFacet" id="enumeration">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-enumeration"/>
 </xs:annotation>
 </xs:element>
 <xs:element name="whiteSpace" id="whiteSpace">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-whiteSpace"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:facet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="preserve"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="collapse"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:anyAttribute namespace="##other" processContents="lax"/>

http://www.w3.org/TR/xmlschema-2/ 104 3/28/2009 7:17 PM

 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="pattern" id="pattern">
 <xs:annotation>
 <xs:documentation
 source="http://www.w3.org/TR/xmlschema-2/#element-pattern"/>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:restriction base="xs:noFixedFacet">
 <xs:sequence>
 <xs:element ref="xs:annotation" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="value" type="xs:string" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:restriction>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

B DTD for Datatype Definitions (non-normative)
<!--
 DTD for XML Schemas: Part 2: Datatypes
 Id: datatypes.dtd,v 1.1 2003/08/28 13:30:52 ht Exp
 Note this DTD is NOT normative, or even definitive.
 -->

<!--
 This DTD cannot be used on its own, it is intended
 only for incorporation in XMLSchema.dtd, q.v.
 -->

<!-- Define all the element names, with optional prefix -->
<!ENTITY % simpleType "%p;simpleType">
<!ENTITY % restriction "%p;restriction">
<!ENTITY % list "%p;list">
<!ENTITY % union "%p;union">
<!ENTITY % maxExclusive "%p;maxExclusive">
<!ENTITY % minExclusive "%p;minExclusive">
<!ENTITY % maxInclusive "%p;maxInclusive">
<!ENTITY % minInclusive "%p;minInclusive">
<!ENTITY % totalDigits "%p;totalDigits">
<!ENTITY % fractionDigits "%p;fractionDigits">
<!ENTITY % length "%p;length">
<!ENTITY % minLength "%p;minLength">
<!ENTITY % maxLength "%p;maxLength">
<!ENTITY % enumeration "%p;enumeration">
<!ENTITY % whiteSpace "%p;whiteSpace">
<!ENTITY % pattern "%p;pattern">

<!--
 Customisation entities for the ATTLIST of each element
 type. Define one of these if your schema takes advantage
 of the anyAttribute='##other' in the schema for schemas
 -->

<!ENTITY % simpleTypeAttrs "">
<!ENTITY % restrictionAttrs "">
<!ENTITY % listAttrs "">
<!ENTITY % unionAttrs "">
<!ENTITY % maxExclusiveAttrs "">
<!ENTITY % minExclusiveAttrs "">
<!ENTITY % maxInclusiveAttrs "">
<!ENTITY % minInclusiveAttrs "">

http://www.w3.org/TR/xmlschema-2/ 105 3/28/2009 7:17 PM

<!ENTITY % totalDigitsAttrs "">
<!ENTITY % fractionDigitsAttrs "">
<!ENTITY % lengthAttrs "">
<!ENTITY % minLengthAttrs "">
<!ENTITY % maxLengthAttrs "">
<!ENTITY % enumerationAttrs "">
<!ENTITY % whiteSpaceAttrs "">
<!ENTITY % patternAttrs "">

<!-- Define some entities for informative use as attribute
 types -->
<!ENTITY % URIref "CDATA">
<!ENTITY % XPathExpr "CDATA">
<!ENTITY % QName "NMTOKEN">
<!ENTITY % QNames "NMTOKENS">
<!ENTITY % NCName "NMTOKEN">
<!ENTITY % nonNegativeInteger "NMTOKEN">
<!ENTITY % boolean "(true|false)">
<!ENTITY % simpleDerivationSet "CDATA">
<!--
 #all or space-separated list drawn from derivationChoice
 -->

<!--
 Note that the use of 'facet' below is less restrictive
 than is really intended: There should in fact be no
 more than one of each of minInclusive, minExclusive,
 maxInclusive, maxExclusive, totalDigits, fractionDigits,
 length, maxLength, minLength within datatype,
 and the min- and max- variants of Inclusive and Exclusive
 are mutually exclusive. On the other hand, pattern and
 enumeration may repeat.
 -->
<!ENTITY % minBound "(%minInclusive; | %minExclusive;)">
<!ENTITY % maxBound "(%maxInclusive; | %maxExclusive;)">
<!ENTITY % bounds "%minBound; | %maxBound;">
<!ENTITY % numeric "%totalDigits; | %fractionDigits;">
<!ENTITY % ordered "%bounds; | %numeric;">
<!ENTITY % unordered
 "%pattern; | %enumeration; | %whiteSpace; | %length; |
 %maxLength; | %minLength;">
<!ENTITY % facet "%ordered; | %unordered;">
<!ENTITY % facetAttr
 "value CDATA #REQUIRED
 id ID #IMPLIED">
<!ENTITY % fixedAttr "fixed %boolean; #IMPLIED">
<!ENTITY % facetModel "(%annotation;)?">
<!ELEMENT %simpleType;
 ((%annotation;)?, (%restriction; | %list; | %union;))>
<!ATTLIST %simpleType;
 name %NCName; #IMPLIED
 final %simpleDerivationSet; #IMPLIED
 id ID #IMPLIED
 %simpleTypeAttrs;>
<!-- name is required at top level -->
<!ELEMENT %restriction; ((%annotation;)?,
 (%restriction1; |
 ((%simpleType;)?,(%facet;)*)),
 (%attrDecls;))>
<!ATTLIST %restriction;
 base %QName; #IMPLIED
 id ID #IMPLIED
 %restrictionAttrs;>
<!--
 base and simpleType child are mutually exclusive,
 one is required.

 restriction is shared between simpleType and
 simpleContent and complexContent (in XMLSchema.xsd).
 restriction1 is for the latter cases, when this

http://www.w3.org/TR/xmlschema-2/ 106 3/28/2009 7:17 PM

 is restricting a complex type, as is attrDecls.
 -->
<!ELEMENT %list; ((%annotation;)?,(%simpleType;)?)>
<!ATTLIST %list;
 itemType %QName; #IMPLIED
 id ID #IMPLIED
 %listAttrs;>
<!--
 itemType and simpleType child are mutually exclusive,
 one is required
 -->
<!ELEMENT %union; ((%annotation;)?,(%simpleType;)*)>
<!ATTLIST %union;
 id ID #IMPLIED
 memberTypes %QNames; #IMPLIED
 %unionAttrs;>
<!--
 At least one item in memberTypes or one simpleType
 child is required
 -->

<!ELEMENT %maxExclusive; %facetModel;>
<!ATTLIST %maxExclusive;
 %facetAttr;
 %fixedAttr;
 %maxExclusiveAttrs;>
<!ELEMENT %minExclusive; %facetModel;>
<!ATTLIST %minExclusive;
 %facetAttr;
 %fixedAttr;
 %minExclusiveAttrs;>

<!ELEMENT %maxInclusive; %facetModel;>
<!ATTLIST %maxInclusive;
 %facetAttr;
 %fixedAttr;
 %maxInclusiveAttrs;>
<!ELEMENT %minInclusive; %facetModel;>
<!ATTLIST %minInclusive;
 %facetAttr;
 %fixedAttr;
 %minInclusiveAttrs;>

<!ELEMENT %totalDigits; %facetModel;>
<!ATTLIST %totalDigits;
 %facetAttr;
 %fixedAttr;
 %totalDigitsAttrs;>
<!ELEMENT %fractionDigits; %facetModel;>
<!ATTLIST %fractionDigits;
 %facetAttr;
 %fixedAttr;
 %fractionDigitsAttrs;>

<!ELEMENT %length; %facetModel;>
<!ATTLIST %length;
 %facetAttr;
 %fixedAttr;
 %lengthAttrs;>
<!ELEMENT %minLength; %facetModel;>
<!ATTLIST %minLength;
 %facetAttr;
 %fixedAttr;
 %minLengthAttrs;>
<!ELEMENT %maxLength; %facetModel;>
<!ATTLIST %maxLength;
 %facetAttr;
 %fixedAttr;
 %maxLengthAttrs;>

http://www.w3.org/TR/xmlschema-2/ 107 3/28/2009 7:17 PM

<!-- This one can be repeated -->
<!ELEMENT %enumeration; %facetModel;>
<!ATTLIST %enumeration;
 %facetAttr;
 %enumerationAttrs;>

<!ELEMENT %whiteSpace; %facetModel;>
<!ATTLIST %whiteSpace;
 %facetAttr;
 %fixedAttr;
 %whiteSpaceAttrs;>

<!-- This one can be repeated -->
<!ELEMENT %pattern; %facetModel;>
<!ATTLIST %pattern;
 %facetAttr;
 %patternAttrs;>

C Datatypes and Facets

C.1 Fundamental Facets

The following table shows the values of the fundamental facets for each ·built-in· datatype.

 Datatype ordered bounded cardinality numeric

http://www.w3.org/TR/xmlschema-2/ 108 3/28/2009 7:17 PM

token false false countably infinite false
language false false countably infinite false
IDREFS false false countably infinite false
ENTITIES false false countably infinite false
NMTOKEN false false countably infinite false
NMTOKENS false false countably infinite false
Name false false countably infinite false
NCName false false countably infinite false
ID false false countably infinite false
IDREF false false countably infinite false
ENTITY false false countably infinite false
integer total false countably infinite true
nonPositiveInteger total false countably infinite true
negativeInteger total false countably infinite true
long total true finite true
int total true finite true
short total true finite true
byte total true finite true
nonNegativeInteger total false countably infinite true
unsignedLong total true finite true
unsignedInt total true finite true
unsignedShort total true finite true
unsignedByte total true finite true
positiveInteger total false countably infinite true

D ISO 8601 Date and Time Formats

D.1 ISO 8601 Conventions

The ·primitive· datatypes duration, dateTime, time, date, gYearMonth, gMonthDay, gDay,
gMonth and gYear use lexical formats inspired by [ISO 8601]. Following [ISO 8601], the
lexical forms of these datatypes can include only the characters #20 through #7F. This
appendix provides more detail on the ISO formats and discusses some deviations from them
for the datatypes defined in this specification.

[ISO 8601] "specifies the representation of dates in the proleptic Gregorian calendar and
times and representations of periods of time". The proleptic Gregorian calendar includes
dates prior to 1582 (the year it came into use as an ecclesiastical calendar). It should be
pointed out that the datatypes described in this specification do not cover all the types of data
covered by [ISO 8601], nor do they support all the lexical representations for those types of
data.

[ISO 8601] lexical formats are described using "pictures" in which characters are used in
place of decimal digits. The allowed decimal digits are (#x30-#x39). For the primitive

http://www.w3.org/TR/xmlschema-2/ 109 3/28/2009 7:17 PM

datatypes dateTime, time, date, gYearMonth, gMonthDay, gDay, gMonth and gYear. these
characters have the following meanings:

C -- represents a digit used in the thousands and hundreds components, the "century"
component, of the time element "year". Legal values are from 0 to 9.
Y -- represents a digit used in the tens and units components of the time element "year".
Legal values are from 0 to 9.
M -- represents a digit used in the time element "month". The two digits in a MM format
can have values from 1 to 12.
D -- represents a digit used in the time element "day". The two digits in a DD format can
have values from 1 to 28 if the month value equals 2, 1 to 29 if the month value equals 2
and the year is a leap year, 1 to 30 if the month value equals 4, 6, 9 or 11, and 1 to 31 if
the month value equals 1, 3, 5, 7, 8, 10 or 12.
h -- represents a digit used in the time element "hour". The two digits in a hh format can
have values from 0 to 24. If the value of the hour element is 24 then the values of the
minutes element and the seconds element must be 00 and 00.
m -- represents a digit used in the time element "minute". The two digits in a mm format
can have values from 0 to 59.
s -- represents a digit used in the time element "second". The two digits in a ss format
can have values from 0 to 60. In the formats described in this specification the whole
number of seconds ·may· be followed by decimal seconds to an arbitrary level of
precision. This is represented in the picture by "ss.sss". A value of 60 or more is allowed
only in the case of leap seconds.

Strictly speaking, a value of 60 or more is not sensible unless the month and day could
represent March 31, June 30, September 30, or December 31 in UTC. Because the leap
second is added or subtracted as the last second of the day in UTC time, the long (or
short) minute could occur at other times in local time. In cases where the leap second is
used with an inappropriate month and day it, and any fractional seconds, should
considered as added or subtracted from the following minute.

For all the information items indicated by the above characters, leading zeros are required
where indicated.

In addition to the above, certain characters are used as designators and appear as
themselves in lexical formats.

T -- is used as time designator to indicate the start of the representation of the time of
day in dateTime.
Z -- is used as time-zone designator, immediately (without a space) following a data
element expressing the time of day in Coordinated Universal Time (UTC) in dateTime,
time, date, gYearMonth, gMonthDay, gDay, gMonth, and gYear.

In the lexical format for duration the following characters are also used as designators and
appear as themselves in lexical formats:

P -- is used as the time duration designator, preceding a data element representing a
given duration of time.
Y -- follows the number of years in a time duration.
M -- follows the number of months or minutes in a time duration.
D -- follows the number of days in a time duration.
H -- follows the number of hours in a time duration.
S -- follows the number of seconds in a time duration.

http://www.w3.org/TR/xmlschema-2/ 110 3/28/2009 7:17 PM

The values of the Year, Month, Day, Hour and Minutes components are not restricted but
allow an arbitrary integer. Similarly, the value of the Seconds component allows an arbitrary
decimal. Thus, the lexical format for duration and datatypes derived from it does not follow the
alternative format of § 5.5.3.2.1 of [ISO 8601].

D.2 Truncated and Reduced Formats

[ISO 8601] supports a variety of "truncated" formats in which some of the characters on the
left of specific formats, for example, the century, can be omitted. Truncated formats are, in
general, not permitted for the datatypes defined in this specification with three exceptions.
The time datatype uses a truncated format for dateTime which represents an instant of time
that recurs every day. Similarly, the gMonthDay and gDay datatypes use left-truncated
formats for date. The datatype gMonth uses a right and left truncated format for date.

[ISO 8601] also supports a variety of "reduced" or right-truncated formats in which some of
the characters to the right of specific formats, such as the time specification, can be omitted.
Right truncated formats are also, in general, not permitted for the datatypes defined in this
specification with the following exceptions: right-truncated representations of dateTime are
used as lexical representations for date, gMonth, gYear.

D.3 Deviations from ISO 8601 Formats
 D.3.1 Sign Allowed
 D.3.2 No Year Zero
 D.3.3 More Than 9999 Years
 D.3.4 Time zone permitted

D.3.1 Sign Allowed

An optional minus sign is allowed immediately preceding, without a space, the lexical
representations for duration, dateTime, date, gYearMonth, gYear.

D.3.2 No Year Zero

The year "0000" is an illegal year value.

D.3.3 More Than 9999 Years

To accommodate year values greater than 9999, more than four digits are allowed in the year
representations of dateTime, date, gYearMonth, and gYear. This follows [ISO 8601:2000
Second Edition].

D.3.4 Time zone permitted

The lexical representations for the datatypes date, gYearMonth, gMonthDay, gDay, gMonth
and gYear permit an optional trailing time zone specificiation.

E Adding durations to dateTimes

Given a dateTime S and a duration D, this appendix specifies how to compute a dateTime E
where E is the end of the time period with start S and duration D i.e. E = S + D. Such

http://www.w3.org/TR/xmlschema-2/ 111 3/28/2009 7:17 PM

computations are used, for example, to determine whether a dateTime is within a specific
time period. This appendix also addresses the addition of durations to the datatypes date,
gYearMonth, gYear, gDay and gMonth, which can be viewed as a set of dateTimes. In such
cases, the addition is made to the first or starting dateTime in the set.

This is a logical explanation of the process. Actual implementations are free to optimize as
long as they produce the same results. The calculation uses the notation S[year] to represent
the year field of S, S[month] to represent the month field, and so on. It also depends on the
following functions:

fQuotient(a, b) = the greatest integer less than or equal to a/b
fQuotient(-1,3) = -1
fQuotient(0,3)...fQuotient(2,3) = 0
fQuotient(3,3) = 1
fQuotient(3.123,3) = 1

modulo(a, b) = a - fQuotient(a,b)*b
modulo(-1,3) = 2
modulo(0,3)...modulo(2,3) = 0...2
modulo(3,3) = 0
modulo(3.123,3) = 0.123

fQuotient(a, low, high) = fQuotient(a - low, high - low)
fQuotient(0, 1, 13) = -1
fQuotient(1, 1, 13) ... fQuotient(12, 1, 13) = 0
fQuotient(13, 1, 13) = 1
fQuotient(13.123, 1, 13) = 1

modulo(a, low, high) = modulo(a - low, high - low) + low
modulo(0, 1, 13) = 12
modulo(1, 1, 13) ... modulo(12, 1, 13) = 1...12
modulo(13, 1, 13) = 1
modulo(13.123, 1, 13) = 1.123

maximumDayInMonthFor(yearValue, monthValue) =
M := modulo(monthValue, 1, 13)
Y := yearValue + fQuotient(monthValue, 1, 13)
Return a value based on M and Y:

31 M = January, March, May, July, August, October, or December
30 M = April, June, September, or November

29 M = February AND (modulo(Y, 400) = 0 OR (modulo(Y, 100) != 0) AND modulo(Y, 4) =
0)

28 Otherwise

E.1 Algorithm

Essentially, this calculation is equivalent to separating D into <year,month> and
<day,hour,minute,second> fields. The <year,month> is added to S. If the day is out of range,
it is pinned to be within range. Thus April 31 turns into April 30. Then the
<day,hour,minute,second> is added. This latter addition can cause the year and month to
change.

Leap seconds are handled by the computation by treating them as overflows. Essentially, a
value of 60 seconds in S is treated as if it were a duration of 60 seconds added to S (with a

http://www.w3.org/TR/xmlschema-2/ 112 3/28/2009 7:17 PM

zero seconds field). All calculations thereafter use 60 seconds per minute.

Thus the addition of either PT1M or PT60S to any dateTime will always produce the same
result. This is a special definition of addition which is designed to match common practice,
and -- most importantly -- be stable over time.

A definition that attempted to take leap-seconds into account would need to be constantly
updated, and could not predict the results of future implementation's additions. The decision
to introduce a leap second in UTC is the responsibility of the [International Earth Rotation
Service (IERS)]. They make periodic announcements as to when leap seconds are to be
added, but this is not known more than a year in advance. For more information on leap
seconds, see [U.S. Naval Observatory Time Service Department].

The following is the precise specification. These steps must be followed in the same order. If
a field in D is not specified, it is treated as if it were zero. If a field in S is not specified, it is
treated in the calculation as if it were the minimum allowed value in that field, however, after
the calculation is concluded, the corresponding field in E is removed (set to unspecified).

Months (may be modified additionally below)
temp := S[month] + D[month]
E[month] := modulo(temp, 1, 13)
carry := fQuotient(temp, 1, 13)

Years (may be modified additionally below)
E[year] := S[year] + D[year] + carry

Zone
E[zone] := S[zone]

Seconds
temp := S[second] + D[second]
E[second] := modulo(temp, 60)
carry := fQuotient(temp, 60)

Minutes
temp := S[minute] + D[minute] + carry
E[minute] := modulo(temp, 60)
carry := fQuotient(temp, 60)

Hours
temp := S[hour] + D[hour] + carry
E[hour] := modulo(temp, 24)
carry := fQuotient(temp, 24)

Days
if S[day] > maximumDayInMonthFor(E[year], E[month])

tempDays := maximumDayInMonthFor(E[year], E[month])
else if S[day] < 1

tempDays := 1
else

tempDays := S[day]
E[day] := tempDays + D[day] + carry
START LOOP

IF E[day] < 1
E[day] := E[day] + maximumDayInMonthFor(E[year], E[month] - 1)
carry := -1

ELSE IF E[day] > maximumDayInMonthFor(E[year], E[month])
E[day] := E[day] - maximumDayInMonthFor(E[year], E[month])
carry := 1

http://www.w3.org/TR/xmlschema-2/ 113 3/28/2009 7:17 PM

ELSE EXIT LOOP
temp := E[month] + carry
E[month] := modulo(temp, 1, 13)
E[year] := E[year] + fQuotient(temp, 1, 13)
GOTO START LOOP

Examples:

dateTime duration result

2000-01-12T12:13:14Z P1Y3M5DT7H10M3.3S 2001-04-17T19:23:17.3Z

2000-01 -P3M 1999-10

2000-01-12 PT33H 2000-01-13

E.2 Commutativity and Associativity

Time durations are added by simply adding each of their fields, respectively, without overflow.

The order of addition of durations to instants is significant. For example, there are cases
where:

((dateTime + duration1) + duration2) != ((dateTime + duration2) + duration1)

Example:

(2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-04-30

(2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-05-01

F Regular Expressions

A ·regular expression· R is a sequence of characters that denote a set of strings L(R).
When used to constrain a ·lexical space·, a regular expression R asserts that only strings in
L(R) are valid literals for values of that type.

Note: Unlike some popular regular expression languages (including those defined by
Perl and standard Unix utilities), the regular expression language defined here implicitly
anchors all regular expressions at the head and tail, as the most common use of regular
expressions in ·pattern· is to match entire literals. For example, a datatype ·derived· from
string such that all values must begin with the character A (#x41) and end with the
character Z (#x5a) would be defined as follows:

<simpleType name='myString'>
 <restriction base='string'>
 <pattern value='A.*Z'/>
 </restriction>
</simpleType>

In regular expression languages that are not implicitly anchored at the head and tail, it is
customary to write the equivalent regular expression as:

 ^A.*Z$

http://www.w3.org/TR/xmlschema-2/ 114 3/28/2009 7:17 PM

where "^" anchors the pattern at the head and "$" anchors at the tail.

In those rare cases where an unanchored match is desired, including .* at the beginning
and ending of the regular expression will achieve the desired results. For example, a
datatype ·derived· from string such that all values must contain at least 3 consecutive A
(#x41) characters somewhere within the value could be defined as follows:

<simpleType name='myString'>
 <restriction base='string'>
 <pattern value='.*AAA.*'/>
 </restriction>
</simpleType>

[Definition:] A regular expression is composed from zero or more ·branch·es, separated by
| characters.

Regular Expression

[1] regExp ::= branch ('|' branch)*

For all ·branch·es S, and for all ·regular
expression·s T, valid ·regular expression·s

R are:

Denoting the set of strings L(R)
containing:

(empty string) the set containing just the empty string
S all strings in L(S)

S|T all strings in L(S) and all strings in L(T)

[Definition:] A branch consists of zero or more ·piece·s, concatenated together.

Branch

[2] branch ::= piece*

For all ·piece·s S, and for all ·branch·es T,
valid ·branch·es R are:

Denoting the set of strings L(R)
containing:

S all strings in L(S)
ST all strings st with s in L(S) and t in L(T)

[Definition:] A piece is an ·atom·, possibly followed by a ·quantifier·.

Piece

[3] piece ::= atom quantifier?

For all ·atom·s S and non-negative
integers n, m such that n <= m, valid

·piece·s R are:

Denoting the set of strings L(R)
containing:

http://www.w3.org/TR/xmlschema-2/ 115 3/28/2009 7:17 PM

For all ·atom·s S and non-negative
integers n, m such that n <= m, valid

·piece·s R are:

Denoting the set of strings L(R)
containing:

S all strings in L(S)
S? the empty string, and all strings in L(S).

S*
All strings in L(S?) and all strings st with s in

L(S*) and t in L(S). (all concatenations of
zero or more strings from L(S))

S+
All strings st with s in L(S) and t in L(S*). (all
concatenations of one or more strings from

L(S))

S{n,m}
All strings st with s in L(S) and t in

L(S{n-1,m-1}). (All sequences of at least n,
and at most m, strings from L(S))

S{n} All strings in L(S{n,n}). (All sequences of
exactly n strings from L(S))

S{n,} All strings in L(S{n}S*) (All sequences of at
least n, strings from L(S))

S{0,m}
All strings st with s in L(S?) and t in

L(S{0,m-1}). (All sequences of at most m,
strings from L(S))

S{0,0} The set containing only the empty string
Note: The regular expression language in the Perl Programming Language [Perl] does
not include a quantifier of the form S{,m}, since it is logically equivalent to S{0,m}. We
have, therefore, left this logical possibility out of the regular expression language defined
by this specification.

[Definition:] A quantifier is one of ?, *, +, {n,m} or {n,}, which have the meanings defined in
the table above.

Quanitifer

[4] quantifier ::= [?*+] | ('{' quantity '}')
[5] quantity ::= quantRange | quantMin | QuantExact
[6] quantRange ::= QuantExact ',' QuantExact
[7] quantMin ::= QuantExact ','
[8] QuantExact ::= [0-9]+

[Definition:] An atom is either a ·normal character·, a ·character class·, or a parenthesized
·regular expression·.

Atom

[9] atom ::= Char | charClass | ('(' regExp ')')

http://www.w3.org/TR/xmlschema-2/ 116 3/28/2009 7:17 PM

For all ·normal character·s c, ·character
class·es C, and ·regular expression·s S,

valid ·atom·s R are:

Denoting the set of strings L(R)
containing:

http://www.w3.org/TR/xmlschema-2/ 117 3/28/2009 7:17 PM

c the single string consisting only of c
C all strings in L(C)

(S) all strings in L(S)

[Definition:] A metacharacter is either ., \, ?, *, +, {, } (,), [or]. These characters have
special meanings in ·regular expression·s, but can be escaped to form ·atom·s that denote the
sets of strings containing only themselves, i.e., an escaped ·metacharacter· behaves like a
·normal character·.

[Definition:] A normal character is any XML character that is not a metacharacter. In
·regular expression·s, a normal character is an atom that denotes the singleton set of strings
containing only itself.

Normal Character

[10] Char ::= [^.\?*+()|#x5B#x5D]

Note that a ·normal character· can be represented either as itself, or with a character
reference.

F.1 Character Classes

[Definition:] A character class is an ·atom· R that identifies a set of characters C(R). The
set of strings L(R) denoted by a character class R contains one single-character string "c" for
each character c in C(R).

Character Class

[11] charClass ::= charClassEsc | charClassExpr | WildcardEsc

A character class is either a ·character class escape· or a ·character class expression·.

[Definition:] A character class expression is a ·character group· surrounded by [and]
characters. For all character groups G, [G] is a valid character class expression, identifying
the set of characters C([G]) = C(G).

Character Class Expression

[12] charClassExpr ::= '[' charGroup ']'

[Definition:] A character group is either a ·positive character group·, a ·negative character
group·, or a ·character class subtraction·.

Character Group

[13] charGroup ::= posCharGroup | negCharGroup | charClassSub

http://www.w3.org/TR/xmlschema-2/ 118 3/28/2009 7:17 PM

[Definition:] A positive character group consists of one or more ·character range·s or
·character class escape·s, concatenated together. A positive character group identifies the
set of characters containing all of the characters in all of the sets identified by its constituent
ranges or escapes.

Positive Character Group

[14] posCharGroup ::= (charRange | charClassEsc)+

For all ·character range·s R, all ·character
class escape·s E, and all ·positive

character group·s P, valid ·positive
character group·s G are:

Identifying the set of characters C(G)
containing:

R all characters in C(R).
E all characters in C(E).

RP all characters in C(R) and all characters in
C(P).

EP all characters in C(E) and all characters in
C(P).

[Definition:] A negative character group is a ·positive character group· preceded by the ^
character. For all ·positive character group·s P, ^P is a valid negative character group, and
C(^P) contains all XML characters that are not in C(P).

Negative Character Group

[15] negCharGroup ::= '^' posCharGroup

[Definition:] A character class subtraction is a ·character class expression· subtracted from
a ·positive character group· or ·negative character group·, using the - character.

Character Class Subtraction

[16] charClassSub ::= (posCharGroup | negCharGroup) '-' charClassExpr

For any ·positive character group· or ·negative character group· G, and any ·character class
expression· C, G-C is a valid ·character class subtraction·, identifying the set of all characters
in C(G) that are not also in C(C).

[Definition:] A character range R identifies a set of characters C(R) containing all XML
characters with UCS code points in a specified range.

Character Range

[17] charRange ::= seRange | XmlCharIncDash
[18] seRange ::= charOrEsc '-' charOrEsc

http://www.w3.org/TR/xmlschema-2/ 119 3/28/2009 7:17 PM

[20] charOrEsc ::= XmlChar | SingleCharEsc
[21] XmlChar ::= [^\#x2D#x5B#x5D]
[22] XmlCharIncDash ::= [^\#x5B#x5D]

A single XML character is a ·character range· that identifies the set of characters containing
only itself. All XML characters are valid character ranges, except as follows:

The [,], - and \ characters are not valid character ranges;
The ^ character is only valid at the beginning of a ·positive character group· if it is part of
a ·negative character group·
The - character is a valid character range only at the beginning or end of a ·positive
character group·.

Note: The grammar for ·character range· as given above is ambiguous, but the second
and third bullets above together remove the ambiguity.

A ·character range· ·may· also be written in the form s-e, identifying the set that contains all
XML characters with UCS code points greater than or equal to the code point of s, but not
greater than the code point of e.

s-e is a valid character range iff:

s is a ·single character escape·, or an XML character;
s is not \
If s is the first character in a ·character class expression·, then s is not ^
e is a ·single character escape·, or an XML character;
e is not \ or [; and
The code point of e is greater than or equal to the code point of s;

Note: The code point of a ·single character escape· is the code point of the single
character in the set of characters that it identifies.

F.1.1 Character Class Escapes

[Definition:] A character class escape is a short sequence of characters that identifies
predefined character class. The valid character class escapes are the ·single character
escape·s, the ·multi-character escape·s, and the ·category escape·s (including the ·block
escape·s).

Character Class Escape

[23] charClassEsc ::= (SingleCharEsc | MultiCharEsc | catEsc | complEsc)

[Definition:] A single character escape identifies a set containing a only one character --
usually because that character is difficult or impossible to write directly into a ·regular
expression·.

Single Character Escape

http://www.w3.org/TR/xmlschema-2/ 120 3/28/2009 7:17 PM

[24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]

The valid ·single character escape·s are: Identifying the set of characters C(R)
containing:

\n the newline character (#xA)
\r the return character (#xD)
\t the tab character (#x9)
\\ \
\| |
\. .
\- -
\^ ^
\? ?
* *
\+ +
\{ {
\} }
\((
\))
\[[
\]]

[Definition:] [Unicode Database] specifies a number of possible values for the "General
Category" property and provides mappings from code points to specific character properties.
The set containing all characters that have property X, can be identified with a category
escape \p{X}. The complement of this set is specified with the category escape \P{X}.
([\P{X}] = [^\p{X}]).

Category Escape

[25] catEsc ::= '\p{' charProp '}'
[26] complEsc ::= '\P{' charProp '}'
[27] charProp ::= IsCategory | IsBlock

Note: [Unicode Database] is subject to future revision. For example, the mapping from
code points to character properties might be updated. All ·minimally conforming·
processors ·must· support the character properties defined in the version of [Unicode
Database] that is current at the time this specification became a W3C Recommendation.
However, implementors are encouraged to support the character properties defined in
any future version.

The following table specifies the recognized values of the "General Category" property.

Category Property Meaning

http://www.w3.org/TR/xmlschema-2/ 121 3/28/2009 7:17 PM

L All Letters

http://www.w3.org/TR/xmlschema-2/ 122 3/28/2009 7:17 PM

Cc control
Cf format
Co private use
Cn not assigned

Categories

[28] IsCategory ::= Letters | Marks | Numbers | Punctuation | Separators |
Symbols | Others

[29] Letters ::= 'L' [ultmo]?
[30] Marks ::= 'M' [nce]?
[31] Numbers ::= 'N' [dlo]?
[32] Punctuation ::= 'P' [cdseifo]?
[33] Separators ::= 'Z' [slp]?
[34] Symbols ::= 'S' [mcko]?
[35] Others ::= 'C' [cfon]?

Note: The properties mentioned above exclude the Cs property. The Cs property
identifies "surrogate" characters, which do not occur at the level of the "character
abstraction" that XML instance documents operate on.

[Definition:] [Unicode Database] groups code points into a number of blocks such as Basic
Latin (i.e., ASCII), Latin-1 Supplement, Hangul Jamo, CJK Compatibility, etc. The set
containing all characters that have block name X (with all white space stripped out), can be
identified with a block escape \p{IsX}. The complement of this set is specified with the
block escape \P{IsX}. ([\P{IsX}] = [^\p{IsX}]).

Block Escape

[36] IsBlock ::= 'Is' [a-zA-Z0-9#x2D]+

The following table specifies the recognized block names (for more information, see the
"Blocks.txt" file in [Unicode Database]).

Start
Code

End
Code Block Name Start

Code
End

Code Bloc

#x0000 #x007F BasicLatin #x0080 #x00FF Latin-1Supplem

#x0100 #x017F LatinExtended-A #x0180 #x024F LatinExtended-

#x0250 #x02AF IPAExtensions #x02B0 #x02FF SpacingModifie

#x0300 #x036F CombiningDiacriticalMarks #x0370 #x03FF Greek

#x0400 #x04FF Cyrillic #x0530 #x058F Armenian

#x0590 #x05FF Hebrew #x0600 #x06FF Arabic

#x0700 #x074F Syriac #x0780 #x07BF Thaana

http://www.w3.org/TR/xmlschema-2/ 123 3/28/2009 7:17 PM

#x0900 #x097F Devanagari #x0980 #x09FF Bengali

#x0A00 #x0A7F Gurmukhi #x0A80 #x0AFF Gujarati

#x0B00 #x0B7F Oriya #x0B80 #x0BFF Tamil

#x0C00 #x0C7F Telugu #x0C80 #x0CFF Kannada

#x0D00 #x0D7F Malayalam #x0D80 #x0DFF Sinhala

#x0E00 #x0E7F Thai #x0E80 #x0EFF Lao

#x0F00 #x0FFF Tibetan #x1000 #x109F Myanmar

#x10A0 #x10FF Georgian #x1100 #x11FF HangulJamo

#x1200 #x137F Ethiopic #x13A0 #x13FF Cherokee

#x1400 #x167F UnifiedCanadianAboriginalSyllabics #x1680 #x169F Ogham

#x16A0 #x16FF Runic #x1780 #x17FF Khmer

#x1800 #x18AF Mongolian #x1E00 #x1EFF LatinExtendedA

#x1F00 #x1FFF GreekExtended #x2000 #x206F GeneralPunctu

#x2070 #x209F SuperscriptsandSubscripts #x20A0 #x20CF CurrencySymb

#x20D0 #x20FF CombiningMarksforSymbols #x2100 #x214F LetterlikeSymb

#x2150 #x218F NumberForms #x2190 #x21FF Arrows

#x2200 #x22FF MathematicalOperators #x2300 #x23FF MiscellaneousT

#x2400 #x243F ControlPictures #x2440 #x245F OpticalCharact

#x2460 #x24FF EnclosedAlphanumerics #x2500 #x257F BoxDrawing

#x2580 #x259F BlockElements #x25A0 #x25FF GeometricSha

#x2600 #x26FF MiscellaneousSymbols #x2700 #x27BF Dingbats

#x2800 #x28FF BraillePatterns #x2E80 #x2EFF CJKRadicalsS

#x2F00 #x2FDF KangxiRadicals #x2FF0 #x2FFF IdeographicDe

#x3000 #x303F CJKSymbolsandPunctuation #x3040 #x309F Hiragana

#x30A0 #x30FF Katakana #x3100 #x312F Bopomofo

#x3130 #x318F HangulCompatibilityJamo #x3190 #x319F Kanbun

#x31A0 #x31BF BopomofoExtended #x3200 #x32FF EnclosedCJKL

#x3300 #x33FF CJKCompatibility #x3400 #x4DB5 CJKUnifiedIdeo

#x4E00 #x9FFF CJKUnifiedIdeographs #xA000 #xA48F YiSyllables

http://www.w3.org/TR/xmlschema-2/ 124 3/28/2009 7:17 PM

#xA490 #xA4CF YiRadicals #xAC00 #xD7A3 HangulSyllable

 #xE000 #xF8FF PrivateUse

#xF900 #xFAFF CJKCompatibilityIdeographs #xFB00 #xFB4F AlphabeticPres

#xFB50 #xFDFF ArabicPresentationForms-A #xFE20 #xFE2F CombiningHalf

#xFE30 #xFE4F CJKCompatibilityForms #xFE50 #xFE6F SmallFormVar

#xFE70 #xFEFE ArabicPresentationForms-B #xFEFF #xFEFF Specials

#xFF00 #xFFEF HalfwidthandFullwidthForms #xFFF0 #xFFFD Specials

Note: The blocks mentioned above exclude the HighSurrogates, LowSurrogates and
HighPrivateUseSurrogates blocks. These blocks identify "surrogate" characters, which do
not occur at the level of the "character abstraction" that XML instance documents operate
on.
Note: [Unicode Database] is subject to future revision. For example, the grouping of
code points into blocks might be updated. All ·minimally conforming· processors ·must·
support the blocks defined in the version of [Unicode Database] that is current at the time
this specification became a W3C Recommendation. However, implementors are
encouraged to support the blocks defined in any future version of the Unicode Standard.

For example, the ·block escape· for identifying the ASCII characters is \p{IsBasicLatin}.

[Definition:] A multi-character escape provides a simple way to identify a commonly used
set of characters:

Multi-Character Escape

[37] MultiCharEsc ::= '\' [sSiIcCdDwW]
[37a] WildcardEsc ::= '.'

Character sequence Equivalent ·character class·

. [^\n\r]

\s [#x20\t\n\r]

\S [^\s]

\i the set of initial name characters,
those ·match·ed by Letter | '_' | ':'

\I [^\i]

\c the set of name characters, those
·match·ed by NameChar

\C [^\c]

http://www.w3.org/TR/xmlschema-2/ 125 3/28/2009 7:17 PM

Character sequence Equivalent ·character class·

\d \p{Nd}

\D [^\d]

\w

[#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}]
(all characters except the set of
"punctuation", "separator" and

"other" characters)

\W [^\w]

Note: The ·regular expression· language defined here does not attempt to provide a
general solution to "regular expressions" over UCS character sequences. In particular, it
does not easily provide for matching sequences of base characters and combining
marks. The language is targeted at support of "Level 1" features as defined in [Unicode
Regular Expression Guidelines]. It is hoped that future versions of this specification will
provide support for "Level 2" features.

G Glossary (non-normative)

The listing below is for the benefit of readers of a printed version of this document: it collects
together all the definitions which appear in the document above.

atomic
Atomic datatypes are those having values which are regarded by this specification as
being indivisible.

base type
Every datatype that is ·derived· by restriction is defined in terms of an existing
datatype, referred to as its base type. base types can be either ·primitive· or ·derived·.

bounded
A datatype is bounded if its ·value space· has either an ·inclusive upper bound· or an
·exclusive upper bound· and either an ·inclusive lower bound· or an ·exclusive lower
bound·.

built-in
Built-in datatypes are those which are defined in this specification, and can be either
·primitive· or ·derived·;

canonical lexical representation
A canonical lexical representation is a set of literals from among the valid set of
literals for a datatype such that there is a one-to-one mapping between literals in the
canonical lexical representation and values in the ·value space·.

cardinality
Every ·value space· has associated with it the concept of cardinality. Some ·value
space·s are finite, some are countably infinite while still others could conceivably be
uncountably infinite (although no ·value space· defined by this specification is
uncountable infinite). A datatype is said to have the cardinality of its ·value space·.

comparable
otherwise they are comparable.

conformance to the XML Representation of Schemas
Processors which accept schemas in the form of XML documents as described in XML
Representation of Simple Type Definition Schema Components (§4.1.2) (and other

http://www.w3.org/TR/xmlschema-2/ 126 3/28/2009 7:17 PM

relevant portions of Datatype components (§4)) are additionally said to provide
conformance to the XML Representation of Schemas, and ·must·, when processing
schema documents, completely and correctly implement all ·Schema Representation
Constraint·s in this specification, and ·must· adhere exactly to the specifications in XML
Representation of Simple Type Definition Schema Components (§4.1.2) (and other
relevant portions of Datatype components (§4)) for mapping the contents of such
documents to schema components for use in validation.

constraining facet
A constraining facet is an optional property that can be applied to a datatype to
constrain its ·value space·.

Constraint on Schemas
Constraint on Schemas

datatype
In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct values,
called its ·value space·, b) a set of lexical representations, called its ·lexical space·, and
c) a set of ·facet·s that characterize properties of the ·value space·, individual values or
lexical items.

derived
Derived datatypes are those that are defined in terms of other datatypes.

error
error

exclusive lower bound
A value l in an ·ordered· ·value space· L is said to be an exclusive lower bound of a
·value space· V (where V is a subset of L) if for all v in V, l < v.

exclusive upper bound
A value u in an ·ordered· ·value space· U is said to be an exclusive upper bound of a
·value space· V (where V is a subset of U) if for all v in V, u > v.

facet
A facet is a single defining aspect of a ·value space·. Generally speaking, each facet
characterizes a ·value space· along independent axes or dimensions.

for compatibility
for compatibility

fundamental facet
A fundamental facet is an abstract property which serves to semantically characterize
the values in a ·value space·.

inclusive lower bound
A value l in an ·ordered· ·value space· L is said to be an inclusive lower bound of a
·value space· V (where V is a subset of L) if for all v in V, l <= v.

inclusive upper bound
A value u in an ·ordered· ·value space· U is said to be an inclusive upper bound of a
·value space· V (where V is a subset of U) if for all v in V, u >= v.

incomparable
When a <> b, a and b are incomparable,

itemType
The ·atomic· or ·union· datatype that participates in the definition of a ·list· datatype is
known as the itemType of that ·list· datatype.

lexical space
A lexical space is the set of valid literals for a datatype.

list
List datatypes are those having values each of which consists of a finite-length (possibly
empty) sequence of values of an ·atomic· datatype.

http://www.w3.org/TR/xmlschema-2/ 127 3/28/2009 7:17 PM

match
match

may
may

memberTypes
The datatypes that participate in the definition of a ·union· datatype are known as the
memberTypes of that ·union· datatype.

minimally conforming
Minimally conforming processors ·must· completely and correctly implement the
·Constraint on Schemas· and ·Validation Rule· .

must
must

non-numeric
A datatype whose values are not ·numeric· is said to be non-numeric.

numeric
A datatype is said to be numeric if its values are conceptually quantities (in some
mathematical number system).

order-relation
An order relation on a ·value space· is a mathematical relation that imposes a ·total
order· or a ·partial order· on the members of the ·value space·.

ordered
A ·value space·, and hence a datatype, is said to be ordered if there exists an
·order-relation· defined for that ·value space·.

partial order
A partial order is an ·order-relation· that is irreflexive, asymmetric and transitive.

primitive
Primitive datatypes are those that are not defined in terms of other datatypes; they exist
ab initio.

regular expression
A regular expression is composed from zero or more ·branch·es, separated by |
characters.

restriction
A datatype is said to be ·derived· by restriction from another datatype when values for
zero or more ·constraining facet·s are specified that serve to constrain its ·value space·
and/or its ·lexical space· to a subset of those of its ·base type·.

Schema Representation Constraint
Schema Representation Constraint

total order
A total order is an ·partial order· such that for no a and b is it the case that a <> b.

union
Union datatypes are those whose ·value space·s and ·lexical space·s are the union of
the ·value space·s and ·lexical space·s of one or more other datatypes.

user-derived
User-derived datatypes are those ·derived· datatypes that are defined by individual
schema designers.

Validation Rule
Validation Rule

value space
A value space is the set of values for a given datatype. Each value in the value space
of a datatype is denoted by one or more literals in its ·lexical space·.

http://www.w3.org/TR/xmlschema-2/ 128 3/28/2009 7:17 PM

H References

H.1 Normative

Clinger, WD (1990)
William D Clinger. How to Read Floating Point Numbers Accurately. In Proceedings of
Conference on Programming Language Design and Implementation, pages 92-101.
Available at: ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps

IEEE 754-1985
IEEE. IEEE Standard for Binary Floating-Point Arithmetic. See
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

Namespaces in XML
World Wide Web Consortium. Namespaces in XML. Available at:
http://www.w3.org/TR/1999/REC-xml-names-19990114/

RFC 1766
H. Alvestrand, ed. RFC 1766: Tags for the Identification of Languages 1995. Available
at: http://www.ietf.org/rfc/rfc1766.txt

RFC 2045
N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. 1996. Available at:
http://www.ietf.org/rfc/rfc2045.txt

RFC 2396
Tim Berners-Lee, et. al. RFC 2396: Uniform Resource Identifiers (URI): Generic
Syntax.. 1998. Available at: http://www.ietf.org/rfc/rfc2396.txt

RFC 2732
RFC 2732: Format for Literal IPv6 Addresses in URL's. 1999. Available at:
http://www.ietf.org/rfc/rfc2732.txt

RFC 3066
H. Alvestrand, ed. RFC 3066: Tags for the Identification of Languages 1995. Available
at: http://www.ietf.org/rfc/rfc3066.txt

Unicode Database
The Unicode Consortium. The Unicode Character Database. Available at:
http://www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html

XML 1.0 (Second Edition)
World Wide Web Consortium. Extensible Markup Language (XML) 1.0, Second Edition.
Available at: http://www.w3.org/TR/2000/WD-xml-2e-20000814

XML Base
World Wide Web Consortium. XML Base. Available at:
http://www.w3.org/TR/2001/REC-xmlbase-20010627/

XML Linking Language
World Wide Web Consortium. XML Linking Language (XLink). Available at:
http://www.w3.org/TR/2001/REC-xlink-20010627/. Note: only the URI reference
escaping procedure defined in Section 5.4 is normatively referenced.

XML Schema Part 1: Structures
XML Schema Part 1: Structures. Available at:
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/structures.html

XML Schema Requirements
World Wide Web Consortium. XML Schema Requirements. Available at:
http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215

H.2 Non-normative

http://www.w3.org/TR/xmlschema-2/ 129 3/28/2009 7:17 PM

Character Model
Martin J. Dürst and François Yergeau, eds. Character Model for the World Wide Web.
World Wide Web Consortium Working Draft. 2001. Available at:
http://www.w3.org/TR/2001/WD-charmod-20010126/

Gay, DM (1990)
David M. Gay. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions.
AT&T Bell Laboratories Numerical Analysis Manuscript 90-10, November 1990.
Available at: http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz

HTML 4.01
World Wide Web Consortium. Hypertext Markup Language, version 4.01. Available at:
http://www.w3.org/TR/1999/REC-html401-19991224/

IETF INTERNET-DRAFT: IRIs
M. Dürst and M. Suignard . Internationalized Resource Identifiers 2002. Available at:
http://www.w3.org/International/iri-edit/draft-duerst-iri-04.txt

International Earth Rotation Service (IERS)
International Earth Rotation Service (IERS). See http://maia.usno.navy.mil

ISO 11404
ISO (International Organization for Standardization). Language-independent Datatypes.
See http://www.iso.ch/cate/d19346.html

ISO 8601
ISO (International Organization for Standardization). Representations of dates and
times, 1988-06-15.

ISO 8601:1998 Draft Revision
ISO (International Organization for Standardization). Representations of dates and
times, draft revision, 1998.

ISO 8601:2000 Second Edition
ISO (International Organization for Standardization). Representations of dates and
times, second edition, 2000-12-15.

Perl
The Perl Programming Language. See
http://www.perl.com/pub/language/info/software.html

RDF Schema
World Wide Web Consortium. RDF Schema Specification. Available at:
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

Ruby
World Wide Web Consortium. Ruby Annotation. Available at:
http://www.w3.org/TR/2001/WD-ruby-20010216/

SQL
ISO (International Organization for Standardization). ISO/IEC 9075-2:1999, Information
technology --- Database languages --- SQL --- Part 2: Foundation (SQL/Foundation).
[Geneva]: International Organization for Standardization, 1999. See
http://www.iso.ch/cate/d26197.html

U.S. Naval Observatory Time Service Department
Information about Leap Seconds Available at:
http://tycho.usno.navy.mil/leapsec.990505.html

Unicode Regular Expression Guidelines
Mark Davis. Unicode Regular Expression Guidelines, 1988. Available at:
http://www.unicode.org/unicode/reports/tr18/

XML Schema Language: Part 0 Primer
World Wide Web Consortium. XML Schema Language: Part 0 Primer. Available at:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/primer.html

XSL

http://www.w3.org/TR/xmlschema-2/ 130 3/28/2009 7:17 PM

World Wide Web Consortium. Extensible Stylesheet Language (XSL). Available at:
http://www.w3.org/TR/2000/CR-xsl-20001121/

I Acknowledgements (non-normative)

The following have contributed material to the first edition of this specification:

Asir S. Vedamuthu, webMethods, Inc
Mark Davis, IBM

Co-editor Ashok Malhotra's work on this specification from March 1999 until February 2001
was supported by IBM. From February 2001 until May 2004 it was supported by Microsoft.

The editors acknowledge the members of the XML Schema Working Group, the members of
other W3C Working Groups, and industry experts in other forums who have contributed
directly or indirectly to the process or content of creating this document. The Working Group
is particularly grateful to Lotus Development Corp. and IBM for providing teleconferencing
facilities.

At the time the first edition of this specification was published, the members of the XML
Schema Working Group were:

Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Don Box, DevelopMentor
Allen Brown, Microsoft
Lee Buck, TIBCO Extensibility
Charles E. Campbell, Informix
Wayne Carr, Intel
Peter Chen, Bootstrap Alliance and LSU
David Cleary, Progress Software
Dan Connolly, W3C (staff contact)
Ugo Corda, Xerox
Roger L. Costello, MITRE
Haavard Danielson, Progress Software
Josef Dietl, Mozquito Technologies
David Ezell, Hewlett-Packard Company
Alexander Falk, Altova GmbH
David Fallside, IBM
Dan Fox, Defense Logistics Information Service (DLIS)
Matthew Fuchs, Commerce One
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Paul Grosso, Arbortext, Inc
Martin Gudgin, DevelopMentor
Dave Hollander, Contivo, Inc (co-chair)
Mary Holstege, Invited Expert
Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)
Rick Jelliffe, Academia Sinica
Simon Johnston, Rational Software
Bob Lojek, Mozquito Technologies
Ashok Malhotra, Microsoft
Lisa Martin, IBM
Noah Mendelsohn, Lotus Development Corporation

http://www.w3.org/TR/xmlschema-2/ 131 3/28/2009 7:17 PM

Adrian Michel, Commerce One
Alex Milowski, Invited Expert
Don Mullen, TIBCO Extensibility
Dave Peterson, Graphic Communications Association
Jonathan Robie, Software AG
Eric Sedlar, Oracle Corp.
C. M. Sperberg-McQueen, W3C (co-chair)
Bob Streich, Calico Commerce
William K. Stumbo, Xerox
Henry S. Thompson, University of Edinburgh
Mark Tucker, Health Level Seven
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, XMLSolutions
Norm Walsh, Sun Microsystems
Aki Yoshida, SAP AG
Kongyi Zhou, Oracle Corp.

The XML Schema Working Group has benefited in its work from the participation and
contributions of a number of people not currently members of the Working Group, including in
particular those named below. Affiliations given are those current at the time of their work with
the WG.

Paula Angerstein, Vignette Corporation
David Beech, Oracle Corp.
Gabe Beged-Dov, Rogue Wave Software
Greg Bumgardner, Rogue Wave Software
Dean Burson, Lotus Development Corporation
Mike Cokus, MITRE
Andrew Eisenberg, Progress Software
Rob Ellman, Calico Commerce
George Feinberg, Object Design
Charles Frankston, Microsoft
Ernesto Guerrieri, Inso
Michael Hyman, Microsoft
Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)
Dianne Kennedy, Graphic Communications Association
Janet Koenig, Sun Microsystems
Setrag Khoshafian, Technology Deployment International (TDI)
Ara Kullukian, Technology Deployment International (TDI)
Andrew Layman, Microsoft
Dmitry Lenkov, Hewlett-Packard Company
John McCarthy, Lawrence Berkeley National Laboratory
Murata Makoto, Xerox
Eve Maler, Sun Microsystems
Murray Maloney, Muzmo Communication, acting for Commerce One
Chris Olds, Wall Data
Frank Olken, Lawrence Berkeley National Laboratory
Shriram Revankar, Xerox
Mark Reinhold, Sun Microsystems
John C. Schneider, MITRE
Lew Shannon, NCR
William Shea, Merrill Lynch
Ralph Swick, W3C

http://www.w3.org/TR/xmlschema-2/ 132 3/28/2009 7:17 PM

Tony Stewart, Rivcom
Matt Timmermans, Microstar
Jim Trezzo, Oracle Corp.
Steph Tryphonas, Microstar

The lists given above pertain to the first edition. At the time work on this second edition was
completed, the membership of the Working Group was:

Leonid Arbouzov, Sun Microsystems
Jim Barnette, Defense Information Systems Agency (DISA)
Paul V. Biron, Health Level Seven
Allen Brown, Microsoft
Charles E. Campbell, Invited expert
Peter Chen, Invited expert
Tony Cincotta, NIST
David Ezell, National Association of Convenience Stores
Matthew Fuchs, Invited expert
Sandy Gao, IBM
Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)
Xan Gregg, Invited expert
Mary Holstege, Mark Logic
Mario Jeckle, DaimlerChrysler
Marcel Jemio, Data Interchange Standards Association
Kohsuke Kawaguchi, Sun Microsystems
Ashok Malhotra, Invited expert
Lisa Martin, IBM
Jim Melton, Oracle Corp
Noah Mendelsohn, IBM
Dave Peterson, Invited expert
Anli Shundi, TIBCO Extensibility
C. M. Sperberg-McQueen, W3C (co-chair)
Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)
Henry S. Thompson, University of Edinburgh
Asir S. Vedamuthu, webMethods, Inc
Priscilla Walmsley, Invited expert
Kongyi Zhou, Oracle Corp.

We note with sadness the accidental death of Mario Jeckle shortly after the completion of
work on this document. In addition to those named above, several people served on the
Working Group during the development of this second edition:

Oriol Carbo, University of Edinburgh
Tyng-Ruey Chuang, Academia Sinica
Joey Coyle, Health Level 7
Tim Ewald, DevelopMentor
Nelson Hung, Corel
Melanie Kudela, Uniform Code Council
Matthew MacKenzie, XML Global
Cliff Schmidt, Microsoft
John Stanton, Defense Information Systems Agency
John Tebbutt, NIST
Ross Thompson, Contivo
Scott Vorthmann, TIBCO Extensibility

	XML Schema Part 2: Datatypes Second Edition
	28 Oct 2004 Paul V. Biron and Asjhok Malhotra (eds.) World Wide Web Consortium
	Abstract
	Status of this Document
	Table of Contents
	1 Introduction
	2 Type System
	3 Built-in datatypes
	4 Datatype components
	5 Conformance
	A Schema for Datatype Definitions (normative)
	B DTD for Datatype Definitions (non-normative)
	C Datatypes and Facets
	D ISO 8601 Date and Time Formats
	E Adding durations to dateTimes
	F Regular Expressions
	G Glossary (non-normative)
	H References
	I Acknowledgements (non-normative)

	
	W3C Title Page

